Sample records for molecular orbital diagrams

  1. Diagrams for comprehensive molecular orbital-based chemical reaction analyses: reactive orbital energy diagrams.

    PubMed

    Tsuneda, Takao; Singh, Raman Kumar; Chattaraj, Pratim Kumar

    2018-05-15

    Reactive orbital energy diagrams are presented as a tool for comprehensively performing orbital-based reaction analyses. The diagrams rest on the reactive orbital energy theory, which is the expansion of conceptual density functional theory (DFT) to an orbital energy-based theory. The orbital energies on the intrinsic reaction coordinates of fundamental reactions are calculated by long-range corrected DFT, which is confirmed to provide accurate orbital energies of small molecules, combining with a van der Waals (vdW) correlation functional, in order to examine the vdW effect on the orbital energies. By analysing the reactions based on the reactive orbital energy theory using these accurate orbital energies, it is found that vdW interactions significantly affect the orbital energies in the initial reaction processes and that more than 70% of reactions are determined to be initially driven by charge transfer, while the remaining structural deformation (dynamics)-driven reactions are classified into identity, cyclization and ring-opening, unimolecular dissociation, and H2 reactions. The reactive orbital energy diagrams, which are constructed using these results, reveal that reactions progress so as to delocalize the occupied reactive orbitals, which are determined as contributing orbitals and are usually not HOMOs, by hybridizing the unoccupied reactive orbitals, which are usually not LUMOs. These diagrams also raise questions about conventional orbital-based diagrams such as frontier molecular orbital diagrams, even for the well-established interpretation of Diels-Alder reactions.

  2. Energy level diagrams for black hole orbits

    NASA Astrophysics Data System (ADS)

    Levin, Janna

    2009-12-01

    A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.

  3. Transition Metal d-Orbital Splitting Diagrams: An Updated Educational Resource for Square Planar Transition Metal Complexes

    ERIC Educational Resources Information Center

    Bo¨rgel, Jonas; Campbell, Michael G.; Ritter, Tobias

    2016-01-01

    The presentation of d-orbital splitting diagrams for square planar transition metal complexes in textbooks and educational materials is often inconsistent and therefore confusing for students. Here we provide a concise summary of the key features of orbital splitting diagrams for square planar complexes, which we propose may be used as an updated…

  4. Molecular Orbitals of NO, NO[superscript+], and NO[superscript-]: A Computational Quantum Chemistry Experiment

    ERIC Educational Resources Information Center

    Orenha, Renato P.; Galembeck, Sérgio E.

    2014-01-01

    This computational experiment presents qualitative molecular orbital (QMO) and computational quantum chemistry exercises of NO, NO[superscript+], and NO[superscript-]. Initially students explore several properties of the target molecules by Lewis diagrams and the QMO theory. Then, they compare qualitative conclusions with EHT and DFT calculations…

  5. How Different Variants of Orbit Diagrams Influence Student Explanations of the Seasons

    ERIC Educational Resources Information Center

    Lee, Victor R.

    2010-01-01

    The cause of the seasons is often associated with a very particular alternative conception: That the earth's orbit around the sun is highly elongated, and the differences in distance result in variations in temperature. It has been suggested that the standard diagrams used to depict the earth's orbit may be in some way responsible for the initial…

  6. Ab initio molecular crystal structures, spectra, and phase diagrams.

    PubMed

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  7. Construction of Ligand Group Orbitals for Polyatomics and Transition-Metal Complexes Using an Intuitive Symmetry-Based Approach

    ERIC Educational Resources Information Center

    Johnson, Adam R.

    2013-01-01

    A molecular orbital (MO) diagram, especially its frontier orbitals, explains the bonding and reactivity for a chemical compound. It is therefore important for students to learn how to construct one. The traditional methods used to derive these diagrams rely on linear algebra techniques to combine ligand orbitals into symmetry-adapted linear…

  8. A Comparison of Molecular Vibrational Theory to Huckel Molecular Orbital Theory.

    ERIC Educational Resources Information Center

    Keeports, David

    1986-01-01

    Compares the similar mathematical problems of molecular vibrational calculations (at any intermediate level of sophistication) and molecular orbital calculations (at the Huckel level). Discusses how the generalizations of Huckel treatment of molecular orbitals apply to vibrational theory. (TW)

  9. Basic primitives for molecular diagram sketching

    PubMed Central

    2010-01-01

    A collection of primitive operations for molecular diagram sketching has been developed. These primitives compose a concise set of operations which can be used to construct publication-quality 2 D coordinates for molecular structures using a bare minimum of input bandwidth. The input requirements for each primitive consist of a small number of discrete choices, which means that these primitives can be used to form the basis of a user interface which does not require an accurate pointing device. This is particularly relevant to software designed for contemporary mobile platforms. The reduction of input bandwidth is accomplished by using algorithmic methods for anticipating probable geometries during the sketching process, and by intelligent use of template grafting. The algorithms and their uses are described in detail. PMID:20923555

  10. The rotational barrier in ethane: a molecular orbital study.

    PubMed

    Quijano-Quiñones, Ramiro F; Quesadas-Rojas, Mariana; Cuevas, Gabriel; Mena-Rejón, Gonzalo J

    2012-04-20

    The energy change on each Occupied Molecular Orbital as a function of rotation about the C-C bond in ethane was studied using the B3LYP, mPWB95 functional and MP2 methods with different basis sets. Also, the effect of the ZPE on rotational barrier was analyzed. We have found that σ and π energies contribution stabilize a staggered conformation. The σ(s) molecular orbital stabilizes the staggered conformation while the stabilizes the eclipsed conformation and destabilize the staggered conformation. The π(z) and molecular orbitals stabilize both the eclipsed and staggered conformations, which are destabilized by the π(v) and molecular orbitals. The results show that the method of calculation has the effect of changing the behavior of the energy change in each Occupied Molecular Orbital energy as a function of the angle of rotation about the C-C bond in ethane. Finally, we found that if the molecular orbital energy contribution is deleted from the rotational energy, an inversion in conformational preference occurs.

  11. Molecular-orbital model for metal-sapphire interfacial strength

    NASA Technical Reports Server (NTRS)

    Johnson, K. H.; Pepper, S. V.

    1982-01-01

    Self-consistent-field X-Alpha scattered-wave cluster molecular-orbital models have been constructed for transition and noble metals (Fe, Ni, Cu, and Ag) in contact with a sapphire (Al2O3) surface. It is found that a chemical bond is established between the metal d-orbital electrons and the nonbonding 2p-orbital electrons of the oxygen anions on the Al2O3 surface. An increasing number of occupied metal-sapphire antibonding molecular orbitals explains qualitatively the observed decrease of contact shear strength through the series Fe, Ni, Cu, and Ag.

  12. A simple molecular orbital treatment of current distributions in quantum transport through molecular junctions

    NASA Astrophysics Data System (ADS)

    Jhan, Sin-Mu; Jin, Bih-Yaw

    2017-11-01

    A simple molecular orbital treatment of local current distributions inside single molecular junctions is developed in this paper. Using the first-order perturbation theory and nonequilibrium Green's function techniques in the framework of Hückel theory, we show that the leading contributions to local current distributions are directly proportional to the off-diagonal elements of transition density matrices. Under the orbital approximation, the major contributions to local currents come from a few dominant molecular orbital pairs which are mixed by the interactions between the molecule and electrodes. A few simple molecular junctions consisting of single- and multi-ring conjugated systems are used to demonstrate that local current distributions inside molecular junctions can be decomposed by partial sums of a few leading contributing transition density matrices.

  13. Ambiguities in the identification of giant molecular cloud complexes from longitude-velocity diagrams

    NASA Technical Reports Server (NTRS)

    Adler, David S.; Roberts, William W., Jr.

    1992-01-01

    Techniques which use longitude-velocity diagrams to identify molecular cloud complexes in the disk of the Galaxy are investigated by means of model Galactic disks generated from N-body cloud-particle simulations. A procedure similar to the method used to reduce the low-level emission in Galactic l-v diagrams is employed to isolate complexes of emission in the model l-v diagram (LVCs) from the 'background'clouds. The LVCs produced in this manner yield a size-line-width relationship with a slope of 0.58 and a mass spectrum with a slope of 1.55, consistent with Galactic observations. It is demonstrated that associations identified as LVCs are often chance superpositions of clouds spread out along the line of sight in the disk of the model system. This indicates that the l-v diagram cannot be used to unambiguously determine the location of molecular cloud complexes in the model Galactic disk. The modeling results also indicate that the existence of a size-line-width relationship is not a reliable indicator of the physical nature of cloud complexes, in particular, whether the complexes are gravitationally bound objects.

  14. ISS EPS Orbital Replacement Unit Block Diagrams

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.

    2001-01-01

    The attached documents are being provided to Switching Power Magazine for information purposes. This magazine is writing a feature article on the International Space Station Electrical Power System, focusing on the switching power processors. These units include the DC-DC Converter Unit (DDCU), the Bi-directional Charge/Discharge Unit (BCDU), and the Sequential Shunt Unit (SSU). These diagrams are high-level schematics/block diagrams depicting the overall functionality of each unit.

  15. A Simple Demonstration of Atomic and Molecular Orbitals Using Circular Magnets

    ERIC Educational Resources Information Center

    Chakraborty, Maharudra; Mukhopadhyay, Subrata; Das, Ranendu Sekhar

    2014-01-01

    A quite simple and inexpensive technique is described here to represent the approximate shapes of atomic orbitals and the molecular orbitals formed by them following the principles of the linear combination of atomic orbitals (LCAO) method. Molecular orbitals of a few simple molecules can also be pictorially represented. Instructors can employ the…

  16. Molecular gap and energy level diagram for pentacene adsorbed on filled d-band metal surfaces

    NASA Astrophysics Data System (ADS)

    Baldacchini, Chiara; Mariani, Carlo; Betti, Maria Grazia; Gavioli, L.; Fanetti, M.; Sancrotti, M.

    2006-10-01

    The authors present a combined photoemission and scanning-tunneling spectroscopy study of the filled electronic states, the molecular energy gap, and the energy level diagram of highly ordered arrays of pentacene deposited on the Cu(119) vicinal surface. The states localized at the interface are clearly singled out, comparing the results at different pentacene thicknesses and with gas-phase photoemission data. The molecular gap of 2.35eV, the hole injection barrier of 1.05eV, and the electron injection barrier of 1.30eV determine the energy level diagram of the states localized at the pentacene molecules.

  17. Asymmetric molecular-orbital tomography by manipulating electron trajectories

    NASA Astrophysics Data System (ADS)

    Wang, Bincheng; Zhang, Qingbin; Zhu, Xiaosong; Lan, Pengfei; Rezvani, Seyed Ali; Lu, Peixiang

    2017-11-01

    We present a scheme for tomographic imaging of asymmetric molecular orbital based on high-order harmonic generation with a two-color orthogonally polarized multicycle laser field. With the two-dimensional manipulation of the electron trajectories, the electrons can recollide with the target molecule from two noncollinear directions, and then the dipole moment generated from the single direction can be obtained to reconstructed the asymmetric molecular orbital. The recollision is independent from the molecular structure and the angular dependence of the ionization rate in the external field. For this reason, this scheme can avoid the negative effects arising from the modification of the angle-dependent ionization rate induced by Stark shift and be applied to various molecules.

  18. A Simple Huckel Molecular Orbital Plotter

    ERIC Educational Resources Information Center

    Ramakrishnan, Raghunathan

    2013-01-01

    A program is described and presented to readily plot the molecular orbitals from a Huckel calculation. The main features of the program and the scope of its applicability are discussed through some example organic molecules. (Contains 2 figures.)

  19. Relative Stabilities and Reactivities of Isolated Versus Conjugated Alkenes: Reconciliation Via a Molecular Orbital Approach

    NASA Astrophysics Data System (ADS)

    Sotiriou-Leventis, Chariklia; Hanna, Samir B.; Leventis, Nicholas

    1996-04-01

    The well-accepted practice of generating a pair of molecular orbitals, one of lower energy and another of higher energy than the original pair of overlapping atomic orbitals, and the concept of a particle in a one-dimensional box are implemented in a simplified, nonmathematical method that explains the relative stabilities and reactivities of alkenes with conjugated versus isolated double bonds. In this method, Huckel-type MO's of higher polyenes are constructed by energy rules of linear combination of atomic orbitals. One additional rule is obeyed: bonding molecular orbitals overlap only with bonding molecular orbitals, and antibonding molecular orbitals overlap only with antibonding molecular orbitals.

  20. Molecular Simulation of the Phase Diagram of Methane Hydrate: Free Energy Calculations, Direct Coexistence Method, and Hyperparallel Tempering.

    PubMed

    Jin, Dongliang; Coasne, Benoit

    2017-10-24

    Different molecular simulation strategies are used to assess the stability of methane hydrate under various temperature and pressure conditions. First, using two water molecular models, free energy calculations consisting of the Einstein molecule approach in combination with semigrand Monte Carlo simulations are used to determine the pressure-temperature phase diagram of methane hydrate. With these calculations, we also estimate the chemical potentials of water and methane and methane occupancy at coexistence. Second, we also consider two other advanced molecular simulation techniques that allow probing the phase diagram of methane hydrate: the direct coexistence method in the Grand Canonical ensemble and the hyperparallel tempering Monte Carlo method. These two direct techniques are found to provide stability conditions that are consistent with the pressure-temperature phase diagram obtained using rigorous free energy calculations. The phase diagram obtained in this work, which is found to be consistent with previous simulation studies, is close to its experimental counterpart provided the TIP4P/Ice model is used to describe the water molecule.

  1. Stable Molecular Diodes Based on π-π Interactions of the Molecular Frontier Orbitals with Graphene Electrodes.

    PubMed

    Song, Peng; Guerin, Sarah; Tan, Sherman Jun Rong; Annadata, Harshini Venkata; Yu, Xiaojiang; Scully, Micheál; Han, Ying Mei; Roemer, Max; Loh, Kian Ping; Thompson, Damien; Nijhuis, Christian A

    2018-03-01

    In molecular electronics, it is important to control the strength of the molecule-electrode interaction to balance the trade-off between electronic coupling strength and broadening of the molecular frontier orbitals: too strong coupling results in severe broadening of the molecular orbitals while the molecular orbitals cannot follow the changes in the Fermi levels under applied bias when the coupling is too weak. Here, a platform based on graphene bottom electrodes to which molecules can bind via π-π interactions is reported. These interactions are strong enough to induce electronic function (rectification) while minimizing broadening of the molecular frontier orbitals. Molecular tunnel junctions are fabricated based on self-assembled monolayers (SAMs) of Fc(CH 2 ) 11 X (Fc = ferrocenyl, X = NH 2 , Br, or H) on graphene bottom electrodes contacted to eutectic alloy of gallium and indium top electrodes. The Fc units interact more strongly with graphene than the X units resulting in SAMs with the Fc at the bottom of the SAM. The molecular diodes perform well with rectification ratios of 30-40, and they are stable against bias stressing under ambient conditions. Thus, tunnel junctions based on graphene with π-π molecule-electrode coupling are promising platforms to fabricate stable and well-performing molecular diodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Phase diagram of Ba 2 NaOsO 6, a Mott insulator with strong spin orbit interactions

    NASA Astrophysics Data System (ADS)

    Liu, W.; Cong, R.; Garcia, E.; Reyes, A. P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.

    2018-05-01

    We report 23Na nuclear magnetic resonance (NMR) measurements of the Mott insulator with strong spin-orbit interaction Ba2NaOsO6 as a function of temperature in different magnetic fields ranging from 7 T to 29 T. The measurements, intended to concurrently probe spin and orbital/lattice degrees of freedom, are an extension of our work at lower fields reported in Lu et al. (2017) [1]. We have identified clear quantitative NMR signatures that display the appearance of a canted ferromagnetic phase, which is preceded by local point symmetry breaking. We have compiled the field temperature phase diagram extending up to 29 T. We find that the broken local point symmetry phase extends over a wider temperature range as magnetic field increases.

  3. Creation of half-metallic f -orbital Dirac fermion with superlight elements in orbital-designed molecular lattice

    NASA Astrophysics Data System (ADS)

    Cui, Bin; Huang, Bing; Li, Chong; Zhang, Xiaoming; Jin, Kyung-Hwan; Zhang, Lizhi; Jiang, Wei; Liu, Desheng; Liu, Feng

    2017-08-01

    Magnetism in solids generally originates from the localized d or f orbitals that are hosted by heavy transition-metal elements. Here, we demonstrate a mechanism for designing a half-metallic f -orbital Dirac fermion from superlight s p elements. Combining first-principles and model calculations, we show that bare and flat-band-sandwiched (FBS) Dirac bands can be created when C20 molecules are deposited into a two-dimensional hexagonal lattice, which are composed of f -molecular orbitals (MOs) derived from s p -atomic orbitals (AOs). Furthermore, charge doping of the FBS Dirac bands induces spontaneous spin polarization, converting the system into a half-metallic Dirac state. Based on this discovery, a model of a spin field effect transistor is proposed to generate and transport 100% spin-polarized carriers. Our finding illustrates a concept to realize exotic quantum states by manipulating MOs, instead of AOs, in orbital-designed molecular crystal lattices.

  4. Orbital Energy Levels in Molecular Hydrogen. A Simple Approach.

    ERIC Educational Resources Information Center

    Willis, Christopher J.

    1988-01-01

    Described are the energetics involved in the formation of molecular hydrogen using concepts that should be familiar to students beginning the study of molecular orbital theory. Emphasized are experimental data on ionization energies. Included are two-electron atomic and molecular systems. (CW)

  5. Orbit-orbit relativistic correction calculated with all-electron molecular explicitly correlated Gaussians.

    PubMed

    Stanke, Monika; Palikot, Ewa; Kȩdziera, Dariusz; Adamowicz, Ludwik

    2016-12-14

    An algorithm for calculating the first-order electronic orbit-orbit magnetic interaction correction for an electronic wave function expanded in terms of all-electron explicitly correlated molecular Gaussian (ECG) functions with shifted centers is derived and implemented. The algorithm is tested in calculations concerning the H 2 molecule. It is also applied in calculations for LiH and H 3 + molecular systems. The implementation completes our work on the leading relativistic correction for ECGs and paves the way for very accurate ECG calculations of ground and excited potential energy surfaces (PESs) of small molecules with two and more nuclei and two and more electrons, such as HeH - , H 3 + , HeH 2 + , and LiH 2 + . The PESs will be used to determine rovibrational spectra of the systems.

  6. In silico simulations of tunneling barrier measurements for molecular orbital-mediated junctions: A molecular orbital theory approach to scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terryn, Raymond J.; Sriraman, Krishnan; Olson, Joel A., E-mail: jolson@fit.edu

    A new simulator for scanning tunneling microscopy (STM) is presented based on the linear combination of atomic orbitals molecular orbital (LCAO-MO) approximation for the effective tunneling Hamiltonian, which leads to the convolution integral when applied to the tip interaction with the sample. This approach intrinsically includes the structure of the STM tip. Through this mechanical emulation and the tip-inclusive convolution model, dI/dz images for molecular orbitals (which are closely associated with apparent barrier height, ϕ{sub ap}) are reported for the first time. For molecular adsorbates whose experimental topographic images correspond well to isolated-molecule quantum chemistry calculations, the simulator makes accuratemore » predictions, as illustrated by various cases. Distortions in these images due to the tip are shown to be in accord with those observed experimentally and predicted by other ab initio considerations of tip structure. Simulations of the tunneling current dI/dz images are in strong agreement with experiment. The theoretical framework provides a solid foundation which may be applied to LCAO cluster models of adsorbate–substrate systems, and is extendable to emulate several aspects of functional STM operation.« less

  7. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding

    NASA Astrophysics Data System (ADS)

    Nishimoto, Yoshio; Fedorov, Dmitri G.

    2018-02-01

    The exactly analytic gradient is derived and implemented for the fragment molecular orbital (FMO) method combined with density-functional tight-binding (DFTB) using adaptive frozen orbitals. The response contributions which arise from freezing detached molecular orbitals on the border between fragments are computed by solving Z-vector equations. The accuracy of the energy, its gradient, and optimized structures is verified on a set of representative inorganic materials and polypeptides. FMO-DFTB is applied to optimize the structure of a silicon nano-wire, and the results are compared to those of density functional theory and experiment. FMO accelerates the DFTB calculation of a boron nitride nano-ring with 7872 atoms by a factor of 406. Molecular dynamics simulations using FMO-DFTB applied to a 10.7 μm chain of boron nitride nano-rings, consisting of about 1.2 × 106 atoms, reveal the rippling and twisting of nano-rings at room temperature.

  8. Solution of multi-center molecular integrals of Slater-type orbitals

    NASA Technical Reports Server (NTRS)

    Tai, H.

    1989-01-01

    The troublesome multi-center molecular integrals of Slater-type orbitals (STO) in molecular physics calculations can be evaluated by using the Fourier transform and proper coupling of the two center exchange integrals. A numerical integration procedure is then readily rendered to the final expression in which the integrand consists of well known special functions of arguments containing the geometrical arrangement of the nuclear centers and the exponents of the atomic orbitals. A practical procedure was devised for the calculation of a general multi-center molecular integrals coupling arbitrary Slater-type orbitals. Symmetry relations and asymptotic conditions are discussed. Explicit expressions of three-center one-electron nuclear-attraction integrals and four-center two-electron repulsion integrals for STO of principal quantum number n=2 are listed. A few numerical results are given for the purpose of comparison.

  9. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.

    PubMed

    Okubo, Masashi; Yamada, Atsuo

    2017-10-25

    Lithium-ion batteries are key energy-storage devices for a sustainable society. The most widely used positive electrode materials are LiMO 2 (M: transition metal), in which a redox reaction of M occurs in association with Li + (de)intercalation. Recent developments of Li-excess transition-metal oxides, which deliver a large capacity of more than 200 mAh/g using an extra redox reaction of oxygen, introduce new possibilities for designing higher energy density lithium-ion batteries. For better engineering using this fascinating new chemistry, it is necessary to achieve a full understanding of the reaction mechanism by gaining knowledge on the chemical state of oxygen. In this review, a summary of the recent advances in oxygen-redox battery electrodes is provided, followed by a systematic demonstration of the overall electronic structures based on molecular orbitals with a focus on the local coordination environment around oxygen. We show that a π-type molecular orbital plays an important role in stabilizing the oxidized oxygen that emerges upon the charging process. Molecular orbital principles are convenient for an atomic-level understanding of how reversible oxygen-redox reactions occur in bulk, providing a solid foundation toward improved oxygen-redox positive electrode materials for high energy-density batteries.

  10. Conformational analysis of methylphenidate: comparison of molecular orbital and molecular mechanics methods

    NASA Astrophysics Data System (ADS)

    Gilbert, Kathleen M.; Skawinski, William J.; Misra, Milind; Paris, Kristina A.; Naik, Neelam H.; Buono, Ronald A.; Deutsch, Howard M.; Venanzi, Carol A.

    2004-11-01

    Methylphenidate (MP) binds to the cocaine binding site on the dopamine transporter and inhibits reuptake of dopamine, but does not appear to have the same abuse potential as cocaine. This study, part of a comprehensive effort to identify a drug treatment for cocaine abuse, investigates the effect of choice of calculation technique and of solvent model on the conformational potential energy surface (PES) of MP and a rigid methylphenidate (RMP) analogue which exhibits the same dopamine transporter binding affinity as MP. Conformational analysis was carried out by the AM1 and AM1/SM5.4 semiempirical molecular orbital methods, a molecular mechanics method (Tripos force field with the dielectric set equal to that of vacuum or water) and the HF/6-31G* molecular orbital method in vacuum phase. Although all three methods differ somewhat in the local details of the PES, the general trends are the same for neutral and protonated MP. In vacuum phase, protonation has a distinctive effect in decreasing the regions of space available to the local conformational minima. Solvent has little effect on the PES of the neutral molecule and tends to stabilize the protonated species. The random search (RS) conformational analysis technique using the Tripos force field was found to be capable of locating the minima found by the molecular orbital methods using systematic grid search. This suggests that the RS/Tripos force field/vacuum phase protocol is a reasonable choice for locating the local minima of MP. However, the Tripos force field gave significantly larger phenyl ring rotational barriers than the molecular orbital methods for MP and RMP. For both the neutral and protonated cases, all three methods found the phenyl ring rotational barriers for the RMP conformers/invertamers (denoted as cte, tte, and cta) to be: cte, tte> MP > cta. Solvation has negligible effect on the phenyl ring rotational barrier of RMP. The B3LYP/6-31G* density functional method was used to calculate the phenyl

  11. On the physical interpretation of the nuclear molecular orbital energy.

    PubMed

    Charry, Jorge; Pedraza-González, Laura; Reyes, Andrés

    2017-06-07

    Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.

  12. Destructive quantum interference in electron transport: A reconciliation of the molecular orbital and the atomic orbital perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Geskin, Victor; Stadler, Robert

    2017-03-01

    Destructive quantum interference (DQI) in single molecule electronics is a purely quantum mechanical effect and is entirely defined by the inherent properties of the molecule in the junction such as its structure and symmetry. This definition of DQI by molecular properties alone suggests its relation to other more general concepts in chemistry as well as the possibility of deriving simple models for its understanding and molecular device design. Recently, two such models have gained a wide spread attention, where one was a graphical scheme based on visually inspecting the connectivity of the carbon sites in conjugated π systems in an atomic orbital (AO) basis and the other one puts the emphasis on the amplitudes and signs of the frontier molecular orbitals (MOs). There have been discussions on the range of applicability for these schemes, but ultimately conclusions from topological molecular Hamiltonians should not depend on whether they are drawn from an AO or a MO representation, as long as all the orbitals are taken into account. In this article, we clarify the relation between both models in terms of the zeroth order Green's function and compare their predictions for a variety of systems. From this comparison, we conclude that for a correct description of DQI from a MO perspective, it is necessary to include the contributions from all MOs rather than just those from the frontier orbitals. The cases where DQI effects can be successfully predicted within a frontier orbital approximation we show them to be limited to alternant even-membered hydrocarbons, as a direct consequence of the Coulson-Rushbrooke pairing theorem in quantum chemistry.

  13. Molecular orbital imaging via above-threshold ionization with circularly polarized pulses.

    PubMed

    Zhu, Xiaosong; Zhang, Qingbin; Hong, Weiyi; Lu, Peixiang; Xu, Zhizhan

    2011-07-18

    Above-threshold ionization (ATI) for aligned or orientated linear molecules by circularly polarized laser pulsed is investigated. It is found that the all-round structural information of the molecular orbital is extracted with only one shot by the circularly polarized probe pulse rather than with multi-shot detections in a linearly polarized case. The obtained photoelectron momentum spectrum directly depicts the symmetry and electron distribution of the occupied molecular orbital, which results from the strong sensitivity of the ionization probability to these structural features. Our investigation indicates that the circularly polarized probe scheme would present a simple method to study the angle-dependent ionization and image the occupied electronic orbital.

  14. Design of two-photon molecular tandem architectures for solar cells by ab initio theory† †Electronic supplementary information (ESI) available: Visualizations of molecular orbitals, one-particle mechanisms and a table with Kohn–Sham eigenvalues. See DOI: 10.1039/c4sc03835e

    PubMed Central

    Garcia-Lastra, Juan M.; De La Torre, Gema; Himpsel, F. J.; Rubio, Angel

    2015-01-01

    An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed. PMID:29142685

  15. Spectral properties of minimal-basis-set orbitals: Implications for molecular electronic continuum states

    NASA Astrophysics Data System (ADS)

    Langhoff, P. W.; Winstead, C. L.

    Early studies of the electronically excited states of molecules by John A. Pople and coworkers employing ab initio single-excitation configuration interaction (SECI) calculations helped to simulate related applications of these methods to the partial-channel photoionization cross sections of polyatomic molecules. The Gaussian representations of molecular orbitals adopted by Pople and coworkers can describe SECI continuum states when sufficiently large basis sets are employed. Minimal-basis virtual Fock orbitals stabilized in the continuous portions of such SECI spectra are generally associated with strong photoionization resonances. The spectral attributes of these resonance orbitals are illustrated here by revisiting previously reported experimental and theoretical studies of molecular formaldehyde (H2CO) in combination with recently calculated continuum orbital amplitudes.

  16. The Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water with the Fragment Molecular Orbital Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruitt, Spencer R.; Nakata, Hiroya; Nagata, Takeshi

    2016-04-12

    The analytic first derivative with respect to nuclear coordinates is formulated and implemented in the framework of the three-body fragment molecular orbital (FMO) method. The gradient has been derived and implemented for restricted Hartree-Fock, second-order Møller-Plesset perturbation, and density functional theories. The importance of the three-body fully analytic gradient is illustrated through the failure of the two-body FMO method during molecular dynamics simulations of a small water cluster. The parallel implementation of the fragment molecular orbital method, its parallel efficiency, and its scalability on the Blue Gene/Q architecture up to 262,144 CPU cores, are also discussed.

  17. Information origins of the chemical bond: Bond descriptors from molecular communication channels in orbital resolution

    NASA Astrophysics Data System (ADS)

    Nalewajski, Roman F.

    The flow of information in the molecular communication networks in the (condensed) atomic orbital (AO) resolution is investigated and the plane-wave (momentum-space) interpretation of the average Fisher information in the molecular information system is given. It is argued using the quantum-mechanical superposition principle that, in the LCAO MO theory the squares of corresponding elements of the Charge and Bond-Order (CBO) matrix determine the conditional probabilities between AO, which generate the molecular communication system of the Orbital Communication Theory (OCT) of the chemical bond. The conditional-entropy ("noise," information-theoretic "covalency") and the mutual-information (information flow, information-theoretic "ionicity") descriptors of these molecular channels are related to Wiberg's covalency indices of chemical bonds. The illustrative application of OCT to the three-orbital model of the chemical bond X-Y, which is capable of describing the forward- and back-donations as well as the atom promotion accompanying the bond formation, is reported. It is demonstrated that the entropy/information characteristics of these separate bond-effects can be extracted by an appropriate reduction of the output of the molecular information channel, carried out by combining several exits into a single (condensed) one. The molecular channels in both the AO and hybrid orbital representations are examined for both the molecular and representative promolecular input probabilities.

  18. Visualization of Nanoplasmonic Coupling to Molecular Orbital in Light Emission Induced by Tunneling Electrons.

    PubMed

    Yu, Arthur; Li, Shaowei; Wang, Hui; Chen, Siyu; Wu, Ruqian; Ho, W

    2018-05-09

    The coupling between localized plasmon and molecular orbital in the light emission from a metallic nanocavity has been directly detected and imaged with sub-0.1 nm resolution. The light emission intensity was enhanced when the energy difference between the tunneling electrons and the lowest unoccupied molecular orbital (LUMO) of an azulene molecule matches the energy of a plasmon mode of the nanocavity defined by the Ag-tip and Ag (110) substrate of a scanning tunneling microscope (STM). The spatially resolved image of the light emission intensity matches the spatial distribution of the LUMO obtained by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. Our results highlight the near-field coupling of a molecular orbital to the radiative decay of a plasmonic excitation in a confined nanoscale junction.

  19. Identification and Characterization of Molecular Bonding Structures by ab initio Quasi-Atomic Orbital Analyses.

    PubMed

    West, Aaron C; Duchimaza-Heredia, Juan J; Gordon, Mark S; Ruedenberg, Klaus

    2017-11-22

    The quasi-atomic analysis of ab initio electronic wave functions in full valence spaces, which was developed in preceding papers, yields oriented quasi-atomic orbitals in terms of which the ab initio molecular wave function and energy can be expressed. These oriented quasi-atomic orbitals are the rigorous ab initio counterparts to the conceptual bond forming atomic hybrid orbitals of qualitative chemical reasoning. In the present work, the quasi-atomic orbitals are identified as bonding orbitals, lone pair orbitals, radical orbitals, vacant orbitals and orbitals with intermediate character. A program determines the bonding characteristics of all quasi-atomic orbitals in a molecule on the basis of their occupations, bond orders, kinetic bond orders, hybridizations and local symmetries. These data are collected in a record and provide the information for a comprehensive understanding of the synergism that generates the bonding structure that holds the molecule together. Applications to a series of molecules exhibit the complete bonding structures that are embedded in their ab initio wave functions. For the strong bonds in a molecule, the quasi-atomic orbitals provide quantitative ab initio amplifications of the Lewis dot symbols. Beyond characterizing strong bonds, the quasi-atomic analysis also yields an understanding of the weak interactions, such as vicinal, hyperconjugative and radical stabilizations, which can make substantial contributions to the molecular bonding structure.

  20. Correlation of molecular valence- and K-shell photoionization resonances with bond lengths

    NASA Technical Reports Server (NTRS)

    Sheehy, J. A.; Gil, T. J.; Winstead, C. L.; Farren, R. E.; Langhoff, P. W.

    1989-01-01

    The relationship between the interatomic distance and the positions of valence-shell and K-shell sigma(asterisk) photoionization resonances is investigated theoretically for the molecules C2, F2, N2, O2, CO, NO, C2H2, C2H4, C2H6, HCN, H2CO, N20, CO2, and C2N2. The results of molecular-orbital computations are presented in three-dimensional diagrams, which are shown to be similar to the wave functions of a particle in a cylindrical well, confirming the validity of free-electron molecular-orbital (FEMO) approximations for modeling the potential along the symmetry axis. FEMO orbital energies and resonance positions are found to be in good agreement with previous theoretical and experimental results. Also included is a Feshbach-Fano analysis of the relevance of virtual-valence orbitals to the appearance of single-channel resonances in molecular photoionization cross sections.

  1. Planetary Engulfment in the Hertzsprung–Russell Diagram

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan; Cantiello, Matteo; Soares-Furtado, Melinda

    2018-01-01

    Planets accompany most Sun-like stars. The orbits of many are sufficiently close that they will be engulfed when their host stars ascend the giant branch. This Letter compares the power generated by orbital decay of an engulfed planet to the intrinsic stellar luminosity. Orbital decay power is generated by drag on the engulfed companion by the surrounding envelope. As stars ascend the giant branch their envelope density drops and so does the power injected through orbital decay, scaling approximately as {L}{decay}\\propto {R}* -9/2. Their luminosity, however, increases along the giant branch. These opposed scalings indicate a crossing, where {L}{decay}={L}* . We consider the engulfment of planets along isochrones in the Hertzsprung–Russell (H–R) diagram. We find that the conditions for such a crossing occur around {L}* ≈ {10}2 {L}ȯ (or a≈ 0.1 au) for Jovian planetary companions. The consumption of closer-in giant planets, such as hot Jupiters, leads to {L}{decay}\\gg {L}* , while more distant planets such as warm Jupiters, a≈ 0.5 {au}, lead to minor perturbations of their host stars with {L}{decay}\\ll {L}* . Our results map out the parameter space along the giant branch in the H–R Diagram where interaction with planetary companions leads to significant energetic disturbance of host stars.

  2. Pyrite oxidation and reduction - Molecular orbital theory considerations. [for geochemical redox processes

    NASA Technical Reports Server (NTRS)

    Luther, George W., III

    1987-01-01

    In this paper, molecular orbital theory is used to explain a heterogeneous reaction mechanism for both pyrite oxidation and reduction. The mechanism demonstrates that the oxidation of FeS2 by Fe(3+) may occur as a result of three important criteria: (1) the presence of a suitable oxidant having a vacant orbital (in case of liquid phase) or site (solid phase) to bind to the FeS2 via sulfur; (2) the initial formation of a persulfido (disulfide) bridge between FeS2 and the oxidant, and (3) an electron transfer from a pi(asterisk) orbital in S2(2-) to a pi or pi(asterisk) orbital of the oxidant.

  3. Comparison of forcefields for molecular dynamics simulations of hydrocarbon phase diagrams

    NASA Astrophysics Data System (ADS)

    Pisarev, V. V.; Zakharov, S. A.

    2018-01-01

    Molecular dynamics calculations of vapor-liquid equilibrium of methane-n-butane mixture are performed. Three force-field models are tested: the TraPPE-UA united-atom forcefield, LOPLS-AA all-atom forcefield and a fully flexible version of the TraPPE-EH all-atom forcefield. All those forcefields reproduce well the composition of liquid phase in the mixture as a function of pressure at the 300 K isotherm, while significant discrepancies from experimental data are observed in the saturated vapor compositions with OPLS-AA and TraPPE-UA forcefields. The best agreement with the experimental phase diagram is found with TraPPE-EH forcefield which accurately reproduces compositions of both liquid and vapor phase. This forcefield can be recommended for simulation of two-phase hydrocarbon systems.

  4. Molecular structures of carotenoids as predicted by MNDO-AM1 molecular orbital calculations

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hideki; Yoda, Takeshi; Kobayashi, Takayoshi; Young, Andrew J.

    2002-02-01

    Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed for a number of biologically important carotenoid molecules, namely all- trans-β-carotene, all- trans-zeaxanthin, and all- trans-violaxanthin (found in higher plants and algae) together with all- trans-canthaxanthin, all- trans-astaxanthin, and all- trans-tunaxanthin in order to predict their stable structures. The molecular structures of all- trans-β-carotene, all- trans-canthaxanthin, and all- trans-astaxanthin predicted based on molecular orbital calculations were compared with those determined by X-ray crystallography. Predicted bond lengths, bond angles, and dihedral angles showed an excellent agreement with those determined experimentally, a fact that validated the present theoretical calculations. Comparison of the bond lengths, bond angles and dihedral angles of the most stable conformer among all the carotenoid molecules showed that the displacements are localized around the substituent groups and hence around the cyclohexene rings. The most stable conformers of all- trans-zeaxanthin and all- trans-violaxanthin gave rise to a torsion angle around the C6-C7 bond to be ±48.7 and -84.8°, respectively. This difference is a key factor in relation to the biological function of these two carotenoids in plants and algae (the xanthophyll cycle). Further analyses by calculating the atomic charges and using enpartment calculations (division of bond energies between component atoms) were performed to ascribe the cause of the different observed torsion angles.

  5. A Comprehensive Catalog of Galactic Eclipsing Binary Stars with Eccentric Orbits Based on Eclipse Timing Diagrams

    NASA Astrophysics Data System (ADS)

    Kim, C.-H.; Kreiner, J. M.; Zakrzewski, B.; Ogłoza, W.; Kim, H.-W.; Jeong, M.-J.

    2018-04-01

    A comprehensive catalog of 623 galactic eclipsing binary (EB) systems with eccentric orbits is presented with more than 2830 times of minima determined from the archived photometric data by various sky-survey projects and new photometric measurements. The systems are divided into two groups according to whether the individual system has a GCVS name or not. All the systems in both groups are further classified into three categories (D, A, and A+III) on the basis of their eclipse timing diagrams: 453 D systems showing just constantly displaced secondary minima, 139 A systems displaying only apsidal motion (AM), and 31 A+III systems exhibiting both AM and light-time effects. AM parameters for 170 systems (A and A+III systems) are consistently calculated and cataloged with basic information for all systems. Some important statistics for the AM parameters are discussed and compared with those derived for the eccentric EB systems in the Large and Small Magellanic Clouds.

  6. Hybrid Voronoi diagrams, their computation and reduction for applications in computational biochemistry.

    PubMed

    Manak, Martin; Zemek, Michal; Szkandera, Jakub; Kolingerova, Ivana; Papaleo, Elena; Lambrughi, Matteo

    2017-06-01

    Geometric models of molecular structures are often described as a set of balls, where balls represent individual atoms. The ability to describe and explore the empty space among these balls is important, e.g., in the analysis of the interaction of enzymes with substrates, ligands and solvent molecules. Voronoi diagrams from the field of computational geometry are often used here, because they provide a mathematical description of how the whole space can be divided into regions assigned to individual atoms. This paper introduces a combination of two different types of Voronoi diagrams into a new hybrid Voronoi diagram - one part of this diagram belongs to the additively weighted (aw-Voronoi) diagram and the other to the power diagram. The boundary between them is controlled by a user-defined constant (the probe radius). Both parts are computed by different algorithms, which are already known. The reduced aw-Voronoi diagram is then obtained by removing the power diagram part from the hybrid diagram. Reduced aw-Voronoi diagrams are perfectly tailored for the analysis of dynamic molecular structures, their computation is faster and storage requirements are lower than in the case of complete aw-Voronoi diagrams. Here, we showed their application to key proteins in cancer research such as p53 and ARID proteins as case study. We identified a biologically relevant cavity in p53 structural ensembles generated by molecular dynamics simulations and analyzed its accessibility, attesting the potential of our approach. This method is relevant for cancer research since it permits to depict a dynamical view of cavities and pockets in proteins that could be affected by mutations in the disease. Our approach opens novel prospects for the study of cancer-related proteins by molecular simulations and the identification of novel targets for drug design. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. GAUSSIAN 76: An ab initio Molecular Orbital Program

    DOE R&D Accomplishments Database

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  8. Catalysis beyond frontier molecular orbitals: Selectivity in partial hydrogenation of multi-unsaturated hydrocarbons on metal catalysts

    PubMed Central

    Liu, Wei; Jiang, Yingda; Dostert, Karl-Heinz; O’Brien, Casey P.; Riedel, Wiebke; Savara, Aditya; Schauermann, Swetlana; Tkatchenko, Alexandre

    2017-01-01

    The mechanistic understanding and control over transformations of multi-unsaturated hydrocarbons on transition metal surfaces remains one of the major challenges of hydrogenation catalysis. To reveal the microscopic origins of hydrogenation chemoselectivity, we performed a comprehensive theoretical investigation on the reactivity of two α,β-unsaturated carbonyls—isophorone and acrolein—on seven (111) metal surfaces: Pd, Pt, Rh, Ir, Cu, Ag, and Au. In doing so, we uncover a general mechanism that goes beyond the celebrated frontier molecular orbital theory, rationalizing the C═C bond activation in isophorone and acrolein as a result of significant surface-induced broadening of high-energy inner molecular orbitals. By extending our calculations to hydrogen-precovered surface and higher adsorbate surface coverage, we further confirm the validity of the “inner orbital broadening mechanism” under realistic catalytic conditions. The proposed mechanism is fully supported by our experimental reaction studies for isophorone and acrolein over Pd nanoparticles terminated with (111) facets. Although the position of the frontier molecular orbitals in these molecules, which are commonly considered to be responsible for chemical interactions, suggests preferential hydrogenation of the C═O double bond, experiments show that hydrogenation occurs at the C═C bond on Pd catalysts. The extent of broadening of inner molecular orbitals might be used as a guiding principle to predict the chemoselectivity for a wide class of catalytic reactions at metal surfaces. PMID:28782033

  9. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.

    PubMed

    van Meer, R; Gritsenko, O V; Baerends, E J

    2014-10-14

    In recent years, several benchmark studies on the performance of large sets of functionals in time-dependent density functional theory (TDDFT) calculations of excitation energies have been performed. The tested functionals do not approximate exact Kohn-Sham orbitals and orbital energies closely. We highlight the advantages of (close to) exact Kohn-Sham orbitals and orbital energies for a simple description, very often as just a single orbital-to-orbital transition, of molecular excitations. Benchmark calculations are performed for the statistical average of orbital potentials (SAOP) functional for the potential [J. Chem. Phys. 2000, 112, 1344; 2001, 114, 652], which approximates the true Kohn-Sham potential much better than LDA, GGA, mGGA, and hybrid potentials do. An accurate Kohn-Sham potential does not only perform satisfactorily for calculated vertical excitation energies of both valence and Rydberg transitions but also exhibits appealing properties of the KS orbitals including occupied orbital energies close to ionization energies, virtual-occupied orbital energy gaps very close to excitation energies, realistic shapes of virtual orbitals, leading to straightforward interpretation of most excitations as single orbital transitions. We stress that such advantages are completely lost in time-dependent Hartree-Fock and partly in hybrid approaches. Many excitations and excitation energies calculated with local density, generalized gradient, and hybrid functionals are spurious. There is, with an accurate KS, or even the LDA or GGA potentials, nothing problematic about the "band gap" in molecules: the HOMO-LUMO gap is close to the first excitation energy (the optical gap).

  10. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.

    PubMed

    Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald

    2017-09-12

    We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.

  11. A low Earth orbit molecular beam space simulation facility

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1984-01-01

    A brief synopsis of the low Earth orbit (LEO) satellite environment is presented including neutral and ionic species. Two ground based atomic and molecular beam instruments are described which are capable of simulating the interaction of spacecraft surfaces with the LEO environment and detecting the results of these interactions. The first detects mass spectrometrically low level fluxes of reactively and nonreactively surface scattered species as a function of scattering angle and velocity while the second ultrahigh velocity (UHV) molecular beam, laser induced fluorescence apparatus is capable of measuring chemiluminescence produced by either gas phase or gas-surface interactions. A number of proposed experiments are described.

  12. Diagram of Liquid Rocket Systems General Arrangement

    NASA Image and Video Library

    1964-05-21

    S64-05966 (1964) --- Diagram shows the general arrangement of the liquid rocket systems on the Gemini spacecraft are shown. The locations of the 25-pound, 85-pound and 100-pound thrusters of the orbital attitude and maneuver system and the 25-pound thrusters of the re-entry control system are shown.

  13. Chapter 5 Multiple, Localized, and Delocalized/Conjugated Bonds in the Orbital Communication Theory of Molecular Systems

    NASA Astrophysics Data System (ADS)

    Nalewajski, Roman F.

    Information theory (IT) probe of the molecular electronic structure, within the communication theory of chemical bonds (CTCB), uses the standard entropy/information descriptors of the Shannon theory of communication to characterize a scattering of the electronic probabilities and their information content throughout the system chemical bonds generated by the occupied molecular orbitals (MO). These "communications" between the basis-set orbitals are determined by the two-orbital conditional probabilities: one- and two-electron in character. They define the molecular information system, in which the electron-allocation "signals" are transmitted between various orbital "inputs" and "outputs". It is argued, using the quantum mechanical superposition principle, that the one-electron conditional probabilities are proportional to the squares of corresponding elements of the charge and bond-order (CBO) matrix of the standard LCAO MO theory. Therefore, the probability of the interorbital connections in the molecular communication system is directly related to Wiberg's quadratic covalency indices of chemical bonds. The conditional-entropy (communication "noise") and mutual-information (information capacity) descriptors of these molecular channels generate the IT-covalent and IT-ionic bond components, respectively. The former reflects the electron delocalization (indeterminacy) due to the orbital mixing, throughout all chemical bonds in the system under consideration. The latter characterizes the localization (determinacy) in the probability scattering in the molecule. These two IT indices, respectively, indicate a fraction of the input information lost in the channel output, due to the communication noise, and its surviving part, due to deterministic elements in probability scattering in the molecular network. Together, these two components generate the system overall bond index. By a straightforward output reduction (condensation) of the molecular channel, the IT indices of

  14. Molecular orbital study of some eight-coordinate sulfur chelate complexes of molybdenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, P.G.; Schultz, F.A.

    1983-03-30

    A number of molybdenum complexes involving the formal oxidation states Mo(IV) and Mo(V) have been studied by a self-consistent-field molecular orbital technique. All the complexes were of dodecahedral geometry and had eight sulfurs chelated to the central metal atom. In all, a series of five tetrakis complexes was studied, including the ligands dithiocarbamate (dtc), thioxanthate (txn), 1,1-dicyano-2,2-ethylenedithiolate (i-mnt), 1-cyano-1-carbethoxy-2,2-ethylenedithiolate (ced), and 1,1-dicarbethoxy-2,2-ethylenedithiolate (ded). The 4d orbitals were included on molybdenum, and the empty 3d levels on all sulfur atoms. The results show that the highest occupied molecular orbital in each case has over 90% metal d/sub xy/ character. Further, themore » energy of this orbital is linearly related to the reversible half-wave potentials for Mo(IV) ..-->.. Mo(V) and Mo(V) ..-->.. Mo(VI) oxidations of the complexes. A further irreversible oxidation observed experimentally also is closely related to the calculated energy levels. Relationships between the calculated results and Mo 3d/sub 5///sub 2/ X-ray photoelectron binding energies, EPR parameters, and charge-transfer absorption energies are discussed. Electrochemical and spectroscopic properties of these MoS/sub 8/ complexes can be understood in terms of a manifold of orbital energies that retain approximately constant spacings between one another and that move up or down in absolute energy in response to the charge donated or withdrawn by the ligands.« less

  15. Effect of vacuum processing on outgassing within an orbiting molecular shield

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.

    1982-01-01

    The limiting hydrogen number density in an orbiting molecular shield is highly dependent on the outgassing rates from the materials of construction for the shield, experimental apparatus, and other hardware contained within the shield. Ordinary degassing temperatures used for ultrahigh vacuum studies (less than 450 C) are not sufficient to process metals so that the contribution to the number density within the shield due to outgassing is less than the theoretically attainable level (approximately 200 per cu. cm). Pure aluminum and type 347 stainless steel were studied as candidate shield materials. Measurements of their hydrogen concentration and diffusion coefficients were made, and the effects of high temperature vacuum processing (greater than 600 C) on their resulting outgassing rates was determined. The densities in a molecular shield due to the outgassing from either metal were substantially less ( 0.003) than the density due to the ambient atomic hydrogen flux at an orbital altitude of 500 km.

  16. Moving Beyond the Single Center--Ways to Reinforce Molecular Orbital Theory in an Inorganic Course

    ERIC Educational Resources Information Center

    Cass, Marion E.; Hollingsworth, William E.

    2004-01-01

    It is suggested that molecular theory should be taught earlier in the inorganic chemistry curriculum even in the introductory chemistry course in order to integrate molecular orbital arguments more effectively throughout the curriculum. The method of teaching relies on having access to molecular modeling software as having access to such software…

  17. Reactivity of etoricoxib based on computational study of molecular orbitals, molecular electrostatic potential surface and Mulliken charge analysis

    NASA Astrophysics Data System (ADS)

    Sachdeva, Ritika; Soni, Abhinav; Singh, V. P.; Saini, G. S. S.

    2018-05-01

    Etoricoxib is one of the selective cyclooxygenase inhibitor drug which plays a significant role in the pharmacological management of arthritis and pain. The theoretical investigation of its reactivity is done using Density Functional Theory calculations. Molecular Electrostatic Potential Surface of etoricoxib and its Mulliken atomic charge distribution are used for the prediction of its electrophilic and nucleophilic sites. The detailed analysis of its frontier molecular orbitals is also done.

  18. Transition from direct to inverted charge transport Marcus regions in molecular junctions via molecular orbital gating

    NASA Astrophysics Data System (ADS)

    Yuan, Li; Wang, Lejia; Garrigues, Alvar R.; Jiang, Li; Annadata, Harshini Venkata; Anguera Antonana, Marta; Barco, Enrique; Nijhuis, Christian A.

    2018-04-01

    Solid-state molecular tunnel junctions are often assumed to operate in the Landauer regime, which describes essentially activationless coherent tunnelling processes. In solution, on the other hand, charge transfer is described by Marcus theory, which accounts for thermally activated processes. In practice, however, thermally activated transport phenomena are frequently observed also in solid-state molecular junctions but remain poorly understood. Here, we show experimentally the transition from the Marcus to the inverted Marcus region in a solid-state molecular tunnel junction by means of intra-molecular orbital gating that can be tuned via the chemical structure of the molecule and applied bias. In the inverted Marcus region, charge transport is incoherent, yet virtually independent of temperature. Our experimental results fit well to a theoretical model that combines Landauer and Marcus theories and may have implications for the interpretation of temperature-dependent charge transport measurements in molecular junctions.

  19. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  20. Optimization of selected molecular orbitals in group basis sets.

    PubMed

    Ferenczy, György G; Adams, William H

    2009-04-07

    We derive a local basis equation which may be used to determine the orbitals of a group of electrons in a system when the orbitals of that group are represented by a group basis set, i.e., not the basis set one would normally use but a subset suited to a specific electronic group. The group orbitals determined by the local basis equation minimize the energy of a system when a group basis set is used and the orbitals of other groups are frozen. In contrast, under the constraint of a group basis set, the group orbitals satisfying the Huzinaga equation do not minimize the energy. In a test of the local basis equation on HCl, the group basis set included only 12 of the 21 functions in a basis set one might ordinarily use, but the calculated active orbital energies were within 0.001 hartree of the values obtained by solving the Hartree-Fock-Roothaan (HFR) equation using all 21 basis functions. The total energy found was just 0.003 hartree higher than the HFR value. The errors with the group basis set approximation to the Huzinaga equation were larger by over two orders of magnitude. Similar results were obtained for PCl(3) with the group basis approximation. Retaining more basis functions allows an even higher accuracy as shown by the perfect reproduction of the HFR energy of HCl with 16 out of 21 basis functions in the valence basis set. When the core basis set was also truncated then no additional error was introduced in the calculations performed for HCl with various basis sets. The same calculations with fixed core orbitals taken from isolated heavy atoms added a small error of about 10(-4) hartree. This offers a practical way to calculate wave functions with predetermined fixed core and reduced base valence orbitals at reduced computational costs. The local basis equation can also be used to combine the above approximations with the assignment of local basis sets to groups of localized valence molecular orbitals and to derive a priori localized orbitals. An

  1. Molecular-orbital models for the catalytic activity and selectivity of coordinatively unsaturated platinum surfaces and complexes

    NASA Astrophysics Data System (ADS)

    Balazs, A. C.; Johnson, K. H.

    1982-01-01

    Electronic structures have been calculated for 5-, 6-, and 10-atom Pt clusters, as well as for a Pt(PH 3) 4 coordination complex, using the self-consistent-field X-alpha scattered-wave (SCF-Xα-SW) molecular-orbital technique. The 10-atom cluster models the local geometry of a flat, unreconstructed Pt(100) surface, while the 5- and 6-atom clusters show features of a stepped Pt surface. Pt(PH 3) 4 resembles the chemically similar homogeneous catalyst Pt(PPh 3) 4. Common to all these coordinatively unsaturated complexes are orbitals lying near or coinciding with the highest occupied molecular orbital ("Fermi level") which show pronounced d lobes pointing directly into the vacuum. Under the hypothesis that these molecular orbitals are mainly responsible for the chemical activities of the above species, one can account for the relative similarities and differences in catalytic activity and selectivity displayed by unreconstructed Pt(100) surfaces, stepped Pt surfaces or particles, and isolated Pt(PPh 3) 4 coordination complexes. The relevance of these findings to catalyst-support interactions is also discussed. Finally, relativistic corrections to the electronic structures are calculated and their implications on catalytic properties discussed.

  2. Many-body expansion of the Fock matrix in the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Fedorov, Dmitri G.; Kitaura, Kazuo

    2017-09-01

    A many-body expansion of the Fock matrix in the fragment molecular orbital method is derived up to three-body terms for restricted Hartree-Fock and density functional theory in the atomic orbital basis and compared to the expansion in the basis of fragment molecular orbitals (MOs). The physical nature of many-body corrections is revealed in terms of charge transfer terms. An improvement of the fragment MO expansion is proposed by adding exchange to the embedding. The accuracy of all developed methods is demonstrated in comparison to unfragmented results for polyalanines, a water cluster, Trp-cage (PDB: 1L2Y) and crambin (PDB: 1CRN) proteins, a zeolite cluster, a Si nano-wire, and a boron nitride ribbon. The physical nature of metallicity is discussed, and it is shown what kinds of metallic systems can be treated by fragment-based methods. The density of states is calculated for a fully closed and a partially open nano-ring of boron nitride with a diameter of 105 nm.

  3. Molecular orbital imaging of cobalt phthalocyanine on native oxidized copper layers using STM.

    PubMed

    Guo, Qinmin; Huang, Min; Qin, Zhihui; Cao, Gengyu

    2012-07-01

    To observe molecular orbitals using scanning tunneling microscopy, well-ordered oxidized layers on Cu(001) were fabricated to screen the individual adsorbed cobalt phthalocyanine (CoPc) molecules from the electronic influence of the metal surface. Scanning tunneling microscope images of the molecule on this oxidized layer show similarities to the orbital distribution of the free molecule. The good match between the differential conductance mapping images and the calculated charge distribution at energy levels corresponding to the frontier orbitals of CoPc provides more evidence of the screening of the oxidized layer from interactions between the metal surface and supported molecules. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. On-orbit flight control algorithm description

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Algorithms are presented for rotational and translational control of the space shuttle orbiter in the orbital mission phases, which are external tank separation, orbit insertion, on-orbit and de-orbit. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. Software functional requirements are described using block diagrams where feasible, and input--output tables, and the software implementation of each function is presented in equations and structured flow charts. Included are a glossary of all symbols used to define the requirements, and an appendix of supportive material.

  5. On-orbit free molecular flow aerodynamic characteristics of a proposal space operations center configuration

    NASA Technical Reports Server (NTRS)

    Romere, P. O.

    1982-01-01

    A proposed configuration for a Space Operations Center is presented in its eight stages of buildup. The on orbit aerodynamic force and moment characteristics were calculated for each stage based upon free molecular flow theory. Calculation of the aerodynamic characteristics was accomplished through the use of an orbital aerodynamic computer program, and the computation method is described with respect to the free molecular theory used. The aerodynamic characteristics are presented in tabulated form for each buildup stage at angles of attack from 0 to 360 degrees and roll angles from -60 to +60 degrees. The reference altitude is 490 kilometers, however, the data should be applicable for altitudes below 490 kilometers down to approximately 185 kilometers.

  6. The activation strain model and molecular orbital theory

    PubMed Central

    Wolters, Lando P; Bickelhaupt, F Matthias

    2015-01-01

    The activation strain model is a powerful tool for understanding reactivity, or inertness, of molecular species. This is done by relating the relative energy of a molecular complex along the reaction energy profile to the structural rigidity of the reactants and the strength of their mutual interactions: ΔE(ζ) = ΔEstrain(ζ) + ΔEint(ζ). We provide a detailed discussion of the model, and elaborate on its strong connection with molecular orbital theory. Using these approaches, a causal relationship is revealed between the properties of the reactants and their reactivity, e.g., reaction barriers and plausible reaction mechanisms. This methodology may reveal intriguing parallels between completely different types of chemical transformations. Thus, the activation strain model constitutes a unifying framework that furthers the development of cross-disciplinary concepts throughout various fields of chemistry. We illustrate the activation strain model in action with selected examples from literature. These examples demonstrate how the methodology is applied to different research questions, how results are interpreted, and how insights into one chemical phenomenon can lead to an improved understanding of another, seemingly completely different chemical process. WIREs Comput Mol Sci 2015, 5:324–343. doi: 10.1002/wcms.1221 PMID:26753009

  7. [Identification of meridian-acupoint diagrams and meridian diagrams].

    PubMed

    Shen, Wei-hong

    2008-08-01

    In acu-moxibustion literature, there are two kinds of diagrams, meridian-acupoint diagrams and meridian diagrams. Because they are very similar in outline, and people now have seldom seen the typical ancient meridian diagrams, meridian-acupoint diagrams have been being incorrectly considered to be the meridian diagrams for a long time. It results in confusion in acu-moxibustion academia. The present paper stresses its importance in academic research and introduces some methods for identifying them correctly. The key points for identification of meridian-acupoint diagrams and meridian diagrams are: the legend of diagrams and the drawing style of the ancient charts. In addition, the author makes a detailed explanation about some acu-moxibustion charts which are easily confused. In order to distinguish meridian-acupoint diagrams and meridian diagrams correctly, he or she shoulnd understand the diagrams' intrinsic information as much as possible and make a comprehensive analysis about them.

  8. Determination of cellulose crystallinity from powder diffraction diagrams: Powder Diffraction Diagrams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindner, Benjamin; Petridis, Loukas; Langan, Paul

    2014-10-01

    Commonly one-dimensional (1D) (spherically averaged) powder diffraction diagrams are used to determine the degree of cellulose crystallinity in biomass samples. Here, it is shown using molecular modeling how disorder in cellulose fibrils can lead to considerable uncertainty in conclusions drawn concerning crystallinity based on 1D powder diffraction data alone. For example, cellulose microfibrils that contain both crystalline and noncrystalline segments can lead to powder diffraction diagrams lacking identifiable peaks, while microfibrils without any crystalline segments can lead to such peaks. Moreover, this leads to false positives, that is, assigning disordered cellulose as crystalline, and false negatives, that is, categorizing fibrilsmore » with crystalline segments as amorphous. Finally, the reliable determination of the fraction of crystallinity in any given biomass sample will require a more sophisticated approach combining detailed experiment and simulation.« less

  9. Nanoscale orbital excitations and the infrared spectrum of a molecular Mott insulator: A15-Cs3C60.

    PubMed

    Naghavi, S S; Fabrizio, M; Qin, T; Tosatti, E

    2016-10-14

    The quantum physics of ions and electrons behind low-energy spectra of strongly correlated molecular conductors, superconductors and Mott insulators is poorly known, yet fascinating especially in orbitally degenerate cases. The fulleride insulator Cs 3 C 60 (A15), one such system, exhibits infrared (IR) spectra with low temperature peak features and splittings suggestive of static Jahn-Teller distortions with a breakdown of orbital symmetry in the molecular site. That is puzzling, since there is no detectable static distortion, and because the features and splittings disappear upon modest heating, which they should not. Taking advantage of the Mott-induced collapse of electronic wavefunctions from lattice-extended to nanoscale localized inside a caged molecular site, we show that the unbroken spin and orbital symmetry of the ion multiplets explains the IR spectrum without adjustable parameters. This demonstrates the importance of a fully quantum treatment of nuclear positions and orbital momenta in the Mott insulator sites, dynamically but not statically distorted. The observed demise of these features with temperature is explained by the thermal population of a multiplet term whose nuclear positions are essentially undistorted, but whose energy is very low-lying. That term is in fact a scaled-down orbital excitation analogous to that of other Mott insulators, with the same spin 1/2 as the ground state, but with a larger orbital momentum of two instead of one.

  10. Polaronic and dressed molecular states in orbital Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Xu, Junjun; Qi, Ran

    2018-04-01

    We consider the impurity problem in an orbital Feshbach resonance (OFR), with a single excited clock state | e ↑⟩ atom immersed in a Fermi sea of electronic ground state | g ↓⟩. We calculate the polaron effective mass and quasi-particle residue, as well as the polaron to molecule transition. By including one particle-hole excitation in the molecular state, we find significant correction to the transition point. This transition point moves toward the BCS side for increasing particle densities, which suggests that the corresponding many-body physics is similar to a narrow resonance.

  11. Space Shuttle Orbiter auxiliary power unit status

    NASA Technical Reports Server (NTRS)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    1991-01-01

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  12. The any particle molecular orbital grid-based Hartree-Fock (APMO-GBHF) approach

    NASA Astrophysics Data System (ADS)

    Posada, Edwin; Moncada, Félix; Reyes, Andrés

    2018-02-01

    The any particle molecular orbital grid-based Hartree-Fock approach (APMO-GBHF) is proposed as an initial step to perform multi-component post-Hartree-Fock, explicitly correlated, and density functional theory methods without basis set errors. The method has been applied to a number of electronic and multi-species molecular systems. Results of these calculations show that the APMO-GBHF total energies are comparable with those obtained at the APMO-HF complete basis set limit. In addition, results reveal a considerable improvement in the description of the nuclear cusps of electronic and non-electronic densities.

  13. Localized and Spectroscopic Orbitals: Squirrel Ears on Water.

    ERIC Educational Resources Information Center

    Martin, R. Bruce

    1988-01-01

    Reexamines the electronic structure of water considering divergent views. Discusses several aspects of molecular orbital theory using spectroscopic molecular orbitals and localized molecular orbitals. Gives examples for determining lowest energy spectroscopic orbitals. (ML)

  14. Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene.

    PubMed

    Hunt, B M; Li, J I A; Zibrov, A A; Wang, L; Taniguchi, T; Watanabe, K; Hone, J; Dean, C R; Zaletel, M; Ashoori, R C; Young, A F

    2017-10-16

    The high magnetic field electronic structure of bilayer graphene is enhanced by the spin, valley isospin, and an accidental orbital degeneracy, leading to a complex phase diagram of broken symmetry states. Here, we present a technique for measuring the layer-resolved charge density, from which we directly determine the valley and orbital polarization within the zero energy Landau level. Layer polarization evolves in discrete steps across 32 electric field-tuned phase transitions between states of different valley, spin, and orbital order, including previously unobserved orbitally polarized states stabilized by skew interlayer hopping. We fit our data to a model that captures both single-particle and interaction-induced anisotropies, providing a complete picture of this correlated electron system. The resulting roadmap to symmetry breaking paves the way for deterministic engineering of fractional quantum Hall states, while our layer-resolved technique is readily extendable to other two-dimensional materials where layer polarization maps to the valley or spin quantum numbers.The phase diagram of bilayer graphene at high magnetic fields has been an outstanding question, with orders possibly between multiple internal quantum degrees of freedom. Here, Hunt et al. report the measurement of the valley and orbital order, allowing them to directly reconstruct the phase diagram.

  15. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roemelt, Michael, E-mail: michael.roemelt@theochem.rub.de

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctionsmore » are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.« less

  16. Visualizing the Role of Molecular Orbitals in Charge Transport through Individual Diarylethene Isomers

    PubMed Central

    2016-01-01

    Diarylethene molecules are prototype molecular switches with their two isomeric forms exhibiting strikingly different conductance, while maintaining similar length. We employed low-temperature scanning tunneling microscopy (STM) to resolve the energy and the spatial extend of the molecular orbitals of the open and closed isomers when lying on a Au(111) surface. We find an intriguing difference in the extension of the respective HOMOs and a peculiar energy splitting of the formerly degenerate LUMO of the open isomer. We then lift the two isomers with the tip of the STM and measure the current through the individual molecules. By a simple analytical model of the transport, we show that the previously determined orbital characteristics are essential ingredients for the complete understanding of the transport properties. We also succeeded in switching the suspended molecules by the current, while switching the ones which are in direct contact to the surface occurs nonlocally with the help of the electric field of the tip. PMID:27775886

  17. Communication: Phase diagram of C36 by atomistic molecular dynamics and thermodynamic integration through coexistence regions

    NASA Astrophysics Data System (ADS)

    Abramo, M. C.; Caccamo, C.; Costa, D.; Munaò, G.

    2014-09-01

    We report an atomistic molecular dynamics determination of the phase diagram of a rigid-cage model of C36. We first show that free energies obtained via thermodynamic integrations along isotherms displaying "van der Waals loops," are fully reproduced by those obtained via isothermal-isochoric integration encompassing only stable states. We find that a similar result also holds for isochoric paths crossing van der Waals regions of the isotherms, and for integrations extending to rather high densities where liquid-solid coexistence can be expected to occur. On such a basis we are able to map the whole phase diagram of C36, with resulting triple point and critical temperatures about 1770 K and 2370 K, respectively. We thus predict a 600 K window of existence of a stable liquid phase. Also, at the triple point density, we find that the structural functions and the diffusion coefficient maintain a liquid-like character down to 1400-1300 K, this indicating a wide region of possible supercooling. We discuss why all these features might render possible the observation of the melting of C36 fullerite and of its liquid state, at variance with what previously experienced for C60.

  18. Orbital selective directional conductor in the two-orbital Hubbard model

    DOE PAGES

    Mukherjee, Anamitra; Patel, Niravkumar D.; Moreo, Adriana; ...

    2016-02-29

    Recently, we employed a developed many-body technique that allows for the incorporation of thermal effects, the rich phase diagram of a two-dimensional two-orbital (degenerate d xz and d yz) Hubbard model is presented varying temperature and the repulsion U. The main result is the finding at intermediate U of an antiferromagnetic orbital selective state where an effective dimensional reduction renders one direction insulating and the other metallic. Possible realizations of this state are discussed. Additionally, we also study nematicity above the N eel temperature. After a careful finite-size scaling analysis, the nematicity temperature window appears to survive in the bulkmore » limit, although it is very narrow.« less

  19. Effects of the Shuttle Orbiter fuselage and elevon on the molecular distribution of water vapor from the flash evaporator system

    NASA Technical Reports Server (NTRS)

    Richmond, R. G.; Kelso, R. M.

    1980-01-01

    A concern has arisen regarding the emissive distribution of water molecules from the shuttle orbiter flash evaporator system (FES). The role of the orbiter fuselage and elevon in affecting molecular scattering distributions was nuclear. The effect of these components were evaluated. Molecular distributions of the water vapor effluents from the FE were measured. These data were compared with analytically predicted values and the resulting implications were calculated.

  20. Sulfur at nickel-alumina interfaces - Molecular orbital theory

    NASA Technical Reports Server (NTRS)

    Hong, S. Y.; Anderson, Alfred B.; Smialek, James L.

    1990-01-01

    Previous studies on Al-Ni alloys containing sulfur as an impurity suggest that, when S is in the interface between a metal and an oxide scale, it weakens the chemical bonding between them. This paper investigates factors responsible for this effect, using a molecular orbital theory to predict sulfur structures and electronic properties on the Ni-Al2O3 interface. It is shown that, in absence of S, the basal plane of Al2O3 will bind strongly through the Al(3+) cation surface to Ni (111). When segregated S impurity is present on the Ni surface, there are too few interfacial AlS bonds to effect good adhesion, leading to an inhibition of the oxide scale adhesion in NiCrAl alloys.

  1. Velocity diagrams

    NASA Technical Reports Server (NTRS)

    Whitney, W. J.; Stewart, W. L.

    1972-01-01

    The selection and design of velocity diagrams for axial flow turbines are considered. Application is treated in two parts which includes: (1) mean-section diagrams, and (2) radial variation of diagrams. In the first part, the velocity diagrams occurring at the mean section are assumed to represent the average conditions encountered by the turbine. The different types of diagrams, their relation to stage efficiency, and their selection when staging is required are discussed. In the second part, it is shown that in certain cases the mean-section diagrams may or may not represent the average flow conditions for the entire blade span. In the case of relatively low hub- to tip-radius ratios, substantial variations in the velocity diagrams are encountered. The radial variations in flow conditions and their effect on the velocity diagrams are considered.

  2. On orbital stability of planar oscillations of a satellite in a circular orbit on the boundary of the parametric resonance

    NASA Astrophysics Data System (ADS)

    Bardin, B. S.; Chekina, E. A.

    2018-05-01

    We consider the motion of a satellite about its center of mass in a circular orbit. We study the problem of orbital stability for planar pendulum-like oscillations of the satellite. It is supposed that the satellite is a rigid body whose mass geometry is that of a plate. For the unperturbed motion the plane of the satellite-plate is perpendicular to the plane of the orbit. We perform a nonlinear analysis of the orbital stability of planar pendulum-like oscillations for previously unexplored parameter values corresponding to the combination resonance. It appears that in this case both formal orbital stability and instability can take place. The results of stability study are shown in stability diagrams.

  3. Orbital Period Changes in WZ Sagittae

    NASA Astrophysics Data System (ADS)

    Patterson, Joseph; Stone, Geoffrey; Kemp, Jonathan; Skillman, David R.; de Miguel, Enrique; Potter, Michael; Starkey, Donn; Uthas, Helena; Jones, Jim; Slauson, Douglas; Koff, Robert; Myers, Gordon; Menzies, Kenneth; Campbell, Tut; Roberts, George; Foote, Jerry; Vanmunster, Tonny; Cook, Lewis M.; Krajci, Thomas; Ogmen, Yenal; Sabo, Richard; Seargeant, Jim

    2018-06-01

    We report a long-term (1961–2017) study of the eclipse times in the dwarf nova WZ Sagittae, in an effort to learn its rate of orbital-period change. Some wiggles with a timescale of 20–50 years are apparent, and a connection with the ∼23 year interval between dwarf-nova eruptions is possible. These back-and-forth wiggles dominate the O–C diagram, and prevent a secure measurement of the steady rate of orbital-period change.

  4. General contraction of Gaussian basis sets. II - Atomic natural orbitals and the calculation of atomic and molecular properties

    NASA Technical Reports Server (NTRS)

    Almlof, Jan; Taylor, Peter R.

    1990-01-01

    A recently proposed scheme for using natural orbitals from atomic configuration interaction wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outermost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital sets.

  5. Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective

    PubMed Central

    Wolters, Lando P; Bickelhaupt, F Matthias

    2012-01-01

    We have carried out extensive computational analyses of the structure and bonding mechanism in trihalides DX⋅⋅⋅A− and the analogous hydrogen-bonded complexes DH⋅⋅⋅A− (D, X, A=F, Cl, Br, I) using relativistic density functional theory (DFT) at zeroth-order regular approximation ZORA-BP86/TZ2P. One purpose was to obtain a set of consistent data from which reliable trends in structure and stability can be inferred over a large range of systems. The main objective was to achieve a detailed understanding of the nature of halogen bonds, how they resemble, and also how they differ from, the better understood hydrogen bonds. Thus, we present an accurate physical model of the halogen bond based on quantitative Kohn–Sham molecular orbital (MO) theory, energy decomposition analyses (EDA) and Voronoi deformation density (VDD) analyses of the charge distribution. It appears that the halogen bond in DX⋅⋅⋅A− arises not only from classical electrostatic attraction but also receives substantial stabilization from HOMO–LUMO interactions between the lone pair of A− and the σ* orbital of D–X. PMID:24551497

  6. Introductory Molecular Orbital Theory: An Honors General Chemistry Computational Lab as Implemented Using Three-Dimensional Modeling Software

    ERIC Educational Resources Information Center

    Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.

    2012-01-01

    In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…

  7. Modeling Photodetachment from HO2- Using the pd Case of the Generalized Mixed Character Molecular Orbital Model

    NASA Astrophysics Data System (ADS)

    Blackstone, Christopher C.; Sanov, Andrei

    2016-06-01

    Using the generalized model for photodetachment of electrons from mixed-character molecular orbitals, we gain insight into the nature of the HOMO of HO2- by treating it as a coherent superpostion of one p- and one d-type atomic orbital. Fitting the pd model function to the ab initio calculated HOMO of HO2- yields a fractional d-character, γp, of 0.979. The modeled curve of the anisotropy parameter, β, as a function of electron kinetic energy for a pd-type mixed character orbital is matched to the experimental data.

  8. Intramolecular interactions of L-phenylalanine: Valence ionization spectra and orbital momentum distributions of its fragment molecules.

    PubMed

    Ganesan, Aravindhan; Wang, Feng; Falzon, Chantal

    2011-02-01

    Intramolecular interactions between fragments of L-phenylalanine, i.e., phenyl and alaninyl, have been investigated using dual space analysis (DSA) quantum mechanically. Valence space photoelectron spectra (PES), orbital energy topology and correlation diagram, as well as orbital momentum distributions (MDs) of L-phenylalanine, benzene and L-alanine are studied using density functional theory methods. While fully resolved experimental PES of L-phenylalanine is not yet available, our simulated PES reproduces major features of the experimental measurement. For benzene, the simulated orbital MDs for 1e(1g) and 1a(2u) orbitals also agree well with those measured using electron momentum spectra. Our theoretical models are then applied to reveal intramolecular interactions of the species on an orbital base, using DSA. Valence orbitals of L-phenylalanine can be essentially deduced into contributions from its fragments such as phenyl and alaninyl as well as their interactions. The fragment orbitals inherit properties of their parent species in energy and shape (ie., MDs). Phenylalanine orbitals show strong bonding in the energy range of 14-20 eV, rather than outside of this region. This study presents a competent orbital based fragments-in-molecules picture in the valence space, which supports the fragment molecular orbital picture and building block principle in valence space. The optimized structures of the molecules are represented using the recently developed interactive 3D-PDF technique. Copyright © 2010 Wiley Periodicals, Inc.

  9. Core molecule dependence of energy migration in phenylacetylene nanostar dendrimers: Ab initio molecular orbital-configuration interaction based quantum master equation study

    NASA Astrophysics Data System (ADS)

    Kishi, Ryohei; Minami, Takuya; Fukui, Hitoshi; Takahashi, Hideaki; Nakano, Masayoshi

    2008-06-01

    The core molecule dependence of energy (exciton) migration in phenylacetylene nanostar dendrimers is investigated using the ab initio molecular orbital (MO)-configuration interaction based quantum master equation approach. We examine three kinds of core molecular species, i.e., benzene, anthracene, and pentacene, with different highest occupied MO-lowest unoccupied MO (HOMO-LUMO) gaps, which lead to different orbital interactions between the dendron parts and the core molecule. The nanostars bearing anthracene and pentacene cores are characterized by multistep exciton states with spatially well-segmented distributions: The exciton distributions of high-lying exciton states are spatially localized well in the periphery region, whereas those of low-lying exciton states are done in the core region. On the other hand, for the nanostar bearing benzene core, which also has multistep exciton states, the spatial exciton distributions of low-lying exciton states are delocalized over the dendron and the core regions. It is found that the former nanostars exhibit nearly complete exciton migration from the periphery to the core molecule in contrast to the latter one, in which significant exciton distribution remains in the dendron parts attached to the core after the exciton relaxation, although all these dendrimers exhibit fast exciton relaxation from the initially populated states. It is predicted from the analysis based on the MO correlation diagrams and the relative relaxation factor that the complete exciton migration to the core occurs not only when the HOMO-LUMO gap of the core molecule is nearly equal to that of the dendron parts attached to the core (anthracene case) but also when fairly smaller than that (pentacene case), whereas the complete migration is not achieved when the HOMO-LUMO gap of the core is larger than that of the dendron parts (benzene case). These results suggest that the fast and complete exciton migration of real dendrimers could be realized by

  10. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems.

    PubMed

    Tanaka, Shigenori; Mochizuki, Yuji; Komeiji, Yuto; Okiyama, Yoshio; Fukuzawa, Kaori

    2014-06-14

    Recent developments in the fragment molecular orbital (FMO) method for theoretical formulation, implementation, and application to nano and biomolecular systems are reviewed. The FMO method has enabled ab initio quantum-mechanical calculations for large molecular systems such as protein-ligand complexes at a reasonable computational cost in a parallelized way. There have been a wealth of application outcomes from the FMO method in the fields of biochemistry, medicinal chemistry and nanotechnology, in which the electron correlation effects play vital roles. With the aid of the advances in high-performance computing, the FMO method promises larger, faster, and more accurate simulations of biomolecular and related systems, including the descriptions of dynamical behaviors in solvent environments. The current status and future prospects of the FMO scheme are addressed in these contexts.

  11. Nonadiabatic Ab Initio Molecular Dynamics with the Floating Occupation Molecular Orbital-Complete Active Space Configuration Interaction Method [Non-Adiabatic Ab Initio Molecular Dynamics with Floating Occupation Molecular Orbitals CASCI Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollas, Daniel; Sistik, Lukas; Hohenstein, Edward G.

    Here, we show that the floating occupation molecular orbital complete active space configuration interaction (FOMO-CASCI) method is a promising alternative to the widely used complete active space self-consistent field (CASSCF) method in direct nonadiabatic dynamics simulations. We have simulated photodynamics of three archetypal molecules in photodynamics: ethylene, methaniminium cation, and malonaldehyde. We compared the time evolution of electronic populations and reaction mechanisms as revealed by the FOMO-CASCI and CASSCF approaches. Generally, the two approaches provide similar results. Some dynamical differences are observed, but these can be traced back to energetically minor differences in the potential energy surfaces. We suggest thatmore » the FOMO-CASCI method represents, due to its efficiency and stability, a promising approach for direct ab initio dynamics in the excited state.« less

  12. General contraction of Gaussian basis sets. Part 2: Atomic natural orbitals and the calculation of atomic and molecular properties

    NASA Technical Reports Server (NTRS)

    Almloef, Jan; Taylor, Peter R.

    1989-01-01

    A recently proposed scheme for using natural orbitals from atomic configuration interaction (CI) wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outmost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital (ANO) sets.

  13. The Lenz Vector and Orbital Analog Computers

    ERIC Educational Resources Information Center

    Harter, W. G.

    1976-01-01

    Describes a single geometrical diagram based on the Lenz vector which shows the qualitative and quantitative features of all three types of Coulomb orbits. Explains the use of a simple analog computer with an overhead projector to demonstrate many of these effects. (Author/CP)

  14. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals

    NASA Astrophysics Data System (ADS)

    Wyrick, Jonathan; Einstein, T. L.; Bartels, Ludwig

    2015-03-01

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species' diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.

  15. Depopulation of Single-Phthalocyanine Molecular Orbitals upon Pyrrolic-Hydrogen Abstraction on Graphene.

    PubMed

    Néel, Nicolas; Lattelais, Marie; Bocquet, Marie-Laure; Kröger, Jörg

    2016-02-23

    Single-molecule chemistry with a scanning tunneling microscope has preponderantly been performed on metal surfaces. The molecule-metal hybridization, however, is often detrimental to genuine molecular properties and obscures their changes upon chemical reactions. We used graphene on Ir(111) to reduce the coupling between Ir(111) and adsorbed phthalocyanine molecules. By local electron injection from the tip of a scanning tunneling microscope the two pyrrolic H atoms were removed from single phthalocyanines. The detachment of the H atom pair induced a strong modification of the molecular electronic structure, albeit with no change in the adsorption geometry. Spectra and maps of the differential conductance combined with density functional calculations unveiled the entire depopulation of the highest occupied molecular orbital upon H abstraction. Occupied π states of intact molecules are proposed to be emptied via intramolecular electron transfer to dangling σ states of H-free N atoms.

  16. Quantitative contribution of molecular orbitals to hydrogen bonding in a water dimer: Electron density projected integral (EDPI) analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyuan; Jiang, Wanrun; Wang, Bo; Wang, Zhigang

    2017-06-01

    We introduce the orbital-resolved electron density projected integral (EDPI) along the H-bond in the real space to quantitatively investigate the specific contribution from the molecular orbitals (MOs) aspect in (H2O)2. Calculation results show that, the electronic occupied orbital (HOMO-4) of (H2O)2 accounts for about surprisingly 40% of the electron density at the bond critical point. Moreover, the electronic density difference analysis visualizes the electron accumulating effect of the orbital interaction within the H-bond between water molecules, supporting its covalent-like character. Our work expands the understanding of H-bond with specific contributions from certain MOs.

  17. Orbital alignment at the internal interface of arylthiol functionalized CdSe molecular hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhi; Schlaf, Rudy, E-mail: schlaf@usf.edu; Mazzio, Katherine A.

    Organic-inorganic nanoparticle molecular hybrid materials are interesting candidates for improving exciton separation in organic solar cells. The orbital alignment at the internal interface of cadmium selenide (ArS-CdSe) hybrid materials functionalized with covalently attached arylthiolate moieties was investigated through X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS). A physisorbed interface between arylthiol (ArSH) ligands and CdSe nanoparticles was also investigated for comparison. This interface was created via a multi-step thin film deposition procedure in-vacuo, where the surface was characterized after each experimental step. This enabled the direct comparison of ArSH/CdSe interfaces produced via physisorption and ArS-CdSe covalently attached hybrid materials,more » which rely on a chemical reaction for their synthesis. All material depositions were performed using an electrospray deposition, which enabled the direct injection of solution-originating molecular species into the vacuum system. This method allows XPS and UPS measurements to be performed immediately after deposition without exposure to the atmosphere. Transmission electron microscopy was used to determine the morphology and particle size of the deposited materials. Ultraviolet-visible spectroscopy was used to estimate the optical band gap of the CdSe nanoparticles and the HOMO-LUMO gap of the ArSH ligands. These experiments showed that hybridization via covalent bonds results in an orbital realignment at the ArSH/CdSe interface in comparison to the physisorbed interface. The orbital alignment within the hybrid caused a favorable electron injection barrier, which likely facilitates exciton-dissociation while preventing charge-recombination.« less

  18. PC-402 Pioneer Venus orbiter spacecraft mission operational characteristics document

    NASA Technical Reports Server (NTRS)

    Barker, F. C.; Butterworth, L. W.; Daniel, R. E.; Drean, R. J.; Filetti, K. A.; Fisher, J. N.; Nowak, L. A.; Porzucki, J.; Salvatore, J. O.; Tadler, G. A.

    1978-01-01

    The operational characteristics of the Orbiter spacecraft and its subsystems are described. In extensive detail. Description of the nominal phases, system interfaces, and the capabilities and limitations of system level performance are included along with functional and operational descriptions at the subsystem and unit level the subtleties of nominal operation as well as detailed capabilities and limitations beyond nominal performance are discussed. A command and telemetry logic flow diagram for each subsystem is included. Each diagram encountered along each command signal path into, and each telemetry signal path out of the subsystem. Normal operating modes that correspond to the performance of specific functions at the time of specific events in the mission are also discussed. Principal backup means of performing the normal Orbiter operating modes are included.

  19. Orbital transfer vehicle studies overview

    NASA Technical Reports Server (NTRS)

    Perkinson, Don

    1987-01-01

    An overview is given in viewgraph form of orbital transfer vehicle concept definition and systems analysis studies. Project development flow charts are shown for key milestones from 1985 until 1997. Diagrams of vehicles are given. Information is presented in outline form on technology requirements, cooling of propellant tanks, cryogenic fluid management, quick connect/disconnect fluid interfaces and propellant mass transfer.

  20. Orbital-selective Mott phases of a one-dimensional three-orbital Hubbard model studied using computational techniques

    DOE PAGES

    Liu, Guangkun; Kaushal, Nitin; Liu, Shaozhi; ...

    2016-06-24

    A recently introduced one-dimensional three-orbital Hubbard model displays orbital-selective Mott phases with exotic spin arrangements such as spin block states [J. Rincón et al., Phys. Rev. Lett. 112, 106405 (2014)]. In this paper we show that the constrained-path quantum Monte Carlo (CPQMC) technique can accurately reproduce the phase diagram of this multiorbital one-dimensional model, paving the way to future CPQMC studies in systems with more challenging geometries, such as ladders and planes. The success of this approach relies on using the Hartree-Fock technique to prepare the trial states needed in CPQMC. In addition, we study a simplified version of themore » model where the pair-hopping term is neglected and the Hund coupling is restricted to its Ising component. The corresponding phase diagrams are shown to be only mildly affected by the absence of these technically difficult-to-implement terms. This is confirmed by additional density matrix renormalization group and determinant quantum Monte Carlo calculations carried out for the same simplified model, with the latter displaying only mild fermion sign problems. Lastly, we conclude that these methods are able to capture quantitatively the rich physics of the several orbital-selective Mott phases (OSMP) displayed by this model, thus enabling computational studies of the OSMP regime in higher dimensions, beyond static or dynamic mean-field approximations.« less

  1. Quantum corrections for the phase diagram of systems with competing order.

    PubMed

    Silva, N L; Continentino, Mucio A; Barci, Daniel G

    2018-06-06

    We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu 2 Si 2 . Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.

  2. Quantum corrections for the phase diagram of systems with competing order

    NASA Astrophysics Data System (ADS)

    Silva, N. L., Jr.; Continentino, Mucio A.; Barci, Daniel G.

    2018-06-01

    We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu2Si2. Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.

  3. Roundhouse Diagrams.

    ERIC Educational Resources Information Center

    Ward, Robin E.; Wandersee, James

    2000-01-01

    Students must understand key concepts through reasoning, searching out related concepts, and making connections within multiple systems to learn science. The Roundhouse diagram was developed to be a concise, holistic, graphic representation of a science topic, process, or activity. Includes sample Roundhouse diagrams, a diagram checklist, and…

  4. Energetic studies and phase diagram of thioxanthene.

    PubMed

    Freitas, Vera L S; Monte, Manuel J S; Santos, Luís M N B F; Gomes, José R B; Ribeiro da Silva, Maria D M C

    2009-11-19

    The molecular stability of thioxanthene, a key species from which very important compounds with industrial relevance are derived, has been studied by a combination of several experimental techniques and computational approaches. The standard (p degrees = 0.1 MPa) molar enthalpy of formation of crystalline thioxanthene (117.4 +/- 4.1 kJ x mol(-1)) was determined from the experimental standard molar energy of combustion, in oxygen, measured by rotating-bomb combustion calorimetry at T = 298.15 K. The enthalpy of sublimation was determined by a direct method, using the vacuum drop microcalorimetric technique, and also by an indirect method, using a static apparatus, where the vapor pressures at different temperatures were measured. The latter technique was used for both crystalline and undercooled liquid samples, and the phase diagram of thioxanthene near the triple point was obtained (triple point coordinates T = 402.71 K and p = 144.7 Pa). From the two methods, a mean value for the standard (p degrees = 0.1 MPa) molar enthalpy of sublimation, at T = 298.15 K (101.3 +/- 0.8 kJ x mol(-1)), was derived. From the latter value and from the enthalpy of formation of the solid, the standard (p degrees = 0.1 MPa) enthalpy of formation of gaseous thioxanthene was calculated as 218.7 +/- 4.2 kJ x mol(-1). Standard ab initio molecular orbital calculations were performed using the G3(MP2)//B3LYP composite procedure and several homodesmotic reactions in order to derive the standard molar enthalpy of formation of thioxanthene. The ab initio results are in excellent agreement with the experimental data.

  5. Ab initio molecular simulations with numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias

    2009-11-01

    We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.

  6. Reactivity index based on orbital energies.

    PubMed

    Tsuneda, Takao; Singh, Raman K

    2014-05-30

    This study shows that the chemical reactivities depend on the orbital energy gaps contributing to the reactions. In the process where a reaction only makes progress through charge transfer with the minimal structural transformation of the reactant, the orbital energy gap gradient (OEGG) between the electron-donating and electron-accepting orbitals is proven to be very low. Using this relation, a normalized reaction diagram is constructed by plotting the normalized orbital energy gap with respect to the normalized intrinsic reaction coordinate. Application of this reaction diagram to 43 fundamental reactions showed that the majority of the forward reactions provide small OEGGs in the initial stages, and therefore, the initial processes of the forward reactions are supposed to proceed only through charge transfer. Conversely, more than 60% of the backward reactions are found to give large OEGGs implying very slow reactions associated with considerable structural transformations. Focusing on the anti-activation-energy reactions, in which the forward reactions have higher barriers than those of the backward ones, most of these reactions are shown to give large OEGGs for the backward reactions. It is also found that the reactions providing large OEGGs in the forward directions inconsistent with the reaction rate constants are classified into SN 2, symmetric, and methyl radical reactions. Interestingly, several large-OEGG reactions are experimentally established to get around the optimum pathways. This indicates that the reactions can take significantly different pathways from the optimum ones provided no charge transfer proceeds spontaneously without the structural transformations of the reactants. Copyright © 2014 Wiley Periodicals, Inc.

  7. Space shuttle on-orbit flight control software requirements, preliminary version

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Software modules associated with various flight control functions for the space shuttle orbiter are described. Data flow, interface requirements, initialization requirements and module sequencing requirements are considered. Block diagrams and tables are included.

  8. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, Joel David; Ticknor, Christopher; Collins, Lee A.

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm 3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  9. Spin-orbit force, recoil corrections, and possible BB¯* and DD¯* molecular states

    NASA Astrophysics Data System (ADS)

    Zhao, Lu; Ma, Li; Zhu, Shi-Lin

    2014-05-01

    In the framework of the one-boson exchange model, we have calculated the effective potentials between two heavy mesons BB¯* and DD¯* from the t- and u-channel π-, η-, ρ-, ω-, and σ-meson exchanges with four kinds of quantum number: I=0, JPC=1++; I =0, JPC=1+-; I =1, JPC=1++; I =1, JPC=1+-. We keep the recoil corrections to the BB¯* and DD¯* systems up to O(1/M2). The spin-orbit force appears at O(/1M), which turns out to be important for the very loosely bound molecular states. Our numerical results show that the momentum-related corrections are unfavorable to the formation of the molecular states in the I =0, JPC=1++ and I =1, JPC=1+- channels in the DD¯* system.

  10. Uranium phase diagram from first principles

    NASA Astrophysics Data System (ADS)

    Yanilkin, Alexey; Kruglov, Ivan; Migdal, Kirill; Oganov, Artem; Pokatashkin, Pavel; Sergeev, Oleg

    2017-06-01

    The work is devoted to the investigation of uranium phase diagram up to pressure of 1 TPa and temperature of 15 kK based on density functional theory. First of all the comparison of pseudopotential and full potential calculations is carried out for different uranium phases. In the second step, phase diagram at zero temperature is investigated by means of program USPEX and pseudopotential calculations. Stable and metastable structures with close energies are selected. In order to obtain phase diagram at finite temperatures the preliminary selection of stable phases is made by free energy calculation based on small displacement method. For remaining candidates the accurate values of free energy are obtained by means of thermodynamic integration method (TIM). For this purpose quantum molecular dynamics are carried out at different volumes and temperatures. Interatomic potentials based machine learning are developed in order to consider large systems and long times for TIM. The potentials reproduce the free energy with the accuracy 1-5 meV/atom, which is sufficient for prediction of phase transitions. The equilibrium curves of different phases are obtained based on free energies. Melting curve is calculated by modified Z-method with developed potential.

  11. Competing phases and orbital-selective behaviors in the two-orbital Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Li, Shaozhi; Khatami, Ehsan; Johnston, Steven

    2017-03-01

    We study the interplay between the electron-electron (e-e) and the electron-phonon (e-ph) interactions in the two-orbital Hubbard-Holstein model at half-filling using the dynamical mean-field theory. We find that the e-ph interaction, even at weak couplings, strongly modifies the phase diagram of this model and introduces an orbital-selective Peierls insulating phase (OSPI) that is analogous to the widely studied orbital-selective Mott phase (OSMP). At small e-e and e-ph couplings, we find a competition between the OSMP and the OSPI, while at large couplings, a competition occurs between Mott and charge-density-wave (CDW) insulating phases. We further demonstrate that the Hund's coupling influences the OSPI transition by lowering the energy associated with the CDW. Our results explicitly show that one must be cautious when neglecting the e-ph interaction in multiorbital systems, where multiple electronic interactions create states that are readily influenced by perturbing interactions.

  12. Molecular orbital evaluation of charge flow dynamics in natural pigments based photosensitizers.

    PubMed

    Heera, Thekinneydath Rajan; Cindrella, Louis

    2010-03-01

    The relationship between structure and photo electrochemical property of ten natural pigments from plants, insects and microbes has been analyzed using density functional theory (DFT) at the B3LYP/6-31G(d) level. The essential parameters for their photoelectrochemical behaviour such as ground state geometries, electronic transition energies and oxidation potentials are computed. The attachment tendency of the anchoring groups, expressed as the deprotonation order, is determined by calculating the proton affinities at different sites of the molecules. A thorough analysis of the charge flow dynamics in the molecular orbitals (HOMO and LUMO) of these molecules has been carried out and presented to emphasize the role of these orbitals in effective charge separation, the important feature of photosensitizers for DSSC. This study highlights that the flexible spatial orientation provided by the bridging aliphatic unsaturation favours the oscillator strength and the hydroxyl anchor group attached to the ring of delocalized pi electron cloud acts as the effective anchor.

  13. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar; Sauer, Stephan P. A., E-mail: sauer@kiku.dk

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing themore » changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.« less

  14. Fragment-orbital tunneling currents and electronic couplings for analysis of molecular charge-transfer systems.

    PubMed

    Hwang, Sang-Yeon; Kim, Jaewook; Kim, Woo Youn

    2018-04-04

    In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.

  15. Brown Dwarf Microlensing Diagram

    NASA Image and Video Library

    2016-11-10

    For the first time, two space-based telescopes have teamed up with ground-based observatories to observe a microlensing event, a magnification of the light of a distant star due to the gravitational effects of an unseen object in the foreground. In this case, the cause of the microlensing event was a brown dwarf, dubbed OGLE-2015-BLG-1319, orbiting a star. In terms of mass, brown dwarfs fall somewhere between the size of the largest planets and the smallest stars. Curiously, scientists have found that, for stars roughly the mass of our sun, less than 1 percent have a brown dwarf orbiting within 3 AU (1 AU is the distance between Earth and the sun). This newly discovered brown dwarf may fall in that distance range. This microlensing event was observed by ground-based telescopes looking for these uncommon events, and subsequently seen by NASA's Spitzer and Swift space telescopes. As the diagram shows, Spitzer and Swift offer additional vantage points for viewing this chance alignment. While Swift orbits close to Earth, and saw (blue diamonds) essentially the same change in light that the ground-based telescopes measured (grey markers), Spitzer's location much farther away from Earth gave it a very different perspective on the event (red circles). In particular, Spitzer's vantage point resulted in a time lag in the microlensing event it observed, compared to what was seen by Swift and the ground-based telescope. This offset allowed astronomers to determine the distance to OGLE-2015-BLG-1319 as well as its mass: around 30-65 times that of Jupiter. http://photojournal.jpl.nasa.gov/catalog/PIA21077

  16. Nuclear electric power for multimegawatt orbit transfer vehicles

    NASA Astrophysics Data System (ADS)

    Casagrande, R. D.

    Multimegawatt nuclear propulsion is an attractive option for orbit transfer vehicles. The masses of these platforms are expected to exceed the capability of a single launch from Earth necessitating assembly in space in a parking orbit. The OTV would transfer the platform from the parking orbit to the operational orbit and then return for the next mission. Electric propulsion is advantageous because of the high specific impulse achieved by the technology, 1000 to 5000 s and beyond, to reduce the propellant required. Nuclear power is attractive as the power system because of the weight savings over solar systems in the multimegawatt regime, and multimegawatts of power are required. A conceptual diagram is shown of an OTV with a command control module using electric thrusters powered from an SP-100 class nuclear reactor power system.

  17. Molecular Electronic Terms and Molecular Orbital Configurations.

    ERIC Educational Resources Information Center

    Mazo, R. M.

    1990-01-01

    Discussed are the molecular electronic terms which can arise from a given electronic configuration. Considered are simple cases, molecular states, direct products, closed shells, and open shells. Two examples are provided. (CW)

  18. Phase diagram of the isovalent phosphorous-substituted 122-type iron pnictides

    DOE PAGES

    Zhao, YuanYuan; Tai, Yuan -Yen; Ting, C. S.

    2015-05-11

    Recent experiments demonstrated that the isovalent doping system gives a similar phase diagram as the heterovalent doped cases. For example, with the phosphorous (P) doping, the magnetic order in BaFe 2(As 1–xP x) 2 compound is first suppressed, then the superconductivity dome emerges to an extended doping region but eventually it disappears at large x. With the help of a minimal two-orbital model for both BaFe 2As 2 and BaFe 2P 2, together with the self-consistent lattice Bogoliubov-de Gennes (BdG) equation, we calculate the phase diagram against the P content x in which the doped isovalent P atoms are treatedmore » as impurities. Furthermore, we show that our numerical results can qualitatively compare with the experimental measurements.« less

  19. Study of high-performance canonical molecular orbitals calculation for proteins

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Sato, Fumitoshi

    2017-11-01

    The canonical molecular orbital (CMO) calculation can help to understand chemical properties and reactions in proteins. However, it is difficult to perform the CMO calculation of proteins because of its self-consistent field (SCF) convergence problem and expensive computational cost. To certainly obtain the CMO of proteins, we work in research and development of high-performance CMO applications and perform experimental studies. We have proposed the third-generation density-functional calculation method of calculating the SCF, which is more advanced than the FILE and direct method. Our method is based on Cholesky decomposition for two-electron integrals calculation and the modified grid-free method for the pure-XC term evaluation. By using the third-generation density-functional calculation method, the Coulomb, the Fock-exchange, and the pure-XC terms can be given by simple linear algebraic procedure in the SCF loop. Therefore, we can expect to get a good parallel performance in solving the SCF problem by using a well-optimized linear algebra library such as BLAS on the distributed memory parallel computers. The third-generation density-functional calculation method is implemented to our program, ProteinDF. To achieve computing electronic structure of the large molecule, not only overcoming expensive computation cost and also good initial guess for safe SCF convergence are required. In order to prepare a precise initial guess for the macromolecular system, we have developed the quasi-canonical localized orbital (QCLO) method. The QCLO has the characteristics of both localized and canonical orbital in a certain region of the molecule. We have succeeded in the CMO calculations of proteins by using the QCLO method. For simplified and semi-automated calculation of the QCLO method, we have also developed a Python-based program, QCLObot.

  20. Phase diagram and high degeneracy points for generic anisotropic exchange on the garnet lattice

    NASA Astrophysics Data System (ADS)

    Andreanov, Alexei; McClarty, Paul

    Garnet magnets with chemical formula RE3Ga5O12 where RE is a rare earth ion have properties that are determined by a combination of geometrical frustration and strong spin-orbit coupling. The former arises from the RE structure which consists of two interpenetrating hyperkagome lattices while the latter leads, in general, to an anisotropy in the magnetic exchange. We systematically explore and describe the full phase diagram for the case of all nearest-neighbor interactions compatible with lattice symmetries and consider the role of fluctuations and further neighbor couplings around high degeneracy points in the phase diagram. AA was supported by Project Code(IBS-R024-D1).

  1. Design of two-photon molecular tandem architectures for solar cells by ab initio theory

    DOE PAGES

    Ornso, Kristian B.; Garcia-Lastra, Juan M.; De La Torre, Gema; ...

    2015-03-04

    An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is amore » molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed.« less

  2. Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems

    NASA Astrophysics Data System (ADS)

    Nistor, Razvan A.

    The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high

  3. Orbital loop currents in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Klug, Markus; Kang, Jian; Fernandes, Rafael M.; Schmalian, Jörg

    2018-04-01

    We show that the antiferromagnetic state commonly observed in the phase diagrams of the iron-based superconductors necessarily triggers loop currents characterized by charge transfer between different Fe 3 d orbitals. This effect is rooted on the glide-plane symmetry of these materials and on the existence of an atomic spin-orbit coupling that couples states at the X and Y points of the 1-Fe Brillouin zone. In the particular case in which the magnetic moments are aligned parallel to the magnetic ordering vector direction, which is the moment configuration most commonly found in the iron-based superconductors, these loop currents involve the dx y orbital and either the dy z orbital (if the moments point along the y axis) or the dx z orbitals (if the moments point along the x axis). We show that the two main manifestations of the orbital loop currents are the emergence of magnetic moments in the pnictide/chalcogen site and an orbital-selective band splitting in the magnetically ordered state, both of which could be detected experimentally. Our results highlight the unique intertwining between orbital and spin degrees of freedom in the iron-based superconductors, and reveal the emergence of an unusual correlated phase that may impact the normal state and superconducting properties of these materials.

  4. Ground-state phase diagram in the Kugel-Khomskii model with finite spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji

    2018-05-01

    We study ground-state properties in the Kugel-Khomskii model on the two-dimensional honeycomb lattice. Using the cluster mean-field approximations, we deal with the exchange and spin-orbit couplings on an equal footing. We then discuss the stability of the ferromagnetically ordered states against the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit.

  5. Molecular docking, TG/DTA, molecular structure, harmonic vibrational frequencies, natural bond orbital and TD-DFT analysis of diphenyl carbonate by DFT approach

    NASA Astrophysics Data System (ADS)

    Xavier, S.; Periandy, S.; Carthigayan, K.; Sebastian, S.

    2016-12-01

    Vibrational spectral analysis of Diphenyl Carbonate (DPC) is carried out by using FT-IR and FT-Raman spectroscopic techniques. It is found that all vibrational modes are in the expected region. Gaussian computational calculations were performed using B3LYP method with 6-311++G (d, p) basis set. The computed geometric parameters are in good agreement with XRD data. The observation shows that the structure of the carbonate group is unsymmetrical by ∼5° due to the attachment of the two phenyl rings. The stability of the molecule arising from hyperconjugative interaction and charge delocalization are analyzed by Natural Bond Orbital (NBO) study and the results show the lone pair transition has higher stabilization energy compared to all other. The 1H and 13C NMR chemical shifts are calculated using the Gauge-Including Atomic Orbital (GIAO) method with B3LYP/6-311++G (d, p) method. The chemical shifts computed theoretically go very closer to the experimental results. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies and Molecular electrostatic potential (MEP) exhibit the high reactivity nature of the molecule. The non-linear optical property of the DPC molecule predicted theoretically found to be good candidate for NLO material. TG/DTA analysis was made and decomposition of the molecule with respect to the temperature was studied. DPC having the anthelmintic activity is docked in the Hemoglobin of Fasciola hepatica protein. The DPC has been screened to antimicrobial activity and found to exhibit antibacterial effects.

  6. Orbital Parameters for Two "IGR" Sources

    NASA Astrophysics Data System (ADS)

    Thompson, Thomas; Tomsick, J.; Rothschild, R.; in't Zand, J.; Walter, R.

    2006-09-01

    With recent and archival Rossi X-ray Timing Explorer observations of the heavily absorbed X-ray pulsars IGR J17252-3616 (hereafter J17252) and IGR J16393-4643 (hereafter J16393), we carried out a pulse timing analysis to determine the orbital parameters of the two binary systems. We find that both INTEGRAL sources are High Mass X-ray Binary (HMXB) systems. The orbital solution to J17252 has a projected semi-major axis of 101 ± 3 lt-s and a period of 9.7403 ± 0.0004 days, implying a mass function of 11.7 ± 1.2 M_sun. The orbital solution to J16393, on the other hand, is not unambiguously known due to weaker and less-consistent pulsations. The most likely orbital solution has a projected semi-major axis of 43 ± 2 lt-s and an orbital period of 3.6875 ± 0.0006 days, yielding a mass function of 6.5 ± 1.1 M_sun. The orbits of both sources are consistent with circular, with e < 0.2-0.25 and the 90% confidence level. The orbital and pulse periods of each source place the systems in the region of the Corbet diagram populated by supergiant wind accretors. J17252 is an eclipsing binary system, and provides an exciting opportunity to obtain a neutron star mass measurement.

  7. Orbital motion (3rd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Roy, A. E.

    The fundamental principles of celestial mechanics are discussed in an introduction for students of astronomy, aerospace engineering, and geography. Chapters are devoted to the dynamic structure of the universe, coordinate and timekeeping systems, the reduction of observational data, the two-body problem, the many-body problem, general and special perturbations, and the stability and evolution of the solar system. Consideration is given to lunar theory, artificial satellites, rocket dynamics and transfer orbits, interplanetary and lunar trajectories, orbit determination and interplanetary navigation, binaries and other few-body systems, and many-body systems of stars. Diagrams, graphs, tables, and problems with solutions are provided.

  8. Dimensionality-strain phase diagram of strontium iridates

    NASA Astrophysics Data System (ADS)

    Kim, Bongjae; Liu, Peitao; Franchini, Cesare

    2017-03-01

    The competition between spin-orbit coupling, bandwidth (W ), and electron-electron interaction (U ) makes iridates highly susceptible to small external perturbations, which can trigger the onset of novel types of electronic and magnetic states. Here we employ first principles calculations based on density functional theory and on the constrained random phase approximation to study how dimensionality and strain affect the strength of U and W in (SrIrO3)m/(SrTiO3) superlattices. The result is a phase diagram explaining two different types of controllable magnetic and electronic transitions, spin-flop and insulator-to-metal, connected with the disruption of the Jeff=1 /2 state which cannot be understood within a simplified local picture.

  9. Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakata, Hiroya, E-mail: hiroya.nakata.gt@kyocera.jp; Nishimoto, Yoshio; Fedorov, Dmitri G.

    2016-07-28

    The analytic second derivative of the energy is developed for the fragment molecular orbital (FMO) method combined with density-functional tight-binding (DFTB), enabling simulations of infrared and Raman spectra of large molecular systems. The accuracy of the method is established in comparison to full DFTB without fragmentation for a set of representative systems. The performance of the FMO-DFTB Hessian is discussed for molecular systems containing up to 10 041 atoms. The method is applied to the study of the binding of α-cyclodextrin to polyethylene glycol, and the calculated IR spectrum of an epoxy amine oligomer reproduces experiment reasonably well.

  10. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein-Zernike self-consistent field approach

    NASA Astrophysics Data System (ADS)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-01

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl- + CH3Cl → ClCH3 + Cl-) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  11. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: multi-center molecular Ornstein-Zernike self-consistent field approach.

    PubMed

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-07

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl(-) + CH3Cl → ClCH3 + Cl(-)) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  12. On the room-temperature phase diagram of high pressure hydrogen: an ab initio molecular dynamics perspective and a diffusion Monte Carlo study.

    PubMed

    Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge

    2014-07-14

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.

  13. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.

    PubMed

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2016-07-12

    We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design.

  14. Three-Dimensional Printing of a Scalable Molecular Model and Orbital Kit for Organic Chemistry Teaching and Learning

    ERIC Educational Resources Information Center

    Penny, Matthew R.; Cao, Zi Jing; Patel, Bhaven; dos Santos, Bruno Sil; Asquith, Christopher R. M.; Szulc, Blanka R.; Rao, Zenobia X.; Muwaffak, Zaid; Malkinson, John P.; Hilton, Stephen T.

    2017-01-01

    Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models…

  15. The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Foulkes, Matthew

    2015-03-01

    We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.

  16. X-ray Constrained Extremely Localized Molecular Orbitals: Theory and Critical Assessment of the New Technique.

    PubMed

    Genoni, Alessandro

    2013-07-09

    Following the X-ray constrained wave function approach proposed by Jayatilaka, we have devised a new technique that allows to extract molecular orbitals strictly localized on small molecular fragments from sets of experimental X-ray structure factors amplitudes. Since the novel strategy enables to obtain electron distributions that have quantum mechanical features and that can be easily interpreted in terms of traditional chemical concepts, the method can be also considered as a new useful tool for the determination and the analysis of charge densities from high-resolution X-ray experiments. In this paper, we describe in detail the theory of the new technique, which, in comparison to our preliminary work, has been improved both treating the effects of isotropic secondary extinctions and introducing a new protocol to halt the fitting procedure against the experimental X-ray scattering data. The performances of the novel strategy have been studied both in function of the basis-sets flexibility and in function of the quality of the considered crystallographic data. The tests performed on four different systems (α-glycine, l-cysteine, (aminomethyl)phosphonic acid and N-(trifluoromethyl)formamide) have shown that the achievement of good statistical agreements with the experimental measures mainly depends on the quality of the crystal structures (i.e., geometry positions and thermal parameters) used in the X-ray constrained calculations. Finally, given the reliable transferability of the obtained Extremely Localized Molecular Orbitals (ELMOs), we envisage to exploit the novel approach to construct new ELMOs databases suited to the development of linear-scaling methods for the refinement of macromolecular crystal structures.

  17. Multi-Orbital contributions in High Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Guehr, Markus

    2009-05-01

    The high harmonic spectrum generated from atoms or molecules in a strong laser field contains information about the electronic structure of the generation medium. In the high harmonic generation (HHG) process, a free electron wave packet tunnel-ionizes from the molecular orbital in a strong laser field. After being accelerated by the laser electric field, the free electron wave packet coherently recombines to the orbital from which is was initially ionized, thereby emitting the harmonic spectrum. Interferences between the free electron wave packet and the molecular orbital will shape the spectrum in a characteristic way. These interferences have been used to tomographically image the highest occupied molecular orbital (HOMO) of N2 [1]. Molecular electronic states energetically below the HOMO should contribute to laser-driven high harmonic generation (HHG), but this behavior has not been observed previously. We have observed evidence of HHG from multiple orbitals in aligned N2 [2]. The tunneling ionization (and therefore the harmonic generation) is most efficient if the orbital has a large extension in the direction of the harmonic generation polarization. The HOMO with its σg symmetry therefore dominates the harmonic spectrum if the molecular axis is parallel to the harmonic generation polarization, the lower bound πu HOMO-1 dominates in the perpendicular case. The HOMO contributions appear as a regular plateau with a cutoff in the HHG spectrum. In contrast, the HOMO-1 signal is strongly peaked in the cutoff region. We explain this by semi-classical simulations of the recombination process that show constructive interferences between the HOMO-1 and the recombining wave packet in the cutoff region. The ability to monitor several orbitals opens the route to imaging coherent superpositions of electronic orbitals. [1] J. Itatani et al., Nature 432, 867 (2004)[2] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum and M. Gühr, Science 322, 1232 (2008)

  18. Updated O-C Diagrams for Several Bright HW Vir Binaries Observed with the Evryscope

    NASA Astrophysics Data System (ADS)

    Corcoran, Kyle A.; Barlow, Brad; Corbett, Hank; Fors, Octavi; Howard, Ward S.; Law, Nicholas; Ratzloff, Jeff

    2018-01-01

    HW Vir systems are eclipsing, post-common-envelope binaries consisting of a hot subdwarf star and a cooler M dwarf or brown dwarf companion. They show a strong reflection effect and have characteristically short orbital periods of only a few hours, allowing observers to detect multiple eclipses per night. Observed minus calculated (O-C) studies allow one to measure miniscule variations in the orbital periods of these systems by comparing observed eclipse timings to a calculated ephemeris. This technique is useful for detecting period changes due to secular evolution of the binary, gravitational wave emission, or reflex motion from an orbiting circumbinary object. Numerous eclipse timings obtained over several years are vital to the proper interpretation and analysis of O-C diagrams. The Evryscope – an array of twenty-four individual telescopes built by UNC and deployed on Cerro Tololo – images the entire Southern sky once every two minutes, producing an insurmountable amount of data for objects brighter than 16th magnitude. The cadence with which Evryscope exposes makes it an unparalleled tool for O-C analyses of HW Vir binaries; it will catalogue thousands of eclipses over the next several years. Here we present updated O-C diagrams for several HW Vir binaries using recent measurements from the Evryscope. We also use observations of AA Dor, an incredibly stable astrophysical clock, to characterize the accuracy of the Evryscope’s timestamps.

  19. Density matrix renormalization group study of a three-orbital Hubbard model with spin-orbit coupling in one dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaushal, Nitin; Herbrych, Jacek W.; Nocera, Alberto

    Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t 2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ, at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase tomore » an excitonic insulator with increasing λ at intermediate U. In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum <(J eff) 2>≠0 near the excitonic phase, smoothly connected to the <(J eff) 2>=0 regime. In conclusion, we also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.« less

  20. Density matrix renormalization group study of a three-orbital Hubbard model with spin-orbit coupling in one dimension

    NASA Astrophysics Data System (ADS)

    Kaushal, Nitin; Herbrych, Jacek; Nocera, Alberto; Alvarez, Gonzalo; Moreo, Adriana; Reboredo, F. A.; Dagotto, Elbio

    2017-10-01

    Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ , at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase to an excitonic insulator with increasing λ at intermediate U . In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum 〈(Jeff)2〉≠0 near the excitonic phase, smoothly connected to the 〈(Jeff)2〉=0 regime. We also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.

  1. Density matrix renormalization group study of a three-orbital Hubbard model with spin-orbit coupling in one dimension

    DOE PAGES

    Kaushal, Nitin; Herbrych, Jacek W.; Nocera, Alberto; ...

    2017-10-09

    Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t 2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ, at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase tomore » an excitonic insulator with increasing λ at intermediate U. In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum <(J eff) 2>≠0 near the excitonic phase, smoothly connected to the <(J eff) 2>=0 regime. In conclusion, we also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.« less

  2. Phase Equilibria Diagrams Database

    National Institute of Standards and Technology Data Gateway

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  3. T- P Phase Diagram of Nitrogen at High Pressures

    NASA Astrophysics Data System (ADS)

    Algul, G.; Enginer, Y.; Yurtseven, H.

    2018-05-01

    By employing a mean field model, calculation of the T- P phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N 2, and the fitted parameters are determined. Our model study gives that the observed T- P phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.

  4. Phase diagram of a reentrant gel of patchy particles

    NASA Astrophysics Data System (ADS)

    Roldán-Vargas, Sándalo; Smallenburg, Frank; Kob, Walter; Sciortino, Francesco

    2013-12-01

    We study the phase diagram of a binary mixture of patchy particles which has been designed to form a reversible gel. For this we perform Monte Carlo and molecular dynamics simulations to investigate the thermodynamics of such a system and compare our numerical results with predictions based on the analytical parameter-free Wertheim theory. We explore a wide range of the temperature-density-composition space that defines the three-dimensional phase diagram of the system. As a result, we delimit the region of thermodynamic stability of the fluid. We find that for a large region of the phase diagram the Wertheim theory is able to give a quantitative description of the system. For higher densities, our simulations show that the system is crystallizing into a BCC structure. Finally, we study the relaxation dynamics of the system by means of the density and temperature dependences of the diffusion coefficient. We show that there exists a density range where the system passes reversibly from a gel to a fluid upon both heating and cooling, encountering neither demixing nor phase separation.

  5. Mining and integration of pathway diagrams from imaging data.

    PubMed

    Kozhenkov, Sergey; Baitaluk, Michael

    2012-03-01

    Pathway diagrams from PubMed and World Wide Web (WWW) contain valuable highly curated information difficult to reach without tools specifically designed and customized for the biological semantics and high-content density of the images. There is currently no search engine or tool that can analyze pathway images, extract their pathway components (molecules, genes, proteins, organelles, cells, organs, etc.) and indicate their relationships. Here, we describe a resource of pathway diagrams retrieved from article and web-page images through optical character recognition, in conjunction with data mining and data integration methods. The recognized pathways are integrated into the BiologicalNetworks research environment linking them to a wealth of data available in the BiologicalNetworks' knowledgebase, which integrates data from >100 public data sources and the biomedical literature. Multiple search and analytical tools are available that allow the recognized cellular pathways, molecular networks and cell/tissue/organ diagrams to be studied in the context of integrated knowledge, experimental data and the literature. BiologicalNetworks software and the pathway repository are freely available at www.biologicalnetworks.org. Supplementary data are available at Bioinformatics online.

  6. Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams

    ERIC Educational Resources Information Center

    Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde

    2013-01-01

    This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…

  7. Quantitative Structure-Cytotoxicity Relationship of Bioactive Heterocycles by the Semi-empirical Molecular Orbital Method with the Concept of Absolute Hardness

    NASA Astrophysics Data System (ADS)

    Ishihara, Mariko; Sakagami, Hiroshi; Kawase, Masami; Motohashi, Noboru

    The relationship between the cytotoxicity of N-heterocycles (13 4-trifluoromethylimidazole, 15 phenoxazine and 12 5-trifluoromethyloxazole derivatives), O-heterocycles (11 3-formylchromone and 20 coumarin derivatives) and seven vitamin K2 derivatives against eight tumor cell lines (HSC-2, HSC-3, HSC-4, T98G, HSG, HepG2, HL-60, MT-4) and a maximum of 15 chemical descriptors was investigated using CAChe Worksystem 4.9 project reader. After determination of the conformation of these compounds and approximation to the molecular form present in vivo (biomimetic) by CONFLEX5, the most stable structure was determined by CAChe Worksystem 4.9 MOPAC (PM3). The present study demonstrates the best relationship between the cytotoxic activity and molecular shape or molecular weight of these compounds. Their biological activities can be estimated by hardness and softness, and by using η-χ activity diagrams.

  8. Au-Ge MEAM potential fitted to the binary phase diagram

    NASA Astrophysics Data System (ADS)

    Wang, Yanming; Santana, Adriano; Cai, Wei

    2017-02-01

    We have developed a modified embedded atom method potential for the gold-germanium (Au-Ge) binary system that is fitted to the experimental binary phase diagram. The phase diagram is obtained from the common tangent construction of the free energy curves calculated by the adiabatic switching method. While maintaining the accuracy of the melting points of pure Au and Ge, this potential reproduces the eutectic temperature, eutectic composition and the solubility of Ge in solid Au, all in good agreement with the experimental values. To demonstrate the self-consistency of the potential, we performed benchmark molecular dynamics simulations of Ge crystal growth and etching in contact with a Au-Ge liquid alloy.

  9. Diagrams benefit symbolic problem-solving.

    PubMed

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  10. Cluster molecular orbital description of the electronic structures of mixed-valence iron oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1986-01-01

    A molecular orbital description, based on spin-unrestricted X??-scattered wave calculations, is given for the electronic structures of mixed valence iron oxides and silicates. The cluster calculations show that electron hopping and optical intervalence charge-transger result from weak FeFe bonding across shared edges of FeO6 coordination polyhedra. In agreement with Zener's double exchange model, FeFe bonding is found to stabilize ferromagnetic coupling between Fe2+ and Fe3+ cations. ?? 1986.

  11. Envelope molecular-orbital theory of extended systems. I. Electronic states of organic quasilinear nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Arce, J. C.; Perdomo-Ortiz, A.; Zambrano, M. L.; Mujica-Martínez, C.

    2011-03-01

    A conceptually appealing and computationally economical course-grained molecular-orbital (MO) theory for extended quasilinear molecular heterostructures is presented. The formalism, which is based on a straightforward adaptation, by including explicitly the vacuum, of the envelope-function approximation widely employed in solid-state physics leads to a mapping of the three-dimensional single-particle eigenvalue equations into simple one-dimensional hole and electron Schrödinger-like equations with piecewise-constant effective potentials and masses. The eigenfunctions of these equations are envelope MO's in which the short-wavelength oscillations present in the full MO's, associated with the atomistic details of the molecular potential, are smoothed out automatically. The approach is illustrated by calculating the envelope MO's of high-lying occupied and low-lying virtual π states in prototypical nanometric heterostructures constituted by oligomers of polyacetylene and polydiacetylene. Comparison with atomistic electronic-structure calculations reveals that the envelope-MO energies agree very well with the energies of the π MO's and that the envelope MO's describe precisely the long-wavelength variations of the π MO's. This envelope MO theory, which is generalizable to extended systems of any dimensionality, is seen to provide a useful tool for the qualitative interpretation and quantitative prediction of the single-particle quantum states in mesoscopic molecular structures and the design of nanometric molecular devices with tailored energy levels and wavefunctions.

  12. Physical Interpretation of Mixing Diagrams

    NASA Astrophysics Data System (ADS)

    Khain, Alexander; Pinsky, Mark; Magaritz-Ronen, L.

    2018-01-01

    Type of mixing at cloud edges is often determined by means of mixing diagrams showing the dependence of normalized cube of the mean volume radius on the dilution level. The mixing diagrams correspond to the final equilibrium state of mixing between two air volumes. While interpreting in situ measurements, scattering diagrams are plotted in which normalized droplet concentration is used instead of dilution level. Utilization of such scattering diagrams for interpretation of in situ observations faces significant difficulties and often leads to misinterpretation of the mixing process and to uncertain conclusions concerning the mixing type. In this study we analyze the scattering diagrams obtained by means of a Lagrangian-Eulerian model of a stratocumulus cloud. The model consists of 2,000 interacting Largangian parcels which mix with their neighbors during their motion in the atmospheric boundary layer. In the diagram, each parcel is denoted by a point. Changes of microphysical parameters of the parcel are represented by movements of the point in the scattering diagram. The method of plotting the scattering diagrams using the model is in many aspects similar to that used in in situ measurements. It is shown that a scattering diagram shows snapshots of a transient mixing process. The location of points in the scattering diagrams reflects largely the history and the origin of air parcels. Location of points on scattering diagram characterizes intensity of entrainment, and different parameters of droplet size distributions (DSDs) like concentration, mean volume (or effective) radius, and DSD width.

  13. Construction of the Fock Matrix on a Grid-Based Molecular Orbital Basis Using GPGPUs.

    PubMed

    Losilla, Sergio A; Watson, Mark A; Aspuru-Guzik, Alán; Sundholm, Dage

    2015-05-12

    We present a GPGPU implementation of the construction of the Fock matrix in the molecular orbital basis using the fully numerical, grid-based bubbles representation. For a test set of molecules containing up to 90 electrons, the total Hartree-Fock energies obtained from reference GTO-based calculations are reproduced within 10(-4) Eh to 10(-8) Eh for most of the molecules studied. Despite the very large number of arithmetic operations involved, the high performance obtained made the calculations possible on a single Nvidia Tesla K40 GPGPU card.

  14. Introduction to Computational Chemistry: Teaching Hu¨ckel Molecular Orbital Theory Using an Excel Workbook for Matrix Diagonalization

    ERIC Educational Resources Information Center

    Litofsky, Joshua; Viswanathan, Rama

    2015-01-01

    Matrix diagonalization, the key technique at the heart of modern computational chemistry for the numerical solution of the Schrödinger equation, can be easily introduced in the physical chemistry curriculum in a pedagogical context using simple Hückel molecular orbital theory for p bonding in molecules. We present details and results of…

  15. The use of a block diagram simulation language for rapid model prototyping

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    1995-01-01

    The research performed this summer focussed on the development of a predictive model for the loading of liquid oxygen (LO2) into the external tank (ET) of the shuttle prior to launch. A predictive model can greatly aid the operational personnel since instrumentation aboard the orbiter and ET is limited due to weight constraints. The model, which focuses primarily on the orbiter section of the system was developed using a block diagram based simulation language known as VisSim. Simulations were run on LO2 loading data for shuttle flights STS50 and STS55 and the model was demonstrated to accurately predict the sensor data recorded for these flights. As a consequence of the simulation results, it can be concluded that the software tool can be very useful for rapid prototyping of complex models.

  16. Automatically Assessing Graph-Based Diagrams

    ERIC Educational Resources Information Center

    Thomas, Pete; Smith, Neil; Waugh, Kevin

    2008-01-01

    To date there has been very little work on the machine understanding of imprecise diagrams, such as diagrams drawn by students in response to assessment questions. Imprecise diagrams exhibit faults such as missing, extraneous and incorrectly formed elements. The semantics of imprecise diagrams are difficult to determine. While there have been…

  17. Spin-orbit coupling manipulating composite topological spin textures in atomic-molecular Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Fei; Juzeliūnas, Gediminas; Liu, W. M.

    2017-02-01

    Atomic-molecular Bose-Einstein condensates (BECs) offer brand new opportunities to revolutionize quantum gases and probe the variation of fundamental constants with unprecedented sensitivity. The recent realization of spin-orbit coupling (SOC) in BECs provides a new platform for exploring completely new phenomena unrealizable elsewhere. In this study, we find a way of creating a Rashba-Dresselhaus SOC in atomic-molecular BECs by combining the spin-dependent photoassociation and Raman coupling, which can control the formation and distribution of a different type of topological excitation—carbon-dioxide-like skyrmion. This skyrmion is formed by two half-skyrmions of molecular BECs coupling with one skyrmion of atomic BECs, where the two half-skyrmions locate at both sides of one skyrmion. Carbon-dioxide-like skyrmion can be detected by measuring the vortices structures using the time-of-flight absorption imaging technique in real experiments. Furthermore, we find that SOC can effectively change the occurrence of the Chern number in k space, which causes the creation of topological spin textures from some separated carbon-dioxide-like monomers each with topological charge -2 to a polymer chain of the skyrmions. This work helps in creating dual SOC atomic-molecular BECs and opens avenues to manipulate topological excitations.

  18. Computer Series, 114: MO Theory Made Visible.

    ERIC Educational Resources Information Center

    Mealli, Carlo; Proserpio, Davide M.

    1990-01-01

    A collection of Molecular Orbital (MO) programs that have been integrated into routines and programs to illustrate MO theory are presented. Included are discussions of Computer Aided Composition of Atomic Orbitals (CACAO) and Walsh diagrams. (CW)

  19. Mean-field study of correlation-induced antisymmetric spin-orbit coupling in a two-orbital honeycomb model

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2018-05-01

    We investigate a two-orbital Hubbard model on a honeycomb structure, with a special focus on the antisymmetric spin-orbit coupling (ASOC) induced by symmetry breaking in the electronic degrees of freedom. By investigating the ground-state phase diagram by the mean-field approximation in addition to the analysis in the strong correlation limit, we obtain a variety of symmetry-broken phases that induce different types of effective ASOCs by breaking of spatial inversion symmetry. We find several unusual properties emergent from the ASOCs, such as a linear magnetoelectric effect in a spin-orbital ordered phase at 1/4 filling and a spin splitting in the band structure in charge ordered phases at 1/4 and 1/2 fillings. We also show that a staggered potential on the honeycomb structure leads to another type of ASOC, which gives rise to a valley splitting in the band structure at 1/2 filling. We discuss the experimental relevance of our results to candidate materials including transition metal dichalcogenides and trichalcogenides.

  20. Molecular orbital analysis of the inverse halogen dependence of nuclear magnetic shielding in LaX₃, X = F, Cl, Br, I.

    PubMed

    Moncho, Salvador; Autschbach, Jochen

    2010-12-01

    The NMR nuclear shielding tensors for the series LaX(3), with X = F, Cl, Br and I, have been computed using two-component relativistic density functional theory based on the zeroth-order regular approximation (ZORA). A detailed analysis of the inverse halogen dependence (IHD) of the La shielding was performed via decomposition of the shielding tensor elements into contributions from localized and delocalized molecular orbitals. Both spin-orbit and paramagnetic shielding terms are important, with the paramagnetic terms being dominant. Major contributions to the IHD can be attributed to the La-X bonding orbitals, as well as to trends associated with the La core and halogen lone pair orbitals, the latter being related to X-La π donation. An 'orbital rotation' model for the in-plane π acceptor f orbital of La helps to rationalize the significant magnitude of deshielding associated with the in-plane π donation. The IHD goes along with a large increase in the shielding tensor anisotropy as X becomes heavier, which can be associated with trends for the covalency of the La-X bonds, with a particularly effective transfer of spin-orbit coupling induced spin density from iodine to La in LaI(3). Copyright © 2010 John Wiley & Sons, Ltd.

  1. Navigating at Will on the Water Phase Diagram

    NASA Astrophysics Data System (ADS)

    Pipolo, S.; Salanne, M.; Ferlat, G.; Klotz, S.; Saitta, A. M.; Pietrucci, F.

    2017-12-01

    Despite the simplicity of its molecular unit, water is a challenging system because of its uniquely rich polymorphism and predicted but yet unconfirmed features. Introducing a novel space of generalized coordinates that capture changes in the topology of the interatomic network, we are able to systematically track transitions among liquid, amorphous, and crystalline forms throughout the whole phase diagram of water, including the nucleation of crystals above and below the melting point. Our approach, based on molecular dynamics and enhanced sampling or free energy calculation techniques, is not specific to water and could be applied to very different structural phase transitions, paving the way towards the prediction of kinetic routes connecting polymorphic structures in a range of materials.

  2. Dynamics of Orbits near 3:1 Resonance in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Lebois, Ryan; Carrico, John P., Jr.

    2013-01-01

    The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next twenty years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.

  3. Using Eye Tracking to Investigate Semantic and Spatial Representations of Scientific Diagrams During Text-Diagram Integration

    NASA Astrophysics Data System (ADS)

    Jian, Yu-Cin; Wu, Chao-Jung

    2015-02-01

    We investigated strategies used by readers when reading a science article with a diagram and assessed whether semantic and spatial representations were constructed while reading the diagram. Seventy-one undergraduate participants read a scientific article while tracking their eye movements and then completed a reading comprehension test. Our results showed that the text-diagram referencing strategy was commonly used. However, some readers adopted other reading strategies, such as reading the diagram or text first. We found all readers who had referred to the diagram spent roughly the same amount of time reading and performed equally well. However, some participants who ignored the diagram performed more poorly on questions that tested understanding of basic facts. This result indicates that dual coding theory may be a possible theory to explain the phenomenon. Eye movement patterns indicated that at least some readers had extracted semantic information of the scientific terms when first looking at the diagram. Readers who read the scientific terms on the diagram first tended to spend less time looking at the same terms in the text, which they read after. Besides, presented clear diagrams can help readers process both semantic and spatial information, thereby facilitating an overall understanding of the article. In addition, although text-first and diagram-first readers spent similar total reading time on the text and diagram parts of the article, respectively, text-first readers had significantly less number of saccades of text and diagram than diagram-first readers. This result might be explained as text-directed reading.

  4. Knot probabilities in random diagrams

    NASA Astrophysics Data System (ADS)

    Cantarella, Jason; Chapman, Harrison; Mastin, Matt

    2016-10-01

    We consider a natural model of random knotting—choose a knot diagram at random from the finite set of diagrams with n crossings. We tabulate diagrams with 10 and fewer crossings and classify the diagrams by knot type, allowing us to compute exact probabilities for knots in this model. As expected, most diagrams with 10 and fewer crossings are unknots (about 78% of the roughly 1.6 billion 10 crossing diagrams). For these crossing numbers, the unknot fraction is mostly explained by the prevalence of ‘tree-like’ diagrams which are unknots for any assignment of over/under information at crossings. The data shows a roughly linear relationship between the log of knot type probability and the log of the frequency rank of the knot type, analogous to Zipf’s law for word frequency. The complete tabulation and all knot frequencies are included as supplementary data.

  5. Schematic displays for the Space Shuttle Orbiter multifunction cathode-ray-tube display system

    NASA Technical Reports Server (NTRS)

    Weiss, W.

    1979-01-01

    A standardized procedure for developing cathode ray tube displayed schematic diagrams. The displaying of Spacelab information on the space shuttle orbiter multifunction cathode ray tube display system is used to illustrate this procedure. Schematic displays with the equivalent tabular displays are compared.

  6. Thermodynamic Diagrams

    NASA Astrophysics Data System (ADS)

    Chaston, Scot

    1999-02-01

    Thermodynamic data such as equilibrium constants, standard cell potentials, molar enthalpies of formation, and standard entropies of substances can be a very useful basis for an organized presentation of knowledge in diverse areas of applied chemistry. Thermodynamic data can become particularly useful when incorporated into thermodynamic diagrams that are designed to be easy to recall, to serve as a basis for reconstructing previous knowledge, and to determine whether reactions can occur exergonically or only with the help of an external energy source. Few students in our chemistry-based courses would want to acquire the depth of knowledge or rigor of professional thermodynamicists. But they should nevertheless learn how to make good use of thermodynamic data in their professional occupations that span the chemical, biological, environmental, and medical laboratory fields. This article discusses examples of three thermodynamic diagrams that have been developed for this purpose. They are the thermodynamic energy account (TEA), the total entropy scale, and the thermodynamic scale diagrams. These diagrams help in the teaching and learning of thermodynamics by bringing the imagination into the process of developing a better understanding of abstract thermodynamic functions, and by allowing the reader to keep track of specialist thermodynamic discourses in the literature.

  7. Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram.

    PubMed

    Stovold, Elizabeth; Beecher, Deirdre; Foxlee, Ruth; Noel-Storr, Anna

    2014-05-29

    Cochrane systematic reviews are conducted and reported according to rigorous standards. A study flow diagram must be included in a new review, and there is clear guidance from the PRISMA statement on how to do this. However, for a review update, there is currently no guidance on how study flow diagrams should be presented. To address this, a working group was formed to find a solution and produce guidance on how to use these diagrams in review updates.A number of different options were devised for how these flow diagrams could be used in review updates, and also in cases where multiple searches for a review or review update have been conducted. These options were circulated to the Cochrane information specialist community for consultation and feedback. Following the consultation period, the working group refined the guidance and made the recommendation that for review updates an adapted PRISMA flow diagram should be used, which includes an additional box with the number of previously included studies feeding into the total. Where multiple searches have been conducted, the results should be added together and treated as one set of results.There is no existing guidance for using study flow diagrams in review updates. Our adapted diagram is a simple and pragmatic solution for showing the flow of studies in review updates.

  8. Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram

    PubMed Central

    2014-01-01

    Cochrane systematic reviews are conducted and reported according to rigorous standards. A study flow diagram must be included in a new review, and there is clear guidance from the PRISMA statement on how to do this. However, for a review update, there is currently no guidance on how study flow diagrams should be presented. To address this, a working group was formed to find a solution and produce guidance on how to use these diagrams in review updates. A number of different options were devised for how these flow diagrams could be used in review updates, and also in cases where multiple searches for a review or review update have been conducted. These options were circulated to the Cochrane information specialist community for consultation and feedback. Following the consultation period, the working group refined the guidance and made the recommendation that for review updates an adapted PRISMA flow diagram should be used, which includes an additional box with the number of previously included studies feeding into the total. Where multiple searches have been conducted, the results should be added together and treated as one set of results. There is no existing guidance for using study flow diagrams in review updates. Our adapted diagram is a simple and pragmatic solution for showing the flow of studies in review updates. PMID:24886533

  9. Orbital period changes in RW CrA, DX Vel and V0646 Cen

    NASA Astrophysics Data System (ADS)

    Volkov, I. M.; Chochol, D.; Grygar, J.; Mašek, M.; Juryšek, J.

    2017-06-01

    We aim to determine the absolute parameters of the components of southern Algol-type binaries with deep eclipses RW CrA, DX Vel, V0646 Cen and interpret their orbital period changes. The data analysis is based on a high quality Walraven photoelectric photometry, obtained in the 1960-70s, our recent CCD photometry, ASAS (Pojmanski, 2002), and Hipparcos (Perryman et al., 1997) photometry of the objects. Their light curves were analyzed using the PHOEBE program with fixed effective temperatures of the primary components, found from disentangling the Walraven (B-U) and (V-B) colour indices. We found the absolute parameters of the components of all three objects. All reliable observed times of minimum light were used to construct and analyze the Eclipse Time Variation (ETV) diagrams. We interpreted the ETV diagrams of the detached binary RW CrA and the semi-detached binary DX Vel by a LIght-Time Effect (LITE), estimated parameters of their orbits and masses of their third bodies. We suggest a long term variation of the inclination angle of both eclipsing binaries, caused by a non-coplanar orientation of their third body orbits. We interpreted the detected orbital period increase in the semi-detached binary V0646 Cen by a mass transfer from the less to more massive component with the rate M⊙ = 6.08×10-9 M⊙/yr.

  10. Argument Diagramming: The Araucaria Project

    NASA Astrophysics Data System (ADS)

    Rowe, Glenn; Reed, Chris

    Formal arguments, such as those used in science, medicine and law to establish a conclusion by providing supporting evidence, are frequently represented by diagrams such as trees and graphs. We describe the software package Araucaria which allows textual arguments to be marked up and represented as standard, Toulmin or Wigmore diagrams. Since each of these diagramming techniques was devised for a particular domain or argumentation, we discuss some of the issues involved in translating between diagrams. The exercise of translating between different diagramming types illustrates that any one diagramming system often cannot capture all of the nuances inherent in an argument. Finally, we describe some areas, such as critical thinking courses in colleges and universities and the analysis of evidence in court cases, where Araucaria has been put to practical use.

  11. A Subarcsecond ALMA Molecular Line Imaging Survey of the Circumbinary, Protoplanetary Disk Orbiting V4046 Sgr

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Qi, C.; Dickson-Vandervelde, Annie; Forveille, Thierry; Hily-Blant, Pierre; Oberg, Karin; Wilner, David; Andrews, Sean; Gorti, Uma; Sacco, Germano; Rapson, Valerie; Principe, David

    2018-01-01

    We present a suite of ALMA interferometric molecular line and continuum images of the gas-rich circumbinary disk orbiting the nearby, young, short-period, solar-mass binary system V4046 Sgr (D ~ 73 pc; age ~20 Myr). These Cycle 2 and 3 ALMA observations of V4046 Sgr were undertaken in the 1.1 to 1.4 mm wavelength range (ALMA Band 6) with antenna configurations involving maximum baselines of several hundred meters, yielding subarcsecond-resolution images in more than a dozen molecular species and isotopologues. Collectively, these ALMA images serve to elucidate, on linear size scales of ~30-40 AU, the chemical structure of an evolved, circumbinary, protoplanetary disk.This research is supported by NASA Exoplanets program grant NNX16AB43G to RIT.

  12. Effects of structural spin-orbit coupling in two dimensional electron and hole liquids

    NASA Astrophysics Data System (ADS)

    Chesi, Stefano

    The recent interest in spin-dependent phenomena in semiconductor heterostructures motivates our detailed study of the structural spin-orbit coupling present in clean two-dimensional electron and hole liquids. Interesting polarization effects are produced in a system out of equilibrium, as when a finite current flows in the sample. In particular, the consequences of a lateral confinement creating a quasi one-dimensional wire are studied in detail, partially motivated by a recent experimental investigation of the point-contact transmission for two-dimensional holes. We also address the role of the electron-electron interaction in the presence of spin-orbit coupling, which has received little attention in the literature. We discuss the formulation of the Hartree-Fock approximation in the particular case of linear Rashba spin-orbit. We establish the form of the mean-field phase diagram in the homogeneous case, which shows a complex interplay between paramagnetic and ferromagnetic states. The latter can be polarized in the plane or in a transverse direction, and are characterized by a complex spin structure and nontrivial occupation. The generality of the Hartree-Fock method allows a simple treatment of the Pauli spin susceptibility, and the application to different forms of spin-orbit coupling. Correlation corrections can be obtained in an analytic form for particular asymptotic regimes. For linear Rashba spin-orbit we identified the relevance of the large spin-orbit limit, dominated by many-body effects, and explicitly treated the high density limit, in which the system is asymptotically noninteracting. As a special case, we derive a new exact formula for the polarization dependence of the ring-diagram correlation energy.

  13. Transition from orbital liquid to Jahn-Teller insulator in orthorhombic perovskites RTiO3.

    PubMed

    Cheng, J-G; Sui, Y; Zhou, J-S; Goodenough, J B; Su, W H

    2008-08-22

    Following the same strategy used for RVO3, thermal conductivity measurements have been made on a series of single-crystal perovskites RTiO3 (R=La,Nd,...,Yb). Results reveal explicitly a transition from an orbital liquid to an orbitally ordered phase at a magnetic transition temperature, which is common for both the antiferromagnetic and ferromagnetic phases in the phase diagram of RTiO3. This spin/orbital transition is consistent with the mode softening at T_{N} in antiferromagnetic LaTiO3 and is supported by an anomalous critical behavior at T_{c} in ferromagnetic YTiO3.

  14. Graphical techniques to assist in pointing and control studies of orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Ruf, J. H.

    1986-01-01

    Computer generated graphics are developed to assist in the modeling and assessment of pointing and control systems of orbiting spacecraft. Three-dimensional diagrams are constructed of the Earth and of geometrical models which resemble the spacecraft of interest. Orbital positioning of the spacecraft model relative to the Earth and the orbital ground track are then displayed. A star data base is also available which may be used for telescope pointing and star tracker field-of-views to visually assist in spacecraft pointing and control studies. A geometrical model of the Hubble Space Telescope (HST) is constructed and placed in Earth orbit to demonstrate the use of these programs. Simulated star patterns are then displayed corresponding to the primary mirror's FOV and the telescope's star trackers for various telescope orientations with respect to the celestial sphere.

  15. Exact formulas for multipole moments using Slater-type molecular orbitals

    NASA Technical Reports Server (NTRS)

    Jones, H. W.

    1986-01-01

    A triple infinite sum of formulas expressed as an expansion in Legendre polynomials is generated by use of computer algebra to represent the potential from the midpoint of two Slater-type orbitals; the charge density that determines the potential is given as the product of the two orbitals. An example using 1s orbitals shows that only a few terms are needed to obtain four-figure accuracy. Exact formulas are obtained for multipole moments by means of a careful study of expanded formulas, allowing an 'extrapolation to infinity'. This Loewdin alpha-function approach augmented by using a C matrix to characterize Slater-type orbitals can be readily generalized to all cases.

  16. Modified-hypernetted-chain determination of the phase diagram of rigid C60 molecules

    NASA Astrophysics Data System (ADS)

    Caccamo, C.

    1995-02-01

    The modified-hypernetted-chain theory is applied to the determination of the phase diagram of the Lennard-Jones (LJ) fluid, and of a model of C60 previously investigated [Phys. Rev. Lett. 71, 1200 (1993)] through molecular-dynamics (MD) simulation and a different theoretical approach. In the LJ case the agreement with available MD data is quantitative and superior to other theories. For C60, the phase diagram obtained is in quite good agreement with previous MD results: in particular, the theory confirms the existence of a liquid phase between 1600 and 1920 K, the estimated triple point and critical temperature, respectively.

  17. Polarized atomic orbitals for self-consistent field electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Lee, Michael S.; Head-Gordon, Martin

    1997-12-01

    We present a new self-consistent field approach which, given a large "secondary" basis set of atomic orbitals, variationally optimizes molecular orbitals in terms of a small "primary" basis set of distorted atomic orbitals, which are simultaneously optimized. If the primary basis is taken as a minimal basis, the resulting functions are termed polarized atomic orbitals (PAO's) because they are valence (or core) atomic orbitals which have distorted or polarized in an optimal way for their molecular environment. The PAO's derive their flexibility from the fact that they are formed from atom-centered linear-combinations of the larger set of secondary atomic orbitals. The variational conditions satisfied by PAO's are defined, and an iterative method for performing a PAO-SCF calculation is introduced. We compare the PAO-SCF approach against full SCF calculations for the energies, dipoles, and molecular geometries of various molecules. The PAO's are potentially useful for studying large systems that are currently intractable with larger than minimal basis sets, as well as offering potential interpretative benefits relative to calculations in extended basis sets.

  18. The Semiotic Structure of Geometry Diagrams: How Textbook Diagrams Convey Meaning

    ERIC Educational Resources Information Center

    Dimmel, Justin K.; Herbst, Patricio G.

    2015-01-01

    Geometry diagrams use the visual features of specific drawn objects to convey meaning about generic mathematical entities. We examine the semiotic structure of these visual features in two parts. One, we conduct a semiotic inquiry to conceptualize geometry diagrams as mathematical texts that comprise choices from different semiotic systems. Two,…

  19. Stage line diagram: an age-conditional reference diagram for tracking development.

    PubMed

    van Buuren, Stef; Ooms, Jeroen C L

    2009-05-15

    This paper presents a method for calculating stage line diagrams, a novel type of reference diagram useful for tracking developmental processes over time. Potential fields of applications include: dentistry (tooth eruption), oncology (tumor grading, cancer staging), virology (HIV infection and disease staging), psychology (stages of cognitive development), human development (pubertal stages) and chronic diseases (stages of dementia). Transition probabilities between successive stages are modeled as smoothly varying functions of age. Age-conditional references are calculated from the modeled probabilities by the mid-P value. It is possible to eliminate the influence of age by calculating standard deviation scores (SDS). The method is applied to the empirical data to produce reference charts on secondary sexual maturation. The mean of the empirical SDS in the reference population is close to zero, whereas the variance depends on age. The stage line diagram provides quick insight into both status (in SDS) and tempo (in SDS/year) of development of an individual child. Other measures (e.g. height SDS, body mass index SDS) from the same child can be added to the chart. Diagrams for sexual maturation are available as a web application at http://vps.stefvanbuuren.nl/puberty. The stage line diagram expresses status and tempo of discrete changes on a continuous scale. Wider application of these measures scores opens up new analytic possibilities. (c) 2009 John Wiley & Sons, Ltd.

  20. Payload/orbiter contamination control requirement study

    NASA Technical Reports Server (NTRS)

    Bareiss, L. E.; Rantanen, R. O.; Ress, E. B.

    1974-01-01

    A study was conducted to determine and quantify the expected particulate and molecular on-orbit contaminant environment for selected space shuttle payloads as a result of major shuttle orbiter contamination sources. Individual payload susceptibilities to contamination are reviewed. The risk of payload degradation is identified and preliminary recommendations are provided concerning the limiting factors which may depend on operational activities associated with the payload/orbiter interface or upon independent payload functional activities. A basic computer model of the space shuttle orbiter which includes a representative payload configuration is developed. The major orbiter contamination sources, locations, and flux characteristics based upon available data have been defined and modeled.

  1. Spin and orbital ordering in Y 1-xLa xVO₃

    DOE PAGES

    Yan, J.-Q.; Zhou, J.-S.; Cheng, J. G.; ...

    2011-12-02

    The spin and orbital ordering in Y 1-xLa xVO₃ (0.30 ≤ x ≤ 1.0) has been studied to map out the phase diagram over the whole doping range 0 ≤ x ≤ 1. The phase diagram is compared with that for RVO₃ (R = rare earth or Y) perovskites without A-site variance. For x > 0.20, no long-range orbital ordering was observed above the magnetic ordering temperature T N; the magnetic order is accompanied by a lattice anomaly at a Tt ≤ T N as in LaVO₃. The magnetic ordering below Tt ≤ T N is G type in themore » compositional range 0.20 ≤ x ≤ 0.40 and C type in the range 0.738 ≤ x ≤ 1.0. Magnetization and neutron powder diffraction measurements point to the coexistence below T N of the two magnetic phases in the compositional range 0.4 < x < 0.738. Samples in the compositional range 0.20 < x ≤ 1.0 are characterized by an additional suppression of a glasslike thermal conductivity in the temperature interval T N < T < T* and a change in the slope of 1/χ(T). We argue that T* represents a temperature below which spin and orbital fluctuations couple together via λL∙S.« less

  2. Understanding the On-Off Switching Mechanism in Cationic Tetravalent Group-V-Based Fluoride Molecular Sensors Using Orbital Analysis.

    PubMed

    Usui, Kosuke; Ando, Mikinori; Yokogawa, Daisuke; Irle, Stephan

    2015-12-24

    The precise control of on-off switching is essential to the design of ideal molecular sensors. To understand the switching mechanism theoretically, we selected as representative example a 9-anthryltriphenylstibonium cation, which was reported as a fluoride ion sensor. In this molecule, the first excited singlet state exhibits two minimum geometries, where one of them is emissive and the other one dark. The excited state at the geometry with bright emission is of π-π* character, whereas it is of π-σ* character at the "dark" geometry. Geometry changes in the excited state were identified by geometry optimization and partial potential energy surface (PES) mapping. We also studied Group V homologues of this molecule. A barrierless relaxation pathway after vertical excitation to the "dark" geometry was found for the Sb-containing compound on the excited-states PES, whereas barriers appear in the case of P and As. Molecular orbital analysis suggests that the σ* orbital of the antimony compound is stabilized along such relaxation and that the excited state changes its nature correspondingly. Our results indicate that the size of the central atom is crucial for the design of fluoride sensors with this ligand framework.

  3. Use of an auxiliary basis set to describe the polarization in the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Fedorov, Dmitri G.; Kitaura, Kazuo

    2014-03-01

    We developed a dual basis approach within the fragment molecular orbital formalism enabling efficient and accurate use of large basis sets. The method was tested on water clusters and polypeptides and applied to perform geometry optimization of chignolin (PDB: 1UAO) in solution at the level of DFT/6-31++G∗∗, obtaining a structure in agreement with experiment (RMSD of 0.4526 Å). The polarization in polypeptides is discussed with a comparison of the α-helix and β-strand.

  4. Nilsson diagrams for light neutron-rich nuclei with weakly-bound neutrons

    NASA Astrophysics Data System (ADS)

    Hamamoto, Ikuko

    2007-11-01

    Using Woods-Saxon potentials and the eigenphase formalism for one-particle resonances, one-particle bound and resonant levels for neutrons as a function of quadrupole deformation are presented, which are supposed to be useful for the interpretation of spectroscopic properties of some light neutron-rich nuclei with weakly bound neutrons. Compared with Nilsson diagrams in textbooks that are constructed using modified oscillator potentials, we point out a systematic change of the shell structure in connection with both weakly bound and resonant one-particle levels related to small orbital angular momenta ℓ. Then, it is seen that weakly bound neutrons in nuclei such as C15-19 and Mg33-37 may prefer being deformed as a result of the Jahn-Teller effect, due to the near degeneracy of the 1d5/2-2s1/2 levels and the 1f7/2-2p3/2 levels in the spherical potential, respectively. Furthermore, the absence of some one-particle resonant levels compared with the Nilsson diagrams in textbooks is illustrated.

  5. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  6. Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals

    NASA Astrophysics Data System (ADS)

    Ge, Qinghui; Mao, Yuezhi; Head-Gordon, Martin

    2018-02-01

    An energy decomposition analysis (EDA) scheme is developed for understanding the intermolecular interaction involving molecules in their excited states. The EDA utilizes absolutely localized molecular orbitals to define intermediate states and is compatible with excited state methods based on linear response theory such as configuration interaction singles and time-dependent density functional theory. The shift in excitation energy when an excited molecule interacts with the environment is decomposed into frozen, polarization, and charge transfer contributions, and the frozen term can be further separated into Pauli repulsion and electrostatics. These terms can be added to their counterparts obtained from the ground state EDA to form a decomposition of the total interaction energy. The EDA scheme is applied to study a variety of systems, including some model systems to demonstrate the correct behavior of all the proposed energy components as well as more realistic systems such as hydrogen-bonding complexes (e.g., formamide-water, pyridine/pyrimidine-water) and halide (F-, Cl-)-water clusters that involve charge-transfer-to-solvent excitations.

  7. A third-generation density-functional-theory-based method for calculating canonical molecular orbitals of large molecules.

    PubMed

    Hirano, Toshiyuki; Sato, Fumitoshi

    2014-07-28

    We used grid-free modified Cholesky decomposition (CD) to develop a density-functional-theory (DFT)-based method for calculating the canonical molecular orbitals (CMOs) of large molecules. Our method can be used to calculate standard CMOs, analytically compute exchange-correlation terms, and maximise the capacity of next-generation supercomputers. Cholesky vectors were first analytically downscaled using low-rank pivoted CD and CD with adaptive metric (CDAM). The obtained Cholesky vectors were distributed and stored on each computer node in a parallel computer, and the Coulomb, Fock exchange, and pure exchange-correlation terms were calculated by multiplying the Cholesky vectors without evaluating molecular integrals in self-consistent field iterations. Our method enables DFT and massively distributed memory parallel computers to be used in order to very efficiently calculate the CMOs of large molecules.

  8. Orbital Parameters for the X-Ray Pulsar IGR J16393-4643

    NASA Astrophysics Data System (ADS)

    Thompson, Thomas W. J.; Tomsick, John A.; Rothschild, Richard E.; in't Zand, J. J. M.; Walter, Roland

    2006-09-01

    With recent and archival Rossi X-Ray Timing Explorer (RXTE) X-ray measurements of the heavily obscured X-ray pulsar IGR J16393-4643, we carried out a pulse timing analysis to determine the orbital parameters. Assuming a circular orbit, we phase-connected data spanning over 1.5 yr. The most likely orbital solution has a projected semimajor axis of 43+/-2 lt-s and an orbital period of 3.6875+/-0.0006 days. This implies a mass function of 6.5+/-1.1 Msolar and confirms that this INTEGRAL source is a high-mass X-ray binary (HMXB) system. By including eccentricity in the orbital model, we find e<0.25 at the 2 σ level. The 3.7 day orbital period and the previously known ~910 s pulse period place the system in the region of the Corbet diagram populated by supergiant wind accretors, and the low eccentricity is also consistent with this type of system. Finally, it should be noted that although the 3.7 day solution is the most likely one, we cannot completely rule out two other solutions with orbital periods of 50.2 and 8.1 days.

  9. The efficiency and effectiveness of utilizing diagrams in interviews: an assessment of participatory diagramming and graphic elicitation.

    PubMed

    Umoquit, Muriah J; Dobrow, Mark J; Lemieux-Charles, Louise; Ritvo, Paul G; Urbach, David R; Wodchis, Walter P

    2008-08-08

    This paper focuses on measuring the efficiency and effectiveness of two diagramming methods employed in key informant interviews with clinicians and health care administrators. The two methods are 'participatory diagramming', where the respondent creates a diagram that assists in their communication of answers, and 'graphic elicitation', where a researcher-prepared diagram is used to stimulate data collection. These two diagramming methods were applied in key informant interviews and their value in efficiently and effectively gathering data was assessed based on quantitative measures and qualitative observations. Assessment of the two diagramming methods suggests that participatory diagramming is an efficient method for collecting data in graphic form, but may not generate the depth of verbal response that many qualitative researchers seek. In contrast, graphic elicitation was more intuitive, better understood and preferred by most respondents, and often provided more contemplative verbal responses, however this was achieved at the expense of more interview time. Diagramming methods are important for eliciting interview data that are often difficult to obtain through traditional verbal exchanges. Subject to the methodological limitations of the study, our findings suggest that while participatory diagramming and graphic elicitation have specific strengths and weaknesses, their combined use can provide complementary information that would not likely occur with the application of only one diagramming method. The methodological insights gained by examining the efficiency and effectiveness of these diagramming methods in our study should be helpful to other researchers considering their incorporation into qualitative research designs.

  10. A design and critical technology issues for on-orbit resupply of superfluid helium

    NASA Technical Reports Server (NTRS)

    Hopkins, Richard A.; Mord, Allan J.

    1990-01-01

    The issues of and the solutions to the critical design and technology areas of the Superfluid Helium On-Orbit Transfer (SHOOT) experiment, presently under development at the NASA Goddard Spaceflight Center, are discussed. Special attention is given to the SHOOT design requirements for the 10,000-liter superfluid He resupply tanker system, the concept details of the system, and the resupply operations and their analysis. A block diagram of the SHOOT system is included along with fluid management schematic and configuration diagrams of the system and its subsystems. A summary of the dewar performance is also presented.

  11. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  12. Orbiter Autoland reliability analysis

    NASA Technical Reports Server (NTRS)

    Welch, D. Phillip

    1993-01-01

    The Space Shuttle Orbiter is the only space reentry vehicle in which the crew is seated upright. This position presents some physiological effects requiring countermeasures to prevent a crewmember from becoming incapacitated. This also introduces a potential need for automated vehicle landing capability. Autoland is a primary procedure that was identified as a requirement for landing following and extended duration orbiter mission. This report documents the results of the reliability analysis performed on the hardware required for an automated landing. A reliability block diagram was used to evaluate system reliability. The analysis considers the manual and automated landing modes currently available on the Orbiter. (Autoland is presently a backup system only.) Results of this study indicate a +/- 36 percent probability of successfully extending a nominal mission to 30 days. Enough variations were evaluated to verify that the reliability could be altered with missions planning and procedures. If the crew is modeled as being fully capable after 30 days, the probability of a successful manual landing is comparable to that of Autoland because much of the hardware is used for both manual and automated landing modes. The analysis indicates that the reliability for the manual mode is limited by the hardware and depends greatly on crew capability. Crew capability for a successful landing after 30 days has not been determined yet.

  13. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    PubMed

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  14. The efficiency and effectiveness of utilizing diagrams in interviews: an assessment of participatory diagramming and graphic elicitation

    PubMed Central

    Umoquit, Muriah J; Dobrow, Mark J; Lemieux-Charles, Louise; Ritvo, Paul G; Urbach, David R; Wodchis, Walter P

    2008-01-01

    Background This paper focuses on measuring the efficiency and effectiveness of two diagramming methods employed in key informant interviews with clinicians and health care administrators. The two methods are 'participatory diagramming', where the respondent creates a diagram that assists in their communication of answers, and 'graphic elicitation', where a researcher-prepared diagram is used to stimulate data collection. Methods These two diagramming methods were applied in key informant interviews and their value in efficiently and effectively gathering data was assessed based on quantitative measures and qualitative observations. Results Assessment of the two diagramming methods suggests that participatory diagramming is an efficient method for collecting data in graphic form, but may not generate the depth of verbal response that many qualitative researchers seek. In contrast, graphic elicitation was more intuitive, better understood and preferred by most respondents, and often provided more contemplative verbal responses, however this was achieved at the expense of more interview time. Conclusion Diagramming methods are important for eliciting interview data that are often difficult to obtain through traditional verbal exchanges. Subject to the methodological limitations of the study, our findings suggest that while participatory diagramming and graphic elicitation have specific strengths and weaknesses, their combined use can provide complementary information that would not likely occur with the application of only one diagramming method. The methodological insights gained by examining the efficiency and effectiveness of these diagramming methods in our study should be helpful to other researchers considering their incorporation into qualitative research designs. PMID:18691410

  15. State diagram of salmon (Salmo salar) gelatin films.

    PubMed

    Díaz, Paulo; López, Daniel; Matiacevich, Silvia; Osorio, Fernando; Enrione, Javier

    2011-11-01

    A state diagram presents different physical states of a biomaterial as a function of solid content and temperature. Despite their technological interest, little information is available on protein systems such as gelatin/water mixtures. The objective of this work was to develop state diagrams of salmon gelatin (SG) and bovine gelatin (BG) in order to determine maximal freeze concentration parameters (T'(g) , T'(m) and X(s') ) and to relate possible differences to their biochemical characteristics. Biochemical characterisation of SG showed lower molecular weight and iminoacid concentration compared with BG. Likewise, the glass transition temperature (T(g) ) was lower for SG at X(s) > 0.8, which was associated with its lower molecular weight. Unexpectedly, the depression of freezing temperature (T(f) ) was greater for SG at X(s) > 0.1, which was associated with its higher ash content. Isothermal annealing produced effective values of T'(g) ≈ - 52 °C, T'(m) ≈ - 46 °C and X'(s) ≈ 0.6 for both gelatins. Interestingly, the enthalpy change associated with T'(m) (ΔH T m) was significantly higher for SG than for BG after annealing, indicating a higher proportion of ice present at about - 50 °C. Maximal freeze concentration parameters were similar between the two gelatins, though differences in biochemical properties were evident. The results show that there are likely different ways of interaction of SG and BG with water. Copyright © 2011 Society of Chemical Industry.

  16. Magnetism in S = 1 / 2 Double Perovskites with Strong Spin-Orbit Interactions

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hiroaki; Balents, Leon

    2015-03-01

    Motivated by recent studies on heavy-element double-perovskite (DP) compounds, we theoretically studied spin models on a FCC lattice with anisotropic interactions. In these systems, competition/cooperation of spin, orbital, and the lattice degrees of freedoms in the presence of the strong-spin orbit coupling is of particular interest. In a previous theoretical study, the magnetic phase diagrams of DP compounds with 5d1 electron configuration was studied using a model with four-fold degenerated single-ion state. On the other hand, a recent experiment on a DP material, Ba2Na2OsO6, reported that the compound is likely to be an effective S = 1 / 2 magnet. Inspired by the experimental observation, we considered spin models with symmetry-allowed anisotropic nearest-neighbor interactions. By a combination of various analytical and numerical techniques, we present the magnetic phase diagram of the model and the effect of thermal and quantum fluctuations. In particular, we show that fluctuations induce < 110 > anisotropy of magnetic moments. We also discuss a possible ``nematic'' phase driven by spin-phonon couplings.

  17. Orbital resonances, unusual configurations and exotic rotation states among planetary satellites

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1986-01-01

    The origin of orbital resonances is shown in the demonstration of the evolution of a pair of planetary satellites through a commensurability of the mean motions by a sequence of diagrams of constant energy curves in a two-dimensional phase space; the closed curve corresponding to the motion in each successive diagram is identified by its adiabatically conserved area. It is found that two-body resonances serve as a basis in the solution of the problem of the origin and evolution of the three-body Laplace resonance among the Galilean satellites of Jupiter. The unusual rotation state of Saturn's satellite Hyperion which is expected to tumble chaotically for an indefinite amount of time is discussed.

  18. MgH Rydberg series: Transition energies from electron propagator theory and oscillator strengths from the molecular quantum defect orbital method

    NASA Astrophysics Data System (ADS)

    Corzo, H. H.; Velasco, A. M.; Lavín, C.; Ortiz, J. V.

    2018-02-01

    Vertical excitation energies belonging to several Rydberg series of MgH have been inferred from 3+ electron-propagator calculations of the electron affinities of MgH+ and are in close agreement with experiment. Many electronically excited states with n > 3 are reported for the first time and new insight is given on the assignment of several Rydberg series. Valence and Rydberg excited states of MgH are distinguished respectively by high and low pole strengths corresponding to Dyson orbitals of electron attachment to the cation. By applying the Molecular Quantum Defect Orbital method, oscillator strengths for electronic transitions involving Rydberg states also have been determined.

  19. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid

    NASA Astrophysics Data System (ADS)

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-01

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n = 1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts (1H and 13C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results.

  20. a Moessbauer Effect and Fenske-Hall Molecular Orbital Study of the Electronic Properties of Organoiron Clusters.

    NASA Astrophysics Data System (ADS)

    Buhl, Margaret Linn

    The electronic properties of trinuclear iron, tetranuclear iron butterfly, iron-cobalt, and iron-copper clusters have been studied experimentally at 78K by the Mossbauer effect and theoretically by Fenske-Hall molecular orbital calculations. The Mossbauer effect isomer shift is very sensitive to the differences in the iron s-electron densities in these clusters and, as expected, decreases as the sum of the iron 4s Mulliken population and the Clementi and Raimondi effective nuclear charge increases. The molecular orbital wave functions and the Mulliken atomic charges are used to calculate the electric field gradient at the metal nuclei and the iron Mossbauer effect quadrupole splittings. The valence contribution was found to be the major component of the electric field gradient in all the clusters studied. In general the calculated value of Delta E_ {Q} is larger than the observed value, as a result of neglect of the valence Sternheimer factor, R. The metal charge depends upon its electronegativity and upon the nature of its Lewis base ligands. The carbonyl ligand carbon charge becomes more positive as the metal electronegativity increases. The oxygen charge becomes more negative as the anionic cluster charge increases, and in so doing, yields the maximum anionic charge separation. The electronic properties of the terminal carbonyl ligands are similar to those of carbon monoxide, whereas the electronic properties of the bridging carbonyl ligands are similar to those of the carbonyl group found in aldehydes and ketones.

  1. Genus Ranges of Chord Diagrams.

    PubMed

    Burns, Jonathan; Jonoska, Nataša; Saito, Masahico

    2015-04-01

    A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges.

  2. Feynman diagrams and rooted maps

    NASA Astrophysics Data System (ADS)

    Prunotto, Andrea; Alberico, Wanda Maria; Czerski, Piotr

    2018-04-01

    The rooted maps theory, a branch of the theory of homology, is shown to be a powerful tool for investigating the topological properties of Feynman diagrams, related to the single particle propagator in the quantum many-body systems. The numerical correspondence between the number of this class of Feynman diagrams as a function of perturbative order and the number of rooted maps as a function of the number of edges is studied. A graphical procedure to associate Feynman diagrams and rooted maps is then stated. Finally, starting from rooted maps principles, an original definition of the genus of a Feynman diagram, which totally differs from the usual one, is given.

  3. Phase diagram of Ag-Pd bimetallic nanoclusters by molecular dynamics simulations: solid-to-liquid transition and size-dependent behavior.

    PubMed

    Kim, Da Hye; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo

    2009-07-07

    This report on the solid-to-liquid transition region of an Ag-Pd bimetallic nanocluster is based on a constant energy microcanonical ensemble molecular dynamics simulation combined with a collision method. By varying the size and composition of an Ag-Pd bimetallic cluster, we obtained a complete solid-solution type of binary phase diagram of the Ag-Pd system. Irrespective of the size and composition of the cluster, the melting temperature of Ag-Pd bimetallic clusters is lower than that of the bulk state and rises as the cluster size and the Pd composition increase. Additionally, the slope of the phase boundaries (even though not exactly linear) is lowered when the cluster size is reduced on account of the complex relations of the surface tension, the bulk melting temperature, and the heat of fusion. The melting of the cluster initially starts at the surface layer. The initiation and propagation of a five-fold icosahedron symmetry is related to the sequential melting of the cluster.

  4. Pair 2-electron reduced density matrix theory using localized orbitals

    NASA Astrophysics Data System (ADS)

    Head-Marsden, Kade; Mazziotti, David A.

    2017-08-01

    Full configuration interaction (FCI) restricted to a pairing space yields size-extensive correlation energies but its cost scales exponentially with molecular size. Restricting the variational two-electron reduced-density-matrix (2-RDM) method to represent the same pairing space yields an accurate lower bound to the pair FCI energy at a mean-field-like computational scaling of O (r3) where r is the number of orbitals. In this paper, we show that localized molecular orbitals can be employed to generate an efficient, approximately size-extensive pair 2-RDM method. The use of localized orbitals eliminates the substantial cost of optimizing iteratively the orbitals defining the pairing space without compromising accuracy. In contrast to the localized orbitals, the use of canonical Hartree-Fock molecular orbitals is shown to be both inaccurate and non-size-extensive. The pair 2-RDM has the flexibility to describe the spectra of one-electron RDM occupation numbers from all quantum states that are invariant to time-reversal symmetry. Applications are made to hydrogen chains and their dissociation, n-acene from naphthalene through octacene, and cadmium telluride 2-, 3-, and 4-unit polymers. For the hydrogen chains, the pair 2-RDM method recovers the majority of the energy obtained from similar calculations that iteratively optimize the orbitals. The localized-orbital pair 2-RDM method with its mean-field-like computational scaling and its ability to describe multi-reference correlation has important applications to a range of strongly correlated phenomena in chemistry and physics.

  5. Particles, Feynman Diagrams and All That

    ERIC Educational Resources Information Center

    Daniel, Michael

    2006-01-01

    Quantum fields are introduced in order to give students an accurate qualitative understanding of the origin of Feynman diagrams as representations of particle interactions. Elementary diagrams are combined to produce diagrams representing the main features of the Standard Model.

  6. Genus Ranges of Chord Diagrams

    PubMed Central

    Burns, Jonathan; Jonoska, Nataša; Saito, Masahico

    2015-01-01

    A chord diagram consists of a circle, called the backbone, with line segments, called chords, whose endpoints are attached to distinct points on the circle. The genus of a chord diagram is the genus of the orientable surface obtained by thickening the backbone to an annulus and attaching bands to the inner boundary circle at the ends of each chord. Variations of this construction are considered here, where bands are possibly attached to the outer boundary circle of the annulus. The genus range of a chord diagram is the genus values over all such variations of surfaces thus obtained from a given chord diagram. Genus ranges of chord diagrams for a fixed number of chords are studied. Integer intervals that can be, and those that cannot be, realized as genus ranges are investigated. Computer calculations are presented, and play a key role in discovering and proving the properties of genus ranges. PMID:26478650

  7. Program Synthesizes UML Sequence Diagrams

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2006-01-01

    A computer program called "Rational Sequence" generates Universal Modeling Language (UML) sequence diagrams of a target Java program running on a Java virtual machine (JVM). Rational Sequence thereby performs a reverse engineering function that aids in the design documentation of the target Java program. Whereas previously, the construction of sequence diagrams was a tedious manual process, Rational Sequence generates UML sequence diagrams automatically from the running Java code.

  8. c-T phase diagram and Landau free energies of (AgAu)55 nanoalloy via neural-network molecular dynamic simulations.

    PubMed

    Chiriki, Siva; Jindal, Shweta; Bulusu, Satya S

    2017-10-21

    For understanding the structure, dynamics, and thermal stability of (AgAu) 55 nanoalloys, knowledge of the composition-temperature (c-T) phase diagram is essential due to the explicit dependence of properties on composition and temperature. Experimentally, generating the phase diagrams is very challenging, and therefore theoretical insight is necessary. We use an artificial neural network potential for (AgAu) 55 nanoalloys. Predicted global minimum structures for pure gold and gold rich compositions are lower in energy compared to previous reports by density functional theory. The present work based on c-T phase diagram, surface area, surface charge, probability of isomers, and Landau free energies supports the enhancement of catalytic property of Ag-Au nanoalloys by incorporation of Ag up to 24% by composition in Au nanoparticles as found experimentally. The phase diagram shows that there is a coexistence temperature range of 70 K for Ag 28 Au 27 compared to all other compositions. We propose the power spectrum coefficients derived from spherical harmonics as an order parameter to calculate Landau free energies.

  9. Collaborative diagramming during problem based learning in medical education: Do computerized diagrams support basic science knowledge construction?

    PubMed

    De Leng, Bas; Gijlers, Hannie

    2015-05-01

    To examine how collaborative diagramming affects discussion and knowledge construction when learning complex basic science topics in medical education, including its effectiveness in the reformulation phase of problem-based learning. Opinions and perceptions of students (n = 70) and tutors (n = 4) who used collaborative diagramming in tutorial groups were collected with a questionnaire and focus group discussions. A framework derived from the analysis of discourse in computer-supported collaborative leaning was used to construct the questionnaire. Video observations were used during the focus group discussions. Both students and tutors felt that collaborative diagramming positively affected discussion and knowledge construction. Students particularly appreciated that diagrams helped them to structure knowledge, to develop an overview of topics, and stimulated them to find relationships between topics. Tutors emphasized that diagramming increased interaction and enhanced the focus and detail of the discussion. Favourable conditions were the following: working with a shared whiteboard, using a diagram format that facilitated distribution, and applying half filled-in diagrams for non-content expert tutors and\\or for heterogeneous groups with low achieving students. The empirical findings in this study support the findings of earlier more descriptive studies that diagramming in a collaborative setting is valuable for learning complex knowledge in medicine.

  10. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil.

    PubMed

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-05

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400cm(-1)) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the NH stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular NH⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil

    NASA Astrophysics Data System (ADS)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-01

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  12. A Modified ELISA Accurately Measures Secretion of High Molecular Weight Hyaluronan (HA) by Graves' Disease Orbital Cells

    PubMed Central

    Krieger, Christine C.

    2014-01-01

    Excess production of hyaluronan (hyaluronic acid [HA]) in the retro-orbital space is a major component of Graves' ophthalmopathy, and regulation of HA production by orbital cells is a major research area. In most previous studies, HA was measured by ELISAs that used HA-binding proteins for detection and rooster comb HA as standards. We show that the binding efficiency of HA-binding protein in the ELISA is a function of HA polymer size. Using gel electrophoresis, we show that HA secreted from orbital cells is primarily comprised of polymers more than 500 000. We modified a commercially available ELISA by using 1 million molecular weight HA as standard to accurately measure HA of this size. We demonstrated that IL-1β-stimulated HA secretion is at least 2-fold greater than previously reported, and activation of the TSH receptor by an activating antibody M22 from a patient with Graves' disease led to more than 3-fold increase in HA production in both fibroblasts/preadipocytes and adipocytes. These effects were not consistently detected with the commercial ELISA using rooster comb HA as standard and suggest that fibroblasts/preadipocytes may play a more prominent role in HA remodeling in Graves' ophthalmopathy than previously appreciated. PMID:24302624

  13. Orbital-selective Mott phase in multiorbital models for iron pnictides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Si, Qimiao

    2017-09-01

    There is increasing recognition that the multiorbital nature of the 3 d electrons is important to the proper description of the electronic states in the normal state of the iron-based superconductors. Earlier studies of the pertinent multiorbital Hubbard models identified an orbital-selective Mott phase, which anchors the orbital-selective behavior seen in the overall phase diagram. An important characteristics of the models is that the orbitals are kinetically coupled, i.e., hybridized, to each other, which makes the orbital-selective Mott phase especially nontrivial. A U (1 ) slave-spin method was used to analyze the model with nonzero orbital-level splittings. Here we develop a Landau free-energy functional to shed further light on this issue. We put the microscopic analysis from the U (1 ) slave-spin approach in this perspective, and show that the intersite spin correlations are crucial to the renormalization of the bare hybridization amplitude towards zero and the concomitant realization of the orbital-selective Mott transition. Based on this insight, we discuss additional ways to study the orbital-selective Mott physics from a dynamical competition between the interorbital hybridization and collective spin correlations. Our results demonstrate the robustness of the orbital-selective Mott phase in the multiorbital models appropriate for the iron-based superconductors.

  14. Orbiter Gap Filler Bending Model for Re-entry

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2007-01-01

    Pressure loads on a protruding gap filler during an Orbiter reentry are investigated to evaluate the likelihood of extraction due to pressure loads, and to ascertain how much bending will be induced by re-entry pressure loads. Oblique shock wave theory is utilized to develop a representation of the pressure loads induced on a gap filler for the ISSHVFW trajectory, representative of a heavy weight ISS return. A free body diagram is utilized to react the forces induced by the pressure forces. Preliminary results developed using these methods demonstrate that pressure loads, alone, are not likely causes of gap filler extraction during reentry. Assessment of the amount a gap filler will bend over is presented. Implications of gap filler bending during re-entry include possible mitigation of early boundary layer transition concerns, uncertainty in ground based measurement of protruding gap fillers from historical Orbiter flight history, and uncertainty in the use of Orbiter gap fillers for boundary layer prediction calibration. Authors will be added to the author list as appropriate.

  15. Asymptotic laws for random knot diagrams

    NASA Astrophysics Data System (ADS)

    Chapman, Harrison

    2017-06-01

    We study random knotting by considering knot and link diagrams as decorated, (rooted) topological maps on spheres and pulling them uniformly from among sets of a given number of vertices n, as first established in recent work with Cantarella and Mastin. The knot diagram model is an exciting new model which captures both the random geometry of space curve models of knotting as well as the ease of computing invariants from diagrams. We prove that unknot diagrams are asymptotically exponentially rare, an analogue of Sumners and Whittington’s landmark result for self-avoiding polygons. Our proof uses the same key idea: we first show that knot diagrams obey a pattern theorem, which describes their fractal structure. We examine how quickly this behavior occurs in practice. As a consequence, almost all diagrams are asymmetric, simplifying sampling from this model. We conclude with experimental data on knotting in this model. This model of random knotting is similar to those studied by Diao et al, and Dunfield et al.

  16. Potential-pH Diagrams.

    ERIC Educational Resources Information Center

    Barnum, Dennis W.

    1982-01-01

    Potential-pH diagrams show the domains of redoxpotential and pH in which major species are most stable. Constructing such diagrams provides students with opportunities to decide what species must be considered, search literature for equilibrium constants and free energies of formation, and practice in using the Nernst equation. (Author/JN)

  17. Rings of Molecular Line Emission in the Disk Orbiting the Young, Close Binary V4046 Sgr

    NASA Astrophysics Data System (ADS)

    Dickson-Vandervelde, Dorothy; Kastner, Joel H.; Qi, C.; Forveille, Thierry; Hily-Blant, Pierre; Oberg, Karin; Wilner, David; Andrews, Sean; Gorti, Uma; Rapson, Valerie; Sacco, Germano; Principe, David

    2018-01-01

    We present analysis of a suite of subarcsecond ALMA Band 6 (1.1 - 1.4 mm) molecular line images of the circumbinary, protoplanetary disk orbiting V4046 Sgr. The ~20 Myr-old V4046 Sgr system, which lies a mere ~73 pc from Earth, consists of a close (separation ~10 Rsun) pair of roughly solar-mass stars that are orbited by a gas-rich crcumbinary disk extending to ~350 AU in radius. The ALMA images reveal that the molecules CO and HCN and their isotopologues display centrally peaked surface brightness morphologies, whereas the cyanide group molecules (HC3N, CH3CN), deuterated molecules (DCN, DCO+), hydrocarbons (as traced by C2H), and potential CO ice line tracers (N2H+, and H2CO) appear as a sequence of sharp and diffuse rings of increasing radii. The characteristic sizes of these molecular emission rings, which range from ~25 to >100 AU in radius, are evident in radial emission-line surface brightness profiles extracted from the deprojected disk images. We find that emission from 13CO emission transitions from optically thin to thick within ~50 AU, whereas C18O emission remains optically thin within this radius. We summarize the insight into the physical and chemical processes within this evolved protoplanetary disk that can be obtained from comparisons of the various emission-line morphologies with each other and with that of the continuum (large-grain) emission on size scales of tens of AU.This research is supported by NASA Exoplanets program grant NNX16AB43G to RIT

  18. Long-term orbital period behaviour of low mass ratio contact binaries GR Vir and FP Boo

    NASA Astrophysics Data System (ADS)

    Ćetinkaya, Halil; Soydugan, Faruk

    2017-02-01

    In this study, we investigated orbital period variations of two low mass ratio contact binaries GR Vir and FP Boo based on published minima times. From the O-C analysis, it was found that FP Boo indicates orbital period decrease while the period of GR Vir is increasing. Mass transfer process was used to explain increase and decrease in the orbital periods. In the O-C diagrams of both systems periodic variations also exist. Cyclic changes can be explained as being the result of a light-travel time effect via a third component around the eclipsing binaries. In order to interpret of cyclic orbital period changes for GR Vir, which has late-type components, possible magnetic activity cycles of the components have been also considered.

  19. Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams

    NASA Astrophysics Data System (ADS)

    Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.

    2018-04-01

    Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.

  20. Exploring the Nature of the H[subscript 2] Bond. 1. Using Spreadsheet Calculations to Examine the Valence Bond and Molecular Orbital Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.; Glendening, Eric D.

    2013-01-01

    A three-part project for students in physical chemistry, computational chemistry, or independent study is described in which they explore applications of valence bond (VB) and molecular orbital-configuration interaction (MO-CI) treatments of H[subscript 2]. Using a scientific spreadsheet, students construct potential-energy (PE) curves for several…

  1. Fragment molecular orbital study on electron tunneling mechanisms in bacterial photosynthetic reaction center.

    PubMed

    Kitoh-Nishioka, Hirotaka; Ando, Koji

    2012-11-01

    The tunneling mechanisms of electron transfers (ETs) in photosynthetic reaction center of Blastochloris viridis are studied by the ab initio fragment molecular orbital (FMO) method combined with the generalized Mulliken-Hush (GMH) and the bridge Green function (GF) calculations of the electronic coupling T(DA) and the tunneling current method for the ET pathway analysis at the fragment-based resolution. For the ET from batctriopheophytin (H(L)) to menaquinone (MQ), a major tunneling current through Trp M250 and a minor back flow via Ala M215, Ala M216, and His M217 are quantified. For the ET from MQ to ubiquinone, the major tunneling pathway via the nonheme Fe(2+) and His L190 is identified as well as minor pathway via His M217 and small back flows involving His L230, Glu M232, and His M264. At the given molecular structure from X-ray experiment, the spin state of the Fe(2+) ion, its replacement by Zn(2+), or its removal are found to affect the T(DA) value by factors within 2.2. The calculated T(DA) values, together with experimentally estimated values of the driving force and the reorganization energy, give the ET rates in reasonable agreement with experiments.

  2. Structure of alkali tellurite glasses from neutron diffraction and molecular orbital calculations

    NASA Astrophysics Data System (ADS)

    Niida, Haruki; Uchino, Takashi; Jin, Jisun; Kim, Sae-Hoon; Fukunaga, Toshiharu; Yoko, Toshinobu

    2001-01-01

    The structure of pure TeO2 and alkali tellurite glasses has been examined by neutron diffraction and ab initio molecular orbital methods. The experimental radial distribution functions along with the calculated results have demonstrated that the basic structural units in tellurite glasses change from highly strained TeO4 trigonal bipyramids to more regular TeO3 trigonal pyramids with increasing alkali content. It has also been shown that the TeO3 trigonal pyramids do not exist in the form of isolated units in the glass network but interact with each other to form intertrigonal Te⋯O linkages. The present results suggest that nonbridging oxygen (NBO) atoms in tellurite glasses do not exist in their "pure" form; that is, all the NBO atoms in TeO3 trigonal bipyramids will interact with the first- and/or second-neighbor Te atoms, resulting in the three-dimensional continuous random network even in tellurite glasses with over 30 mol % of alkali oxides.

  3. Analytic second derivatives of the energy in the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Nakata, Hiroya; Nagata, Takeshi; Fedorov, Dmitri G.; Yokojima, Satoshi; Kitaura, Kazuo; Nakamura, Shinichiro

    2013-04-01

    We developed the analytic second derivatives of the energy for the fragment molecular orbital (FMO) method. First we derived the analytic expressions and then introduced some approximations related to the first and second order coupled perturbed Hartree-Fock equations. We developed a parallel program for the FMO Hessian with approximations in GAMESS and used it to calculate infrared (IR) spectra and Gibbs free energies and to locate the transition states in SN2 reactions. The accuracy of the Hessian is demonstrated in comparison to ab initio results for polypeptides and a water cluster. By using the two residues per fragment division, we achieved the accuracy of 3 cm-1 in the reduced mean square deviation of vibrational frequencies from ab initio for all three polyalanine isomers, while the zero point energy had the error not exceeding 0.3 kcal/mol. The role of the secondary structure on IR spectra, zero point energies, and Gibbs free energies is discussed.

  4. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide.

    PubMed

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm(-1)) and μ-Raman spectra (100-4000 cm(-1)) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the N-H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular N-H···S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Orbital Debris Engineering Model (ORDEM) v.3

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Krisko, Paula; Xu, Yu-Lin; Horstman, Matthew

    2013-01-01

    A model of the manmade orbital debris environment is required by spacecraft designers, mission planners, and others in order to understand and mitigate the effects of the environment on their spacecraft or systems. A manmade environment is dynamic, and can be altered significantly by intent (e.g., the Chinese anti-satellite weapon test of January 2007) or accident (e.g., the collision of Iridium 33 and Cosmos 2251 spacecraft in February 2009). Engineering models are used to portray the manmade debris environment in Earth orbit. The availability of new sensor and in situ data, the re-analysis of older data, and the development of new analytical and statistical techniques has enabled the construction of this more comprehensive and sophisticated model. The primary output of this model is the flux [#debris/area/time] as a function of debris size and year. ORDEM may be operated in spacecraft mode or telescope mode. In the former case, an analyst defines an orbit for a spacecraft and "flies" the spacecraft through the orbital debris environment. In the latter case, an analyst defines a ground-based sensor (telescope or radar) in terms of latitude, azimuth, and elevation, and the model provides the number of orbital debris traversing the sensor's field of view. An upgraded graphical user interface (GUI) is integrated with the software. This upgraded GUI uses project-oriented organization and provides the user with graphical representations of numerous output data products. These range from the conventional flux as a function of debris size for chosen analysis orbits (or views), for example, to the more complex color-contoured two-dimensional (2D) directional flux diagrams in local spacecraft elevation and azimuth.

  6. The Construction of Venn Diagrams.

    ERIC Educational Resources Information Center

    Grunbaum, Branko

    1984-01-01

    The study and use of "Venn diagrams" can lead to many interesting problems of a geometric, topological, or combinatorial character. The general nature of these diagrams is discussed and two new results are formulated. (JN)

  7. The sensitivity of harassment to orbit: mass loss from early-type dwarfs in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sánchez-Janssen, R.; Beasley, M. A.; Candlish, G. N.; Gibson, B. K.; Puzia, T. H.; Janz, J.; Knebe, A.; Aguerri, J. A. L.; Lisker, T.; Hensler, G.; Fellhauer, M.; Ferrarese, L.; Yi, S. K.

    2015-12-01

    We conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar discs for orbits that enter deep into the cluster core. Comparing to the orbital distribution in cosmological simulations, we find that the majority of the orbits (more than three quarters) result in no stellar mass loss. We also study the effects on the radial profiles of the globular cluster systems of early-type dwarfs. We find these are significantly altered only if harassment is very strong. This suggests that perhaps most early-type dwarfs in clusters such as Virgo have not suffered any tidal stripping of stars or globular clusters due to harassment, as these components are safely embedded deep within their dark matter halo. We demonstrate that this result is actually consistent with an earlier study of harassment of dwarf galaxies, despite the apparent contradiction. Those few dwarf models that do suffer stellar stripping are found out to the virial radius of the cluster at redshift = 0, which mixes them in with less strongly harassed galaxies. However when placed on phase-space diagrams, strongly harassed galaxies are found offset to lower velocities compared to weakly harassed galaxies. This remains true in a cosmological simulation, even when haloes have a wide range of masses and concentrations. Thus phase-space diagrams may be a useful tool for determining the relative likelihood that galaxies have been strongly or weakly harassed.

  8. Negative extensibility metamaterials: phase diagram calculation

    NASA Astrophysics Data System (ADS)

    Klein, John T.; Karpov, Eduard G.

    2017-12-01

    Negative extensibility metamaterials are able to contract against the line of increasing external tension. A bistable unit cell exhibits several nonlinear mechanical behaviors including the negative extensibility response. Here, an exact form of the total mechanical potential is used based on engineering strain measure. The mechanical response is a function of the system parameters that specify unit cell dimensions and member stiffnesses. A phase diagram is calculated, which maps the response to regions in the diagram using the system parameters as the coordinate axes. Boundary lines pinpoint the onset of a particular mechanical response. Contour lines allow various material properties to be fine-tuned. Analogous to thermodynamic phase diagrams, there exist singular "triple points" which simultaneously satisfy conditions for three response types. The discussion ends with a brief statement about how thermodynamic phase diagrams differ from the phase diagram in this paper.

  9. Spin orbital singlet system FeSc2S4 under pressure

    NASA Astrophysics Data System (ADS)

    Biffin, Alun; Chernyshov, Dmitry; Canevet, Emmanuel; Fennell, Tom; White, Jonathan S.; Khasanov, Rustem; Luetkens, Hubertus; Loidl, Alois; Tsurkan, Vladimir; Rüegg, Christian

    The role of orbital degrees of freedom in quantum magnets is receiving intense focus recently, with the understanding that spin-orbit coupled systems can display physics qualitatively different from their spin only counter parts. An example is the spin-orbital singlet (SOS) state, which can provide an alternative to the conventional spin and orbitally ordered groundstates of quantum magnets. In such a scenario, the relative strengths of the exchange interaction and spin orbit coupling parameters determine the low temperature structure, with the former preferring ordered moments and the latter a non-magnetic singlet. Moreover the quantum critical point separating these two phases is rather unique in that it marks the onset of criticality in both the spin and orbital sectors. This SOS picture has recently been applied to FeSc2S4, where despite strong antiferromagnetic exchange between Jahn-Teller active Fe2+ ions no experimental signature of spin or orbital order has been detected. Building on our previous neutron scattering measurements, we have used hydrostatic pressure in neutron scattering, muon spin rotation and x-ray diffraction measurements to probe the unique phase diagram of FeSc2S4. My talk will focus on the results and interpretation of these experiments SNF SCOPES project IZ73Z0_152734/1, the Marie Curie FP7 COFUND PSI Fellowship program, Swiss National Science Foundation.

  10. Spin-orbit torque-driven magnetization switching in 2D-topological insulator heterostructure

    NASA Astrophysics Data System (ADS)

    Soleimani, Maryam; Jalili, Seifollah; Mahfouzi, Farzad; Kioussis, Nicholas

    2017-02-01

    Charge pumping and spin-orbit torque (SOT) are two reciprocal phenomena widely studied in ferromagnet (FM)/topological insulator (TI) heterostructures. However, the SOT and its corresponding switching phase diagram for a FM island in proximity to a two-dimensional topological insulator (2DTI) has not been explored yet. We have addressed these features, using the recently developed adiabatic expansion of time-dependent nonequilibrium Green's function (NEGF) in the presence of both precessing magnetization and bias voltage. We have calculated the angular and spatial dependence of different components of the SOT on the FM island. We determined the switching phase diagram of the FM for different orientations of the easy axis. The results can be used as a guideline for the future experiments on such systems.

  11. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures

    PubMed Central

    Drummond, N. D.; Monserrat, Bartomeu; Lloyd-Williams, Jonathan H.; Ríos, P. López; Pickard, Chris J.; Needs, R. J.

    2015-01-01

    Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases. PMID:26215251

  12. Coulomb correlations in 4d and 5d oxides from first principles—or how spin-orbit materials choose their effective orbital degeneracies

    NASA Astrophysics Data System (ADS)

    Martins, C.; Aichhorn, M.; Biermann, S.

    2017-07-01

    The interplay of spin-orbit coupling and Coulomb correlations has become a hot topic in condensed matter theory and is especially important in 4d and 5d transition metal oxides, like iridates or rhodates. Here, we review recent advances in dynamical mean-field theory (DMFT)-based electronic structure calculations for treating such compounds, introducing all necessary implementation details. We also discuss the evaluation of Hubbard interactions in spin-orbit materials. As an example, we perform DMFT calculations on insulating strontium iridate (Sr2IrO4) and its 4d metallic counterpart, strontium rhodate (Sr2RhO4). While a Mott-insulating state is obtained for Sr2IrO4 in its paramagnetic phase, the spectral properties and Fermi surfaces obtained for Sr2RhO4 show excellent agreement with available experimental data. Finally, we discuss the electronic structure of these two compounds by introducing the notion of effective spin-orbital degeneracy as the key quantity that determines the correlation strength. We stress that effective spin-orbital degeneracy introduces an additional axis into the conventional picture of a phase diagram based on filling and on the ratio of interactions to bandwidth, analogous to the degeneracy-controlled Mott transition in d1 perovskites.

  13. Coulomb correlations in 4d and 5d oxides from first principles-or how spin-orbit materials choose their effective orbital degeneracies.

    PubMed

    Martins, C; Aichhorn, M; Biermann, S

    2017-07-05

    The interplay of spin-orbit coupling and Coulomb correlations has become a hot topic in condensed matter theory and is especially important in 4d and 5d transition metal oxides, like iridates or rhodates. Here, we review recent advances in dynamical mean-field theory (DMFT)-based electronic structure calculations for treating such compounds, introducing all necessary implementation details. We also discuss the evaluation of Hubbard interactions in spin-orbit materials. As an example, we perform DMFT calculations on insulating strontium iridate (Sr 2 IrO 4 ) and its 4d metallic counterpart, strontium rhodate (Sr 2 RhO 4 ). While a Mott-insulating state is obtained for Sr 2 IrO 4 in its paramagnetic phase, the spectral properties and Fermi surfaces obtained for Sr 2 RhO 4 show excellent agreement with available experimental data. Finally, we discuss the electronic structure of these two compounds by introducing the notion of effective spin-orbital degeneracy as the key quantity that determines the correlation strength. We stress that effective spin-orbital degeneracy introduces an additional axis into the conventional picture of a phase diagram based on filling and on the ratio of interactions to bandwidth, analogous to the degeneracy-controlled Mott transition in d 1 perovskites.

  14. BetaCavityWeb: a webserver for molecular voids and channels

    PubMed Central

    Kim, Jae-Kwan; Cho, Youngsong; Lee, Mokwon; Laskowski, Roman A.; Ryu, Seong Eon; Sugihara, Kokichi; Kim, Deok-Soo

    2015-01-01

    Molecular cavities, which include voids and channels, are critical for molecular function. We present a webserver, BetaCavityWeb, which computes these cavities for a given molecular structure and a given spherical probe, and reports their geometrical properties: volume, boundary area, buried area, etc. The server's algorithms are based on the Voronoi diagram of atoms and its derivative construct: the beta-complex. The correctness of the computed result and computational efficiency are both mathematically guaranteed. BetaCavityWeb is freely accessible at the Voronoi Diagram Research Center (VDRC) (http://voronoi.hanyang.ac.kr/betacavityweb). PMID:25904629

  15. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  16. The stellar orbit distribution in present-day galaxies inferred from the CALIFA survey

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; van de Ven, Glenn; Bosch, Remco van den; Rix, Hans-Walter; Lyubenova, Mariya; Falcón-Barroso, Jesús; Martig, Marie; Mao, Shude; Xu, Dandan; Jin, Yunpeng; Obreja, Aura; Grand, Robert J. J.; Dutton, Aaron A.; Macciò, Andrea V.; Gómez, Facundo A.; Walcher, Jakob C.; García-Benito, Rubén; Zibetti, Stefano; Sánchez, Sebastian F.

    2018-03-01

    Galaxy formation entails the hierarchical assembly of mass, along with the condensation of baryons and the ensuing, self-regulating star formation1,2. The stars form a collisionless system whose orbit distribution retains dynamical memory that can constrain a galaxy's formation history3. The orbits dominated by ordered rotation, with near-maximum circularity λz ≈ 1, are called kinematically cold, and the orbits dominated by random motion, with low circularity λz ≈ 0, are kinematically hot. The fraction of stars on `cold' orbits, compared with the fraction on `hot' orbits, speaks directly to the quiescence or violence of the galaxies' formation histories4,5. Here we present such orbit distributions, derived from stellar kinematic maps through orbit-based modelling for a well-defined, large sample of 300 nearby galaxies. The sample, drawn from the CALIFA survey6, includes the main morphological galaxy types and spans a total stellar mass range from 108.7 to 1011.9 solar masses. Our analysis derives the orbit-circularity distribution as a function of galaxy mass and its volume-averaged total distribution. We find that across most of the considered mass range and across morphological types, there are more stars on `warm' orbits defined as 0.25 ≤ λz ≤ 0.8 than on either `cold' or `hot' orbits. This orbit-based `Hubble diagram' provides a benchmark for galaxy formation simulations in a cosmological context.

  17. Diagrams Benefit Symbolic Problem-Solving

    ERIC Educational Resources Information Center

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R.

    2017-01-01

    Background: The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic…

  18. Global Phase Diagram of a Three-Dimensional Dirty Topological Superconductor

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Alavirad, Yahya; Sau, Jay D.

    2017-06-01

    We investigate the phase diagram of a three-dimensional, time-reversal symmetric topological superconductor in the presence of charge impurities and random s -wave pairing. Combining complimentary field theoretic and numerical methods, we show that the quantum phase transition between two topologically distinct paired states (or thermal insulators), described by thermal Dirac semimetal, remains unaffected in the presence of sufficiently weak generic randomness. At stronger disorder, however, these two phases are separated by an intervening thermal metallic phase of diffusive Majorana fermions. We show that across the insulator-insulator and metal-insulator transitions, normalized thermal conductance displays single parameter scaling, allowing us to numerically extract the critical exponents across them. The pertinence of our study in strong spin-orbit coupled, three-dimensional doped narrow gap semiconductors, such as CuxBi2Se3 , is discussed.

  19. Simplest bifurcation diagrams for monotone families of vector fields on a torus

    NASA Astrophysics Data System (ADS)

    Baesens, C.; MacKay, R. S.

    2018-06-01

    In part 1, we prove that the bifurcation diagram for a monotone two-parameter family of vector fields on a torus has to be at least as complicated as the conjectured simplest one proposed in Baesens et al (1991 Physica D 49 387–475). To achieve this, we define ‘simplest’ by sequentially minimising the numbers of equilibria, Bogdanov–Takens points, closed curves of centre and of neutral saddle, intersections of curves of centre and neutral saddle, Reeb components, other invariant annuli, arcs of rotational homoclinic bifurcation of horizontal homotopy type, necklace points, contractible periodic orbits, points of neutral horizontal homoclinic bifurcation and half-plane fan points. We obtain two types of simplest case, including that initially proposed. In part 2, we analyse the bifurcation diagram for an explicit monotone family of vector fields on a torus and prove that it has at most two equilibria, precisely four Bogdanov–Takens points, no closed curves of centre nor closed curves of neutral saddle, at most two Reeb components, precisely four arcs of rotational homoclinic connection of ‘horizontal’ homotopy type, eight horizontal saddle-node loop points, two necklace points, four points of neutral horizontal homoclinic connection, and two half-plane fan points, and there is no simultaneous existence of centre and neutral saddle, nor contractible homoclinic connection to a neutral saddle. Furthermore, we prove that all saddle-nodes, Bogdanov–Takens points, non-neutral and neutral horizontal homoclinic bifurcations are non-degenerate and the Hopf condition is satisfied for all centres. We also find it has four points of degenerate Hopf bifurcation. It thus provides an example of a family satisfying all the assumptions of part 1 except the one of at most one contractible periodic orbit.

  20. Magnetic phase diagrams of erbium

    NASA Astrophysics Data System (ADS)

    Frazer, B. H.; Gebhardt, J. R.; Ali, N.

    1999-04-01

    The magnetic phase diagrams of erbium in the magnetic field-temperature plane have been constructed for applied magnetic fields along the a and b axes. For an a-axis applied field our H-T phase diagrams determined from magnetization and magnetoresistance data are in good agreement and consistent with that of Jehan et al. for temperatures below 50 K. A splitting of the basal plane Néel temperature (TN⊥) above 3.75 T introduces two new magnetic phases. Also a transition from a fan to a canted fan phase as suggested by Jehan et al. is observed in an increasing field below TC. Our phase diagram for a b-axis applied field constructed from magnetization data is very similar to the phase diagram of Watson and Ali using magnetoresistance measurements. However, the anomaly at 42 K reported by Watson and Ali is not observed in the present study. No splitting of the TN⊥ transition is observed in either work for a field applied along the b axis.

  1. Calculation of Gallium-metal-Arsenic phase diagrams

    NASA Technical Reports Server (NTRS)

    Scofield, J. D.; Davison, J. E.; Ray, A. E.; Smith, S. R.

    1991-01-01

    Electrical contacts and metallization to GaAs solar cells must survive at high temperatures for several minutes under specific mission scenarios. The determination of which metallizations or alloy systems that are able to withstand extreme thermal excursions with minimum degradation to solar cell performance can be predicted by properly calculated temperature constitution phase diagrams. A method for calculating a ternary diagram and its three constituent binary phase diagrams is briefly outlined and ternary phase diagrams for three Ga-As-X alloy systems are presented. Free energy functions of the liquid and solid phase are approximated by the regular solution theory. Phase diagrams calculated using this method are presented for the Ga-As-Ge and Ga-As-Ag systems.

  2. Microwave scanning beam landing system compatibility and performance: Engineering analyses 75-1 and 75-2. [space shuttle orbiter landing

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The microwave scanning beam landing system (MSBLS) is the primary position sensor of the Orbiter's navigation subsystem during the autoland phase of the flight. Portions of the system are discussed with special emphasis placed on potential problem areas as referenced to the Orbiter's mission. Topics discussed include system compatability, system accuracy, and expected RF signal levels. A block and flow diagram of MSBLS system operation is included with a list of special tests required to determine system performance.

  3. DVD-COOP: Innovative Conjunction Prediction Using Voronoi-filter based on the Dynamic Voronoi Diagram of 3D Spheres

    NASA Astrophysics Data System (ADS)

    Cha, J.; Ryu, J.; Lee, M.; Song, C.; Cho, Y.; Schumacher, P.; Mah, M.; Kim, D.

    Conjunction prediction is one of the critical operations in space situational awareness (SSA). For geospace objects, common algorithms for conjunction prediction are usually based on all-pairwise check, spatial hash, or kd-tree. Computational load is usually reduced through some filters. However, there exists a good chance of missing potential collisions between space objects. We present a novel algorithm which both guarantees no missing conjunction and is efficient to answer to a variety of spatial queries including pairwise conjunction prediction. The algorithm takes only O(k log N) time for N objects in the worst case to answer conjunctions where k is a constant which is linear to prediction time length. The proposed algorithm, named DVD-COOP (Dynamic Voronoi Diagram-based Conjunctive Orbital Object Predictor), is based on the dynamic Voronoi diagram of moving spherical balls in 3D space. The algorithm has a preprocessing which consists of two steps: The construction of an initial Voronoi diagram (taking O(N) time on average) and the construction of a priority queue for the events of topology changes in the Voronoi diagram (taking O(N log N) time in the worst case). The scalability of the proposed algorithm is also discussed. We hope that the proposed Voronoi-approach will change the computational paradigm in spatial reasoning among space objects.

  4. Linear Chord Diagrams with Long Chords

    NASA Astrophysics Data System (ADS)

    Sullivan, Everett

    A linear chord diagram of size n is a partition of the first 2n integers into sets of size two. These diagrams appear in many different contexts in combinatorics and other areas of mathematics, particularly knot theory. We explore various constraints that produce diagrams which have no short chords. A number of patterns appear from the results of these constraints which we can prove using techniques ranging from explicit bijections to non-commutative algebra.

  5. Phase diagrams and crystal growth

    NASA Astrophysics Data System (ADS)

    Venkrbec, Jan

    1980-04-01

    Phase diagrams are briefly treated as generalized property-composition relationships, with respect to crystal technology optimization. The treatment is based on mutual interaction of three systems related to semiconductors: (a) the semiconducting material systems, (b0 the data bank, (c) the system of crystallization methods. A model is proposed enabling optimatization on the path from application requirements to the desired material. Further, several examples of the selection as to the composition of LED and laser diode material are given. Some of molten-solution-zone methods are being successfully introduced for this purpose. Common features of these methods, the application of phase diagrams, and their pecularities compared with other crystallization methods are illustrated by schematic diagrams and by examples. LPE methods, particularly the steady-state LPE methods such as Woodall's ISM and Nishizawa's TDM-CVP, and the CAM-S (Crystallization Method Providing Composition Autocontrol in Situ) have been chosen as examples. Another approach of exploiting phase diagrams for optimal material selection and for determination of growth condition before experimentation through a simple calculation is presented on InP-GaP solid solutions. Ternary phase diagrams are visualized in space through calculation and constructions based on the corresponding thermodynamic models and anaglyphs. These make it easy to observe and qualitatively analyze the crystallization of every composition. Phase diagrams can be also used as a powerful tool for the deduction of new crystallization methods. Eutectic crystallization is an example of such an approach where a modified molten-solution-zone method can give a sandwich structure with an abrupt concentration change. The concentration of a component can range from 0 to 100% in the different solid phases.

  6. Explicit polarization (X-Pol) potential using ab initio molecular orbital theory and density functional theory.

    PubMed

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2009-10-29

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.

  7. Application of Time-Dependent Density Functional and Natural Bond Orbital Theories to the UV-vis Absorption Spectra of Some Phenolic Compounds.

    PubMed

    Marković, Svetlana; Tošović, Jelena

    2015-09-03

    The UV-vis properties of 22 natural phenolic compounds, comprising anthraquinones, neoflavonoids, and flavonoids were systematically examined. The time-dependent density functional theory (TDDFT) approach in combination with the B3LYP, B3LYP-D2, B3P86, and M06-2X functionals was used to simulate the UV-vis spectra of the investigated compounds. It was shown that all methods exhibit very good (B3LYP slightly better) performance in reproducing the examined UV-vis spectra. However, the shapes of the Kohn-Sham molecular orbitals (MOs) involved in electronic transitions were misleading in constructing the MO correlation diagrams. To provide better understanding of redistribution of electron density upon excitation, the natural bond orbital (NBO) analysis was applied. Bearing in mind the spatial and energetic separations, as well as the character of the π bonding, lone pair, and π* antibonding natural localized molecular orbitals (NLMOs), the "NLMO clusters" were constructed. NLMO cluster should be understood as a part of a molecule characterized with distinguished electron density. It was shown that all absorption bands including all electronic transitions need to be inspected to fully understand the UV-vis spectrum of a certain compound, and, thus, to learn more about its UV-vis light absorption. Our investigation showed that the TDDFT and NBO theories are complementary, as the results from the two approaches can be combined to interpret the UV-vis spectra. Agreement between the predictions of the TDDFT approach and those based on the NLMO clusters is excellent in the case of major electronic transitions and long wavelengths. It should be emphasized that the approach for investigation of UV-vis light absorption based on the NLMO clusters is applied for the first time.

  8. Arrows in Comprehending and Producing Mechanical Diagrams

    ERIC Educational Resources Information Center

    Heiser, Julie; Tversky, Barbara

    2006-01-01

    Mechanical systems have structural organizations--parts, and their relations--and functional organizations--temporal, dynamic, and causal processes--which can be explained using text or diagrams. Two experiments illustrate the role of arrows in diagrams of mechanical systems. In Experiment 1, people described diagrams with or without arrows,…

  9. Comprehending 3D Diagrams: Sketching to Support Spatial Reasoning.

    PubMed

    Gagnier, Kristin M; Atit, Kinnari; Ormand, Carol J; Shipley, Thomas F

    2017-10-01

    Science, technology, engineering, and mathematics (STEM) disciplines commonly illustrate 3D relationships in diagrams, yet these are often challenging for students. Failing to understand diagrams can hinder success in STEM because scientific practice requires understanding and creating diagrammatic representations. We explore a new approach to improving student understanding of diagrams that convey 3D relations that is based on students generating their own predictive diagrams. Participants' comprehension of 3D spatial diagrams was measured in a pre- and post-design where students selected the correct 2D slice through 3D geologic block diagrams. Generating sketches that predicated the internal structure of a model led to greater improvement in diagram understanding than visualizing the interior of the model without sketching, or sketching the model without attempting to predict unseen spatial relations. In addition, we found a positive correlation between sketched diagram accuracy and improvement on the diagram comprehension measure. Results suggest that generating a predictive diagram facilitates students' abilities to make inferences about spatial relationships in diagrams. Implications for use of sketching in supporting STEM learning are discussed. Copyright © 2016 Cognitive Science Society, Inc.

  10. Illustrating Concepts in Physical Organic Chemistry with 3D Printed Orbitals

    ERIC Educational Resources Information Center

    Robertson, Michael J.; Jorgensen, William L.

    2015-01-01

    Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…

  11. Pseudohaptic interaction with knot diagrams

    NASA Astrophysics Data System (ADS)

    Weng, Jianguang; Zhang, Hui

    2012-07-01

    To make progress in understanding knot theory, we need to interact with the projected representations of mathematical knots, which are continuous in three dimensions (3-D) but significantly interrupted in the projective images. One way to achieve such a goal is to design an interactive system that allows us to sketch two-dimensional (2-D) knot diagrams by taking advantage of a collision-sensing controller and explore their underlying smooth structures through a continuous motion. Recent advances of interaction techniques have been made that allow progress in this direction. Pseudohaptics that simulate haptic effects using pure visual feedback can be used to develop such an interactive system. We outline one such pseudohaptic knot diagram interface. Our interface derives from the familiar pencil-and-paper process of drawing 2-D knot diagrams and provides haptic-like sensations to facilitate the creation and exploration of knot diagrams. A centerpiece of the interaction model simulates a physically reactive mouse cursor, which is exploited to resolve the apparent conflict between the continuous structure of the actual smooth knot and the visual discontinuities in the knot diagram representation. Another value in exploiting pseudohaptics is that an acceleration (or deceleration) of the mouse cursor (or surface locator) can be used to indicate the slope of the curve (or surface) of which the projective image is being explored. By exploiting these additional visual cues, we proceed to a full-featured extension to a pseudohaptic four-dimensional (4-D) visualization system that simulates the continuous navigation on 4-D objects and allows us to sense the bumps and holes in the fourth dimension. Preliminary tests of the software show that main features of the interface overcome some expected perceptual limitations in our interaction with 2-D knot diagrams of 3-D knots and 3-D projective images of 4-D mathematical objects.

  12. Contingency diagrams as teaching tools.

    PubMed

    Mattaini, M A

    1995-01-01

    Contingency diagrams are particularly effective teaching tools, because they provide a means for students to view the complexities of contingency networks present in natural and laboratory settings while displaying the elementary processes that constitute those networks. This paper sketches recent developments in this visualization technology and illustrates approaches for using contingency diagrams in teaching.

  13. Role of the orbital degree of freedom in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Yi, Ming; Zhang, Yan; Shen, Zhi-Xun; Lu, Donghui

    2017-10-01

    Almost a decade has passed since the serendipitous discovery of the iron-based high temperature superconductors (FeSCs) in 2008. The fact that, as in the copper oxide high temperature superconductors, long-range antiferromagnetism in the FeSCs arises in proximity to superconductivity immediately raised the question of the degree of similarity between the two. Despite the great resemblance in their phase diagrams, there exist important differences between the FeSCs and the cuprates that need to be considered in order to paint a full picture of these two families of high temperature superconductors. One of the key differences is the multi-orbital multi-band nature of the FeSCs, which contrasts with the effective single-band nature of the cuprates. Systematic studies of orbital related phenomena in FeSCs have been largely lacking. In this review, we summarize angle-resolved photoemission spectroscopy (ARPES) measurements across various FeSC families that have been reported in literature, focusing on the systematic trends of orbital dependent electron correlations and the role of different Fe 3d orbitals in driving the nematic transition, the spin-density-wave transition, and superconductivity.

  14. Scheil-Gulliver Constituent Diagrams

    NASA Astrophysics Data System (ADS)

    Pelton, Arthur D.; Eriksson, Gunnar; Bale, Christopher W.

    2017-06-01

    During solidification of alloys, conditions often approach those of Scheil-Gulliver cooling in which it is assumed that solid phases, once precipitated, remain unchanged. That is, they no longer react with the liquid or with each other. In the case of equilibrium solidification, equilibrium phase diagrams provide a valuable means of visualizing the effects of composition changes upon the final microstructure. In the present study, we propose for the first time the concept of Scheil-Gulliver constituent diagrams which play the same role as that in the case of Scheil-Gulliver cooling. It is shown how these diagrams can be calculated and plotted by the currently available thermodynamic database computing systems that combine Gibbs energy minimization software with large databases of optimized thermodynamic properties of solutions and compounds. Examples calculated using the FactSage system are presented for the Al-Li and Al-Mg-Zn systems, and for the Au-Bi-Sb-Pb system and its binary and ternary subsystems.

  15. Penguin-like diagrams from the standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Chia Swee

    2015-04-24

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, wemore » present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated.« less

  16. Pathway collages: personalized multi-pathway diagrams.

    PubMed

    Paley, Suzanne; O'Maille, Paul E; Weaver, Daniel; Karp, Peter D

    2016-12-13

    Metabolic pathway diagrams are a classical way of visualizing a linked cascade of biochemical reactions. However, to understand some biochemical situations, viewing a single pathway is insufficient, whereas viewing the entire metabolic network results in information overload. How do we enable scientists to rapidly construct personalized multi-pathway diagrams that depict a desired collection of interacting pathways that emphasize particular pathway interactions? We define software for constructing personalized multi-pathway diagrams called pathway-collages using a combination of manual and automatic layouts. The user specifies a set of pathways of interest for the collage from a Pathway/Genome Database. Layouts for the individual pathways are generated by the Pathway Tools software, and are sent to a Javascript Pathway Collage application implemented using Cytoscape.js. That application allows the user to re-position pathways; define connections between pathways; change visual style parameters; and paint metabolomics, gene expression, and reaction flux data onto the collage to obtain a desired multi-pathway diagram. We demonstrate the use of pathway collages in two application areas: a metabolomics study of pathogen drug response, and an Escherichia coli metabolic model. Pathway collages enable facile construction of personalized multi-pathway diagrams.

  17. Spin-orbit interaction driven dimerization in one dimensional frustrated magnets

    NASA Astrophysics Data System (ADS)

    Zhang, Shang-Shun; Batista, Cristian D.

    Spin nematic ordering has been proposed to emerge near the saturation of field of a class of frustrated magnets. The experimental observation of this novel phase is challenging for the traditional experimental probes. Nematic spin ordering is expected to induce a local quadrupolar electric moment via the spin-orbit coupling. However, a finite spin-orbit interaction explicitly breaks the U(1) symmetry of global spin rotations down to Z2, which renders the traditional nematic order no longer well-defined. In this work we investigate the relevant effect of spin-orbit interaction on the 1D frustrated J1 -J2 model. The real and the imaginary parts of the nematic order parameter belong to different representations of the discrete symmetry group of the new Hamiltonian. We demonstrate that spin-orbit coupling stabilizes the real component and simultaneously induces bond dimerization in most of the phase diagram. Such a bond dimerization can be observed with X-rays or nuclear magnetic resonance. In addition, an incommensurate bond-density wave (ICBDW) appears for smaller values of J2 / |J1 | . The experimental fingerprint of the ICBDW is a double-horn shape of the the NMR line. These conclusions can shed light on the experimental search of this novel phase.

  18. Contingency diagrams as teaching tools

    PubMed Central

    Mattaini, Mark A.

    1995-01-01

    Contingency diagrams are particularly effective teaching tools, because they provide a means for students to view the complexities of contingency networks present in natural and laboratory settings while displaying the elementary processes that constitute those networks. This paper sketches recent developments in this visualization technology and illustrates approaches for using contingency diagrams in teaching. ImagesFigure 2Figure 3Figure 4 PMID:22478208

  19. Probing vibrational activities, electronic properties, molecular docking and Hirshfeld surfaces analysis of 4-chlorophenyl ({[(1E)-3-(1H-imidazol-1-yl)-1-phenylpropylidene]amino}oxy)methanone: A promising anti-Candida agent

    NASA Astrophysics Data System (ADS)

    Jayasheela, K.; Al-Wahaibi, Lamya H.; Periandy, S.; Hassan, Hanan M.; Sebastian, S.; Xavier, S.; Daniel, Joseph C.; El-Emam, Ali A.; Attia, Mohamed I.

    2018-05-01

    The promising anti-Candida agent, 4-chlorophenyl ({[1E-3(1H-imidazole-1-yl)-1-phenylpropylidene}oxy)methanone (4-CPIPM) was comprehensively characterized by FT-IR, FT-Raman, UV, as well as 1H and 13C spectroscopic techniques. The theoretical calculations in the current study utilized Gaussian 09 W software with DFT approach of the B3LYP/6-311++G(d,p) method. The experimental X-ray diffraction data of the 4-CPIPM molecule were compared with the optimized structure and showed well agreement. Intermolecular electronic interactions and their stabilization energies have been analyzed by natural bond orbital method. Potential energy distribution confirmed the normal fundamental mode of vibration with the aid of MOLVIB software. The chemical shift values of the 1H and 13C spectra of the title compound were computed using gauge independent atomic orbital and the results were compared with the experimental values. The time-dependent density function theory method was used to predict the electronic, absorption wavelength and frontier molecular orbital energies. The HOMO-LUMO plots proved the charge transfer in the molecular system of the title compound through conjugated paths. The molecular electrostatic potential analysis provided the electrophilic and nucleophilic reactive sites in the title molecule which have been analyzed using Hirshfeld surface and two dimensions fingerprint plots. Non covalent interactions were also studied using reduced density gradient analysis and color filled electron density diagram. Molecular docking studies of the ligand-protein interactions along with their binding energies were carried out aiming to explain the potent anti-Candida activity of the title molecule.

  20. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. Part I. Application of the Huzinaga equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods. Copyright © 2012 Wiley Periodicals, Inc.

  1. New methods for accelerating the convergence of molecular electronic integrals over exponential type orbitals

    NASA Astrophysics Data System (ADS)

    Safouhi, Hassan; Hoggan, Philip

    2003-01-01

    This review on molecular integrals for large electronic systems (MILES) places the problem of analytical integration over exponential-type orbitals (ETOs) in a historical context. After reference to the pioneering work, particularly by Barnett, Shavitt and Yoshimine, it focuses on recent progress towards rapid and accurate analytic solutions of MILES over ETOs. Software such as the hydrogenlike wavefunction package Alchemy by Yoshimine and collaborators is described. The review focuses on convergence acceleration of these highly oscillatory integrals and in particular it highlights suitable nonlinear transformations. Work by Levin and Sidi is described and applied to MILES. A step by step description of progress in the use of nonlinear transformation methods to obtain efficient codes is provided. The recent approach developed by Safouhi is also presented. The current state of the art in this field is summarized to show that ab initio analytical work over ETOs is now a viable option.

  2. Using Eye Tracking to Investigate Semantic and Spatial Representations of Scientific Diagrams during Text-Diagram Integration

    ERIC Educational Resources Information Center

    Jian, Yu-Cin; Wu, Chao-Jung

    2015-01-01

    We investigated strategies used by readers when reading a science article with a diagram and assessed whether semantic and spatial representations were constructed while reading the diagram. Seventy-one undergraduate participants read a scientific article while tracking their eye movements and then completed a reading comprehension test. Our…

  3. The Use of a Block Diagram Simulation Language for Rapid Model Prototyping

    NASA Technical Reports Server (NTRS)

    Whitlow, Johnathan E.; Engrand, Peter

    1996-01-01

    The research performed this summer was a continuation of work performed during the 1995 NASA/ASEE Summer Fellowship. The focus of the work was to expand previously generated predictive models for liquid oxygen (LOX) loading into the external fuel tank of the shuttle. The models which were developed using a block diagram simulation language known as VisSim, were evaluated on numerous shuttle flights and found to well in most cases. Once the models were refined and validated, the predictive methods were integrated into the existing Rockwell software propulsion advisory tool (PAT). Although time was not sufficient to completely integrate the models developed into PAT, the ability to predict flows and pressures in the orbiter section and graphically display the results was accomplished.

  4. Spin-Orbit Effect on the Molecular Properties of TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4): A Density Functional Theory and Ab Initio Study.

    PubMed

    Moon, Jiwon; Kim, Joonghan

    2016-09-29

    Density functional theory (DFT) and ab initio calculations, including spin-orbit coupling (SOC), were performed to investigate the spin-orbit (SO) effect on the molecular properties of tellurium halides, TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4). SOC elongates the Te-X bond and slightly reduces the vibrational frequencies. Consideration of SOC leads to better agreement with experimental values. Møller-Plesset second-order perturbation theory (MP2) seriously underestimates the Te-X bond lengths. In contrast, B3LYP significantly overestimates them. SO-PBE0 and multireference configuration interactions with the Davidson correction (MRCI+Q), which include SOC via a state-interaction approach, give the Te-I bond length of TeI2 that matches the experimental value. On the basis of the calculated thermochemical energy and optimized molecular structure, TeI4 is unlikely to be stable. The use of PBE0 including SOC is strongly recommended for predicting the molecular properties of Te-containing compounds.

  5. Spinning geodesic Witten diagrams

    DOE PAGES

    Dyer, Ethan; Freedman, Daniel Z.; Sully, James

    2017-11-10

    We present an expression for the four-point conformal blocks of symmetric traceless operators of arbitrary spin as an integral over a pair of geodesics in Anti-de Sitter space, generalizing the geodesic Witten diagram formalism of Hijano et al. to arbitrary spin. As an intermediate step in the derivation, we identify a convenient basis of bulk threepoint interaction vertices which give rise to all possible boundary three point structures. Lastly, we highlight a direct connection between the representation of the conformal block as geodesic Witten diagram and the shadow operator formalism.

  6. Scrutinizing UML Activity Diagrams

    NASA Astrophysics Data System (ADS)

    Al-Fedaghi, Sabah

    Building an information system involves two processes: conceptual modeling of the “real world domain” and designing the software system. Object-oriented methods and languages (e.g., UML) are typically used for describing the software system. For the system analysis process that produces the conceptual description, object-oriented techniques or semantics extensions are utilized. Specifically, UML activity diagrams are the “flow charts” of object-oriented conceptualization tools. This chapter proposes an alternative to UML activity diagrams through the development of a conceptual modeling methodology based on the notion of flow.

  7. A combined experimental and DFT investigation of disazo dye having pyrazole skeleton

    NASA Astrophysics Data System (ADS)

    Şener, Nesrin; Bayrakdar, Alpaslan; Kart, Hasan Hüseyin; Şener, İzzet

    2017-02-01

    Disazo dye containing pyrazole skeleton has been synthesized. The structure of the dye has been confirmed by using FT-IR, 1H NMR, 13C NMR, HRMS spectral technique and elemental analysis. The molecular geometry and infrared spectrum are also calculated by the Density Functional Theory (DFT) employing B3LYP level with 6-311G (d,p) basis set. The chemical shifts calculation for 1H NMR of the title molecule is done by using by Gauge-Invariant Atomic Orbital (GIAO) method by utilizing the same basis sets. The total density of state, the partial density of state and the overlap population density of state diagram analysis are done via Gauss Sum 3.0 program. Frontier molecular orbitals such as highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and molecular electrostatic potential surface on the title molecule are predicted for various intramolecular interactions that are responsible for the stabilization of the molecule. The experimental results and theoretical values have been compared.

  8. A molecular orbital study of a model of the Mg2+ coordination complex of the self splicing reaction of ribosomal RNA

    NASA Technical Reports Server (NTRS)

    McCourt, M.; Shibata, M.; McIver, J. W.; Rein, R.

    1988-01-01

    Recent discoveries have established the fact that RNA is capable of acting as an enzyme. In this study two different types of molecular orbital calculations, INDO and ab initio, were used in an attempt to assess the structural/functional role of the Mg2+ hydrated complex in ribozyme reactions. Preliminary studies indicate that the reaction is multistep and that the Mg2+ complex exerts a stabilizing effect on the intermediate or midpoint of the reaction.

  9. Planetary populations in the mass-period diagram: A statistical treatment of exoplanet formation and the role of planet traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Yasuhiro; Pudritz, Ralph E., E-mail: yasu@asiaa.sinica.edu.tw, E-mail: pudritz@physics.mcmaster.ca

    2013-11-20

    The rapid growth of observed exoplanets has revealed the existence of several distinct planetary populations in the mass-period diagram. Two of the most surprising are (1) the concentration of gas giants around 1 AU and (2) the accumulation of a large number of low-mass planets with tight orbits, also known as super-Earths and hot Neptunes. We have recently shown that protoplanetary disks have multiple planet traps that are characterized by orbital radii in the disks and halt rapid type I planetary migration. By coupling planet traps with the standard core accretion scenario, we showed that one can account for themore » positions of planets in the mass-period diagram. In this paper, we demonstrate quantitatively that most gas giants formed at planet traps tend to end up around 1 AU, with most of these being contributed by dead zones and ice lines. We also show that a large fraction of super-Earths and hot Neptunes are formed as 'failed' cores of gas giants—this population being constituted by comparable contributions from dead zone and heat transition traps. Our results are based on the evolution of forming planets in an ensemble of disks where we vary only the lifetimes of disks and their mass accretion rates onto the host star. We show that a statistical treatment of the evolution of a large population of planetary cores caught in planet traps accounts for the existence of three distinct exoplanetary populations—the hot Jupiters, the more massive planets around r = 1 AU, and the short-period super-Earths and hot Neptunes. There are very few populations that feed into the large orbital radii characteristic of the imaged Jovian planet, which agrees with recent surveys. Finally, we find that low-mass planets in tight orbits become the dominant planetary population for low-mass stars (M {sub *} ≤ 0.7 M {sub ☉}).« less

  10. A Legal Negotiatiton Support System Based on A Diagram

    NASA Astrophysics Data System (ADS)

    Nitta, Katsumi; Shibasaki, Masato; Yasumura, Yoshiaki; Hasegawa, Ryuzo; Fujita, Hiroshi; Koshimura, Miyuki; Inoue, Katsumi; Shirai, Yasuyuki; Komatsu, Hiroshi

    We present an overview of a legal negotiation support system, ANS (Argumentation based Negotiation support System). ANS consists of a user interface, three inference engines, a database of old cases, and two decision support modules. The ANS users negotiates or disputes with others via a computer network. The negotiation status is managed in the form of the negotiation diagram. The negotiation diagram is an extension of Toulmin’s argument diagram, and it contains all arguments insisted by participants. The negotiation protocols are defined as operations to the negotiation diagram. By exchanging counter arguments each other, the negotiation diagram grows up. Nonmonotonic reasoning using rule priorities are applied to the negotiation diagram.

  11. Elementary diagrams in nuclear and neutron matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiringa, R.B.

    1995-08-01

    Variational calculations of nuclear and neutron matter are currently performed using a diagrammatic cluster expansion with the aid of nonlinear integral equations for evaluating expectation values. These are the Fermi hypernetted chain (FHNC) and single-operator chain (SOC) equations, which are a way of doing partial diagram summations to infinite order. A more complete summation can be made by adding elementary diagrams to the procedure. The simplest elementary diagrams appear at the four-body cluster level; there is one such E{sub 4} diagram in Bose systems, but 35 diagrams in Fermi systems, which gives a level of approximation called FHNC/4. We developedmore » a novel technique for evaluating these diagrams, by computing and storing 6 three-point functions, S{sub xyz}(r{sub 12}, r{sub 13}, r{sub 23}), where xyz (= ccd, cce, ddd, dde, dee, or eee) denotes the exchange character at the vertices 1, 2, and 3. All 35 Fermi E{sub 4} diagrams can be constructed from these 6 functions and other two-point functions that are already calculated. The elementary diagrams are known to be important in some systems like liquid {sup 3}He. We expect them to be small in nuclear matter at normal density, but they might become significant at higher densities appropriate for neutron star calculations. This year we programmed the FHNC/4 contributions to the energy and tested them in a number of simple model cases, including liquid {sup 3}He and Bethe`s homework problem. We get reasonable, but not exact agreement with earlier published work. In nuclear and neutron matter with the Argonne v{sub 14} interaction these contributions are indeed small corrections at normal density and grow to only 5-10 MeV/nucleon at 5 times normal density.« less

  12. Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory.

    PubMed

    Huang, Ying; Rong, Chunying; Zhang, Ruiqin; Liu, Shubin

    2017-01-01

    Wave function theory (WFT) and density functional theory (DFT)-the two most popular solutions to electronic structure problems of atoms and molecules-share the same origin, dealing with the same subject yet using distinct methodologies. For example, molecular orbitals are artifacts in WFT, whereas in DFT, electron density plays the dominant role. One question that needs to be addressed when using these approaches to appreciate properties related to molecular structure and reactivity is if there is any link between the two. In this work, we present a piece of strong evidence addressing that very question. Using five polymeric systems as illustrative examples, we reveal that using quantities from DFT such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, Onicescu information energy, Rényi entropy, etc., one is able to accurately evaluate orbital-related properties in WFT like frontier orbital energies and the HOMO (highest occupied molecular orbital)/LUMO (lowest unoccupied molecular orbital) gap. We verified these results at both the whole molecule level and the atoms-in-molecules level. These results provide compelling evidence suggesting that WFT and DFT are complementary to each other, both trying to comprehend the same properties of the electronic structure and molecular reactivity from different perspectives using their own characteristic vocabulary. Hence, there should be a bridge or bridges between the two approaches.

  13. The continuous and discrete molecular orbital x-ray bands from Xe(q+) (12≤q≤29) +Zn collisions.

    PubMed

    Guo, Yipan; Yang, Zhihu; Hu, Bitao; Wang, Xiangli; Song, Zhangyong; Xu, Qiumei; Zhang, Boli; Chen, Jing; Yang, Bian; Yang, Jie

    2016-07-29

    In this paper, the x-ray emissions are measured by the interaction of 1500-3500 keV Xe(q+) (q = 12, 15, 17, 19, 21, 23, 26 and 29) ions with Zn target. When q < 29, we observe Ll, Lα, Lβ1, Lβ2 and Lγ characteristic x-rays from Xe(q+) ions and a broad M-shell molecular orbital (MO) x-ray band from the transient quasi-molecular levels. It is found that their yields quickly increase with different rates as the incident energy increases. Besides, the widths of the broad MO x-ray bands are about 0.9-1.32 keV over the energy range studied and are proportional to v(1/2) (v = projectile velocity). Most remarkably, when the projectile charge state is 29, the broad x-ray band separates into several narrow discrete spectra, which was never observed before in this field.

  14. Nonadiabatic electron wavepacket dynamics behind molecular autoionization

    NASA Astrophysics Data System (ADS)

    Matsuoka, Takahide; Takatsuka, Kazuo

    2018-01-01

    A theoretical method for real-time dynamics of nonadiabatic reorganization of electronic configurations in molecules is developed, with dual aim that the intramolecular electron dynamics can be probed by means of direct and/or indirect photoionizations and that the physical origins behind photoionization signals attained in the time domain can be identified in terms of the language of time-dependent quantum chemistry. In doing so, we first formulate and implement a new computational scheme for nonadiabatic electron dynamics associated with molecular ionization, which well fits in the general theory of nonadiabatic electron dynamics. In this method, the total nonadiabatic electron wavepackets are propagated in time directly with complex natural orbitals without referring to Hartree-Fock molecular orbitals, and the amount of electron flux from a molecular region leading to ionization is evaluated in terms of the relevant complex natural orbitals. In the second half of this paper, we apply the method to electron dynamics in the elementary processes consisting of the Auger decay to demonstrate the methodological significance. An illustrative example is taken from an Auger decay starting from the 2a1 orbital hole-state of H2O+. The roles of nuclear momentum (kinetic) couplings in electronic-state mixing during the decay process are analyzed in terms of complex natural orbitals, which are schematically represented in the conventional language of molecular symmetry of the Hartree-Fock orbitals.

  15. Covariant diagrams for one-loop matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhengkang

    Here, we present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We also show how such derivation canmore » be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.« less

  16. Covariant diagrams for one-loop matching

    DOE PAGES

    Zhang, Zhengkang

    2017-05-30

    Here, we present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We also show how such derivation canmore » be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.« less

  17. jvenn: an interactive Venn diagram viewer.

    PubMed

    Bardou, Philippe; Mariette, Jérôme; Escudié, Frédéric; Djemiel, Christophe; Klopp, Christophe

    2014-08-29

    Venn diagrams are commonly used to display list comparison. In biology, they are widely used to show the differences between gene lists originating from different differential analyses, for instance. They thus allow the comparison between different experimental conditions or between different methods. However, when the number of input lists exceeds four, the diagram becomes difficult to read. Alternative layouts and dynamic display features can improve its use and its readability. jvenn is a new JavaScript library. It processes lists and produces Venn diagrams. It handles up to six input lists and presents results using classical or Edwards-Venn layouts. User interactions can be controlled and customized. Finally, jvenn can easily be embeded in a web page, allowing to have dynamic Venn diagrams. jvenn is an open source component for web environments helping scientists to analyze their data. The library package, which comes with full documentation and an example, is freely available at http://bioinfo.genotoul.fr/jvenn.

  18. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method

    PubMed Central

    2011-01-01

    Background The reliable and robust estimation of ligand binding affinity continues to be a challenge in drug design. Many current methods rely on molecular mechanics (MM) calculations which do not fully explain complex molecular interactions. Full quantum mechanical (QM) computation of the electronic state of protein-ligand complexes has recently become possible by the latest advances in the development of linear-scaling QM methods such as the ab initio fragment molecular orbital (FMO) method. This approximate molecular orbital method is sufficiently fast that it can be incorporated into the development cycle during structure-based drug design for the reliable estimation of ligand binding affinity. Additionally, the FMO method can be combined with approximations for entropy and solvation to make it applicable for binding affinity prediction for a broad range of target and chemotypes. Results We applied this method to examine the binding affinity for a series of published cyclin-dependent kinase 2 (CDK2) inhibitors. We calculated the binding affinity for 28 CDK2 inhibitors using the ab initio FMO method based on a number of X-ray crystal structures. The sum of the pair interaction energies (PIE) was calculated and used to explain the gas-phase enthalpic contribution to binding. The correlation of the ligand potencies to the protein-ligand interaction energies gained from FMO was examined and was seen to give a good correlation which outperformed three MM force field based scoring functions used to appoximate the free energy of binding. Although the FMO calculation allows for the enthalpic component of binding interactions to be understood at the quantum level, as it is an in vacuo single point calculation, the entropic component and solvation terms are neglected. For this reason a more accurate and predictive estimate for binding free energy was desired. Therefore, additional terms used to describe the protein-ligand interactions were then calculated to improve the

  19. Criticality and phase diagram of quantum long-range O(N ) models

    NASA Astrophysics Data System (ADS)

    Defenu, Nicolò; Trombettoni, Andrea; Ruffo, Stefano

    2017-09-01

    Several recent experiments in atomic, molecular, and optical systems motivated a huge interest in the study of quantum long-range systems. Our goal in this paper is to present a general description of their critical behavior and phases, devising a treatment valid in d dimensions, with an exponent d +σ for the power-law decay of the couplings in the presence of an O(N ) symmetry. By introducing a convenient ansatz for the effective action, we determine the phase diagram for the N -component quantum rotor model with long-range interactions, with N =1 corresponding to the Ising model. The phase diagram in the σ -d plane shows a nontrivial dependence on σ . As a consequence of the fact that the model is quantum, the correlation functions are anisotropic in the spatial and time coordinates for σ smaller than a critical value, and in this region the isotropy is not restored even at criticality. Results for the correlation length exponent ν , the dynamical critical exponent z , and a comparison with numerical findings for them are presented.

  20. The Space Shuttle Orbiter molecular environment induced by the supplemental flash evaporator system

    NASA Technical Reports Server (NTRS)

    Ehlers, H. K. F.

    1985-01-01

    The water vapor environment of the Space Shuttle Orbiter induced by the supplemental flash evaporator during the on-orbit flight phase has been analyzed based on Space II model predictions and orbital flight measurements. Model data of local density, column density, and return flux are presented. Results of return flux measurements with a mass spectrometer during STS-2 and of direct flux measurements during STS-4 are discussed and compared with model predictions.

  1. Students' Learning Activities While Studying Biological Process Diagrams

    ERIC Educational Resources Information Center

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal…

  2. Oxygen evolution on a SrFeO3 anode - Mechanistic considerations from molecular orbital theory

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, Alfred B.

    1989-01-01

    Various pathways proposed in the literature for the evolution of O2 in electrochemical oxidations are explored using the atom superposition and electron delocalization molecular orbital (ASED-MO) theory and the cluster models of the SrFeO3 surface as a prototype material. Calculations indicate that oxygen atoms can be easily formed on the (100) surface as well as on the edge cation sites of a SrFeO3 anode by the discharge of OH(-), followed by its deprotonation and electron transfer to the electrode. The O atoms can form O2 on the edge and corner sites, where the Fe(4+) is coordinated to four and three bulk oxygen anions, respectively. The calculations strongly disfavor mechanisms involving coupling of oxygen atoms adsorbed on different cations as well as a mechanism featuring an ozone intermediate.

  3. Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method.

    PubMed

    Nakata, Hiroya; Fedorov, Dmitri G; Nagata, Takeshi; Kitaura, Kazuo; Nakamura, Shinichiro

    2015-07-14

    The fully analytic first and second derivatives of the energy in the frozen domain formulation of the fragment molecular orbital (FMO) were developed and applied to locate transition states and determine vibrational contributions to free energies. The development is focused on the frozen domain with dimers (FDD) model. The intrinsic reaction coordinate method was interfaced with FMO. Simulations of IR and Raman spectra were enabled using FMO/FDD by developing the calculation of intensities. The accuracy is evaluated for S(N)2 reactions in explicit solvent, and for the free binding energies of a protein-ligand complex of the Trp cage protein (PDB: 1L2Y ). FMO/FDD is applied to study the keto-enol tautomeric reaction of phosphoglycolohydroxamic acid and the triosephosphate isomerase (PDB: 7TIM ), and the role of amino acid residue fragments in the reaction is discussed.

  4. CADDIS Volume 5. Causal Databases: Interactive Conceptual Diagrams (ICDs)

    EPA Pesticide Factsheets

    In Interactive Conceptual Diagram (ICD) section of CADDIS allows users to create conceptual model diagrams, search a literature-based evidence database, and then attach that evidence to their diagrams.

  5. Ab initio molecular orbital calculations on the associated complexes of lithium cyanide with ammonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohandas, P.; Shivaglal, M.C.; Chandrasekhar, J.

    Ab initio molecular orbital (MO) calculations with the 3-21G and 6-31G basis sets are carried out on a series of complexes of NH{sub 3} with Li{sup +}, C{triple_bond}N{sup -}, LiCN, and its isomer LiNC. The BSSE-corrected interaction energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies are evaluated for 15 species. Complexes with trifurcated (C{sub 3v}) structures are calculated to be saddle points on the potential energy surfaces and have one imaginary frequency each. Calculated energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies of the various species considered are discussed in terms of the nature of associationmore » of LiCN with ammonia. The vibrational frequencies of the relevant complexed species are compared with the experimental frequencies reported earlier for solutions of lithium cyanide in liquid ammonia. 40 refs., 1 fig., 4 tabs.« less

  6. Spinning AdS loop diagrams: two point functions

    NASA Astrophysics Data System (ADS)

    Giombi, Simone; Sleight, Charlotte; Taronna, Massimo

    2018-06-01

    We develop a systematic approach to evaluating AdS loop amplitudes with spinning legs based on the spectral (or "split") representation of bulk-to-bulk propagators, which re-expresses loop diagrams in terms of spectral integrals and higher-point tree diagrams. In this work we focus on 2pt one-loop Witten diagrams involving totally symmetric fields of arbitrary mass and integer spin. As an application of this framework, we study the contribution to the anomalous dimension of higher-spin currents generated by bubble diagrams in higher-spin gauge theories on AdS.

  7. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.

  8. Building Path Diagrams for Multilevel Models

    ERIC Educational Resources Information Center

    Curran, Patrick J.; Bauer, Daniel J.

    2007-01-01

    Multilevel models have come to play an increasingly important role in many areas of social science research. However, in contrast to other modeling strategies, there is currently no widely used approach for graphically diagramming multilevel models. Ideally, such diagrams would serve two functions: to provide a formal structure for deriving the…

  9. Spot the difference: Causal contrasts in scientific diagrams.

    PubMed

    Scholl, Raphael

    2016-12-01

    An important function of scientific diagrams is to identify causal relationships. This commonly relies on contrasts that highlight the effects of specific difference-makers. However, causal contrast diagrams are not an obvious and easy to recognize category because they appear in many guises. In this paper, four case studies are presented to examine how causal contrast diagrams appear in a wide range of scientific reports, from experimental to observational and even purely theoretical studies. It is shown that causal contrasts can be expressed in starkly different formats, including photographs of complexly visualized macromolecules as well as line graphs, bar graphs, or plots of state spaces. Despite surface differences, however, there is a measure of conceptual unity among such diagrams. In empirical studies they often serve not only to infer and communicate specific causal claims, but also as evidence for them. The key data of some studies is given nowhere except in the diagrams. Many diagrams show multiple causal contrasts in order to demonstrate both that an effect exists and that the effect is specific - that is, to narrowly circumscribe the phenomenon to be explained. In a large range of scientific reports, causal contrast diagrams reflect the core epistemic claims of the researchers. Copyright © 2016. Published by Elsevier Ltd.

  10. A Jamming Phase Diagram for Pressing Polymers

    NASA Astrophysics Data System (ADS)

    Teng, Chao; Zhang, Zexin; Wang, Xiaoliang; Xue, Gi; Nanjing University Team; Soochow University Collaboration

    2011-03-01

    Molecular glasses begin to flow when they are heated. Other glassy systems, such as dense foams, emulsions, colloidal suspensions and granular materials, begin to flow when subjected to sufficiently large stresses. The equivalence of these two routes to flow is a basic tenet of jamming, a conceptual means of unifying glassy behavior in a swath of disordered, dynamical arrested systems. However, a full understanding of jamming transition for polymers remains elusive. By controlling the packing densities of polymer glasses, we found that polymer glasses could once flow under cold-pressing at temperatures well below its calorimetric glass transition temperature (Tg). The thermomechanical analysis (TMA) results confirmed that Tg changed with density as well as the applied stress, which is exactly what to be expected within the jamming picture. We propose a jamming phase diagram for polymers based on our laboratory experiments.

  11. Measure synchronization in a spin-orbit-coupled bosonic Josephson junction

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin

    2015-11-01

    We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.

  12. Using Atomic Orbitals and Kinesthetic Learning to Authentically Derive Molecular Stretching Vibrations

    ERIC Educational Resources Information Center

    Bridgeman, Adam J.; Schmidt, Timothy W.; Young, Nigel A.

    2013-01-01

    The stretching modes of ML[subscript "x"] complexes have the same symmetry as the atomic orbitals on M that are used to form its s bonds. In the exercise suggested here, the atomic orbitals are used to derive the form of the stretching modes without the need for formal group theory. The analogy allows students to help understand many…

  13. An orbital localization criterion based on the theory of "fuzzy" atoms.

    PubMed

    Alcoba, Diego R; Lain, Luis; Torre, Alicia; Bochicchio, Roberto C

    2006-04-15

    This work proposes a new procedure for localizing molecular and natural orbitals. The localization criterion presented here is based on the partitioning of the overlap matrix into atomic contributions within the theory of "fuzzy" atoms. Our approach has several advantages over other schemes: it is computationally inexpensive, preserves the sigma/pi-separability in planar systems and provides a straightforward interpretation of the resulting orbitals in terms of their localization indices and atomic occupancies. The corresponding algorithm has been implemented and its efficiency tested on selected molecular systems. (c) 2006 Wiley Periodicals, Inc.

  14. A pseudo-haptic knot diagram interface

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Weng, Jianguang; Hanson, Andrew J.

    2011-01-01

    To make progress in understanding knot theory, we will need to interact with the projected representations of mathematical knots which are of course continuous in 3D but significantly interrupted in the projective images. One way to achieve such a goal would be to design an interactive system that allows us to sketch 2D knot diagrams by taking advantage of a collision-sensing controller and explore their underlying smooth structures through a continuous motion. Recent advances of interaction techniques have been made that allow progress to be made in this direction. Pseudo-haptics that simulates haptic effects using pure visual feedback can be used to develop such an interactive system. This paper outlines one such pseudo-haptic knot diagram interface. Our interface derives from the familiar pencil-and-paper process of drawing 2D knot diagrams and provides haptic-like sensations to facilitate the creation and exploration of knot diagrams. A centerpiece of the interaction model simulates a "physically" reactive mouse cursor, which is exploited to resolve the apparent conflict between the continuous structure of the actual smooth knot and the visual discontinuities in the knot diagram representation. Another value in exploiting pseudo-haptics is that an acceleration (or deceleration) of the mouse cursor (or surface locator) can be used to indicate the slope of the curve (or surface) of whom the projective image is being explored. By exploiting these additional visual cues, we proceed to a full-featured extension to a pseudo-haptic 4D visualization system that simulates the continuous navigation on 4D objects and allows us to sense the bumps and holes in the fourth dimension. Preliminary tests of the software show that main features of the interface overcome some expected perceptual limitations in our interaction with 2D knot diagrams of 3D knots and 3D projective images of 4D mathematical objects.

  15. Proof test diagrams for Zerodur glass-ceramic

    NASA Technical Reports Server (NTRS)

    Tucker, D. S.

    1991-01-01

    Proof test diagrams for Zerodur glass-ceramics are calculated from available fracture mechanics data. It is shown that the environment has a large effect on minimum time-to-failure as predicted by proof test diagrams.

  16. Updating the Nomographical Diagrams for Dimensioning the Beams

    NASA Astrophysics Data System (ADS)

    Pop, Maria T.

    2015-12-01

    In order to reduce the time period needed for structures design it is strongly recommended to use nomographical diagrams. The base for formation and updating the nomographical diagrams, stands on the charts presented by different technical publications. The updated charts use the same algorithm and calculation elements as the former diagrams in accordance to the latest prescriptions and European standards. The result consists in a chart, having the same properties, similar with the nomogragraphical diagrams already in us. As a general conclusion, even in our days, the nomographical diagrams are very easy to use. Taking into consideration the value of the moment it's easy to find out the necessary reinforcement area and vice-verse, having the reinforcement area you can find out the capable moment. It still remains a useful opportunity for pre-sizing and designs the reinforced concrete sections.

  17. Introducing a new bond reactivity index: Philicities for natural bond orbitals.

    PubMed

    Sánchez-Márquez, Jesús; Zorrilla, David; García, Víctor; Fernández, Manuel

    2017-12-22

    In the present work, a new methodology defined for obtaining reactivity indices (philicities) is proposed. This is based on reactivity functions such as the Fukui function or the dual descriptor, and makes it possible to project the information from reactivity functions onto molecular orbitals, instead of onto the atoms of the molecule (atomic reactivity indices). The methodology focuses on the molecules' natural bond orbitals (bond reactivity indices) because these orbitals have the advantage of being localized, allowing the reaction site of an electrophile or nucleophile to be determined within a very precise molecular region. This methodology provides a "philicity" index for every NBO, and a representative set of molecules has been used to test the new definition. A new methodology has also been developed to compare the "finite difference" and the "frontier molecular orbital" approximations. To facilitate their use, the proposed methodology as well as the possibility of calculating the new indices have been implemented in a new version of UCA-FUKUI software. In addition, condensation schemes based on atomic populations of the "atoms in molecules" theory, the Hirshfeld population analysis, the approximation of Mulliken (with a minimal basis set) and electrostatic potential-derived charges have also been implemented, including the calculation of "bond reactivity indices" defined in previous studies. Graphical abstract A new methodology defined for obtaining bond reactivity indices (philicities) is proposed and makes it possible to project the information from reactivity functions onto molecular orbitals. The proposed methodology as well as the possibility of calculating the new indices have been implemented in a new version of UCA-FUKUI software. In addition, this version can use new atomic condensation schemes and new "utilities" have also been included in this second version.

  18. Mollier-I, S-Diagrams for Combustion Gases in Data Processing

    NASA Technical Reports Server (NTRS)

    Zacharias, F.

    1982-01-01

    In order to have all the thermal and caloric states of combustion gases accessible in a computer, closed mathematical approximation equations were established for the real factors, the enthalpy and the entropy of a real combustion gas. The equations approximate the various effects of molecular forces real gas influence and dissociation - at temperatures of 200 K to 6,000 K, pressures of 0.001 to 1,000 bar, and in the range from stoichiometric composition to air. A system of subprograms is listed in FORTRAN, by means of which thermodynamic calculations can be carried out in the same manner as with Mollier I,S diagrams.

  19. Decorated Heegaard Diagrams and Combinatorial Heegaard Floer Homology

    NASA Astrophysics Data System (ADS)

    Hammarsten, Carl

    Heegaard Floer homology is a collection of invariants for closed oriented three-manifolds, introduced by Ozsvath and Szabo in 2001. The simplest version is defined as the homology of a chain complex coming from a Heegaard diagram of the three manifold. In the original definition, the differentials count the number of points in certain moduli spaces of holomorphic disks, which are hard to compute in general. More recently, Sarkar and Wang (2006) and Ozsvath, Stipsicz and Szabo, (2009) have determined combinatorial methods for computing this homology with Z2 coefficients. Both methods rely on the construction of very specific Heegaard diagrams for the manifold, which are generally very complicated. Given a decorated Heegaard diagram H for a closed oriented 3-manifold Y, that is a Heegaard diagram together with a collection of embedded paths satisfying certain criteria, we describe a combinatorial recipe for a chain complex CF'[special character omitted]( H). If H satisfies some technical constraints we show that this chain complex is homotopically equivalent to the Heegaard Floer chain complex CF[special character omitted](H) and hence has the Heegaard Floer homology HF[special character omitted](Y) as its homology groups. Using branched spines we give an algorithm to construct a decorated Heegaard diagram which satisfies the necessary technical constraints for every closed oriented Y. We present this diagram graphically in the form of a strip diagram.

  20. Real weights, bound states and duality orbits

    NASA Astrophysics Data System (ADS)

    Marrani, Alessio; Riccioni, Fabio; Romano, Luca

    2016-01-01

    We show that the duality orbits of extremal black holes in supergravity theories with symmetric scalar manifolds can be derived by studying the stabilizing subalgebras of suitable representatives, realized as bound states of specific weight vectors of the corresponding representation of the duality symmetry group. The weight vectors always correspond to weights that are real, where the reality properties are derived from the Tits-Satake diagram that identifies the real form of the Lie algebra of the duality symmetry group. Both 𝒩 = 2 magic Maxwell-Einstein supergravities and the semisimple infinite sequences of 𝒩 = 2 and 𝒩 = 4 theories in D = 4 and 5 are considered, and various results, obtained over the years in the literature using different methods, are retrieved. In particular, we show that the stratification of the orbits of these theories occurs because of very specific properties of the representations: in the case of the theory based on the real numbers, whose symmetry group is maximally noncompact and therefore all the weights are real, the stratification is due to the presence of weights of different lengths, while in the other cases it is due to the presence of complex weights.

  1. Interaction Analysis of FABP4 Inhibitors by X-ray Crystallography and Fragment Molecular Orbital Analysis

    PubMed Central

    2016-01-01

    X-ray crystal structural determination of FABP4 in complex with four inhibitors revealed the complex binding modes, and the resulting observations led to improvement of the inhibitory potency of FABP4 inhibitors. However, the detailed structure–activity relationship (SAR) could not be explained from these structural observations. For a more detailed understanding of the interactions between FABP4 and inhibitors, fragment molecular orbital analyses were performed. These analyses revealed that the total interfragment interaction energies of FABP4 and each inhibitor correlated with the ranking of the Ki value for the four inhibitors. Furthermore, interactions between each inhibitor and amino acid residues in FABP4 were identified. The oxygen atom of Lys58 in FABP4 was found to be very important for strong interactions with FABP4. These results might provide useful information for the development of novel potent FABP4 inhibitors. PMID:27096055

  2. Interaction Analysis of FABP4 Inhibitors by X-ray Crystallography and Fragment Molecular Orbital Analysis.

    PubMed

    Tagami, Uno; Takahashi, Kazutoshi; Igarashi, Shunsuke; Ejima, Chieko; Yoshida, Tomomi; Takeshita, Sen; Miyanaga, Wataru; Sugiki, Masayuki; Tokumasu, Munetaka; Hatanaka, Toshihiro; Kashiwagi, Tatsuki; Ishikawa, Kohki; Miyano, Hiroshi; Mizukoshi, Toshimi

    2016-04-14

    X-ray crystal structural determination of FABP4 in complex with four inhibitors revealed the complex binding modes, and the resulting observations led to improvement of the inhibitory potency of FABP4 inhibitors. However, the detailed structure-activity relationship (SAR) could not be explained from these structural observations. For a more detailed understanding of the interactions between FABP4 and inhibitors, fragment molecular orbital analyses were performed. These analyses revealed that the total interfragment interaction energies of FABP4 and each inhibitor correlated with the ranking of the K i value for the four inhibitors. Furthermore, interactions between each inhibitor and amino acid residues in FABP4 were identified. The oxygen atom of Lys58 in FABP4 was found to be very important for strong interactions with FABP4. These results might provide useful information for the development of novel potent FABP4 inhibitors.

  3. Orbit of the mercury-manganese binary 41 Eridani

    NASA Astrophysics Data System (ADS)

    Hummel, C. A.; Schöller, M.; Duvert, G.; Hubrig, S.

    2017-04-01

    Context. Mercury-manganese (HgMn) stars are a class of slowly rotating chemically peculiar main-sequence late B-type stars. More than two-thirds of the HgMn stars are known to belong to spectroscopic binaries. Aims: By determining orbital solutions for binary HgMn stars, we will be able to obtain the masses for both components and the distance to the system. Consequently, we can establish the position of both components in the Hertzsprung-Russell diagram and confront the chemical peculiarities of the HgMn stars with their age and evolutionary history. Methods: We initiated a program to identify interferometric binaries in a sample of HgMn stars, using the PIONIER near-infrared interferometer at the VLTI on Cerro Paranal, Chile. For the detected systems, we intend to obtain full orbital solutions in conjunction with spectroscopic data. Results: The data obtained for the SB2 system 41 Eridani allowed the determination of the orbital elements with a period of just five days and a semi-major axis of under 2 mas. Including published radial velocity measurements, we derived almost identical masses of 3.17 ± 0.07 M⊙ for the primary and 3.07 ± 0.07 M⊙ for the secondary. The measured magnitude difference is less than 0.1 mag. The orbital parallax is 18.05 ± 0.17 mas, which is in good agreement with the Hipparcos trigonometric parallax of 18.33 ± 0.15 mas. The stellar diameters are resolved as well at 0.39 ± 0.03 mas. The spin rate is synchronized with the orbital rate. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 088.C-0111, 189.C-0644, 090.D-0291, and 090.D-0917.

  4. Globular Clusters: Absolute Proper Motions and Galactic Orbits

    NASA Astrophysics Data System (ADS)

    Chemel, A. A.; Glushkova, E. V.; Dambis, A. K.; Rastorguev, A. S.; Yalyalieva, L. N.; Klinichev, A. D.

    2018-04-01

    We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1-2 mas yr-1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color-magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr-1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre's bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.

  5. First-order melting of a weak spin-orbit mott insulator into a correlated metal

    DOE PAGES

    Hogan, Tom; Yamani, Z.; Walkup, D.; ...

    2015-06-25

    Herein, the electronic phase diagram of the weak spin-orbit Mott insulator (Sr 1-xLa x) 3Ir 2O 7 is determined via an exhaustive experimental study. Upon doping electrons via La substitution, an immediate collapse in resistivity occurs along with a narrow regime of nanoscale phase separation comprised of antiferromagnetic, insulating regions and paramagnetic, metallic puddles persisting until x≈0.04. Continued electron doping results in an abrupt, first-order phase boundary where the Néel state is suppressed and a homogenous, correlated, metallic state appears with an enhanced spin susceptibility and local moments. In conclusion, as the metallic state is stabilized, a weak structural distortionmore » develops and suggests a competing instability with the parent spin-orbit Mott state.« less

  6. Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions

    PubMed Central

    Hankiewicz, Ewelina M.; Culcer, Dimitrie

    2017-01-01

    Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films, taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In topological insulators, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional Hikami-Larkin-Nagaoka formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In Weyl semimetal thin films having intermediate to large values of the quasiparticle mass, we show that extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. Throughout the paper, we discuss implications for experimental work, and, at the end, we provide a brief comparison with transition metal

  7. Using Functional Flow Diagrams to Enhance Technical Systems Understanding.

    ERIC Educational Resources Information Center

    Satchwell, Richard E.

    1997-01-01

    A treatment group of 20 aviation students used training manuals that presented functional flow diagrams before schematic diagrams. Comparison of data from 10 controls on a card-sort task showed that functional flow diagrams enhanced understanding of technical systems. (SK)

  8. Molecular structure and conformational composition of methyl chloroacetate: An electron-diffraction and ab initio molecular orbital investigation

    NASA Astrophysics Data System (ADS)

    Aarset, Kirsten; Boldermo, Kjell Gunnar; Hagen, Kolbjørn

    2010-08-01

    The molecular structure and conformational composition of methyl chloroacetate, H 2ClC sbnd C( dbnd O) sbnd O sbnd CH 3, have been determined by gas-phase electron-diffraction (GED), using results from ab initio molecular orbital calculations (HF, MP2 and MP3/6-311+G(d,p)) to obtain constraints on some of the structural parameters. The molecules exist in the gas-phase at 25 °C as a mixture of two stable conformers: syn with C sbnd Cl eclipsing C dbnd O and gauche with C sbnd H approximately eclipsing C dbnd O. In both of these conformers O sbnd CH 3 is also eclipsing C dbnd O. The experimentally observed conformational composition at 25 °C was 36(8)% syn and 64(8)% gauche (parenthesised values are 2 σ), corresponding to a free energy difference between conformers of ΔGexp° = 1.4(9) kJ/mol. The corresponding theoretical values obtained for Δ G° are 1.1 kJ/mol (HF), 2.3 kJ/mol (MP2), and 2.4 kJ/mol (MP3). The results for the principal distances ( rh1) and angles ( ∠h1) for the major gauche conformer obtained from the combined GED/ ab initio study (2 σ uncertainties) are r(CO sbnd CCl) = 1.502(9) Å, r(C sbnd H) = 1.084(6) Å (average value), r(C sbnd Cl) = 1.782(4) Å, r(C dbnd O) = 1.213(4) Å, r(CO sbnd O) = 1.346(4) Å, r(CH 3sbnd O) = 1.468(10) Å, ∠C sbnd C sbnd Cl = 110.0(6)°, ∠C sbnd C dbnd O = 124.7(6)°, ∠C sbnd C sbnd O = 108.3(10)°, ∠C sbnd O sbnd C = 115.9(8)°, ϕ(Cl sbnd C sbnd C dbnd O) = 111(2)°, ϕ(C sbnd O sbnd C dbnd O) = 3(3)°.

  9. Payload/orbiter contamination control requirement study, volume 1, exhibit A

    NASA Technical Reports Server (NTRS)

    Bareiss, L. E.; Hooper, V. W.; Rantanen, R. O.; Ress, E. B.

    1974-01-01

    This study is to identify and quantify the expected molecular and particulate on orbit contaminant environment for selected shuttle payloads as a result of major spacelab and shuttle orbiter contaminant sources. This investigation reviews individual payload susceptibilities to contamination, identifies the combined induced environment, identifies the risk of spacelab/payload critical surface(s) degradation, and provides preliminary contamination recommendations. It also establishes limiting factors which may depend upon operational activities associated with the payloads, spacelab, and the shuttle orbiter interface or upon independent payload functional activities.

  10. A geometric initial guess for localized electronic orbitals in modular biological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, P. G.; Fattebert, J. L.; Lau, E. Y.

    Recent first-principles molecular dynamics algorithms using localized electronic orbitals have achieved O(N) complexity and controlled accuracy in simulating systems with finite band gaps. However, accurately deter- mining the centers of these localized orbitals during simulation setup may require O(N 3) operations, which is computationally infeasible for many biological systems. We present an O(N) approach for approximating orbital centers in proteins, DNA, and RNA which uses non-localized solutions for a set of fixed-size subproblems to create a set of geometric maps applicable to larger systems. This scalable approach, used as an initial guess in the O(N) first-principles molecular dynamics code MGmol,more » facilitates first-principles simulations in biological systems of sizes which were previously impossible.« less

  11. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    NASA Astrophysics Data System (ADS)

    Cocker, Tyler L.; Peller, Dominik; Yu, Ping; Repp, Jascha; Huber, Rupert

    2016-11-01

    Watching a single molecule move on its intrinsic timescale has been one of the central goals of modern nanoscience, and calls for measurements that combine ultrafast temporal resolution with atomic spatial resolution. Steady-state experiments access the requisite spatial scales, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution. But tracking the intrinsic dynamics of a single molecule directly in the time domain faces the challenge that interactions with the molecule must be confined to a femtosecond time window. For individual nanoparticles, such ultrafast temporal confinement has been demonstrated by combining scanning tunnelling microscopy with so-called lightwave electronics, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on timescales faster even than a single cycle of light. Here we build on ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state. It thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record approximately 100-femtosecond snapshot images of the orbital structure with sub-ångström spatial resolution, and to reveal, through pump/probe measurements, coherent molecular vibrations at terahertz frequencies directly in the time domain. We anticipate that the combination of lightwave electronics and the atomic resolution of our approach will open the door to visualizing ultrafast photochemistry and the operation of molecular electronics on the single-orbital scale.

  12. Elliptic Capture Orbits for Missions to the Near Planets

    NASA Technical Reports Server (NTRS)

    Casal, Federico G.; Swenson, Byron L.; Mascy, Alfred C.

    1968-01-01

    eccentricity of the capture orbit is discussed and mass-penalty diagrams are presented. It is shown that these penalties do not materially offset the large gains obtained through the use of the elliptical capture mode.

  13. Morphological phase diagrams of C60 and C70 films on graphite

    NASA Astrophysics Data System (ADS)

    Sato, Kazuma; Tanaka, Tomoyasu; Akaike, Kouki; Kanai, Kaname

    2017-10-01

    The morphologies of C60 and C70 fullerene films vacuum-deposited onto graphite at various deposition rates and grown at several temperatures were investigated using atomic force microscopy. These fullerene films on graphite are model systems of physisorption of organic molecules that likely exhibit little chemical interaction with the graphite's surface. The morphologies of C60 and C70 films grown on graphite can be understood well from growth models previously reported. Comparison of the morphological phase diagrams obtained for C60 and C70 indicate that the diffusion properties of the adsorbed molecule are key in determining the morphology of the obtained film. The low diffusion rate of C70 resulted in various film morphologies for all deposition conditions tested. Also, the obtained phase diagrams can be understood by the results of fractal dimension analysis on the C60 and C70 islands. The fundamental understanding of film growth obtained using these ideal physisorption systems will aid in understanding film growth by other molecular adsorption systems.

  14. Fishbone Diagrams: Organize Reading Content with a "Bare Bones" Strategy

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2010-01-01

    Fishbone diagrams, also known as Ishikawa diagrams or cause-and-effect diagrams, are one of the many problem-solving tools created by Dr. Kaoru Ishikawa, a University of Tokyo professor. Part of the brilliance of Ishikawa's idea resides in the simplicity and practicality of the diagram's basic model--a fish's skeleton. This article describes how…

  15. Impulse-Momentum Diagrams

    ERIC Educational Resources Information Center

    Rosengrant, David

    2011-01-01

    Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists. These representations include: pictures, free-body diagrams, energy bar charts, electrical circuits, and, more recently, computer simulations and…

  16. Efficiency of ETV diagrams as diagnostic tools for long-term period variations. II. Non-conservative mass transfer, and gravitational radiation

    NASA Astrophysics Data System (ADS)

    Nanouris, N.; Kalimeris, A.; Antonopoulou, E.; Rovithis-Livaniou, H.

    2015-03-01

    Context. The credibility of an eclipse timing variation (ETV) diagram analysis is investigated for various manifestations of the mass transfer and gravitational radiation processes in binary systems. The monotonicity of the period variations and the morphology of the respective ETV diagrams are thoroughly explored in both the direct impact and the accretion disk mode of mass transfer, accompanied by different types of mass and angular momentum losses (through a hot-spot emission from the gainer and via the L2/L3 points). Aims: Our primary objective concerns the traceability of each physical mechanism by means of an ETV diagram analysis. Also, possible critical mass ratio values are sought for those transfer modes that involve orbital angular momentum losses strong enough to dictate the secular period changes even when highly competitive mechanisms with the opposite direction act simultaneously. Methods: The dot{J-dot{P}} relation that governs the orbital evolution of a binary system is set to provide the exact solution for the period and the function expected to represent the subsequent eclipse timing variations. The angular momentum transport is parameterized through appropriate empirical relations, which are inferred from semi-analytical ballistic models. Then, we numerically determine the minimum temporal range over which a particular mechanism is rendered measurable, as well as the critical mass ratio values that signify monotonicity inversion in the period modulations. Results: Mass transfer rates comparable to or greater than 10-8 M⊙ yr-1 are measurable for typical noise levels of the ETV diagrams, regardless of whether the process is conservative. However, the presence of a transient disk around the more massive component defines a critical mass ratio (qcr ≈ 0.83) above which the period turns out to decrease when still in the conservative regime, rendering the measurability of the anticipated variations a much more complicated task. The effects of

  17. Symbol-and-Arrow Diagrams in Teaching Pharmacokinetics.

    ERIC Educational Resources Information Center

    Hayton, William L.

    1990-01-01

    Symbol-and-arrow diagrams are helpful adjuncts to equations derived from pharmacokinetic models. Both show relationships among dependent and independent variables. Diagrams show only qualitative relationships, but clearly show which variables are dependent and which are independent, helping students understand complex but important functional…

  18. The melting point of lithium: an orbital-free first-principles molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mohan; Hung, Linda; Huang, Chen

    2013-08-25

    The melting point of liquid lithium near zero pressure is studied with large-scale orbital-free first-principles molecular dynamics (OF-FPMD) in the isobaric-isothermal ensemble. Here, we adopt the Wang-Govind-Carter (WGC) functional as our kinetic energy density functional (KEDF) and construct a bulk-derived local pseudopotential (BLPS) for Li. Our simulations employ both the ‘heat-until-melts’ method and the coexistence method. We predict 465 K as an upper bound of the melting point of Li from the ‘heat-until-melts’ method, while we predict 434 K as the melting point of Li from the coexistence method. These values compare well with an experimental melting point of 453more » K at zero pressure. Furthermore, we calculate a few important properties of liquid Li including the diffusion coefficients, pair distribution functions, static structure factors, and compressibilities of Li at 470 K and 725 K in the canonical ensemble. This theoretically-obtained results show good agreement with known experimental results, suggesting that OF-FPMD using a non-local KEDF and a BLPS is capable of accurately describing liquid metals.« less

  19. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis

    NASA Astrophysics Data System (ADS)

    Paula Leite, Rodolfo; Santos-Flórez, Pedro Antonio; de Koning, Maurice

    2017-09-01

    Using molecular dynamics simulations and nonequilibrium thermodynamic-integration techniques we compute the Helmholtz free energies of the body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal close-packed, and fluid phases of the Uhlenbeck-Ford model (UFM) and use the results to construct its phase diagram. The pair interaction associated with the UFM is characterized by an ultrasoft, purely repulsive pair potential that diverges logarithmically at the origin. We find that the bcc and fcc are the only thermodynamically stable crystalline phases in the phase diagram. Furthermore, we report the existence of two reentrant transition sequences as a function of the number density, one featuring a fluid-bcc-fluid succession and another displaying a bcc-fcc-bcc sequence near the triple point. We find strong resemblances to the phase behavior of other soft, purely repulsive systems such as the Gaussian-core model (GCM), inverse-power-law, and Yukawa potentials. In particular, we find that the fcc-bcc-fluid triple point and the phase boundaries in its vicinity are in good agreement with the prediction supplied by a recently proposed corresponding-states principle [J. Chem. Phys. 134, 241101 (2011), 10.1063/1.3605659; Europhys. Lett. 100, 66004 (2012), 10.1209/0295-5075/100/66004]. The particularly strong resemblance between the behavior of the UFM and GCM models are also discussed.

  20. The Role of Super-Atom Molecular Orbitals in Doped Fullerenes in a Femtosecond Intense Laser Field

    DOE PAGES

    Xiong, Hui; Mignolet, Benoit; Fang, Li; ...

    2017-03-09

    The interaction of gas phase endohedral fullerene Ho3N@C80 with intense (0.1–5 × 10 14 W/cm 2), short (30 fs), 800 nm laser pulses was investigated. The power law dependence of Ho 3N@C 80 q+, q = 1–2, was found to be different from that of C 60. Time-dependent density functional theory computations revealed different light-induced ionization mechanisms. Unlike in C 60, in doped fullerenes, the breaking of the cage spherical symmetry makes super atomic molecular orbital (SAMO) states optically active. Theoretical calculations suggest that the fast ionization of the SAMO states in Ho 3N@C 80 is responsible for the nmore » = 3 power law for singly charged parent molecules at intensities lower than 1.2 × 10 14 W/cm 2.« less

  1. 3D Printing of Molecular Models with Calculated Geometries and p Orbital Isosurfaces

    ERIC Educational Resources Information Center

    Carroll, Felix A.; Blauch, David N.

    2017-01-01

    3D printing was used to prepare models of the calculated geometries of unsaturated organic structures. Incorporation of p orbital isosurfaces into the models enables students in introductory organic chemistry courses to have hands-on experience with the concept of orbital alignment in strained and unstrained p systems.

  2. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies.

    PubMed

    Scivetti, Iván; Persson, Mats

    2017-09-06

    We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals-HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments. This increase of the gap can be rationalised in a simple dielectric model with parameters determined from DFT calculations and is found to be dominated by the image interaction with the metal. We find, however, that this simplified model overestimates the downward shift of the energy gap in the limit of an infinitely thick film.

  3. The Problem of Labels in E-Assessment of Diagrams

    ERIC Educational Resources Information Center

    Jayal, Ambikesh; Shepperd, Martin

    2009-01-01

    In this article we explore a problematic aspect of automated assessment of diagrams. Diagrams have partial and sometimes inconsistent semantics. Typically much of the meaning of a diagram resides in the labels; however, the choice of labeling is largely unrestricted. This means a correct solution may utilize differing yet semantically equivalent…

  4. Proposed alteration of images of molecular orbitals obtained using a scanning tunneling microscope as a probe of electron correlation.

    PubMed

    Toroz, Dimitrios; Rontani, Massimo; Corni, Stefano

    2013-01-04

    Scanning tunneling spectroscopy (STS) allows us to image single molecules decoupled from the supporting substrate. The obtained images are routinely interpreted as the square moduli of molecular orbitals, dressed by the mean-field electron-electron interaction. Here we demonstrate that the effect of electron correlation beyond the mean field qualitatively alters the uncorrelated STS images. Our evidence is based on the ab initio many-body calculation of STS images of planar molecules with metal centers. We find that many-body correlations alter significantly the image spectral weight close to the metal center of the molecules. This change is large enough to be accessed experimentally, surviving to molecule-substrate interactions.

  5. Electronic Structure of pi Systems: Part II. The Unification of Huckel and Valence Bond Theories.

    ERIC Educational Resources Information Center

    Fox, Marye Anne; Matsen, F. A.

    1985-01-01

    Presents a new view of the electronic structure of pi systems that unifies molecular orbital and valence bond theories. Describes construction of electronic structure diagrams (central to this new view) which demonstrate how configuration interaction can improve qualitative predictions made from simple Huckel theory. (JN)

  6. Spin wave Feynman diagram vertex computation package

    NASA Astrophysics Data System (ADS)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  7. NASA Orbital Debris Engineering Model ORDEM2008 (Beta Version)

    NASA Technical Reports Server (NTRS)

    Stansbery, Eugene G.; Krisko, Paula H.

    2009-01-01

    This is an interim document intended to accompany the beta-release of the ORDEM2008 model. As such it provides the user with a guide for its use, a list of its capabilities, a brief summary of model development, and appendices included to educate the user as to typical runtimes for different orbit configurations. More detailed documentation will be delivered with the final product. ORDEM2008 supersedes NASA's previous model - ORDEM2000. The availability of new sensor and in situ data, the re-analysis of older data, and the development of new analytical techniques, has enabled the construction of this more comprehensive and sophisticated model. Integrated with the software is an upgraded graphical user interface (GUI), which uses project-oriented organization and provides the user with graphical representations of numerous output data products. These range from the conventional average debris size vs. flux magnitude for chosen analysis orbits, to the more complex color-contoured two-dimensional (2-D) directional flux diagrams in terms of local spacecraft pitch and yaw.

  8. Science Visual Literacy: Learners' Perceptions and Knowledge of Diagrams

    ERIC Educational Resources Information Center

    McTigue, Erin M.; Flowers, Amanda C.

    2011-01-01

    Constructing meaning from science texts relies not only on comprehending the words but also the diagrams and other graphics. The goal of this study was to explore elementary students' perceptions of science diagrams and their skills related to diagram interpretation. 30 students, ranging from second grade through middle school, completed a diagram…

  9. Functions of key residues in the ligand-binding pocket of vitamin D receptor: Fragment molecular orbital interfragment interaction energy analysis

    NASA Astrophysics Data System (ADS)

    Yamagishi, Kenji; Yamamoto, Keiko; Yamada, Sachiko; Tokiwa, Hiroaki

    2006-03-01

    Fragment molecular orbital-interfragment interaction energy calculations of the vitamin D receptor (VDR)/1α,25-dihydroxyvitamin D 3 complex were utilized to assign functions of key residues of the VDR. Only one residue forms a significant interaction with the corresponding hydroxy group of the ligand, although two residues are located around each hydroxy group. The degradation of binding affinity for derivatives upon removal of a hydroxy group is closely related to the trend in the strength of the hydrogen bonds. Type II hereditary rickets due to an Arg274 point mutation is caused by the lack of the strongest hydrogen bond.

  10. Gluing Ladder Feynman Diagrams into Fishnets

    DOE PAGES

    Basso, Benjamin; Dixon, Lance J.

    2017-08-14

    We use integrability at weak coupling to compute fishnet diagrams for four-point correlation functions in planar Φ 4 theory. Our results are always multilinear combinations of ladder integrals, which are in turn built out of classical polylogarithms. The Steinmann relations provide a powerful constraint on such linear combinations, which leads to a natural conjecture for any fishnet diagram as the determinant of a matrix of ladder integrals.

  11. Boundary holographic Witten diagrams

    DOE PAGES

    Karch, Andreas; Sato, Yoshiki

    2017-09-25

    In this paper we discuss geodesic Witten diagrams in generic holographic conformal field theories with boundary or defect. Boundary CFTs allow two different de-compositions of two-point functions into conformal blocks: boundary channel and ambient channel. Building on earlier work, we derive a holographic dual of the boundary channel decomposition in terms of bulk-to-bulk propagators on lower dimensional AdS slices. In the situation in which we can treat the boundary or defect as a perturbation around pure AdS spacetime, we obtain the leading corrections to the two-point function both in boundary and ambient channel in terms of geodesic Witten diagrams whichmore » exactly reproduce the decomposition into corresponding conformal blocks on the field theory side.« less

  12. A Critical Appraisal of the "Day" Diagram

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew P.; Tauxe, Lisa; Heslop, David; Zhao, Xiang; Jiang, Zhaoxia

    2018-04-01

    The "Day" diagram (Day et al., 1977, https://doi.org/10.1016/0031-9201(77)90108-X) is used widely to make inferences about the domain state of magnetic mineral assemblages. Based on theoretical and empirical arguments, the Day diagram is demarcated into stable "single domain" (SD), "pseudo single domain" ("PSD"), and "multidomain" (MD) zones. It is straightforward to make the necessary measurements for a sample and to plot results within the "domain state" framework based on the boundaries defined by Day et al. (1977, https://doi.org/10.1016/0031-9201(77)90108-X). We discuss 10 issues that limit Day diagram interpretation, including (1) magnetic mineralogy, (2) the associated magnetocrystalline anisotropy type, (3) mineral stoichiometry, (4) stress state, (5) surface oxidation, (6) magnetostatic interactions, (7) particle shape, (8) thermal relaxation, (9) magnetic particle mixtures, and (10) definitional/measurement issues. In most studies, these variables are unknowns and cannot be controlled for, so that hysteresis parameters for single bulk samples are nonunique and any data point in a Day diagram could result from infinite combinations of relevant variables. From this critical appraisal, we argue that the Day diagram is fundamentally ambiguous for domain state diagnosis. Widespread use of the Day diagram has also contributed significantly to prevalent but questionable views, including underrecognition of the importance of stable SD particles in the geological record and reinforcement of the unhelpful PSD concept and of its geological importance. Adoption of approaches that enable correct domain state diagnosis should be an urgent priority for component-specific understanding of magnetic mineral assemblages and for quantitative rock magnetic interpretation.

  13. Glass and liquid phase diagram of a polyamorphic monatomic system

    NASA Astrophysics Data System (ADS)

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-01

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, PLDA-HDA(T) and PHDA-LDA(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, PLPC-HDA(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)], 10.1103/PhysRevE.48.4605 simulations suggest that the PLDA-HDA(T) and PHDA-LDA(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the PLPC-HDA(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the PLDA-HDA(T), PHDA-LDA(T), PLPC-HDA(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the

  14. Glass and liquid phase diagram of a polyamorphic monatomic system.

    PubMed

    Reisman, Shaina; Giovambattista, Nicolas

    2013-02-14

    We perform out-of-equilibrium molecular dynamics (MD) simulations of a monatomic system with Fermi-Jagla (FJ) pair potential interactions. This model system exhibits polyamorphism both in the liquid and glass state. The two liquids, low-density (LDL) and high-density liquid (HDL), are accessible in equilibrium MD simulations and can form two glasses, low-density (LDA) and high-density amorphous (HDA) solid, upon isobaric cooling. The FJ model exhibits many of the anomalous properties observed in water and other polyamorphic liquids and thus, it is an excellent model system to explore qualitatively the thermodynamic properties of such substances. The liquid phase behavior of the FJ model system has been previously characterized. In this work, we focus on the glass behavior of the FJ system. Specifically, we perform systematic isothermal compression and decompression simulations of LDA and HDA at different temperatures and determine "phase diagrams" for the glass state; these phase diagrams varying with the compression/decompression rate used. We obtain the LDA-to-HDA and HDA-to-LDA transition pressure loci, P(LDA-HDA)(T) and P(HDA-LDA)(T), respectively. In addition, the compression-induced amorphization line, at which the low-pressure crystal (LPC) transforms to HDA, P(LPC-HDA)(T), is determined. As originally proposed by Poole et al. [Phys. Rev. E 48, 4605 (1993)] simulations suggest that the P(LDA-HDA)(T) and P(HDA-LDA)(T) loci are extensions of the LDL-to-HDL and HDL-to-LDL spinodal lines into the glass domain. Interestingly, our simulations indicate that the P(LPC-HDA)(T) locus is an extension, into the glass domain, of the LPC metastability limit relative to the liquid. We discuss the effects of compression/decompression rates on the behavior of the P(LDA-HDA)(T), P(HDA-LDA)(T), P(LPC-HDA)(T) loci. The competition between glass polyamorphism and crystallization is also addressed. At our "fast rate," crystallization can be partially suppressed and the glass

  15. Orbital maneuvering subsystem functional path analysis for performance monitoring fault detection and annunciation

    NASA Technical Reports Server (NTRS)

    Keesler, E. L.

    1974-01-01

    The functional paths of the Orbital Maneuver Subsystem (OMS) is defined. The operational flight instrumentation required for performance monitoring, fault detection, and annunciation is described. The OMS is a pressure fed rocket engine propulsion subsystem. One complete OMS shares each of the two auxiliary propulsion subsystem pods with a reaction control subsystem. Each OMS is composed of a pressurization system, a propellant tanking system, and a gimbaled rocket engine. The design, development, and operation of the system are explained. Diagrams of the system are provided.

  16. Pitfalls and feedback when constructing topological pressure-temperature phase diagrams

    NASA Astrophysics Data System (ADS)

    Ceolin, R.; Toscani, S.; Rietveld, Ivo B.; Barrio, M.; Tamarit, J. Ll.

    2017-04-01

    The stability hierarchy between different phases of a chemical compound can be accurately reproduced in a topological phase diagram. This type of phase diagrams may appear to be the result of simple extrapolations, however, experimental complications quickly increase in the case of crystalline trimorphism (and higher order polymorphism). To ensure the accurate positioning of stable phase domains, a topological phase diagram needs to be consistent. This paper gives an example of how thermodynamic feedback can be used in the topological construction of phase diagrams to ensure overall consistency in a phase diagram based on the case of piracetam crystalline trimorphism.

  17. TES buffer-induced phase separation of aqueous solutions of several water-miscible organic solvents at 298.15 K: phase diagrams and molecular dynamic simulations.

    PubMed

    Taha, Mohamed; Lee, Ming-Jer

    2013-06-28

    Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.

  18. Covalent Binding with Neutrons on the Femto-scale

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Kanada-En'yo, Y.; Kimura, M.

    2017-06-01

    In light nuclei we have well defined clusters, nuclei with closed shells, which serve as centers for binary molecules with covalent binding by valence neutrons. Single neutron orbitals in light neutron-excess nuclei have well defined shell model quantum numbers. With the combination of two clusters and their neutron valence states, molecular two-center orbitals are defined; in the two-center shell model we can place valence neutrons in a large variety of molecular two-center states, and the formation of Dimers becomes possible. The corresponding rotational bands point with their large moments of inertia and the Coriolis decoupling effect (for K = 1/2 bands) to the internal molecular orbital structure in these states. On the basis of these the neutron rich isotopes allow the formation of a large variety molecular structures on the nuclear scale. An extended Ikeda diagram can be drawn for these cases. Molecular bands in Be and Ne-isotopes are discussed as text-book examples.

  19. Teaching Verbal Chains Using Flow Diagrams and Texts

    ERIC Educational Resources Information Center

    Holliday, William G.

    1976-01-01

    A discussion of the recent diagram and attention theory and research surprisingly suggests that a single flow diagram with instructive questions constitutes an effective learning medium in terms of verbal chaining. (Author)

  20. Students' different understandings of class diagrams

    NASA Astrophysics Data System (ADS)

    Boustedt, Jonas

    2012-03-01

    The software industry needs well-trained software designers and one important aspect of software design is the ability to model software designs visually and understand what visual models represent. However, previous research indicates that software design is a difficult task to many students. This article reports empirical findings from a phenomenographic investigation on how students understand class diagrams, Unified Modeling Language (UML) symbols, and relations to object-oriented (OO) concepts. The informants were 20 Computer Science students from four different universities in Sweden. The results show qualitatively different ways to understand and describe UML class diagrams and the "diamond symbols" representing aggregation and composition. The purpose of class diagrams was understood in a varied way, from describing it as a documentation to a more advanced view related to communication. The descriptions of class diagrams varied from seeing them as a specification of classes to a more advanced view, where they were described to show hierarchic structures of classes and relations. The diamond symbols were seen as "relations" and a more advanced way was seeing the white and the black diamonds as different symbols for aggregation and composition. As a consequence of the results, it is recommended that UML should be adopted in courses. It is briefly indicated how the phenomenographic results in combination with variation theory can be used by teachers to enhance students' possibilities to reach advanced understanding of phenomena related to UML class diagrams. Moreover, it is recommended that teachers should put more effort in assessing skills in proper usage of the basic symbols and models and students should be provided with opportunities to practise collaborative design, e.g. using whiteboards.

  1. Degeneracy Lifting of Adsorbate Orbitals Imaged by High-Resolution Momentum Microscopy

    NASA Astrophysics Data System (ADS)

    Graus, Martin; Metzger, Christian; Grimm, Manuel; Feyer, Vitaliy; Puschnig, Peter; Schöll, Achim; Reinert, Friedrich

    2018-06-01

    On the topical example of the symmetry splitting of degenerate orbitals due to adsorption we drive the technique of orbital imaging by momentum microscopy (k-PEEM) ahead, demonstrating the potential of the method when performed with high accuracy in terms of experimental quality, energy resolution and data evaluation. Upon adsorption on the twofold symmetric substrate Ag(110), the symmetry of Iron-phthalocyanine reduces from fourfold two twofold, leading to distinct binding energies of the two e1g orbitals which constitute the twofold degenerate lowest unoccupied molecular orbital of the gas-phase molecule. In this combined experimental and theoretical study, we show that by k-PEEM with high energy resolution the individual orbitals can be identified and distinguished by mapping in momentum space.

  2. How Design Guides Learning from Matrix Diagrams

    ERIC Educational Resources Information Center

    van der Meij, Jan; van Amelsvoort, Marije; Anjewierden, Anjo

    2017-01-01

    Compared to text, diagrams are superior in their ability to structure and summarize information and to show relations between concepts and ideas. Perceptual cues, like arrows, are expected to improve the retention of diagrams by guiding the learner towards important elements or showing a preferred reading sequence. In our experiment, we analyzed…

  3. Compromised Structures: Verbal Descriptions of Mechanism Diagrams

    ERIC Educational Resources Information Center

    Bhattacharyya, Gautam; Harris, Michael S.

    2018-01-01

    We report our research of seven pairs of students enrolled in the second semester of sophomore-level organic chemistry as they attempted to describe (in their own words) and draw, respectively, three electron-pushing diagrams of three-step reaction mechanisms. The tasks' objective was to accurately reproduce the diagrams based solely on the…

  4. Complete phase diagram of rare-earth nickelates from first-principles

    NASA Astrophysics Data System (ADS)

    Varignon, Julien; Grisolia, Mathieu N.; Íñiguez, Jorge; Barthélémy, Agnès; Bibes, Manuel

    2017-12-01

    The structural, electronic and magnetic properties of AMO3 perovskite oxides, where M is a 3d transition metal, are highly sensitive to the geometry of the bonds between the metal-d and oxygen-p ions (through octahedra rotations and distortions) and to their level of covalence. This is particularly true in rare-earth nickelates RNiO3 that display a metal-insulator transition with complex spin orders tunable by the rare-earth size, and are on the border line between dominantly ionic (lighter elements) and covalent characters (heavier elements). Accordingly, computing their ground state is challenging and a complete theoretical description of their rich phase diagram is still missing. Here, using first-principles simulations, we successfully describe the electronic and magnetic experimental ground state of nickelates. We show that the insulating phase is characterized by a split of the electronic states of the two Ni sites (i.e., resembling low-spin 4+ and high-spin 2+) with a concomitant shift of the oxygen-2p orbitals toward the depleted Ni cations. Therefore, from the point of view of the charge, the two Ni sites appear nearly identical whereas they are in fact distinct. Performing such calculations for several nickelates, we built a theoretical phase diagram that reproduces all their key features, namely a systematic dependence of the metal-insulator transition with the rare-earth size and the crossover between a second to first order transition for R = Pr and Nd. Finally, our results hint at strategies to control the electronic and magnetic phases of perovskite oxides by fine tuning of the level of covalence.

  5. Phase Behavior of Binary Blends of High Molecular Weight Diblock Copolymers with a Low Molecular Weight Triblock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickiewicz, Rafal A.; Ntoukas, Eleftherios; Avgeropoulos, Apostolos

    2009-08-26

    Binary blends of four different high molecular weight poly(styrene-b-isoprene) (SI) diblock copolymers with a lower molecular weight poly(styrene-b-isoprene-b-styrene) (SIS) triblock copolymer were prepared, and their morphology was characterized by transmission electron microscopy and ultra-small-angle X-ray scattering. All the neat block copolymers have nearly symmetric composition and exhibit the lamellar morphology. The SI diblock copolymers had number-average molecular weights, Mn, in the range 4.4 x 10{sup 5}--1.3 x 10{sup 6} g/mol and volume fractions of poly(styrene), {Phi}{sub PS}, in the range 0.43--0.49, and the SIS triblock had a molecular weight of Mn 6.2 x 10{sup 4} g/mol with {Phi}{sub PS} =more » 0.41. The high molecular weight diblock copolymers are very strongly segregating, with interaction parameter values, {chi}N, in the range 470--1410. A morphological phase diagram in the parameter space of molecular weight ratio (R = M{sub n}{sup diblock}/1/2M{sub n}{sup triblock}) and blend composition was constructed, with R values in the range between 14 and 43, which are higher than previously reported. The phase diagram revealed a large miscibility gap for the blends, with macrophase separation into two distinct types of microphase-separated domains for weight fractions of SI, w{sub SI} < 0.9, implying virtually no solubility of the much higher molecular weight diblocks in the lower molecular weight triblock. For certain blend compositions, above R 30, morphological transitions from the lamellar to cylindrical and bicontinuous structures were also observed.« less

  6. Molecular beam mass spectrometer development

    NASA Technical Reports Server (NTRS)

    Brock, F. J.; Hueser, J. E.

    1976-01-01

    An analytical model, based on the kinetics theory of a drifting Maxwellian gas is used to determine the nonequilibrium molecular density distribution within a hemispherical shell open aft with its axis parallel to its velocity. The concept of a molecular shield in terrestrial orbit above 200 km is also analyzed using the kinetic theory of a drifting Maxwellian gas. Data are presented for the components of the gas density within the shield due to the free stream atmosphere, outgassing from the shield and enclosed experiments, and atmospheric gas scattered off a shield orbiter system. A description is given of a FORTRAN program for computating the three dimensional transition flow regime past the space shuttle orbiter that employs the Monte Carlo simulation method to model real flow by some thousands of simulated molecules.

  7. Formulae and Flow-Diagrams

    ERIC Educational Resources Information Center

    Willson, William Wynne

    1977-01-01

    The author recommends the use of flow charting to help students understand the manipulation of algebraic formulae. He identifies some problems with flow charts and suggests an alternative method of constructing flow diagrams. (SD)

  8. Interrelations between random walks on diagrams (graphs) with and without cycles.

    PubMed

    Hill, T L

    1988-05-01

    Three topics are discussed. A discrete-state, continuous-time random walk with one or more absorption states can be studied by a presumably new method: some mean properties, including the mean time to absorption, can be found from a modified diagram (graph) in which each absorption state is replaced by a one-way cycle back to the starting state. The second problem is a random walk on a diagram (graph) with cycles. The walk terminates on completion of the first cycle. This walk can be replaced by an equivalent walk on a modified diagram with absorption. This absorption diagram can in turn be replaced by another modified diagram with one-way cycles back to the starting state, just as in the first problem. The third problem, important in biophysics, relates to a long-time continuous walk on a diagram with cycles. This diagram can be transformed (in two steps) to a modified, more-detailed, diagram with one-way cycles only. Thus, the one-way cycle fluxes of the original diagram can be found from the state probabilities of the modified diagram. These probabilities can themselves be obtained by simple matrix inversion (the probabilities are determined by linear algebraic steady-state equations). Thus, a simple method is now available to find one-way cycle fluxes exactly (previously Monte Carlo simulation was required to find these fluxes, with attendant fluctuations, for diagrams of any complexity). An incidental benefit of the above procedure is that it provides a simple proof of the one-way cycle flux relation Jn +/- = IIn +/- sigma n/sigma, where n is any cycle of the original diagram.

  9. Vesicle deformation by microtubules: A phase diagram

    NASA Astrophysics Data System (ADS)

    Emsellem, Virginie; Cardoso, Olivier; Tabeling, Patrick

    1998-10-01

    The experimental investigation of vesicles deformed by the growth of encapsulated microtubules shows that the axisymmetric morphologies can be classified into ovals, lemons, φ, cherries, dumbbells, and pearls. A geometrical phase diagram is established. Numerical minimization of the elastic energy of the membrane reproduces satisfactorily well the observed morphologies and the corresponding phase diagram.

  10. The Butterfly diagram leopard skin pattern

    NASA Astrophysics Data System (ADS)

    Ternullo, Maurizio

    2011-08-01

    A time-latitude diagram where spotgroups are given proportional relevance to their area is presented. The diagram reveals that the spotted area distribution is higly dishomogeneous, most of it being concentrated in few, small portions (``knots'') of the Butterfly Diagram; because of this structure, the BD may be properly described as a cluster of knots. The description, assuming that spots scatter around the ``spot mean latitude'' steadily drifting equatorward, is challenged. Indeed, spots cluster around at as many latitudes as knots; a knot may appear at either lower or higher latitudes than previous ones, in a seemingly random way; accordingly, the spot mean latitude abruptly drifts equatorward or even poleward at any knot activation, in spite of any smoothing procedure. Preliminary analyses suggest that the activity splits, in any hemisphere, into two or more distinct ``activity waves'', drifting equatorward at a rate higher than the spot zone as a whole.

  11. Orbital and escape dynamics in barred galaxies - III. The 3D system: correlations between the basins of escape and the NHIMs

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.; Jung, Christof

    2018-01-01

    The escape dynamics of the stars in a barred galaxy composed of a spherically symmetric central nucleus, a bar, a flat thin disc and a dark matter halo component is investigated by using a realistic three degrees of freedom (3-d.o.f.) dynamical model. Modern colour-coded diagrams are used for distinguishing between bounded and escaping motion. In addition, the smaller alignment index method is deployed for determining the regular, sticky or chaotic nature of bounded orbits. We reveal the basins of escape corresponding to the escape through the two symmetrical escape channels around the Lagrange points L2 and L3 and also we relate them with the corresponding distribution of the escape times of the orbits. Furthermore, we demonstrate how the stable manifolds, around the index-1 saddle points, accurately define the fractal basin boundaries observed in the colour-coded diagrams. The development scenario of the fundamental vertical Lyapunov periodic orbit is thoroughly explored for obtaining a more complete view of the unfolding of the singular behaviour of the dynamics at the cusp values of the parameters. Finally, we examine how the combination of the most important parameters of the bar (such as the semimajor axis and the angular velocity) influences the observed stellar structures (rings and spirals), which are formed by escaping stars guided by the invariant manifolds near the saddle points.

  12. Charge-transfer mechanism for electrophilic aromatic nitration and nitrosation via the convergence of (ab initio) molecular-orbital and Marcus-Hush theories with experiments.

    PubMed

    Gwaltney, Steven R; Rosokha, Sergiy V; Head-Gordon, Martin; Kochi, Jay K

    2003-03-19

    The highly disparate rates of aromatic nitrosation and nitration, despite the very similar (electrophilic) properties of the active species: NO(+) and NO(2)(+) in Chart 1, are quantitatively reconciled. First, the thorough mappings of the potential-energy surfaces by high level (ab initio) molecular-orbital methodologies involving extensive coupled-cluster CCSD(T)/6-31G optimizations establish the intervention of two reactive intermediates in nitration (Figure 8) but only one in nitrosation (Figure 7). Second, the same distinctive topologies involving double and single potential-energy minima (Figures 6 and 5) also emerge from the semiquantitative application of the Marcus-Hush theory to the transient spectral data. Such a striking convergence from quite different theoretical approaches indicates that the molecular-orbital and Marcus-Hush (potential-energy) surfaces are conceptually interchangeable. In the resultant charge-transfer mechanism, the bimolecular interactions of arene donors with both NO(+) and NO(2)(+) spontaneously lead (barrierless) to pi-complexes in which electron transfer is concurrent with complexation. Such a pi-complex in nitration is rapidly converted to the sigma-complex, whereas this Wheland adduct in nitrosation merely represents a high energy (transition-state) structure. Marcus-Hush analysis thus demonstrates how the strongly differentiated (arene) reactivities toward NO(+) and NO(2)(+) can actually be exploited in the quantitative development of a single coherent (electron-transfer) mechanism for both aromatic nitrosation and nitration.

  13. Particle–hole ring diagrams for fermions in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, N., E-mail: nkaiser@ph.tum.de

    2014-11-15

    The set of particle–hole ring diagrams for a many-fermion system in two dimensions is studied. The complex-valued polarization function is derived in detail and shown to be expressible in terms of square-root functions. For a contact-interaction the perturbative contributions to the energy per particle Ē(k{sub f}) are calculated in a closed analytical form from third up to twelfth order. The resummation of the particle–hole ring diagrams to all orders is studied and a pronounced dependence on the dimensionless coupling parameter α is found. There is a substantial difference between the complete ring-sum with all exchange-type diagrams included and the standardmore » resummation of the leading n-ring diagrams only. The spin factor S{sub n}(g) associated to the nth order ring diagrams is derived for arbitrary spin-degeneracy g.« less

  14. Molecular origins of conduction channels observed in shot-noise measurements.

    PubMed

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-11-01

    Measurements of shot noise from single molecules have indicated the presence of various conduction channels. We present three descriptions of these channels in molecular terms showing that the number of conduction channels is limited by bottlenecks in the molecule and that the channels can be linked to transmission through different junction states. We introduce molecular-conductance orbitals, which allow the transmission to be separated into contributions from individual orbitals and contributions from interference between pairs of orbitals.

  15. A Community Based Systems Diagram of Obesity Causes.

    PubMed

    Allender, Steven; Owen, Brynle; Kuhlberg, Jill; Lowe, Janette; Nagorcka-Smith, Phoebe; Whelan, Jill; Bell, Colin

    2015-01-01

    Application of system thinking to the development, implementation and evaluation of childhood obesity prevention efforts represents the cutting edge of community-based prevention. We report on an approach to developing a system oriented community perspective on the causes of obesity. Group model building sessions were conducted in a rural Australian community to address increasing childhood obesity. Stakeholders (n = 12) built a community model that progressed from connection circles to causal loop diagrams using scripts from the system dynamics literature. Participants began this work in identifying change over time in causes and effects of childhood obesity within their community. The initial causal loop diagram was then reviewed and elaborated by 50 community leaders over a full day session. The process created a causal loop diagram representing community perceptions of determinants and causes of obesity. The causal loop diagram can be broken down into four separate domains; social influences; fast food and junk food; participation in sport; and general physical activity. This causal loop diagram can provide the basis for community led planning of a prevention response that engages with multiple levels of existing settings and systems.

  16. Communication: Photoionization of degenerate orbitals for randomly oriented molecules: The effect of time-reversal symmetry on recoil-ion momentum angular distributions

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshi-Ichi

    2018-04-01

    The photoelectron asymmetry parameter β, which characterizes the direction of electrons ejected from a randomly oriented molecular ensemble by linearly polarized light, is investigated for degenerate orbitals. We show that β is totally symmetric under the symmetry operation of the point group of a molecule, and it has mixed properties under time reversal. Therefore, all degenerate molecular orbitals, except for the case of degeneracy due to time reversal, have the same β (Wigner-Eckart theorem). The exceptions are e-type complex orbitals of the Cn, Sn, Cnh, T, and Th point groups, and calculations on boric acid (C3h symmetry) are performed as an example. However, including those point groups, all degenerate orbitals have the same β if those orbitals are real. We discuss the implications of this operator formalism for molecular alignment and photoelectron circular dichroism.

  17. Effects of Three Diagram Instruction Methods on Transfer of Diagram Comprehension Skills: The Critical Role of Inference While Learning

    ERIC Educational Resources Information Center

    Cromley, Jennifer G.; Bergey, Bradley W.; Fitzhugh, Shannon; Newcombe, Nora; Wills, Theodore W.; Shipley, Thomas F.; Tanaka, Jacqueline C.

    2013-01-01

    Can students be taught to better comprehend the diagrams in their textbooks? Can such teaching transfer to uninstructed diagrams in the same domain or even in a new domain? What methods work best for these goals? Building on previous research showing positive results compared to control groups in both laboratory studies and short-term…

  18. eulerAPE: Drawing Area-Proportional 3-Venn Diagrams Using Ellipses

    PubMed Central

    Micallef, Luana; Rodgers, Peter

    2014-01-01

    Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data. PMID:25032825

  19. eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses.

    PubMed

    Micallef, Luana; Rodgers, Peter

    2014-01-01

    Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of understanding for real world data.

  20. The Orbital Ephemeris of the Classical Nova RR Pictoris: Presence of a Third Body?

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Schreiber, M. R.; Hambsch, F.-J.; Retamales, G.; Tappert, C.; Schmidtobreick, L.; Fuentes-Morales, I.

    2017-01-01

    The ex-nova RR Pic presents a periodic hump in its light curve which is considered to refer to its orbital period. By analyzing all available epochs of these hump maxima in the literature and then combining them with those from new light curves obtained in 2013 and 2014, we establish an unique cycle count scheme valid during the past 50 years and derive an ephemeris with the orbital period 0.145025959(15) days. The O—C diagram of this linear ephemeris reveals systematic deviations that could have different causes. One of them could be a light-travel-time effect caused by the presence of a hypothetical third body near the star/brown dwarf mass limit, with an orbital period of the order of 70 years. We also examine the difficulty of the problematic of detecting substellar or planetary companions of close red-dwarf white-dwarf binaries (including cataclysmic variables) and discuss other possible mechanisms responsible for the observed deviations in O—C. For RR Pic, we propose strategies to solve this question by new observations.

  1. QED effects on individual atomic orbital energies

    NASA Astrophysics Data System (ADS)

    Kozioł, Karol; Aucar, Gustavo A.

    2018-04-01

    Several issues, concerning QED corrections, that are important in precise atomic calculations are presented. The leading QED corrections, self-energy and vacuum polarization, to the orbital energy for selected atoms with 30 ≤ Z ≤ 118 have been calculated. The sum of QED and Breit contributions to the orbital energy is analyzed. It has been found that for ns subshells the Breit and QED contributions are of comparative size, but for np and nd subshells the Breit contribution takes a major part of the QED+Breit sum. It has also, been found that the Breit to leading QED contributions ratio for ns subshells is almost independent of Z. The Z-dependence of QED and Breit+QED contributions per subshell is shown. The fitting coefficients may be used to estimate QED effects on inner molecular orbitals. We present results of our calculations for QED contributions to orbital energy of valence ns-subshell for group 1 and 11 atoms and discuss about the reliability of these numbers by comparing them with experimental first ionization potential data.

  2. 18 CFR 260.8 - System flow diagrams: Format No. FERC 567.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false System flow diagrams...) § 260.8 System flow diagrams: Format No. FERC 567. (a) Each Major natural gas pipeline company, having a... file with the Commission by June 1 of each year five (5) copies of a diagram or diagrams reflecting...

  3. 18 CFR 260.8 - System flow diagrams: Format No. FERC 567.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false System flow diagrams...) § 260.8 System flow diagrams: Format No. FERC 567. (a) Each Major natural gas pipeline company, having a... file with the Commission by June 1 of each year five (5) copies of a diagram or diagrams reflecting...

  4. 18 CFR 260.8 - System flow diagrams: Format No. FERC 567.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false System flow diagrams...) § 260.8 System flow diagrams: Format No. FERC 567. (a) Each Major natural gas pipeline company, having a... file with the Commission by June 1 of each year five (5) copies of a diagram or diagrams reflecting...

  5. 18 CFR 260.8 - System flow diagrams: Format No. FERC 567.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false System flow diagrams...) § 260.8 System flow diagrams: Format No. FERC 567. (a) Each Major natural gas pipeline company, having a... file with the Commission by June 1 of each year five (5) copies of a diagram or diagrams reflecting...

  6. 18 CFR 260.8 - System flow diagrams: Format No. FERC 567.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false System flow diagrams...) § 260.8 System flow diagrams: Format No. FERC 567. (a) Each Major natural gas pipeline company, having a... file with the Commission by June 1 of each year five (5) copies of a diagram or diagrams reflecting...

  7. Students' perceptions of Roundhouse diagramming: a middle-school viewpoint

    NASA Astrophysics Data System (ADS)

    Ward, Robin E.; Wandersee, James H.

    2002-02-01

    This multiple case study explored the effects of Roundhouse diagram construction and use on meaningful learning of science concepts in a sixth-grade classroom. The investigation examined three issues: (1) the transformation of students' science conceptions as they become more proficient in constructing Roundhouse diagrams; (2) problems students encountered using this technique; and (3) the effect of choices of iconic images on their progress toward meaningfully learning science concepts. A Roundhouse diagram is a graphic representation of a learner's conceptual understanding regarding a predetermined science topic. This method involves recognizing the main ideas within a science lesson, breaking down the information into interrelated segments, and then linking each portion to an iconic image. These students typically gained a greater understanding of science explanations by constructing the diagrams. Student's science scores improved over the 10-week diagramming period and a positive relationship existed between students' choices and drawings of iconic images and the meaningful learning of science topics.

  8. A possible giant planet orbiting the cataclysmic variable LX Ser

    NASA Astrophysics Data System (ADS)

    Li, Kai; Hu, Shaoming; Zhou, Jilin; Wu, Donghong; Guo, Difu; Jiang, Yunguo; Gao, Dongyang; Chen, Xu; Wang, Xianyu

    2017-04-01

    LX Ser is a deeply eclipsing cataclysmic variable with an orbital period of 0.1584325 d. 62 new eclipse times were determined by our observations and the AAVSO International Data base. Combining all available eclipse times, we analyzed the O - C behavior of LX Ser. We found that the O - C diagram of LX Ser shows a sinusoidal oscillation with a period of 22.8 yr and an amplitude of 0.00035 d. Two mechanisms (i.e., the Applegate mechanism and the light-travel time effect) are applied to explain the cyclic modulation. We found that it is difficult to apply the Applegate mechanism to explain the cyclic oscillation in the orbital period. Therefore, the cyclic period change is most likely to be caused by the light-travel time effect due to the presence of a third body. The mass of the tertiary component was determined to be M3 ∼ 7.5 MJup. We supposed that the tertiary companion is plausibly a giant planet. The stability of the giant planet was checked, and we found that the multiple system is stable.

  9. The Eighteen-Electron Rule

    ERIC Educational Resources Information Center

    Mitchell, P. R.; Parish, R. V.

    1969-01-01

    Discusses the stability of the structures of transition metal complexes (primarily carbonyls and organometallic compounds) having 18 electrons or less in their valence shell. Presents molecular orbital diagrams for various structures involving alpha and pi bonding and describes the conditions under which the 18 electron rule applies. (RR)

  10. Calculating phase diagrams using PANDAT and panengine

    NASA Astrophysics Data System (ADS)

    Chen, S.-L.; Zhang, F.; Xie, F.-Y.; Daniel, S.; Yan, X.-Y.; Chang, Y. A.; Schmid-Fetzer, R.; Oates, W. A.

    2003-12-01

    Knowledge of phase equilibria or phase diagrams and thermodynamic properties is important in alloy design and materials-processing simulation. In principle, stable phase equilibrium is uniquely determined by the thermodynamic properties of the system, such as the Gibbs energy functions of the phases. PANDAT, a new computer software package for multicomponent phase-diagram calculation, was developed under the guidance of this principle.

  11. Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets

    DOE PAGES

    Pullen, M. G.; Wolter, B.; Le, A. -T.; ...

    2016-06-22

    The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as pg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval ofmore » the structure of randomly oriented O 2 and C 2H 2 molecules, with π g and π u symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. As a result, while this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms.« less

  12. Triangular Diagrams Teach Steady and Dynamic Behaviour of Catalytic Reactions.

    ERIC Educational Resources Information Center

    Klusacek, K.; And Others

    1989-01-01

    Illustrates how triangular diagrams can aid in presenting some of the rather complex transient interactions that occur among gas and surface species during heterogeneous catalytic reactions. The basic equations and numerical examples are described. Classroom use of the triangular diagram is discussed. Several diagrams and graphs are provided. (YP)

  13. Metal alkyls programmed to generate metal alkylidenes by α-H abstraction: prognosis from NMR chemical shift† †Electronic supplementary information (ESI) available: Experimental and computational details, NMR spectra, results of NMR calculations and NCS analysis, graphical representation of shielding tensors, molecular orbital diagrams of selected compounds, optimized structures for all calculated species. See DOI: 10.1039/c7sc05039a

    PubMed Central

    Gordon, Christopher P.; Yamamoto, Keishi; Searles, Keith; Shirase, Satoru

    2018-01-01

    Metal alkylidenes, which are key organometallic intermediates in reactions such as olefination or alkene and alkane metathesis, are typically generated from metal dialkyl compounds [M](CH2R)2 that show distinctively deshielded chemical shifts for their α-carbons. Experimental solid-state NMR measurements combined with DFT/ZORA calculations and a chemical shift tensor analysis reveal that this remarkable deshielding originates from an empty metal d-orbital oriented in the M–Cα–Cα′ plane, interacting with the Cα p-orbital lying in the same plane. This π-type interaction inscribes some alkylidene character into Cα that favors alkylidene generation via α-H abstraction. The extent of the deshielding and the anisotropy of the alkyl chemical shift tensors distinguishes [M](CH2R)2 compounds that form alkylidenes from those that do not, relating the reactivity to molecular orbitals of the respective molecules. The α-carbon chemical shifts and tensor orientations thus predict the reactivity of metal alkyl compounds towards alkylidene generation. PMID:29675237

  14. Differential Cognitive and Affective Responses to Flow Diagrams in Science

    ERIC Educational Resources Information Center

    Holliday, William G.; And Others

    1977-01-01

    Describes a study in which tenth-grade biology students who were low verbal performers scored significantly higher on achievement tests when provided with picture-word diagrams of biological concepts than when provided with block-word diagrams. Students and teachers also preferred picture-word diagrams as indicated by a questionnaire. (MLH)

  15. A Generalized Wave Diagram for Moving Sources

    NASA Astrophysics Data System (ADS)

    Alt, Robert; Wiley, Sam

    2004-12-01

    Many introductory physics texts1-5 accompany the discussion of the Doppler effect and the formation of shock waves with diagrams illustrating the effect of a source moving through an elastic medium. Typically these diagrams consist of a series of equally spaced dots, representing the location of the source at different times. These are surrounded by a series of successively smaller circles representing wave fronts (see Fig. 1). While such a diagram provides a clear illustration of the shock wave produced by a source moving at a speed greater than the wave speed, and also the resultant pattern when the source speed is less than the wave speed (the Doppler effect), the texts do not often show the details of the construction. As a result, the key connection between the relative distance traveled by the source and the distance traveled by the wave is not explicitly made. In this paper we describe an approach emphasizing this connection that we have found to be a useful classroom supplement to the usual text presentation. As shown in Fig. 2 and Fig. 3, the Doppler effect and the shock wave can be illustrated by diagrams generated by the construction that follows.

  16. Atomic orbitals in molecules: general electronegativity and improvement of Mulliken population analysis.

    PubMed

    Lu, Haigang; Dai, Dadi; Yang, Pin; Li, Lemin

    2006-01-21

    An approach of atomic orbitals in molecules (AOIM) has been developed to study the atomic properties in molecules, in which the molecular orbitals are expressed in terms of the optimized minimal atomic orbitals. The atomic electronegativities are calculated using Pauling's electronegativity of free atom and are employed to find the electronegativity equilibrium in molecules and to describe the amphoteric properties of the transition metals from the groups 4 to 10. AOIM can also improve the numerical stability and accuracy of the original Mulliken population analysis.

  17. Research principles and the construction of mnemonic diagrams

    NASA Technical Reports Server (NTRS)

    Venda, V. F.; Mitkin, A. A.

    1973-01-01

    Mnemonic diagrams are defined as a variety of information display devices, the essential element of which is conventional graphical presentation of technological or functional-operational links in a controlled system or object. Graphically displaying the operational structure of an object, the interd dependence between different parameters, and the interdependence between indicators and control organs, the mneomonic diagram reduces the load on the operator's memory and facilitates perception and reprocessing of information and decision making, while at the same time playing the role of visual support to the information activity of the operator. The types of mnemonic diagrams are listed.

  18. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid.

    PubMed

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2014-11-11

    The solid phase FT-IR and FT-Raman spectra of 2-hydroxybenzoic acid (salicylic acid) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method at 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimentally obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method is employed to predict its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) are also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Published by Elsevier B.V.

  19. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE PAGES

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina; ...

    2017-01-17

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  20. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  1. The Classroom as Rhizome: New Strategies for Diagramming Knotted Interactions

    ERIC Educational Resources Information Center

    de Freitas, Elizabeth

    2012-01-01

    This article calls attention to the unexamined role of diagrams in educational research and offers examples of alternative diagramming practices or tools that shed light on classroom interaction as a rhizomatic process. Drawing extensively on the work of Latour, Deleuze and Guattari, and Chatelet, this article explores the power of diagramming as…

  2. Controlling the orbital sequence in individual Cu-phthalocyanine molecules.

    PubMed

    Uhlmann, C; Swart, I; Repp, J

    2013-02-13

    We report on the controlled change of the energetic ordering of molecular orbitals. Negatively charged copper(II)phthalocyanine on NaCl/Cu(100) undergoes a Jahn-Teller distortion that lifts the degeneracy of two frontier orbitals. The energetic order of the levels can be controlled by Au and Ag atoms in the vicinity of the molecule. As only one of the states is occupied, the control of the energetic order is accompanied by bistable changes of the charge distribution inside the molecule, rendering it a bistable switch.

  3. Theoretical flow regime diagrams for the AGCE

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W.; Miller, T. L.; Roberts, G. O.; Kopecky, K. J.

    1984-01-01

    The major criterion for the design of the Atmospheric General Circulation Experiment is that it be possible to realize strong baroclinic instability in the apparatus. A spherical annulus configuration which allows only steady basic state flows was chosen for the first set of stability analyses. Baroclinic instability was found for this configuration and few results suggest a regime diagram very different from the cylindrical annulus regime diagram.

  4. Exploring Organic Mechanistic Puzzles with Molecular Modeling

    ERIC Educational Resources Information Center

    Horowitz, Gail; Schwartz, Gary

    2004-01-01

    The molecular modeling was used to reinforce more general skills such as deducing and drawing reaction mechanisms, analyzing reaction kinetics and thermodynamics and drawing reaction coordinate energy diagrams. This modeling was done through the design of mechanistic puzzles, involving reactions not familiar to the students.

  5. Growth diagram of N-face GaN (0001{sup ¯}) grown at high rate by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumura, Hironori, E-mail: okumura@engineering.ucsb.edu; McSkimming, Brian M.; Speck, James S.

    2014-01-06

    N-face GaN was grown on free-standing GaN (0001{sup ¯}) substrates at a growth rate of 1.5 μm/h using plasma-assisted molecular beam epitaxy. Difference in growth rate between (0001{sup ¯}) and (0001) oriented GaN depends on nitrogen plasma power, and the (0001{sup ¯}) oriented GaN had only 70% of the growth rate of the (0001) oriented GaN at 300 W. Unintentional impurity concentrations of silicon, carbon, and oxygen were 2 × 10{sup 15}, 2 × 10{sup 16}, and 7 × 10{sup 16} cm{sup −3}, respectively. A growth diagram was constructed that shows the dependence of the growth modes on the difference in the Ga and active nitrogen flux, Φ{sub Ga} − Φ{submore » N*}, and the growth temperature. At high Φ{sub Ga} − Φ{sub N*} (Φ{sub Ga} ≫ Φ{sub N*}), two-dimensional (step-flow and layer-by-layer) growth modes were realized. High growth temperature (780 °C) expanded the growth window of the two-dimensional growth modes, achieving a surface with rms roughness of 0.48 nm without Ga droplets.« less

  6. Improving Students' Diagram Comprehension with Classroom Instruction

    ERIC Educational Resources Information Center

    Cromley, Jennifer G.; Perez, Tony C.; Fitzhugh, Shannon L.; Newcombe, Nora S.; Wills, Theodore W.; Tanaka, Jacqueline C.

    2013-01-01

    The authors tested whether students can be taught to better understand conventional representations in diagrams, photographs, and other visual representations in science textbooks. The authors developed a teacher-delivered, workbook-and-discussion-based classroom instructional method called Conventions of Diagrams (COD). The authors trained 1…

  7. Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems

    PubMed Central

    Kohn, Kurt W.

    1999-01-01

    Eventually to understand the integrated function of the cell cycle regulatory network, we must organize the known interactions in the form of a diagram, map, and/or database. A diagram convention was designed capable of unambiguous representation of networks containing multiprotein complexes, protein modifications, and enzymes that are substrates of other enzymes. To facilitate linkage to a database, each molecular species is symbolically represented only once in each diagram. Molecular species can be located on the map by means of indexed grid coordinates. Each interaction is referenced to an annotation list where pertinent information and references can be found. Parts of the network are grouped into functional subsystems. The map shows how multiprotein complexes could assemble and function at gene promoter sites and at sites of DNA damage. It also portrays the richness of connections between the p53-Mdm2 subsystem and other parts of the network. PMID:10436023

  8. Spatial-temporal forecasting the sunspot diagram

    NASA Astrophysics Data System (ADS)

    Covas, Eurico

    2017-09-01

    Aims: We attempt to forecast the Sun's sunspot butterfly diagram in both space (I.e. in latitude) and time, instead of the usual one-dimensional time series forecasts prevalent in the scientific literature. Methods: We use a prediction method based on the non-linear embedding of data series in high dimensions. We use this method to forecast both in latitude (space) and in time, using a full spatial-temporal series of the sunspot diagram from 1874 to 2015. Results: The analysis of the results shows that it is indeed possible to reconstruct the overall shape and amplitude of the spatial-temporal pattern of sunspots, but that the method in its current form does not have real predictive power. We also apply a metric called structural similarity to compare the forecasted and the observed butterfly cycles, showing that this metric can be a useful addition to the usual root mean square error metric when analysing the efficiency of different prediction methods. Conclusions: We conclude that it is in principle possible to reconstruct the full sunspot butterfly diagram for at least one cycle using this approach and that this method and others should be explored since just looking at metrics such as sunspot count number or sunspot total area coverage is too reductive given the spatial-temporal dynamical complexity of the sunspot butterfly diagram. However, more data and/or an improved approach is probably necessary to have true predictive power.

  9. Complex Causal Process Diagrams for Analyzing the Health Impacts of Policy Interventions

    PubMed Central

    Joffe, Michael; Mindell, Jennifer

    2006-01-01

    Causal diagrams are rigorous tools for controlling confounding. They also can be used to describe complex causal systems, which is done routinely in communicable disease epidemiology. The use of change diagrams has advantages over static diagrams, because change diagrams are more tractable, relate better to interventions, and have clearer interpretations. Causal diagrams are a useful basis for modeling. They make assumptions explicit, provide a framework for analysis, generate testable predictions, explore the effects of interventions, and identify data gaps. Causal diagrams can be used to integrate different types of information and to facilitate communication both among public health experts and between public health experts and experts in other fields. Causal diagrams allow the use of instrumental variables, which can help control confounding and reverse causation. PMID:16449586

  10. Global gravity survey by an orbiting gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung; Leung, Jurn-Sun; Morgan, Samuel H.; Parker, Joseph

    1988-01-01

    The scientific aims, design, and mission profile of the Superconducting Gravity Gradiometer Mission (SGGM), a NASA spacecraft mission proposed for the late 1990s, are discussed and illustrated with drawings and diagrams. SGGM would complement the two other planned gravimetry missions, GRM and Aristoteles, and would provide gravitational-field measurements with accuracy 2-3 mGal in 55 x 55-km blocks. The principal instruments are a (1) three-axis superconducting gravity gradiometer with intrinsic sensitivity 100 microeotvos/sq rt Hz, (2) a six-axis superconducting accelerometer with sensitivity 100 fg(E)/sq rt Hz linear and 10 prad/sec squared sq rt Hz angular, and (3) a six-axis shaker for active control of the platform. Consideration is given to the error budget and platform requirements, the orbit selection criteria, and the spacecraft design.

  11. Hyperspherical Symmetry of Hydrogenic Orbitals and Recoupling Coefficients among Alternative Bases

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Cavalli, Simonetta; Coletti, Cecilia

    1998-04-01

    Fock's representation of momentum space hydrogenic orbitals in terms of harmonics on the hypersphere S3 of a four-dimensional space is extended to classify alternative bases. These orbitals are of interest for Sturmian expansions of use in atomic and molecular structure calculations and for the description of atoms in fields. Because of the correspondence between the S3 manifold and the SU\\(2\\) group, new sum rules are established which are of relevance for the connection, not only among hydrogen atom orbitals in different bases, but also among the usual vector coupling coefficients and rotation matrix elements.

  12. Chaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles

    NASA Astrophysics Data System (ADS)

    Chian, A. C.-L.; Santana, W. M.; Rempel, E. L.; Borotto, F. A.; Hada, T.; Kamide, Y.

    2007-01-01

    The chaotic dynamics of Alfvén waves in space plasmas governed by the derivative nonlinear Schrödinger equation, in the low-dimensional limit described by stationary spatial solutions, is studied. A bifurcation diagram is constructed, by varying the driver amplitude, to identify a number of nonlinear dynamical processes including saddle-node bifurcation, boundary crisis, and interior crisis. The roles played by unstable periodic orbits and chaotic saddles in these transitions are analyzed, and the conversion from a chaotic saddle to a chaotic attractor in these dynamical processes is demonstrated. In particular, the phenomenon of gap-filling in the chaotic transition from weak chaos to strong chaos via an interior crisis is investigated. A coupling unstable periodic orbit created by an explosion, within the gaps of the chaotic saddles embedded in a chaotic attractor following an interior crisis, is found numerically. The gap-filling unstable periodic orbits are responsible for coupling the banded chaotic saddle (BCS) to the surrounding chaotic saddle (SCS), leading to crisis-induced intermittency. The physical relevance of chaos for Alfvén intermittent turbulence observed in the solar wind is discussed.

  13. Renormalized asymptotic enumeration of Feynman diagrams

    NASA Astrophysics Data System (ADS)

    Borinsky, Michael

    2017-10-01

    A method to obtain all-order asymptotic results for the coefficients of perturbative expansions in zero-dimensional quantum field is described. The focus is on the enumeration of the number of skeleton or primitive diagrams of a certain QFT and its asymptotics. The procedure heavily applies techniques from singularity analysis. To utilize singularity analysis, a representation of the zero-dimensional path integral as a generalized hyperelliptic curve is deduced. As applications the full asymptotic expansions of the number of disconnected, connected, 1PI and skeleton Feynman diagrams in various theories are given.

  14. Lens ray diagrams with a spreadsheet

    NASA Astrophysics Data System (ADS)

    González, Manuel I.

    2018-05-01

    Physicists create spreadsheets customarily to carry out numerical calculations and to display their results in a meaningful, nice-looking way. Spreadsheets can also be used to display a vivid geometrical model of a physical system. This statement is illustrated with an example taken from geometrical optics: images formed by a thin lens. A careful mixture of standard Excel functions allows to display a realistic automated ray diagram. The suggested spreadsheet is intended as an auxiliary didactic tool for instructors who wish to teach their students to create their own ray diagrams.

  15. Diagrams increase the recall of nondepicted text when understanding is also increased.

    PubMed

    Serra, Michael J

    2010-02-01

    Multimedia presentations typically produce better memory and understanding than do single-medium presentations. Little research, however, has considered the effect of multimedia on memory for nonmultimedia information within a large multimedia presentation (e.g., nondepicted text in a large text with diagrams). To this end, the present two experiments compared memory for target text information that was either depicted in diagrams or not. Participants (n = 180) studied either a text-only version of a text about lightning or a text-with-diagrams version in which half the target information was depicted in diagrams. Memory was tested with both free recall and cued recall questions. Overall, diagrams did not affect memory for the entire text; diagrams increased memory only for the information they depicted. Diagrams exerted a generalized effect on free recall only when diagrams increased the overall understanding of the text (i.e., when the participants studied the materials twice before the test).

  16. The microscopic structure of an exactly solvable model binary solution that exhibits two closed loops in the phase diagram.

    PubMed

    Lungu, Radu P; Huckaby, Dale A

    2008-07-21

    An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.

  17. Butterfly Diagram and Activity Cycles in HR 1099

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana V.; Henry, Gregory W.

    2007-04-01

    We analyze photometric data of the active RS CVn-type star HR 1099 for the years 1975-2006 with an inversion technique and reveal the nature of two activity cycles of 15-16 yr and 5.3+/-0.1 yr duration. The 16 yr cycle is related to variations of the total spot area and is coupled with the differential rotation, while the 5.3 yr cycle is caused by the symmetric redistribution of the spotted area between the opposite stellar hemispheres (flip-flop cycle). We recover long-lived active regions comprising two active longitudes that migrate in the orbital reference frame with a variable rate because of the differential rotation along with changes in the mean spot latitudes. The migration pattern is periodic with the 16 yr cycle. Combining the longitudinal migration of the active regions with a previously measured differential rotation law, we recover the first stellar butterfly diagram without an assumption about spot shapes. We find that mean latitudes of active regions at opposite longitudes change antisymmetrically in the course of the 16 yr cycle: while one active region migrates to the pole, the other approaches the equator. This suggests a precession of the global magnetic field with respect to the stellar rotational axis.

  18. Cu-Zn binary phase diagram and diffusion couples

    NASA Technical Reports Server (NTRS)

    Mccoy, Robert A.

    1992-01-01

    The objectives of this paper are to learn: (1) what information a binary phase diagram can yield; (2) how to construct and heat treat a simple diffusion couple; (3) how to prepare a metallographic sample; (4) how to operate a metallograph; (5) how to correlate phases found in the diffusion couple with phases predicted by the phase diagram; (6) how diffusion couples held at various temperatures could be used to construct a phase diagram; (7) the relation between the thickness of an intermetallic phase layer and the diffusion time; and (8) the effect of one species of atoms diffusing faster than another species in a diffusion couple.

  19. Assessing disease severity: accuracy and reliability of rater estimates in relation to number of diagrams in a standard area diagram set

    USDA-ARS?s Scientific Manuscript database

    Error in rater estimates of plant disease severity occur, and standard area diagrams (SADs) help improve accuracy and reliability. The effects of diagram number in a SAD set on accuracy and reliability is unknown. The objective of this study was to compare estimates of pecan scab severity made witho...

  20. Plotting and Analyzing Data Trends in Ternary Diagrams Made Easy

    NASA Astrophysics Data System (ADS)

    John, Cédric M.

    2004-04-01

    Ternary plots are used in many fields of science to characterize a system based on three components. Triangular plotting is thus useful to a broad audience in the Earth sciences and beyond. Unfortunately, it is typically the most expensive commercial software packages that offer the option to plot data in ternary diagrams, and they lack features that are paramount to the geosciences, such as the ability to plot data directly into a standardized diagram and the possibility to analyze temporal and stratigraphic trends within this diagram. To address these issues, δPlot was developed with a strong emphasis on ease of use, community orientation, and availability free of charges. This ``freeware'' supports a fully graphical user interface where data can be imported as text files, or by copying and pasting. A plot is automatically generated, and any standard diagram can be selected for plotting in the background using a simple pull-down menu. Standard diagrams are stored in an external database of PDF files that currently holds some 30 diagrams that deal with different fields of the Earth sciences. Using any drawing software supporting PDF, one can easily produce new standard diagrams to be used with δPlot by simply adding them to the library folder. An independent column of values, commonly stratigraphic depths or ages, can be used to sort the data sets.

  1. Accurate density functional prediction of molecular electron affinity with the scaling corrected Kohn–Sham frontier orbital energies

    NASA Astrophysics Data System (ADS)

    Zhang, DaDi; Yang, Xiaolong; Zheng, Xiao; Yang, Weitao

    2018-04-01

    Electron affinity (EA) is the energy released when an additional electron is attached to an atom or a molecule. EA is a fundamental thermochemical property, and it is closely pertinent to other important properties such as electronegativity and hardness. However, accurate prediction of EA is difficult with density functional theory methods. The somewhat large error of the calculated EAs originates mainly from the intrinsic delocalisation error associated with the approximate exchange-correlation functional. In this work, we employ a previously developed non-empirical global scaling correction approach, which explicitly imposes the Perdew-Parr-Levy-Balduz condition to the approximate functional, and achieve a substantially improved accuracy for the calculated EAs. In our approach, the EA is given by the scaling corrected Kohn-Sham lowest unoccupied molecular orbital energy of the neutral molecule, without the need to carry out the self-consistent-field calculation for the anion.

  2. Phase diagram of an extended Agassi model

    NASA Astrophysics Data System (ADS)

    García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.

    2018-05-01

    Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.

  3. Interplay between Magnetism, Superconductivity, and Orbital Order in 5-Pocket Model for Iron-Based Superconductors: Parquet Renormalization Group Study.

    PubMed

    Classen, Laura; Xing, Rui-Qi; Khodas, Maxim; Chubukov, Andrey V

    2017-01-20

    We report the results of the parquet renormalization group (RG) analysis of the phase diagram of the most general 5-pocket model for Fe-based superconductors. We use as an input the orbital structure of excitations near the five pockets made out of d_{xz}, d_{yz}, and d_{xy} orbitals and argue that there are 40 different interactions between low-energy fermions in the orbital basis. All interactions flow under the RG, as one progressively integrates out fermions with higher energies. We find that the low-energy behavior is amazingly simple, despite the large number of interactions. Namely, at low energies the full 5-pocket model effectively reduces either to a 3-pocket model made of one d_{xy} hole pocket and two electron pockets or a 4-pocket model made of two d_{xz}/d_{yz} hole pockets and two electron pockets. The leading instability in the effective 4-pocket model is a spontaneous orbital (nematic) order, followed by s^{+-} superconductivity. In the effective 3-pocket model, orbital fluctuations are weaker, and the system develops either s^{+-} superconductivity or a stripe spin-density wave. In the latter case, nematicity is induced by composite spin fluctuations.

  4. Space-Time Earthquake Prediction: The Error Diagrams

    NASA Astrophysics Data System (ADS)

    Molchan, G.

    2010-08-01

    The quality of earthquake prediction is usually characterized by a two-dimensional diagram n versus τ, where n is the rate of failures-to-predict and τ is a characteristic of space-time alarm. Unlike the time prediction case, the quantity τ is not defined uniquely. We start from the case in which τ is a vector with components related to the local alarm times and find a simple structure of the space-time diagram in terms of local time diagrams. This key result is used to analyze the usual 2-d error sets { n, τ w } in which τ w is a weighted mean of the τ components and w is the weight vector. We suggest a simple algorithm to find the ( n, τ w ) representation of all random guess strategies, the set D, and prove that there exists the unique case of w when D degenerates to the diagonal n + τ w = 1. We find also a confidence zone of D on the ( n, τ w ) plane when the local target rates are known roughly. These facts are important for correct interpretation of ( n, τ w ) diagrams when we discuss the prediction capability of the data or prediction methods.

  5. Photo-induced reactions from efficient molecular dynamics with electronic transitions using the FIREBALL local-orbital density functional theory formalism.

    PubMed

    Zobač, Vladimír; Lewis, James P; Abad, Enrique; Mendieta-Moreno, Jesús I; Hapala, Prokop; Jelínek, Pavel; Ortega, José

    2015-05-08

    The computational simulation of photo-induced processes in large molecular systems is a very challenging problem. Firstly, to properly simulate photo-induced reactions the potential energy surfaces corresponding to excited states must be appropriately accessed; secondly, understanding the mechanisms of these processes requires the exploration of complex configurational spaces and the localization of conical intersections; finally, photo-induced reactions are probability events, that require the simulation of hundreds of trajectories to obtain the statistical information for the analysis of the reaction profiles. Here, we present a detailed description of our implementation of a molecular dynamics with electronic transitions algorithm within the local-orbital density functional theory code FIREBALL, suitable for the computational study of these problems. As an example of the application of this approach, we also report results on the [2 + 2] cycloaddition of ethylene with maleic anhydride and on the [2 + 2] photo-induced polymerization reaction of two C60 molecules. We identify different deactivation channels of the initial electron excitation, depending on the time of the electronic transition from LUMO to HOMO, and the character of the HOMO after the transition.

  6. Ab initio molecular orbital and infrared spectroscopic study of the conformation of secondary amides: derivatives of formanilide, acetanilide and benzylamides

    NASA Astrophysics Data System (ADS)

    Ilieva, S.; Hadjieva, B.; Galabov, B.

    1999-09-01

    Ab initio molecular orbital calculations at HF/4-31G level and infrared spectroscopic data for the frequencies are applied to analyse the grouping in a series model aromatic secondary amides: formanilide; acetanilide; o-methylacetanilide; 2,6-dimethylformanilide, 2,6-dimethylacetanilide; N-benzylacetamide and N-benzylformamide. The theoretical and experimental data obtained show that the conformational state of the molecules studied is determined by the fine balance of several intramolecular factors: resonance effect between the amide group and the aromatic ring, steric interaction between various substituents around the -NH-CO- grouping in the aromatic ring, conjugation between the carbonyl bond and the nitrogen lone pair as well as direct field influences inside the amide group.

  7. Calculation of photoionization differential cross sections using complex Gauss-type orbitals.

    PubMed

    Matsuzaki, Rei; Yabushita, Satoshi

    2017-09-05

    Accurate theoretical calculation of photoelectron angular distributions for general molecules is becoming an important tool to image various chemical reactions in real time. We show in this article that not only photoionization total cross sections but also photoelectron angular distributions can be accurately calculated using complex Gauss-type orbital (cGTO) basis functions. Our method can be easily combined with existing quantum chemistry techniques including electron correlation effects, and applied to various molecules. The so-called two-potential formula is applied to represent the transition dipole moment from an initial bound state to a final continuum state in the molecular coordinate frame. The two required continuum functions, the zeroth-order final continuum state and the first-order wave function induced by the photon field, have been variationally obtained using the complex basis function method with a mixture of appropriate cGTOs and conventional real Gauss-type orbitals (GTOs) to represent the continuum orbitals as well as the remaining bound orbitals. The complex orbital exponents of the cGTOs are optimized by fitting to the outgoing Coulomb functions. The efficiency of the current method is demonstrated through the calculations of the asymmetry parameters and molecular-frame photoelectron angular distributions of H2+ and H2 . In the calculations of H2 , the static exchange and random phase approximations are employed, and the dependence of the results on the basis functions is discussed. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. An Efficient Method to Evaluate Intermolecular Interaction Energies in Large Systems Using Overlapping Multicenter ONIOM and the Fragment Molecular Orbital Method

    PubMed Central

    Asada, Naoya; Fedorov, Dmitri G.; Kitaura, Kazuo; Nakanishi, Isao; Merz, Kenneth M.

    2012-01-01

    We propose an approach based on the overlapping multicenter ONIOM to evaluate intermolecular interaction energies in large systems and demonstrate its accuracy on several representative systems in the complete basis set limit at the MP2 and CCSD(T) level of theory. In the application to the intermolecular interaction energy between insulin dimer and 4′-hydroxyacetanilide at the MP2/CBS level, we use the fragment molecular orbital method for the calculation of the entire complex assigned to the lowest layer in three-layer ONIOM. The developed method is shown to be efficient and accurate in the evaluation of the protein-ligand interaction energies. PMID:23050059

  9. Dissipative particle dynamics (DPD) simulations with fragment molecular orbital (FMO) based effective parameters for 1-Palmitoyl-2-oleoyl phosphatidyl choline (POPC) membrane

    NASA Astrophysics Data System (ADS)

    Doi, Hideo; Okuwaki, Koji; Mochizuki, Yuji; Ozawa, Taku; Yasuoka, Kenji

    2017-09-01

    In dissipative particle dynamics (DPD) simulations, it is necessary to use the so-called χ parameter set that express the effective interactions between particles. Recently, we have developed a new scheme to evaluate the χ parameters in a non-empirical way through a series of fragment molecular orbital (FMO) calculations. As a challenging test, we have performed the DPD simulations using the FMO-based χ parameters for a mixture of 1-Palmitoyl-2-oleoyl phosphatidyl choline (POPC) and water. The structures of both membrane and vesicle were formed successfully. The calculated structural parameters of membrane were in good agreement with experimental results.

  10. Super-reduced polyoxometalates: excellent molecular cluster battery components and semipermeable molecular capacitors.

    PubMed

    Nishimoto, Yoshio; Yokogawa, Daisuke; Yoshikawa, Hirofumi; Awaga, Kunio; Irle, Stephan

    2014-06-25

    Theoretical investigations are presented on the molecular and electronic structure changes that occur as α-Keggin-type polyoxometalate (POM(3-)) clusters [PM12O40](3-) (M = Mo, W) are converted toward their super-reduced POM(27-) state during the discharging process in lithium-based molecular cluster batteries. Density functional theory was employed in geometry optimization, and first-principles molecular dynamics simulations were used to explore local minima on the potential energy surface of neutral POM clusters adorned with randomly placed Li atoms as electron donors around the cluster surface. On the basis of structural, electron density, and molecular orbital studies, we present evidence that the super-reduction is accompanied by metal-metal bond formation, beginning from the 12th to 14th excess electron transferred to the cluster. Afterward, the number of metal-metal bonds increases nearly linearly with the number of additionally transferred excess electrons. In α-Keggin-type POMs, metal triangles are a prominently emerging structural feature. The origin of the metal triangle formation during super-reduction stems from the formation of characteristic three-center two-electron bonds in triangular metal atom sites, created under preservation of the POM skeleton via "squeezing out" of oxygen atoms bridging two metal atoms when the underlying metal atoms form covalent bonds. The driving force for this unusual geometrical and electronic structure change is a local Jahn-Teller distortion at individual transition-metal octahedral sites, where the triply degenerate t2 d orbitals become partially filled during reduction and gain energy by distortion of the octahedron in such a way that metal-metal bonds are formed. The bonding orbitals show strong contributions from mixing with metal-oxygen antibonding orbitals, thereby "shuffling away" excess electrons from the cluster center to the outside of the cage. The high density of negatively charged yet largely separated

  11. Surface hopping trajectory simulations with spin-orbit and dynamical couplings

    NASA Astrophysics Data System (ADS)

    Granucci, Giovanni; Persico, Maurizio; Spighi, Gloria

    2012-12-01

    In this paper we consider the inclusion of the spin-orbit interaction in surface hopping molecular dynamics simulations to take into account spin forbidden transitions. Two alternative approaches are examined. The spin-diabatic one makes use of eigenstates of the spin-free electronic Hamiltonian and of hat{S}^2 and is commonly applied when the spin-orbit coupling is weak. We point out some inconsistencies of this approach, especially important when more than two spin multiplets are coupled. The spin-adiabatic approach is based on the eigenstates of the total electronic Hamiltonian including the spin-orbit coupling. Advantages and drawbacks of both strategies are discussed and illustrated with the help of two model systems.

  12. Visualization design and verification of Ada tasking using timing diagrams

    NASA Technical Reports Server (NTRS)

    Vidale, R. F.; Szulewski, P. A.; Weiss, J. B.

    1986-01-01

    The use of timing diagrams is recommended in the design and testing of multi-task Ada programs. By displaying the task states vs. time, timing diagrams can portray the simultaneous threads of data flow and control which characterize tasking programs. This description of the system's dynamic behavior from conception to testing is a necessary adjunct to other graphical techniques, such as structure charts, which essentially give a static view of the system. A series of steps is recommended which incorporates timing diagrams into the design process. Finally, a description is provided of a prototype Ada Execution Analyzer (AEA) which automates the production of timing diagrams from VAX/Ada debugger output.

  13. Diagramming Word Problems: A Strategic Approach for Instruction

    ERIC Educational Resources Information Center

    van Garderen, Delinda; Scheuermann, Amy M.

    2015-01-01

    While often recommended as a strategy to use in order to solve word problems, drawing a diagram is a complex process that requires a good depth of understanding. Many middle school students with learning disabilities (LD) often struggle to use diagrams in an effective and efficient manner. This article presents information for teaching middle…

  14. Development of processing diagrams for polymeric die attach adhesives

    NASA Astrophysics Data System (ADS)

    Hsiung, Jen-Chou

    With a processing diagram, one can reduce the effort required to customize curing process conditions for polymeric die attach adhesives. Polymeric die attach adhesives are often cured per the manufacturer's recommendations during initial screening evaluations. In most cases, the recommended cure schedules have to be modified so as to fit differences in process equipment. Unfortunately, the modified cure schedule is usually determined by a trial-and-error method. An aim of our experiments is to understand the curing process of a wide range of polymeric die attach adhesives (conventional, fast, and snap cure adhesives) and to construct a processing diagram, i.e., "Bondability Diagram", so as to define the processing window. Such diagrams should be helpful in determining both the time and cure temperature required to produce high quality bonds. The bondability diagram can be constructed based on fundamental understandings of the phenomena involved in the curing process using a wide variety of tools. Differential Scanning Calorimetry (DSC) is utilized to study the cure kinetics and the extent of reaction. Dynamic Mechanical Analysis (DMA) is used to determine gelation times and melt viscosity under a shear mode. A modified Rheovibron is employed to perform cure characterizations under a tensile mode so that cure stresses could be determined. Thermogravimetric Analysis (TGA) is used to evaluate the outgassing phenomena. Optical Microscopy (OM) is used to detect voids. Results indicate that the cure behaviors of conventional, fast, and snap cure adhesives are different in several respects. The combination of DSC, DMA, TGA, OM, and lap shear test leads to a frame work of developing the bondability diagram concept. The bondability diagram concept provides a foundation for an understanding of the recommended cure schedule and allows one to design their own cure schedule.

  15. Forest Dynamics at the Missouri Ozark Forest Ecosystem Project viewed through stocking diagrams

    Treesearch

    David R. Larsen; John M. Kabrick; Stephen R. Shifley; Randy G. Jensen

    2017-01-01

    Stocking diagrams come in two forms, the Gingrich diagram and the density management diagram. While they both present the same information about a forest stand, they each provide a different perspective on the data being displayed. Density management diagrams have been around since the 1930s and the Gingrich diagram has been around since the 1960s, but applications of...

  16. Thermodynamic Control of Two-Dimensional Molecular Ionic Nanostructures on Metal Surfaces

    DOE PAGES

    Jeon, Seokmin; Doak, Peter W.; Sumpter, Bobby G.; ...

    2016-07-26

    Bulk molecular ionic solids exhibit fascinating electronic properties, including electron correlations, phase transitions and superconducting ground states. In contrast, few of these phenomena have so far been observed in low-dimensional molecular structures, including thin films, nanoparticles and molecular blends, not in the least because most of such structures have so far been composed of nearly closed-shell molecules. It is therefore desirable to develop low-dimensional molecular structures of ionic molecules toward fundamental studies and potential applications. Here we present detailed analysis of monolayer-thick structures of the canonical TTF-TCNQ (tetrathiafulvalene 7,7,8,8-tetracyanoquinodimethane) system grown on low-index gold and silver surfaces. The most distinctivemore » property of the epitaxial growth is the wide abundance of stable TTF/TCNQ ratios, in sharp contrast to the predominance of 1:1 ratio in the bulk. We propose the existence of the surface phase-diagram that controls the structures of TTF-TCNQ on the surfaces, and demonstrate phase-transitions that occur upon progressively increasing the density of TCNQ while keeping the surface coverage of TTF fixed. Based on direct observations, we propose the binding motif behind the stable phases and infer the dominant interactions that enable the existence of the rich spectrum of surface structures. Finally, we also show that the surface phase diagram will control the epitaxy beyond monolayer coverage. Multiplicity of stable surface structures, the corollary rich phase diagram and the corresponding phase-transitions present an interesting opportunity for low-dimensional molecular systems, particularly if some of the electronic properties of the bulk can be preserved or modified in the surface phases.« less

  17. On the Disposition of Maunders' Origninal Butterfly Diagram

    NASA Astrophysics Data System (ADS)

    Bogdan, T. J.

    2000-05-01

    On 21 May 1940, Annie S. D. Maunder mailed the original drawing of the celebrated ``Maunder Butterfly Diagram" to Stephen A., and his daughter Margaret L., Ionides. Later that same year Stephen and Margaret gave the diagram ``on indefinite loan" to Walter Orr Roberts, then the Superintendent of Fremont Pass Station of the Harvard College Observatory. The framed diagram remains on display today at the scion of that organization, the High Altitude Observatory of the National Center for Atmospheric Research, in Boulder Colorado. Drawing upon the original correspondences, this contribution recounts the story behind the travels of the ``Maunder Butterfly" during the second World War. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

  18. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  19. Phase diagram of the CF{sub 4} monolayer and bilayer on graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Petros; Hess, George B., E-mail: gbh@virginia.edu

    2014-05-21

    We report an experimental study of physisorbed monolayers and bilayers of CF{sub 4} on graphite using infrared reflection absorption spectroscopy supplemented by ellipsometry. The symmetric C–F stretch mode ν{sub 3} near 1283 cm{sup −1} in the gas is strongly blue shifted in the film by dynamic dipole coupling. This blue shift provides a very sensitive measure of the inter-molecular spacing in the monolayer and, less directly, in the bilayer. We find that important corrections are necessary to the volumetric coverage scales used in previous heat capacity and x-ray diffraction studies of this system. This requires quantitative and some qualitative changesmore » to the previously proposed phase diagram. We find evidence for a new phase transition in the middle of the hexagonal incommensurate region and construct new phase diagrams in both the variables coverage-temperature and chemical potential-temperature. We determine the compressibility and thermal expansion in the low-pressure hexagonal incommensurate phase and values for the entropy change in several phase transitions. Below about 55 K there is evidence of solution of up to 7% of an impurity, most likely CO, in our monolayer but not the bilayer film.« less

  20. A Critical Appraisal of the `Day' Diagram

    NASA Astrophysics Data System (ADS)

    Roberts, A. P.; Tauxe, L.; Heslop, D.

    2017-12-01

    The `Day' diagram [Day et al., 1977; doi:10.1016/0031-9201(77)90108-X] is used widely to infer the mean domain state of magnetic mineral assemblages. The Day plot coordinates are the ratios of the saturation remanent magnetization to saturation magnetization (Mrs/Ms) and the coercivity of remanence to coercivity (Bcr/Bc), as determined from a major hysteresis loop and a backfield demagnetization curve. Based on theoretical and empirical arguments, Day plots are typically demarcated into stable single domain (SD), `pseudosingle domain' (`PSD'), and multidomain (MD) zones. It is a simple task to determine Mrs/Ms and Bcr/Bc for a sample and to assign a mean domain state based on the boundaries defined by Day et al. [1977]. Many other parameters contribute to variability in a Day diagram, including surface oxidation, mineral stoichiometry, stress state, magnetostatic interactions, and mixtures of magnetic particles with different sizes and shapes. Bulk magnetic measurements usually lack detailed independent evidence to constrain each free parameter, which makes the Day diagram fundamentally ambiguous. This raises questions about its usefulness for diagnosing magnetic particle size variations. The Day diagram is also used to make inferences about binary mixing of magnetic particles, where, for example, mixtures of SD and MD particles give rise to a bulk `PSD' response even though the concentration of `PSD' grains could be zero. In our assessment of thousands of hysteresis measurements of geological samples, binary mixing occurs in a tiny number of cases. Ternary, quaternary, and higher order mixing are usually observed. Also, uniaxial SD and MD end-members are nearly always inappropriate for considering mixing because uniaxial SD particles are virtually non-existent in igneous rocks. Thus, use of mixing lines in Day diagrams routinely provides unsatisfactory representations of particle size variations. We critically appraise the Day diagram and argue that its many

  1. The Effect of Conceptual Diagrams on Aviation Mechanics' Technical Systems Understanding.

    ERIC Educational Resources Information Center

    Satchwell, Richard E.; Johnson, Scott D.

    A quasi-experimental study explored the effect of functional flow diagrams on technical system understanding. An individualized field training package which contained schematic diagrams that illustrated an aircraft's electrical system was complimented with functional flow diagrams. In a 4-week treatment, a control group of 10 students enrolled in…

  2. The Diagram as Story: Unfolding the Event-Structure of the Mathematical Diagram

    ERIC Educational Resources Information Center

    de Freitas, Elizabeth

    2012-01-01

    This paper explores the role of narrative in decoding diagrams. I focus on two fundamental facets of narrative: (1) the recounting of causally related sequences of events, and (2) the positioning of the narrator through point-of-view and voice. In the first two sections of the paper I discuss philosophical and semiotic frameworks for making sense…

  3. Asynchronous polar V1500 Cyg: orbital, spin and beat periods

    NASA Astrophysics Data System (ADS)

    Pavlenko, E. P.; Mason, P. A.; Sosnovskij, A. A.; Shugarov, S. Yu; Babina, Ju V.; Antonyuk, K. A.; Andreev, M. V.; Pit, N. V.; Antonyuk, O. I.; Baklanov, A. V.

    2018-06-01

    The bright Nova Cygni 1975 is a rare nova on a magnetic white dwarf (WD). Later it was found to be an asynchronous polar, now called V1500 Cyg. Our multisite photometric campaign occurring 40 years post eruption covered 26-nights (2015-2017). The reflection effect from the heated donor has decreased, but still dominates the optical radiation with an amplitude ˜1m.5. The 0m.3 residual reveals cyclotron emission and ellipsoidal variations. Mean brightness modulation from night-to-night is used to measure the 9.6-d spin-orbit beat period that is due to changing accretion geometry including magnetic pole-switching of the flow. By subtracting the orbital and beat frequencies, spin-phase dependent light curves are obtained. The amplitude and profile of the WD spin light curves track the cyclotron emitting accretion regions on the WD and they vary systematically with beat phase. A weak intermittent signal at 0.137613-d is likely the spin period, which is 1.73(1) min shorter than the orbital period. The O-C diagram of light curve maxima displays phase jumps every one-half beat period, a characteristic of asynchronous polars. The first jump we interpret as pole switching between regions separated by 180°. Then the spot drifts during ˜ 0.1 beat phase before undergoing a second phase jump between spots separated by less than 180°. We trace the cooling of the still hot WD as revealed by the irradiated companion. The post nova evolution and spin-orbit asynchronism of V1500 Cyg continues to be a powerful laboratory for accretion flows onto magnetic white dwarfs.

  4. Current induced domain wall dynamics in the presence of spin orbit torques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulle, O., E-mail: Olivier.boulle@cea.fr; Buda-Prejbeanu, L. D.; Jué, E.

    2014-05-07

    Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velocity depend on the relative values of the field like torque (FLT) and the Slonczewski like torques (SLT). The results are well explained by a collective coordinate model which is used to draw a phase diagram of the DW dynamics as a function of the FLT and the SLT. We show that a large increase in the DW velocity can be reached bymore » a proper tuning of both torques.« less

  5. orbit-estimation: Fast orbital parameters estimator

    NASA Astrophysics Data System (ADS)

    Mackereth, J. Ted; Bovy, Jo

    2018-04-01

    orbit-estimation tests and evaluates the Stäckel approximation method for estimating orbit parameters in galactic potentials. It relies on the approximation of the Galactic potential as a Stäckel potential, in a prolate confocal coordinate system, under which the vertical and horizontal motions decouple. By solving the Hamilton Jacobi equations at the turning points of the horizontal and vertical motions, it is possible to determine the spatial boundary of the orbit, and hence calculate the desired orbit parameters.

  6. Hierarchical Bayesian calibration of tidal orbit decay rates among hot Jupiters

    NASA Astrophysics Data System (ADS)

    Collier Cameron, Andrew; Jardine, Moira

    2018-05-01

    Transiting hot Jupiters occupy a wedge-shaped region in the mass ratio-orbital separation diagram. Its upper boundary is eroded by tidal spiral-in of massive, close-in planets and is sensitive to the stellar tidal dissipation parameter Q_s^'. We develop a simple generative model of the orbital separation distribution of the known population of transiting hot Jupiters, subject to tidal orbital decay, XUV-driven evaporation and observational selection bias. From the joint likelihood of the observed orbital separations of hot Jupiters discovered in ground-based wide-field transit surveys, measured with respect to the hyperparameters of the underlying population model, we recover narrow posterior probability distributions for Q_s^' in two different tidal forcing frequency regimes. We validate the method using mock samples of transiting planets with known tidal parameters. We find that Q_s^' and its temperature dependence are retrieved reliably over five orders of magnitude in Q_s^'. A large sample of hot Jupiters from small-aperture ground-based surveys yields log _{10} Q_s^' }=(8.26± 0.14) for 223 systems in the equilibrium-tide regime. We detect no significant dependence of Q_s^' on stellar effective temperature. A further 19 systems in the dynamical-tide regime yield log _{10} Q_s^' }=7.3± 0.4, indicating stronger coupling. Detection probabilities for transiting planets at a given orbital separation scale inversely with the increase in their tidal migration rates since birth. The resulting bias towards younger systems explains why the surface gravities of hot Jupiters correlate with their host stars' chromospheric emission fluxes. We predict departures from a linear transit-timing ephemeris of less than 4 s for WASP-18 over a 20-yr baseline.

  7. The Hot Orbit: Orbital Cellulitis

    PubMed Central

    Chaudhry, Imtiaz A.; Al-Rashed, Waleed; Arat, Yonca O.

    2012-01-01

    Orbital cellulitis is an uncommon condition previously associated with severe complications. If untreated, orbital cellulitis can be potentially sight and life threatening. It can affect both adults and children but has a greater tendency to occur in the pediatric age group. The infection most commonly originates from sinuses, eyelids or face, retained foreign bodies, or distant soources by hematogenous spread. It is characterized by eyelid edema, erythema, chemosis, proptosis, blurred vision, fever, headache, and double vision. A history of upper respiratory tract infection prior to the onset is very common especially in children. In the era prior to antibiotics, vision loss from orbital cellulitis was a dreaded complication. Currently, imaging studies for detection of orbital abcess, the use of antibiotics and early drainage have mitigated visual morbidity significantly. The purpose of this review is to describe current investigative strategies and management options in the treatment of orbital cellulitis, establish their effectiveness and possible complications due to late intervention. PMID:22346113

  8. Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions.

    PubMed

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2017-02-09

    A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the juxtaposed nonbonded quasi-atoms and a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions, and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. The theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.

  9. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  10. Analysis of Bose system in spin-orbit coupled Bose-Fermi mixture to induce a spin current of fermions

    NASA Astrophysics Data System (ADS)

    Sakamoto, R.; Ono, Y.; Hatsuda, R.; Shiina, K.; Arahata, E.; Mori, H.

    2018-03-01

    We found that a spin current of fermions could be induced in spin-orbit coupled Bose-Fermi mixture at zero temperature. Since spatial change of the spin structure of the bosons is necessary to induce the spin current of the fermions, we analyzed the ground state of the bosons in the mixture system, using a variational method. The obtained phase diagram indicated the presence of a bosonic phase that allowed the fermions to have a spin current.

  11. Orbital cellulitis: a rare complication after orbital blowout fracture.

    PubMed

    Ben Simon, Guy J; Bush, Steven; Selva, Dinesh; McNab, Alan A

    2005-11-01

    To report the incidence of orbital cellulitis after orbital blowout fracture. Retrospective, noncomparative, interventional case series. All patients with orbital cellulitis and a history of recent orbital fracture. A medical record review of clinical history, imaging studies, and surgical and treatment outcome was performed. Resolution of orbital cellulitis and surgical and imaging findings. Four patients (3 male; mean age, 30 years [range, 4.5-58]) were treated for orbital cellulitis complicating orbital fracture. All patients had evidence of paranasal sinusitis before or after the orbital injury, and 2 also reported forceful nose blowing after sustaining orbital trauma. Although 3 patients received prophylactic oral antibiotics after the fracture, this failed to prevent infection. Sinusitis commenced 1 to 2 weeks before and as late as 5 weeks after orbital injury. All patients were treated with IV antibiotics. Two developed an orbital abscess that required surgical drainage; 1 patient improved after an endonasal maxillary antrostomy. One patient improved on IV antibiotics alone and underwent fracture repair at a later stage. These 4 patients represent 0.8% of all cases of orbital fractures treated in the study period. Orbital cellulitis is a rare complication of orbital fracture, and seems to be more common when paranasal sinus infection preexists or occurs within several weeks of the injury. Oral antibiotics given after the orbital injury may not prevent orbital cellulitis or abscess formation. Surgery may be required to drain orbital abscess or in nonresolving cellulitis to drain the paranasal sinuses. Fracture repair, if indicated, should be delayed, particularly if an alloplastic implant is used.

  12. Does the process map influence the outcome of quality improvement work? A comparison of a sequential flow diagram and a hierarchical task analysis diagram.

    PubMed

    Colligan, Lacey; Anderson, Janet E; Potts, Henry W W; Berman, Jonathan

    2010-01-07

    Many quality and safety improvement methods in healthcare rely on a complete and accurate map of the process. Process mapping in healthcare is often achieved using a sequential flow diagram, but there is little guidance available in the literature about the most effective type of process map to use. Moreover there is evidence that the organisation of information in an external representation affects reasoning and decision making. This exploratory study examined whether the type of process map - sequential or hierarchical - affects healthcare practitioners' judgments. A sequential and a hierarchical process map of a community-based anti coagulation clinic were produced based on data obtained from interviews, talk-throughs, attendance at a training session and examination of protocols and policies. Clinic practitioners were asked to specify the parts of the process that they judged to contain quality and safety concerns. The process maps were then shown to them in counter-balanced order and they were asked to circle on the diagrams the parts of the process where they had the greatest quality and safety concerns. A structured interview was then conducted, in which they were asked about various aspects of the diagrams. Quality and safety concerns cited by practitioners differed depending on whether they were or were not looking at a process map, and whether they were looking at a sequential diagram or a hierarchical diagram. More concerns were identified using the hierarchical diagram compared with the sequential diagram and more concerns were identified in relation to clinical work than administrative work. Participants' preference for the sequential or hierarchical diagram depended on the context in which they would be using it. The difficulties of determining the boundaries for the analysis and the granularity required were highlighted. The results indicated that the layout of a process map does influence perceptions of quality and safety problems in a process. In

  13. Analysis of orbital perturbations acting on objects in orbits near geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Friesen, Larry J.; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.

    1992-01-01

    The paper presents a numerical investigation of orbital evolution for objects started in GEO or in orbits near GEO in order to study potential orbital debris problems in this region. Perturbations simulated include nonspherical terms in the earth's geopotential field, lunar and solar gravity, and solar radiation pressure. Objects simulated include large satellites, for which solar radiation pressure is insignificant, and small particles, for which solar radiation pressure is an important force. Results for large satellites are largely in agreement with previous GEO studies that used classical perturbation techniques. The orbit plane of GEO satellites placed in a stable plane orbit inclined approximately 7.3 deg to the equator experience very little precession, remaining always within 1.2 percent of their initial orientation. Solar radiation pressure generates two major effects on small particles: an orbital eccentricity oscillation anticipated from previous research, and an oscillation in orbital inclination.

  14. Reactome diagram viewer: data structures and strategies to boost performance.

    PubMed

    Fabregat, Antonio; Sidiropoulos, Konstantinos; Viteri, Guilherme; Marin-Garcia, Pablo; Ping, Peipei; Stein, Lincoln; D'Eustachio, Peter; Hermjakob, Henning

    2018-04-01

    Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. For web-based pathway visualization, Reactome uses a custom pathway diagram viewer that has been evolved over the past years. Here, we present comprehensive enhancements in usability and performance based on extensive usability testing sessions and technology developments, aiming to optimize the viewer towards the needs of the community. The pathway diagram viewer version 3 achieves consistently better performance, loading and rendering of 97% of the diagrams in Reactome in less than 1 s. Combining the multi-layer html5 canvas strategy with a space partitioning data structure minimizes CPU workload, enabling the introduction of new features that further enhance user experience. Through the use of highly optimized data structures and algorithms, Reactome has boosted the performance and usability of the new pathway diagram viewer, providing a robust, scalable and easy-to-integrate solution to pathway visualization. As graph-based visualization of complex data is a frequent challenge in bioinformatics, many of the individual strategies presented here are applicable to a wide range of web-based bioinformatics resources. Reactome is available online at: https://reactome.org. The diagram viewer is part of the Reactome pathway browser (https://reactome.org/PathwayBrowser/) and also available as a stand-alone widget at: https://reactome.org/dev/diagram/. The source code is freely available at: https://github.com/reactome-pwp/diagram. fabregat@ebi.ac.uk or hhe@ebi.ac.uk. Supplementary data are available at Bioinformatics online.

  15. Effect of a Science Diagram on Primary Students' Understanding About Magnets

    NASA Astrophysics Data System (ADS)

    Preston, Christine

    2016-12-01

    The research investigated the effect of a science diagram on primary students' conceptual understanding about magnets. Lack of research involving students of primary age means that little is known about the potential of science diagrams to help them understand abstract concepts such as magnetism. Task-based interviews were conducted individually with 19 year 3 and year 5 students from a single school. Data captured students' prior ideas about magnets and changes in their understanding in response to a diagram as the only intervention. Results revealed a variety of outcomes—conceptual understanding was enhanced, reduced, simultaneously enhanced and reduced or not changed. Particular diagram features constrained students' learning for some students. The study confirms the individual nature of primary students' learning and has implications for teachers about instructional methods using science diagrams.

  16. Students' Perceptions of Roundhouse Diagramming: A Middle-School Viewpoint.

    ERIC Educational Resources Information Center

    Ward, Robin E.; Wandersee, James H.

    2002-01-01

    Explores the effects in a multiple case study of Roundhouse diagram construction and use on meaningful learning of science concepts in a 6th grade classroom. Concludes that the students typically gained a greater understanding of science explanations by constructing the diagrams. (Author/MM)

  17. Numerical calculation of Kossel diagrams of cholesteric blue phases

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun-ichi; Okumura, Yasushi; Kikuchi, Hirotsugu

    2018-02-01

    Kossel diagrams visualize the directions of strong Bragg reflections from a specimen with periodic ordering. They have played a pivotal role in the determination of the symmetry of cholesteric blue phases, and in the investigation of their structural changes under an electric field. In this work, we present direct numerical calculations of the Kossel diagrams of cholesteric blue phases by solving the Maxwell equations for the transmission and reflection of light incident upon a finite-thickness blue phase cell. Calculated Kossel diagrams are in good agreement with what is expected as a result of Bragg reflections, although some differences are present.

  18. The Conductance of Porphyrin-Based Molecular Nanowires Increases with Length.

    PubMed

    Algethami, Norah; Sadeghi, Hatef; Sangtarash, Sara; Lambert, Colin J

    2018-06-13

    High electrical conductance molecular nanowires are highly desirable components for future molecular-scale circuitry, but typically molecular wires act as tunnel barriers and their conductance decays exponentially with length. Here, we demonstrate that the conductance of fused-oligo-porphyrin nanowires can be either length independent or increase with length at room temperature. We show that this negative attenuation is an intrinsic property of fused-oligo-porphyrin nanowires, but its manifestation depends on the electrode material or anchor groups. This highly desirable, nonclassical behavior signals the quantum nature of transport through such wires. It arises because with increasing length the tendency for electrical conductance to decay is compensated by a decrease in their highest occupied molecular orbital-lowest unoccupied molecular orbital gap. Our study reveals the potential of these molecular wires as interconnects in future molecular-scale circuitry.

  19. Unified Phase Diagram for Iron-Based Superconductors.

    PubMed

    Gu, Yanhong; Liu, Zhaoyu; Xie, Tao; Zhang, Wenliang; Gong, Dongliang; Hu, Ding; Ma, Xiaoyan; Li, Chunhong; Zhao, Lingxiao; Lin, Lifang; Xu, Zhuang; Tan, Guotai; Chen, Genfu; Meng, Zi Yang; Yang, Yi-Feng; Luo, Huiqian; Li, Shiliang

    2017-10-13

    High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them. Here we show that the ordered moments in a variety of iron pnictides are inversely proportional to the effective Curie constants of their nematic susceptibility. This unexpected scaling behavior suggests that the magnetic ground states of iron pnictides can be achieved by tuning the strength of nematic fluctuations. Therefore, a unified phase diagram can be established where superconductivity emerges from a hypothetical parent compound with a large ordered moment but weak nematic fluctuations, which suggests that iron-based superconductors are strongly correlated electron systems.

  20. Coverage criteria for test case generation using UML state chart diagram

    NASA Astrophysics Data System (ADS)

    Salman, Yasir Dawood; Hashim, Nor Laily; Rejab, Mawarny Md; Romli, Rohaida; Mohd, Haslina

    2017-10-01

    To improve the effectiveness of test data generation during the software test, many studies have focused on the automation of test data generation from UML diagrams. One of these diagrams is the UML state chart diagram. Test cases are generally evaluated according to coverage criteria. However, combinations of multiple criteria are required to achieve better coverage. Different studies used various number and types of coverage criteria in their methods and approaches. The objective of this paper to propose suitable coverage criteria for test case generation using UML state chart diagram especially in handling loops. In order to achieve this objective, this work reviewed previous studies to present the most practical coverage criteria combinations, including all-states, all-transitions, all-transition-pairs, and all-loop-free-paths coverage. Calculation to determine the coverage percentage of the proposed coverage criteria were presented together with an example has they are applied on a UML state chart diagram. This finding would be beneficial in the area of test case generating especially in handling loops in UML state chart diagram.

  1. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion.

    PubMed

    Chang, K C; Tees, D F; Hammer, D A

    2000-10-10

    Leukocyte adhesion under flow in the microvasculature is mediated by binding between cell surface receptors and complementary ligands expressed on the surface of the endothelium. Leukocytes adhere to endothelium in a two-step mechanism: rolling (primarily mediated by selectins) followed by firm adhesion (primarily mediated by integrins). Using a computational method called "Adhesive Dynamics," we have simulated the adhesion of a cell to a surface in flow, and elucidated the relationship between receptor-ligand functional properties and the dynamics of adhesion. We express this relationship in a state diagram, a one-to-one map between the biophysical properties of adhesion molecules and various adhesive behaviors. Behaviors that are observed in simulations include firm adhesion, transient adhesion (rolling), and no adhesion. We varied the dissociative properties, association rate, bond elasticity, and shear rate and found that the unstressed dissociation rate, k(r)(o), and the bond interaction length, gamma, are the most important molecular properties controlling the dynamics of adhesion. Experimental k(r)(o) and gamma values from the literature for molecules that are known to mediate rolling adhesion fall within the rolling region of the state diagram. We explain why L-selectin-mediated rolling, which has faster k(r)(o) than other selectins, is accompanied by a smaller value for gamma. We also show how changes in association rate, shear rate, and bond elasticity alter the dynamics of adhesion. The state diagram (which must be mapped for each receptor-ligand system) presents a concise and comprehensive means of understanding the relationship between bond functional properties and the dynamics of adhesion mediated by receptor-ligand bonds.

  2. Raman scattering studies of the orbital, magnetic, and conducting phases in double layer ruthenates

    NASA Astrophysics Data System (ADS)

    Karpus, John Francis

    In this dissertation, light scattering techniques are used to probe the exotic orbital, magnetic, and conducting phases of the double layer ruthenate, Ca3Ru2O7, as functions of temperature, applied pressure, and applied magnetic field. These phases result from a rich interplay between the orbital, spin, and electronic degrees of freedom in such a strongly coupled system as Ca3Ru2O7. The Raman-active phonon and magnon excitations in Ca3Ru2O7 convey sufficient information to map out the orbital, magnetic, and conducting (H, T) and (P, T) phase diagrams of this material. This study finds that quasihydrostatic pressure causes a linear suppression of the orbital-ordering temperature (TOO = 48 K at P = 0), up to a T = 0 critical point near P* ˜ 55 kbar, above which the material is in a metallic, orbital-degenerate phase. This pressure-induced collapse of the antiferromagnetic orbital-ordered phase is associated with a suppression of the RuO6 octahedral distortions that are responsible for orbital-ordering. It is also shown that an applied magnetic field at low temperatures induces a change from an orbital-ordered to an orbital-degenerate phase for fields aligned along the in-plane hard-axis, but induces a reentrant orbital-ordered to orbital-disordered to orbital-ordered phase change for fields aligned along the in-plane easy-axis. This complex magnetic field dependence betrays the importance of the spin-orbit coupling in this system, which makes the field-induced phase behavior highly sensitive to both the applied magnetic field magnitude and direction. It is further shown that rapid field-induced changes in the structure and orbital populations are responsible for the highly field-tunable conducting properties of Ca3Ru2O7, and that the most dramatic magneto-conductivities are associated with an "orbital disordered" phase regime in which there is a random mixture of a- and b-axis oriented Ru moments and d-orbital populations on the Ru ions. Dilute La doping in Ca3Ru2O7

  3. The revised burn diagram and its effect on diagnosis-related group coding.

    PubMed

    Turner, D G; Berger, N; Weiland, A P; Jordan, M H

    1996-01-01

    Diagnosis-related group (DRG) codes for burn injuries are defined by thresholds of the percentage of total body surface area and depth of burns, and by whether surgery, debridement, or grafting or both occurred. This prospective study was designed to determine whether periodic revisions of the burn diagram resulted in more accurate assignment of the International Classification of Diseases and DRG codes. The admission burn diagrams were revised after admission and after each surgical procedure. All areas grafted (deep second-and third-degree burns) were diagrammed as "third-degree," after the current convention that both are biologically the same and require grafting. The multiple diagrams from 82 charts were analyzed to determine the disparities in the percentage of total body surface area burn and the percentage of body surface area third-degree burn. The revised diagrams differed from the admission diagrams in 96.5% of the cases. In 77% of the cases, the revised diagram correctly depicted the percentage of body surface area third-degree burn as confirmed intraoperatively. In 7.3% of the cases, diagram revision changed the DRG code. Documenting wound evolution in this manner allows more accurate assignment of the International Classification of Diseases and DRG codes, assuring optimal reimbursement under the prospective payment system.

  4. Energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice

    NASA Astrophysics Data System (ADS)

    Yu, Zi-Fa; Chai, Xu-Dan; Xue, Ju-Kui

    2018-05-01

    We investigate the energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice via a tight-binding model. The stability phase diagram is completely revealed in full parameter space, while the dependence of superfluidity on the dispersion relation is illustrated explicitly. In the absence of spin-orbit coupling, the superfluidity only exists in the center of the Brillouin zone. However, the combination of spin-orbit coupling, Zeeman field, nonlinearity and optical lattice potential can modify the dispersion relation of the system, and change the position of Brillouin zone for generating the superfluidity. Thus, the superfluidity can appear in either the center or the other position of the Brillouin zone. Namely, in the center of the Brillouin zone, the system is either superfluid or Landau unstable, which depends on the momentum of the lowest energy. Therefore, the superfluidity can occur at optional position of the Brillouin zone by elaborating spin-orbit coupling, Zeeman splitting, nonlinearity and optical lattice potential. For the linear case, the system is always dynamically stable, however, the nonlinearity can induce the dynamical instability, and also expand the superfluid region. These predicted results can provide a theoretical evidence for exploring the superfluidity of the system experimentally.

  5. Solid Propulsion De-Orbiting and Re-Orbiting

    NASA Astrophysics Data System (ADS)

    Schonenborg, R. A. C.; Schoyer, H. F. R.

    2009-03-01

    With many "innovative" de-orbit systems (e.g. tethers, aero breaking, etc.) and with natural de-orbit, the place of impact of unburned spacecraft debris on Earth can not be determined accurately. The idea that satellites burn up completely upon re-entry is a common misunderstanding. To the best of our knowledge only rocket motors are capable of delivering an impulse that is high enough, to conduct a de-orbit procedure swiftly, hence to de-orbit at a specific moment that allows to predict the impact point of unburned spacecraft debris accurately in remote areas. In addition, swift de-orbiting will reduce the on-orbit time of the 'dead' satellite, which reduces the chance of the dead satellite being hit by other dead or active satellites, while spiralling down to Earth during a slow, 25 year, or more, natural de-orbit process. Furthermore the reduced on-orbit time reduces the chance that spacecraft batteries, propellant tanks or other components blow up and also reduces the time that the object requires tracking from Earth.The use of solid propellant for the de-orbiting of spacecraft is feasible. The main advantages of a solid propellant based system are the relatively high thrust and the facts that the system can be made autonomous quite easily and that the system can be very reliable. The latter is especially desirable when one wants to de-orbit old or 'dead' satellites that might not be able to rely anymore on their primary systems. The disadvantage however, is the addition of an extra system to the spacecraft as well as a (small) mass penalty. [1]This paper describes the above mentioned system and shows as well, why such a system can also be used to re-orbit spacecraft in GEO, at the end of their life to a graveyard orbit.Additionally the system is theoretically compared to an existing system, of which performance data is available.A swift market analysis is performed as well.

  6. Phase diagram and transformations of iron pentacarbonyl to nm layered hematite and carbon-oxygen polymer under pressure

    DOE PAGES

    Ryu, Young Jay; Kim, Minseob; Yoo, Choong -Shik

    2015-10-12

    In this study, we present the phase diagram of Fe(CO) 5, consisting of three molecular polymorphs (phase I, II and III) and an extended polymeric phase that can be recovered at ambient condition. The phase diagram indicates a limited stability of Fe(CO) 5 within a pressure-temperature dome formed below the liquid- phase II- polymer triple point at 4.2 GPa and 580 K. The limited stability, in turn, signifies the temperature-induced weakening of Fe-CO back bonds, which eventually leads to the dissociation of Fe-CO at the onset of the polymerization of CO. The recovered polymer is a composite of novel nm-lamellarmore » layers of crystalline hematite Fe 2O 3 and amorphous carbon-oxygen polymers. These results, therefore, demonstrate the synthesis of carbon-oxygen polymer by compressing Fe(CO) 5, which advocates a novel synthetic route to develop atomistic composite materials by compressing organometallic compounds.« less

  7. Systematics of Rydberg Series of Diatomic Molecules and Correlation Diagrams

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Woo

    2015-06-01

    Rydberg states are studied for H2, Li2, HeH, LiH and BeH using the multi-reference configuration interaction (MRCI) method. The systematics and regularities of the physical properties such as potential energies curves (PECs), quantum defect curves, permanent dipole moment and transition dipole moment curves of the Rydberg series are studied. They are explained using united atom perturbation theory by Bingel and Byers-Brown, Fermi model, Stark theory, and Mulliken's theory. Interesting mirror relationships of the dipole moments are observed between l-mixed Rydberg series, indicating that the members of the l-mixed Rydberg series have dipole moments with opposite directions, which are related to the reversal of the polarity of a dipole moment at the avoided crossing points. The assignment of highly excited states is difficult because of the usual absence of the knowledge on the behaviors of potential energy curves at small internuclear separation whereby the correlation between the united atom limit and separated atoms limit cannot be given. All electron MRCI calculations of PECs are performed to obtain the correlation diagrams between Rydberg orbitals at the united-atom and separated atoms limits.

  8. Construction of Penrose Diagrams for Dynamic Black Holes

    NASA Technical Reports Server (NTRS)

    Brown, Beth A.; Lindesay, James

    2008-01-01

    A set of Penrose diagrams is constructed in order to examine the large-scale causal structure of black holes with dynamic horizons. Coordinate dependencies of significant features, such as the event horizon and radial mass scale, are demonstrated on the diagrams. Unlike in static Schwarzschild geometries, the radial mass scale is clearly seen to differ from the horizon. Trajectories for photons near the horizon are briefly discussed.

  9. Proton dynamics and the phase diagram of dense water ice.

    PubMed

    Hernandez, J-A; Caracas, R

    2018-06-07

    All the different phases of water ice between 2 GPa and several megabars are based on a single body-centered cubic sub-lattice of oxygen atoms. They differ only by the behavior of the hydrogen atoms. In this study, we investigate the dynamics of the H atoms at high pressures and temperatures in water ice from first-principles molecular dynamics simulations. We provide a detailed analysis of the O-H⋯O bonding dynamics over the entire stability domain of the body-centered cubic (bcc) water ices and compute transport properties and vibrational density-of-states. We report the first ab initio evidence for a plastic phase of water and we propose a coherent phase diagram for bcc water ices compatible with the two groups of melting curves and with the multiple anomalies reported in ice VII around 15 GPa.

  10. Theoretical and experimental studies of the molecular orbital bonding coefficients for Cu{sup 2+} ion in cesium hydrogen oxalate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalfaoğlu, Emel, E-mail: emelkalfaoglu@mynet.com; Karabulut, Bünyamin

    2016-03-25

    Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in cesium hydrogen oxalate single crystals have been investigated at room temperature. The spin-Hamiltonian parameters (g and A), have been determined. Crystalline field around the Cu{sup 2+} ion is almost axially symmetric. The results show a single paramagnetic site which confirms the triclinic crystal symmetry. Molecular orbital bonding coefficients are studied from the EPR and optical data. Theoretical octahedral field parameter and the tetragonal field parameters have been evaluated from the superposition model. Using these parameters, various bonding parameters are analyzed and the nature of bonding in themore » complex is discussed. The theoretical results are supported by experimental results.« less

  11. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.

    PubMed

    Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P

    2017-12-01

    The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.

  12. Color-color diagrams in near infrared: (J-H)/(H-K). I

    NASA Astrophysics Data System (ADS)

    Gyulbudaghian, Armen L.; Baloian, N.; Sanchez, I. A.

    2017-12-01

    In the paper are presented the color-color diagrams (J-H)/(H-K) for all stars with visible values B<11, for which in the known catalogs the values of J, H, K, and also spectral classes and luminosity classes of these stars are given. The diagrams are constructed for luminosity classes Ia, Ib, II, III, IV, V. The similarity of diagrams for classes Ia and Ib (super giants) and II (giants), is obvious from these diagrams. The diagrams obtained by us can be used for discovering of new young stars and also for determining of color excesses of investigating stars. Maximal amounts of stars are registered in the classes V and III. There is a tendency of increasing of J-H and H-K along the sequence of spectral classes O - M, which is correct for all luminosity classes.

  13. Double perovskites with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Cook, Ashley M.

    We first present theoretical analysis of powder inelastic neutron scattering experiments in Ba2FeReO6 performed by our experimental collaborators. Ba2FeReO6, a member of the double perovskite family of materials, exhibits half-metallic behavior and high Curie temperatures Tc, making it of interest for spintronics applications. To interpret the experimental data, we develop a local moment model, which incorporates the interaction of Fe spins with spin-orbital locked magnetic moments on Re, and show that it captures the experimental observations. We then develop a tight-binding model of the double perovskite Ba 2FeReO6, a room temperature ferrimagnet with correlated and spin-orbit coupled Re t2g electrons moving in the background of Fe moments stabilized by Hund's coupling. We show that for such 3d/5d double perovskites, strong correlations on the 5d-element (Re) are essential in driving a half-metallic ground state. Incorporating both strong spin-orbit coupling and the Hubbard repulsion on Re leads to a band structure consistent with ab initio calculations. The uncovered interplay of strong correlations and spin-orbit coupling lends partial support to our previous work, which used a local moment description to capture the spin wave dispersion found in neutron scattering measurements. We then adapt this tight-binding model to study {111}-grown bilayers of half-metallic double perovskites such as Sr2FeMoO6. The combination of spin-orbit coupling, inter-orbital hybridization and symmetry-allowed trigonal distortion leads to a rich phase diagram with tunable ferromagnetic order, topological C= +/-1, +/-2 Chern bands, and a C = +/-2 quantum anomalous Hall insulator regime. We have also performed theoretical analysis of inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO 6 and La2MgIrO6. Models with dominant Kitaev exchange seem to most naturally

  14. Automated Methodologies for the Design of Flow Diagrams for Development and Maintenance Activities

    NASA Astrophysics Data System (ADS)

    Shivanand M., Handigund; Shweta, Bhat

    The Software Requirements Specification (SRS) of the organization is a text document prepared by strategic management incorporating the requirements of the organization. These requirements of ongoing business/ project development process involve the software tools, the hardware devices, the manual procedures, the application programs and the communication commands. These components are appropriately ordered for achieving the mission of the concerned process both in the project development and the ongoing business processes, in different flow diagrams viz. activity chart, workflow diagram, activity diagram, component diagram and deployment diagram. This paper proposes two generic, automatic methodologies for the design of various flow diagrams of (i) project development activities, (ii) ongoing business process. The methodologies also resolve the ensuing deadlocks in the flow diagrams and determine the critical paths for the activity chart. Though both methodologies are independent, each complements other in authenticating its correctness and completeness.

  15. Controlling nonlinear optical response in an open four-level molecular system using quantum control of spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Jamshidi-Ghaleh, Kazem; Ebrahimi-hamed, Zahra; Sahrai, Mostafa

    2017-10-01

    This paper investigates the behavior of linear and nonlinear optical susceptibility of an open four-level molecular system, under two-step excitation based on electromagnetically induced transparency (EIT). The system was irradiated with a weak probe field and strong coupling field. It is shown that the use of a strong coupling field in the triplet states of an alkali-metal dimer can change the spin-orbit interaction (SOI). The optical response of the system can then be modified in a controllable way. The electromagnetically induced transparency transforms into electromagnetically induced absorption (EIA) in the presence of a coupling field. Changing the sign of the dispersion, this region is associated with switching subluminal and superluminal propagation. Furthermore, for the proper value of the coupling field, the controllable parameters, enhanced Kerr nonlinearity with reduced linear absorption, can be obtained under a weak probe field. With this approach, SOI can be controlled by changing only one of the controllable parameters, using triplet-triplet strong coupling with different spin state. Therefore, the desired region of the spectra can be obtained, in contrast to the other four-level system, in which at least two strong fields are used to change optical properties. This mechanism can be suitable in molecular systems or semiconductors to be used in optical bistability and fast all-optical switching devices.

  16. Workshop on Applications of Phase Diagrams in Metallurgy and Ceramics

    NASA Technical Reports Server (NTRS)

    Bennett, L. H.; Carter, G. C.

    1977-01-01

    A workshop was held to assess the current national and international status of phase diagram determinations and evaluations for alloys, ceramics, and semiconductors; to determine the needs and priorities, especially technological, for phase diagram determinations and evaluations; and to estimate the resources being used and potentially available for phase diagram evaluation. Highlights of the workshop, description of a new poster board design used in the poster sessions, lists of attendees and demonstrations, the program, and descriptions of the presentations are included.

  17. Heuristic Diagrams as a Tool to Teach History of Science

    NASA Astrophysics Data System (ADS)

    Chamizo, José A.

    2012-05-01

    The graphic organizer called here heuristic diagram as an improvement of Gowin's Vee heuristic is proposed as a tool to teach history of science. Heuristic diagrams have the purpose of helping students (or teachers, or researchers) to understand their own research considering that asks and problem-solving are central to scientific activity. The left side originally related in Gowin's Vee with philosophies, theories, models, laws or regularities now agrees with Toulmin's concepts (language, models as representation techniques and application procedures). Mexican science teachers without experience in science education research used the heuristic diagram to learn about the history of chemistry considering also in the left side two different historical times: past and present. Through a semantic differential scale teachers' attitude to the heuristic diagram was evaluated and its usefulness was demonstrated.

  18. Shuttle on-orbit rendezvous targeting: Circular orbits

    NASA Technical Reports Server (NTRS)

    Bentley, E. L.

    1972-01-01

    The strategy and logic used in a space shuttle on-orbit rendezvous targeting program are described. The program generates ascent targeting conditions for boost to insertion into an intermediate parking orbit, and generates on-orbit targeting and timeline bases for each maneuver to effect rendezvous with a space station. Time of launch is determined so as to eliminate any plane change, and all work was performed for a near-circular space station orbit.

  19. Pourbaix ("E"-pH-M) Diagrams in Three Dimensions

    ERIC Educational Resources Information Center

    Pesterfield, Lester L.; Maddox, Jeremy B.; Crocker, Michael S.; Schweitzer, George K.

    2012-01-01

    "E"-pH (Pourbaix) diagrams provide an important graphical link between the thermodynamic calculations of potential, pH, equilibrium constant, concentration, and changes in Gibbs energy and the experimentally observed behavior of species in aqueous solutions. The utility of "E"-pH diagrams is extended with the introduction of an additional…

  20. Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.

    A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the non-bonded juxtaposed quasi-atoms andmore » a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. Lastly, the theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.« less

  1. Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions

    DOE PAGES

    West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.; ...

    2017-01-30

    A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the non-bonded juxtaposed quasi-atoms andmore » a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. Lastly, the theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.« less

  2. Examining competing hypotheses for the effects of diagrams on recall for text.

    PubMed

    Ortegren, Francesca R; Serra, Michael J; England, Benjamin D

    2015-01-01

    Supplementing text-based learning materials with diagrams typically increases students' free recall and cued recall of the presented information. In the present experiments, we examined competing hypotheses for why this occurs. More specifically, although diagrams are visual, they also serve to repeat information from the text they accompany. Both visual presentation and repetition are known to aid students' recall of information. To examine to what extent diagrams aid recall because they are visual or repetitive (or both), we had college students in two experiments (n = 320) read a science text about how lightning storms develop before completing free-recall and cued-recall tests over the presented information. Between groups, we manipulated the format and repetition of target pieces of information in the study materials using a 2 (visual presentation of target information: diagrams present vs. diagrams absent) × 2 (repetition of target information: present vs. absent) between-participants factorial design. Repetition increased both the free recall and cued recall of target information, and this occurred regardless of whether that repetition was in the form of text or a diagram. In contrast, the visual presentation of information never aided free recall. Furthermore, visual presentation alone did not significantly aid cued recall when participants studied the materials once before the test (Experiment 1) but did when they studied the materials twice (Experiment 2). Taken together, the results of the present experiments demonstrate the important role of repetition (i.e., that diagrams repeat information from the text) over the visual nature of diagrams in producing the benefits of diagrams for recall.

  3. A structural route to tuning the orbital structure of nickelates

    NASA Astrophysics Data System (ADS)

    Kumah, Divine; Disa, Ankit; Malashevich, Andrei; Chen, Hanghui; Ismail-Beigi, Sohrab; Walker, Fred; Ahn, Charles

    2014-03-01

    The rare-earth nickelates display a range of interesting magnetic and electronic phenomena arising from the strong coupling of the atomic-scale structural properties of these systems to the charge and orbital degrees of freedom. We report on modifying the orbital polarization in nickelate based heterostructures, motivated by the goal of emulating high-Tc cuprate behavior in the nickelates. Using a combination of synchrotron diffraction structural and spectroscopic characterization and first principles theory, we show how the design of a structure that splits the relative electronic occupation of Ni d x2-y2 and Ni d 3z2-r2 orbitals, is achieved in three-component heterostructures. These structures are comprised of LaTiO3/LaNiO3/LaAlO3 and are grown using molecular beam epitaxy. The key features of the theoretically proposed structure, including an internal polar field, a electron transfer from Ti to Ni, and a orbital polarization of the Ni-eg states, are experimentally studied.

  4. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging

    PubMed Central

    Yu, Ping; Repp, Jascha; Huber, Rupert

    2017-01-01

    Watching a single molecule move on its intrinsic time scale—one of the central goals of modern nanoscience—calls for measurements that combine ultrafast temporal resolution1–8 with atomic spatial resolution9–30. Steady-state experiments achieve the requisite spatial resolution, as illustrated by direct imaging of individual molecular orbitals using scanning tunnelling microscopy9–11 or the acquisition of tip-enhanced Raman and luminescence spectra with sub-molecular resolution27–29. But tracking the dynamics of a single molecule directly in the time domain faces the challenge that single-molecule excitations need to be confined to an ultrashort time window. A first step towards overcoming this challenge has combined scanning tunnelling microscopy with so-called ‘lightwave electronics”1–8, which uses the oscillating carrier wave of tailored light pulses to directly manipulate electronic motion on time scales faster even than that of a single cycle of light. Here we use such ultrafast terahertz scanning tunnelling microscopy to access a state-selective tunnelling regime, where the peak of a terahertz electric-field waveform transiently opens an otherwise forbidden tunnelling channel through a single molecular state and thereby removes a single electron from an individual pentacene molecule’s highest occupied molecular orbital within a time window shorter than one oscillation cycle of the terahertz wave. We exploit this effect to record ~100 fs snapshot images of the structure of the orbital involved, and to reveal through pump-probe measurements coherent molecular vibrations at terahertz frequencies directly in the time domain and with sub-angstrom spatial resolution. We anticipate that the combination of lightwave electronics1–8 and atomic resolution of our approach will open the door to controlling electronic motion inside individual molecules at optical clock rates. PMID:27830788

  5. [Action of hormones at the molecular level].

    PubMed

    Korolkovas, A

    1973-03-01

    A review of the literature (the list of citations is available from the author on request) is given on the molecular pharmacology of steroid hormones and on efforts to isolate androgen, estrogen, and progestogen receptors with the object of understanding the mechanism of action at the cellular and molecular levels. Complementarity is the necessary factor for interaction between drug and chemoreceptor or the tension induced by proximity, as in the case of enzyme-substrate interaction. In reacting with a receptor, the drug molecule is seen as being, in general, in a state of least energy. Binding forces are the same as those operating in the interior of simple molecules. 2 factors are of special importance to the complex action of drug-receptor: the distribution of the electron charge in each and the molecular conformation of each. A number of examples illustrates this structure-activity relationship. For steroid hormones, 3 stereochemical aspects are significant for their molecular action: 1) binding sites (equatorial or axial), 2) the position of substituents, and 3) the form of cyclohexane (bound and most stable or free and thermodynamically less stable). The mode of action of steroid hormones is outlined, including a diagram of gene regulation and the function of operons and messenger RNA. Androgens, estrogens, and progestogens each owe their specific biological activity to interaction with a macromolecular receptor, such interaction presumably being due to complementarity between receptor and hormone surfaces. Several theories to account for this interaction are discussed and diagrammed.

  6. Water, Water Everywhere: Phase Diagrams of Ordinary Water Substance

    ERIC Educational Resources Information Center

    Glasser, L.

    2004-01-01

    The full phase diagram of water in the form of a graphical representation of the three-dimensional (3D) PVT diagram using authentic data is presented. An interesting controversy regarding the phase behavior of water was the much-touted proposal of a solid phase of water, polywater, supposedly stable under atmospheric conditions.

  7. An Introductory Idea for Teaching Two-Component Phase Diagrams

    ERIC Educational Resources Information Center

    Peckham, Gavin D.; McNaught, Ian J.

    2011-01-01

    The teaching of two-component phase diagrams has attracted little attention in this "Journal," and it is hoped that this article will make a useful contribution. Current physical chemistry textbooks describe two-component phase diagrams adequately, but do so in a piecemeal fashion one section at a time; first solid-liquid equilibria, then…

  8. Adding Value to Force Diagrams: Representing Relative Force Magnitudes

    ERIC Educational Resources Information Center

    Wendel, Paul

    2011-01-01

    Nearly all physics instructors recognize the instructional value of force diagrams, and this journal has published several collections of exercises to improve student skill in this area. Yet some instructors worry that too few students perceive the conceptual and problem-solving utility of force diagrams, and over recent years a rich variety of…

  9. Graphical support for comprehending science texts: The contributions of diagram design and text directives

    NASA Astrophysics Data System (ADS)

    McTigue, Erin M.

    The present study examined the combined effect of diagram design and text directives on the comprehension of explanatory science texts for middle school readers. Three types of diagram designs were compared. Each design contained the same graphical representation of a cycle but differed in the labels. The labels indicated either the (a) parts of the, cycle, (b) steps of the cycle, or (c) both the parts and steps. Additionally, there were two conditions of text, both with and without embedded directives. The directives guided the reader to the diagram to help readers integrate the two sources of information. Finally, each of the 189 sixth grade participants read two texts---a life-science text and a physical-science text. Results indicated that for the life-science text both the parts diagrams and the steps diagrams facilitated the readers' comprehension, but that the parts & steps diagram did not. Overall, the directives assisted readers in the life-science text, when they were viewing the complex diagrams: the steps diagram, and the parts & steps diagrams, but not the parts diagram. Directives also helped girls who were reading at the below- and on-grade level, but not the girls reading above-grade level. Neither the diagrams nor directives facilitated comprehension of the physical science text. There was a gender difference favoring boys on the physical science but no gender difference on the life-science text.

  10. Impact of Diagrams on Recalling Sequential Elements in Expository Texts.

    ERIC Educational Resources Information Center

    Guri-Rozenblit, Sarah

    1988-01-01

    Examines the instructional effectiveness of abstract diagrams on recall of sequential relations in social science textbooks. Concludes that diagrams assist significantly the recall of sequential relations in a text and decrease significantly the rate of order mistakes. (RS)

  11. Interactive Land-Use Optimization Using Laguerre Voronoi Diagram with Dynamic Generating Point Allocation

    NASA Astrophysics Data System (ADS)

    Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.

    2017-09-01

    In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.

  12. Diagram, Gesture, Agency: Theorizing Embodiment in the Mathematics Classroom

    ERIC Educational Resources Information Center

    de Freitas, Elizabeth; Sinclair, Nathalie

    2012-01-01

    In this paper, we use the work of philosopher Gilles Chatelet to rethink the gesture/diagram relationship and to explore the ways mathematical agency is constituted through it. We argue for a fundamental philosophical shift to better conceptualize the relationship between gesture and diagram, and suggest that such an approach might open up new…

  13. [Effect of hemorheology on ultrasonic doppler blood flow spectrum diagram].

    PubMed

    Zhang, Shenghua; Qin, Renjia

    2014-08-01

    The present research aims to point out the long-existing defect of analyzing the spectrum diagram only from the perspective of haemodynamics instead of haemorheology. In the light of the theories of haemodynamics and haemorheology, the causes of spectrum diagram formation of carotid artery blood at the rapid and slow flow can be clarified completely and accurately. Four conclusions have been drawn in the end. As long as the velocity gradient is large enough, obvious red blood cells concentrate to the shaft even in the big or bigger blood vessels; the spectrum diagram is the powerful proof of the two phase flow model of blood; the spectrum diagram can be completely and accurately analyzed only by combining haemodynamics with haemorheology; and only when the red blood cells concentrate to the shaft, the big or bigger blood vessels can be regarded as haemogeneous fluid.

  14. Multiple representations and free-body diagrams: Do students benefit from using them?

    NASA Astrophysics Data System (ADS)

    Rosengrant, David R.

    2007-12-01

    Introductory physics students have difficulties understanding concepts and solving problems. When they solve problems, they use surface features of the problems to find an equation to calculate a numerical answer often not understanding the physics in the problem. How do we help students approach problem solving in an expert manner? A possible answer is to help them learn to represent knowledge in multiple ways and then use these different representations for conceptual understanding and problem solving. This solution follows from research in cognitive science and in physics education. However, there are no studies in physics that investigate whether students who learn to use multiple representations are in fact better problem solvers. This study focuses on one specific representation used in physics--a free body diagram. A free-body diagram is a graphical representation of forces exerted on an object of interest by other objects. I used the free-body diagram to investigate five main questions: (1) If students are in a course where they consistently use free body diagrams to construct and test concepts in mechanics, electricity and magnetism and to solve problems in class and in homework, will they draw free-body diagrams on their own when solving exam problems? (2) Are students who use free-body diagrams to solve problems more successful then those who do not? (3) Why do students draw free-body diagrams when solving problems? (4) Are students consistent in constructing diagrams for different concepts in physics and are they consistent in the quality of their diagrams? (5) What are possible relationships between features of a problem and how likely a student will draw a free body diagram to help them solve the problem? I utilized a mixed-methods approach to answer these questions. Questions 1, 2, 4 and 5 required a quantitative approach while question 3 required a qualitative approach, a case study. When I completed my study, I found that if students are in an

  15. State-transition diagrams for biologists.

    PubMed

    Bersini, Hugues; Klatzmann, David; Six, Adrien; Thomas-Vaslin, Véronique

    2012-01-01

    It is clearly in the tradition of biologists to conceptualize the dynamical evolution of biological systems in terms of state-transitions of biological objects. This paper is mainly concerned with (but obviously not limited too) the immunological branch of biology and shows how the adoption of UML (Unified Modeling Language) state-transition diagrams can ease the modeling, the understanding, the coding, the manipulation or the documentation of population-based immune software model generally defined as a set of ordinary differential equations (ODE), describing the evolution in time of populations of various biological objects. Moreover, that same UML adoption naturally entails a far from negligible representational economy since one graphical item of the diagram might have to be repeated in various places of the mathematical model. First, the main graphical elements of the UML state-transition diagram and how they can be mapped onto a corresponding ODE mathematical model are presented. Then, two already published immune models of thymocyte behavior and time evolution in the thymus, the first one originally conceived as an ODE population-based model whereas the second one as an agent-based one, are refactored and expressed in a state-transition form so as to make them much easier to understand and their respective code easier to access, to modify and run. As an illustrative proof, for any immunologist, it should be possible to understand faithfully enough what the two software models are supposed to reproduce and how they execute with no need to plunge into the Java or Fortran lines.

  16. State-Transition Diagrams for Biologists

    PubMed Central

    Bersini, Hugues; Klatzmann, David; Six, Adrien; Thomas-Vaslin, Véronique

    2012-01-01

    It is clearly in the tradition of biologists to conceptualize the dynamical evolution of biological systems in terms of state-transitions of biological objects. This paper is mainly concerned with (but obviously not limited too) the immunological branch of biology and shows how the adoption of UML (Unified Modeling Language) state-transition diagrams can ease the modeling, the understanding, the coding, the manipulation or the documentation of population-based immune software model generally defined as a set of ordinary differential equations (ODE), describing the evolution in time of populations of various biological objects. Moreover, that same UML adoption naturally entails a far from negligible representational economy since one graphical item of the diagram might have to be repeated in various places of the mathematical model. First, the main graphical elements of the UML state-transition diagram and how they can be mapped onto a corresponding ODE mathematical model are presented. Then, two already published immune models of thymocyte behavior and time evolution in the thymus, the first one originally conceived as an ODE population-based model whereas the second one as an agent-based one, are refactored and expressed in a state-transition form so as to make them much easier to understand and their respective code easier to access, to modify and run. As an illustrative proof, for any immunologist, it should be possible to understand faithfully enough what the two software models are supposed to reproduce and how they execute with no need to plunge into the Java or Fortran lines. PMID:22844438

  17. UML activity diagrams in requirements specification of logic controllers

    NASA Astrophysics Data System (ADS)

    Grobelna, Iwona; Grobelny, Michał

    2015-12-01

    Logic controller specification can be prepared using various techniques. One of them is the wide understandable and user-friendly UML language and its activity diagrams. Using formal methods during the design phase increases the assurance that implemented system meets the project requirements. In the approach we use the model checking technique to formally verify a specification against user-defined behavioral requirements. The properties are usually defined as temporal logic formulas. In the paper we propose to use UML activity diagrams in requirements definition and then to formalize them as temporal logic formulas. As a result, UML activity diagrams can be used both for logic controller specification and for requirements definition, what simplifies the specification and verification process.

  18. [Orbital inflammation].

    PubMed

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Spin-Orbit Coupled Quantum Magnetism in the 3D-Honeycomb Iridates

    NASA Astrophysics Data System (ADS)

    Kimchi, Itamar

    In this doctoral dissertation, we consider the significance of spin-orbit coupling for the phases of matter which arise for strongly correlated electrons. We explore emergent behavior in quantum many-body systems, including symmetry-breaking orders, quantum spin liquids, and unconventional superconductivity. Our study is cemented by a particular class of Mott-insulating materials, centered around a family of two- and three-dimensional iridium oxides, whose honeycomb-like lattice structure admits peculiar magnetic interactions, the so-called Kitaev exchange. By analyzing recent experiments on these compounds, we show that this unconventional exchange is the key ingredient in describing their magnetism, and then use a combination of numerical and analytical techniques to investigate the implications for the phase diagram as well as the physics of the proximate three-dimensional quantum spin liquid phases. These long-ranged-entangled fractionalized phases should exhibit special features, including finite-temperature stability as well as unconventional high-Tc superconductivity upon charge-doping, which should aid future experimental searches for spin liquid physics. Our study explores the nature of frustration and fractionalization which can arise in quantum systems in the presence of strong spin-orbit coupling.

  20. Using a Spreadsheet To Explore Melting, Dissolving and Phase Diagrams.

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2002-01-01

    Compares phase diagrams relating to the solubilities and melting points of various substances in textbooks with those generated by a spreadsheet using data from the literature. Argues that differences between the diagrams give rise to new chemical insights. (Author/MM)

  1. PyORBIT: A Python Shell For ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-07-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. Wemore » also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability.« less

  2. Diagram This Headline in One Minute, if You Can

    ERIC Educational Resources Information Center

    Landecker, Heidi

    2009-01-01

    Say "sentence diagramming" to people of a certain age, and one gets different reactions. Say it to most college students, and one gets a blank look. But not from the 24 students in Lucy Ferriss's "Constructing Thought," a half-credit course in the English department at Trinity College. They know how to diagram a sentence--and…

  3. The Changing Expectations for the Reading of Geometric Diagrams

    ERIC Educational Resources Information Center

    Dietiker, Leslie; Brakoniecki, Aaron; Riling, Meghan

    2017-01-01

    Students studying geometry at the secondary level are expected to read diagrams in different ways than those in elementary school. In this paper, we present an analysis of the changes in diagrammatic expectations by comparing the geometric diagrams found in Grade 1 U.S. textbooks with those in U.S. high school geometry textbooks. This work…

  4. Quantum chemical studies on hypothetical Fischer type Mo(CO)5[C(OEt)Me] and Mo(CO)5[C(OMe)Et] carbene complexes

    NASA Astrophysics Data System (ADS)

    Gövdeli, Nezafet; Karakaş, Duran

    2018-07-01

    Quantum chemical calculations at B3LYP/LANL2DZ/6-31G(d) level were made on anti-eclipsed, anti-staggered, syn-eclipsed, syn-staggered conformers of hypothetical Fischer type Mo(CO)5[C(OEt)Me] and Mo(CO)5[C(OMe)Et] carbene complexes in the gas phase. The most stable conformer of the complexes was found to be anti-staggered according to the total energy values calculated at given level. Structural parameters, vibration spectra, charge distributions, molecular orbital energy diagrams, contour diagrams of frontier orbitals, molecular electrostatic potential maps and some electronic structure descriptors were obtained for the most stable conformers. NMR spectra of the most stable conformers were calculated at GIAO/B3LYP/LANL2DZ level. The most stable conformer geometry was found to be distorted octahedral. IR and NMR spectra of the complexes are consistent with their geometry. HOMOs of the complexes were found to be center-atomic character and LUMOs were carbene-carbon character. From the calculated charge analysis and molecular electrostatic potential maps, it is found that carbene-carbon acts as electrofil and metal center nucleophile. It is suggested that the catalytic properties of the carbene complexes may be due to the fact that the carbene-carbon behave as electrophile and metal center nucleophile. Some electronic structure descriptors of the complexes were calculated and the molecular properties were estimated.

  5. Payload/orbiter contamination control requirement study

    NASA Technical Reports Server (NTRS)

    Bareiss, L. E.; Ress, E. B.

    1975-01-01

    The results of a contamination impact analysis upon the spacelab carrier and the spacelab carrier upon some of its potential payloads are presented. These results are based upon contamination computer modeling techniques developed to predict the induced environment for spacelab and to provide the basis for evaluation of the predicted environment against the current on orbit contamination control criteria as specified for payloads. Those spacelab carrier contamination sources evaluated against the stated contamination control criteria were outgassing/offgassing of the major nonmetallic thermal control coating of the spacelab carriers, spacelab core and experiment module and tunnel cabin atmosphere leakage, avionics bay vent, spacelab condensate vent, random particulate sloughing, and the return flux of the molecular content of these sources from the gas-gas interactions with the ambient orbital environment. It is indicated that the spacelab carrier can meet the intent of the contamination control criteria through incorporating known contamination control practices.

  6. Charge Transfer and Orbital Level Alignment at Inorganic/Organic Interfaces: The Role of Dielectric Interlayers.

    PubMed

    Hollerer, Michael; Lüftner, Daniel; Hurdax, Philipp; Ules, Thomas; Soubatch, Serguei; Tautz, Frank Stefan; Koller, Georg; Puschnig, Peter; Sterrer, Martin; Ramsey, Michael G

    2017-06-27

    It is becoming accepted that ultrathin dielectric layers on metals are not merely passive decoupling layers, but can actively influence orbital energy level alignment and charge transfer at interfaces. As such, they can be important in applications ranging from catalysis to organic electronics. However, the details at the molecular level are still under debate. In this study, we present a comprehensive analysis of the phenomenon of charge transfer promoted by a dielectric interlayer with a comparative study of pentacene adsorbed on Ag(001) with and without an ultrathin MgO interlayer. Using scanning tunneling microscopy and photoemission tomography supported by density functional theory, we are able to identify the orbitals involved and quantify the degree of charge transfer in both cases. Fractional charge transfer occurs for pentacene adsorbed on Ag(001), while the presence of the ultrathin MgO interlayer promotes integer charge transfer with the lowest unoccupied molecular orbital transforming into a singly occupied and singly unoccupied state separated by a large gap around the Fermi energy. Our experimental approach allows a direct access to the individual factors governing the energy level alignment and charge-transfer processes for molecular adsorbates on inorganic substrates.

  7. Phase diagram of a symmetric electron–hole bilayer system: a variational Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Sharma, Rajesh O.; Saini, L. K.; Prasad Bahuguna, Bhagwati

    2018-05-01

    We study the phase diagram of a symmetric electron–hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater–Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r s , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at and the ferromagnetic fluid phase being particularly stable at . As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r s   =  20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r s   <  20 and a.u., the excitonic phase is found to be stable. We do not find that the anti-ferromagnetic Wigner crystal is stable over the considered range of r s and d. We also find that as r s increases, the critical layer separations for Wigner crystallization increase.

  8. Formative Feedback Using Pseudo Peer Diagrams: Evaluating System Equilibrium of Buoyancy Forces

    ERIC Educational Resources Information Center

    Li, Sensen

    2013-01-01

    This study introduces an innovative instructional method, called "pseudo peer diagram" (PPD), where students employ executive skills to compare and contrast their work with others' as a formative feedback mechanism. The focus of this study is how students compare and contrast their own diagrams with the pseudo peer diagrams as a stimulus…

  9. A Diagram Editor for Efficient Biomedical Knowledge Capture and Integration

    PubMed Central

    Yu, Bohua; Jakupovic, Elvis; Wilson, Justin; Dai, Manhong; Xuan, Weijian; Mirel, Barbara; Athey, Brian; Watson, Stanley; Meng, Fan

    2008-01-01

    Understanding the molecular mechanisms underlying complex disorders requires the integration of data and knowledge from different sources including free text literature and various biomedical databases. To facilitate this process, we created the Biomedical Concept Diagram Editor (BCDE) to help researchers distill knowledge from data and literature and aid the process of hypothesis development. A key feature of BCDE is the ability to capture information with a simple drag-and-drop. This is a vast improvement over manual methods of knowledge and data recording and greatly increases the efficiency of the biomedical researcher. BCDE also provides a unique concept matching function to enforce consistent terminology, which enables conceptual relationships deposited by different researchers in the BCDE database to be mined and integrated for intelligible and useful results. We hope BCDE will promote the sharing and integration of knowledge from different researchers for effective hypothesis development. PMID:21347131

  10. Rehabilitation of orbital cavity after orbital exenteration using polymethyl methacrylate orbital prosthesis.

    PubMed

    Jain, Sumeet; Jain, Parul

    2016-01-01

    Squamous cell carcinoma of the eyelid is the second most common malignant neoplasm of the eye with the incidence of 0.09 and 2.42 cases/100 000 people. Orbital invasion is a rare complication but, if recognized early, can be treated effectively with exenteration. Although with advancements in technology such as computer-aided design and computer-aided manufacturing, material science, and retentive methods like implants, orbital prosthesis with stock ocular prosthesis made of methyl methacrylate retained by anatomic undercuts is quiet effective and should not be overlooked and forgotten. This clinical report describes prosthetic rehabilitation of two male patients with polymethyl methacrylate resin orbital prosthesis after orbital exenteration, for squamous cell carcinoma of the upper eyelid. The orbital prosthesis was sufficiently retained by hard and soft tissue undercuts without any complications. The patients using the prosthesis are quite satisfied with the cosmetic results and felt comfortable attending the social events.

  11. Algorithms for the explicit computation of Penrose diagrams

    NASA Astrophysics Data System (ADS)

    Schindler, J. C.; Aguirre, A.

    2018-05-01

    An algorithm is given for explicitly computing Penrose diagrams for spacetimes of the form . The resulting diagram coordinates are shown to extend the metric continuously and nondegenerately across an arbitrary number of horizons. The method is extended to include piecewise approximations to dynamically evolving spacetimes using a standard hypersurface junction procedure. Examples generated by an implementation of the algorithm are shown for standard and new cases. In the appendix, this algorithm is compared to existing methods.

  12. Designing a supply chain of ready-mix concrete using Voronoi diagrams

    NASA Astrophysics Data System (ADS)

    Kozniewski, E.; Orlowski, M.; Orlowski, Z.

    2017-10-01

    Voronoi diagrams are used to solve scientific and practical problems in many fields. In this paper Voronoi diagrams have been applied to logistic problems in construction, more specifically in the design of the ready-mix concrete supply chain. Apart from the Voronoi diagram, the so-called time-distance circle (circle of range), which in metric space terminology is simply a sphere, appears useful. It was introduced to solve the problem of supplying concrete-related goods.

  13. Synthesis, spectroscopic investigations, DFT studies, molecular docking and antimicrobial potential of certain new indole-isatin molecular hybrids: Experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Almutairi, Maha S.; Zakaria, Azza S.; Ignasius, P. Primsa; Al-Wabli, Reem I.; Joe, Isaac Hubert; Attia, Mohamed I.

    2018-02-01

    Indole-isatin molecular hybrids 5a-i have been synthesized and characterized by different spectroscopic methods to be evaluated as new antimicrobial agents against a panel of Gram positive bacteria, Gram negative bacteria, and moulds. Compound 5h was selected as a representative example of the prepared compounds 5a-i to perform computational investigations. Its vibrational properties have been studied using FT-IR and FT-Raman with the aid of density functional theory approach. The natural bond orbital analysis as well as HOMO and LUMO molecular orbitals investigations of compound 5h were carried out to explore its possible intermolecular delocalization or hyperconjugation and its possible interactions with the target protein. Molecular docking of compound 5h predicted its binding mode with the fungal target protein.

  14. Using Workflow Diagrams to Address Hand Hygiene in Pediatric Long-Term Care Facilities1

    PubMed Central

    Carter, Eileen J.; Cohen, Bevin; Murray, Meghan T.; Saiman, Lisa; Larson, Elaine L.

    2015-01-01

    Hand hygiene (HH) in pediatric long-term care settings has been found to be sub-optimal. Multidisciplinary teams at three pediatric long-term care facilities developed step-by-step workflow diagrams of commonly performed tasks highlighting HH opportunities. Diagrams were validated through observation of tasks and concurrent diagram assessment. Facility teams developed six workflow diagrams that underwent 22 validation observations. Four main themes emerged: 1) diagram specificity, 2) wording and layout, 3) timing of HH indications, and 4) environmental hygiene. The development of workflow diagrams is an opportunity to identify and address the complexity of HH in pediatric long-term care facilities. PMID:25773517

  15. Hero's journey in bifurcation diagram

    NASA Astrophysics Data System (ADS)

    Monteiro, L. H. A.; Mustaro, P. N.

    2012-06-01

    The hero's journey is a narrative structure identified by several authors in comparative studies on folklore and mythology. This storytelling template presents the stages of inner metamorphosis undergone by the protagonist after being called to an adventure. In a simplified version, this journey is divided into three acts separated by two crucial moments. Here we propose a discrete-time dynamical system for representing the protagonist's evolution. The suffering along the journey is taken as the control parameter of this system. The bifurcation diagram exhibits stationary, periodic and chaotic behaviors. In this diagram, there are transition from fixed point to chaos and transition from limit cycle to fixed point. We found that the values of the control parameter corresponding to these two transitions are in quantitative agreement with the two critical moments of the three-act hero's journey identified in 10 movies appearing in the list of the 200 worldwide highest-grossing films.

  16. Specific interactions between amyloid-β peptides in an amyloid-β hexamer with three-fold symmetry: Ab initio fragment molecular orbital calculations in water

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Tomioka, Shogo; Kadoya, Ryushi; Shimamura, Kanako; Okamoto, Akisumi; Shulga, Sergiy; Kurita, Noriyuki

    2017-03-01

    The accumulation of amyloid-beta (Aβ) aggregates in brain contributes to the onset of Alzheimer's disease (AD). Recent structural analysis for the tissue obtained from AD patients revealed that Aβ aggregates have a single structure with three-fold symmetry. To explain why this structure possesses significant stability, we here investigated the specific interactions between Aβ peptides in the aggregate, using ab initio fragment molecular orbital calculations. The results indicate that the interactions between the Aβ peptides of the stacked Aβ pair are stronger than those between the Aβ peptides of the trimer with three-fold symmetry and that the charged amino-acids are important.

  17. The effects of explicit visual cues in reading biological diagrams

    NASA Astrophysics Data System (ADS)

    Ge, Yun-Ping; Unsworth, Len; Wang, Kuo-Hua

    2017-03-01

    Drawing on cognitive theories, this study intends to investigate the effects of explicit visual cues which have been proposed as a critical factor in facilitating understanding of biological images. Three diagrams from Taiwanese textbooks with implicit visual cues, involving the concepts of biological classification systems, fish taxonomy, and energy pyramid, were selected as the reading materials for the control group and reformatted in tree structure or with additional arrows as the diagrams for the treatment group. A quasi-experiment with an online reading test was conducted to examine the effect of the different image conditions on reading comprehension of the two groups. In total, 192 Taiwanese participants from year 7 were assigned randomly into either control group or treatment group according to the pre-test of relevant prior knowledge. The results indicated that not all explicit visual cues were significantly efficient. Only the explicit tree-structured diagrams cued significantly the key concepts of qualitative class-inclusion, parallel relations, and fish taxonomy. Meanwhile the effect of indexical arrows was not significant. The inconsistent effect of tree structure and arrows might be related to the extent of image reformation in which the tree-structured diagrams had undergone radical change of knowledge representation; meanwhile, the arrows had not changed the diagram structure of energy pyramid. The factor of prior knowledge was essential in considering the influence of image design as the effect of diagrams was very different for low and high prior knowledge students. Implications are drawn for the importance of visual design in textbooks.

  18. Effect of protonation of the N-acetyl neuraminic acid residue of sialyl Lewis(X): a molecular orbital study with insights into its binding properties toward the carbohydrate recognition domain of E-selectin.

    PubMed

    Pichierri, Fabio; Matsuo, Yo

    2002-08-01

    Semiempirical molecular orbital (MO) calculations with an implicit treatment of the water environment were employed in order to assess whether the sialyl Lewis(X) (sLe(X)) tetrasaccharide binds to E-selectin in the anionic or neutral (i.e., protonated) state. The analysis of the frontier molecular orbitals, electrostatic potential surfaces, and conformational behavior of the sugar indicates that its neutral form possesses the necessary characteristics for binding. In particular, the LUMO level of the neutral sLe(X) molecule is localized both on the carboxylic group of the N-acetyl neuraminic acid (NeuNAc) residue and on the nearby glycosidic linkage. These two moieties interact with the Arg97 residue of E-selectin, as revealed by a recent crystal structure analysis of the E-selectin/sLe(X) complex. The energetics of this specific interaction was investigated with the aid of ab initio Hartree-Fock MO calculations, which resulted in a BSSE-corrected binding energy of 16.63 kcal/mol. Our observations could open up new perspectives in the design of sLe(X) mimics.

  19. Phase diagram of the disordered Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Gurarie, V.; Pollet, L.; Prokof'Ev, N. V.; Svistunov, B. V.; Troyer, M.

    2009-12-01

    We establish the phase diagram of the disordered three-dimensional Bose-Hubbard model at unity filling which has been controversial for many years. The theorem of inclusions, proven by Pollet [Phys. Rev. Lett. 103, 140402 (2009)] states that the Bose-glass phase always intervenes between the Mott insulating and superfluid phases. Here, we note that assumptions on which the theorem is based exclude phase transitions between gapped (Mott insulator) and gapless phases (Bose glass). The apparent paradox is resolved through a unique mechanism: such transitions have to be of the Griffiths type when the vanishing of the gap at the critical point is due to a zero concentration of rare regions where extreme fluctuations of disorder mimic a regular gapless system. An exactly solvable random transverse field Ising model in one dimension is used to illustrate the point. A highly nontrivial overall shape of the phase diagram is revealed with the worm algorithm. The phase diagram features a long superfluid finger at strong disorder and on-site interaction. Moreover, bosonic superfluidity is extremely robust against disorder in a broad range of interaction parameters; it persists in random potentials nearly 50 (!) times larger than the particle half-bandwidth. Finally, we comment on the feasibility of obtaining this phase diagram in cold-atom experiments, which work with trapped systems at finite temperature.

  20. The Critical Importance of Russell's Diagram

    NASA Astrophysics Data System (ADS)

    Gingerich, O.

    2013-04-01

    The idea of dwarf and giants stars, but not the nomenclature, was first established by Eijnar Hertzsprung in 1905; his first diagrams in support appeared in 1911. In 1913 Henry Norris Russell could demonstrate the effect far more strikingly because he measured the parallaxes of many stars at Cambridge, and could plot absolute magnitude against spectral type for many points. The general concept of dwarf and giant stars was essential in the galactic structure work of Harlow Shapley, Russell's first graduate student. In order to calibrate the period-luminosity relation of Cepheid variables, he was obliged to fall back on statistical parallax using only 11 Cepheids, a very sparse sample. Here the insight provided by the Russell diagram became critical. The presence of yellow K giant stars in globular clusters credentialed his calibration of the period-luminosity relation by showing that the calibrated luminosity of the Cepheids was comparable to the luminosity of the K giants. It is well known that in 1920 Shapley did not believe in the cosmological distances of Heber Curtis' spiral nebulae. It is not so well known that in 1920 Curtis' plot of the period-luminosity relation suggests that he didn't believe it was a physical relation and also he failed to appreciate the significance of the Russell diagram for understanding the large size of the Milky Way.