Sample records for molecular orbital diagrams

  1. Three-dimensional Hückel molecular orbital energy level correlation diagrams for polyhedral rearrangements

    Microsoft Academic Search

    Ming Zhao; Benjamin M Gimarc

    1995-01-01

    A three-dimensional Hückel method recently developed for cluster compounds has been used to investigate polyhedral rearrangements of organic molecules as well as main-group inorganic clusters. The method starts from information about atomic connectivity and number of cluster electrons, familiar and convenient concepts for chemists. Calculations lead to diagrams that show how molecular orbital (MO) energy levels and second moment scaled

  2. Visualization of Molecular Orbitals: Formaldehyde

    ERIC Educational Resources Information Center

    Olcott, Richard J.

    1972-01-01

    Describes a computer program that plots a solid" representation of molecular orbital charge density which can be used to analyze wave functions of molecules. Illustrated with diagrams for formaldehyde. (AL)

  3. Interactive Molecular Orbitals

    NSDL National Science Digital Library

    The majority of Introductory Chemistry texts provide students with an adequate introduction to the visual aspects of the molecular orbital model for homonuclear diatomic molecules. The treatment of heteronuclear diatomic and polyatomic molecules is less uniform. Heteronuclear diatomics, when mentioned, are invariably treated as being derived from homonuclear diatomics. While the atomic orbital energy level differences in heteronuclear diatomics is sometimes pictured, the consequences of those differences for the resultant molecular orbitals are rarely discussed. The discussion of polyatomic molecular orbitals in these texts is limited to showing that parallel p-orbitals produce delocalized pi molecular orbitals. The molecules typically mentioned in this context are benzene, nitrate ion and carbonate ion. However, It is rarely pointed out that the six p-orbitals in benzene would form 6 pi molecular orbitals, and that only one of these orbitals would look like the picture in the text.These interactive modules are designed to clarify this subject.

  4. Near Earth Objects Program: Orbit Diagrams

    NSDL National Science Digital Library

    NASA JPL Near Earth Object Program

    This page provides access to diagrams of the orbits of a very large number of objects in the asteroid belt as well as comets that cross Earth's orbit. The collection is searchable by object name or designation and users can also browse through an extensive list of potentially hazardous asteroids.

  5. Floating orbital molecular dynamics simulations.

    PubMed

    Perlt, Eva; Brüssel, Marc; Kirchner, Barbara

    2014-04-21

    We introduce an alternative ab initio molecular dynamics simulation as a unification of Hartree-Fock molecular dynamics and the floating orbital approach. The general scheme of the floating orbital molecular dynamics method is presented. Moreover, a simple but sophisticated guess for the orbital centers is provided to reduce the number of electronic structure optimization steps at each molecular dynamics step. The conservation of total energy and angular momentum is investigated in order to validate the floating orbital molecular dynamics approach with and without application of the initial guess. Finally, a water monomer and a water dimer are simulated, and the influence of the orbital floating on certain properties like the dipole moment is investigated. PMID:24600690

  6. Tribochemistry of ZDDP in molecular orbital calculations

    Microsoft Academic Search

    Yuanqiang Tan; Weijiu Huang; Xueye Wang

    2004-01-01

    The molecular orbital parameters of zinc dialkyldithiophosphate (ZDDP) and several metal-atom-cluster models were calculated. The nature and the strength of the interactions between the ZDDP molecules and different metal surfaces are analysed and discussed with the use of frontier orbital theory. By comparing the highest occupied molecular orbital energy (EHOMO) and the lowest unoccupied molecular orbital energy (ELUMO) of the

  7. Simulation of Atomic and Molecular Orbitals

    ERIC Educational Resources Information Center

    Massey, A. G.; Massey S.

    1976-01-01

    Describes the use of magnets to simulate s, p, and d atomic orbitals from which a wide variety of molecular orbitals can be derived. The technique gives students an idea of molecular orbitals' shapes and stresses the importance of symmetry labels. (MLH)

  8. Molecular Orbital Analysis of High Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Ohmura, Shu; Oyamada, Takayuki; Kato, Tsuyoshi; Kono, Hirohiko; Koseki, Shiro

    Tunnel ionization of molecules in an intense laser field and subsequent rescattering processes lead to high harmonic generation (HHG). Simultaneous tunneling from multiple orbitals has recently been observed which is not considered in the conventional single-active-electron model. To include such multielectron effects, we have developed a multiconfiguration method that uses time-dependent molecular orbitals. By energy analysis of the orbitals, we found that inner shell and valence shell orbitals interact with each other during the HHG process. The HHG spectra of multiple orbital paths originated from the interactions were calculated.

  9. Ab initio molecular crystal structures, spectra, and phase diagrams.

    PubMed

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling illustrations of their unprecedented power in addressing some of the outstanding problems of solid-state chemistry, high-pressure chemistry, or geochemistry. They are the structure and spectra of ice Ih, in particular, the origin of two peaks in the hydrogen-bond-stretching region of its inelastic neutron scattering spectra, a solid-solid phase transition from CO2-I to elusive, metastable CO2-III, pressure tuning of Fermi resonance in solid CO2, and the structure and spectra of solid formic acid, all at the level of second-order Møller-Plesset perturbation theory or higher. PMID:24754304

  10. How Different Variants of Orbit Diagrams Influence Student Explanations of the Seasons

    ERIC Educational Resources Information Center

    Lee, Victor R.

    2010-01-01

    The cause of the seasons is often associated with a very particular alternative conception: That the earth's orbit around the sun is highly elongated, and the differences in distance result in variations in temperature. It has been suggested that the standard diagrams used to depict the earth's orbit may be in some way responsible for the initial…

  11. Molecular Orbitals of NO, NO[superscript+], and NO[superscript-]: A Computational Quantum Chemistry Experiment

    ERIC Educational Resources Information Center

    Orenha, Renato P.; Galembeck, Sérgio E.

    2014-01-01

    This computational experiment presents qualitative molecular orbital (QMO) and computational quantum chemistry exercises of NO, NO[superscript+], and NO[superscript-]. Initially students explore several properties of the target molecules by Lewis diagrams and the QMO theory. Then, they compare qualitative conclusions with EHT and DFT calculations…

  12. Mössbauer and molecular orbital study of chlorites

    Microsoft Academic Search

    A. Lougear; M. Grodzicki; C. Bertoldi; A. X. Trautwein; K. Steiner; G. Amthauer

    2000-01-01

    The different Fe2+ lattice sites in iron-rich chlorites have been characterized by Mössbauer spectroscopy and molecular orbital calculations\\u000a in local density approximation. The Mössbauer measurements were recorded at 77?K within a small velocity range (±3.5?mm?s?1) to provide high energy resolution. Additionally, measurements were recorded in a wider velocity range (±10.5?mm?s?1) at temperatures of 140, 200, and 250?K in an applied

  13. Molecular diagnosis of orbital inflammatory disease.

    PubMed

    Rosenbaum, James T; Choi, Dongseok; Wilson, David J; Grossniklaus, Hans E; Sibley, Cailin H; Harrington, Christina A; Planck, Stephen R

    2015-04-01

    Orbital inflammatory diseases include thyroid eye disease (TED), granulomatosis with polyangiitis (GPA), sarcoidosis, and nonspecific orbital inflammation (NSOI). Histopathological diagnosis usually relies on the clinical context and is not always definitive. Gene expression profiling provides diagnostic and therapeutic information in several malignancies, but its role in evaluating nonmalignant disease is relatively untested. We hypothesized that gene expression profiling could provide diagnostic information for NSOI. We collected formalin-fixed, paraffin-embedded orbital biopsies from 10 institutions and 83 subjects including 25 with thyroid eye disease, 25 nonspecific orbital inflammation, 20 healthy controls, 6 with granulomatosis with polyangiitis, and 7 with sarcoidosis. Tissues were divided into discovery and validation sets. Gene expression was quantified using Affymetrix U133 Plus 2.0 microarrays. A random forest statistical algorithm based on data from 39 probe sets identified controls, GPA, or TED with an average accuracy of 76% (p=0.02). Random forest analysis indicated that 52% of tissues from patients with nonspecific inflammation were consistent with a diagnosis of GPA. Molecular diagnosis by gene expression profiling will augment clinical data and histopathology in differentiating forms of orbital inflammatory disease. PMID:25595914

  14. Rotation and anisotropic molecular orbital effect in a single H2TPP molecule transistor.

    PubMed

    Sakata, Shuichi; Yoshida, Kenji; Kitagawa, Yuichi; Ishii, Kazuyuki; Hirakawa, Kazuhiko

    2013-12-13

    Electron transport through a single molecule is determined not only by the intrinsic properties of the molecule but also by the configuration of the molecule with respect to the lead electrodes. Here, we show how electron transport through a single H2TPP molecule is modulated by changes in the configuration. The Coulomb stability diagram of a single H2TPP molecule transistor exhibited a few different patterns in different measurement scans. Furthermore, the sample exhibited negative differential resistance, the magnitude of which changed with the pattern in the Coulomb stability diagram. Such behavior can be explained by the rotation of the molecule with anisotropic molecular orbitals in the gap electrodes induced by electrical stress. Moreover, we find that the energy separations between molecular orbitals are also affected by the rotation, confirming that the metal-molecule interface configuration renormalizes the electronic levels in the molecule. PMID:24483690

  15. Phase diagram of a three-orbital model for high-Tc cuprate superconductors.

    PubMed

    Weber, Cédric; Giamarchi, T; Varma, C M

    2014-03-21

    We study the phase diagram of an effective three-orbital model of the cuprates using variational Monte Carlo calculations on asymptotically large lattices and exact diagonalization on a 24-site cluster. States with ordered orbital current loops (LC), itinerant antiferromagnetism, d-wave superconductivity, and the Fermi liquid are investigated using appropriate Slater determinants refined by Jastrow functions for on-site and intersite correlations. We find an LC state stable in the thermodynamic limit for a range of parameters compatible with the Fermi surface of a typical hole doped superconductor provided the transfer integrals between the oxygen atoms have signs determined by the effects of indirect transfer through the Cu-4s orbitals as suggested by Andersen. The results of the calculations are that the LC phase gives way at lower dopings to an antiferromagnetism phase, and at larger dopings to superconductivity and Fermi liquid phases. PMID:24702405

  16. Phase Diagram of a Three-Orbital Model for High-Tc Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Weber, Cédric; Giamarchi, T.; Varma, C. M.

    2014-03-01

    We study the phase diagram of an effective three-orbital model of the cuprates using variational Monte Carlo calculations on asymptotically large lattices and exact diagonalization on a 24-site cluster. States with ordered orbital current loops (LC), itinerant antiferromagnetism, d-wave superconductivity, and the Fermi liquid are investigated using appropriate Slater determinants refined by Jastrow functions for on-site and intersite correlations. We find an LC state stable in the thermodynamic limit for a range of parameters compatible with the Fermi surface of a typical hole doped superconductor provided the transfer integrals between the oxygen atoms have signs determined by the effects of indirect transfer through the Cu-4s orbitals as suggested by Andersen. The results of the calculations are that the LC phase gives way at lower dopings to an antiferromagnetism phase, and at larger dopings to superconductivity and Fermi liquid phases.

  17. Atomic Orbitals, Molecular Orbitals and Related Concepts: Conceptual Difficulties among Chemistry Students.

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios

    1997-01-01

    Investigates the impact an undergraduate quantum chemistry course has on students' knowledge and understanding of atomic orbitals, molecular orbitals, and related concepts. Analysis reveals that students do not have a clear understanding of these concepts and confuse the various atomic orbital representations. Includes some suggestions and…

  18. High Performance Computation and Interactive Display of Molecular Orbitals on

    E-print Network

    Hwu, Wen-mei W.

    of molecular orbitals (MOs) is important for analyzing the results of quantum chemistry simulations a second, and achieves the first-ever interactive animations of quantum chemistry simulation trajectoriesHigh Performance Computation and Interactive Display of Molecular Orbitals on GPUs and Multi

  19. Molecular Orbital Theoretical Studies of Some Organic Corrosion Inhibitors

    Microsoft Academic Search

    V. S. Sastri; J. R. Perumareddi

    1997-01-01

    Molecular orbital theoretical calculations based on the modified neglect of differential overlap (MNDO) method were performed on some substituted methyl pyridines and substituted ethane derivatives in common use as corrosion inhibitors for iron in acid media. New correlations of corrosion rates with the energy of the highest occupied molecular orbital (E{sub HOMO}), the energy gap or difference between the lowest

  20. Molecular-orbital model for metal-sapphire interfacial strength

    NASA Technical Reports Server (NTRS)

    Johnson, K. H.; Pepper, S. V.

    1982-01-01

    Self-consistent-field X-Alpha scattered-wave cluster molecular-orbital models have been constructed for transition and noble metals (Fe, Ni, Cu, and Ag) in contact with a sapphire (Al2O3) surface. It is found that a chemical bond is established between the metal d-orbital electrons and the nonbonding 2p-orbital electrons of the oxygen anions on the Al2O3 surface. An increasing number of occupied metal-sapphire antibonding molecular orbitals explains qualitatively the observed decrease of contact shear strength through the series Fe, Ni, Cu, and Ag.

  1. Orbital Energy Levels in Molecular Hydrogen. A Simple Approach.

    ERIC Educational Resources Information Center

    Willis, Christopher J.

    1988-01-01

    Described are the energetics involved in the formation of molecular hydrogen using concepts that should be familiar to students beginning the study of molecular orbital theory. Emphasized are experimental data on ionization energies. Included are two-electron atomic and molecular systems. (CW)

  2. Periodic orbits of the hydrogen molecular ion and their quantization

    SciTech Connect

    Duan, Y.; Yuan, J. [Department of Physics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 19104 (United States)] [Department of Physics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Bao, C. [Department of Physics, Zhongshan University, Guangzhou, 510275 (China)] [Department of Physics, Zhongshan University, Guangzhou, 510275 (China)

    1995-11-01

    In a classical study of the hydrogen molecular ion beyond the Born-Oppenheimer approximation (BOA), we have found that segments of trajectories resemble that of the Born-Oppenheimer approximation periodic orbits. The importance of this fact to the classical understanding of chemical bonding leads us to a systematic study of the periodic orbits of the planar hydrogen molecular ion within the BOA. Besides introducing a classification scheme for periodic orbits, we discuss the convergence properties of families of periodic orbits and their bifurcation patterns according to their types. Semiclassical calculations of the density of states based on these periodic orbits yield results in agreement with the exact quantum eigenvalues of the hydrogen molecular ion system.

  3. Strong-Field Molecular Ionization from Multiple Orbitals

    SciTech Connect

    Kotur, Marija; Weinacht, Thomas C.; Zhou, Congyi; Matsika, Spiridoula

    2011-11-28

    We demonstrate strong-field ionization from multiple orbitals of excited-state uracil molecules. The molecules are excited to the first bright state by an ultrafast laser pulse in the deep ultraviolet and then ionized with a strong-field laser pulse in the near infrared during ultrafast relaxation back down to the ground state. We measure time- and angle-dependent ion yields for multiple fragments created by strongfield ionization, and interpret the temporally and angularly resolved yields via ab initio electronic structure calculations. We find that the angular distribution for the electron removed from the lowest unoccupied molecular orbital follows the symmetry of the molecular orbital, whereas ionization of the molecule by removing electrons from deeper bound orbitals is more complicated.

  4. A combined reaction class approach with integrated molecular orbital+molecular orbital (IMOMO) methodology: A practical tool for kinetic modeling

    SciTech Connect

    Truong, Thanh N. [Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 S 1400 E, Room Dock, Salt Lake City, Utah 84112 (United States)] [Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 S 1400 E, Room Dock, Salt Lake City, Utah 84112 (United States); Maity, Dilip K. [Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 S 1400 E, Room Dock, Salt Lake City, Utah 84112 (United States)] [Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 S 1400 E, Room Dock, Salt Lake City, Utah 84112 (United States); Truong, Thanh-Thai T. [Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 S 1400 E, Room Dock, Salt Lake City, Utah 84112 (United States)] [Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 S 1400 E, Room Dock, Salt Lake City, Utah 84112 (United States)

    2000-01-01

    We present a new practical computational methodology for predicting thermal rate constants of reactions involving large molecules or a large number of elementary reactions in the same class. This methodology combines the integrated molecular orbital+molecular orbital (IMOMO) approach with our recently proposed reaction class models for tunneling. With the new methodology, we show that it is possible to significantly reduce the computational cost by several orders of magnitude while compromising the accuracy in the predicted rate constants by less than 40% over a wide range of temperatures. Another important result is that the computational cost increases only slightly as the system size increases. (c) 2000 American Institute of Physics.

  5. Orbital decimation in molecular systems with an AM1 Hamiltonian

    Microsoft Academic Search

    Mauricio D. Coutinho-Neto; A. Arnóbio de S. da Gama

    1995-01-01

    Green's function method, with a renormalization strategy that allows for stepwise hierarchical decimation of orbitals. is a powerful technique for calculations in very large molecular systems. An interesting aspect of the decimation method is its relationship with the concepts of supramolecular chemistry. For donor-acceptor bridged systems, for example, decimation may be done to find a two level representation, with an

  6. MOLECULAR ORBITAL TREATMENT OF SOME ENDOHEDRALLY DOPED C60 SYSTEMS

    Microsoft Academic Search

    Lemi Türker; Selçuk Gümüs

    2006-01-01

    The present review article is a collection of the theoretical studies about some endohedrally doped C60 systems, based on density functional theory and ab initio calculations. The energies of the composite system, as well as molecular orbital energies depend on the type of dopant, symmetry of the system and the spin state. In the case of C@C60, the dopant interacts

  7. A Simple Demonstration of Atomic and Molecular Orbitals Using Circular Magnets

    ERIC Educational Resources Information Center

    Chakraborty, Maharudra; Mukhopadhyay, Subrata; Das, Ranendu Sekhar

    2014-01-01

    A quite simple and inexpensive technique is described here to represent the approximate shapes of atomic orbitals and the molecular orbitals formed by them following the principles of the linear combination of atomic orbitals (LCAO) method. Molecular orbitals of a few simple molecules can also be pictorially represented. Instructors can employ the…

  8. Origin of molecular conformational stability: perspectives from molecular orbital interactions and density functional reactivity theory.

    PubMed

    Liu, Shubin; Schauer, Cynthia K

    2015-02-01

    To have a quantitative understanding about the origin of conformation stability for molecular systems is still an unaccomplished task. Frontier orbital interactions from molecular orbital theory and energy partition schemes from density functional reactivity theory are the two approaches available in the literature that can be used for this purpose. In this work, we compare the performance of these approaches for a total of 48 simple molecules. We also conduct studies to flexibly bend bond angles for water, carbon dioxide, borane, and ammonia molecules to obtain energy profiles for these systems over a wide range of conformations. We find that results from molecular orbital interactions using frontier occupied orbitals such as the highest occupied molecular orbital and its neighbors are only qualitatively, at most semi-qualitatively, trustworthy. To obtain quantitative insights into relative stability of different conformations, the energy partition approach from density functional reactivity theory is much more reliable. We also find that the electrostatic interaction is the dominant descriptor for conformational stability, and steric and quantum effects are smaller in contribution but their contributions are indispensable. Stable molecular conformations prefer to have a strong electrostatic interaction, small molecular size, and large exchange-correlation effect. This work should shed new light towards establishing a general theoretical framework for molecular stability. PMID:25662636

  9. Mechanically controlled molecular orbital alignment in single molecule junctions

    NASA Astrophysics Data System (ADS)

    Bruot, Christopher; Hihath, Joshua; Tao, Nongjian

    2012-01-01

    Research in molecular electronics often involves the demonstration of devices that are analogous to conventional semiconductor devices, such as transistors and diodes, but it is also possible to perform experiments that have no parallels in conventional electronics. For example, by applying a mechanical force to a molecule bridged between two electrodes, a device known as a molecular junction, it is possible to exploit the interplay between the electrical and mechanical properties of the molecule to control charge transport through the junction. 1,4'-Benzenedithiol is the most widely studied molecule in molecular electronics, and it was shown recently that the molecular orbitals can be gated by an applied electric field. Here, we report how the electromechanical properties of a 1,4'-benzenedithiol molecular junction change as the junction is stretched and compressed. Counterintuitively, the conductance increases by more than an order of magnitude during stretching, and then decreases again as the junction is compressed. Based on simultaneously recorded current-voltage and conductance-voltage characteristics, and inelastic electron tunnelling spectroscopy, we attribute this finding to a strain-induced shift of the highest occupied molecular orbital towards the Fermi level of the electrodes, leading to a resonant enhancement of the conductance. These results, which are in agreement with the predictions of theoretical models, also clarify the origins of the long-standing discrepancy between the calculated and measured conductance values of 1,4'-benzenedithiol, which often differ by orders of magnitude.

  10. Full variational molecular orbital method: Application to the positron-molecule complexes

    Microsoft Academic Search

    Masanori Tachikawa; Kazuhide Mori; Kazunari Suzuki; Kaoru Iguchi

    1998-01-01

    Optimal Gaussian-type orbital (GTO) basis sets of positron and electron in positron-molecule complexes are proposed by using the full variational treatment of molecular orbital (FVMO) method. The analytical expression for the energy gradient with respect to parameters of positronic and electronic GTO such as the orbital exponents, the orbital centers, and the linear combination of atomic orbital (LCAO) coefficients, is

  11. Influence of large permanent dipoles on molecular orbital tomography.

    PubMed

    Zhu, Xiaosong; Qin, Meiyan; Zhang, Qingbin; Li, Yang; Xu, Zhizhan; Lu, Peixiang

    2013-03-11

    The influence of large permanent dipoles on molecular orbital tomography via high-order harmonic generation (HHG) is investigated in this work. It is found that, owing to the modification of the angle-dependent ionization rate resulting from the Stark shift, the one-side-recollision condition for the tomographic imaging can not be satisfied even with the few-cycle driving pulses. To overcome this problem, we employ a tailored driving pulse by adding a weak low-frequency pulse to the few-cycle laser pulse to control the HHG process and the recollision of the continuum electrons are effectively restricted to only one side of the core. Then we carried out the orbital reconstruction in both the length and velocity forms. The results show that, the orbital structure can only be successfully reproduced by using the dipole matrix elements projected perpendicular to the permanent dipole in both forms. PMID:23482097

  12. Structural and vibrational analysis of azodendrimers by molecular orbital methods

    NASA Astrophysics Data System (ADS)

    Tanaka, Shigenori; Itoh, Satoshi; Kurita, Noriyuki

    2000-06-01

    The structural optimization and normal-mode analysis are performed for the aryl ether azodendrimers on the basis of the semi-empirical molecular orbital methods. Through the geometrical characterization for the stable structures, the fractal dimension and the degree of azo core wrapping are found to provide key parameters related to the unique photoinduced isomerization. We also find that the normal-mode frequency distribution is virtually invariable irrespective of the molecular structure and generation of azodendrimers. The importance of normal-mode distribution gap in the range of 700-900 cm -1 is suggested regarding the efficient vibrational energy transfer to the azo core region.

  13. Molecular orbital theory of ballistic electron transport through molecules

    NASA Astrophysics Data System (ADS)

    Ernzerhof, Matthias; Rocheleau, Philippe; Goyer, Francois

    2009-03-01

    Electron transport through molecules occurs, for instance, in STM imaging and in conductance measurements on molecular electronic devices (MEDs). To model these phenomena, we use a non-Hermitian model Hamiltonian [1] for the description of open systems that exchange current density with their environment. We derive qualitative, molecular-orbital-based rules relating molecular structure and conductance. We show how side groups attached to molecular conductors [2] can completely suppress the conductance. We discuss interference effects in aromatic molecules [3] that can also inhibit electron transport. Rules are developed [1] for the prediction of Fano resonances. All these phenomena are explained with a molecular orbital theory [1,4] for molecules attached to macroscopic reservoirs. [1] F. Goyer, M. Ernzerhof, and M. Zhuang, JCP 126, 144104 (2007); M. Ernzerhof, JCP 127, 204709 (2007). [2] M. Ernzerhof, M. Zhuang, and P. Rocheleau, JCP 123, 134704 (2005); G. C. Solomon, D Q. Andrews, R P. Van Duyne, and M A. Ratner, JACS 130, 7788 (2008). [3] M. Ernzerhof, H. Bahmann, F. Goyer, M. Zhuang, and P. Rocheleau, JCTC 2, 1291 (2006); G. C. Solomon, D. Q. Andrews, R. P. Van Duyne, and M. A. Ratner, JCP 129, 054701 (2008). [4] B.T. Pickup, P.W. Fowler, CPL 459, 198 (2008); P. Rocheleau and M. Ernzerhof, JCP, submitted.

  14. Structural and vibrational analysis of azodendrimers by molecular orbital methods

    Microsoft Academic Search

    Shigenori Tanaka; Satoshi Itoh; Noriyuki Kurita

    2000-01-01

    The structural optimization and normal-mode analysis are performed for the aryl ether azodendrimers on the basis of the semi-empirical molecular orbital methods. Through the geometrical characterization for the stable structures, the fractal dimension and the degree of azo core wrapping are found to provide key parameters related to the unique photoinduced isomerization. We also find that the normal-mode frequency distribution

  15. An ab initio molecular orbital study of metal nitrosyl bond angles in iron complexes

    E-print Network

    Hawkins, Tommy Wayne

    1979-01-01

    . 05 Fe 3d 2 2&a ~ (CN) 45 x -y I Fe 3d ay &52 7e F 3d & (CN) 25 a' 24 a' Sa 0 -o. os zz LIJ 14 a I a (CN) 7a" 23 a -0. 07 ( 0& I zzx y 3dxz z 22 4' 6a" 6e 21 a 13a, (NO) 5cr -I . 0 2 0 a 12 al (NO) 4&7 &BO 155 130 105 Fe - N... in the proposed bendir@ Figure 5. molecular orbital diagram . for the (FeNO) 9 complex, p e (ON) NO j 07 (NO)2zzyFe 3d yz Fe 4p ? 3d z. 3d 35a z zz zz LUMO (NO)2zz Fa 3dzz+ Fe 3dzz 34d HOMO 0. 2 0. I CZ IJJ Z a oJ ? o. o Fa 3dyz 14 a" Fa 3dz 33 o...

  16. alpha-clustering and molecular-orbital states in sd-shell nuclei

    SciTech Connect

    Kimura, M. [Creative Research Institution Sousei Research Department, Hokkaido University, Sapporo 011-0021 (Japan); Furutachi, N. [Meme Media Laboratory, Hokkaido University, Sapporo 060-8628 (Japan)

    2010-05-12

    The alpha-clustering and molecular-orbitals of {sup 22}Ne and F isotopes are investigated based on antisymmetrized molecular dynamics (AMD). The observed candidates for the alpha cluster state of {sup 22}Ne are understood as the molecular-orbital states and alpha+{sup 18}O di-nuclei states. The presence of the molecular-orbital states in the O and F isotopes and the drastic reduction of their excitation energy near the neutron-drip line are predicted.

  17. BetaVoid: molecular voids via beta-complexes and Voronoi diagrams.

    PubMed

    Kim, Jae-Kwan; Cho, Youngsong; Laskowski, Roman A; Ryu, Seong Eon; Sugihara, Kokichi; Kim, Deok-Soo

    2014-09-01

    Molecular external structure is important for molecular function, with voids on the surface and interior being one of the most important features. Hence, recognition of molecular voids and accurate computation of their geometrical properties, such as volume, area and topology, are crucial, yet most popular algorithms are based on the crude use of sampling points and thus are approximations even with a significant amount of computation. In this article, we propose an analytic approach to the problem using the Voronoi diagram of atoms and the beta-complex. The correctness and efficiency of the proposed algorithm is mathematically proved and experimentally verified. The benchmark test clearly shows the superiority of BetaVoid to two popular programs: VOIDOO and CASTp. The proposed algorithm is implemented in the BetaVoid program which is freely available at the Voronoi Diagram Research Center (http://voronoi.hanyang.ac.kr). PMID:24677176

  18. Phase diagram and collective modes in Rashba spin–orbit coupled BEC: Effect of in-plane magnetic field

    NASA Astrophysics Data System (ADS)

    Dong, Dong; Zou, Xu-Bo; Guo, Guang-Can

    2015-07-01

    We studied the system of pure Rashba spin–orbit coupled Bose gas with an in-plane magnetic field. Based on the mean field theory, we obtained the zero temperature phase diagram of the system which exhibits three phases, plane wave (PW) phase, striped wave (SW) phase, and zero momentum (ZM) phase. It was shown that with a growing in-plane field, both SW and ZM phases will eventually turn into the PW phase. Furthermore, we adopted the Bogoliubov theory to study the excitation spectrum as well as the sound speed. Project supported by the National Natural Science Foundation of China (Grant No. 10774088).

  19. Localization of molecular orbitals: from fragments to molecule.

    PubMed

    Li, Zhendong; Li, Hongyang; Suo, Bingbing; Liu, Wenjian

    2014-09-16

    Conspectus Localized molecular orbitals (LMO) not only serve as an important bridge between chemical intuition and molecular wave functions but also can be employed to reduce the computational cost of many-body methods for electron correlation and excitation. Therefore, how to localize the usually completely delocalized canonical molecular orbitals (CMO) into confined physical spaces has long been an important topic: It has a long history but still remains active to date. While the known LMOs can be classified into (exact) orthonormal and nonorthogonal, as well as (approximate) absolutely localized MOs, the ways for achieving these can be classified into two categories, a posteriori top-down and a priori bottom-up, depending on whether they invoke the global CMOs (or equivalently the molecular density matrix). While the top-down approaches have to face heavy tasks of minimizing or maximizing a given localization functional typically of many adjacent local extrema, the bottom-up ones have to invoke some tedious procedures for first generating a local basis composed of well-defined occupied and unoccupied subsets and then maintaining or resuming the locality when solving the Hartree-Fock/Kohn-Sham (HF/KS) optimization condition. It is shown here that the good of these kinds of approaches can be combined together to form a very efficient hybrid approach that can generate the desired LMOs for any kind of gapped molecules. Specifically, a top-down localization functional, applied to individual small subsystems only, is minimized to generate an orthonormal local basis composed of functions centered on the preset chemical fragments. The familiar notion for atomic cores, lone pairs, and chemical bonds emerges here automatically. Such a local basis is then employed in the global HF/KS calculation, after which a least action is taken toward the final orthonormal localized molecular orbitals (LMO), both occupied and virtual. This last step is very cheap, implying that, after the CMOs, the LMOs can be obtained essentially for free. Because molecular fragments are taken as the basic elements, the approach is in the spirit of "from fragments to molecule". Two representatives of highly conjugated molecules, that is, C12H2 and C60, are taken as showcases for demonstrating the success of the proposed approach. The use of the so-obtained LMOs will lead naturally to low-order scaling post-HF/KS methods for electron correlation or excitation. In addition, the underlying fragment picture allows for easy and pictorial interpretations of the correlation/excitation dynamics. PMID:25019464

  20. Band Formation in a Molecular Quantum Well via 2D Superatom Orbital Interactions

    SciTech Connect

    Dougherty, D. B.; Feng, Min; Petek, Hrvoje; Yates, John T.; Zhao, Jin

    2012-12-28

    By scanning tunneling microscopy and spectroscopy, we study nearly free electron band formation of the ?*lowest unoccupied molecular orbital of C?F? on a Cu(111) surface. In fractal islands, the lowest unoccupied molecular orbital energy systematically stabilizes with the number of interacting near-neighbor C?F? molecules. Density functional theory calculations reveal the origin of effective intermo- lecular orbital overlap in the previously unrecognized superatom character of the ?*orbital of ?F? molecules. The discovery of superatom orbitals in planar molecules offers a new universal principle for effective band formation, which can be exploited in designing organic semiconductors with nearly free electron properties

  1. Periodic orbit analysis of molecular vibrational spectra: 1:1 resonant coupled modes

    E-print Network

    Periodic orbit analysis of molecular vibrational spectra: 1:1 resonant coupled modes Daniel C of states for a model molecular vibrational Hamiltonian describing two coupled anharmonic Morse oscillators. Periods of classical periodic orbits as a function of energy and coupling parameter are extracted directly

  2. Towards simple orbital-dependent density functionals for molecular dissociation

    NASA Astrophysics Data System (ADS)

    Zhang, Igor Ying; Richter, Patrick; Scheffler, Matthias

    2015-03-01

    Density functional theory (DFT) is one of the leading first-principles electronic-structure theories. However, molecular dissociation remains a challenge, because it requires a well-balanced description of the drastically different electronic structure at different bond lengths. One typical and well-documented case is the dissociation of both H2+ and H2, for which all popular DFT functionals fail. We start from the Bethe-Goldstone equation to propose a simple orbital-dependent correlation functional which generalizes the linear adiabatic connection approach. The resulting scheme is based on second-order perturbation theory (PT2), but includes the self-consistent coupling of electron-hole pairs, which ensures the correct H2 dissociation limit and gives a finite correlation energy for systems with a (near)-degenerate energy gap. This coupling PT2-like (CPT2) approximation delivers a significant improvement over all existing functionals for both H2 and H2+ dissociation. We will demonstrate the reason for this improvement analytically for H2 in a minimal basis.

  3. Polarized Molecular Orbital Model Chemistry 3. The PMO Method Extended to Organic Chemistry

    PubMed Central

    Isegawa, Miho; Fiedler, Luke; Leverentz, Hannah R.; Wang, Yingjie; Nachimuthu, Santhanamoorthi; Gao, Jiali; Truhlar, Donald G.

    2013-01-01

    The polarized molecular orbital (PMO) method, a neglect-of-diatomic-differential-overlap (NDDO) semiempirical molecular orbital method previously parameterized for systems composed of O and H, is here extended to carbon. We modified the formalism and optimized all the parameters in the PMO Hamiltonian by using a genetic algorithm and a database containing both electrostatic and energetic properties; the new parameter set is called PMO2. The quality of the resulting predictions is compared to results obtained by previous NDDO semiempirical molecular orbital methods, both including and excluding dispersion terms. We also compare the PMO2 properties to SCC-DFTB calculations. Within the class of semiempirical molecular orbital methods, the PMO2 method is found to be especially accurate for polarizabilities, atomization energies, proton transfer energies, noncovalent complexation energies, and chemical reaction barrier heights and to have good across-the-board accuracy for a range of other properties, including dipole moments, partial atomic charges, and molecular geometries. PMID:23704835

  4. THE FUELING DIAGRAM: LINKING GALAXY MOLECULAR-TO-ATOMIC GAS RATIOS TO INTERACTIONS AND ACCRETION

    SciTech Connect

    Stark, David V.; Kannappan, Sheila J.; Eckert, Kathleen D. [Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27516 (United States); Wei, Lisa H. [Atmospheric and Environmental Research, 131 Hartwell Avenue, Lexington, MA 02421 (United States); Baker, Andrew J. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Leroy, Adam K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Vogel, Stuart N. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2013-05-20

    To assess how external factors such as local interactions and fresh gas accretion influence the global interstellar medium of galaxies, we analyze the relationship between recent enhancements of central star formation and total molecular-to-atomic (H{sub 2}/H I) gas ratios, using a broad sample of field galaxies spanning early-to-late type morphologies, stellar masses of 10{sup 7.2}-10{sup 11.2} M{sub Sun }, and diverse stages of evolution. We find that galaxies occupy several loci in a ''fueling diagram'' that plots H{sub 2}/H I ratio versus mass-corrected blue-centeredness, a metric tracing the degree to which galaxies have bluer centers than the average galaxy at their stellar mass. Spiral galaxies of all stellar masses show a positive correlation between H{sub 2}/H I ratio and mass-corrected blue-centeredness. When combined with previous results linking mass-corrected blue-centeredness to external perturbations, this correlation suggests a systematic link between local galaxy interactions and molecular gas inflow/replenishment. Intriguingly, E/S0 galaxies show a more complex picture: some follow the same correlation, some are quenched, and a distinct population of blue-sequence E/S0 galaxies (with masses below key scales associated with transitions in gas richness) defines a separate loop in the fueling diagram. This population appears to be composed of low-mass merger remnants currently in late- or post-starburst states, in which the burst first consumes the H{sub 2} while the galaxy center keeps getting bluer, then exhausts the H{sub 2}, at which point the burst population reddens as it ages. Multiple lines of evidence suggest connected evolutionary sequences in the fueling diagram. In particular, tracking total gas-to-stellar mass ratios within the fueling diagram provides evidence of fresh gas accretion onto low-mass E/S0s emerging from their central starburst episodes. Drawing on a comprehensive literature search, we suggest that virtually all galaxies follow the same evolutionary patterns found in our broad sample.

  5. Construction of Ligand Group Orbitals for Polyatomics and Transition-Metal Complexes Using an Intuitive Symmetry-Based Approach

    ERIC Educational Resources Information Center

    Johnson, Adam R.

    2013-01-01

    A molecular orbital (MO) diagram, especially its frontier orbitals, explains the bonding and reactivity for a chemical compound. It is therefore important for students to learn how to construct one. The traditional methods used to derive these diagrams rely on linear algebra techniques to combine ligand orbitals into symmetry-adapted linear…

  6. An ab initio molecular orbital study of metal nitrosyl bond angles in iron complexes 

    E-print Network

    Hawkins, Tommy Wayne

    1979-01-01

    AN AB INITIO MOLECULAR ORBITAL STUDY OF METAL NITROSYL BOND ANGLES IN IRON COMPLEXES A Thesis Tommy Wayne Hawkins Submitted to the Graduate College of Texas APPI University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1979 Major Subject: Chemistry AN AB INITIO MOLECULAR ORBITAL STUDY OF METAL NITROSYL BOND ANGLES IN IRON COMPLEXES A Thesis Tommy Wayne Hawkins Approved as to style and content by: (Chairman of Committee) (Head of Department) ber...

  7. Molecular orbital calculations on transition metal dimers containing a linear dinitrogen bridge

    E-print Network

    Powell, Mary Cynthia

    1984-01-01

    MOLECULAR ORBITAL CALCULATIONS ON TRANSITION METAL DIMERS CONTAINING A LINEAR DINITROGEN BRIDGE A Thesis by MARY CYNTHIA POWELL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1984 Major Subject: Chemistry MOLECULAR ORBITAL CALCULATIONS ON TRANSITION METAL DIMERS CONTAINING A LINEAR DINITROGEN BRIDGE A Thesis by MARY CYNTHIA POWELL Approved as to style and content by: Michael B. Hall...

  8. New hybrid method for reactive systems from integrating molecular orbital or molecular mechanics methods with analytical potential energy surfaces

    Microsoft Academic Search

    Joaquín Espinosa-García; Cipriano Rangel; Marta Navarrete; José C. Corchado

    2004-01-01

    A computational approach to calculating potential energy surfaces for reactive systems is presented and tested. This hybrid approach is based on integrated methods where calculations for a small model system are performed by using analytical potential energy surfaces, and for the real system by using molecular orbital or molecular mechanics methods. The method is tested on a hydrogen abstraction reaction

  9. Effect of molecular crowding on the temperature-pressure stability diagram of ribonuclease A.

    PubMed

    Zhai, Yong; Winter, Roland

    2013-02-01

    FT-IR spectroscopic and thermodynamic measurements were designed to explore the effect of a macromolecular crowder, dextran, on the temperature and pressure-dependent phase diagram of the protein Ribonuclease A (RNase A), and we compare the experimental data with approximate theoretical predictions based on configuration entropy. Exploring the crowding effect on the pressure-induced unfolding of proteins provides insight in protein stability and folding under cell-like dense conditions, since pressure is a fundamental thermodynamic variable linked to molecular volume. Moreover, these studies are of relevance for understanding protein stability in deep-sea organisms, which have to cope with pressures in the kbar range. We found that not only temperature-induced equilibrium unfolding of RNase A, but also unfolding induced by pressure is markedly prohibited in the crowded dextran solutions, suggesting that crowded environments such as those found intracellularly, will also oppress high-pressure protein unfolding. The FT-IR spectroscopic measurements revealed a marked increase in unfolding pressure of 2 kbar in the presence of 30 wt % dextran. Whereas the structural changes upon thermal unfolding of the protein are not significantly influenced in the presence of the crowding agent, through stabilization by dextran the pressure-unfolded state of the protein retains more ordered secondary structure elements, which seems to be a manifestation of the entropic destabilization of the unfolded state by crowding. PMID:23281099

  10. Detection of Molecular Hydrogen Orbiting a "Naked" T Tauri Star

    E-print Network

    Jeffrey S. Bary; David A. Weintraub; Joel H. Kastner

    2002-07-29

    Astronomers have established that for a few million years newborn stars possess disks of orbiting gas and dust. Such disks, which are likely sites of planet formation, appear to disappear once these stars reach ages of 5-10 times 10^6 yr; yet, >= 10^7 yr is thought necessary for giant planet formation. If disks dissipate in less time than is needed for giant planet formation, such planets may be rare and those known around nearby stars would be anomalies. Herein, we report the discovery of H_2 gas orbiting a weak-lined T Tauri star heretofore presumed nearly devoid of circumstellar material. We estimate that a significant amount of H_2 persists in the gas phase, but only a tiny fraction of this mass emits in the near-infrared. We propose that this star possesses an evolved disk that has escaped detection thus far because much of the dust has coagulated into planetesimals. This discovery suggests that the theory that disks are largely absent around such stars should be reconsidered. The widespread presence of such disks would indicate that planetesimals can form quickly and giant planet formation can proceed to completion before the gas in circumstellar disks disperses.

  11. Constructing Periodic Phase Space Orbits from ab Initio Molecular Dynamics Trajectories to Analyze Vibrational Spectra: Case Study of

    E-print Network

    Iyengar, Srinivasan S.

    Constructing Periodic Phase Space Orbits from ab Initio Molecular Dynamics Trajectories to Analyze features obtained from ab initio molecular dynamics simulations. Here, the instantaneous mass of publications, we used ab initio molecular dynamics (AIMD)1-9 and quantum wavepacket ab initio molecular

  12. Absolutely local excited orbitals in the higher order perturbation expansion for the molecular interaction.

    PubMed

    Iwata, Suehiro

    2008-12-18

    Based on the locally projected molecular orbitals, the third and fourth order perturbation corrections for the molecular interaction within the single excitations are evaluated, and the calculated interaction energies are compared with the counterpoise (CP) corrected interaction energy of the Hartree-Fock level of theory. It is demonstrated that the third order calculation is a practical and powerful method to obtain the binding energy almost equal to the CP corrected energy. It requires only one more two-electron integral handling after the LP MO calculation, which is faster than a usual supermolecule HF calculation. For the perturbation expansion, the absolutely local excited orbitals are determined. For small basis sets, it is shown that the partial delocalization of the absolutely local excited orbitals is a compromizing technique to take into account the charge-transfer contribution without reintroducing a large basis set superposition error. PMID:19367996

  13. Development of analytic energy gradient method in nuclear orbital plus molecular orbital theory

    NASA Astrophysics Data System (ADS)

    Hoshino, Minoru; Tsukamoto, Yasuhiro; Nakai, Hiromi

    This study formulates the analytic energy gradients in the Hartree-Fock calculations of the NOMO theory, which simultaneously determines nuclear and electronic wave functions without the Born-Oppenheimer approximation. The formulations correspond to the translation- and rotation-contaminated (TRC), translation-free (TF), and translation- and rotation-free (TRF) treatments. The optimizations of the orbital centers for several diatomic molecules, which have been performed by using the analytic energy gradients, have given the averaged nuclear distances {R0} reflecting the quantum effects of nuclei and the anharmonicity of the potential energy surfaces. The numerical assessments have clarified that the effects of eliminating the translational and rotational contaminations, i.e., the TRF effects are important to improve the evaluations of {R0}, especially for the molecules including hydrogen atoms.0

  14. Dynamics of theory change in chemistry: Part 2. Benzene and molecular orbitals, 1945–1980

    Microsoft Academic Search

    Stephen G Brush

    1999-01-01

    In my previous article on the benzene problem, I described how Pauling's valence bond (resonance) theory, sometimes regarded as a modernized version of Kekulé's oscillation hypothesis, came to be accepted by chemists by the end of World War II. But the alternative molecular orbital theory, proposed by Mulliken, had already been developed and was regarded as quantitatively superior by many

  15. Thermochemistry of Aluminum Species for Combustion Modeling from Ab Initio Molecular Orbital Calculations

    E-print Network

    Swihart, Mark T.

    Thermochemistry of Aluminum Species for Combustion Modeling from Ab Initio Molecular Orbital initio methods for computational thermochemistry have been applied to aluminum compounds expected to be present during combustion of aluminum particles. The computed enthalpies of formation at 298.15 K agree

  16. Periodic orbit analysis of molecular vibrational spectra: Spectral patterns and dynamical bifurcations in Fermi resonant systems

    E-print Network

    Periodic orbit analysis of molecular vibrational spectra: Spectral patterns and dynamical University, Ithaca, New York 14853 Received 28 August 1995; accepted 27 September 1995 Semiclassical periodic Hamiltonians describing stretch/bend modes with and without 2:1 Fermi resonant coupling. Periods of classical

  17. Molecular Orbital Studies of Zinc Oxide Chemical Vapor Deposition: Gas-Phase Radical Reactions

    E-print Network

    Schlegel, H. Bernhard

    Molecular Orbital Studies of Zinc Oxide Chemical Vapor Deposition: Gas-Phase Radical Reactions-phase reactions involved in the radical mechanism for zinc oxide chemical vapor deposition have been examined in the radical and closed shell mechanisms for zinc oxide chemical vapor deposition shows that the barrier

  18. Ab Initio Molecular Orbital Calculations of Ring Opening of Cyclopropylcarbinyl Radicals

    E-print Network

    Schlegel, H. Bernhard

    Ab Initio Molecular Orbital Calculations of Ring Opening of Cyclopropylcarbinyl Radicals Felix N on the ring-opening reactions of the cyclopropylcarbinyl radical and analogs containing methyl substitution on the ring. The barrier height and heat of reaction for the cyclopropylcarbinyl radical ring opening

  19. The electronic structure of arene tricarbonyl complexes of group 6 metals: ultraviolet photoelectron spectra and molecular orbital calculations, and the low-temperature X-ray crystal structure of hexamethylbenzene chromium tricarbonyl 

    E-print Network

    Byers, Brien Patrick

    1986-01-01

    values. 56 XIII IR spectroscopic data (in cm '). XIV Thermodynamic data (in kcaVmol). 59 LIST OF FIGURES FIGURE Page 1 Structure of (x-arene)M(CO)& half-sandwich complex, with coordinate system shown. 2 Staggered (a), and eclipsed (b...) conformations of (x-arene)M(CO)s complexes. 3 Arene rings of (Bz)Cr(CO)s, (Cp)Mn(CO)s, and (Cp )Co(CO)z. 4 Representitive molecular orbital diagram for (Hmb)Mo(CO)s. . . 5 Illustration of orbitals involved in bonding. 6 UV-PES of (Bz)W(CO)s (a), and (Hmb...

  20. Measurement of Thermopower and Current-Voltage Characteristics of Molecular Junctions to Identify Orbital Alignment

    SciTech Connect

    Tan, Aaron; Sadat, Seid; Reddy, Pramod

    2010-01-01

    We report an experimental technique that concurrently measures the Seebeck coefficient and the current-voltage (I-V) characteristics of a molecular junction to determine the identity and the effective energetic separation of the molecular orbital closest to the electrodes’ Fermi level. Junctions created by contacting a gold-coated atomic force microscope tip with a monolayer of molecules assembled on a gold substrate were found to have a Seebeck coefficient of (+16.9±1.4) ?V/K. This positive value unambiguously shows that the highest occupied molecular orbital (HOMO) dominates charge transport. Further, by analyzing the (I-V) characteristics, the HOMO level is estimated to be ? 0.69?eV with respect to the Fermi level.

  1. Extending electron orbital precession to the molecular case: Can orbital alignment be used to observe wavepacket dynamics?

    E-print Network

    Martay, Hugo E L; England, Duncan G; Walmsley, Ian A

    2010-01-01

    The complexity of ultrafast molecular photoionization presents an obstacle to the modelling of pump-probe experiments. Here, a simple optimized model of atomic rubidium is combined with a molecular dynamics model to predict quantitatively the results of a pump-probe experiment in which long range rubidium dimers are first excited, then ionized after a variable delay. The method is illustrated by the outline of two proposed feasible experiments and the calculation of their outcomes. Both of these proposals use Feshbach 87Rb2 molecules. We show that long-range molecular pump-probe experiments should observe spin-orbit precession given a suitable pump-pulse, and that the associated high-frequency beat signal in the ionization probability decays after a few tens of picoseconds. If the molecule was to be excited to only a single fine structure state state, then a low-frequency oscillation in the internuclear separation would be detectable through the timedependent ionization cross section, giving a mechanism that ...

  2. Orbital redistribution in molecular nanostructures mediated by metal-organic bonds.

    PubMed

    Yang, Zechao; Corso, Martina; Robles, Roberto; Lotze, Christian; Fitzner, Roland; Mena-Osteritz, Elena; Bäuerle, Peter; Franke, Katharina J; Pascual, Jose I

    2014-10-28

    Dicyanovinyl-quinquethiophene (DCV5T-Me2) is a prototype conjugated oligomer for highly efficient organic solar cells. This class of oligothiophenes are built up by an electron-rich donor (D) backbone and terminal electron-deficient acceptor (A) moieties. Here, we investigated its structural and electronic properties when it is adsorbed on a Au(111) surface using low temperature scanning tunneling microscopy/spectroscopy (STM/STS) and atomic force microscopy (AFM). We find that DCV5T-Me2 self-assembles in extended chains, stabilized by intercalated Au atoms. The effect of metal-ligand hybridization with Au adatoms causes an energetic downshift of the DCV5T-Me2 lowest unoccupied molecular orbital (LUMO) with respect to the uncoordinated molecules on the surface. The asymmetric coordination of a gold atom to only one molecular end group leads to an asymmetric localization of the LUMO and LUMO+1 states at opposite sides. Using model density functional theory (DFT) calculations, we explain such orbital reshaping as a consequence of linear combinations of the original LUMO and LUMO+1 orbitals, mixed by the attachment of a bridging Au adatom. Our study shows that the alignment of molecular orbitals and their distribution within individual molecules can be modified by contacting them to metal atoms in specific sites. PMID:25244124

  3. Signatures of molecular orbital structure in lateral electron momentum distributions from strong-field ionization.

    PubMed

    Petersen, Ingo; Henkel, Jost; Lein, Manfred

    2015-03-13

    Strong-field ionization of aligned diatomic and polyatomic molecules such as O2, N2, C2H4, and others in circularly polarized laser fields is investigated theoretically. By calculating the emission-angle-resolved lateral width of the momentum distribution perpendicular to the polarization plane, we show that nodal planes in molecular orbitals are directly imprinted on the angular dependence of the width. We demonstrate that orbital symmetries can be distinguished with the information obtained by observing the lateral width in addition to the angular distributions. PMID:25815929

  4. Semiempirical molecular orbital estimation of the relative stability of bianthryls produced by anthracene pyrolysis

    SciTech Connect

    Mulholland, J.A.; Mukherjee, J.; Wornat, M.J.; Sarofim, A.F.; Rutledge, G.C. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemical Engineering)

    1993-08-01

    The pyrolysis of pure anthracene at temperatures between 1,200 and 1,500 K produced all six bianthryl isomers whose relative yields appear to be related to steric factors. To evaluate the hypothesis that thermodynamic factors govern the product distribution of bianthryls in this system, the relative enthalpies and entropies of biaryl isomers were estimated by molecular orbital modeling, using the semiempirical AM1 (Austin Model 1). Computational analysis of several isomer sets demonstrates that the relative stabilities of a large number of biaryl isomers are determined largely by steric interactions caused by structural features defined as bays, coves, and fjords. These steric factors affect both the degree of biaryl twist in the preferred conformation and the freedom of internal rotation. Molecular orbital modeling supports the hypothesis that a thermodynamic distribution of bianthryl isomers is produced by anthracene pyrolysis.

  5. Effect of vacuum processing on outgassing within an orbiting molecular shield

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.

    1982-01-01

    The limiting hydrogen number density in an orbiting molecular shield is highly dependent on the outgassing rates from the materials of construction for the shield, experimental apparatus, and other hardware contained within the shield. Ordinary degassing temperatures used for ultrahigh vacuum studies (less than 450 C) are not sufficient to process metals so that the contribution to the number density within the shield due to outgassing is less than the theoretically attainable level (approximately 200 per cu. cm). Pure aluminum and type 347 stainless steel were studied as candidate shield materials. Measurements of their hydrogen concentration and diffusion coefficients were made, and the effects of high temperature vacuum processing (greater than 600 C) on their resulting outgassing rates was determined. The densities in a molecular shield due to the outgassing from either metal were substantially less ( 0.003) than the density due to the ambient atomic hydrogen flux at an orbital altitude of 500 km.

  6. On-orbit free molecular flow aerodynamic characteristics of a proposal space operations center configuration

    NASA Technical Reports Server (NTRS)

    Romere, P. O.

    1982-01-01

    A proposed configuration for a Space Operations Center is presented in its eight stages of buildup. The on orbit aerodynamic force and moment characteristics were calculated for each stage based upon free molecular flow theory. Calculation of the aerodynamic characteristics was accomplished through the use of an orbital aerodynamic computer program, and the computation method is described with respect to the free molecular theory used. The aerodynamic characteristics are presented in tabulated form for each buildup stage at angles of attack from 0 to 360 degrees and roll angles from -60 to +60 degrees. The reference altitude is 490 kilometers, however, the data should be applicable for altitudes below 490 kilometers down to approximately 185 kilometers.

  7. Communication through molecular bridges: different bridge orbital trends result in common property trends.

    PubMed

    Proppe, Jonny; Herrmann, Carmen

    2015-02-01

    Common trends in communication through molecular bridges are ubiquitous in chemistry, such as the frequently observed exponential decay of conductance/electron transport and of exchange spin coupling with increasing bridge length, or the increased communication through a bridge upon closing a diarylethene photoswitch. For antiferromagnetically coupled diradicals in which two equivalent spin centers are connected by a closed-shell bridge, the molecular orbitals (MOs) whose energy splitting dominates the coupling strength are similar in shape to the MOs of the dithiolated bridges, which in turn can be used to rationalize conductance. Therefore, it appears reasonable to expect the observed common property trends to result from common orbital trends. We illustrate based on a set of model compounds that this assumption is not true, and that common property trends result from either different pairs of orbitals being involved, or from orbital energies not being the dominant contribution to property trends. For substituent effects, an effective modification of the ? system can make a comparison difficult. PMID:25382464

  8. Ab initio molecular orbital calculations of the static polarizabilities of xanthone analogues

    NASA Astrophysics Data System (ADS)

    Sugino, Takushi; Kambe, Nobuaki; Sonoda, Noboru; Sakaguchi, Toru; Ohta, Koji

    1996-03-01

    The static polarizabilities, ?, of various xanthone analogues ( 1-19) were estimated by ab initio molecular orbital calculations using the coupled perturbed Hartree-Fock (CPHF) method. The influence of basis sets on the calculated values was examined in detail and the reliability of the ECP approach was confirmed. A good linear relationship was found between the ?? values calculated using the 3-21G basis set and those using larger basis sets. The introduction of substituents generally increases , whereas ?? is strongly affected by the nature of the substituents and by the molecular geometries. According to Prasad's equation, ? orient was calculated from ?? and compared with experimental values.

  9. Density Functional Molecular Orbital Calculations on Longer DNA–DNA and PNA–DNA Double Strands

    Microsoft Academic Search

    Takayuki Natsume; Yasuyuki Ishikawa; Kenichi Dedachi; Noriyuki Kurita

    Summary. Stable structures and electronic properties of hybridized DNA–DNA and PNA–DNA double strands with common base sequences were theoretically investigated by molecular orbital calculations based on the density functional theory. The computed hybridization energy in PNA–DNA is greater than that in the DNA– DNA double strand. The origin of the larger stability of PNA–DNA double strand is ascribed to the

  10. Molecular orbital calculations and Raman measurements for 1-ethyl-3-methylimidazolium chloroaluminates

    Microsoft Academic Search

    S. Takahashi; L. A. Curtiss; D. Gosztola; N. Koura; Marie-Louise Saboungi

    1995-01-01

    Raman spectroscopic data are presented for the room-temperature molten salts (AlClâ)â(1-ethyl-3-methylimidazolium chloride){sub 1-x}, for x ranging from 0.46 to 0.67. Ab initio molecular orbital theory has been used to compute the structure and vibrational frequencies of some of the anionic and cationic species present in these melts; the results are compared with semiempirical calculations and used to interpret the experiments.

  11. Ferromagnetic spin interactions between benzene anions: Molecular-orbital analysis and the Hubbard model

    NASA Astrophysics Data System (ADS)

    Bagus, P. S.; Torrance, J. B.

    1989-04-01

    As a model for ferromagnetism in an organic system, the spin interactions between two benzene-radical anions have been considered. Ab initio molecular-orbital calcuations for the energies of this dimer show that the ground state is a triplet for all separations of the benzene molecules, indicating a ferromagnetic interaction between spins on adjacent molecules. Furthermore, a three-parameter Hubbard model gives a quantitative fit to the energies of the 12 low-lying states.

  12. Cluster molecular orbital description of the electronic structures of mixed-valence iron oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1986-01-01

    A molecular orbital description, based on spin-unrestricted X??-scattered wave calculations, is given for the electronic structures of mixed valence iron oxides and silicates. The cluster calculations show that electron hopping and optical intervalence charge-transger result from weak FeFe bonding across shared edges of FeO6 coordination polyhedra. In agreement with Zener's double exchange model, FeFe bonding is found to stabilize ferromagnetic coupling between Fe2+ and Fe3+ cations. ?? 1986.

  13. Molecular Dynamics of Spin Crossover: the (P,T) phase diagram of [Fe(PM-BIA)2(NCS)2

    E-print Network

    Marbeuf, A; Matar, S F; Kabalan, L; Létard, J F; Guionneau, P

    2013-01-01

    The spin crossover properties and the domains of existence of the different phases for the [Fe(PM-BIA)2(NCS)2] complex are obtained from combining DFT and classical molecular dynamics (MD). The potential energy surfaces expressed in the Morse form for Fe-N interactions are deduced from molecular DFT calculations and they allow producing Infra Red and Raman frequencies. These Fe-N potentials inserted in a classical force field lead from MD calculations to the relative energies of the high spin and low spin configurations of the orthorhombic structure. The MD investigations have also allowed assessing the experimental (P, T) phase diagram by showing the monoclinic polymorph in its two spin- states, and generating two triple points.

  14. Molecular Dynamics of Spin Crossover: the (P,T) phase diagram of [Fe(PM-BIA)2(NCS)2

    E-print Network

    A. Marbeuf; P. Négrier; S. F. Matar; L. Kabalan; J. F. Létard; P. Guionneau

    2013-01-19

    The spin crossover properties and the domains of existence of the different phases for the [Fe(PM-BIA)2(NCS)2] complex are obtained from combining DFT and classical molecular dynamics (MD). The potential energy surfaces expressed in the Morse form for Fe-N interactions are deduced from molecular DFT calculations and they allow producing Infra Red and Raman frequencies. These Fe-N potentials inserted in a classical force field lead from MD calculations to the relative energies of the high spin and low spin configurations of the orthorhombic structure. The MD investigations have also allowed assessing the experimental (P, T) phase diagram by showing the monoclinic polymorph in its two spin- states, and generating two triple points.

  15. Molecular dynamics study of network statistics in lithium disilicate: Qn distribution and the pressure-volume diagram

    NASA Astrophysics Data System (ADS)

    Habasaki, J.; Ngai, K. L.

    2013-08-01

    Molecular dynamics simulations have been performed to study the structures along the pressure-volume diagram of network-glasses and melts exemplified by the lithium disilicate system. Experimentally, densification of the disilicate glass by elevated pressure is known and this feature is reasonably reproduced by the simulations. During the process of densification or decompression of the system, the statistics of Qn (i.e., SiO4 tetrahedron unit with n bridging oxygen linked to the silicon atom where n = 0, 1, 2, 3, or 4) change, and the percentage of the Q3 structures show the maximum value near atmospheric pressure at around Tg. Changes of Qn distribution are driven by the changes of volume (or pressure) and are explained by the different volumes of structural units. Furthermore, some pairs of network structures with equi-volume, but having different distributions of Qn (or different heterogeneity), are found. Therefore, for molecular dynamics simulations of the Qn distributions, it is important to take into account the complex phase behavior including poly-structures with different heterogeneities as well as the position of the system in the P-V-T diagram.

  16. Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III)

    E-print Network

    Schlegel, H. Bernhard

    Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum, Michigan 48202 Received February 6, 2001. Revised Manuscript Received May 16, 2001 Tris(8-hydroxyquinoline)aluminum

  17. Effect of molecular weight and shear on phase diagram of PS\\/PVME blend

    Microsoft Academic Search

    Khalil El Mabrouk; Mosto Bousmina

    2006-01-01

    The molecular weight dependence of the lower critical solution temperature of polystyrene (PS) and poly(vinyl methyl ether) blends was studied by laser light transmission. The temperature of phase separation was found to decrease with increasing PS molecular weight. In the steady shear flow conditions and near the critical temperature, shear was found to enhance fluctuations of concentration at relatively small

  18. Metallic and molecular orbital concepts in XMg8 clusters, X = Be-F

    NASA Astrophysics Data System (ADS)

    Medel, Victor M.; Reber, Arthur C.; Ulises Reveles, J.; Khanna, Shiv N.

    2012-04-01

    The electronic structure and stability of the XMg8 clusters (X = Be, B, C, N, O, and F) are studied using first principles theoretical calculations to understand the variation in bonding in heteroatomic clusters which mix simple divalent metals with main group dopants. We examine these progressions with two competing models, the first is a distorted nearly free electron gas model and the second is a molecular orbital picture examining the orbital overlap between the dopant and the cluster. OMg8 is found to be the most energetically stable cluster due to strong bonding of O with the Mg8 cluster. BeMg8 has the largest HOMO-LUMO gap due to strong hybridization between the Mg8 and the Be dopant states that form a delocalized pool of 18 valence electrons with a closed electronic shell due to crystal field effects. Be, B, and C are best described by the nearly free electron gas model, while N, O, and F are best described through molecular orbital concepts.

  19. Specific interactions and binding energies between thermolysin and potent inhibitors: molecular simulations based on ab initio molecular orbital method.

    PubMed

    Hirakawa, Tatsuya; Fujita, Seiya; Ohyama, Tatsuya; Dedachi, Kenichi; Khan, Mahmud Tareq Hassan; Sylte, Ingebrigt; Kurita, Noriyuki

    2012-03-01

    Biochemical functions of the metalloprotease thermolysin (TLN) are controlled by various inhibitors. In a recent study we identified 12 compounds as TLN inhibitors by virtual screening and in vitro competitive binding assays. However, the specific interactions between TLN and these inhibitors have not been clarified. We here investigate stable structures of the solvated TLN-inhibitor complexes by classical molecular mechanics simulations and elucidate the specific interactions between TLN and these inhibitors at an electronic level by using ab initio fragment molecular orbital (FMO) calculations. The calculated binding energies between TLN and the inhibitors are qualitatively consistent with the experimental results, and the FMO results elucidate important amino acid residues of TLN for inhibitor binding. Based on the calculated results, we propose a novel potent inhibitor having a large binding affinity to TLN. PMID:22112671

  20. In vitro and in vivo imaging of ultra-high-molecular-weight polyethylene orbital implants.

    PubMed

    Olszycki, Marek; Kozakiewicz, Marcin; Elgalal, Marcin; Majos, Agata; Stefanczyk, Ludomir

    2015-01-01

    The aim of this study is to compare magnetic resonance imaging (MRI) with computed tomography (CT) for visualization of an orbital alloplastic prosthesis made of ultra-high-molecular-weight polyethylene (UHMW-PE) both in vitro and in vivo. A study of 15 test implants from UHMW-PE visualized in vitro in CT and MRI and an in vivo visualization in a patient who suffered from orbital injury and underwent reconstructive surgery is presented. The postsurgery MRI showed the UHMW-PE material clearly, with no significant artifacts. The surrounding tissues could be satisfactorily evaluated. The CT scans did not present the graft material. Both techniques were sufficient tools for in vitro evaluation of the shape and measurement of the prosthesis. PMID:25830408

  1. Method for Molecular Electronic State Multiplet Structure Calculation in the Space of X?-SW-Orbitals

    NASA Astrophysics Data System (ADS)

    Topol, I. A.; Polyakov, V. I.

    The SCF-X?-scattered wave method (X?-SW) as well as other versions of the density function approach cannot give a proper description of the open-shell many-electron energy levels and thus it is not always possible to reproduce electron spectra adequately by this method. We propose the following way to overcome this drawback of the X ?-SW method. First one- and two-particle molecular integrals with X?-SW molecular orbitals (MO) are calculated numerically. Then these integrals are used to evaluate Hamiltonian matrix elements (both diagonal and off-diagonal) in the basis of configuration state functions. The present scheme allows us to describe molecular electronic spectra in various approximations: a) one-configurational frozen orbitals approach; b) ?SCF c) configuration interaction (CI). Our method gives an opportunity to go beyond the muffin-tin (MT) approximation for a potential; inherent in the X ?-SW method. In the X ?-SW-MO basis it is simple enough to construct the full electron Hamiltonian matrix elements for various open-shell systems.

  2. DETECTION OF A MOLECULAR DISK ORBITING THE NEARBY, 'OLD', CLASSICAL T TAURI STAR MP MUSCAE

    SciTech Connect

    Kastner, Joel H.; Sacco, G. G. [Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Hily-Blant, Pierry; Forveille, Thierry [Laboratoire d'Astrophysique de Grenoble, Universite Joseph Fourier-CNRS, BP 53, 38041 Grenoble Cedex (France); Zuckerman, B., E-mail: jhk@cis.rit.ed [Department of Physics and Astronomy, University of California, Los Angeles 90095, CA (United States)

    2010-11-10

    We have used the Atacama Pathfinder Experiment 12 m telescope to detect circumstellar CO emission from MP Muscae (MP Mus; K1 IVe), a nearby (D {approx} 100 pc), actively accreting, {approx}7 Myr old pre-main-sequence (pre-MS) star. The CO emission line profile measured for MP Mus is indicative of an orbiting disk with radius {approx}120 AU, assuming that the central star mass is 1.2 M {sub sun} and the disk inclination is i {approx} 30{sup 0}. The inferred disk molecular gas mass is {approx}3 M {sub +}. MP Mus thereby joins TW Hya and V4046 Sgr as the only late-type (low-mass), pre-MS star systems within {approx}100 pc of Earth that are known to retain orbiting, molecular disks. We also report the nondetection (with the Institut de Radio Astronomie Millimetrique 30 m telescope) of CO emission from another 10 nearby (D {approx_lt} 100 pc), dusty, young (age {approx}10-100 Myr) field stars of spectral type A-G. We discuss the implications of these results for the timescales for stellar and Jovian planet accretion from, and dissipation of, molecular disks around young stars.

  3. Envelope molecular-orbital theory of extended systems. I. Electronic states of organic quasilinear nanoheterostructures.

    PubMed

    Arce, J C; Perdomo-Ortiz, A; Zambrano, M L; Mujica-Martínez, C

    2011-03-14

    A conceptually appealing and computationally economical course-grained molecular-orbital (MO) theory for extended quasilinear molecular heterostructures is presented. The formalism, which is based on a straightforward adaptation, by including explicitly the vacuum, of the envelope-function approximation widely employed in solid-state physics leads to a mapping of the three-dimensional single-particle eigenvalue equations into simple one-dimensional hole and electron Schro?dinger-like equations with piecewise-constant effective potentials and masses. The eigenfunctions of these equations are envelope MO's in which the short-wavelength oscillations present in the full MO's, associated with the atomistic details of the molecular potential, are smoothed out automatically. The approach is illustrated by calculating the envelope MO's of high-lying occupied and low-lying virtual ? states in prototypical nanometric heterostructures constituted by oligomers of polyacetylene and polydiacetylene. Comparison with atomistic electronic-structure calculations reveals that the envelope-MO energies agree very well with the energies of the ? MO's and that the envelope MO's describe precisely the long-wavelength variations of the ? MO's. This envelope MO theory, which is generalizable to extended systems of any dimensionality, is seen to provide a useful tool for the qualitative interpretation and quantitative prediction of the single-particle quantum states in mesoscopic molecular structures and the design of nanometric molecular devices with tailored energy levels and wavefunctions. PMID:21405152

  4. Envelope molecular-orbital theory of extended systems. I. Electronic states of organic quasilinear nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Arce, J. C.; Perdomo-Ortiz, A.; Zambrano, M. L.; Mujica-Martínez, C.

    2011-03-01

    A conceptually appealing and computationally economical course-grained molecular-orbital (MO) theory for extended quasilinear molecular heterostructures is presented. The formalism, which is based on a straightforward adaptation, by including explicitly the vacuum, of the envelope-function approximation widely employed in solid-state physics leads to a mapping of the three-dimensional single-particle eigenvalue equations into simple one-dimensional hole and electron Schrödinger-like equations with piecewise-constant effective potentials and masses. The eigenfunctions of these equations are envelope MO's in which the short-wavelength oscillations present in the full MO's, associated with the atomistic details of the molecular potential, are smoothed out automatically. The approach is illustrated by calculating the envelope MO's of high-lying occupied and low-lying virtual ? states in prototypical nanometric heterostructures constituted by oligomers of polyacetylene and polydiacetylene. Comparison with atomistic electronic-structure calculations reveals that the envelope-MO energies agree very well with the energies of the ? MO's and that the envelope MO's describe precisely the long-wavelength variations of the ? MO's. This envelope MO theory, which is generalizable to extended systems of any dimensionality, is seen to provide a useful tool for the qualitative interpretation and quantitative prediction of the single-particle quantum states in mesoscopic molecular structures and the design of nanometric molecular devices with tailored energy levels and wavefunctions.

  5. The role of the exchange in the embedding electrostatic potential for the fragment molecular orbital method.

    PubMed

    Fedorov, Dmitri G; Kitaura, Kazuo

    2009-11-01

    We have examined the role of the exchange in describing the electrostatic potential in the fragment molecular orbital method and showed that it should be included in the total Fock matrix to obtain an accurate one-electron spectrum; however, adding it to the Fock matrices of individual fragments and pairs leads to very large errors. For the error analysis we have used the virial theorem; numerical tests have been performed for solvated phenol at the Hartree-Fock level with the 6-31G( *) and 6-311G( * *) basis sets. PMID:19894991

  6. Direct and enantioselective ?-allylation of ketones via singly occupied molecular orbital (SOMO) catalysis

    PubMed Central

    Mastracchio, Anthony; Warkentin, Alexander A.; Walji, Abbas M.; MacMillan, David W. C.

    2010-01-01

    The first enantioselective organocatalytic ?-allylation of cyclic ketones has been accomplished via singly occupied molecular orbital catalysis. Geometrically constrained radical cations, forged from the one-electron oxidation of transiently generated enamines, readily undergo allylic alkylation with a variety of commercially available allyl silanes. A reasonable latitude in both the ketone and allyl silane components is readily accommodated in this new transformation. Moreover, three new oxidatively stable imidazolidinone catalysts have been developed that allow cyclic ketones to successfully participate in this transformation. The new catalyst platform has also been exploited in the first catalytic enantioselective ?-enolation and ?-carbooxidation of ketones. PMID:20921367

  7. Structural and interaction analysis of helical heparin oligosaccharides with the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Sawada, Toshihiko; Fedorov, Dmitri G.; Kitaura, Kazuo

    The fragment molecular orbital method (FMO) was applied to the geometry optimization of several heparin oligosaccharides at the RHF/6-31(+)G(d) level combined with the polarizable continuum model (PCM). For comparison, GLYCAM force field optimization in explicit solvent was also conducted. Good accuracy of FMO was demonstrated in comparison to ab initio at the MP2/PCM level. The interaction analysis was conducted using the pair interaction energy decomposition analysis (PIEDA), and the role of hydrogen bonding and solvent was elucidated in the helix formation of heparin in solution. Content:text/plain; charset="UTF-8"

  8. Rotational Spectromicroscopy: Imaging the Orbital Interaction between Molecular Hydrogen and an Adsorbed Molecule

    NASA Astrophysics Data System (ADS)

    Li, Shaowei; Yuan, Dingwang; Yu, Arthur; Czap, Gregory; Wu, Ruqian; Ho, W.

    2015-05-01

    A hydrogen molecule can diffuse freely on the surface and be trapped above an adsorbed molecule within the junction of a scanning tunneling microscope. The trapped dihydrogen exhibits the properties of a free rotor. Here we show that the intermolecular interaction between dihydrogen and Mg-porphyrin (MgP) can be visualized by imaging j =0 to 2 rotational excitation of dihydrogen. The interaction leads to a weakened H-H bond and modest electron donation from the dihydrogen to the lowest unoccupied molecular orbital of MgP, a process similarly observed for the interaction between dihydrogen and an adsorbed Au atom.

  9. Path Integral Molecular Dynamics for Hydrogen with Orbital-Free Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Runge, Keith; Karasiev, Valentin; Deymier, Pierre

    2014-03-01

    The computational bottleneck for performing path-integral molecular dynamics (PIMD) for nuclei on a first principles electronic potential energy surface has been the speed with which forces from the electrons can be generated. Recent advances in orbital-free density functional theory (OF-DFT) not only allow for faster generation of first principles forces but also include the effects of temperature on the electron density. We will present results of calculations on hydrogen in warm dense matter conditions where the protons are described by PIMD and the electrons by OF-DFT. Work supported by U.S. Dept. of Energy, grant DE-SC0002139.

  10. Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems

    NASA Astrophysics Data System (ADS)

    Nistor, Razvan A.

    The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high-temperature superconducting materials in order to parameterize the apparently large nonlinear electron-phonon coupling. Thirdly, ab initio simulations are used to investigate the role of pressure-driven structural re-organization in the crystalline-to-amorphous (or, metallic-to-insulating) transition of a common binary phase-change material composed of Ge and Sb. Practical applications of each topic will be discussed. Keywords. Charge-equilibration methods, molecular dynamics, electronic structure calculations, ab initio simulations, high-temperature superconductors, phase-change materials.

  11. Unrestricted Hartree-Fock based on the fragment molecular orbital method: energy and its analytic gradient.

    PubMed

    Nakata, Hiroya; Fedorov, Dmitri G; Nagata, Takeshi; Yokojima, Satoshi; Ogata, Koji; Kitaura, Kazuo; Nakamura, Shinichiro

    2012-07-28

    A consideration of the surrounding environment is necessary for a meaningful analysis of the reaction activity in large molecular systems. We propose an approach to perform unrestricted Hartree-Fock (UHF) calculations within the framework of the fragment molecular orbital (FMO) method (FMO-UHF) to study large systems with unpaired electrons. Prior to an energy analysis one has to optimize geometry, which requires an accurate analytic energy gradient. We derive the FMO-UHF energy and its analytic gradient and implement them into GAMESS. The performance of FMO-UHF is evaluated for a solvated organic molecule and a solvated metal complex, as well as for the active part of a protein, in terms of energy, gradient, and geometry optimization. PMID:22852600

  12. Modeling of hydroxyapatite-peptide interaction based on fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Kato, Koichiro; Fukuzawa, Kaori; Mochizuki, Yuji

    2015-06-01

    We have applied the four-body corrected fragment molecular orbital (FMO4) calculations to analyze the interaction between a designed peptide motif (Glu1-Ser2-Gln3-Glu4-Ser5) and the hydroxyapatite (HA) solid mimicked by a cluster model consisting of 1408 atoms. To incorporate statistical fluctuations, a total of 30 configurations were generated through classical molecular dynamics simulation with water molecules and were subjected to FMO4 calculations at the MP2 level. It was found that Ser5 plays a leading role in interacting with the phosphate moieties of HA via charge transfer and also that negatively charged Glu1 and Glu4 provide electrostatic stabilizations with the calcium ions.

  13. Electronic structure and conformation of polymers from cluster molecular orbital and molecular mechanics calculations: Polyimide

    Microsoft Academic Search

    Sherif A. Kafafi; John P. LaFemina; Jeffrey L. Nauss

    1990-01-01

    Full geometry optimizations using molecular mechanics and the quantum chemical AM1 method have been carried out to determine the minimum energy conformation of pyromellitic dianhydride-oxydianiline polyimide (PMDA-ODA PI). The phenyl-imide twist angle for this compound was determined to be â¼30. These computations also provided a quantitative determination of the energy gap (7 eV), electron affinity (-2 eV), and ionization potential

  14. Mapping the phase diagram of the writhe of DNA nanocircles using atomistic molecular dynamics simulations

    Microsoft Academic Search

    Sarah A. Harris; Charles A. Laughton; Tanniemola B. Liverpool

    2007-01-01

    We have investigated the effects of duplex length, sequence, salt concentration and superhelical density on the conformation of DNA nanocircles containing up to 178 base pairs using atomistic molecular dynamics simulation. These calculations reveal that the partitioning of twist and writhe is governed by a delicate balance of competing energetic terms. We have identified conditions which favour circular, positively or

  15. Orbital alignment at the internal interface of arylthiol functionalized CdSe molecular hybrids

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Mazzio, Katherine A.; Okamoto, Ken; Luscombe, Christine K.; Schlaf, Rudy

    2015-04-01

    Organic-inorganic nanoparticle molecular hybrid materials are interesting candidates for improving exciton separation in organic solar cells. The orbital alignment at the internal interface of cadmium selenide (ArS-CdSe) hybrid materials functionalized with covalently attached arylthiolate moieties was investigated through X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS). A physisorbed interface between arylthiol (ArSH) ligands and CdSe nanoparticles was also investigated for comparison. This interface was created via a multi-step thin film deposition procedure in-vacuo, where the surface was characterized after each experimental step. This enabled the direct comparison of ArSH/CdSe interfaces produced via physisorption and ArS-CdSe covalently attached hybrid materials, which rely on a chemical reaction for their synthesis. All material depositions were performed using an electrospray deposition, which enabled the direct injection of solution-originating molecular species into the vacuum system. This method allows XPS and UPS measurements to be performed immediately after deposition without exposure to the atmosphere. Transmission electron microscopy was used to determine the morphology and particle size of the deposited materials. Ultraviolet-visible spectroscopy was used to estimate the optical band gap of the CdSe nanoparticles and the HOMO-LUMO gap of the ArSH ligands. These experiments showed that hybridization via covalent bonds results in an orbital realignment at the ArSH/CdSe interface in comparison to the physisorbed interface. The orbital alignment within the hybrid caused a favorable electron injection barrier, which likely facilitates exciton-dissociation while preventing charge-recombination.

  16. Equation of state of dense plasmas: Orbital-free molecular dynamics as the limit of quantum molecular dynamics for high-Z elements

    SciTech Connect

    Danel, J.-F.; Blottiau, P.; Kazandjian, L.; Piron, R.; Torrent, M. [CEA, DAM, DIF, 91297 Arpajon (France)

    2014-10-15

    The applicability of quantum molecular dynamics to the calculation of the equation of state of a dense plasma is limited at high temperature by computational cost. Orbital-free molecular dynamics, based on a semiclassical approximation and possibly on a gradient correction, is a simulation method available at high temperature. For a high-Z element such as lutetium, we examine how orbital-free molecular dynamics applied to the equation of state of a dense plasma can be regarded as the limit of quantum molecular dynamics at high temperature. For the normal mass density and twice the normal mass density, we show that the pressures calculated with the quantum approach converge monotonically towards those calculated with the orbital-free approach; we observe a faster convergence when the orbital-free approach includes the gradient correction. We propose a method to obtain an equation of state reproducing quantum molecular dynamics results up to high temperatures where this approach cannot be directly implemented. With the results already obtained for low-Z plasmas, the present study opens the way for reproducing the quantum molecular dynamics pressure for all elements up to high temperatures.

  17. IMAGING THE MOLECULAR DISK ORBITING THE TWIN YOUNG SUNS OF V4046 Sgr

    SciTech Connect

    Rodriguez, David R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Kastner, Joel H. [Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Wilner, David; Qi, Chunhua, E-mail: drodrigu@astro.ucla.ed, E-mail: jhk@cis.rit.ed, E-mail: dwilner@cfa.harvard.ed, E-mail: cqi@cfa.harvard.ed [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Mail Stop 42, Cambridge, MA 02138 (United States)

    2010-09-10

    We have imaged the disk surrounding the nearby (D {approx} 73 pc), {approx}12 Myr, classical T Tauri binary system V4046 Sgr with the Submillimeter Array (SMA) at an angular resolution of {approx}2''. We detect a rotating disk in {sup 12}CO(2-1) and {sup 13}CO(2-1) emission and resolve the continuum emission at 1.3 mm. We infer disk gas and dust masses of {approx}110 and {approx}40 Earth masses, respectively. Fits to a power-law disk model indicate that the molecular disk extends to {approx}370 AU and is viewed at an inclination of between {approx}33{sup 0} and {approx}39{sup 0} for dynamical stellar masses ranging from 1.8 M {sub sun} down to 1.5 M {sub sun} (the range of the total mass previously determined for the central, 2.4 day spectroscopic binary). This range of disk inclination is consistent with that assumed in deducing the central binary mass (i.e., 35{sup 0}), suggesting that the V4046 Sgr binary system and its circumbinary, molecular disk are coplanar. In light of the system's age and binarity, the presence of an extensive molecular disk orbiting V4046 Sgr provides constraints on the timescales of processes related to Jovian planet formation and demonstrates that circumbinary Jovian planets potentially could form around close binary systems.

  18. Orientation of organic molecules in a monolayer vis-à-vis their molecular orbitals and transport gap

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sudipto; Dey, Sukumar; Pal, Amlan J.

    2011-08-01

    We form a monolayer of magnetic organic molecules with its plane parallel or perpendicular to the substrate. The molecules in a monolayer are oriented with an external magnetic field followed by immobilization though an electrostatic binding. In this work, from scanning tunneling microscopy (STM) measurements, we show that conductivity, molecular orbitals, and transport gap of the molecules in a monolayer depend on its orientation. From measurements carried out with different tip-to-molecule distances, we observe that the STM tip also influences molecular orbitals and transport-gap of molecules.

  19. Molecular geometry, conformational, vibrational spectroscopic, molecular orbital and Mulliken charge analysis of 2-acetoxybenzoic acid.

    PubMed

    Govindasamy, P; Gunasekaran, S; Srinivasan, S

    2014-09-15

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of 2-acetoxybenzoic acid (2ABA), a painkiller agent were recorded in the region 4000-450 cm(-1) and 5000-50 cm(-1) respectively. Hartree Fock (HF) and Density functional theory (DFT) methods have been used to determine its optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands of the title molecule. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations were done at HF and DFT/B3LYP level with 6-311++G(d,p) basis set. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) analysis. The Mulliken charges, UV-Visible spectral analysis and HOMO-LUMO energy gap have been calculated and reported. The B3LYP method of calculated parameters is a good complement with the experimental findings. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated and discussed. The electrostatic potential (ESP) contour surface and molecular electrostatic potential (MESP) of the molecule were constructed. PMID:24793483

  20. Fourier transform photoelectron diffraction and its application to molecular orbitals and surface structure

    SciTech Connect

    Zhou, Xin

    1998-11-30

    Photoemission intensities from the molecular orbitals of c(2x2)CO/Pt(111) over a wide photon energy range were measured and analyzed by the same methods developed for structural studies using core levels. The 4{sigma} orbital center of gravity is found to be concentrated between the C and O atoms, while that of the 5{sigma} orbital lies between the C atom and the Pt surface. The C 1s photoelectron diffraction was used to determine the adsorption geometry. The earlier ambiguity that multiple scattering is needed to correctly model a {chi} curve while single scattering is sufficient for understanding major peaks in the ARPEFS-FTS is clarified by studying the clean Ni(111) surface. In the normal emission case, several different combinations of scattering events have similar path length differences (PLDs), and can either cancel each other or enhance the corresponding FT peak. In the off-normal case the degeneracy is greatly reduced due to the lower degree of symmetry. In normal emission AR PEFS, up to third order multiple scattering is needed to describe fully both the {chi} curve and its FT spectrum. To improve the spectral resolution in the ARPEFS-FT analysis, several new spectral analysis methods are introduced. With both autocorrelation autoregression (ACAR) and autocorrelation eigenvector (ACE), we can produce a reliable power spectrum by following the order-closing procedure. The best spectra are usually obtained when the autocorrelation sequence is computed with lags up to half the data range. A simple way of determining surface adsorption sites is proposed as follows: First use a single scattering cluster for possible adsorption sites to construct the geometrical PLDs from the strong backscattering events; then compare these PLDs with those obtained from the ARPEFS-FT analysis of the experimental data. After the preferred adsorption site is determined, fine tune the interlayer distances according to the positional R-factor.

  1. Explicit Polarization (X-Pol) Potential Using ab Initio Molecular Orbital Theory and Density Functional Theory†

    PubMed Central

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2010-01-01

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree—Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations. PMID:19618944

  2. Mapping enzymatic catalysis using the effective fragment molecular orbital method: towards all ab initio biochemistry.

    PubMed

    Steinmann, Casper; Fedorov, Dmitri G; Jensen, Jan H

    2013-01-01

    We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We determine the reaction barrier of chorismate mutase to be [Formula: see text] kcal mol(-1) for MP2/cc-pVDZ and [Formula: see text] for MP2/cc-pVTZ in an ONIOM approach using EFMO-RHF/6-31G(d) for the high and low layers, respectively. PMID:23593259

  3. Hybrid RHF/MP2 geometry optimizations with the Effective Fragment Molecular Orbital Method

    E-print Network

    Christensen, Anders S; Fedorov, Dimitri G; Jensen, Jan H

    2013-01-01

    The frozen domain Effective Fragment Molecular Orbital method (\\textit{PLoS ONE}, accepted) is extended to allow for the treatment of a single fragment at the MP2 level of theory. The approach is applied to the conversion of chorismate to phrephenate by chorismate mutase, where the substrate is treated at the MP2 level of theory while the rest of the system is treated at the RHF level. MP2 geometry optimization is found to lower the barrier by up to 3.5 kcal/mol compared to RHF optimzations and ONIOM energy refinement and leads to smoother convergence with respect to basis set for the reaction profile. For double zeta basis sets the increase in CPU time relative to RHF is roughly a factor of two.

  4. Hybrid RHF/MP2 geometry optimizations with the effective fragment molecular orbital method.

    PubMed

    Christensen, Anders S; Steinmann, Casper; Fedorov, Dmitri G; Jensen, Jan H

    2014-01-01

    The frozen domain effective fragment molecular orbital method is extended to allow for the treatment of a single fragment at the MP2 level of theory. The approach is applied to the conversion of chorismate to prephenate by Chorismate Mutase, where the substrate is treated at the MP2 level of theory while the rest of the system is treated at the RHF level. MP2 geometry optimization is found to lower the barrier by up to 3.5 kcal/mol compared to RHF optimzations and ONIOM energy refinement and leads to a smoother convergence with respect to the basis set for the reaction profile. For double zeta basis sets the increase in CPU time relative to RHF is roughly a factor of two. PMID:24558430

  5. Hybrid RHF/MP2 Geometry Optimizations with the Effective Fragment Molecular Orbital Method

    PubMed Central

    Christensen, Anders S.; Steinmann, Casper; Fedorov, Dmitri G.; Jensen, Jan H.

    2014-01-01

    The frozen domain effective fragment molecular orbital method is extended to allow for the treatment of a single fragment at the MP2 level of theory. The approach is applied to the conversion of chorismate to prephenate by Chorismate Mutase, where the substrate is treated at the MP2 level of theory while the rest of the system is treated at the RHF level. MP2 geometry optimization is found to lower the barrier by up to 3.5 kcal/mol compared to RHF optimzations and ONIOM energy refinement and leads to a smoother convergence with respect to the basis set for the reaction profile. For double zeta basis sets the increase in CPU time relative to RHF is roughly a factor of two. PMID:24558430

  6. Mapping Enzymatic Catalysis Using the Effective Fragment Molecular Orbital Method: Towards all ab initio Biochemistry

    PubMed Central

    Steinmann, Casper; Fedorov, Dmitri G.; Jensen, Jan H.

    2013-01-01

    We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We determine the reaction barrier of chorismate mutase to be kcal mol?1 for MP2/cc-pVDZ and for MP2/cc-pVTZ in an ONIOM approach using EFMO-RHF/6-31G(d) for the high and low layers, respectively. PMID:23593259

  7. Molecular orbital studies in oxidation: Sulfate formation and metal-metal oxide adhesion

    NASA Technical Reports Server (NTRS)

    Anderson, A. B.

    1985-01-01

    The chemical mechanisms for sulfate formation from sodium chloride and sulfur trioxide, which is a product of jet fuel combustion was determined. Molten sodium sulfate leads to hot corrosion of the protective oxide layers on turbine blades. How yttrium dopants in nidkel-aluminum alloys used in turbine blades reduce the spalling rate of protective alumina films and enhance their adhesion was also determined. Two other fulfate mechanisms were deduced and structure of carbon monoxide on a clean chronium and clean platinum-titanium alloys surfaces was determined. All studies were by use of the atom superposition and electron delocalization molecular orbital (ASED-MO) theory. Seven studies were completed. Their titles and abstracts are given.

  8. Oxygen evolution on a SrFeO3 anode - Mechanistic considerations from molecular orbital theory

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, Alfred B.

    1989-01-01

    Various pathways proposed in the literature for the evolution of O2 in electrochemical oxidations are explored using the atom superposition and electron delocalization molecular orbital (ASED-MO) theory and the cluster models of the SrFeO3 surface as a prototype material. Calculations indicate that oxygen atoms can be easily formed on the (100) surface as well as on the edge cation sites of a SrFeO3 anode by the discharge of OH(-), followed by its deprotonation and electron transfer to the electrode. The O atoms can form O2 on the edge and corner sites, where the Fe(4+) is coordinated to four and three bulk oxygen anions, respectively. The calculations strongly disfavor mechanisms involving coupling of oxygen atoms adsorbed on different cations as well as a mechanism featuring an ozone intermediate.

  9. Imaging superatomic molecular orbitals in a C60 molecule through four 800-nm photons

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; Zhu, H. P.; Bai, Y. H.; Bonacum, J.; Wu, X. S.; George, Thomas F.

    2015-05-01

    Superatomic molecular orbitals (SAMOs) in C60 are ideal building blocks for functional nanostructures. However, imaging them spatially in the gas phase has been unsuccessful. It is found experimentally that if C60 is excited by an 800-nm laser, the photoelectron casts an anisotropic velocity image, but the image becomes isotropic if excited at a 400-nm wavelength. This diffuse image difference has been attributed to electron thermal ionization, but more recent experiments (800 nm) reveal a clear nondiffuse image superimposed on the diffuse image, whose origin remains a mystery. Here we show that the nondiffuse anisotropic image is the precursor of the f SAMOs. We predict that four 800-nm photons can directly access the 1f SAMO, and with one more photon, can image the orbital, with the photoelectron angular distribution having two maxima at 0° and 180° and two humps separated by 56.5°. Since two 400-nm photons only resonantly excite the spherical 1s SAMO and four 800-nm photons excite the anisotropic 1f SAMO, our finding gives a natural explanation of the nondiffuse image difference, complementing the thermal scenario.

  10. Hydrogen Spectra, Molecular Association and Orbital Radii in the Solar System

    E-print Network

    James C. Lombardi Sr.

    2003-07-24

    A relationship between the average orbital radii of the planets and their satellites in the solar system and the spectra of atomic and molecular hydrogen is identified and investigated. In this model, stimulated radiative association resonances develop early on in the disk of the protosun that cause the disk to cool at only certain radii, with each radius depending on a specific photon energy in the atomic hydrogen spectrum. The planets then evolve from the relatively cool rings that are formed. Similar activity occurs in the formation of the satellite systems of the giant planets. The present investigation deals with the mechanism that generates rings from which the planets are formed. It does not deal with the evolution of the rings into planets. Many characteristics of the solar system are explained including the sizes of the orbital radii of the planets and their satellites, the tilt of Uranus's axis, the positions of the asteroid and Kuiper belts, the source of the scattered Kuiper belt objects, the positions of Saturn's main rings and the rings of Uranus, Jupiter, and Neptune. It also shows that a commonality exists in the structures of the solar system and the planetary systems that can be attributed to the common process that initiated their evolution.

  11. Design principle for increasing charge mobility of ?-conjugated polymers using regularly localized molecular orbitals

    PubMed Central

    Terao, Jun; Wadahama, Akihisa; Matono, Akitoshi; Tada, Tomofumi; Watanabe, Satoshi; Seki, Shu; Fujihara, Tetsuaki; Tsuji, Yasushi

    2013-01-01

    The feasibility of using ?-conjugated polymers as next-generation electronic materials is extensively studied; however, their charge mobilities are lower than those of inorganic materials. Here we demonstrate a new design principle for increasing the intramolecular charge mobility of ?-conjugated polymers by covering the ?-conjugated chain with macrocycles and regularly localizing ?-molecular orbitals to realize an ideal orbital alignment for charge hopping. Based on theoretical predictions, insulated wires containing meta-junctioned poly(phenylene–ethynylene) as the backbone units were designed and synthesized. The zigzag wires exhibited higher intramolecular charge mobility than the corresponding linear wires. When the length of the linear region of the zigzag wires was increased to 10 phenylene–ethynylene units, the intramolecular charge mobility increased to 8.5?cm2?V?1?s?1. Theoretical analysis confirmed that this design principle is suitable for obtaining ideal charge mobilities in ?-conjugated polymer chains and that it provides the most effective pathways for inter-site hopping processes. PMID:23575695

  12. Kohn-Sham orbitals and potentials from quantum Monte Carlo molecular densities

    SciTech Connect

    Varsano, Daniele, E-mail: daniele.varsano@nano.cnr.it [Dipartimento di Fisica, Sapienza-Università di Roma, P.le Aldo Moro 5, 00185 Roma (Italy)] [Dipartimento di Fisica, Sapienza-Università di Roma, P.le Aldo Moro 5, 00185 Roma (Italy); Barborini, Matteo [Dipartimento di ingegneria e scienze dell'informazione e matematica, Università degli studi dell'Aquila, Via Vetoio, Coppito, 67100 L'Aquila (Italy) [Dipartimento di ingegneria e scienze dell'informazione e matematica, Università degli studi dell'Aquila, Via Vetoio, Coppito, 67100 L'Aquila (Italy); Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila, Via Vetoio, Coppito, 67100 L'Aquila (Italy); Guidoni, Leonardo, E-mail: leonardo.guidoni@univaq.it [Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila, Via Vetoio, Coppito, 67100 L'Aquila (Italy)] [Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila, Via Vetoio, Coppito, 67100 L'Aquila (Italy)

    2014-02-07

    In this work we show the possibility to extract Kohn-Sham orbitals, orbital energies, and exchange correlation potentials from accurate Quantum Monte Carlo (QMC) densities for atoms (He, Be, Ne) and molecules (H{sub 2}, Be{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}). The Variational Monte Carlo (VMC) densities based on accurate Jastrow Antisymmetrised Geminal Power wave functions are calculated through different estimators. Using these reference densities, we extract the Kohn-Sham quantities with the method developed by Zhao, Morrison, and Parr (ZMP) [Phys. Rev. A 50, 2138 (1994)]. We compare these extracted quantities with those obtained form CISD densities and with other data reported in the literature, finding a good agreement between VMC and other high-level quantum chemistry methods. Our results demonstrate the applicability of the ZMP procedure to QMC molecular densities, that can be used for the testing and development of improved functionals and for the implementation of embedding schemes based on QMC and Density Functional Theory.

  13. Kohn-Sham orbitals and potentials from quantum Monte Carlo molecular densities

    NASA Astrophysics Data System (ADS)

    Varsano, Daniele; Barborini, Matteo; Guidoni, Leonardo

    2014-02-01

    In this work we show the possibility to extract Kohn-Sham orbitals, orbital energies, and exchange correlation potentials from accurate Quantum Monte Carlo (QMC) densities for atoms (He, Be, Ne) and molecules (H2, Be2, H2O, and C2H4). The Variational Monte Carlo (VMC) densities based on accurate Jastrow Antisymmetrised Geminal Power wave functions are calculated through different estimators. Using these reference densities, we extract the Kohn-Sham quantities with the method developed by Zhao, Morrison, and Parr (ZMP) [Phys. Rev. A 50, 2138 (1994)]. We compare these extracted quantities with those obtained form CISD densities and with other data reported in the literature, finding a good agreement between VMC and other high-level quantum chemistry methods. Our results demonstrate the applicability of the ZMP procedure to QMC molecular densities, that can be used for the testing and development of improved functionals and for the implementation of embedding schemes based on QMC and Density Functional Theory.

  14. Development of Constraint Algorithm for the Number of Electrons in Molecular Orbitals Consisting Mainly 4 f Atomic Orbitals of Rare-Earth Elements and Its Introduction to Tight-Binding Quantum Chemical Molecular Dynamics Method

    NASA Astrophysics Data System (ADS)

    Endou, Akira; Onuma, Hiroaki; Jung, Sun-ho; Ishimoto, Ryota; Tsuboi, Hideyuki; Koyama, Michihisa; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A.; Miyamoto, Akira

    2007-04-01

    Our original tight-binding quantum chemical molecular dynamics code, “Colors”, has been successfully applied to the theoretical investigation of complex materials including rare-earth elements, e.g., metal catalysts supported on a CeO2 surface. To expand our code so as to obtain a good convergence for the electronic structure of a calculation system including a rare-earth element, we developed a novel algorithm to provide a constraint condition for the number of electrons occupying the selected molecular orbitals that mainly consist of 4 f atomic orbitals of the rare-earth element. This novel algorithm was introduced in Colors. Using Colors, we succeeded in obtaining the classified electronic configurations of the 4 f atomic orbitals of Ce4+ and reduced Ce ions in a CeO2 bulk model with one oxygen defect, which makes it difficult to obtain a good convergence using a conventional first-principles quantum chemical calculation code.

  15. Spectroscopic studies and molecular orbital calculations of charge transfer complexation between 3,5-dimethylpyrazole with DDQ in acetonitrile

    NASA Astrophysics Data System (ADS)

    Habeeb, Moustafa M.; Al-Attas, Amirah S.; Al-Raimi, Doaa S.

    2015-05-01

    Charge transfer (CT) interaction between 3,5-dimethylpyrazole (DMP) with the ?-acceptor 2,3-dichloro-5,6-dicyano-p-benzoquinon (DDQ) has been investigated spectrophotometrically in acetonitrile (AN). Simultaneous reddish brown color has been observed upon mixing donor with acceptor solutions attributing to CT complex formation. The electronic spectra of the formed complex exhibited multi-charge transfer bands at 429, 447, 506, 542 and 589 nm, respectively. Job's method of continuous variations and spectrophotometric titration methods confirmed the formation of the studied complex in 1:2 ratio between DMP and DDQ. Benesi-Hildebrand equation has been applied to calculate the stability constant of the formed complex where it recorded high value supporting formation of stable complex. Molecular orbital calculations using MM2 method and GAMESS (General Atomic and Molecular Electronic Structure System) interface computations as a package of ChemBio3D Ultra12 software were carried out for more analysis of the formed complex in the gas phase. The computational analysis included energy minimisation, stabilisation energy, molecular geometry, Mullikan charges, molecular electrostatic potential (MEP) surfaces of reactants and complex as well as characterization of the higher occupied molecular orbitals (HOMO) and lower unoccupied molecular orbitals (LUMO) surfaces of the complex. A good consistency between experimental and theoretical results has been recorded.

  16. ?????????????????????????????????????????????????????????????? ????? ????????????????????? ????????? 3 ???? ILLUSTRATING THE DIMENSIONS OF THE BONDING MOLECULAR ORBITALS OF ETHANE, ETHENE, AND ETHYNE BY USING THE 3D ANIMATION MOVIES

    Microsoft Academic Search

    Itsara Khantikaew

    In teaching Organic chemistry 1, the instructor developed the three 3D animation movies to illustrate the virtual models of the bonding molecular orbitals of the carbon-carbon bonds in the molecules of ethane, ethene, and ethyne. The created movies illustrated the dimensions around the bonding molecular orbitals. These computer assisted instruction (CAI) media could excite the students in class well. Introduction:

  17. Computational study of the vibrational spectroscopic studies, natural bond orbital, frontier molecular orbital and second-order non-linear optical properties of acetophenone thiosemicarbazone molecule.

    PubMed

    Li, Xiao-Hong; Mei, Zheng; Zhang, Xian-Zhou

    2014-01-24

    The vibrational frequencies of acetophenone thiosemicarbazone in the ground state have been calculated using density functional method (B3LYP) with 6-31G(d), 6-31G(d,p) and 6-311++G(d,p) basis sets. The analysis of natural bond orbital was also performed. The IR spectra were obtained and interpreted by means of potential energies distributions (PEDs) using MOLVIB program. In addition, the results show that there exist N-H…N and N-H…S hydrogen bonds in the title compound, which play a major role in stabilizing the molecule and are confirmed by the natural bond orbital analysis. The predicted NLO properties show that the title compound is a good candidate as second-order NLO material. In addition, the frontier molecular orbitals were analyzed and the crystal structure obtained by molecular mechanics belongs to the Pbca space group, with lattice parameters Z=8, a=16.0735 Å, b=7.1719 Å, c=7.8725 Å, ?=0.808 g/cm(3). PMID:24084483

  18. General contraction of Gaussian basis sets. II - Atomic natural orbitals and the calculation of atomic and molecular properties

    NASA Technical Reports Server (NTRS)

    Almlof, Jan; Taylor, Peter R.

    1990-01-01

    A recently proposed scheme for using natural orbitals from atomic configuration interaction wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outermost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital sets.

  19. General contraction of Gaussian basis sets. Part 2: Atomic natural orbitals and the calculation of atomic and molecular properties

    NASA Technical Reports Server (NTRS)

    Almloef, Jan; Taylor, Peter R.

    1989-01-01

    A recently proposed scheme for using natural orbitals from atomic configuration interaction (CI) wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outmost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital (ANO) sets.

  20. Spectroscopic mapping and selective electronic tuning of molecular orbitals in phosphorescent organometallic complexes - a new strategy for OLED materials.

    PubMed

    Ewen, Pascal R; Sanning, Jan; Koch, Tobias; Doltsinis, Nikos L; Strassert, Cristian A; Wegner, Daniel

    2014-01-01

    The improvement of molecular electronic devices such as organic light-emitting diodes requires fundamental knowledge about the structural and electronic properties of the employed molecules as well as their interactions with neighboring molecules or interfaces. We show that highly resolved scanning tunneling microscopy (STM) and spectroscopy (STS) are powerful tools to correlate the electronic properties of phosphorescent complexes (i.e., triplet emitters) with their molecular structure as well as the local environment around a single molecule. We used spectroscopic mapping to visualize several occupied and unoccupied molecular frontier orbitals of Pt(II) complexes adsorbed on Au(111). The analysis showed that the molecules exhibit a peculiar localized strong hybridization that leads to partial depopulation of a dz² orbital, while the ligand orbitals are almost unchanged. We further found that substitution of functional groups at well-defined positions can alter specific molecular orbitals without influencing the others. The results open a path toward the tailored design of electronic and optical properties of triplet emitters by smart ligand substitution, which may improve the performance of future OLED devices. PMID:25551053

  1. Introduction to Computational Chemistry: Teaching Hu¨ckel Molecular Orbital Theory Using an Excel Workbook for Matrix Diagonalization

    ERIC Educational Resources Information Center

    Litofsky, Joshua; Viswanathan, Rama

    2015-01-01

    Matrix diagonalization, the key technique at the heart of modern computational chemistry for the numerical solution of the Schrödinger equation, can be easily introduced in the physical chemistry curriculum in a pedagogical context using simple Hückel molecular orbital theory for p bonding in molecules. We present details and results of…

  2. Ab initio molecular orbital study of adsorption of oxygen, nitrogen, and ethylene on silver-zeolite and silver halides

    SciTech Connect

    Chen, N.; Yang, R.T. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering] [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1996-11-01

    An ab initio molecular orbital study is undertaken on the adsorption of N{sub 2}, O{sub 2}, and C{sub 2}H{sub 4} (adsorbate) on Ag-zeolite and Ag halides (adsorbent). Geometry optimization is performed at the HF/3-21G level, while MP2/3-21G with natural bond orbital calculations are performed to obtain energies, atomic charges, orbital energies, and orbital populations (occupancies). The bonding of adsorbate to adsorbent is discussed in the context of {sigma}-donation (i.e., overlap of the 2p orbitals of the adsorbate molecule with the 5s orbital of Ag) and d-{pi}* back donation (i.e., overlap of the 4d{sub yz} orbitals of Ag with the 2p* antibonding orbitals of the adsorbate). For all adsorbate-adsorbent pairs, the ratio of {sigma}-donation to d-{pi}* back donation is approximately 3:1. Results on occupancy analysis indicate that a considerable electron redistribution from the 4d{sub zy} orbitals to the 4d{sub yz} orbitals occurs in Ag during adsorption and that this redistribution has possibly enhanced the d-{pi}* back donation. Net charge and energy gap ({Delta}{epsilon}) analyses indicate that it is slightly easier for N{sub 2} than O{sub 2} to adsorb, whereas a comparison of N{sub 2} and O{sub 2} adsorption from calculations of the energies of adsorption is inconclusive. However, a fair agreement is obtained in comparison of theory and experiment for energy of adsorption of N{sub 2} and C{sub 2}J{sub 4} on Ag-zeolite. The dispersion energies of adsorption, based on the MP2 correlation energies, are nearly the same for all adsorption pairs, i.e,, approximately 4--5 kcal/mol.

  3. Analyzing molecular properties calculated with two-component relativistic methods using spin-free natural bond orbitals: NMR spin-spin coupling constants

    Microsoft Academic Search

    Jochen Autschbach

    2007-01-01

    An analysis method for static linear response properties employing two-component (spin-orbit) relativistic density functional theory along with scalar relativistic ``natural localized molecular orbitals'' (NLMOs) and ``natural bond orbitals'' (NBOs) has been developed. The spin-orbit NLMO\\/NBO analysis has been applied to study the indirect spin-spin coupling (J-coupling) constants in Tl-I, PbH4, and a dinuclear Pt-Tl bonded complex with a very large

  4. Performance assessment of semiempirical molecular orbital methods in describing halogen bonding: quantum mechanical and quantum mechanical/molecular mechanical-molecular dynamics study.

    PubMed

    Ibrahim, Mahmoud A A

    2011-10-24

    The performance of semiempirical molecular-orbital methods--MNDO, MNDO-d, AM1, RM1, PM3 and PM6--in describing halogen bonding was evaluated, and the results were compared with molecular mechanical (MM) and quantum mechanical (QM) data. Three types of performance were assessed: (1) geometrical optimizations and binding energy calculations for 27 halogen-containing molecules complexed with various Lewis bases (Two of the tested methods, AM1 and RM1, gave results that agree with the QM data.); (2) charge distribution calculations for halobenzene molecules, determined by calculating the solvation free energies of the molecules relative to benzene in explicit and implicit generalized Born (GB) solvents (None of the methods gave results that agree with the experimental data.); and (3) appropriateness of the semiempirical methods in the hybrid quantum-mechanical/molecular-mechanical (QM/MM) scheme, investigated by studying the molecular inhibition of CK2 protein by eight halobenzimidazole and -benzotriazole derivatives using hybrid QM/MM molecular-dynamics (MD) simulations with the inhibitor described at the QM level by the AM1 method and the rest of the system described at the MM level. The pure MM approach with inclusion of an extra point of positive charge on the halogen atom approach gave better results than the hybrid QM/MM approach involving the AM1 method. Also, in comparison with the pure MM-GBSA (generalized Born surface area) binding energies and experimental data, the calculated QM/MM-GBSA binding energies of the inhibitors were improved by replacing the G(GB,QM/MM) solvation term with the corresponding G(GB,MM) term. PMID:21942911

  5. Extending electron orbital precession to the molecular case: Use of orbital alignment for observation of wavepacket dynamics

    Microsoft Academic Search

    Hugo E. L. Martay; Duncan G. England; David J. McCabe; Ian A. Walmsley

    2011-01-01

    The complexity of ultrafast molecular photoionization presents an obstacle to the modeling of pump-probe experiments. Here, a simple optimized model of atomic rubidium is combined with a molecular dynamics model to predict quantitatively the results of a pump-probe experiment in which long-range rubidium dimers are first excited, then ionized after a variable delay. The method is illustrated by the outline

  6. Extending electron orbital precession to the molecular case: Can orbital alignment be used to observe wavepacket dynamics?

    Microsoft Academic Search

    Hugo E. L. Martay; David J. McCabe; Duncan G. England; Ian A. Walmsley

    2010-01-01

    The complexity of ultrafast molecular photoionization presents an obstacle to\\u000athe modelling of pump-probe experiments. Here, a simple optimized model of\\u000aatomic rubidium is combined with a molecular dynamics model to predict\\u000aquantitatively the results of a pump-probe experiment in which long range\\u000arubidium dimers are first excited, then ionized after a variable delay. The\\u000amethod is illustrated by the

  7. Stimulated Radiative Molecular Association in the Early Solar System: Orbital Radii of Satellites of Uranus, Jupiter, Neptune, and Saturn

    E-print Network

    Lombardi, James C

    2015-01-01

    The present investigation relates the orbital radii of regular satellites of Uranus, Jupiter, Neptune, and Saturn to photon energies in the spectra of atomic and molecular hydrogen. To explain these observations a model is developed involving stimulated radiative molecular association (SRMA) reactions among the photons and atoms in the protosatellite disks of the planets. In this model thermal energy is extracted from each disk due to a resonance at radii where there is a match between the temperature in the disk and a photon energy. Matter accumulates at these radii, and satellites and rings are ultimately formed. Orbital radii of satellites of Uranus, Jupiter, and Neptune are related to photon energies ($E_{PM}$ values) in the spectrum of molecular hydrogen. Orbital radii of satellites of Saturn are related to photon energies ($E_{PA}$ values) in the spectrum of atomic hydrogen. The first hint that such relationships exist is found in the linearity of the graphs of orbital radii of uranian satellites vs. or...

  8. Finite-temperature orbital-free GGA molecular dynamics for warm dense hydrogen

    NASA Astrophysics Data System (ADS)

    Karasiev, Valentin; Sjostrom, T.; Trickey, S. B.

    2013-03-01

    The computational description of warm dense matter (WDM) by means of a combination of the Kohn-Sham (KS) finite-temperature density functional theory (DFT) for the electrons and classical molecular dynamics (MD) for the ions becomes an intractable task at high T (typically a few hundred kK). Finite-temperature orbital free DFT (OF-DFT) is a less expensive alternative. Only two non-interacting free-energy functionals for OF-DFT had been published and used until recently: the finite-temperature Thomas-Fermi (ftTF) model (Feynman et al., 1949) and ftTF with second-order gradient corrections (ftSGA) (Perrot, 1979). Here we report first results of OF-DFT MD simulations for warm dense H with a pair of newly developed ftGGA free energy functionals for the non-interacting kinetic energy and entropy. The equation of state from these new functionals shows much better agreement with the reference KS MD results than results from the ftTF and ftSGA models. Other issues, e.g. convergence of the OF self-consistent procedure, also will be discussed. The computational description of warm dense matter (WDM) by means of a combination of the Kohn-Sham (KS) finite-temperature density functional theory (DFT) for the electrons and classical molecular dynamics (MD) for the ions becomes an intractable task at high T (typically a few hundred kK). Finite-temperature orbital free DFT (OF-DFT) is a less expensive alternative. Only two non-interacting free-energy functionals for OF-DFT had been published and used until recently: the finite-temperature Thomas-Fermi (ftTF) model (Feynman et al., 1949) and ftTF with second-order gradient corrections (ftSGA) (Perrot, 1979). Here we report first results of OF-DFT MD simulations for warm dense H with a pair of newly developed ftGGA free energy functionals for the non-interacting kinetic energy and entropy. The equation of state from these new functionals shows much better agreement with the reference KS MD results than results from the ftTF and ftSGA models. Other issues, e.g. convergence of the OF self-consistent procedure, also will be discussed. We acknowledge support from US DoE Grant DE-SC0002139.

  9. Using Diagram Generation Software to Improve Diagram Recognition: A Case Study of Music Notation

    Microsoft Academic Search

    Dorothea Blostein; Lippold Haken

    1999-01-01

    Diagrams are widely used in society to transmit information such as circuit designs, music, mathematical formulae, architectural plans, and molecular structure. Computers must process diagrams both as images (marks on paper) and as information. A diagram recognizer translates from image to information and a diagram generator translates from information to image. Current technology for diagram generation is ahead of the

  10. A rational reduction of CI expansions: combining localized molecular orbitals and selected charge excitations.

    PubMed

    Krah, Tim; Ben Amor, Nadia; Maynau, Daniel; Berger, J A; Robert, Vincent

    2014-07-01

    Based on localized molecular orbitals, the proposed method reduces large configuration interaction (CI) spaces while maintaining agreement with reference values. Our strategy concentrates the numerical effort on physically pertinent CI-contributions and is to be considered as a tool to tackle large systems including numerous open-shells. To show the efficiency of our method we consider two 4-electron parent systems. First, we illustrate our approach by describing the van der Waals interactions in the (H2)2 system. By systematically including local correlation, dispersion and charge transfer mechanisms, we show that 90% of the reference full CI dissociation energy of the H2 dimer is reproduced using only 3% of the full CI space. Second, the conformational cis/trans rotation barrier of the butadiene molecule is remarkably reproduced (97% of the reference value) with less than 1% of the reference space. This work paves the way to numerical strategies which afford the electronic structure determination of large open-shell systems avoiding the exponential limitation. At the same time, a physical analysis of the contents of the wave function is offered. PMID:24935105

  11. Ab initio molecular orbitals study of the conformational preference in alpha-cyano-alpha-fluorophenylacetic acid ester.

    PubMed

    Sahnoun, Riadh; Fujimura, Yuichi; Kabuto, Kuninobu; Takeuchi, Yoshio; Noyori, Ryoji

    2007-10-12

    The origin of conformational preference in alpha-cyano-alpha-fluorophenylacetic acid (CFPA) methyl ester that is a model system of alpha-cyano-alpha-fluoro-p-tolylacetic acid (CFTA) esters was theoretically investigated by means of DFT and MP2 calculations. Two stable conformations having the C-F bond syn and anti to the C=O bond, respectively, were obtained for CFPA methyl ester. A small energy difference (0.9 kcal mol-1 at the MP2(fc)/6-31++G(d,p)) was found between the two conformations. From the molecular orbital analysis based on the Natural Bond Orbital analysis and supported by calculations using the Orbital Deletion Procedure technique, we found that sigma-(sigma*+pi*)(C=O) and sigma-sigma*(Ph) and pi(Ph)-sigma* hyperconjugations are the main factors responsible for the conformational preference. The role of the fluorine atom on the stereogenic center was also clarified. PMID:17880239

  12. Density functional calculation of superatomic molecular orbitals in C60: First truly converged results on a real grid mesh

    NASA Astrophysics Data System (ADS)

    Drake, Kyle; Bonacum, Jason; Zhang, Guo-Ping

    2014-03-01

    The molecular structure of Buckminster fullerene (C60) allows for electron delocalization in all of the pi-bonding electrons of the molecule. This coupled with the symmetry of the molecule allows for the formation of super-atomic molecular orbitals (SAMOs) similar to those observed in aluminum clusters. The SAMOs behave as if the molecule that they belong to is a single atom. We compute the eigenstates of C60 compulationally using density functional theory (DFT) and a grid mesh. Using larger radii also allows us to accurately describe SAMOs and test the convergence of our data. The results are interesting because for the first time, we can show the true converged super atomic orbitals in C60. Indiana State University SURE Program, Department of Energy, Indiana State University Department of Physics, and Indiana State University Center for Student Creativity and Research.

  13. Mixed ab initio quantum mechanics/molecular mechanics methods using frozen orbitals with applications to peptides and proteins

    NASA Astrophysics Data System (ADS)

    Philipp, Dean Michael

    Methodology is discussed for mixed ab initio quantum mechanics/molecular mechanics modeling of systems where the quantum mechanics (QM) and molecular mechanics (MM) regions are within the same molecule. The ab initio QM calculations are at the restricted Hartree-Fock level using the pseudospectral method of the Jaguar program while the MM part is treated with the OPLS force fields implemented in the IMPACT program. The interface between the QM and MM regions, in particular, is elaborated upon, as it is dealt with by ``breaking'' bonds at the boundaries and using Boys-localized orbitals found from model molecules in place of the bonds. These orbitals are kept frozen during QM calculations. The mixed modeling presented here can be used for single point energy calculations and geometry optimizations. Results from tests of the method to find relative conformational energies and geometries of alanine tetrapeptides are presented along with comparisons to pure QM and pure MM calculations.

  14. Semiempirical molecular orbital calculations of anisotropic H, C and F hyperfine coupling constants in hydrocarbon and fluorocarbon radicals

    Microsoft Academic Search

    Michael Barfield; Abdulla S. Babaqi; David M. Doddrell; Hans P. W. Gottlieb

    1981-01-01

    The anisotropic hyperfine coupling constants (AHCC) from the electron spin resonance (E.S.R.) spectra of a variety of atoms in organic radicals have been calculated by means of semiempirical molecular orbital wavefunctions in the INDO approximation. Hyperfine tensors involving H, C and F nuclei are obtained for the ?H, ?H3, CH3?H2, (CH3)3? hydrocarbon radicals, malonic acid radical, ?H2F, ?F2H, ?F3 and

  15. A theoretical study on storage states of Li ions in carbon anodes of Li ion batteries using molecular orbital calculations

    Microsoft Academic Search

    Tetsuo Suzuki; Takahiro Hasegawa; Shin R. Mukai; Hajime Tamon

    2003-01-01

    Semi-empirical molecular orbital calculations were carried out to clarify storage states of Li ions in amorphous carbon anodes of Li ion batteries. Storage states of Li ions between two graphene sheets were investigated and a favorable structure for a carbon anode to produce large reversible and small irreversible capacities is discussed. A polycyclic hydrocarbon molecule, C54H18, was used as a

  16. Transient Field of 19F Ions Recoiling in Nickel Interpreted by a Spin-Dependent Molecular-Orbital Promotion Mechanism

    Microsoft Academic Search

    W. Salm; O. Klepper

    1976-01-01

    Transient magnetic fields have been observed from a phase shift of the time-differential perturbed angular correlation of 19F nuclei recoiling into a nickel host. The Larmor precession associated with the phase shift grossly exceeds the Lindhard and Winther prediction. A spin-dependent electron-promotion mechanism via molecular orbitals is suggested which results in an intermittent K-shell spin polarization.

  17. The performance of KSC Fixation Tubes with RNALater for orbital experiments: A case study in ISS operations for molecular biology

    NASA Astrophysics Data System (ADS)

    Ferl, Robert J.; Zupanska, Agata; Spinale, April; Reed, David; Manning-Roach, Susan; Guerra, George; Cox, David R.; Paul, Anna-Lisa

    2011-07-01

    Molecular biology experiments on the International Space Station (ISS) continue to face challenges of sample harvesting and sample return to earth for post flight analysis; however, the use of Kennedy Space Center Fixation Tubes filled with RNALater has proven to be a robust solution to many of these challenges. While it is clear that one direction of future spaceflight experimentation may be towards enhanced on-orbit analytical capabilities, the rapid progress of earth-bound analytical capacity dictates that facile return of molecular biology samples from the ISS will continue to be a mainstay of space life sciences research and flight operations. In this paper we present a case study of the successful performance of KFTs and RNALater over a broad set of operational conditions of ascent configuration, on-orbit experiment use, on-orbit storage and sample return configurations that are unique to ISS current operations and constraints. We also provide observations on performance limits and discuss deployment opportunities and scenarios that are consistent with continued successful ISS molecular biology experimentation.

  18. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid.

    PubMed

    Karaca, Caglar; Atac, Ahmet; Karabacak, Mehmet

    2015-02-01

    In this study, 5-iodosalicylic acid (5-ISA, C7H5IO3) is structurally characterized by FT-IR, FT-Raman, NMR and UV spectroscopies. There are eight conformers, Cn, n=1-8 for this molecule therefore the molecular geometry for these eight conformers in the ground state are calculated by using the ab-initio density functional theory (DFT) B3LYP method approach with the aug-cc-pVDZ-PP basis set for iodine and the aug-cc-pVDZ basis set for the other elements. The computational results identified that the most stable conformer of 5-ISA is the C1 form. The vibrational spectra are calculated DFT method invoking the same basis sets and fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method with PQS program. Total density of state (TDOS) and partial density of state (PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis for C1 conformer were calculated using the same method. The energy and oscillator strength are calculated by time-dependent density functional theory (TD-DFT) results complement with the experimental findings. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) are calculated and presented. The NMR chemical shifts ((1)H and (13)C) spectra are recorded and calculated using the gauge independent atomic orbital (GIAO) method. Mulliken atomic charges of the title molecule are also calculated, interpreted and compared with salicylic acid. The optimized bond lengths, bond angles and calculated NMR and UV, vibrational wavenumbers showed the best agreement with the experimental results. PMID:25448933

  19. Using Atomic Orbitals and Kinesthetic Learning to Authentically Derive Molecular Stretching Vibrations

    ERIC Educational Resources Information Center

    Bridgeman, Adam J.; Schmidt, Timothy W.; Young, Nigel A.

    2013-01-01

    The stretching modes of ML[subscript "x"] complexes have the same symmetry as the atomic orbitals on M that are used to form its s bonds. In the exercise suggested here, the atomic orbitals are used to derive the form of the stretching modes without the need for formal group theory. The analogy allows students to help understand many…

  20. The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram

    E-print Network

    Barr, Al

    a general approach for determining the entropy and free energy of complex systems as a function to effi- ciently and accurately determine the phase equilibria of a wide variety of systems include: Validation for the phase diagram of Lennard-Jones fluids Shiang-Tai Lin, Mario Blanco, and William A. Goddard

  1. Kinetic temperatures toward X1/X2 orbit interceptions regions and giant molecular loops in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Riquelme, D.; Amo-Baladrón, M. A.; Martín-Pintado, J.; Mauersberger, R.; Martín, S.; Bronfman, L.

    2013-01-01

    Context. It is well known that the kinetic temperatures, Tkin, of the molecular clouds in the Galactic center region are higher than in typical disk clouds. However, the Tkin of the molecular complexes found at higher latitudes towards the giant molecular loops in the central region of the Galaxy is so far unknown. The gas of these high-latitude molecular clouds (hereafter referred to as "halo clouds") is located in a region where the gas in the disk may interact with the gas in the halo in the Galactic center region. Aims: To derive Tkin in the molecular clouds at high latitude and understand the physical process responsible for the heating of the molecular gas both in the central molecular zone (the concentration of molecular gas in the inner ~500 pc) and in the giant molecular loops. Methods: We measured the metastable inversion transitions of NH3 from (J,K) = (1,1) to (6,6) toward six positions selected throughout the Galactic central disk and halo. We used rotational diagrams and large velocity gradient (LVG) modeling to estimate the kinetic temperatures toward all the sources. We also observed other molecules like SiO, HNCO, CS, C34S, C18O, and 13CO, to derive the densities and to trace different physical processes (shocks, photodissociation, dense gas) expected to dominate the heating of the molecular gas. Results: We derive for the first time Tkin of the high-latitude clouds interacting with the disk in the Galactic center region. We find high rotational temperatures in all the observed positions. We derive two kinetic temperature components (~150 K and ~40 K) for the positions in the central molecular zone, and only the warm kinetic temperature component for the clouds toward the giant molecular loops. The fractional abundances derived from the different molecules suggest that shocks provide the main heating mechanism throughout the Galactic center, also at high latitudes. Appendices A and B are available in electronic form at http://www.aanda.org

  2. On the room-temperature phase diagram of high pressure hydrogen: An ab initio molecular dynamics perspective and a diffusion Monte Carlo study

    SciTech Connect

    Chen, Ji [International Center for Quantum Materials, Peking University, Beijing 100871 (China); Ren, Xinguo [Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, Anhui (China); Li, Xin-Zheng, E-mail: xzli@pku.edu.cn [School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China); Alfè, Dario, E-mail: d.alfe@ucl.ac.uk [London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, University College London, London WC1E6BT (United Kingdom); Department of Earth Sciences, University College London, London WC1E6BT (United Kingdom); Wang, Enge, E-mail: egwang@pku.edu.cn [International Center for Quantum Materials, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-07-14

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.

  3. Analysis of orbital heat transfer

    NASA Technical Reports Server (NTRS)

    Buna, T.

    1974-01-01

    Graphical representation of orbital heat balance in form of polar diagrams is obtained from integral expressions of orbital heat transfer whereby quantities of heat are represented as areas swept by ""thermal radii.''

  4. Restricted active space calculations of L-edge X-ray absorption spectra: From molecular orbitals to multiplet states

    NASA Astrophysics Data System (ADS)

    Pinjari, Rahul V.; Delcey, Mickaël G.; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2014-09-01

    The metal L-edge (2p ? 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d5) model systems with well-known electronic structure, viz., atomic Fe3+, high-spin [FeCl6]3- with ligand donor bonding, and low-spin [Fe(CN)6]3- that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  5. Restricted active space calculations of L-edge X-ray absorption spectra: From molecular orbitals to multiplet states

    SciTech Connect

    Pinjari, Rahul V.; Delcey, Mickaël G.; Guo, Meiyuan; Lundberg, Marcus, E-mail: marcus.lundberg@kemi.uu.se [Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 20 Uppsala (Sweden); Odelius, Michael [Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden)

    2014-09-28

    The metal L-edge (2p ? 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d{sup 5}) model systems with well-known electronic structure, viz., atomic Fe{sup 3+}, high-spin [FeCl{sub 6}]{sup 3?} with ligand donor bonding, and low-spin [Fe(CN){sub 6}]{sup 3?} that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  6. Magnetic exchange between metal ions with unquenched orbital angular momenta: basic concepts and relevance to molecular magnetism

    NASA Astrophysics Data System (ADS)

    Palii, Andrei; Tsukerblat, Boris; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    This review article is a first attempt to give a systematic and comprehensive description (in the framework of the unified theoretical approach) of the exchange interactions in polynuclear systems based on orbitally degenerate metal ions in the context of their relevance to the modern molecular magnetism. Interest in these systems is related to the fundamental problems of magnetism and at the same time steered by a number of impressive potential applications of molecular magnets, like high-density memory storage units, nanoscale qubits, spintronics and photoswitchable devices. In the presence of orbital degeneracy, the conventional spin Hamiltonian (Heisenberg-Dirac-van Vleck model) becomes inapplicable even as an approximation. The central component of this review article constitutes the concept of orbitally-dependent exchange interaction between metal ions possessing unquenched orbital angular momenta. We present a rigorous procedure of derivation of the kinetic exchange Hamiltonian for a pair of orbitally degenerate transition metal ions that is expressed in terms of the orbital matrices and spin operators. The microscopic background reveals the interrelations between the parameters of the Hamiltonian and the internal parameters of the system including all relevant transfer integrals and fundamental intracenter interactions. The developed formalism integrated with the irreducible tensor operator (ITO) technique makes it possible to describe the exchange coupling and all relevant interactions (crystal fields, spin-orbit (SO) and Zeeman couplings) in terms of the ITOs of the full spherical group, and in this way to develop anunified and efficient computational tool. The orbitally-dependent exchange was shown to lead to an anomalously strong magnetic anisotropy that can be considered as a main physical manifestation of the unquenched orbital angular momentum in metal clusters of orbitally-degenerate ions. The theoretical background is illustrated by the following applications. The magnetic properties of the binuclear face-shared unit [Ti2Cl9]3- in Cs3Ti2Cl9 are discussed with the emphasis on the observed magnetic anisotropy and on the non-trivial symmetry properties of the exchange Hamiltonian. The major electronic factors controlling the magnetic anisotropy in Co(II) pairs are discussed. The degree of the exchange anisotropy was shown to depend on the strength of the cubic crystal field, on the relative efficiency of the electron transfer pathways between unfilled d-shells and SO coupling. Provided strong SO coupling, the effective Hamiltonian was projected onto the subspace of low-lying Kramers doublets and similarly a pseudo-spin-1/2 Hamiltonian was derived. The described procedure allows to establish the interrelation between idem parameters of the system and the parameters of the pseudo-spin-1/2 Hamiltonian. Pseudo-spin-1/2 approach is illustrated by the study of the inelastic neutron scattering spectra and magnetic susceptibility of polyoxometalates encapsulating Co(II) clusters: Keggin derivative K8[Co2(D2O)(W11O39)] · nD2O, [Co4(H2O)2(PW9O34)2]10- and [Co3W(D2O)2(CoW9O34)2]12- clusters. In the consideration of the cyanide-bridged Mn(III)-CN-Mn(II) pair, it was demonstrated that under certain conditions the orbitally-dependent exchange is able to produce a barrier for the reversal of magnetisation. This seems to be instructive for the controlled design of cyano-based single molecule magnets with high-blocking temperatures.

  7. Ultrasonic relaxation measurements in aqueous solution and molecular orbital calculation on imipramine.

    PubMed

    Nishikawa, Sadakatsu

    2013-02-14

    Ultrasonic absorption coefficients have been measured in aqueous solution of imipramine {3-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)-N,N-dimethylpropan-1-amine} in the frequency range of 0.8-220 MHz at 25 °C. The frequency dependences of the observed absorption was characterized by a Debye-type relaxational equation with two relaxation frequencies, although only one relaxation had been observed in aqueous solutions of the related molecule amitriptyline. Both of the relaxation frequencies in imipramine solutions were found to be independent of the solute concentration and the amplitudes of the relaxational absorptions increase linearly with increasing solute concentration. It was therefore concluded that these two relaxations are associated with unimolecular reactions, such as a structural change due to rotational motions of the bond in the specified group in the imipramine molecule. To analyze quantitatively the source of the relaxations, semiempirical molecular orbital methods have been applied to determine the standard enthalpy of formation of the imipramine molecule at various dihedral angles around the bonds in the alkylamine side chain. According to the results, only one rotational motion of carbon-carbon bond in the side chain was found to be appropriate and the three minima of the standard enthalpy of formation was obtained as a function of the rotational angle. At the three minimum positions, the values of the standard enthalpy of formation are almost the same. With the assumptions (a) that rotational motion is not accompanied by a volume change of the reaction and (b) that the standard free energy change is close to the difference in the values between the standard enthalpies of formation, the equilibrium constants for the rotational isomerization have been calculated to be near unity. Hence, the forward and backward rate constants of the isomerization reactions are nearly the same. If one assumes that there are two kinds of rotational motions in one bond of the molecule, one proceeds with a rate constant on the order of 10(8) s(-1), whereas the other with a rate constant on the order of 10(6) s(-1). The faster and slower processes are also distinguished by the height of the standard enthalpy of formation. PMID:23339570

  8. Venn Diagrams

    NSDL National Science Digital Library

    2011-05-24

    In this activity, students are given a Venn diagram with certain rules and an element. They must then determine where in the Venn diagram the element belongs. This activity allows students to practice placing elements in Venn diagrams as well as reviewing mathematical terms associated with the different rules. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

  9. Carroll Diagrams

    NSDL National Science Digital Library

    NRICH team

    2012-01-01

    In this number sorting activity students must use a Carroll Diagram to determine which two categories each number fits into. This activity can be completed in pairs or groups on printable versions or it can be completed as a whole class using the interactive white board (IWB). Included with this resource are printable versions of the Carroll Diagrams, guiding questions, extension and support suggestions, and a link to more challenging "More Carroll Diagrams".

  10. Significance of Molecular Alignment and Orbital Steering in Mechanisms for Enzymatic Catalysis

    Microsoft Academic Search

    D. G. Hoare

    1972-01-01

    Calculations of the energy required to form misaligned transition states in the confines of a solvent cage indicate that many reactions could be very considerably catalysed by precise alignment (orbital steering) in enzyme active sites.

  11. Formation of giant molecular clouds in global spiral structures: The role of orbital dynamics and cloud-cloud collisions

    NASA Technical Reports Server (NTRS)

    Roberts, W. W., Jr.; Stewart, G. R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes.

  12. BetaMol: Molecular Modeling, Analysis, and Visualization Software Based on the Beta-Complex Derived from the Voronoi Diagram

    Microsoft Academic Search

    Youngsong Cho; Jae-Kwan Kim; Chung-In Won; Joonghyun Ryu; Chong-Min Kim; Deok-Soo Kim

    2011-01-01

    Molecular shape is one of the most critical factors that determine molecular function. To properly understand the function of a molecule, it is necessary to explore its geometric properties more effectively and efficiently in addition to its physicochemical properties. Due to the complexity of the problems in biomolecular structure, in-silico approach is inevitable for many cases and is becoming more

  13. Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method.

    PubMed

    Nagata, Takeshi; Fedorov, Dmitri G; Ishimura, Kazuya; Kitaura, Kazuo

    2011-07-28

    The first derivative of the total energy with respect to nuclear coordinates (the energy gradient) in the fragment molecular orbital (FMO) method is applied to second order Møller-Plesset perturbation theory (MP2), resulting in the analytic derivative of the correlation energy in the external self-consistent electrostatic field. The completely analytic energy gradient equations are formulated at the FMO-MP2 level. Both for molecular clusters (H(2)O)(64) and a system with fragmentation across covalent bonds, a capped alanine decamer, the analytic FMO-MP2 energy gradients with the electrostatic dimer approximation are shown to be complete and accurate by comparing them with the corresponding numeric gradients. The developed gradient is parallelized with the parallel efficiency of about 97% on 32 Pentium4 nodes connected by Gigabit Ethernet. PMID:21806093

  14. Analytic first derivatives of floating occupation molecular orbital-complete active space configuration interaction on graphical processing units.

    PubMed

    Hohenstein, Edward G; Bouduban, Marine E F; Song, Chenchen; Luehr, Nathan; Ufimtsev, Ivan S; Martínez, Todd J

    2015-07-01

    The floating occupation molecular orbital-complete active space configuration interaction (FOMO-CASCI) method is a promising alternative to the state-averaged complete active space self-consistent field (SA-CASSCF) method. We have formulated the analytic first derivative of FOMO-CASCI in a manner that is well-suited for a highly efficient implementation using graphical processing units (GPUs). Using this implementation, we demonstrate that FOMO-CASCI gradients are of similar computational expense to configuration interaction singles (CIS) or time-dependent density functional theory (TDDFT). In contrast to CIS and TDDFT, FOMO-CASCI can describe multireference character of the electronic wavefunction. We show that FOMO-CASCI compares very favorably to SA-CASSCF in its ability to describe molecular geometries and potential energy surfaces around minimum energy conical intersections. Finally, we apply FOMO-CASCI to the excited state hydrogen transfer reaction in methyl salicylate. PMID:26156469

  15. Localized and Spectroscopic Orbitals: Squirrel Ears on Water.

    ERIC Educational Resources Information Center

    Martin, R. Bruce

    1988-01-01

    Reexamines the electronic structure of water considering divergent views. Discusses several aspects of molecular orbital theory using spectroscopic molecular orbitals and localized molecular orbitals. Gives examples for determining lowest energy spectroscopic orbitals. (ML)

  16. Molecular structure, vibrational spectroscopic, hyperpolarizability, natural bond orbital analysis, frontier molecular orbital analysis and thermodynamic properties of 2,3,4,5,6-pentafluorophenylacetic acid.

    PubMed

    Balachandran, V; Karunakaran, V

    2014-06-01

    The FT-IR (4000-400cm(-)(1)) and FT-Raman spectra (3500-100cm(-)(1)) of 2,3,4,5,6-pentafluorophenylacetic acid (PAA) have been recorded. Density functional theory calculation with LSDA/6-31+G(d,p) and B3LYP/6-31+G(d,p) basis sets have been used to determine ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities, Raman intensities and bonding features of the title compound. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (?0) and related properties (?, ?0 and ??) of PAA are calculated using B3LYP/6-31+G(d,p) method on the finite-field approach. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The stability of molecule has been analyzed by using NBO analysis. The calculated HOMO and LUMO energies show that charge transfer occurs within this molecule. Mulliken population analysis on atomic charges is also calculated. Thermodynamic properties (heat capacity, enthalpy, Gibb's free energy and entropy) of the title compound at different temperatures were calculated. PMID:24662720

  17. Molecular structure, vibrational spectroscopic, hyperpolarizability, natural bond orbital analysis, frontier molecular orbital analysis and thermodynamic properties of 2,3,4,5,6-pentafluorophenylacetic acid

    NASA Astrophysics Data System (ADS)

    Balachandran, V.; Karunakaran, V.

    2014-06-01

    The FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-100 cm-1) of 2,3,4,5,6-pentafluorophenylacetic acid (PAA) have been recorded. Density functional theory calculation with LSDA/6-31+G(d,p) and B3LYP/6-31+G(d,p) basis sets have been used to determine ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities, Raman intensities and bonding features of the title compound. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (?0) and related properties (?, ?0 and ??) of PAA are calculated using B3LYP/6-31+G(d,p) method on the finite-field approach. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The stability of molecule has been analyzed by using NBO analysis. The calculated HOMO and LUMO energies show that charge transfer occurs within this molecule. Mulliken population analysis on atomic charges is also calculated. Thermodynamic properties (heat capacity, enthalpy, Gibb's free energy and entropy) of the title compound at different temperatures were calculated.

  18. Gas-phase ultraviolet photoelectron spectroscopy and molecular orbital calculations on transition metal carbonyls and nitrosyls

    E-print Network

    Morris-Sherwood, Betty Jeanne

    1981-01-01

    the Cl, Cr and NO is shown at the bottom of Figure 3. The delocalized nature of the orbital is clearly evident. The MO Is both Cr -Cl n bondi ng and Cr-NO ~ bonding. The 1 6a ' MO is re- lated to this MO but it contains less Cl character and both more...

  19. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions

    Microsoft Academic Search

    Kristine Pierloot; Birgit Dumez; Per-Olof Widmark; Björn O. Roos

    1995-01-01

    Summary Generally contracted Basis sets for the atoms H-Kr have been constructed using the atomic natural orbital (ANO) approach, with modifications for allowing symmetry breaking and state averaging. The ANO's are constructed by averaging over the most significant electronic states, the ground state of the cation, the ground state of the anion for some atoms and the homonuclear diatomic molecule

  20. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions

    Microsoft Academic Search

    Per-Olof Widmark; Per-Åke Malmqvist; Björn O. Roos

    1990-01-01

    Summary Generally contracted basis sets for first row atoms have been constructed using the Atomic Natural Orbital (ANO) approach, with modifications for allowing symmetry breaking and state averaging. The ANOs are constructed by averaging over several atomic states, positive and negative ions, and atoms in an external electric field. The contracted basis sets give virtually identical results as the corresponding

  1. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions

    Microsoft Academic Search

    Per-Olof Widmark; B. Joakim Persson; Björn O. Roos

    1991-01-01

    Summary Generally contracted basis sets for second row atoms have been constructed using the Atomic Natural Orbital (ANO) approach, with modifications for allowing symmetry breaking and state averaging. The ANOs are constructed by averaging over several atomic states, positive and negative ions, and atoms in an external electric field. The contracted basis sets give virtually identical results as the corresponding

  2. Surface molecular degradation of 3D glass polymer composite under low earth orbit simulated space environment

    Microsoft Academic Search

    Firas Awaja; Jin Bum Moon; Shengnan Zhang; Michael Gilbert; Chun Gon Kim; Paul J. Pigram

    2010-01-01

    Epoxy resin reinforced with 3D parabeam glass fibre was subjected to low earth orbit (LEO) simulation conditions comprising ultra high vacuum, temperature cycling (TC), and ultraviolet (UV) radiation and atomic oxygen (AO) bombardment. Inspection of the same composite using only a selection of these hazardous conditions provided comparison measures to identify the effect of each condition on the surface degradation

  3. Ab Initio Molecular Orbital Calculations of Electronic Effects on the Kinetics of Cyclopropylcarbinyl Radical Ring Openings

    E-print Network

    Schlegel, H. Bernhard

    of Cyclopropylcarbinyl Radical Ring Openings Felix N. Martinez, H. Bernhard Schlegel,* and Martin Newcomb* Department orbital calculations have been performed on the ring-opening reactions of cyclopropylcarbinyl radical substituents on the radical center. Barrier heights were calculated at the UHF/6-31G*, UMP2/6-31G*//UHF/6-31G

  4. Ab initio molecular orbital studies of the vibrational spectra of some van der Waals complexes. Part 1. Complexes of molecular nitrogen with carbon dioxide, nitrous oxide, carbonyl sulphide and carbon disulphide

    Microsoft Academic Search

    M. Venayagamoorthy; T. A. Ford

    2001-01-01

    The structures, interaction energies and vibrational spectra of four weak van der Waals complexes containing molecular nitrogen, as electron donor, and the linear triatomic molecules carbon dioxide, nitrous oxide, carbonyl sulphide and carbon disulphide, as electron acceptors, have been determined by carrying out a series of ab initio molecular orbital calculations using the Gaussian 98 computer program. The calculations were

  5. Cloud Diagram

    NSDL National Science Digital Library

    This interactive diagram shows the various types of clouds and the relative altitudes at which they occur. Users can roll their mice over each cloud type and see a photo and a brief written description of each type.

  6. Analyses of the ``allowed'' inversion barriers of H2O and NH3: Incompleteness of the Woodward-Hoffmann HOMO-LUMO symmetry ideas due to neglect of molecular orbital terms

    NASA Astrophysics Data System (ADS)

    Edmiston, C.; Jarvie, J.; Bartleson, J.

    1986-06-01

    Walsh's rules correctly attribute the ``bent'' structures of H2O and NH3 to the occupation of the 1?z?3a1 HOMO not occupied in linear BeH2 and planar BH3. In Walsh's molecular orbital (MO) diagram E(3a1) decreases sharply with bending angle S. This has always been attributed incorrectly to changes in the 3a1 MO, mainly due to symmetry-allowed mixing with the LUMO, 4a*1. The forbidden bending of BeH2 and BH3 has been similarly ``explained.'' Using large-basis-set self-consistent field molecular orbital (SCF MO) ?s, we show that the integral Hellmann-Feynman theorem ?EIHF??ESCF much better than does the analogous second-order perturbation theory ?E''(SE'=0 and ?=S2/2, ?H?SH'+?H''). ?EIHF=++?NR??ni2? EIHFi+?NR, ??˜=(?/?)-?0, ?=, ?EIHFi=+, ??˜i=(?i/?i)-?0i, ?i=, ?NA=?H-?NR. Both theories show a large negative <1?z??NA?1?z> term and small <1?z??NA??1?˜z> HOMO-UMO mixing term, which is positive in ?EIHF. The <1?z?SH'?3?*g> HOMO-LUMO mixing term is small even when 3?*g is optimized for the excited state. The ?EIHFis and ?E`is give the usual Walsh diagrams for bending of H2O and NH3, with or without MO partitioning of the nuclear repulsion change (?NR). However ``decoupling'' of the ?'is in ?' makes the ?E`is unreliable. The <1?z??NA?1?z> term acts to create a large allowed barrier to inversion for H2O and CH4, but a strong ?NR nearly destroys an otherwise large barrier for NH3. <1?z??NA?1?z> acts to bend the linear H2O, planar NH3, and planar CH4, with HOMO-LUMO mixing being ``antibending.'' We show that understanding of MO correlation diagrams demands consideration of the ``static'' terms as well as the OMO-UMO mixing terms, which has not been appreciated by earlier workers so far as we are aware.

  7. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions

    Microsoft Academic Search

    Rosendo Pou-Amérigo; Manuela Merchán; Ignacio Nebot-Gil; Per-Olof Widmark; Bjiirn O. Roos

    1995-01-01

    Generally contracted basis sets for the first row transition metal atoms Sc-Zn have been constructed using the atomic natural orbital (ANO) approach, with modifications for allowing symmetry breaking and state averaging. The ANOs are constructed by averaging over the three electronic configurationsdn,dn-1s, anddn-2s2 for the neutral atom as well as the ground state for the cation and the ground state

  8. Surface molecular degradation of selected high performance polymer composites under low earth orbit environmental conditions

    Microsoft Academic Search

    Firas Awaja; Jin Bum Moon; Michael Gilbert; Shengnan Zhang; Chun Gon Kim; Paul J. Pigram

    2011-01-01

    Carbon fibre (CF), carbon nanotube (CNT), nano-clay (NanoC), and 3D-glass (3DG) reinforced polymer composites were selected to undergo treatment with an accelerated Low Earth Orbit (LEO) simulated space environment. Surface degradation mechanisms of the selected polymer composites with different types of reinforcements are discussed. The extent of the oxidation reaction at the surface as a result of LEO exposure was

  9. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations

    NASA Astrophysics Data System (ADS)

    Neese, Frank

    2005-01-01

    Approximations to the Breit-Pauli form of the spin-orbit coupling (SOC) operator are examined. The focus is on approximations that lead to an effective quasi-one-electron operator which leads to efficient property evaluations. In particular, the accurate spin-orbit mean-field (SOMF) method developed by Hess, Marian, Wahlgren, and Gropen is examined in detail. It is compared in detail with the "effective potential" spin-orbit operator commonly used in density functional theory (DFT) and which has been criticized for not including the spin-other orbit (SOO) contribution. Both operators contain identical one-electron and Coulomb terms since the SOO contribution to the Coulomb term vanishes exactly in the SOMF treatment. Since the DFT correlation functional only contributes negligibly to the SOC the only difference between the two operators is in the exchange part. In the SOMF approximation, the SOO part is equal to two times the spin-same orbit contribution. The DFT exchange contribution is of the wrong sign and numerically shown to be in error by a factor of 2-2.5 in magnitude. The simplest possible improvement in the DFT-SOC treatment [Veff(-2X)-SOC] is to multiply the exchange contribution to the Veff operator by -2. This is verified numerically in calculations of molecular g-tensors and one-electron SOC constants of atoms and ions. Four different ways of handling the computationally critical Coulomb part of the SOMF and Veff operators are discussed and implemented. The resolution of the identity approximation is virtually exact for the SOC with standard auxiliary basis sets which need to be slightly augmented by steep s functions for heavier elements. An almost as efficient seminumerical approximation is equally accurate. The effective nuclear charge model gives results within ˜10% (on average) of the SOMF treatment. The one-center approximation to the Coulomb and one-electron SOC terms leads to errors on the order of ˜5%. Small absolute errors are obtained for the one-center approximation to the exchange term which is consequently the method of choice [SOMF(1X)] for large molecules.

  10. Variation in emulsion stabilization behavior of hybrid silicone polymers with change in molecular structure: Phase diagram study.

    PubMed

    Mehta, Somil C; Somasundaran, P; Kulkarni, Ravi

    2009-05-15

    Silicone oils are widely used in cosmetics and personal care applications to improve softness and condition skin and hair. Being insoluble in water and most hydrocarbons, a common mode of delivering them is in the form of emulsions. Currently most applications use polyoxyethylene (non-ionic) modified siloxanes as emulsifiers to stabilize silicone oil emulsions. However, ionically grafted silicone polymers have not received much attention. Ionic silicones have significantly different properties than the non-ionic counterpart. Thus considerable potential exists to formulate emulsions of silicones with different water/silicone oil ratios for novel applications. In order to understand the mechanisms underlying the effects of hydrophilic modifications on the ability of hybrid silicone polymers to stabilize various emulsions, this article focuses on the phase diagram studies for silicone emulsions. The emulsifying ability of functional silicones was seen to depend on a number of factors including hydrophilicity of the polymer, nature of the functional groups, the extent of modification, and the method of emulsification. It was observed that the region of stable emulsion in a phase diagram expanded with increase in shear rate. At a given shear rate, the region of stable emulsion and the nature of emulsion (water-in-oil or oil-in-water) was observed to depend on hydrophilic-hydrophobic balance of the hybrid silicone emulsifier. At a fixed amount of modification, the non-ionically modified silicone stabilized an oil-in-water emulsion, whereas the ionic silicones stabilized inverse water-in-oil emulsions. This was attributed to the greater hydrophilicity of the polyoxyethylene modified silicones than the ionic counterparts. In general, it is postulated that with progressive increase in hydrophilicity of hybrid silicone emulsifiers, their tendency to stabilize water-in-oil emulsion decreases with corresponding increase in oil-in-water emulsion. Further, this behavior is hypothesized to depend on the nature of modifying functional groups. Thus a hybrid silicone polymer can be tailored by selecting the nature and degree of hydrophilicity to obtain a desired silicone emulsion. PMID:19200558

  11. Molecular Orbital Studies of Hydrogen Chemisorption at Anion Vacancy Sites of LiF Surfaces

    NASA Astrophysics Data System (ADS)

    Matsumura, Keiko

    1983-06-01

    The possibility of hydrogen chemisorption onto anion vacancies on the (001) surface, < 110> edge and < 111> corner of LiF cluster is investigated with MBP CNDO MO. The clusters with an anion vacancy capture an electron to be localized at the vacancy and a singly occupied level (SOMO) of F-center character appears in the band gap. An approaching hydrogen atom can be bound tightly as sn H- substitute at each charged vacant site. The strong binding is caused by the overlap between H 1s orbital ?s(H) and SOMO and adsorption energy depends on the number of cations nearest to the vacancy.

  12. Electronic structure of the benzene-tetracyanoethylene complex: A synthesis of molecular orbital and density functional descriptions

    SciTech Connect

    Cioslowski, J. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-31

    The electronic structure of the benzene-tetracyanoethylene electron donor-acceptor complex is investigated at the HF/6-311G level of theory. The computed electronic wave function is analyzed with rigorous interpretive tools that involve both molecular orbital and density functional approaches. The in situ electronegativity difference is calculated at 3.32 eV, resulting in a charge transfer of 0.016. This extent of charge transfer is found to account for only ca. 17% of the interacting energy of ca. 33% of the dipole moment. The remaining part of the dipole moment originates from buckling of the tetracyanoethylene moiety. The dependence of the electronegativity difference on the magnitude of charge transfer is found to be highly nonlinear. 28 refs., 4 figs., 5 tabs.

  13. Efficient implementation of the three-dimensional reference interaction site model method in the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Yoshida, Norio

    2014-06-01

    The three-dimensional reference interaction site model (3D-RISM) method was efficiently implemented in the fragment molecular orbital (FMO) method. The method is referred to as the FMO/3D-RISM method, and allows us to treat electronic structure of the whole of a macromolecule, such as a protein, as well as the solvent distribution around a solute macromolecule. The formalism of the FMO/3D-RISM method, for the computationally available form and variational expressions, are proposed in detail. A major concern leading to the implementation of the method was decreasing the computational costs involved in calculating the electrostatic potential, because the electrostatic potential is calculated on numerous grid points in three-dimensional real space in the 3D-RISM method. In this article, we propose a procedure for decreasing the computational costs involved in calculating the electrostatic potential in the FMO method framework. The strategy involved in this procedure is to evaluate the electrostatic potential and the solvated Fock matrix in different manners, depending on the distance between the solute and the solvent. The electrostatic potential is evaluated directly in the vicinity of the solute molecule by integrating the molecular orbitals of monomer fragments of the solute molecule, whereas the electrostatic potential is described as the sum of multipole interactions when an analog of the fast multipole method is used. The efficiency of our method was demonstrated by applying it to a water trimer system and three biomolecular systems. The FMO/3D-RISM calculation can be performed within a reasonable computational time, retaining the accuracy of some physical properties.

  14. TES buffer-induced phase separation of aqueous solutions of several water-miscible organic solvents at 298.15 K: Phase diagrams and molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Taha, Mohamed; Lee, Ming-Jer

    2013-06-01

    Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol/acetonitrile/acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.

  15. Controlling the Interference of Multiple Molecular Orbitals in High-Harmonic Generation

    SciTech Connect

    Woerner, H. J.; Bertrand, J. B.; Hockett, P.; Corkum, P. B.; Villeneuve, D. M. [Joint Laboratory for Attosecond Science, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6 (Canada)

    2010-06-11

    We demonstrate a new method to investigate the origin of spectral structures in high-harmonic generation. We report detailed measurements of high-harmonic spectra in aligned nitrogen and carbon dioxide molecules. Varying the wavelength and intensity of the generating laser field, we show that the minimum in aligned N{sub 2} molecules is nearly unaffected, whereas the minimum in aligned CO{sub 2} molecules shifts over more than 15 eV. Our quantitative analysis shows that both the interference of multiple orbitals and their structural characteristics affect the position of the minimum. Our method provides a simple approach to the investigation of the high-harmonic generation process in more complex molecules.

  16. Venn diagrams

    NSDL National Science Digital Library

    National Science Digital Library (NSDL) Middle School Portal Staff

    2008-03-10

    These online resources offer varied opportunities to work with Venn diagrams, one of many tools used in logic and reasoning. Their use is especially helpful in learning foundational notions of definition and set theory. One of the five Process Standards promoted by NCTM, Reasoning and Proof requires middle school students to sharpen such skills as they learn to develop mathematical argument.

  17. Phase Diagrams

    NSDL National Science Digital Library

    Dexter Perkins

    This handout and problem set is a stand alone tutorial that introduces students to the basics of phase diagrams and the phase rule. It is a rather lengthy exercise, suitable as a homework assignment. It can replace lectures and yields superior learning.

  18. Molecular structure, vibrational spectra, natural bond orbital and thermodynamic analysis of 3,6-dichloro-4-methylpyridazine and 3,6-dichloropyridazine-4-carboxylic acid by dft approach

    NASA Astrophysics Data System (ADS)

    Prabavathi, N.; Senthil Nayaki, N.; Venkatram Reddy, B.

    2015-02-01

    Vibrational spectral analysis of the molecules 3,6-dichloro-4-methylpyridazine (DMP) and 3,6-dichloropyridazine-4-carboxylic acid (DPC) was carried out using FT-IR and FT-Raman spectroscopic techniques. The molecular structure and vibrational spectra of DMP and DPC were obtained by the density functional theory (DFT) method, using B3LYP functional, with 6-311++G(d,p) basis set. A detailed interpretation of the Infrared and Raman spectra of the two molecules were reported based on potential energy distribution (PED). The theoretically predicted FTIR and FT-Raman spectra of the titled molecules have been simulated and were compared with the experimental spectra. Determination of electric dipole moment (?) and hyperpolarizability ?0 helps to study the non-linear optical (NLO) behavior of DMP and DPC. Stability of the molecules arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. 13C and 1H NMR spectra were recorded and 13C and 1H NMR chemical shifts of the molecules were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compounds was also recorded in the region 200-1100 nm and electronic properties, HOMO (Highest Occupied Molecular Orbitals) and LUMO (Lowest Unoccupied Molecular Orbitals) energies were measured by time-dependent TD-DFT approach. Charge density distribution and site of chemical reactivity of the molecule have been studied by mapping electron density isosurface with molecular electrostatic potential (MESP).

  19. Protein-specific force field derived from the fragment molecular orbital method can improve protein-ligand binding interactions.

    PubMed

    Chang, Le; Ishikawa, Takeshi; Kuwata, Kazuo; Takada, Shoji

    2013-05-30

    Accurate computational estimate of the protein-ligand binding affinity is of central importance in rational drug design. To improve accuracy of the molecular mechanics (MM) force field (FF) for protein-ligand simulations, we use a protein-specific FF derived by the fragment molecular orbital (FMO) method and by the restrained electrostatic potential (RESP) method. Applying this FMO-RESP method to two proteins, dodecin, and lysozyme, we found that protein-specific partial charges tend to differ more significantly from the standard AMBER charges for isolated charged atoms. We did not see the dependence of partial charges on the secondary structure. Computing the binding affinities of dodecin with five ligands by MM PBSA protocol with the FMO-RESP charge set as well as with the standard AMBER charges, we found that the former gives better correlation with experimental affinities than the latter. While, for lysozyme with five ligands, both charge sets gave similar and relatively accurate estimates of binding affinities. PMID:23420697

  20. A new hierarchical parallelization scheme: generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO).

    PubMed

    Fedorov, Dmitri G; Olson, Ryan M; Kitaura, Kazuo; Gordon, Mark S; Koseki, Shiro

    2004-04-30

    A two-level hierarchical scheme, generalized distributed data interface (GDDI), implemented into GAMESS is presented. Parallelization is accomplished first at the upper level by assigning computational tasks to groups. Then each group does parallelization at the lower level, by dividing its task into smaller work loads. The types of computations that can be used with this scheme are limited to those for which nearly independent tasks and subtasks can be assigned. Typical examples implemented, tested, and analyzed in this work are numeric derivatives and the fragment molecular orbital method (FMO) that is used to compute large molecules quantum mechanically by dividing them into fragments. Numeric derivatives can be used for algorithms based on them, such as geometry optimizations, saddle-point searches, frequency analyses, etc. This new hierarchical scheme is found to be a flexible tool easily utilizing network topology and delivering excellent performance even on slow networks. In one of the typical tests, on 16 nodes the scalability of GDDI is 1.7 times better than that of the standard parallelization scheme DDI and on 128 nodes GDDI is 93 times faster than DDI (on a multihub Fast Ethernet network). FMO delivered scalability of 80-90% on 128 nodes, depending on the molecular system (water clusters and a protein). A numerical gradient calculation for a water cluster achieved a scalability of 70% on 128 nodes. It is expected that GDDI will become a preferred tool on massively parallel computers for appropriate computational tasks. PMID:15011259

  1. A Ring of C2H in the Molecular Disk Orbiting TW Hya

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Qi, Chunhua; Gorti, Uma; Hily-Blant, Pierre; Oberg, Karin; Forveille, Thierry; Andrews, Sean; Wilner, David

    2015-06-01

    We have used the Submillimeter Array to image, at ?1.?5 resolution, C2H N=3\\to 2 emission from the circumstellar disk orbiting the nearby (D = 54 pc), ?8 Myr-old, ?0.8 {{M}? } classical T Tauri star TW Hya. The SMA imaging reveals that the C2H emission exhibits a ring-like morphology. Based on a model in which the C2H column density follows a truncated radial power-law distribution, we find that the inner edge of the ring lies at ?45 AU, and that the ring extends to at least ?120 AU. Comparison with previous (single-dish) observations of C2H N=4\\to 3 emission indicates that the C2H molecules are subthermally excited and, hence, that the emission arises from the relatively warm (T? 40 K), tenuous (n\\ll {{10}7} cm?3) upper atmosphere of the disk. Based on these results and comparisons of the SMA C2H map with previous submillimeter and scattered-light imaging, we propose that the C2H emission most likely traces particularly efficient photo-destruction of small grains and/or photodesorption and photodissociation of hydrocarbons derived from grain ice mantles in the surface layers of the outer disk. The presence of a C2H ring in the TW Hya disk hence likely serves as a marker of dust grain processing and radial and vertical grain size segregation within the disk.

  2. Kinetic effects on double hysteresis in spin crossover molecular magnets analyzed with first order reversal curve diagram technique

    NASA Astrophysics Data System (ADS)

    Stan, Raluca-Maria; Gaina, Roxana; Enachescu, Cristian; Tanasa, Radu; Stancu, Alexandru; Bronisz, Robert

    2015-05-01

    In this paper, we analyze two types of hysteresis in spin crossover molecular magnets compounds in the framework of the First Order Reversal Curve (FORC) method. The switching between the two stable states in these compounds is accompanied by hysteresis phenomena if the intermolecular interactions are higher than a threshold. We have measured the static thermal hysteresis (TH) and the kinetic light induced thermal hysteresis (LITH) major loops and FORCs for the polycrystalline Fe(II) spin crossover compound [Fe1-xZnx(bbtr)3](ClO4)2 (bbtr = 1,4-di(1,2,3-triazol-1-yl)butane), either in a pure state (x = 0) or doped with Zn ions (x = 0.33) considering different sweeping rates. Here, we use this method not only to infer the domains distribution but also to disentangle between kinetic and static components of the LITH and to estimate the changes in the intermolecular interactions introduced by dopants. We also determined the qualitative relationship between FORC distributions measured for TH and LITH.

  3. Growth diagram of N-face GaN (0001{sup ¯}) grown at high rate by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Okumura, Hironori, E-mail: okumura@engineering.ucsb.edu; McSkimming, Brian M.; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)] [Materials Department, University of California, Santa Barbara, California 93106 (United States); Huault, Thomas; Chaix, Catherine [RIBER S.A., 3a Rue Casimir Perier, BP 70083, 95873 Bezons Cedex (France)] [RIBER S.A., 3a Rue Casimir Perier, BP 70083, 95873 Bezons Cedex (France)

    2014-01-06

    N-face GaN was grown on free-standing GaN (0001{sup ¯}) substrates at a growth rate of 1.5??m/h using plasma-assisted molecular beam epitaxy. Difference in growth rate between (0001{sup ¯}) and (0001) oriented GaN depends on nitrogen plasma power, and the (0001{sup ¯}) oriented GaN had only 70% of the growth rate of the (0001) oriented GaN at 300?W. Unintentional impurity concentrations of silicon, carbon, and oxygen were 2?×?10{sup 15}, 2?×?10{sup 16}, and 7?×?10{sup 16}?cm{sup ?3}, respectively. A growth diagram was constructed that shows the dependence of the growth modes on the difference in the Ga and active nitrogen flux, ?{sub Ga}????{sub N*}, and the growth temperature. At high ?{sub Ga}????{sub N*} (?{sub Ga}????{sub N*}), two-dimensional (step-flow and layer-by-layer) growth modes were realized. High growth temperature (780?°C) expanded the growth window of the two-dimensional growth modes, achieving a surface with rms roughness of 0.48?nm without Ga droplets.

  4. Theoretical study of the S N 2 reaction of Cl - (H 2 O)+CH 3 Cl using our own N-layered integrated molecular orbital and molecular mechanics polarizable continuum model method (ONIOM, PCM)

    Microsoft Academic Search

    Sung J. Mo; Thom Vreven; Benedetta Mennucci; Keiji Morokuma; Jacopo Tomasi

    2004-01-01

    The effects of solvation in the S N2 reaction Cl -(H 2O)+CH 3Cl were investigated using our own N-layered integrated molecular orbital and molecular mechanics (ONIOM) polarizable continuum model (PCM) method [Vreven T, Mennucci B, da Silva CO, Morokuma K, Tomasi J (2001) J Chem Phys 115:62–72], which surrounds the microsolvated ONIOM system with a polarizable continuum. The microsolvating water

  5. Gas-phase ultraviolet photoelectron spectroscopy and molecular orbital calculations on transition metal carbonyls and nitrosyls 

    E-print Network

    Morris-Sherwood, Betty Jeanne

    1981-01-01

    . Experimental and Theoretical. Preparation. Spectroscopy. Theo reti ca 1 Theo re ti ca 1 Res ul ts Spectros cop i c Res ul ts CpCr(NO)2C1. CpCr(NO)28r. CpCr(NO)2I. CpW(NO)2C1. CpW(NO)2Br CpW(NO)2I Discussion. PHOTOELECTRON SPECTRA AND MOLECULAR... OF CONTENTS (continued) CHAPTER PAGE Theoretical. Theoretical Results, Spectroscopic Results [CpCr(CO)2]2. [CpMo(CO)2]2. [Cpa(CO) ] . Discussion. CONCLUSIONS. REFERENCES AND NOTES UI TA. 28 29 36 41 41 43 43 46 48 50 TABLE LIST OF TABLES...

  6. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein-Zernike self-consistent field approach.

    PubMed

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-01

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl(-) + CH3Cl ? ClCH3 + Cl(-)) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF. PMID:26156461

  7. A spectral luminosity-type fundamental diagram for binary stars

    Microsoft Academic Search

    P. Couteau

    1985-01-01

    It is suggested that in the Hertzsprung-Russell diagram, which is not well known for the binary stars, one can use the unit-mass brightness instead brightness itself. For each component, this parameter can be obtained using the photometry and the orbital elements of the system. It is only through the orbital constant that the parallax enters the calculation. This new diagram

  8. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method.

    PubMed

    Nakata, Hiroya; Fedorov, Dmitri G; Zahariev, Federico; Schmidt, Michael W; Kitaura, Kazuo; Gordon, Mark S; Nakamura, Shinichiro

    2015-03-28

    Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluated for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in SN2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented. PMID:25833559

  9. Molecular orbital calculations of proton transfer involving amines as models for the clastic binding of opiates with their receptor

    SciTech Connect

    Bennett, L.K.; Beamer, R.L.

    1986-08-01

    Semi-empirical (CNDO) molecular orbital calculations, based on a previously reported ammonia-amine model system, were performed on an extended series of methyl-, ethyl-, and propylamines as models for the analgesic receptor. Methyl-, dimethyl-, and trimethylamines were chosen to represent the opiate molecules. Interatomic distances were varied within normally expected biological values. The results for the larger systems are similar to more elaborate calculations previously reported using smaller molecules. At internuclear distances of greater than 0.275 nm, the potential energy curves had two minima. At 0.2731 nm, the optimized N-N distance, the depth of the minima in the potential energy curve were not as great. Energy differences as well as population differences suggest deviation from the currently stated clastic binding theories mechanism for the analgesic response of the tertiary amines. The dimethylamine energy profile and population data indicate that the hypothesis of N-demethylated opiate as the active molecule needs further consideration and investigation. Investigation of larger systems is also indicated to develop increasingly realistic models for the analgesic response.

  10. Molecular structure, vibrational spectra (FTIR and FT Raman) and natural bond orbital analysis of 4-Aminomethylpiperidine: DFT study.

    PubMed

    Mahalakshmi, G; Balachandran, V

    2014-10-15

    The FT-IR and FT-Raman spectra of 4-Aminomethylpiperidine have been recorded using Perkin Elmer Spectrophotometer and Nexus 670 spectrophotometer. The equilibrium geometrical parameters, various bonding features, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated using Hartree-Fock and density functional method (B3LYP) with 6-311+G(d,p) basis set. Detailed interpretations of the vibrational spectra have been carried out with the aid of the normal coordinate analysis. The spectroscopic and natural bonds orbital (NBO) analysis confirms the occurrence of intra molecular hydrogen bonds, electron delocalization and steric effects. The changes in electron density in the global minimum and in the energy of hyperconjugative interactions of 4-Aminomethylpiperidine (4AMP) were calculated. The theoretical UV-Visible spectrum of the compound was computed in the region 200-400nm by time-dependent TD-DFT approach. The calculated HOMO and LUMO energies show that charge transfer occur within the molecule. The dipole moment (?) and polarizability (?), anisotropy polarizability (??) and hyperpolarizability (?) of the molecule have been reported. PMID:24853994

  11. Phase Diagram

    NASA Astrophysics Data System (ADS)

    Walker, Matthew S.; Fruehan, Richard J.

    2014-08-01

    The thermodynamics of several aspects of the carbothermic reduction of alumina have been examined. In Part I, the results of measuring the evolved CO from the reaction between Al2O3 and C mixtures were used to determine the temperature and carbon contents for carbide formation at alumina saturation and at carbide saturation in the Al2O3-Al4C3 system. In this part of the paper, results are presented for a thermogravimetric study of the reactions of Al2O3 with carbon, as well as those for the determination of the Al2O3 liquidus line and the Al2O3-Al4O4C eutectic in the Al2O3-Al4C3 phase diagram. The critical temperature for Al2O3 and C to react, producing gas at 1 atm., was in agreement with that predicted from thermodynamics and measured in Part I of this paper. However, the Al2O3 liquidus appeared to be steeper and the eutectic temperature lower than the predicted phase diagram.

  12. Theoretical investigation on the non-linear optical properties, vibrational spectroscopy and frontier molecular orbital of (E)-2-cyano-3-(3-hydroxyphenyl)acrylamide molecule

    NASA Astrophysics Data System (ADS)

    Xiao-Hong, Li; Hong-Ling, Cui; Rui-Zhou, Zhang; Xian-Zhou, Zhang

    2015-02-01

    The vibrational frequencies of (E)-2-cyano-3-(3-hydroxyphenyl)acrylamide (HB-CA) in the ground state have been calculated using density functional method (B3LYP) with B3LYP/6-311++G(d,p) basis set. The analysis of natural bond orbital was also performed. The IR spectra were obtained and interpreted by means of potential energies distributions (PEDs) using MOLVIB program. In addition, the results show that there exists Csbnd H⋯O hydrogen bond in the title compound, which is confirmed by the natural bond orbital analysis. The predicted NLO properties show that the title compound is a good candidate as nonlinear optical material. The analysis of frontier molecular orbitals shows that HB-CA has high excitation energies, good stability and high chemical hardness. The analysis of MEP map shows the negative and the positive potential sites.

  13. Photoelectron spectra and molecular orbital calculations of dicarbonyl- and dinitrosyl-bridged cobalt, rhodium and iridium cyclopentadienyl dimers and of disulfido- and diselenido-nonacarbonyltriosmium 

    E-print Network

    Griewe, Greg Lewis

    1987-01-01

    III. (X=S, Se). Molecular Composition of Os3(CO)9(43 X)2 fragment composition ~t2g orbital S Se %e 8 Se Rai S Se Se 7a" 9a' 8a' 7a' 6a" 6a' Sa' 5a" 4a" 4a' 3a" 3a' 2a" 2a' la" la' 3 47 57 58 60 16 89 96 77 94 93 38...-nonacarbonyltriosmium. . (December l987) Greg Lewis Griewe, B. A. , Grinnell College Chairman of Advisory Committee: Dr. Michael B. Hall Gas-phase, ultraviolet photoelectron (PE) spectra and molecular orbital (MO) calculations are reported for Os3(CO)9(s3 X)2 (X=S, Se...

  14. Analysis of effects of macroscopic propagation and multiple molecular orbitals on the minimum in high-order harmonic generation of aligned CO{sub 2}

    SciTech Connect

    Jin, Cheng; Le, Anh-Thu; Lin, C. D. [J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506-2604 (United States)

    2011-05-15

    We report theoretical calculations of the effect of the multiple-orbital contribution in high-order harmonic generation (HHG) of aligned CO{sub 2} with the inclusion of macroscopic propagation of harmonic fields in the medium. Our results show very good agreement with recent experiments for the dynamics of the minimum in HHG spectra as laser intensity or alignment angle changes. Calculations are carried out to check how the position of the minimum in HHG spectra depends on the degrees of molecular alignment, laser-focusing conditions, and the effects of alignment-dependent ionization rates of the different molecular orbitals. These analyses help to explain why the minima observed in different experiments may vary.

  15. Simulation of NEXAFS spectra of a photo-reactive copolymer with considerably large monomer units: An ab initio molecular orbital study

    Microsoft Academic Search

    H. Oji; T. Tominaga; K. Nakanishi; M. Ohmoto; K. Ogawa; M. Kimura; S. Kimura; T. Okamoto; H. Namba

    2006-01-01

    We performed the simulation of near edge X-ray absorption fine structure (NEXAFS) spectra of a photo-reactive copolymer with considerably large monomer units by ab initio molecular orbital calculation, in order to explain the spectral change induced by irradiation of the linearly polarized near ultra-violet (LPNUV) light. The “building block approach” is applied for the theoretical calculation to calculate the core-excited

  16. Semiempirical molecular orbital calculations of anisotropic 1H, 13C and 19F hyperfine coupling constants in hydrocarbon and fluorocarbon radicals

    Microsoft Academic Search

    Michael Barfield; Abdulla S. Babaqi; David M. Doddrell; Hans P. W. Gottlieb

    1981-01-01

    The anisotropic hyperfine coupling constants (AHCC) from the electron spin resonance (E.S.R.) spectra of a variety of atoms in organic radicals have been calculated by means of semiempirical molecular orbital wavefunctions in the INDO approximation. Hyperfine tensors involving 1H, 13C and 19F nuclei are obtained for the CH, CH3, CH3CH2, (CH3)3C hydrocarbon radicals, malonic acid radical, CH2F, CF2H, CF3 and

  17. A simple molecular-orbital theory of the nonlinear optical properties of group III-V and II-VI compounds

    Microsoft Academic Search

    CHUNG L. TANG

    1973-01-01

    The second-order nonlinear optical susceptibility in the low-frequency limit for Group III-V and II-VI semiconductors can be understood in terms of a very simple and yet surprisingly accurate molecular-orbital model of the tetrahedral bonds of the crystal. The physical origin of the nonlinearity is the field-dependence in the ionicity of the bond due to the transfer of valence charge from

  18. Electronic structure of the dioxygen to transition metal bond: generalized molecular orbital calculations on models of manganese, iron, and cobalt porphyrins 

    E-print Network

    Newton, James Edward

    1982-01-01

    ELECTRONIC STRUCTURE OF THE DIOXYGEN TO TRANSITION METAL BOND: GENERALIZED MOLECULAR ORBITAL CALCULATIONS ON MODELS OF MANGANESE, IRON, AND COBALT PORPHYRINS A Thesis by JAMES EDWARD NEWTON Submitted to the Graduate College of Texas ASM..., IRON, AND COBALT PORPHYRINS A Thesis by JAMES EDWARD NEWTON Approved as to style and content by: (Chairman of Committee) (Member) mbe ember) (Head of part ent) May 1982 ABSTRACT Electronic Structure of the Dioxygen to Transition Metal Bond...

  19. Photoelectron spectra and molecular orbital calculations of dicarbonyl- and dinitrosyl-bridged cobalt, rhodium and iridium cyclopentadienyl dimers and of disulfido- and diselenido-nonacarbonyltriosmium

    E-print Network

    Griewe, Greg Lewis

    1987-01-01

    PHOTOELECTRON SPECTRA AND MOLECULAR ORBITAL CALCULATIONS OF DICARBONYL- AND DINITROSYL-BRIDGED COBALT, RHODIUM AND IRIDIUM CYCLOPENTADIENYL DIMERS AND OF DISULFIDO- AND DISELENIDO-NONACARBONYLTRIOSMIUM. A Thesis by GREG LEWIS GRIEWE Submitted...-BRIDGED COBALT, RHODIUM AND IRIDIUM CYCLOPENTADIENYL DIMERS AND OF DISULFIDO- AND DISELENIDO-NONACARBONYLTRIOSMIUM. A Thesis by GREG LEWIS GRIEWE Approved as to style and content by: Michael B. Hall (Chairman) M rcetta arensbo rg (Member) James R. Wild...

  20. Venn Diagrams

    NSDL National Science Digital Library

    Jiminez, Alfredo

    Unions, intersections, and differences: This can all be quite confusing to students trying to enter the potentially tricky world of Venn Diagrams. Fortunately, Alfredo Jiminez of Pennsylvania State University, Hazleton has created this handy Flash-enabled teaching application designed to provide students with an engaging way to learn about this subject. The project is party of the Digital Classroom Resources at the MAA Mathematical Sciences Digital Library, and visitors will find this particular learning activity quite easy to use. The interactive tool contains seven sections, including those dealing with the principles of union and intersection, distributive properties, and De Morgan's laws. Within each section, visitors can try their hand with a series of short questions and then take advantage of some review materials and, of course, a few basic tests.

  1. Improved constrained optimization method for reaction-path determination in the generalized hybrid orbital quantum mechanical/molecular mechanical calculations

    NASA Astrophysics Data System (ADS)

    Jung, Jaewoon; Re, Suyong; Sugita, Yuji; Ten-no, Seiichiro

    2013-01-01

    The nudged elastic band (NEB) and string methods are widely used to obtain the reaction path of chemical reactions and phase transitions. In these methods, however, it is difficult to define an accurate Lagrangian to generate the conservative forces. On the other hand, the constrained optimization with locally updated planes (CO-LUP) scheme defines target function properly and suitable for micro-iteration optimizations in quantum mechanical/molecular mechanical (QM/MM) systems, which uses the efficient second order QM optimization. However, the method does have problems of inaccurate estimation of reactions and inappropriate accumulation of images around the energy minimum. We introduce three modifications into the CO-LUP scheme to overcome these problems: (1) An improved tangent estimation of the reaction path, which is used in the NEB method, (2) redistribution of images using an energy-weighted interpolation before updating local tangents, and (3) reduction of the number of constraints, in particular translation/rotation constraints, for improved convergence. First, we test the method on the isomerization of alanine dipeptide without QM/MM calculation, showing that the method is comparable to the string method both in accuracy and efficiency. Next, we apply the method for defining the reaction paths of the rearrangement reaction catalyzed by chorismate mutase (CM) and of the phosphoryl transfer reaction catalyzed by cAMP-dependent protein kinase (PKA) using generalized hybrid orbital QM/MM calculations. The reaction energy barrier of CM is in high agreement with the experimental value. The path of PKA reveals that the enzyme reaction is associative and there is a late transfer of the substrate proton to Asp 166, which is in agreement with the recently published result using the NEB method.

  2. Gravity and Orbits: Orbits

    NSDL National Science Digital Library

    National Science Teachers Association (NSTA)

    2006-11-01

    This Science Object is the third of three Science Objects in the Gravity and Orbits SciPack. It provides an understanding of how gravitational forces influence the motion of an object in orbit. When a force acts toward a single center, an object's forward motion and its motion toward that center can combine to create a curved path around the center. Gravity governs the motion of all objects in the solar system. The Sun's gravitational pull holds the Earth and other planets in their orbits, just as the planets' gravitational pull keeps their moons in orbit around them. Learning Outcomes:? Describe the conditions that would lead an object into orbital motion in terms of the effects of gravitational force.? Explain how an object orbits a planet in terms of trajectories and free fall.? Identify gravity as the force that keeps the planets in their orbits around the Sun and the moons in their orbits around the planets.

  3. Effect of Intermolecular Hydrogen Bonding on the Nuclear Quadrupole Interaction in Imidazole and its Derivatives as Studied by ab initio Molecular Orbital Calculations

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobuo; Masui, Hirotsugo; Ueda, Takahiro

    2000-02-01

    Ab initio Hartree-Fock molecular orbital calculations were applied to the crystalline imidazole and its derivatives in order to examine systematically the effect of possible N-H---N type hydrogen bond-ing on the nuclear quadrupole interaction parameters in these materials. The nitrogen quadrupole coupling constant (QCC) and the asymmetry parameter (?) of the electric field gradient (EFG) were found to depend strongly on the size of the molecular clusters, from single molecule, to dimer, trimer and to the infinite molecular chain, i.e., crystalline state, implying that the intermolecular N-H -N hydrogen bond affects significantly the electronic structure of imidazole molecule. A certain correla-tion between the QCC of 14N and the N-H bond distance R was also found and interpreted on the basis of the molecular orbital theory. However, we found that the value of the calculated EFG at the hy-drogen position of the N-H group, or the corresponding QCC value of 2 H, increases drastically as R-3 when R is shorter than about 0.1 nm, due probably to the inapplicability of the Gaussian basis sets to the very short chemical bond as revealed in the actual imidazole derivatives. We suggested that the ob-served N-H distances in imidazole derivatives should be re-examined.

  4. Free Body Diagrams

    NSDL National Science Digital Library

    This website from the University of Guelph's physics department offers a tutorial on free body diagrams. The tutorial includes an explanation of what free body diagrams are, example problems, a self-test, and a free body diagram java applet.

  5. Timescale for disk survival: A search for the molecular hydrogen component of protoplanetary disks orbiting T Tauri stars

    NASA Astrophysics Data System (ADS)

    Bary, Jeffrey S.

    2003-10-01

    We have surveyed several X-ray bright, classical and weak-lined T Tauri stars (TTS)---young, Sun-like stars with ages of 1--20 Myr---located in three nearby star forming regions (D < 200 pc) for near-infrared line emission at 2.1218 mum from quiescent, molecular hydrogen gas. Using high-resolution near-infrared spectrometers and 3- to 4-m class telescopes, we have detected H2 emission from 4 of the 27 TTS surveyed: TW Hya, LkCa 15, GG TauA, and DoAr 21. Based upon the velocity information obtained from the emission features associated with these detections as well as the lack of extended emission in the images, I argue that for each star the emission is closely associated with the young source and most likely resides in a gaseous disk component orbiting the young source. Gas temperatures found in the circumstellar disks (T ? 10 2-3 K) observed to surround TTS are, on average, much less than the temperatures (T ? 2000 K) thought to be required to produce observable levels of H2 emission from rotation-vibrational transitions within the ground state of the H2 molecule. In past observations of near-infrared H2 emission, stimulation mechanisms have been shown to be capable of producing the H2 emission when thermally excited emission is negligible. We review several possible stimulation mechanisms including shocks, Lyalpha photons, UV fluorescence, and X-ray ionization, all previously suggested as ways to stimulate H2 emission. Based upon the double-peaked H2 emission feature associated with LkCa 15, the penetration depths we estimate for UV and X-ray photons from models of the disks of classical TTS, and the temperature independent H2 gas masses that range between 10-10 and 10-12 M? , we determined that the emission must reside in the upper atmospheres of these disks at radii of 10 to 30 AU from the sources. Using the existing models associated with UV fluorescence and X-ray ionization, we find that one or both of these mechanisms may be capable of producing the observed level of H2 emission. Therefore, we suggest that the X-ray/UV fluxes associated with TTS are sufficient to stimulate the observed emission and imply the existence of a significant amount of H2 in the disks of these sources. The detection of H2 emission from a disk surrounding the weak-lined TTS DoAr 21 not only indicates the presence of a gaseous component of a disk orbiting this young star, but implies the presence of an undetected dust component. Previously, sources such as DoAr 21 have been thought to be 'naked' or without circumstellar disk material and, therefore, incapable of forming planets. Stimulated H2 emission from sources such as DoAr 21 suggests that disks may survive beyond the disk lifetimes inferred from detections of disk tracers (i.e., dust and CO). High-resolution near-infrared surveys capable of detecting X-ray and/or UV stimulated emission from quiescent H2 gas residing in the circumstellar disks of young stars should provide insight into the timescale for planet formation by allowing astronomers to search for the most abundant component of such disks.

  6. From Activity Diagrams to Class Diagrams

    Microsoft Academic Search

    Joao Paulo Barros; Luis Gomes

    2000-01-01

    A translation from activity diagrams to class diagrams, with executable code, is presented. The translation is amenable to b e made with o r without automating tools. An illustrative a pplication example is also b riefly p resented: Activity diagrams are used in the modelling and implementation of graphical user interfaces, more precisely in the c ontroller part of the

  7. Semiempirical molecular orbital calculations of anisotropic 1H, 13C and 19F hyperfine coupling constants in hydrocarbon and fluorocarbon radicals

    NASA Astrophysics Data System (ADS)

    Barfield, Michael; Babaqi, Abdulla S.; Doddrell, David M.; Gottlieb, Hans P. W.

    The anisotropic hyperfine coupling constants (AHCC) from the electron spin resonance (E.S.R.) spectra of a variety of atoms in organic radicals have been calculated by means of semiempirical molecular orbital wavefunctions in the INDO approximation. Hyperfine tensors involving 1H, 13C and 19F nuclei are obtained for the ?H, ?H3, CH3?H2, (CH3)3? hydrocarbon radicals, malonic acid radical, ?H2F, ?F2H, ?F3 and CF3?H2 radicals. The calculated values are compared with available experimental, non-empirical and semiempirical values for these radicals. All integrals of the operator entering the electronic contributions have been evaluated over Slater type orbitals. The introduction of deorthogonalized wavefunctions gives generally better calculated results. In particular, the tensor components of the 19F AHCC are in good agreement with the experimental results without the necessity of readjusting the effective nuclear charges.

  8. From experiment to theory: molecular orbital parameters to interpret the skin sensitization potential of 5-chloro-2-methylisothiazol-3-one and 2-methylisothiazol-3-one.

    PubMed

    Aptula, Aynur O; Roberts, David W; Cronin, Mark T D

    2005-02-01

    5-Chloro-2-methylisothiazol-3-one (MCI) and 2-methylisothiazol-3-one (MI) are the major constituents of the commercial biocide Kathon CG. These two compounds have both been shown to exhibit skin sensitization potential: MCI is classified as an extreme sensitizer while MI is classified as a moderate sensitizer. The purpose of the present investigation was to provide further insights into the chemistry underlying their skin sensitizing properties. First, a molecular modeling (in silico) study was carried out of the initial reaction pathways of MI and MCI with nucleophiles representative of those involved in the skin sensitization process, and we compared the findings with the reported chemical and allergenic properties of these compounds. These reaction pathways were assessed using molecular orbital calculations. A novel parameter, the activation energy (AE) index, is proposed and is calculated from a knowledge of the energy changes in the frontier molecular orbitals as the electrophile is converted to an anionic intermediate. The AE indices correspond to the reactivity of MCI and MI with nucleophiles and also their skin sensitization potential. Second, the previously unexplained formation of final reaction products from MCI and butylamine is discussed and a reaction mechanism is proposed. A key finding of this analysis is that the reaction produces "positive chlorine" in the form of N-chloro- and/or N,N-dichloro-butylamine, which could contribute to the skin sensitizing properties of MCI. PMID:15720139

  9. Equation of state of a dense plasma by orbital-free and quantum molecular dynamics: examination of two isothermal-isobaric mixing rules.

    PubMed

    Danel, J-F; Kazandjian, L

    2015-01-01

    We test two isothermal-isobaric mixing rules, respectively based on excess-pressure and total-pressure equilibration, applied to the equation of state of a dense plasma. While the equation of state is generally known for pure species, that of arbitrary mixtures is not available so that the validation of accurate mixing rules, that implies resorting to first-principles simulations, is very useful. Here we consider the case of a plastic with composition C(2)H(3) and we implement two complementary ab initio approaches adapted to the dense plasma domain: quantum molecular dynamics, limited to low temperature by its computational cost, and orbital-free molecular dynamics, that can be implemented at high temperature. The temperature and density range considered is 1-10 eV and 0.6-10 g/cm(3) for quantum molecular dynamics, and 5-1000 eV and 1-10 g/cm(3) for orbital-free molecular dynamics. Simulations for the full C(2)H(3) mixture are the benchmark against which to assess the mixing rules, and both pressure and internal energy are compared. We find that the mixing rule based on excess-pressure equilibration is overall more accurate than that based on total-pressure equilibration; except for quantum molecular dynamics and a thermodynamic domain characterized by very low or negative excess pressures, it gives pressures which are generally within statistical error or within 1% of the exact ones. Besides, its superiority is amplified in the calculation of a principal Hugoniot. PMID:25679719

  10. An Efficient Method to Evaluate Intermolecular Interaction Energies in Large Systems Using Overlapping Multicenter ONIOM and the Fragment Molecular Orbital Method

    PubMed Central

    Asada, Naoya; Fedorov, Dmitri G.; Kitaura, Kazuo; Nakanishi, Isao; Merz, Kenneth M.

    2012-01-01

    We propose an approach based on the overlapping multicenter ONIOM to evaluate intermolecular interaction energies in large systems and demonstrate its accuracy on several representative systems in the complete basis set limit at the MP2 and CCSD(T) level of theory. In the application to the intermolecular interaction energy between insulin dimer and 4?-hydroxyacetanilide at the MP2/CBS level, we use the fragment molecular orbital method for the calculation of the entire complex assigned to the lowest layer in three-layer ONIOM. The developed method is shown to be efficient and accurate in the evaluation of the protein-ligand interaction energies. PMID:23050059

  11. Electronic structure of metal clusters. 4. Photoelectron spectra and molecular orbital calculations on cobalt, iron, ruthenium, and osmium sulfide nonacarbonyl clusters

    Microsoft Academic Search

    Peter T. Chesky; Michael B. Hall

    1983-01-01

    Gas-phase, ultraviolet photoelectron (PE) spectra and molecular orbital (MO) calculations are reported for SCoâ(CO)â, SH\\/sub n-\\/âFe\\/sub n\\/Coâ\\/sub -n\\/(CO)â (n = 1-3), SâFeâ(CO)â, and SHâMâ(CO)â (M = Fe, Ru, Os). The first PE spectra reported for mixed-metal clusters are included in this series. As Co atoms are replaced by the isoelectronic FeH unit, the spectra show the loss of a Co

  12. Analysis of Bonding Patterns in the Valence Isoelectronic series O-3, S-3, SO2 and OS2 in Terms of Oriented Quasi-Atomic Molecular Orbitals

    SciTech Connect

    Glezakou, Vassiliki Alexandra; Elbert, Stephen T.; Xantheas, Sotiris S.; Ruedenberg, Klaus

    2010-08-26

    A novel analysis of the chemical bonding pattern in the valence isoelectronic series of triatomic molecules O3, S3, SO2 and OS2 is reported. The analysis is based on examining the bond order matrix elements between the Oriented Localized Molecular Orbitals (OLMOs) that are localized on the three individual left (L), center (C) and right (R) atoms. The analysis indicates that there is a (L-C) and (C-R) ?-bonding interaction and a (L-R) ??antibonding interaction. This finding supports the previously proposed "partial biradical" interpretation of these triatomic systems, which had recently been challenged.

  13. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems

    SciTech Connect

    Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan) [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Fedorov, Dmitri G. [NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)] [NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yokojima, Satoshi [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan) [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Kitaura, Kazuo [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan)] [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Sakurai, Minoru [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan)] [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Nakamura, Shinichiro [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-04-14

    We extended the fragment molecular orbital (FMO) method interfaced with density functional theory (DFT) into spin unrestricted formalism (UDFT) and developed energy gradients for the ground state and single point excited state energies based on time-dependent DFT. The accuracy of FMO is evaluated in comparison to the full calculations without fragmentation. Electronic excitations in solvated organic radicals and in the blue copper protein, plastocyanin (PDB code: 1BXV), are reported. The contributions of solvent molecules to the electronic excitations are analyzed in terms of the fragment polarization and quantum effects such as interfragment charge transfer.

  14. Mass Transport Properties of LiD-U Mixtures from Orbital Free Molecular Dynamics Simulations and a Pressure-Matching Mixing Rule

    SciTech Connect

    Burakovsky, Leonid [Los Alamos National Laboratory; Kress, Joel D. [Los Alamos National Laboratory; Collins, Lee A. [Los Alamos National Laboratory

    2012-05-31

    Mass transport properties for LiD-U mixtures were calculated using a pressure matching mixture rule for the mixing of LiD and of U properties simulated with Orbital Free Molecular Dynamics (OFMD). The mixing rule was checked against benchmark OFMD simulations for the fully interacting three-component (Li, D, U) system. To obtain transport coefficients for LiD-U mixtures of different (LiD){sub x}U{sub (1-x)} compositions as functions of temperature and mixture density is a tedious task. Quantum molecular dynamics (MD) simulations can be employed, as in the case LiD or U. However, due to the presence of the heavy constituent U, such simulations proceed so slowly that only a limited number of numerical data points in the (x, {rho}, T) phase space can be obtained. To finesse this difficulty, transport coefficients for a mixture can be obtained using a pressure-matching mixing rule discussed. For both LiD and U, the corresponding transport coefficients were obtained earlier from quantum molecular dynamics simulations. In these simulations, the quantum behavior of the electrons was represented using an orbital free (OF) version of density functional theory, and ions were advanced in time using classical molecular dynamics. The total pressure of the system, P = nk{sub B}T/V + P{sub e}, is the sum of the ideal gas pressure of the ions plus the electron pressure. The mass self-diffusion coefficient for species {alpha}, D{sub {alpha}}, the mutual diffusion coefficient for species {alpha} and {beta}, D{alpha}{beta}, and the shear viscosity, {eta}, are computed from the appropriate autocorrelation function. The details of similar QMD calculations on LiH are described in Ref. [1] for 0.5 eV < T < 3 eV, and in Ref. [2] for 2 eV < T < 6 eV.

  15. Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of Isoxanthopterin

    NASA Astrophysics Data System (ADS)

    Prabavathi, N.; Nilufer, A.; Krishnakumar, V.

    2013-10-01

    The FTIR and FT-Raman spectra of Isoxanthopterin have been recorded in the region 4000-450 and 4000-100 cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of Isoxanthopterin were obtained by the density functional theory (DFT) using 6-311++G(d,p) basis set. The harmonic vibrational frequencies were scaled and compared with experimental values. The observed and the calculated frequencies are found to be in good agreement. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method. The UV-visible spectrum was also recorded and compared with the theoretical values. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (?0), related properties (?, ?0 and ??) and the Mulliken charges of the molecule were also computed using DFT calculations. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the ?* and ?* antibonding orbitals and second order delocalization energies (E2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. Information about the charge density distribution of the molecule and its chemical reactivity has been obtained by mapping molecular electrostatic potential surface. In addition, the non-linear optical properties were discussed from the dipole moment values and excitation wavelength in the UV-visible region.

  16. Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of Isoxanthopterin.

    PubMed

    Prabavathi, N; Nilufer, A; Krishnakumar, V

    2013-10-01

    The FTIR and FT-Raman spectra of Isoxanthopterin have been recorded in the region 4000-450 and 4000-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of Isoxanthopterin were obtained by the density functional theory (DFT) using 6-311++G(d,p) basis set. The harmonic vibrational frequencies were scaled and compared with experimental values. The observed and the calculated frequencies are found to be in good agreement. The (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method. The UV-visible spectrum was also recorded and compared with the theoretical values. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (?0), related properties (?, ?0 and ??) and the Mulliken charges of the molecule were also computed using DFT calculations. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the ?* and ?* antibonding orbitals and second order delocalization energies (E2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. Information about the charge density distribution of the molecule and its chemical reactivity has been obtained by mapping molecular electrostatic potential surface. In addition, the non-linear optical properties were discussed from the dipole moment values and excitation wavelength in the UV-visible region. PMID:23751224

  17. Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of 3-hydroxy-6-methyl-2-nitropyridine

    NASA Astrophysics Data System (ADS)

    Karnan, M.; Balachandran, V.; Murugan, M.

    2012-10-01

    The optimized molecular structure and corresponding vibrational assignments of 3-hydroxy-6-methyl-2-nitropyridine have been investigated using density functional theory (DFT) B3LYP method with 6-311++G(d,p), 6-311++G(2d,2p) and 6-311++G(3d,3p) basis sets. Investigation of the relative orientation of the hydroxyl group with respect to the nitro group has shown that two conformers (O-cis) and (O-trans) exist. The vibrational analysis of the stable conformer of the title compound is performed by means of infrared absorption and Raman spectroscopy in combination with theoretical simulations. The molecular stability and bond strength were investigated by applying the natural bond orbital (NBO) analysis. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with electrostatic potential (ESP). The isotropic chemical shift computed by 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the HMNP calculated using the gauge invariant atomic orbital (GIAO) method also shows good agreement with experimental observations.

  18. Nickel(II) in chelate N2O2 environment. DFT approach and in-depth molecular orbital and configurational analysis.

    PubMed

    Trifunovi?, Sre?ko R; Mileti?, Vesna D; Jevti?, Verica V; Meetsma, Auke; Matovi?, Zoran D

    2013-10-01

    The O-N-N-O-type tetradentate ligands H2S,S-eddp (H2S,S-eddp stands for S,S-ethylenediamine-N,N'-di-2-propionic acid) and H2edap (H2edap stands for ethylenediamine-N-acetic-N'-3-propionic acid) and the corresponding novel octahedral nickel(II) complexes have been prepared and characterized. N2O2 ligands coordinate to the nickel(II) ion via four donor atoms (two deprotonated carboxylate atoms and two amine nitrogens) affording octahedral geometry in the case of all investigated Ni(II) complexes. A six coordinate, octahedral geometry has been verified crystallographically for the s-cis-[Ni(S,S-eddp)(H2O)2] complex. Structural data correlating similarly chelated Ni(II) complexes have been used to carry out an extensive configuration analysis. Molecular mechanics and Density Functional Theory (DFT) have been used to model the most stable geometric isomer, yielding, at the same time, significant structural and spectroscopic (TDDFT) data. The results from density functional studies have been compared to X-ray data. Natural Bond Orbital (NBO) and Natural Energetic Decomposition Analysis (NEDA) have been done for the [Ni(edda-type)(H2O)(2-n)] and nH2O fragments. Molecular orbital analysis (MPA) is given as well. The infra-red and electronic absorption spectra of the complexes are discussed in comparison to the related complexes of known geometries. PMID:23884426

  19. Orbital Exponent Optimization in Elementary VB Calculations of the Chemical Bond in the Ground State of Simple Molecular Systems

    ERIC Educational Resources Information Center

    Magnasco, Valerio

    2008-01-01

    Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H[subscript 2][superscript +], H[subscript 2], He[subscript 2][superscript +], He[subscript 2] gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region. Correct bond lengths and…

  20. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions III. First row transition metal atoms

    Microsoft Academic Search

    Rosendo Pou-Amérigo; Manuela Merchán; Ignacio Nebot-Gil; Per-Olof Widmark; Björn O. Roos

    1995-01-01

    Generally contracted basis sets for the first row transition metal atoms Sc–Zn have been constructed using the atomic natural orbital (ANO) approach, with modifications for allowing symmetry breaking and state averaging. The ANOs are constructed by averaging over the three electronic configurations d n, d n-1 s, and d n-2 s 2 for the neutral atom as well as the

  1. Natural bond orbital analysis of molecular interactions: Theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3

    Microsoft Academic Search

    Alan E. Reed; Frank Weinhold; Larry A. Curtiss; David J. Pochatko

    1986-01-01

    The binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3 have been studied by abinitio molecular orbital theory and natural bond orbital (NBO) analysis. Most of the complexes involving N2, O2, F2, CO, and CO2 are found to have both hydrogen-bonded and non-hydrogen-bonded structures. The NBO analysis provides a consistent picture of

  2. Natural bond orbital analysis of molecular interactions Theoretical studies of binary complexes of HF, H2O, NH3, O2, F2, CO, and CO2 with HF, H2O, and NH3

    Microsoft Academic Search

    A. E. Reed; F. Weinhold; L. A. Curtiss; D. J. Pochatko

    1986-01-01

    Ab initio molecular orbital theory and natural bond orbital analysis were applied to the binary complexes of HF, H2O, NH3, N2, O2, F2, CO and CO2 with HF, H2O and NH3. Both hydrogen-bonded and nonhydrogen-bonded structures were found for complexes involving N2, O2, F2, CO, and CO2; these structures were defined by NBO analysis of charge transfer, which is generally

  3. Møller-Plesset perturbation theory gradient in the generalized hybrid orbital quantum mechanical and molecular mechanical method

    Microsoft Academic Search

    Jaewoon Jung; Yuji Sugita; S. Ten-No

    2010-01-01

    An analytic gradient expression is formulated and implemented for the second-order Møller-Plesset perturbation theory (MP2) based on the generalized hybrid orbital QM\\/MM method. The method enables us to obtain an accurate geometry at a reasonable computational cost. The performance of the method is assessed for various isomers of alanine dipepetide. We also compare the optimized structures of fumaramide-derived [2]rotaxane and

  4. Follicular large-cell lymphoma of the orbit: a clinicopathologic, immunohistochemical and molecular genetic description of one case

    Microsoft Academic Search

    M. Nicolò; Mauro Truini; Mario Sertoli; Jeffery K. Taubenberger; Mario Zingirian

    1999-01-01

    · Background: Follicular large cell lymphoma of the orbit is a very rare and aggressive lymphoproliferative disease of the\\u000a ocular adnexa. In this study we analyzed the clinicopathologic characteristics of one patient, including the immunoglobulin\\u000a gene rearrangement assay by means of polymerase chain reaction. · Case report: A 71-year-old female underwent an incisional\\u000a biopsy in the superior nasal quadrant of

  5. The Line Sequence Diagram

    Microsoft Academic Search

    Calvin R. Srock

    1966-01-01

    This paper describes the symbols and techniques used to construct and apply a line sequence diagram. A line sequence diagram, as the name implies, describes the sequence of operations for an electrical control circuit.

  6. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods

    NASA Astrophysics Data System (ADS)

    Suresh, S.; Gunasekaran, S.; Srinivasan, S.

    2015-03-01

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (?) and the first order hyper polarizability (?) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  7. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods.

    PubMed

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2015-03-01

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100cm(-1) respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (?) and the first order hyper polarizability (?) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. PMID:25523048

  8. AFM Diagram Quiz

    NSDL National Science Digital Library

    Dexter Perkins

    This exercise should be used after you think students know what AFM diagrams are and how they work. This is sort of a quiz - to see if they can properly interpret the diagrams. There is no point moving on to real projects that involve AFM diagrams if the students don't understand the basics.

  9. Predicting the UV-vis spectra of Tetraarylcyclopentadienones: Using DFT molecular orbital energies to model electronic transitions of organic materials.

    PubMed

    Potter, Robert G; Hughes, Thomas S

    2008-04-18

    Tetraphenylcyclopentadienone, due to its intrinsically low HOMO-LUMO gap, has been suggested as a valuable repeat unit in conducting polymers for nanoscale electronics. The HOMO and LUMO of tetraphenylcyclopentadienone appear to be associated with the relevant pi orbitals of unsubstituted cyclopentadienone. Using previously developed carbonylative coupling reactions, a series of tetraarylcyclopentadienones was synthesized, accessing a range of substituents not previously available. The UV-vis spectra of these molecules were compared to their calculated wave functions and predicted transitions. A quantitative structure-activity relationship was discovered that may greatly simplify prediction of band gaps for oligomers and polymers built from these tetraarylcyclopentadienones. PMID:18363406

  10. Local orbitals by minimizing powers of the orbital variance

    NASA Astrophysics Data System (ADS)

    Jansík, Branislav; Høst, Stinne; Kristensen, Kasper; Jørgensen, Poul

    2011-05-01

    It is demonstrated that a set of local orthonormal Hartree-Fock (HF) molecular orbitals can be obtained for both the occupied and virtual orbital spaces by minimizing powers of the orbital variance using the trust-region algorithm. For a power exponent equal to one, the Boys localization function is obtained. For increasing power exponents, the penalty for delocalized orbitals is increased and smaller maximum orbital spreads are encountered. Calculations on superbenzene, C60, and a fragment of the titin protein show that for a power exponent equal to one, delocalized outlier orbitals may be encountered. These disappear when the exponent is larger than one. For a small penalty, the occupied orbitals are more local than the virtual ones. When the penalty is increased, the locality of the occupied and virtual orbitals becomes similar. In fact, when increasing the cardinal number for Dunning's correlation consistent basis sets, it is seen that for larger penalties, the virtual orbitals become more local than the occupied ones. We also show that the local virtual HF orbitals are significantly more local than the redundant projected atomic orbitals, which often have been used to span the virtual orbital space in local correlated wave function calculations. Our local molecular orbitals thus appear to be a good candidate for local correlation methods.

  11. Electronic structure of metal clusters. 4. Photoelectron spectra and molecular orbital calculations on cobalt, iron, ruthenium, and osmium sulfide nonacarbonyl clusters

    SciTech Connect

    Chesky, P.T.; Hall, M.B.

    1983-10-01

    Gas-phase, ultraviolet photoelectron (PE) spectra and molecular orbital (MO) calculations are reported for SCo/sub 3/(CO)/sub 9/, SH/sub n-//sub 1/Fe/sub n/Co/sub 3//sub -n/(CO)/sub 9/ (n = 1-3), S/sub 2/Fe/sub 3/(CO)/sub 9/, and SH/sub 2/M/sub 3/(CO)/sub 9/ (M = Fe, Ru, Os). The first PE spectra reported for mixed-metal clusters are included in this series. As Co atoms are replaced by the isoelectronic FeH unit, the spectra show the loss of a Co band and the appearance of an Fe band. This phenomenon suggests that the d bands localize upon ionization. In a comparison with the PE spectrum of M/sub 3/(CO)/sub 12/ (M = Fe, Ru, Os), the major spectral changes for SH/sub 2/M/sub 3/(CO)/sub 9/ (M = Fe, Ru, Os) are the loss of a band corresponding to direct M-M interactions and the appearance of bands due to a mixture of energy-equivalent M-H-M and M-S interactions. The spectra also show a substantial rearrangement of the bands due to the t/sub 2g/-like electrons, which are usually considered M-CO ..pi.. bonding. An antibonding interaction between a S orbital and the t/sub 2g/-like orbitals is responsible for a unique band in the spectra which occurs at high ionization energy between the M-M bonding band and the main t/sub 2//sub g/-like band. 12 figures, 9 tables

  12. Ion-molecule interactions in solutions of lithium perchlorate in propylene carbonate + diethyl carbonate mixtures: an IR and molecular orbital study.

    PubMed

    Wang, Jianji; Wu, Yanping; Xuan, Xiaopeng; Wang, Hanqing

    2002-08-01

    FTIR spectra have been recorded and analyzed for solutions of lithium perchlorate in propylene carbonate (PC), diethyl carbonate (DEC), and PC + DEC mixtures. It has been shown that the carbonyl stretch bands for PC and DEC are very sensitive to the interaction between Li+ and the solvent molecules. They split with addition of LiClO4, indicating a strong interaction of Li+ with PC and DEC through the oxygen group of PC and both oxygen and ether oxygen atoms of DEC. In conjunction with molecular orbital calculation, the optimized geometries of solvation are given. In addition, solvent separated ion pairs and contact ion pairs were observed in LiClO4/DEC solutions, and no preferential solvation of Li+ in LiClO4/PC + DEC solutions were detected. PMID:12212734

  13. Ab initio molecular dynamics: Propagating the density matrix with Gaussian orbitals. II. Generalizations based on mass-weighting, idempotency, energy conservation and choice of initial conditions

    NASA Astrophysics Data System (ADS)

    Iyengar, Srinivasan S.; Schlegel, H. Bernhard; Millam, John M.; Voth, Gregory A.; Scuseria, Gustavo E.; Frisch, Michael J.

    2001-12-01

    A generalization is presented here for a newly developed approach to ab initio molecular dynamics, where the density matrix is propagated with Gaussian orbitals. Including a tensorial fictitious mass facilitates the use of larger time steps for the dynamics process. A rigorous analysis of energy conservation is presented and used to control the deviation of the fictitious dynamics trajectory from the corresponding Born-Oppenheimer dynamics trajectory. These generalizations are tested for the case of the Cl-(H2O)25 cluster. It is found that, even with hydrogen atoms present in the system, no thermostats are necessary to control the exchange of energy between the nuclear and the fictitious electronic degrees of freedom.

  14. Using simple molecular orbital calculations to predict disease: fast DFT methods applied to enzymes implicated in PKU, Parkinson's disease and Obsessive Compulsive Disorder

    NASA Astrophysics Data System (ADS)

    Hofto, Laura; Hofto, Meghan; Cross, Jessica; Cafiero, Mauricio

    2007-09-01

    Many diseases can be traced to point mutations in the DNA coding for specific enzymes. These point mutations result in the change of one amino acid residue in the enzyme. We have developed a model using simple molecular orbital calculations which can be used to quantitatively determine the change in interaction between the enzyme's active site and necessary ligands upon mutation. We have applied this model to three hydroxylase proteins: phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase, and we have obtained excellent correlation between our results and observed disease symptoms. Furthermore, we are able to use this agreement as a baseline to screen other mutations which may also cause onset of disease symptoms. Our focus is on systems where the binding is due largely to dispersion, which is much more difficult to model inexpensively than pure electrostatic interactions. Our calculations are run in parallel on a sixteen processor cluster of 64-bit Athlon processors.

  15. Positron-attachment to acetonitrile, acetaldehyde, and acetone molecules: Vibrational enhancement of positron affinities with configuration interaction level of multi-component molecular orbital approach

    NASA Astrophysics Data System (ADS)

    Tachikawa, Masanori

    2014-04-01

    To theoretically demonstrate the binding of a positron to acetonitrile, acetaldehyde, and acetone molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local CN or CO vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential. For acetonitrile, acetaldehyde, and acetone molecules, the PA values after averaging over the 1st vibrational state are 136, 55, and 96 meV, which can be compared with the corresponding experimental vlues of 180, 90, and 173 meV, respectively.

  16. The low-lying electronic states of BeI: Accounting for spin-orbit effects on the energetic profile characterization and molecular properties

    NASA Astrophysics Data System (ADS)

    de Lima, José Carlos Barreto; Alves, Tiago Vinicius; de Oliveira-Filho, Antonio Gustavo S.; Ornellas, Fernando R.

    2015-03-01

    All electronic states correlating with the two lowest ? + S and the four lowest ? dissociation channels of BeI are characterized at the CASSCF/MRCI level of theory with quintuple-zeta basis sets. Spin-orbit interactions modify significantly the potential energy curves in regions of curve crossings and avoided crossings, and explain the scarcity of spectroscopic data. Trends in energetic and molecular properties are discussed for BeF, BeCl, BeBr, and BeI. For the A1 1/2(II)-X 1/2(I) and A2 3/2(I)-X 1/2(I) band systems, transition moments, transition probabilities, and Franck-Condon factors were computed; radiative and tunneling lifetimes completed the characterization of these states.

  17. Molecular structure, Normal Coordinate Analysis, harmonic vibrational frequencies, Natural Bond Orbital, TD-DFT calculations and biological activity analysis of antioxidant drug 7-hydroxycoumarin

    NASA Astrophysics Data System (ADS)

    Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.

    2013-01-01

    In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the ?* and ?* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.

  18. Vibrational spectra, molecular structure, natural bond orbital, first order hyperpolarizability, thermodynamic analysis and normal coordinate analysis of Salicylaldehyde p-methylphenylthiosemicarbazone by density functional method.

    PubMed

    Porchelvi, E Elamurugu; Muthu, S

    2015-01-01

    The thiosemicarbazone compound, Salicylaldehyde p-methylphenylthiosemicarbazone (abbreviated as SMPTSC) was synthesized and characterized by FTIR, FT-Raman and UV. Density functional (DFT) calculations have been carried out for the title compound by performing DFT level of theory using B3LYP/6-31++G(d,p) basis set. The molecular geometry and vibrational frequencies were calculated and compared with the experimental data. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The electronic dipole moment (?D) and the first hyperpolarizability (?tot) values of the investigated molecule were computed using density functional theory (DFT/B3LYP) with 6-311++G(d,p) basis set. The stability and charge delocalization of the molecule was studied by natural bond orbital (NBO) analysis. Thearomaticities of the phenyl rings were studied using the standard harmonic oscillator model of aromaticity (HOMA) index. Mulliken population analysis on atomic charges is also calculated. The molecule orbital contributions are studied by density of energy states (DOSs). PMID:25033238

  19. Molecular cloning and characterization of genes for antibodies generated by orbital tissue-infiltrating B-cells in Graves` ophthalmopathy

    SciTech Connect

    Jaume, J.C.; Portolano, S.; Prummel, M.F.; McLachlan, S.M.; Rapoport, B. [Univ. of California, San Francisco, CA (United States)] [Univ. of California, San Francisco, CA (United States)

    1994-02-01

    Graves` ophthalmopathy is a distressing autoimmune disease of unknown etiology. Analysis of the genes for antibodies secreted by orbital tissue-infiltrating plasma cells might provide insight into the pathogenesis of this disease. The authors, therefore, constructed an immunoglobulin heavy (H) chain and an immunoglobulin k light (L) chain cDNA library from the orbital tissue of a patient with active Graves` ophthalmopathy. Analysis of 15 H (IgG1) and 15 L (k) chains revealed a restricted spectrum of variable region genes. Fourteen of 15 variable k genes were about 94% homologous to the closest known germline gene, KL012. Thirteen of 15 H chain genes were 91% and 90% homologous to the closest germline genes, DP10 and hv1263, respectively. Remarkably, these germline genes also code for other autoantibodies to striated muscle (KL012) and thyroid peridase (KL012 and hv1263). These studies raise the possibility that particular germline genes may be associated with autoimmunity in humans. Further, the present study opens the way to identifying ocular autoantigens that may be the target of an humoral immune response. 29 refs., 4 figs., 1 tab.

  20. Yukawa Monte Carlo (YMC) and Orbital Free Molecular Dynamics (OFMD) approaches for the eos of warm dense iron plasma

    Microsoft Academic Search

    Dominique Gilles; Flavien Lambert; Jean Clerouin

    2008-01-01

    Yukawa Monte Carlo and Molecular Dynamics simulations are powerful techniques extensively used to compute plasma properties such as EOS or transport coefficients, but are limited to applications where the linear electronic screening assumption is valid (1). Recently we have shown that a modified scheme using density functional theory with a Thomas-Fermi kinetic energy functional for the electrons (OFMD) may be

  1. The ONIOM-PCM method: Combining the hybrid molecular orbital method and the polarizable continuum model for solvation. Application to the geometry and properties of a merocyanine in solution

    Microsoft Academic Search

    Thom Vreven; Benedetta Mennucci; Clarissa O. da Silva; Keiji Morokuma; Jacopo Tomasi

    2001-01-01

    We present the ONIOM-PCM method, which combines the ONIOM (our own n-layered integrated molecular orbital+molecular mechanics) method with the polarizable continuum model (PCM). Four versions of the method have been developed. These schemes differ mainly with respect to the level of coupling between the solute charge distribution and the continuum, which has important consequences for the computational efficiency. Any property

  2. Gradient of molecular Hartree–Fock–Bogoliubov energy with a linear combination of atomic orbital quasiparticle wave functions

    SciTech Connect

    Kobayashi, Masato, E-mail: kobayashi@suou.waseda.jp [Waseda Institute for Advanced Study, Waseda University, Tokyo 169-8050 (Japan)] [Waseda Institute for Advanced Study, Waseda University, Tokyo 169-8050 (Japan)

    2014-02-28

    The analytical gradient for the atomic-orbital-based Hartree–Fock–Bogoliubov (HFB) energy functional, the modified form of which was proposed by Staroverov and Scuseria to account for the static electron correlation [J. Chem. Phys. 117, 11107 (2002)], is derived. Interestingly, the Pulay force for the HFB energy is expressed with the same formula as that for the Hartree–Fock method. The efficiency of the present HFB energy gradient is demonstrated in the geometry optimizations of conjugated and biradical systems. The geometries optimized by using the HFB method with the appropriate factor ?, which controls the degree of static correlation included, are found to show good agreement with those obtained by using a complete active-space self-consistent field method, although they are significantly dependent on ?.

  3. The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids

    Microsoft Academic Search

    Shiang-Tai Lin; Mario Blanco; William A. Goddard

    2003-01-01

    We propose a general approach for determining the entropy and free energy of complex systems as a function of temperature and pressure. In this method the Fourier transform of the velocity autocorrelation function, obtained from a short (20 ps) molecular dynamics trajectory is used to obtain the vibrational density of states (DoS) which is then used to calculate the thermodynamic

  4. Prediction of the handedness of the domains of monolayers of d- N-palmitoyl aspartic acid: Integrated molecular orbital and molecular mechanics based calculation

    Microsoft Academic Search

    K. Thirumoorthy; N. Nandi; D. Vollhardt

    2006-01-01

    The condensed phase monolayer domain forms interesting curvature due to chirality of the molecule. The handedness of d-N-palmitoyl aspartic acid is studied using the three-layered ONIOM (MO:MO:MM) model. Optimized structures of a pair of molecules are used to calculate the azimuthal projection of the molecular pairs. The pair of molecules shows a distinct minimum at the mutual azimuthal orientation corresponding

  5. Conformational stability, molecular orbital studies (chemical hardness and potential), vibrational investigation and theoretical NBO analysis of 4-tert-butyl-3-methoxy-2,6-dinitrotoluene.

    PubMed

    Saravanan, S; Balachandran, V; Vishwanathan, K

    2014-04-24

    The FT-IR and FT-Raman spectra of 4-tert-butyl-3-methoxy-2,6-dinitrotoluene (musk ambrette) have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The total energy calculations of musk ambrette were tried for the possible conformers. The molecular structure, geometry optimization, vibrational frequencies were obtained by the density functional theory (DFT) using B3LYP and LSDA method with 6-311G(d,p) basis set for the most stable conformer "C1". The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated and the scaled values were compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The stability of the molecule arising from hyper conjugate interactions and the charge delocalization has been analyzed using bond orbital (NBO) analysis. The HOMO and LUMO energy gap reveals that the energy gap reflects the chemical activity of the molecule. The dipole moment (?), polarizability (?), anisotropy polarizability (??) and first hyperpolarizability (?tot) of the molecule have been reported. The thermodynamic functions (heat capacity, entropy and enthalpy) were obtained for the range of temperature 100-1000 K. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). PMID:24508884

  6. Ab initio molecular orbital-configuration interaction based quantum master equation (MOQME) approach to the dynamic first hyperpolarizabilities of asymmetric ?-conjugated systems

    NASA Astrophysics Data System (ADS)

    Kishi, Ryohei; Fujii, Hiroaki; Minami, Takuya; Shigeta, Yasuteru; Nakano, Masayoshi

    2015-01-01

    In this study, we apply the ab initio molecular orbital - configuration interaction based quantum master equation (MOQME) approach to the calculation and analysis of the dynamic first hyperpolarizabilities (?) of asymmetric ?-conjugated molecules. In this approach, we construct the excited state models by the ab initio configuration interaction singles method. Then, time evolutions of system reduced density matrix ?(t) and system polarization p(t) are calculated by the QME approach. Dynamic ? in the second harmonic generation is calculated based on the nonperturbative definition of nonlinear optical susceptibility, using the frequency domain system polarization p(?). Spatial contributions of electrons to ? are analyzed based on the dynamic hyperpolarizability density map, which visualizes the second-order response of charge density oscillating with a frequency of 2?. We apply the present method to the calculation of the dynamic ? of a series of donor/acceptor substituted polyene oligomers, and then discuss the applicability of the MOQME method to the calculation and analysis of dynamic NLO properties of molecular systems.

  7. On-Orbit Propulsion OMS/RCS

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.

    2001-01-01

    This slide presentation reviews the Space Shuttle's On-Orbit Propulsion systems: the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The functions of each of the systems is described, and the diagrams of the systems are presented. The OMS/RCS thruster is detailed and a trade study comparison of non-toxic propellants is presented.

  8. Shear-induced phase separation and crystallization in semidilute solution of ultrahigh molecular weight polyethylene: Phase diagram in the parameter space of temperature and shear rate

    Microsoft Academic Search

    Hiroki Murase; Yasuo Ohta; Takeji Hashimoto

    2009-01-01

    In the previous papers, we elucidated enhancement of concentration fluctuations, phase separation, and crystallization induced by steady state or step-up shear flow, as observed by shear small-angle light scattering, optical microscopy, and birefringence, for a semidilute solution of ultrahigh molecular weight polyethylene in paraffin as an athermal solvent. However the studies were done only at a given temperature of 124°C,

  9. Venn Diagram Shape Sorter

    NSDL National Science Digital Library

    2010-01-01

    In this activity, students practice placing big and small shapes into Venn diagrams depending on the rules of the diagram. Students can either specify these rules or have the applet assign the rules so they can try to figure them out by placing shapes in the diagram. This activity allows students to explore Venn diagrams and the terms associated with set theory. This activity includes supplemental materials, including background information about the topics covered, a description of how to use the application, and exploration questions for use with the java applet.

  10. Semi-emprical Molecular Orbital Calculation on HF Calculate the wavefunctions and energies of the orbitals in the HF molecule, taking = -1.0 eV. The values

    E-print Network

    Rioux, Frank

    and gets credit, according to the appended MO diagram for six non-bonding electrons, plus 96% of the two. As is usually the case, Mathcad requires seed values or actual values for all the variables that appear

  11. Space Shuttle Orbiter auxiliary power unit status

    NASA Technical Reports Server (NTRS)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    1991-01-01

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  12. Preparation and Characterization of [pi]-Stacking Quinodimethane Oligothiophenes. Predicting Semiconductor Behavior and Bandwidths from Crystal Structures and Molecular Orbital Calculations

    SciTech Connect

    Janzen, Daron E.; Burand, Michael W.; Ewbank, Paul C.; Pappenfus, Ted M.; Higuchi, Hiroyuki; da Silva, Demetrio A.; Young, Victor G.; Bredas, Jean-Luc; Mann, Kent R. (GIT); (Minnesota); (Toyama)

    2010-11-16

    A series of new quinodimethane-substituted terthiophene and quaterthiophene oligomers has been investigated for comparison with a previously studied quinoid oligothiophene that has demonstrated high mobilities and ambipolar transport behavior in thin-film transistor devices. Each new quinoidal thiophene derivative shows a reversible one-electron oxidation between 0.85 and 1.32 V, a quasi-reversible one-electron second oxidation between 1.37 and 1.96 V, and a reversible two-electron reduction between -0.05 and -0.23 V. The solution UV-vis-NIR spectrum of each compound is dominated by an intense epsilon congruent with 100,000 M{sup -1} cm{sup -1} low energy pi-pi transition that has a lambda(max) ranging between 648 and 790 nm. All X-ray crystal structures exhibit very planar quinoidal backbones and short intermolecular pi-stacking distances (3.335-3.492 A). Structures exhibit a single pi-stacking distance with parallel cofacial stacking (sulfur atoms of equivalent rings pointed in the same direction) or with alternating distances and antiparallel cofacial stacking (sulfur atoms of equivalent rings pointed in the opposite direction). Examples of the layered and herringbone-packing motifs are observed for both the parallel and the antiparallel cofacial stacking. Analysis of the X-ray structures and molecular orbital calculations indicates that all of these compounds have one-dimensional electronic band structures as a result of the pi-stacking. For structures with a unique pi-stacking distance, a simple geometric overlap parameter calculated from the shape of the molecule and the slip from perfect registry in the pi-stack correlates well with the transfer integrals (t) calculated using molecular orbital theory. The calculated valence (633 meV) and conduction (834 meV) bandwidths for a quinoid quaterthiophene structure are similar to those calculated for the benchmark pentacene and indicate that both hole and electron mobilities could be significant.

  13. Algorithmic phase diagrams

    NASA Technical Reports Server (NTRS)

    Hockney, Roger

    1987-01-01

    Algorithmic phase diagrams are a neat and compact representation of the results of comparing the execution time of several algorithms for the solution of the same problem. As an example, the recent results are shown of Gannon and Van Rosendale on the solution of multiple tridiagonal systems of equations in the form of such diagrams. The act of preparing these diagrams has revealed an unexpectedly complex relationship between the best algorithm and the number and size of the tridiagonal systems, which was not evident from the algebraic formulae in the original paper. Even so, for a particular computer, one diagram suffices to predict the best algorithm for all problems that are likely to be encountered the prediction being read directly from the diagram without complex calculation.

  14. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid.

    PubMed

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2014-11-11

    The solid phase FT-IR and FT-Raman spectra of 2-hydroxybenzoic acid (salicylic acid) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method at 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimentally obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method is employed to predict its absorption energy and oscillator strength. The linear polarizability (?) and the first order hyper polarizability (?) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) are also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. PMID:24858354

  15. Bonding, Backbonding and Spin-Polarized Molecular Orbitals: Basis for Magnetism and Semiconducting Transport in V[TCNE]x˜2

    NASA Astrophysics Data System (ADS)

    Kortright, Jeffrey; Lincoln, Derek; Shima Edelstein, Ruth; Epstein, Arthur

    2009-03-01

    V[TCNE]x˜2 films exhibit magnetic order up to 400 K, magneto-resistance, and photo-induced magnetism. Yet the spin-polarized interactions between the TM and molecular species underlying these properties have remained elusive, in part because of its structural disorder. Using element-specific x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (MCD) at the V L edges, and the C and N K edges we have gained new insight into these mechanisms [1]. We find evidence for covalent bonding between the V eg and TCNE ? MO states, and a weaker interaction between V t2g and TCNE ? MO states, consistent with a generalized bonding/backbonding model with V octahedrally coordinated by N in ?-bridging positions between TCNE radical anions. C and N XAS and MCD reveal spin-polarized splitting of the former LUMO of neutral TCNE, indicating that a direct exchange interaction underlies these properties. This indicates an active role of TCNE^- in the magnetic properties of extended V[TCNE]x˜2 and related systems, which is distinctly different from superexchange models generally used to describe magnetic Prussian blue analogs. [1] Phys. Rev. Lett. 100, 257204 (2008).

  16. Yukawa Monte Carlo (YMC) and Orbital Free Molecular Dynamics (OFMD) approaches for the eos of warm dense iron plasma

    NASA Astrophysics Data System (ADS)

    Gilles, Dominique; Lambert, Flavien; Clerouin, Jean

    2008-04-01

    Yukawa Monte Carlo and Molecular Dynamics simulations are powerful techniques extensively used to compute plasma properties such as EOS or transport coefficients, but are limited to applications where the linear electronic screening assumption is valid (1). Recently we have shown that a modified scheme using density functional theory with a Thomas-Fermi kinetic energy functional for the electrons (OFMD) may be well suited to perform MD simulations at high densities and temperature, without any assumption on the electronic screening (2). For selected iron plasma conditions representative of warm and dense matter, we shall compare pressure results calculated using YMC and OFMD codes and QEOS (3) and Sesame EOS models (4) and discuss the influence of keys parameters, like ionization in Yukawa theory. References: [1] D. Gilles, O. Peyrusse, JQSRT 53, 6, 1995. ;Caillol J-M, Gilles D., J. Stat Phys. 100, N5/6, 905-947, 2000; Caillol J-M, Gilles D., J. Phys. A 36, 6243, (2003) ; A. Potekhin, G. Chabrier, Gilles, PRE 65, 036412, 2002. [2] D. Gilles, F. Lambert, J. Cl'erouin, S. Mazevet, Gwena"el Salin, HEDP 3, 95-98, 2007; F. Lambert, J. Cl'erouin, S. Mazevet, D. Gilles, Plama Physics, 47,4-5, 272-280(2007). [3] R.M. More, Lawrence Livermore Laboratory Report, UCRL-84991, (1981). [4] G.I. Kerley, User's Manual for PANDA : A computer Code for calculating Equation of State, Los Alamos National Laboratory, 1981 (LA8833).

  17. Localized orbital corrections applied to thermochemical errors in density functional theory: The role of basis set and application to molecular reactions

    PubMed Central

    Goldfeld, Dahlia A.; Bochevarov, Arteum D.; Friesner, Richard A.

    2008-01-01

    This paper is a logical continuation of the 22 parameter, localized orbital correction (LOC) methodology that we developed in previous papers [R. A. Friesner , J. Chem. Phys. 125, 124107 (2006); E. H. Knoll and R. A. Friesner, J. Phys. Chem. B 110, 18787 (2006).] This methodology allows one to redress systematic density functional theory (DFT) errors, rooted in DFT’s inherent inability to accurately describe nondynamical correlation. Variants of the LOC scheme, in conjunction with B3LYP (denoted as B3LYP-LOC), were previously applied to enthalpies of formation, ionization potentials, and electron affinities and showed impressive reduction in the errors. In this paper, we demonstrate for the first time that the B3LYP-LOC scheme is robust across different basis sets [6-31G*, 6-311++G(3df,3pd), cc-pVTZ, and aug-cc-pVTZ] and reaction types (atomization reactions and molecular reactions). For example, for a test set of 70 molecular reactions, the LOC scheme reduces their mean unsigned error from 4.7 kcal?mol [obtained with B3LYP?6-311++G(3df,3pd)] to 0.8 kcal?mol. We also verified whether the LOC methodology would be equally successful if applied to the promising M05-2X functional. We conclude that although M05-2X produces better reaction enthalpies than B3LYP, the LOC scheme does not combine nearly as successfully with M05-2X than with B3LYP. A brief analysis of another functional, M06-2X, reveals that it is more accurate than M05-2X but its combination with LOC still cannot compete in accuracy with B3LYP-LOC. Indeed, B3LYP-LOC remains the best method of computing reaction enthalpies. PMID:19063542

  18. Quantum mechanical calculations and spectroscopic (FT-IR, FT-Raman and UV) investigations, molecular orbital, NLO, NBO, NLMO and MESP analysis of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl] benzene-1-sulfonamide

    NASA Astrophysics Data System (ADS)

    Govindasamy, P.; Gunasekaran, S.

    2015-02-01

    The molecular structural parameters and vibrational frequencies of the fundamental modes of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl] benzene-1-sulfonamide(abbreviated as 4MPTFM1HPB1SA) have been obtained using Density functional theory (DFT) technique in the B3LYP approximation with 6-311G(d,p) and 6-311++G(d,p) basis sets. Detailed vibrational assignments of the observed FT-IR and FT-Raman bands have been proposed on the basis of potential energy distribution (PED). The difference between the observed and the calculated wavenumbers values are very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The molecular electrostatic potential has been mapped primarily for predicting sites and relative reactivities toward electrophilic and nucleophilic attack. The intramolecular contacts have been interpreted using Natural Bond Orbital (NBO) and Natural Localized Molecular Orbital (NLMO) analysis. Important non-linear properties such as electric dipolemoment and first hyperpolarizability of 4MPTFM1HPB1SA have been computed using B3LYP quantum chemical calculation. The absorption wavelength, energy and oscillator's strength are calculated by TD-DFT and 4MPTFM1HPB1SA is approach complement with the experimental findings. The temperature dependence of thermodynamic properties has been analyzed. The Natural charges, Frontier molecular orbitals (FMOs), chemical hardness (?), chemical potential (?), Electro negativity (?) and electrophilicity values (?) are calculated and reported.

  19. Orbital mechanics

    Microsoft Academic Search

    Vladimir A. Chobotov

    1991-01-01

    The present work on the 'applied', or engineering-related aspects of orbital mechanics gives attention to the geographic and azimuth-elevation coordinate systems, as well as their transformations; the orbital parameters of a satellite; the universal approach to a body's position and velocity as a function of time, and geodetic and geocentric altitudes; and such issues in orbital maneuvering as the general

  20. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.

    PubMed

    Nagata, Takeshi; Fedorov, Dmitri G; Li, Hui; Kitaura, Kazuo

    2012-05-28

    A new energy expression is proposed for the fragment molecular orbital method interfaced with the polarizable continuum model (FMO/PCM). The solvation free energy is shown to be more accurate on a set of representative polypeptides with neutral and charged residues, in comparison to the original formulation at the same level of the many-body expansion of the electrostatic potential determining the apparent surface charges. The analytic first derivative of the energy with respect to nuclear coordinates is formulated at the second-order Møller-Plesset (MP2) perturbation theory level combined with PCM, for which we derived coupled perturbed Hartree-Fock equations. The accuracy of the analytic gradient is demonstrated on test calculations in comparison to numeric gradient. Geometry optimization of the small Trp-cage protein (PDB: 1L2Y) is performed with FMO/PCM/6-31(+)G(d) at the MP2 and restricted Hartree-Fock with empirical dispersion (RHF/D). The root mean square deviations between the FMO optimized and NMR experimental structure are found to be 0.414 and 0.426 A? for RHF/D and MP2, respectively. The details of the hydrogen bond network in the Trp-cage protein are revealed. PMID:22667545

  1. Interactions of metal ions with water: ab initio molecular orbital studies of structure, vibrational frequencies, charge distributions, bonding enthalpies, and deprotonation enthalpies. 2. Monohydroxides.

    PubMed

    Trachtman, M; Markham, G D; Glusker, J P; George, P; Bock, C W

    2001-08-13

    The formation and properties of a wide range of metal ion monohydroxides, M(n)(+)[OH(-)], where n = 1 and 2, have been studied by ab initio molecular orbital calculations at the MP2(FULL)/6-311++G**//MP2(FULL)/6-311++G** and CCSD(T)(FULL)/6-311++G**//MP2(FULL)/6-311++G** computational levels. The ions M(n)()(+) are from groups 1A, 2A, 3A, and 4A in the second, third, and fourth periods of the Periodic Table and from the first transition series. Geometrical parameters, vibrational frequencies, atomic charge distributions, orbital occupancies, and bonding enthalpies are reported. The M(n)(+)-O distances are shorter in the hydroxides than in the corresponding hydrates (published previously as Part 1, Inorg. Chem. 1998, 37, 4421-4431) due to a greater electrostatic interaction in the hydroxides. The natural bond orbitals for most of the first-row transition metal ion hydroxides do not contain a formal metal-oxygen bonding orbital; nevertheless the atomic charge distributions show that for both n = 1 and 2 a significant amount of electron density is consistently transferred from the hydroxide ion to the bound metal ion. Deprotonation enthalpies for the hydrates have been evaluated according to the simple dissociation process, M(n)(+)[OH(2)] --> M(n)(+)[OH(-)] + H(+), and also via proton transfer to another water molecule, M(n)(+)[OH(2)] + H(2)O --> M(n)(+)[OH(-)] + H(3)O(+). The drastic reduction in these deprotonation enthalpies as H(2)O molecules are sequentially bonded in the first coordination shell of the metal ion (amounting to 71, 64, 85, and 91 kcal/mol for the bonding of six water molecules to Mg(2+), Ca(2+), Mn(2+), and Zn(2+), respectively) is found to be due to the greater decrease in the bonding enthalpies for the hydroxides relative to the hydrates. Proton transfer to bases other than water, for example side chain groups of certain amino acids, could more than offset the decrease in deprotonation energy due to the filling of the first coordination shell. Linear relationships have been found between the pK(a) values for ionization of the Mg(2+), Ca(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+) aquo ions, and Delta for the bonding of the first water molecule, for the bonding of the hydroxide ion, and for proton dissociation from the monohydrate. Similar relationships have also been found between the pK(a) values and the reciprocal of the M-O bond lengths in both the monohydrates and hydroxides. Thus the ionization of metal hydrates in water echoes the properties of the monomeric species M(n)(+)[OH(2)]. PMID:11487327

  2. The geometry of polynomial diagrams

    E-print Network

    Maksim Alennikov

    2015-02-18

    In this paper we introduce the concept of polynomial diagrams and its area for special polynomials.We study the properties of polynomial area diagrams. The formula for the area of an arbitrary polynomial diagram.

  3. Phase Diagrams in Vivo

    NSDL National Science Digital Library

    This activity uses three experiments for students to construct a phase diagram; the experiments have been videotaped and can be seen online. The purpose of this laboratory as designed is to gain familiarity with simple phase diagrams, their construction, and their applications to the understanding of geological and environmental problems. Subsidiary objectives include development of strategies for data processing including evaluation of assumptions and sources of errors, as well as honing of computer, spreadsheet, presentation (tabular and graphical), and report writing skills.

  4. An Effective Hamiltonian Molecular Orbital-Valence Bond (MOVB) Approach for Chemical Reactions Applied to the Nucleophilic Substitution Reaction of Hydrosulfide Ion and Chloromethane

    PubMed Central

    Song, Lingchun; Mo, Yirong; Gao, Jiali

    2009-01-01

    An effective Hamiltonian mixed molecular orbital and valence bond (EH-MOVB) method is described to obtain an accurate potential energy surface for chemical reactions. Building upon previous results on the construction of diabatic and adiabatic potential surfaces using ab initio MOVB theory, we introduce a diabatic-coupling scaling factor to uniformly scale the ab initio off-diagonal matrix element H12 such that the computed energy of reaction from the EH-MOVB method is in agreement with the target value. The scaling factor is very close to unity, resulting in minimal alteration of the potential energy surface of the original MOVB model. Furthermore, the relative energy between the reactant and product diabatic states in the EH-MOVB method can be improved to match the experimental energy of reaction. A key ingredient in the EH-MOVB theory is that the off-diagonal matrix elements are functions of all degrees of freedom of the system and the overlap matrix is explicitly evaluated. The EH-MOVB method has been applied to the nucleophilic substitution reaction between hydrosulfide and chloromethane to illustrate the methodology and the results were matched to reproduce the results from ab initio valence bond self-consistent valence bond (VBSCF) calculations. The diabatic coupling (the off-diagonal matrix element in the generalized secular equation) has small variations along the minimum energy reaction path in the EH-MOVB model, whereas it shows a maximum value at the transition state and has nearly zero values in the regions of the ion-dipole complexes from VBSCF calculations. The difference in the diabatic coupling stabilization is attributed to the large overlap integral in the computationally efficient MOVB method. PMID:20047006

  5. Natural bond orbital analysis of steric interactions

    Microsoft Academic Search

    J. K. Badenhoop; F. Weinhold

    1997-01-01

    We describe an ab initio procedure for extracting the Pauli exchange antisymmetry (“steric”) contributions to molecular potential energy in the framework of self-consistent-field molecular orbital (SCFMO) theory. This “natural steric analysis” method is based on natural bond orbital (NBO) representation of the SCFMO wave function, which allows the steric exchange energy to be approximated as an energy difference between “preorthogonal”

  6. Orbital Decompression

    MedlinePLUS

    ... treat a variety of eye related diseases. The orbit (eye socket) is a space within your skull that ... has then effectively enlarged the space of the orbit which in turn “decompresses” the entire eye. At the end of the surgery, there is ...

  7. Diblock copolymer phase diagram

    NSDL National Science Digital Library

    Iacovella, Christopher R.

    2006-11-20

    Adaptation of the Matsen and Bates BCP phase diagram predicted using Mean-field Theory. * Matsen MW, Bates FS, ''http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ma951138i Unifying weak- and strong-segregation block copolymer theories. Diblock copolymer phase diagram as calculated using Mean-field Theory by Matsen and Bates, where fA is the Block fraction, ? is the Flory-Huggins Chi Parameter, and N is the length of the block.

  8. Voronoi Diagrams Delaunay Triangulations

    E-print Network

    Kazhdan, Michael

    Voronoi Diagrams and Delaunay Triangulations O'Rourke, Chapter 5 #12;Lloyd's Algorithm (Uniform,1 2 where , = min | - |. #12;Lloyd's Algorithm (Uniform) Approach: 1. Initialize the points;Lloyd's Algorithm (Uniform) #12;Largest Empty Circle Claim: The largest empty (interior) circle within

  9. Alloy phase diagrams

    Microsoft Academic Search

    L. H. Bennett; B. C. Giessen; T. B. Massalski

    1984-01-01

    These proceedings collect papers presented at a symposium on alloy phase diagrams. Topics include: Crystal phase transformations; order-disorder transformations; crystal lattices; metallic glasses; metastable states; solubility; binary alloy systems; and alloys of iron, tantalum, silicon, aluminum, germanium, palladium, copper, and nickel.

  10. Venn Diagrams and Logic

    NSDL National Science Digital Library

    2011-01-04

    This math lesson from Illuminations uses Venn diagrams to illustrate direct, indirect and transitive reasoning. Students will learn the definitions of direct, indirect and transitive reasoning and give examples of each. Several student activity sheets are included. The material is intended for grades 9-12 and should require 2 and a half class periods to complete.

  11. Disorder and the extent of polymerization in calcium silicate and aluminosilicate glasses: O-17 NMR results and quantum chemical molecular orbital calculations

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun; Stebbins, Jonathan F.

    2006-08-01

    Estimation of the framework connectivity and the atomic structure of depolymerized silicate melts and glasses (NBO/T > 0) remains a difficult question in high-temperature geochemistry relevant to magmatic processes and glass science. Here, we explore the extent of disorder and the nature of polymerization in binary Ca-silicate and ternary Ca-aluminosilicate glasses with varying NBO/T (from 0 to 2.67) using O-17 NMR at two different magnetic fields of 9.4 and 14.1 T in conjunction with quantum chemical calculations. Non-random distributions among framework cations (Si and Al) are demonstrated in the variation of relative populations of oxygen sites with NBO/T. The proportion of non-bridging oxygen (NBO, Ca-O-Si) in the binary and ternary aluminosilicate glasses increases with NBO/T. While the trend is consistent with predictions from composition, the detailed fractions apparently deviate from the predicted values, suggesting further complications in the nature of polymerization. The proportion of each bridging oxygen in the glasses also varies with NBO/T. The fractions of Al-O-Si and Al-O-Al increase with increasing polymerization as CaO is replaced with Al 2O 3, while that of Si-O-Si seems to decrease, implying that activity of silica may decrease from calcium silicate to polymerized aluminosilicates (X=constant). Quantum chemical molecular orbital calculations based on density functional theory show that a silicate chain with Al-NBO (Ca-O-Al) has an energy penalty (calculated cluster energy difference) of about 108 kJ/mol compared with the cluster with Ca-O-Si, consistent with preferential depolymerization of Si-networks, reported in an earlier O-17 NMR study [Allwardt, J., Lee, S.K., Stebbins, J.F., 2003. Bonding preferences of non-bridging oxygens in calcium aluminosilicate glass: Evidence from O-17 MAS and 3QMAS NMR on calcium aluminate glass. Am. Mineral.88, 949-954]. These prominent types of non-randomness in the distributions suggest significant chemical order in silicate glasses that leads to a decrease in silica activity coefficient and will be useful in modeling transport properties of melts.

  12. Conjugated polymers based on benzo[2,1-b:3,4-b']dithiophene with low-lying highest occupied molecular orbital energy levels for organic photovoltaics.

    PubMed

    Xiao, Shengqiang; Stuart, Andrew C; Liu, Shubin; You, Wei

    2009-07-01

    Fusing bithiophene units with a benzo moiety, benzo[2,1-b:3,4-b']dithiophene (BDT), was projected by theoretical calculations to lower the highest occupied molecular orbital (HOMO) energy level of the resulting polymers compared with that of the bithiophene unit, which would enhance the open circuit voltage of bulk heterojunction photovoltaic cells fabricated from BDT-based polymers blended with PCBM. The homopolymer of BDT (HMPBDT) and alternating copolymer of BDT with 2,1,3-benzothiadiazole (PBDT-BT) were therefore synthesized and fully characterized. Both the homopolymer (HMPBDT) and the copolymer (PBDT-BT) were experimentally confirmed to have low HOMO energy levels (-5.70 eV for HMPBDT and -5.34 eV for PBDT-BT). Introducing the acceptor moiety (2,1,3-benzothiadiazole) successfully lowered the optical band gap of the copolymer from 2.31 eV (HMPBDT) to 1.78 eV (PBDT-BT). Bulk heterojunction photovoltaic devices were fabricated from blends of these structurally related polymers with PBCM to investigate the photovoltaic performances. The optimized device of HMPBDT:PCBM (1:3, 180 nm) exhibited an improved open circuit voltage (V(oc)) of 0.76 V, a short circuit current (J(sc)) of 0.34 mA/cm(2), and a fill factor (FF) of 0.40, offering an overall efficiency of 0.10%. The observed large phase separation of the thin film by AFM and the large band gap were accountable for the small current. The optimized device of PBDT-BT:PCBM (1:3, 55 nm) demonstrated a better efficiency of 0.6%, with V(oc) = 0.72 V, J(sc) = 2.06 mA/cm(2), and FF = 0.42. The much improved current was attributed to the lower bandgap and better film morphology. However, the low hole mobility limited the thickness of the PBDT-BT:PCBM film, making inaccessible the thicker film which would utilize more light and enhance the current. Further improvements are expected if the mobility and film morphology can be improved by the new materials design, together with low band gap and low HOMO energy level. PMID:20355969

  13. Molecular orbital cluster calculation study of electron correlation and local lattice instability in La{sub 2-2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7}

    SciTech Connect

    Miyaki, Satoru; Uzuhara, Shinji; Terada, Kazuto; Makoshi, Kenji; Koizumi, Hiroyasu [Graduate School of Material Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2005-02-15

    In order to examine covalence and polaron effects in the bilayer manganite La{sub 2-2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7}, we have performed molecular orbital cluster calculations. Two types of (Mn{sub 2}O{sub 11}){sup 15-} clusters, one with the manganese aligned in the a direction and the other in the c direction, were embedded in a point charge environment that mimicked the crystal environment of the bilayer manganite at x=0.40, and their electronic states were calculated by the unrestricted Hartree-Fock (UHF) and the complete active-space self-consistent field (CASSCF) methods. The CASSCF result for the cluster along the a direction exhibits double-well potential energy surfaces for symmetry-breaking deformations. This indicates small polaron formation in this system. On the other hand, the UHF calculation did not give double-well potential surfaces, showing the importance of the electron correlation for the polaron formation. Significantly large wells are obtained for the in-plane antiphase breathing and in-plane antiphase O-Mn-O stretching deformations. The double-well barrier for the former is 68 meV and that for the latter is 92 meV, where the former is close to the experimentally obtained polaron hopping activation energy above T{sub c}. A similar calculation for the cluster along the c direction exhibits a negligibly small double well, indicating that the polaron effect is very small in the carrier hopping in the c direction within a bilayer. Electronic structures have been investigated using natural orbitals. At a double-well minimum, a localized polaron orbital is seen. In the ground state, a small but significant hole population is found in p orbitals of the bridging oxygen, and a slight electron population is found in the e{sub g} orbital above the localized polaron orbital. For the cluster along the a direction and without deformation, the first excited state is an electron-transfer state where an electron is moved from the bridging oxygen p{sub z} to a manganese e{sub g} orbital. This excited state couples with the ground state by the pseudo-Jahn-Teller effect, thus, the polaron is the 'pseudo-Jahn-Teller polaron'. Using the natural orbitals, we have calculated magnetic Compton profiles and compared with experiment. Comparison between the experimental and theoretical results suggests the presence of polarons below T{sub c}. We briefly discuss the implication of this result in relation to the colossal magnetoresistance effect.

  14. Molecular orbital (SCF-X?-SW) theory of metal-metal charge transfer processes in minerals - II. Application to Fe2+ --> Ti4+ charge transfer transitions in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1987-01-01

    A molecular orbital description, based on X?-Scattered wave calculations on a (FeTiO10)14? cluster, is given for Fe2+ ? Ti4+ charge transfer transitions in minerals. The calculated energy for the lowest Fe2+ ? Ti4+ metal-metal charge transfer transition is 18040 cm?1 in reasonable agreement with energies observed in the optical spectra of Fe-Ti oxides and silicates. As in the case of Fe2+ ? Fe3+ charge transfer in mixed-valence iron oxides and silicates, Fe2+ ? Ti4+ charge transfer is associated with Fe-Ti bonding across shared polyhedral edges. Such bonding results from the overlap of the Fe(t 2g ) and Ti(t 2g ) 3d orbitals.

  15. Orbital Dynamics

    NSDL National Science Digital Library

    This video from SpaceTEC National Aerospace Technical Education Center explains the mechanics of orbital dynamics and Newton's first law of motion. This three minute video is one of the aerospace certification readiness courses.

  16. Vibrational spectra (experimental and theoretical), molecular structure, natural bond orbital, HOMO-LUMO energy, Mulliken charge and thermodynamic analysis of N?-hydroxy-pyrimidine-2-carboximidamide by DFT approach

    NASA Astrophysics Data System (ADS)

    Jeeva Jasmine, N.; Thomas Muthiah, P.; Arunagiri, C.; Subashini, A.

    2015-06-01

    The FT-IR, FT-Raman, 1H, 13C NMR and UV-Visible spectral measurements of N?-hydroxy-pyrimidine-2-carboximidamide (HPCI) and complete analysis of the observed spectra have been proposed. DFT calculation has been performed and the structural parameters of the compound was determined from the optimized geometry with 6-311+G(d,p) basis set and giving energies, harmonic vibrational frequencies and force constants. The results of the optimized molecular structure are presented and compared with the experimental. The geometric parameters, harmonic vibrational frequencies and chemical shifts were compared with the experimental data of the molecule. The title compound, C5H6N4O, is approximately planar, with an angle of 11.04 (15)°. The crystal structure is also stabilized by intermolecular N-H⋯O, N-H⋯N, O-H⋯N, C-H⋯O hydrogen bond and offset ?-? stacking interactions. The influences of hydroxy and carboximidamide groups on the skeletal modes and proton chemical shifts have been investigated. Moreover, we have not only simulated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) but also determined the transition state and band gap. The kinetic, thermodynamic stability and chemical hardness of the molecule have been determined. Complete NBO analysis was also carried out to find out the intermolecular electronic interactions and their stabilization energy. The thermodynamic properties like entropies and their correlations with temperatures were also obtained from the harmonic frequencies of the optimized structure.

  17. Orbital resonances in exoplanetary systems

    NASA Astrophysics Data System (ADS)

    Popova, E. A.; Shevchenko, I. I.

    2014-12-01

    At present, more than 700 exoplanetary systems are known to have been discovered. They incorporate more than 130 multiplanet systems, i.e. those hosting two or more planets. The orbital resonance and near-resonance phenomena are ubiquitous in them. We present a statistical and dynamical analysis of the resonance structure of the multiplanet systems and planetary systems of binary stars. We have built distributions of the orbital period ratios, separately considering the cases of inner and outer location of the massive perturber. The histograms reveal apparent peaks close to the first order orbital resonances 2/1 and 3/2 in both cases; this confirms previous findings. We have performed analytical modelling of the histograms, and obtained exact positions of the peaks. Moreover, we have built the "period ratio – eccentricity" diagrams, with collision curves superimposed, so that to find anomalous systems.

  18. A Feynman Diagram Analyser DIANA

    E-print Network

    M. Tentyukov; J. Fleischer

    1999-04-07

    A C-program DIANA (DIagram ANAlyser) for the automatic Feynman diagram evaluation is presented. It consists of two parts: the analyzer of diagrams and the interpreter of a special text manipulating language. This language is used to create a source code for analytical or numerical evaluations and to keep the control of the process in general.

  19. On web diagrams Jun Murakami

    E-print Network

    On web diagrams Jun Murakami Department of Mathematics, Graduate School of Science, Osaka­ tive invariant is defined in the space of web diagrams, and it includes the Casson­ Walker invariant of the mapping class groups. (cf. [9], [10]) 2. Web space 2.1. Web diagram. To explain the universal perturbative

  20. Energy Diagram Explorer

    NSDL National Science Digital Library

    Zollman, Dean

    This resource illustrates classical energy diagrams for 1D motion. It simulates an experiment where the energy of a cart with a magnet can be changed by putting magnets along a track. The resultant potential and kinetic energy are shown, along with the motion of the cart. The positions and polarities of the track magnets, and the position, total energy, mass, and friction of the cart can all be changed.

  1. Molecular Menagerie

    NSDL National Science Digital Library

    Howard Hughes Medical Institute

    2002-01-01

    In this activity, learners use molecular model kits to construct familiar molecules like lactose, caffeine, and Aspirin. This activity helps learners understand how scientists use models to study molecules as well as how advances in 3-D graphics have made the use of computer models much easier. This activity guide includes chemical formulas and 3-D structural diagrams of various natural and artificial molecules. Note: the cost of molecular model kits is included in the estimated cost of materials.

  2. Inclusion of mean-field spin-orbit effects based on all-electron two-component spinors: Pilot calculations on atomic and molecular properties

    NASA Astrophysics Data System (ADS)

    Iliaš, Miroslav; Kellö, Vladimír; Visscher, Lucas; Schimmelpfennig, Bernd

    2001-12-01

    An implementation of a two-component all-electron (jj/??) treatment of both scalar and spin-orbit relativistic effects in the MOLFDIR program suite is presented. Relativity is accounted for by Douglas-Kroll transformed one-electron operators: scalar (spin-free) and so called mean-field spin-orbit terms. The interelectronic interaction is represented by the nonrelativistic Coulomb operator. High-level correlated calculations of properties of several systems (FO, ClO, Cl, O2+, O2-, Tl, and TlH) where spin-orbit effects play a dominant role are presented and compared with other data. Agreement with Dirac-Coulomb(-Gaunt) reference values is in general very good.

  3. The Extent of Disorder among Charge-balancing Cations in Silicate Glasses and Melts: Spectroscopic Analysis and ab initio Molecular Orbital Calculations

    NASA Astrophysics Data System (ADS)

    Lee, S.; Doyle, C. S.; Stebbins, J. F.

    2001-12-01

    Aluminosilicate melts are one of the dominant components in upper mantle and crust. Essential to the thermodynamic and transport properties of these systems is the full understanding on the atomic arrangements and the extent of disorder. Recent quantification of the extent of disorder among 'framework cations' in silicate melts using NMR provided improved prospects on the atomic structure of the glasses and melt and their corresponding properties and allowed the degree of randomness to be evaluated in terms of the degree of Al-avoidance (Q) and degree of phase separations (P) (Lee and Stebbins, J. Phys. Chem. B 104, 4091; Lee and Stebbins, GCA in press). Quantitative estimation of the extent of disorder among 'charge-balancing cations' including Na in aluminosilicate glasses, however, has remained an unsolved problem and these cations have often been assumed to be randomly distributed. Here, we explore the intermediate range order around Na in charge-balanced aluminosilicate glasses using Na-23 NMR and Near-edge X-ray absorption fine structure (NEXAFS) with full multiple scattering (FMS) simulations combined with ab initio molecular orbital calculations. We also quantify the extent of disorder in charge balancing cations as a function of Na-O bond length (d(Na-O)) distribution with composition and present a structural model favoring ordered Na distributions. Peak position in Na-23 magic angle spinning (MAS) spectra of aluminosilicate glasses with varying R (Si/Al) at 14.1 T varies from -10.28 ppm (R = 0.7) to -19.98 ppm (R = 6). These results suggest that average d(Na-O) increases with increasing R, which is confirmed by Na-23 multiple quantum MAS spectra where the chemical shift moves toward lower frequency with increasing Si and shows the individual Gaussian components of Na-O distributions such as Na-(Al-O-Al), Na-(Si-O-Al) and Na-(Si-O-Si). Calculated d(Na-(Al-O-Al)) of 2.57 Å is shorter than d(Na-(Si-O-Si)) of 2.88 Å. Strong compositional dependence is further manifested in Na K-edge NEXAFS spectra for aluminosilicate glasses that are characterized by two main peaks at about 1057 ev (A) and 1062 ev (B). The intensity ratio between peak A and B increases with increasing R, which is consistent with our FMS simulations of model clusters with R and implies that the Na has rather well ordered oxygen coordination and Na-O distribution depends on the types of nearby framework cations. The potential energy surfaces for model six-member rings (NaAl2Si4O6(OH)12, with and without Al-O-Al) were calculated using ab initio calculations at the HF/6-311G(d) level in order to investigate the equilibrium atomic configurations around Na. The results manifest the varying bonding preference of Na to different framework oxygens. Na is located at single deep and narrow basin in potential energy surfaces. The motion of Na is therefore restricted to near equilibrium position even at higher temperature contrary to conventional random distribution model with moderate Na mobility, demonstrating that dynamics of Na should be associated with the collective motions of framework cations and oxygens. In this study, we provide new insights into the nature of disorder in charge-balancing cations in silicate glasses using spectroscopy combined with simulations, highlighting more complete, atomic-level understanding on the dynamic processes in silicate magmas.

  4. Electronic structure of the dioxygen to transition metal bond: generalized molecular orbital calculations on models of manganese, iron, and cobalt porphyrins

    E-print Network

    Newton, James Edward

    1982-01-01

    -02 bond in Co (02)(N4C2H6)(NH3) is best described as a dative 0 to Co . The in-plane bonding combination of the Co 2 3 d 2 and 02 l~ orbitals is centered on the 0 atom, while the anti- s 9 2 iv bonding combination is pr1marily 3 d &. The CI...elded ground-state configurations with the three unpaired electrons in Mn 3 d orbitals. The total energy of the Pauling geometry was 18 kcal/mole lower than the total energy of the Griff1th geometry. This suggests that the end-on, bent description...

  5. Vanishing rainbows near orbiting and the energy dependence of rainbow scattering - Relation to properties of the potential. [molecular beam scattering cross sections

    NASA Technical Reports Server (NTRS)

    Greene, E. F.; Hall, R. B.; Mason, E. A.

    1975-01-01

    The energy threshold behavior of elastic rainbow scattering near the transition to orbiting is derived. Analysis of the energy dependence of the rainbow angle shows that the full range from high energies down to orbiting can be fitted with two parameters. Thus, measurements of the rainbow angle can give essentially only two pieces of information about the potential. For potentials of common shapes, such measurements are sensitive to regions of the potential just beyond the minimum and give information about the shape of the potential in this range. However, neither a minimum nor a point of inflection in the potential is necessary for rainbow scattering.

  6. Symmetry and broken symmetry in molecular orbital description of unstable molecules IV: comparison between single- and multi-reference computational results for antiaromtic molecules

    Microsoft Academic Search

    Toru Saito; Satomichi Nishihara; Shusuke Yamanaka; Yasutaka Kitagawa; Takashi Kawakami; Satoru Yamada; Hiroshi Isobe; Mitsutaka Okumura; Kizashi Yamaguchi

    First principle calculations of the effective exchange integrals (J) in the Heisenberg model for diradical species are presented for both symmetry-adapted multi-reference (MR) and single-reference\\u000a broken-symmetry (BS) methods. The Mukherjee-type state-specific MR coupled cluster singles and doubles (MkCCSD) method with\\u000a several different reference orbitals including BS natural orbitals is used to calculate the singlet–triplet energy gaps (S–T\\u000a energy gap or

  7. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (compiler); Su, S. Y. (compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  8. Payload/orbiter contamination control requirement study

    NASA Technical Reports Server (NTRS)

    Bareiss, L. E.; Rantanen, R. O.; Ress, E. B.

    1974-01-01

    A study was conducted to determine and quantify the expected particulate and molecular on-orbit contaminant environment for selected space shuttle payloads as a result of major shuttle orbiter contamination sources. Individual payload susceptibilities to contamination are reviewed. The risk of payload degradation is identified and preliminary recommendations are provided concerning the limiting factors which may depend on operational activities associated with the payload/orbiter interface or upon independent payload functional activities. A basic computer model of the space shuttle orbiter which includes a representative payload configuration is developed. The major orbiter contamination sources, locations, and flux characteristics based upon available data have been defined and modeled.

  9. Molecular orbital studies (hardness, chemical potential, electronegativity and electrophilicity), vibrational spectroscopic investigation and normal coordinate analysis of 5-{1-hydroxy-2-[(propan-2-yl)amino]ethyl}benzene-1,3-diol.

    PubMed

    Muthu, S; Renuga, S

    2014-01-24

    FT-IR and FT-Raman spectra of 5-{1-hydroxy-2-[(propan-2-yl) amino] ethyl} benzene-1,3-diol (abbrevi- 54 ated as HPAEBD) were recorded in the region 4000-450 cm(-1) and 4000-100 cm(-1) respectively. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (B3LYP) and HF method with 6-31 G(d,p) as basis set. The theoretical wave numbers were scaled and compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated Potential energy distribution (PED). Stability of the molecule arising from hyperconjugation and charge delocalization is confirmed by the natural bond orbital analysis (NBO). The results show that electron density (ED) in the ? antibonding orbitals and E (2) energies confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The molecule orbital contributions were studied by using the total (TDOS), sum of ? and ? electron (??DOS) density of States. Mulliken population analysis of atomic charges is also calculated. The calculated HOMO and LUMO energy gap shows that charge transfer occurs within the molecule. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in this compound. On the basis of vibrational analyses, the thermodynamic properties of title compound at different temperatures have been calculated. PMID:24096064

  10. Molecular orbital studies (hardness, chemical potential, electronegativity and electrophilicity), vibrational spectroscopic investigation and normal coordinate analysis of 5-{1-hydroxy-2-[(propan-2-yl)amino]ethyl}benzene-1,3-diol

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Renuga, S.

    2014-01-01

    FT-IR and FT-Raman spectra of 5-{1-hydroxy-2-[(propan-2-yl) amino] ethyl} benzene-1,3-diol (abbrevi- 54 ated as HPAEBD) were recorded in the region 4000-450 cm-1 and 4000-100 cm-1 respectively. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (B3LYP) and HF method with 6-31 G(d,p) as basis set. The theoretical wave numbers were scaled and compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated Potential energy distribution (PED). Stability of the molecule arising from hyperconjugation and charge delocalization is confirmed by the natural bond orbital analysis (NBO). The results show that electron density (ED) in the ? antibonding orbitals and E (2) energies confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The molecule orbital contributions were studied by using the total (TDOS), sum of ? and ? electron (??DOS) density of States. Mulliken population analysis of atomic charges is also calculated. The calculated HOMO and LUMO energy gap shows that charge transfer occurs within the molecule. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in this compound. On the basis of vibrational analyses, the thermodynamic properties of title compound at different temperatures have been calculated.

  11. Molecular orbital studies (hardness, chemical potential and electrophilicity), vibrational investigation and theoretical NBO analysis of 4-4'-(1H-1,2,4-triazol-1-yl methylene) dibenzonitrile based on abinitio and DFT methods.

    PubMed

    Sheela, N R; Muthu, S; Sampathkrishnan, S

    2014-01-01

    The Fourier transform infrared (FTIR) and FT Raman (FTR) of 4-4'-(1H-1, 2, 4-triazol-1-yl methylene) dibenzonitrile (4-HTMDBN) have been recorded and analyzed. The equilibrium geometry harmonic vibrational frequencies have been investigated with the help of standard HF and DFT methods with 6-31G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). Theoretical simulations of the FTIR and FTR spectra of the title compound have been calculated. The (1)H and (13)C Nuclear Magnetic Resonance (NMR) chemical shifts of the molecule were calculated by the Gauge including atomic orbital (GIAO) method. The stability of the molecule has been analyzed using natural bond orbital (NBO) analysis. The linear polarizability (?) and the first order hyperpolarizability (?) values of the investigated molecule have been computed using HF/DFT/6-31G(d,p) methods on the finite field approach. UV-Vis spectrum of the compound is recorded and the electronic properties such as HOMO and LUMO energies, are performed. The directly calculated ionization potential (IP), electron affinity (EA), electronegativity (?), electrophilicity index (?), hardness (?) and chemical potential (?) are all correlated with the HOMO and LUMO energies with their molecular properties. Mulliken population analysis on atomic charges, molecular electrostatic potential maps (MEP) and thermodynamical properties of title compound at different temperature have been calculated. PMID:24184626

  12. The role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    NASA Technical Reports Server (NTRS)

    Roberts, William W., Jr.; Stewart, Glen R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors.

  13. Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functionsIV. Medium size basis sets for the atoms H—Kr

    Microsoft Academic Search

    Kristine Pierloot; Birgit Dumez; Per-Olof Widmark; Björn O. Roos

    1995-01-01

    Summary. Generally contracted Basis sets for the atoms H–Kr have been constructed using the atomic natural orbital (ANO) approach, with modifications for allowing symmetry breaking and state averaging. The ANO’s are constructed by averaging over the most significant electronic states, the ground state of the cation, the ground state of the anion for some atoms and the homonuclear diatomic molecule

  14. Elliptical Orbits

    NSDL National Science Digital Library

    Michael Horton

    2009-05-30

    Although not inquiry, this activity is important for students to understand what an ellipse is and what a focus is, and to break misconceptions about Earth's orbit being highly elliptical. This is the perfect place to check to see if students have the mis

  15. Orbital Mechanics.

    ERIC Educational Resources Information Center

    Dalton, Joel B.

    Three computer programs are presented that allow the high school student to explore and understand the physical forces involved in orbital flight at a greater depth than is usually possible. For each program, introductory material is given including the physics and mathematics involved. This is followed by the computer program in BASIC language.…

  16. Warped penguin diagrams

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Grossman, Yuval; Tanedo, Philip; Tsai, Yuhsin

    2011-04-01

    We present an analysis of the loop-induced magnetic dipole operator in the Randall-Sundrum model of a warped extra dimension with anarchic bulk fermions and an IR brane-localized Higgs. These operators are finite at one-loop order and we explicitly calculate the branching ratio for ??e? using the mixed position/momentum space formalism. The particular bound on the anarchic Yukawa and Kaluza-Klein (KK) scales can depend on the flavor structure of the anarchic matrices. It is possible for a generic model to either be ruled out or unaffected by these bounds without any fine-tuning. We quantify how these models realize this surprising behavior. We also review tree-level lepton flavor bounds in these models and show that these are on the verge of tension with the ??e? bounds from typical models with a 3 TeV Kaluza-Klein scale. Further, we illuminate the nature of the one-loop finiteness of these diagrams and show how to accurately determine the degree of divergence of a five-dimensional loop diagram using both the five-dimensional and KK formalism. This power counting can be obfuscated in the four-dimensional Kaluza-Klein formalism and we explicitly point out subtleties that ensure that the two formalisms agree. Finally, we remark on the existence of a perturbative regime in which these one-loop results give the dominant contribution.

  17. Eye and orbit ultrasound

    MedlinePLUS

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...

  18. Diagram spaces and symmetric spectra

    Microsoft Academic Search

    Steffen Sagave; Christian Schlichtkrull

    2011-01-01

    We present a general homotopical analysis of structured diagram spaces and discuss the relation to symmetric spectra. The main motivating examples are the I-spaces, which are diagrams indexed by finite sets and injections, and J-spaces, which are diagrams indexed by the Grayson-Quillen construction on the category of finite sets and bijections. We show that the category of I-spaces provides a

  19. Farthest line segment Voronoi diagrams

    Microsoft Academic Search

    Franz Aurenhammer; Robert L. Scot Drysdale; Hannes Krasser

    2006-01-01

    The farthest line segment Voronoi diagram shows properties different from both the closest-segment Voronoi diagram and the farthest-point Voronoi diagram. Surprisingly, this structure did not receive attention in the computational geometry literature. We analyze its combinatorial and topological properties and outline an O(nlogn) time construction algorithm that is easy to im- plement. No restrictions are placed upon the n input

  20. Metastable phases and phase diagrams

    Microsoft Academic Search

    M. Baricco; M. Palumbo; E. Bosco; L. Battezzati

    2004-01-01

    In this paper, the basic features of the novel field of the use of phase diagrams for the description of metastability will be outlined. Examples of experimental determination and calculation of metastable phase diagrams will be presented. In particular, metastable phase diagrams will be used to describe phase selection in cast iron (Fe-C) and stainless steels (Fe-Ni-Cr), showing the effect

  1. Generating function for web diagrams

    E-print Network

    A. A. Vladimirov

    2014-09-06

    We present the description of the exponentiated diagrams in terms of generating function within the universal diagrammatic technique. In particular, we show the exponentiation of the gauge theory amplitudes involving products of an arbitrary number of Wilson lines of arbitrary shapes, which generalizes the concept of web diagrams. The presented method gives a new viewpoint on the web diagrams and proves the non-Abelian exponentiation theorem.

  2. Orbiting Hotel

    NSDL National Science Digital Library

    Mrs. Hicken

    2009-10-19

    It is the year 2025 and a large company, Z-Tech, wants to put a hotel in space having it orbit around one of the planets in our solar system. Our 9th grade class has been given a very important job. We have to search for the perfect location for the hotel. Our job is to report back to the company with the planet that is the best place for an orbiting hotel. The Task: You are to write a report recommending which planet should be chosen. Your report should include pictures of the planet you recommended. Here are the questions you should answer in order to report back to Z-Tech with your recommendation. * Which planet will be the ...

  3. Diagonal Slices of 3D Young Diagrams in the Approach of Maya Diagrams

    NASA Astrophysics Data System (ADS)

    Cai, Li-Qiang; Wang, Li-Fang; Wu, Ke; Yang, Jie

    2014-09-01

    According to the correspondence between 2D Young diagrams and Maya diagrams and the relation between 2D and 3D Young diagrams, we construct 3D Young diagrams in the approach of Maya diagrams. Moreover, we formulate the generating function of 3D Young diagrams, which is the MacMahon function in terms of Maya diagrams.

  4. Scale Models and Diagrams

    NSDL National Science Digital Library

    This is a set of three, one-page problems about the scale of objects in images returned by spacecraft. Learners will measure scaled drawings using high-resolution images of the lunar and martian surfaces. Options are presented so that students may learn about the Lunar Reconnaissance Orbiter (LRO) mission through a NASA press release or by viewing a NASA eClips video [4 min.]. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school.

  5. Potential-pH Diagrams.

    ERIC Educational Resources Information Center

    Barnum, Dennis W.

    1982-01-01

    Potential-pH diagrams show the domains of redoxpotential and pH in which major species are most stable. Constructing such diagrams provides students with opportunities to decide what species must be considered, search literature for equilibrium constants and free energies of formation, and practice in using the Nernst equation. (Author/JN)

  6. Physiology Flow-Diagram Models

    NSDL National Science Digital Library

    PhD Sandra J Bruner (Polk Community College Biology)

    2005-10-04

    A set of physiology flow-diagrams for the cardiovascular system, cardiac auto-rhythmic cell, cardiac contractile cell, respiratory system, coagulation/hemostasis, digestive system, excretion, and autonomic nervous system. These flow-diagrams show cause-and-effect markup and have accompanying tutorials.

  7. Time Temperature Transformation (TTT) Diagrams

    E-print Network

    Cambridge, University of

    isothermal transformation diagram Definition: TTT diagrams give the kinetics of isothermal transformations. 2 measurement, dilatometry (Fig. 3), electrical resistivity method, magnetic permeability, in situ diffraction-temperature salt-bath for isothermal treatment. Fig. 1 : Salt bath I -austenitisation heat treatment. 4 #12;Fig . 3

  8. High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide (TiC) using the DV-X alpha Molecular Orbital Method

    SciTech Connect

    Shimomura, Kenta; Muramatsu, Yasuji; Denlinger, Jonathan D.; Gullikson, Eric M.

    2008-10-31

    We used the DV-X alpha method to analyze the high-resolution soft X-ray emission and absorption spectra in the CK region of titanium carbide (TiC). The spectral profiles of the X-ray emission and absorption can be ssuscfucelly reproduced by the occupied and unoccupied density of states (DOS ), respectively, in the C2p orbitals of the center carbon atoms in a Ti62C63 cluster model, suggesting that the center carbon atom in a large cluster model expanded to the cubic-structured 53 (= 125) atoms provides sufficient DOS for the X-ray spectral analysis of rock-salt structured metal carbides.

  9. Transformations of triangle ladder diagrams

    E-print Network

    Igor Kondrashuk; Alvaro Vergara

    2010-02-13

    It is shown how dual space diagrammatic representation of momentum integrals corresponding to triangle ladder diagrams with an arbitrary number of rungs can be transformed to half-diamonds. In paper arXiv:0803.3420 [hep-th] the half-diamonds were related by conformal integral substitution to the diamonds which represent the dual space image of four-point ladder integrals in the four-dimensional momentum space. Acting in the way described in the present paper we do not need to use the known result for diamond (four-point) diagrams as an external input in deriving relations of arXiv:0803.3420 [hep-th], however, that result for the diamond diagram arises in the present proof as an intermediate consequence in a step-by-step diagrammatic transformation from the triangle ladder diagram to the half-diamond diagrams.

  10. Correlation of electronic transitions and redox potentials measured for pyrocatechol, resorcinol, hydroquinone, pyrogallol, and gallic acid with results of semi-empirical molecular orbital computations A useful interpretation tool

    NASA Astrophysics Data System (ADS)

    Carter, Melvin Keith

    2007-04-01

    Cyclic voltammogram (CV) electrochemical measurements for pyrocatechol, resorcinol, hydroquinone, pyrogallol, and gallic acid in strong alkaline solution produced observable oxidation-reduction potentials for each hydroxy group present except for resorcinol. UV absorption spectra were also observed for the diluted solutions. Semi-empirical molecular orbital computations were conducted for these molecules of C2 v point group symmetry to determine the character and energies to aid interpretation of the experimental results. CV oxidation removed a ?-electron by a radiationless ?-?* transition followed by an electron shift from a negative oxygen to the positive aromatic ?-system indicated by an observable ?-?* transition. Simple semi-empirical computations correlated with measured excited electronic states during electron transfer.

  11. Characterisation of Maillard reaction products derived from LEKFD--a pentapeptide found in ?-lactoglobulin sequence, glycated with glucose--by tandem mass spectrometry, molecular orbital calculations and gel filtration chromatography coupled with continuous photodiode array.

    PubMed

    Yamaguchi, Keiko; Homma, Takeshi; Nomi, Yuri; Otsuka, Yuzuru

    2014-02-15

    Maillard reaction peptides (MRPs) contribute to taste, aroma, colour, texture and biological activity. However, peptide degradation or the cross-linking of MRPs in the Maillard reaction has not been investigated clearly. A peptide of LEKFD, a part of ?-lactoglobulin, was heated at 110 °C for 24h with glucose and the reaction products were analysed by HPLC with ODS, ESI-MS, ESI-MS/MS and HPLC with gel-filtration column and DAD detector. In the HPLC fractions, an imminium ion of LEK*FD, a pyrylium ion or a hydroxymethyl furylium ion of LEK*FD, and KFD and EK were detected by ESI-MS. Therefore, those products may be produced by the Maillard reaction. The molecular orbital of glycated LEKFD at the lysine epsilon-amino residue with Schiff base form was calculated by MOPAC. HPLC with gel-filtration column showed cross-linking and degradation of peptides. PMID:24128561

  12. Integrating UML diagrams for production control systems

    Microsoft Academic Search

    Hans J. Köhler; Ulrich Nickel; Jörg Niere; Albert Zündorf

    2000-01-01

    This paper proposes to use SDL block diagrams, UML class diagrams, and UML behavior diagrams like collaboration diagrams, activity diagrams, and statecharts as a visual programming language. We describe a modeling approach for flexible, autonomous production agents, which are used for the decentralization of production control systems. In order to generate a (Java) implementation of a production control system from

  13. Molecular-orbital decomposition of the ionization continuum for a diatomic molecule by angle-and energy-resolved photoelectron spectroscopy.

    E-print Network

    Zare, Richard N.

    that can be described as the scattering of the photoelectron and the ion. Hence, photoelectron spectroscopy by scattering with the ion core. The dynamical parameters determined in the analysis also constitute complete of the scattering dynamics between the photoelectron and the ion core in a molecular system. © 1996 American

  14. Orbital order of spinless fermions near an optical Feshbach resonance

    SciTech Connect

    Hauke, Philipp [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Castelldefels (Spain); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); Zhao, Erhai [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030 (United States); Goyal, Krittika; Deutsch, Ivan H. [Center for Quantum Information and Control (CQuIC), and Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Liu, W. Vincent [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Lewenstein, Maciej [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Castelldefels (Spain); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); ICREA-Institucio Catalana de Recerca i Estudis Avancats, Lluis Companys 23, E-08010 Barcelona (Spain)

    2011-11-15

    We study the quantum phases of a three-color Hubbard model that arises in the dynamics of the p-band orbitals of spinless fermions in an optical lattice. Strong, color-dependent interactions are induced by an optical Feshbach resonance. Starting from the microscopic scattering properties of ultracold atoms, we derive the orbital exchange constants at 1/3 filling on the cubic optical lattice. Using this, we compute the phase diagram in a Gutzwiller ansatz. We find phases with ''axial orbital order'' in which p{sub z} and p{sub x}+ip{sub y} (or p{sub x}-ip{sub y}) orbitals alternate.

  15. Particles, Feynman Diagrams and All That

    ERIC Educational Resources Information Center

    Daniel, Michael

    2006-01-01

    Quantum fields are introduced in order to give students an accurate qualitative understanding of the origin of Feynman diagrams as representations of particle interactions. Elementary diagrams are combined to produce diagrams representing the main features of the Standard Model.

  16. Analysis of the electronic structure of liquid rubidium by the methods of ab initio molecular dynamics, linear muffin-tin orbitals and recursion.

    PubMed

    Mirzoev, A A; Mirzoev, A A; Sobolev, A N; Gelchinski, B R

    2008-03-19

    It is well known that liquid rubidium shows some unusual properties at low densities. The ab initio SIESTA package and the supercell technique within the linear muffin-tin orbital method were used to investigate this phenomenon. Electronic structures of liquid rubidium at different temperatures from the melting point up to the critical point were obtained. The atomic structure for the supercell technique was simulated for a cluster of 4000 atoms by the Schommers method on the basis of experimental structure factors of Rb obtained by Tamura and co-workers at different temperatures (from 373 up to 1973 K). The Kubo-Greenwood formula was applied for the calculations of the melt conductivity. The results obtained indicate that the metal-nonmetal transition in liquid rubidium is not connected to the gap at the Fermi energy in the density of electronic states, but, more likely, with electron localization on some kind of atomic cluster. PMID:21694197

  17. Risk Mitigation for Managing On-Orbit Anomalies

    NASA Technical Reports Server (NTRS)

    La, Jim

    2010-01-01

    This slide presentation reviews strategies for managing risk mitigation that occur with anomalies in on-orbit spacecraft. It reviews the risks associated with mission operations, a diagram of the method used to manage undesirable events that occur which is a closed loop fault analysis and until corrective action is successful. It also reviews the fish bone diagram which is used if greater detail is required and aids in eliminating possible failure factors.

  18. Phase diagram of polypeptide chains

    NASA Astrophysics Data System (ADS)

    Auer, Stefan

    2011-11-01

    We use a coarse grained protein model that enables us to determine the equilibrium phase diagram of natively folded ?-helical and unfolded ?-sheet forming peptides. The phase diagram shows that there are only two thermodynamically stable peptide phases, the peptide solution and the bulk fibrillar phase. In addition, it reveals the existence of various metastable peptide phases. The liquidlike oligomeric phases are metastable with respect to the fibrillar phases, and there is a hierarchy of metastability. The presented phase diagram provides a solid basis for understanding the assembly of polypeptide chains into the phases formed in their natively folded and unfolded conformations.

  19. Ab initio molecular orbital calculations on F+H 2?HF+H and OH+H 2? H 2O+H using unrestricted Møller-Plesset perturbation theory with spin projection

    NASA Astrophysics Data System (ADS)

    Schlegel, H. Bernhard; Sosa, Carlos

    1988-04-01

    The reactions of fluorine atom and hydroxyl radical with molecular hydrogen have been studied by molecular orbital methods using the 6-311G (d, p) and 6-311 + + G (2df, 2pd) basis sets with the unrestricted Hartree-Fock approach and with Møller-Plesset perturbation theory up to fourth order, with and without spin projection. The positions of transition states were optimized with a grid search at the MP n and PMP n levels using the 6-311G(d, p) basis. The projected MP2, MP3 and MP4 barriers are 1-1.5 kcal/mol lower and 0.03-0.05 Å closer to the reactants than the unprojected calculations. At the PMP4SDTQ/ 6-311 + + G(2df, 2pd) level, the classical barriers are 2.6 kcal/mol for F+H 2 and 5.7 kcal/mol for OH+H 2.

  20. Shapes of d Orbitals

    NSDL National Science Digital Library

    Shapes of d Orbitals shows the d orbitals in an axis set. Running the mouse over an orbital reveals the "name" of that orbital. This is good practice for helping students link the name of an orbital to the orientation.Shapes of d Orbitals has a link to D Orbitals in an Octahedral Ligand Field. Here the user may click on the name of any one of the d orbitals to obtain a larger 3-dimensional image. The images are rotatable and scalable. Orbital phase is shown by the different colors.

  1. Space shuttle on-orbit flight control software requirements, preliminary version

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Software modules associated with various flight control functions for the space shuttle orbiter are described. Data flow, interface requirements, initialization requirements and module sequencing requirements are considered. Block diagrams and tables are included.

  2. Computer calculation of distribution diagrams.

    PubMed

    Maggiore, R; Musumeci, S; Sammartano, S

    1976-01-01

    A simple computer program (DISDI) has been developed for obtaining the distribution diagrams of the species in solutions containing up to one metal and two ligands. It has been compared with the programs COMICS and EQUIL. PMID:18961796

  3. Theoretical analysis (NBO, NPA, Mulliken Population Method) and molecular orbital studies (hardness, chemical potential, electrophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2-methylphenylimino)methyl)-3-methoxyphenol

    NASA Astrophysics Data System (ADS)

    Demircio?lu, Zeynep; Ka?ta?, Çi?dem Albayrak; Büyükgüngör, Orhan

    2015-07-01

    The molecular structure and spectroscopic properties of (E)-2-((4-hydroxy-2-methylphenylimino)methyl)-3-methoxyphenol, were characterized by X-ray diffraction, FT-IR and UV-Vis spectroscopy. All of theoretical calculations and optimized geometric parameters have been calculated by using density functional theory (DFT) with hybrid method B3LYP by 6-31G(d,p) basis set. The title compound of C15H15N1O3 have been analyzed according to electronic and energetics behaviors for enol-imine and keto-amine tautomers. Both these tautomers engender six-membered ring due to intramolecular hydrogen bonded interactions. Two types of intramolecular hydrogen bonds (a) strong O-H⋯N interactions in enol-imine form and (b) N-H⋯O interactions in keto-amine form are compared particularly. The theoretical vibrational frequencies have been found in good agreement with the corresponding experimental data. A study on the electronic and optical properties, absorption wavelengths, excitation energy, dipole moment, molecular electrostatic potential (MEP) and frontier molecular orbital energies are performed using DFT method. Additionally, geometry optimizations in solvent media were performed with the same level of theory by the polarizable continuum model (PCM). The effect of solvents on the tautomeric stability has been investigated. Mulliken Population Method and natural population analysis (NPA) have been studied. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. The local reactivity of the molecule has been studied using the Fukui function. NLO properties related to polarizability and hyperpolarizability are also discussed.

  4. Nitrogen–Oxygen Phase Diagram

    Microsoft Academic Search

    C. S. Barrett; Lothar Meyer; Sandra C. Greer; J. Wasserman

    1968-01-01

    We have determined the phase diagram for the notrogen–oxygen system by examining the x-ray diffraction patterns of polycrystalline samples of the solidified mixtures over the temperature range 21°–50°K. The diagram exhibits a surprising complexity: a eutectic line divides the liquid and the two-phase region of (?-O2 + ?-N2), and a peritectoid line separates this two-phase region and a new phase,

  5. Z diagrams of composite objects

    Microsoft Academic Search

    T. Jaroszewicz; Stanley J. Brodsky

    1991-01-01

    We examine the effect of particle compositeness on the importance of ``Z diagrams'', i.e., virtual particle-antiparticle states appearing in scattering processes. The examples of positronium in QED, and of the nucleon in the QCD-based quark model, are discussed in detail. Generally, if the composite particle consists of N constituents, its Z-diagram amplitude involves creation and annihilation of N constituent-anticonstituent pairs.

  6. Diagram Designer 1.23

    NSDL National Science Digital Library

    Vinther, Michael

    Turning out flowcharts and diagrams for presentations can be quite a hassle, so it's nice to lean about the Diagram Designer application. With the program's interface, visitors can take advantage of the customizable object palette, slide show viewer, and the ability to plot mathematical expressions. This version also allows users to import various image file formats, such as jpeg and gif files. This version is compatible with computers running Windows 98 and newer.

  7. Projected seniority-two orbital optimization of the antisymmetric product of one-reference orbital geminal

    NASA Astrophysics Data System (ADS)

    Boguslawski, Katharina; Tecmer, Pawe?; Limacher, Peter A.; Johnson, Paul A.; Ayers, Paul W.; Bultinck, Patrick; De Baerdemacker, Stijn; Van Neck, Dimitri

    2014-06-01

    We present a new, non-variational orbital-optimization scheme for the antisymmetric product of one-reference orbital geminal wave function. Our approach is motivated by the observation that an orbital-optimized seniority-zero configuration interaction (CI) expansion yields similar results to an orbital-optimized seniority-zero-plus-two CI expansion [L. Bytautas, T. M. Henderson, C. A. Jimenez-Hoyos, J. K. Ellis, and G. E. Scuseria, J. Chem. Phys. 135, 044119 (2011)]. A numerical analysis is performed for the C2 and LiF molecules, for the CH2 singlet diradical as well as for the symmetric stretching of hypothetical (linear) hydrogen chains. For these test cases, the proposed orbital-optimization protocol yields similar results to its variational orbital optimization counterpart, but prevents symmetry-breaking of molecular orbitals in most cases.

  8. The phase diagram and transport properties for hydrogen-helium fluid planets

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Salpeter, E. E.

    1977-01-01

    The properties of pure hydrogen and helium are examined, taking into account metallic hydrogen, molecular hydrogen, and the molecular-metallic transition. Metallic hydrogen-helium mixtures are considered along with molecular hydrogen-helium mixtures, the total phase diagram, and minor constituents, including deuterium. The transport properties of the metallic and the molecular phase are also discussed, giving attention to electrical conductivity, thermal conductivity, viscosity, self-diffusion, interdiffusion, radiative opacity, and second-order transport coefficients.

  9. Ionospheric Imaging from Geostationary Orbit

    Microsoft Academic Search

    R. P. McCoy; K. S. Wood; K. F. Dymond; S. E. Thonnard

    2001-01-01

    An ultraviolet imager is under development to image the ionosphere and thermosphere from geostationary orbit. The instrument will consist of two telescopes, one with a filter wheel to measure the atomic oxygen airglow emission at 130.4 nm and 135.6 nm and molecular nitrogen Lyman-Birge-Hopfield bands near 142.5 nm. The second telescope will image the atomic oxygen ion resonance multiplet at

  10. Majorana states and magnetic orbital motion in planar hybrid nanowires

    NASA Astrophysics Data System (ADS)

    Osca, Javier; Serra, Llorenç

    2015-06-01

    The Majorana phase boundaries in planar 2D hybrid (semiconductor-superconductor) nanowires are modified by orbital effects due to off plane magnetic components. We show that Majorana zero modes survive sizable vertical field tiltings, uncovering a remarkable phase diagram. Analytical expressions of the phase boundaries are given for the strong orbital limit. These phase boundaries can be fulfilled with attainable setups, such as an InAs nanowire of 150 nm in transverse width.

  11. LISA Orbits

    NASA Astrophysics Data System (ADS)

    Povoleri, Angelo; Kemble, Stephen

    2006-11-01

    The LISA formation is composed of 3 spacecraft in an equilateral triangle formation. The baseline formation has a 5million km radius and lies in a heliocentric orbit 20deg away from the Earth. Earth's gravity induces a perturbation on the nominal Keplerian motion of the formation, generating a change in the relative ranges and thus a Doppler that can be very harmful for the scientific goals of the mission. Zero station keeping options are preferred, so alternative passive solutions have to be found. This paper presents results obtained by optimising the formation design, particularly the orientation of the eccentricity vectors. Formation design optimisation proves to be an effective strategy, succeeding in keeping the relative range rate between any two spacecraft below 13m/s. Another possible source of perturbation arises from the self-acceleration induced on the formation by the imperfect mass distribution on each spacecraft. The effect of this perturbing acceleration on the motion of the formation has been studied, and the formation design has been re-optimised assuming several levels of perturbation. This approach has shown the result that such effect can be even beneficial on the formation stability, provided that the acceleration doesn't exceed 1e-8m/s2. The transfer to the optimal stability formation has then been optimised, assuming a launch window throughout the year. Mission ?v to a specific target is quite sensitive to the launch date: trailing formations are most effectively reached if the launch occurs at Earth's apohelion (summer), while the opposite applies to leading formations. A strategy where leading and trailing formations are alternatively targeted according to the launch date has proved to be the most effective in keeping the ?v as low as possible.

  12. Two-dimensional line space Voronoi Diagram

    Microsoft Academic Search

    Stéphane Rivière; Dominique Schmitt

    2007-01-01

    Given a set of points called sites, the Voronoi diagram is a partition of the plane into sets of points having the same closest site. Several generalizations of the Voronoi diagram have been studied, mainly Voronoi diagrams for different distances (other than the Euclidean one), and Voronoi diagrams for sites that are not necessarily points (line segments for example). In

  13. DRAWING DIAGRAMS IN AN ONLINE EXAMINATION

    Microsoft Academic Search

    Pete Thomas

    This paper describes a study into the drawing of diagrams in an online examination. The diagrams were produced by students during an on-line examination using a simple drawing tool. The students' examination answers, which included a diagram, were submitted over the Internet to an automatic marking tool for grading and feedback. This paper describes the diagram drawing tool and discusses

  14. Automatically Assessing Graph-Based Diagrams

    ERIC Educational Resources Information Center

    Thomas, Pete; Smith, Neil; Waugh, Kevin

    2008-01-01

    To date there has been very little work on the machine understanding of imprecise diagrams, such as diagrams drawn by students in response to assessment questions. Imprecise diagrams exhibit faults such as missing, extraneous and incorrectly formed elements. The semantics of imprecise diagrams are difficult to determine. While there have been…

  15. 1,1,1,3,3,3-Hexabromotrisilane: structure and conformation determined by gas-phase electron diffraction, ab initio molecular orbital and molecular mechanics calculations, and vibrational spectroscopy

    Microsoft Academic Search

    Tore H. Johansen; Kolbjørn Hagen; Reidar Stølevik; Margot Ernst; Karl Hassler

    1995-01-01

    The molecular structure of 1,1,1,3,3,3-hexabromotrisilane at 140°C has been studied using gas-phase electron diffraction. The two SiBr3 groups are both staggered relative to the central SiH2 group, but a twist of about 13° of the SiBr3 groups relative to the exactly staggered position reduces the symmetry to C2. From the vibrational spectra a distinction between C2 or C2v symmetry is

  16. The Phase Diagram of Superionic Ice

    NASA Astrophysics Data System (ADS)

    Sun, Jiming; Clark, Bryan; Car, Roberto

    2014-03-01

    Using the variable cell Car-Parrinello molecular dynamics method, we study the phase diagram of superionic ice from 200GPa to 2.5TPa. We present evidence that at very high pressure the FCC structure of the oxygen sublattice may become unstable allowing for a new superionic ice phase, in which the oxygen sublattice takes the P21 structure found in zero-temperature total energy calculations. We also report on how the melting temperature of the hydrogen sublattice is affected by this new crystalline structure of the oxygen sublattice. This work was supported by the NSF under grant DMS-1065894(J.S. and R.C.) and PHY11-25915(B.C.).

  17. Optical activity and electronic absorption spectra of some simple nucleosides related to cytidine and uridine: all-valence-shell molecular orbital calculations.

    PubMed Central

    Miles, D W; Redington, P K; Miles, D L; Eyring, H

    1981-01-01

    The circular dichroism and electronic absorption of three simple model systems for cytidine and uridine have been measured to 190 nm. The molecular spectral properties (excitation wavelengths, oscillator strengths, rotational strengths, and polarization directions) and electronic transitional patterns were investigated by using wave functions of the entire nucleoside with the goal of establishing the reliability of the theoretical method. The computed electronic absorption quantities were shown to be in satisfactory agreement with experimental data. It was found that the computed optical rotatory strengths of the B2u and E1u electronic transitions and lowest observed n-pi transition are in good agreement with experimental values. Electronic transitions were characterized by their electronic transitional patterns derived from population analysis of the transition density matrix. The theoretical rotational strengths associated with the B2u and E1u transitions stabilize after the use of just a few singly excited configurations in the configuration interaction basis and, hypothetically, are more reliable as indicators of conformation in pyrimidine nucleosides related to cytidine. PMID:6950393

  18. Shuttle Orbiter Uplink Text and Graphics System

    NASA Technical Reports Server (NTRS)

    Hoover, A. A.; Land, C. K.; Lipoma, P. C.

    1978-01-01

    This paper presents the definition of requirements for and current design of the Shuttle Orbiter Uplink Text and Graphics System (UT&GS). Beginning in early 1981, the UT&GS will support Shuttle flights by providing the capability of transmitting single-frame imagery from the ground to the orbiting Shuttle vehicle. Such imagery is in the form of maps, text, diagrams, or photographs, and is outputted on the Orbiter as a paper hard copy. Four modes of operation will be provided to minimize the time required to transmit less than full-resolution imagery. This paper discusses the considerations and complications leading to the four modes and associated resolution requirements. The paper also presents the design of the CCD array ground scanner and airborne CRT hardcopier.

  19. Spectroscopic (FT-IR, FT-Raman and UV) investigation, NLO, NBO, molecular orbital and MESP analysis of 2-{2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid.

    PubMed

    Govindasamy, P; Gunasekaran, S

    2014-10-24

    In this work, FT-IR and FT-Raman spectra of 2-{2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid (abbreviated as 2DCPAPAA) have been reported in the regions 4000-450cm(-1) and 4000-50cm(-1), respectively. The molecular structure, geometry optimization, intensities, vibrational frequencies were obtained by the ab initio and DFT levels of theory B3LYP with 6-311++G(d,p) standard basis set and a different scaling of the calculated wave numbers. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using vibrational energy distribution analysis (VEDA 4) program. The harmonic frequencies were calculated and the scaled values were compared with experimental FT-IR and FT-Raman data. The observed and the calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The thermodynamic properties of the title compound at different temperature reveal the correlations between standard heat capacities (C) standard entropies (S) standard enthalpy changes (?H). The important non-linear optical properties such as electric dipole momentum, polarizability and first hyperpolarizability of 2DCPAPAA have been computed using B3LYP/6-311++G(d,p) quantum chemical calculations. The Natural charges, HOMO, LUMO, chemical hardness (?), chemical potential (?), Electro negativity (?) and electrophilicity values (?) are calculated and reported. The oscillator's strength, wave length, and energy calculated by TD-DFT and 2DCPAPAA is approach complement with the experimental findings. The molecular electrostatic potential (MESP) surfaces of the molecule were constructed. PMID:25459716

  20. Conformational analysis. 24. Structure and composition of gaseous oxalyl fluoride, C(2)F(2)O(2): electron-diffraction investigation augmented by data from microwave spectroscopy and molecular orbital calculations.

    PubMed

    Friesen, Dwayne T; Borgers, Tom R; Hedberg, Lise; Hedberg, Kenneth

    2006-12-01

    The molecular structure and composition of gaseous oxalyl fluoride (OXF) has been investigated by electron diffraction (GED) at nozzle-tip temperatures of -10, 149, and 219 degrees C. The GED data were augmented by molecular orbital calculations, and the analysis was aided by use of rotational constants from microwave (MW) spectroscopy. As in the other oxalyl halides, there are two stable species, of which the more stable is periplanar anti (i.e., trans). However, unlike these other halides in which the second form is gauche, the second form of oxalyl fluoride was known from MW work to be periplanar syn (i.e., cis). Our results are consistent with a mixture of trans and cis forms, and yield values for the structural parameters, the composition of the system at the three temperatures cited, and the thermodynamic quantities deltaG(o), deltaH(o), and deltaS(o) for the reaction trans --> cis. Some trans/cis distances (r(g)/Angstrom) and angles (<(alpha)/deg) at -10 degrees C are r(C=O) = 1.178(2)/1.176(2), r(C-F) = 1.323(2)/1.328(2); r(C-C) = 1.533(3)/1.535(3), <(C-C=O) = 126.4(2)/124.2(2), <(C-C-F) = 109.8(2)/112.2(2), and <(O-C-F) = 123.8(2)/123.6(2). The mixture compositions (percent trans) at -10 degrees C/149 degrees C/219 degrees C are 75(3)/58(7)/52(8), from which deltaH(o) and deltaSO) are found to be 1.14 kcal/mol and 2.12 cal/(mol x deg). The system properties are discussed. PMID:17134157

  1. Spectroscopic (FT-IR, FT-Raman and UV) investigation, NLO, NBO, molecular orbital and MESP analysis of 2-{2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid

    NASA Astrophysics Data System (ADS)

    Govindasamy, P.; Gunasekaran, S.

    2015-02-01

    In this work, FT-IR and FT-Raman spectra of 2-{2-[(2,6-dichlorophenyl)amino]phenyl}acetic acid (abbreviated as 2DCPAPAA) have been reported in the regions 4000-450 cm-1 and 4000-50 cm-1, respectively. The molecular structure, geometry optimization, intensities, vibrational frequencies were obtained by the ab initio and DFT levels of theory B3LYP with 6-311++G(d,p) standard basis set and a different scaling of the calculated wave numbers. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using vibrational energy distribution analysis (VEDA 4) program. The harmonic frequencies were calculated and the scaled values were compared with experimental FT-IR and FT-Raman data. The observed and the calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The thermodynamic properties of the title compound at different temperature reveal the correlations between standard heat capacities (C) standard entropies (S) standard enthalpy changes (?H). The important non-linear optical properties such as electric dipole momentum, polarizability and first hyperpolarizability of 2DCPAPAA have been computed using B3LYP/6-311++G(d,p) quantum chemical calculations. The Natural charges, HOMO, LUMO, chemical hardness (?), chemical potential (?), Electro negativity (?) and electrophilicity values (?) are calculated and reported. The oscillator's strength, wave length, and energy calculated by TD-DFT and 2DCPAPAA is approach complement with the experimental findings. The molecular electrostatic potential (MESP) surfaces of the molecule were constructed.

  2. Pseudohaptic interaction with knot diagrams

    NASA Astrophysics Data System (ADS)

    Weng, Jianguang; Zhang, Hui

    2012-07-01

    To make progress in understanding knot theory, we need to interact with the projected representations of mathematical knots, which are continuous in three dimensions (3-D) but significantly interrupted in the projective images. One way to achieve such a goal is to design an interactive system that allows us to sketch two-dimensional (2-D) knot diagrams by taking advantage of a collision-sensing controller and explore their underlying smooth structures through a continuous motion. Recent advances of interaction techniques have been made that allow progress in this direction. Pseudohaptics that simulate haptic effects using pure visual feedback can be used to develop such an interactive system. We outline one such pseudohaptic knot diagram interface. Our interface derives from the familiar pencil-and-paper process of drawing 2-D knot diagrams and provides haptic-like sensations to facilitate the creation and exploration of knot diagrams. A centerpiece of the interaction model simulates a physically reactive mouse cursor, which is exploited to resolve the apparent conflict between the continuous structure of the actual smooth knot and the visual discontinuities in the knot diagram representation. Another value in exploiting pseudohaptics is that an acceleration (or deceleration) of the mouse cursor (or surface locator) can be used to indicate the slope of the curve (or surface) of which the projective image is being explored. By exploiting these additional visual cues, we proceed to a full-featured extension to a pseudohaptic four-dimensional (4-D) visualization system that simulates the continuous navigation on 4-D objects and allows us to sense the bumps and holes in the fourth dimension. Preliminary tests of the software show that main features of the interface overcome some expected perceptual limitations in our interaction with 2-D knot diagrams of 3-D knots and 3-D projective images of 4-D mathematical objects.

  3. The Quasar SED Mixing Diagram

    NASA Astrophysics Data System (ADS)

    Hao, Heng; Elvis, M.; Civano, F.

    2011-05-01

    We present a useful new diagram for characterizing the quasar-host-reddening mixture for AGN SEDs. This "mixing diagram" is based on a detailed study of 413 X-ray selected Type 1 AGN SEDs from the XMM-COSMOS Survey (Elvis, Hao, et al., 2011). The mixing diagram plots the near-IR (1-3micron) spectral slope against the optical (0.3-1micron) slope to form a generalized 'color-color' diagram. A pure AGN continuum (Elvis et al., 1994, E94) and pure host galaxies are located at clear and distinct positions on the mixing diagram. The lines joining them indicate the fraction of host contribution to each AGN. The reddening vector is almost perpendicular to these mixing lines, and so is easily measured independently. The mixing diagram shows that 90% of the AGNs lie on mixing curves between the mean E94 AGN SED and a host galaxy, with only modest reddening [E(B-V)=0.1-0.2] (Hao et al., 2011a). Lower luminosity and lower Eddington ratio AGNs have a larger host galaxy fraction, as expected. Optically selected samples (SDSS) have smaller host galaxy fractions. There is some intrinsic scatter around the E94 mean SED. A substantial minority, 10%, of the XMM-COSMOS AGNs are inconsistent with any AGN+host+reddening mix. These AGNs have weak or non-existent near-IR bumps, suggesting a lack of the hot dust characteristic of AGNs (Hao et al., 2010). A similar fraction of these "hot dust poor" (HDP) quasars are found in the Elvis et al. 1994 (BQS) and Richards et al. 2006 (SDSS) samples (Hao et al., 2011b). The fraction of "hot dust poor" AGNs grows to 20% at z>2 (Hao et al. 2010). The proposed 'cosmic cycle' of SMBH and galaxy co-evolution (e.g. Hopkins et al., 2006) can be shown as tracks on the mixing diagram. The mixing diagram definition could also be expanded to other wavelengths.

  4. Viking satellite orbit determination

    Microsoft Academic Search

    C. E. Hildebrand; E. J. Christensen; D. H. Boggs; G. H. Born; H. Hokikian; J. F. Jordan; W. B. Howard

    1977-01-01

    During the summer of 1976, the two Viking spacecraft, each consisting of an orbiter-lander combination, were inserted into orbit about Mars. The paper describes the experiences of the Viking Satellite Orbit Determination Team in determining Mars centered ephemerides of the orbiters and positions of the landers from the two-way Doppler and range data, and synthesizes the different phases of the

  5. Rock-Around Orbits

    E-print Network

    Bourgeois, Scott K.

    2010-07-14

    with larger orbits far above the Earth's surface, e.g. a Geostationary Orbit. Camera systems mounted on satellites can provide an eff ective way to observe these objects. Using a satellite with a speci c orbit relative to the RSO's orbit, one can passively...

  6. INCONEL 718: A solidification diagram

    Microsoft Academic Search

    G. A. Knorovsky; M. J. Cieslak; T. J. Headley; A. D. Romig; W. F. Hammetter

    1989-01-01

    As part of a program studying weldability of Ni-base superalloys, results of an integrated analytical approach are used to generate a constitution diagram for INCONEL 718* in the temperature range associated with solidification. Differential thermal analysis of wrought material and optical and scanning electron microscopy, electron probe microanalysis, and analytical electron microscopy of gas tungsten arc welds are used in

  7. Venn Diagram Warm-Up

    NSDL National Science Digital Library

    M Johnson

    2013-10-02

    This response answers a posted question, "What is your favorite warm-up suited for all grade levels?". The response details a Venn Diagram warm-up that can be used with any grade level and modified to fit most math topics.

  8. Causal diagrams for empirical research

    Microsoft Academic Search

    JUDEA PEARL

    1995-01-01

    The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subject-matter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if the assumptions available are sufficient for identifying causal effects from nonexperimental data. If so the

  9. Telesynergy V3 Wiring Diagram

    Cancer.gov

    Extron 8 port Video/Audio Switch WAVE Camera Telesynergy v3 Wiring Diagram ISDN T1/PRI Module CTRLR 0 Legend: S-Video Audio VGA DVI USB RS-232 Serial Microphone Ethernet Planar C5i AMD Exam Cam Canon Document Camera Olympus BX51 Sony DVD Recorder JVC

  10. Voronoi Diagrams and Spring Rain

    ERIC Educational Resources Information Center

    Perham, Arnold E.; Perham, Faustine L.

    2011-01-01

    The goal of this geometry project is to use Voronoi diagrams, a powerful modeling tool across disciplines, and the integration of technology to analyze spring rainfall from rain gauge data over a region. In their investigation, students use familiar equipment from their mathematical toolbox: triangles and other polygons, circumcenters and…

  11. Index of Animated Phase Diagrams

    NSDL National Science Digital Library

    Kenneth E Windom

    This is a collection of animated phase diagrams by Kenneth Windom at Iowa State University. These short Power Point animations can be used to illustrate equilibrium crystallization concepts. There are slide shows for plagioclase feldspars (albite and anorthite); forsterite, diopside and anorthite; forsterite, enstatite and silica; and diopside and anorthite.

  12. ccsd00000445, Making diagrams speak,

    E-print Network

    raised by the presence of diagrams in a VIIth century Sanskrit mathematical com- mentary. Exploring di- agrammes dans un commentaire math#19;ematique en langue sanskrite datant du VII#18;eme si#18;ecle: A. Keller is a French CNRS researcher working on medieval sanskrit mathematics but also

  13. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  14. Quantum quasicrystals and other exotic states of spin-orbit coupled dipolar bosons

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Sarang; Wilson, Ryan; Anderson, Brandon; Lev, Benjamin; Clark, Charles; Martin, Ivar; Demler, Eugene

    2014-03-01

    We study dipolar Bose gases in which the bosons experience a Rashba spin-orbit coupling. We show that the degenerate dispersion minimum due to the spin-orbit coupling, combined with the long-range dipolar interaction, can stabilize a rich phase diagram including a number of exotic phases, such as a quantum quasicrystal (in the quasi-2D limit) and a meron state (in the 3D limit), as one tunes the strength of the dipolar interaction and the spin-orbit coupling. We discuss specific level schemes for exploring this phase diagram using ultracold dysprosium.

  15. Pilot-wave hydrodynamics in a rotating frame: Exotic orbits

    SciTech Connect

    Oza, Anand U.; Harris, Daniel M.; Rosales, Rodolfo R.; Bush, John W. M., E-mail: bush@math.mit.edu [Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Wind-Willassen, Øistein [Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby (Denmark)

    2014-08-15

    We present the results of a numerical investigation of droplets walking on a rotating vibrating fluid bath. The drop's trajectory is described by an integro-differential equation, which is simulated numerically in various parameter regimes. As the forcing acceleration is progressively increased, stable circular orbits give way to wobbling orbits, which are succeeded in turn by instabilities of the orbital center characterized by steady drifting then discrete leaping. In the limit of large vibrational forcing, the walker's trajectory becomes chaotic, but its statistical behavior reflects the influence of the unstable orbital solutions. The study results in a complete regime diagram that summarizes the dependence of the walker's behavior on the system parameters. Our predictions compare favorably to the experimental observations of Harris and Bush [“Droplets walking in a rotating frame: from quantized orbits to multimodal statistics,” J. Fluid Mech. 739, 444–464 (2014)].

  16. MULTI-TERMINAL BINARY DECISION DIAGRAMS AND

    E-print Network

    Clarke, Edmund M.

    . Bryant and Chen have proposed binary moment diagrams (BMDs) for rep- resenting the class of functions with several hundred variables. Recently, Bryant and Chen [5] have proposed binary moment diagrams (BMDs

  17. Pressure-enthalpy diagrams for alternative refrigerants

    Microsoft Academic Search

    J. Chen; H. Kruse

    1996-01-01

    Thermodynamic diagrams, particularly log(p)-h diagrams, have become very convenient tools for refrigeration and air-conditioning industries. To promote alternative refrigerants-related development and application, it is urgently required to provide the industries with reliable engineering diagrams for the most promising candidate refrigerants. A computer program has been developed for automatically producing log(p)-h diagrams for alternative refrigerants. The Lee Kesler Ploecker (LKP) equation

  18. guidelines for binary phase diagram assessment

    Microsoft Academic Search

    H. Okamoto; T. B. Massalski

    1993-01-01

    The recent publication of Binary Alloy Phase Diagrams,2nd ed, [90Mas] and our extensive screening of phase diagram graphics\\u000a for this edition has revealed many phase diagram features, which while not explicitly violating phase diagram rules, are to\\u000a a lesser or greater extent unlikely to represent thermodynamically acceptable conditions. In two previous papers, several\\u000a thermodynamically improbable features or boundaries in binary

  19. The electronic structure of arene tricarbonyl complexes of group 6 metals: ultraviolet photoelectron spectra and molecular orbital calculations, and the low-temperature X-ray crystal structure of hexamethylbenzene chromium tricarbonyl

    E-print Network

    Byers, Brien Patrick

    1986-01-01

    %). It should be noted that the M(CO)s 2e orbital is made up of a significant amount (&30%) of carbonyl 2s character. The possibility of additional M(CO)s - arene interaction through interaction of the carbonyls with the s system of the arene ring, in a...? character, but & 60% CO o character, and the M(CO)s 2e orbital has no CO o, but -35% CO 2? character. Chinn and Hall theorized that the arene ring distortion is caused by a mixing of the arene ez?and et? orbitals, in the bond with the M(CO)s 2e orbital...

  20. The Butterfly Diagram Internal Structure

    NASA Astrophysics Data System (ADS)

    Ternullo, Maurizio

    2013-06-01

    A time-latitude diagram, where the spotgroup area is taken into account, is presented for cycles 12 through 23. The results show that the spotted area is concentrated in few, small portions ("knots") of the Butterfly Diagram (BD). The BD may be described as a cluster of knots. Knots are distributed in the butterfly wings in a seemingly randomly way. A knot may appear at either lower or higher latitudes than previous ones, in spite of the prevalent tendency to appear at lower and lower latitudes. Accordingly, the spotted area centroid, far from continuously drifting equatorward, drifts poleward or remains stationary in any hemisphere for significant fractions (? 1/3) of the cycle total duration. In a relevant number of semicycles, knots seem to form two roughly parallel, oblique "chains", separated by an underspotted band. This picture suggests that two (or more) "activity streams" approach the equator at a rate higher than the spot zone as a whole.

  1. Arrows in Comprehending and Producing Mechanical Diagrams

    ERIC Educational Resources Information Center

    Heiser, Julie; Tversky, Barbara

    2006-01-01

    Mechanical systems have structural organizations--parts, and their relations--and functional organizations--temporal, dynamic, and causal processes--which can be explained using text or diagrams. Two experiments illustrate the role of arrows in diagrams of mechanical systems. In Experiment 1, people described diagrams with or without arrows,…

  2. DRAWING ENVIRONMENT DIAGRAMS COMPUTER SCIENCE 61A

    E-print Network

    California at Berkeley, University of

    line at a time. 1 #12;DISCUSSION : DRAWING ENVIRONMENT DIAGRAMS Page 2 0.3 When you EncounterDRAWING ENVIRONMENT DIAGRAMS COMPUTER SCIENCE 61A February 6, 2013 0.1 Background · A frame frames will not end up with frame numbers. 0.2 Starting Your Diagram · First draw the global frame

  3. Treatment of Diagrams in Document Image Analysis

    Microsoft Academic Search

    Dorothea Blostein; Edward Lank; Richard Zanibbi

    2000-01-01

    Document image analysis is the study of converting documents from paper form to an electronic form that captures the information content of the document. Necessary processing includes recognition of document layout (to determine reading order, and to distinguish text from diagrams), recognition of text (called Optical Character Recognition, OCR), and processing of diagrams and photographs. The processing of diagrams has

  4. Generating Textual Diagrams and Diagrammatic Texts

    Microsoft Academic Search

    Donia Scott; Richard Power

    1998-01-01

    Abstract. There are obvious ways in which text and diagrams within a document should be coordinated: for instance, the placement of a diagram might influence the wording of the text. However, there is a more subtle interaction between text and diagrams, which has emerged from work on generating technical documents,that make extensive use of layout. Constituents that would normally be

  5. Causal Reasoning with Neuron Diagrams Martin Erwig

    E-print Network

    Erwig, Martin

    Causal Reasoning with Neuron Diagrams Martin Erwig Oregon State University erwig- losophy for over two millennia. Modern philosophers often rely on "neuron diagrams", a domain itself. In this paper we formalize the syntax and semantics of neuron diagrams. We discuss existing

  6. Constant life diagrams — a historical review

    Microsoft Academic Search

    G. P. Sendeckyj

    2001-01-01

    A historical review of the early development of constant life diagrams (variously referred to as Goodman, Smith, Haigh, etc. diagrams) is presented. It is shown that there were two distinct approaches to the formulation of constant life diagrams for fatigue design purposes. The first one was based on Wöhler's fatigue experiments and involved engineering curve fits of the fatigue endurance

  7. Interactive Exploration of UML Sequence Diagrams

    Microsoft Academic Search

    Richard Sharp; Atanas Rountev

    2005-01-01

    Sequence diagrams are commonly used to represent ob- ject interactions in software systems. Reverse-engineered sequence diagrams, which are constructed from existing code, are becoming widely available to more program- mers through modern commercial and research UML tools. However, due to their large size and inefficient spatial de- sign, such diagrams can easily become useless. We discuss the visual limitations of

  8. Integrating Model Information in UML Sequence Diagrams

    Microsoft Academic Search

    Aliki Tsiolakis

    2001-01-01

    In a UML model, dierent aspects of a system are covered by dierent types of diagrams. Nevertheless, it is important to provide means to check the consistency and completeness of the UML model. This problem is addressed in this paper by integrating the information specified in class and statechart diagrams into se- quence diagrams. The representation as constraints attached to

  9. Monitoring with Behavior View Diagrams for Debugging

    Microsoft Academic Search

    Donglin Liang; Kai Xu

    2005-01-01

    UML sequence diagrams are widely used during require- ments analysis and design for specifying the expected mes- sage exchanges among a set of objects in various scenarios for the program to perform a certain task. In this paper, we present the behavior view diagrams, a type of extended se- quence diagrams, to facilitate execution monitoring durin g debugging. Using a

  10. Designing UML diagrams for technical documentation

    Microsoft Academic Search

    Neil MacKinnon; Steve Murphy

    2003-01-01

    This paper presents a framework for improving the presentation of Unified Modeling Language (UML) diagrams, as applied in technical documentation produced at the IBM Toronto Software Laboratory. UML diagrams are a key part of program design. They can enhance understanding of complex programming concepts, and assist in problem analysis and solution design. In turn, UML diagrams can add significant value

  11. A Layout Algorithm for Data Flow Diagrams

    Microsoft Academic Search

    Carlo Batini; Enrico Nardelli; Roberto Tamassia

    1986-01-01

    A layout algorithm is presented that allows the automatic drawing of data flow diagrams, a diagrammatic representation widely used in the functional analysis of information systems. A grid standard is defined for such diagrams, and aesthetics for a good readability are identified. The layout algorithm receives as input an abstract graph, specifying connectivity relations between the elements of the diagram,

  12. Structural and electronic properties of Si n, Si n+, and AlSi n-1 (n=2-13) clusters: theoretical investigation based on ab initio molecular orbital theory.

    PubMed

    Nigam, Sandeep; Majumder, Chiranjib; Kulshreshtha, S K

    2004-10-22

    The geometric and electronic structures of Si(n), Si(n) (+), and AlSi(n-1) clusters (2< or =n< or =13) have been investigated using the ab initio molecular orbital theory under the density functional theory formalism. The hybrid exchange-correlation energy function (B3LYP) and a standard split-valence basis set with polarization functions [6-31G(d)] were employed for this purpose. Relative stabilities of these clusters have been analyzed based on their binding energies, second difference in energy (Delta (2)E) and fragmentation behavior. The equilibrium geometry of the neutral and charged Si(n) clusters show similar structural growth. However, significant differences have been observed in the electronic structure leading to their different stability pattern. While for neutral clusters, the Si(10) is magic, the extra stability of the Si(11) (+) cluster over the Si(10) (+) and Si(12) (+) bears evidence for the magic behavior of the Si(11) (+) cluster, which is in excellent agreement with the recent experimental observations. Similarly for AlSi(n-1) clusters, which is isoelectronic with Si(n) (+) clusters show extra stability of the AlSi(10) cluster suggesting the influence of the electronic structures for different stabilities between neutral and charged clusters. The ground state geometries of the AlSi(n-1) clusters show that the impurity Al atom prefers to substitute for the Si atom, that has the highest coordination number in the host Si(n) cluster. The fragmentation behavior of all these clusters show that while small clusters prefers to evaporate monomer, the larger ones dissociate into two stable clusters of smaller size. PMID:15485237

  13. Phase diagram of coupled ladders

    Microsoft Academic Search

    T. F. A. Müller; T. M. Rice

    1998-01-01

    The two-leg t-J ladder forms a spin liquid at half filling that evolves to a Luther-Emery liquid upon doping. Our aim is to obtain a complete phase diagram for isotropic coupling (i.e., rungs and legs equal) as a function of electron density n and the ratio J\\/t. Two known limiting cases are n<12, which is a single band Luttinger liquid,

  14. Reasoning on UML class diagrams

    Microsoft Academic Search

    Daniela Berardi; Diego Calvanese; Giuseppe De Giacomo

    2005-01-01

    UML is the de-facto standard formalism for software design and analysis. To sup- port the design of large-scale industrial applications, sophisticated CASE tools are available on the market, that provide a user-friendly environment for editing, stor- ing, and accessing multiple UML diagrams. It would be highly desirable to equip such CASE tools with automated reasoning capabilities, such as those studied

  15. INCONEL 718: A solidification diagram

    Microsoft Academic Search

    G. A. Knorovsky; M. J. Cieslak; T. J. Headley; A. D. Romig; W. F. Hammetter

    1989-01-01

    As part of a program studying weldability of Ni-base superalloys, results of an integrated analytical approach are used to\\u000a generate a constitution diagram for INCONEL 718* in the temperature range associated with solidification. Differential thermal analysis of wrought material and optical and\\u000a scanning electron microscopy, electron probe microanalysis, and analytical electron microscopy of gas tungsten arc welds are\\u000a used in

  16. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  17. Tuberculoma of orbit.

    PubMed

    Mehra, K S; Pattanayak, S P; Saroj, G

    1992-01-01

    An interesting case of tuberculoma of the orbit, involving the whole of the eyeball with other orbital cavity structures, is being presented. This is very rarely seen in clinical practice. PMID:1302233

  18. Orbital Mechanics Analysis Program

    NASA Technical Reports Server (NTRS)

    Simon, W. C.; Jankowski, S. C.; Hughes, T. B.

    1985-01-01

    Orbital Mechanics Analysis Program provides engineers with simple tool for analysis or synthesis of any orbital maneuvering function involving vehicle and target. Program useful in such applications as proximity operations and rendezvous maneuvers.

  19. Synthesis, spectroscopic, molecular orbital calculation, cytotoxic, molecular docking of DNA binding and DNA cleavage studies of transition metal complexes with N-benzylidene-N'-salicylidene-1,1-diaminopropane

    NASA Astrophysics Data System (ADS)

    Al-Mogren, Muneerah M.; Alaghaz, Abdel-Nasser M. A.; Elbohy, Salwa A. H.

    2013-10-01

    Eight mononuclear chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of Schiff's base ligand were synthesized and determined by different physical techniques. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the eight metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff base is found to act as tridentate ligand using N2O donor set of atoms leading to an octahedral geometry for the complexes around all the metal ions. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. Additionally in silico, the docking studies and the calculated pharmacokinetic parameters show promising futures for application of the ligand and complexes as high potency agents for DNA binding activity. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. The Schiff base and their complexes have been screened for their antibacterial activity against bacterial strains [Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024), Bacillis subtilis (RCMB010063), Proteous vulgaris (RCMB 010085), Klebsiella pneumonia (RCMB 010093) and Shigella flexneri (RCMB 0100542)] and fungi [(Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035)] by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligand.

  20. Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams

    ERIC Educational Resources Information Center

    Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde

    2013-01-01

    This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…

  1. SEASAT B orbit synthesis

    NASA Technical Reports Server (NTRS)

    Rea, F. G.; Warmke, J. M.

    1976-01-01

    Addition were made to Battelle's Interactive Graphics Orbit Selection (IGOS) program; IGOS was exercised via telephone lines from JPL, and candidate SEASAT orbits were analyzed by Battelle. The additions to the program enable clear understanding of the implications of a specific orbit to the diverse desires of the SEASAT user community.

  2. Everything in OrbitEverything in Orbit Orbital VelocityOrbital Velocity

    E-print Network

    Herrick, Robert R.

    , it would crash into the Sunenergy, it would crash into the Sun #12;Application: satellitesApplication: satellites We can put satellites in any orbit around the Earth, but inertia We can put satellites in any gravitational force to keep it in orbit That means closer satellites must orbit the Earth That means closer

  3. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  4. Environmental dynamics at orbital altitudes

    NASA Technical Reports Server (NTRS)

    Karr, G. R.

    1976-01-01

    The work reported involved the improvement of aerodynamic theory for free molecular and transition flow regimes. The improved theory was applied to interpretation of the dynamic response of objects traveling through the atmosphere. Satellite drag analysis includes analysis methods, atmospheric super rotation effects, and satellite lift effects on orbital dynamics. Transition flow regimes were studied with falling sphere data and errors resulting in inferred atmospheric parameters from falling sphere techniques. Improved drag coefficients reveal considerable error in previous falling sphere data. The drag coefficient has been studied for the entire spectrum of Knudsen Number and speed ratio, with particular emphasis on the theory of the very low-speed ratio regime.

  5. Experimental evidence for the role of the {pi}{sub CO}* orbital in electron transfer to gas phase acetic acid CH{sub 3}CO{sub 2}H: Effects of molecular orientation

    SciTech Connect

    Brooks, Philip R. [Department of Chemistry and Rice Quantum Institute, Rice University, Houston, Texas 77251 (United States)

    2009-04-21

    Electron transfer from K atoms to oriented acetic acid molecules produces acetate ions (and K{sup +}) when the CO{sub 2}H end of the molecule is attacked. The electron enters the {pi}{sub CO}* orbital and the donor atom distorts the molecule to allow migration to the {sigma}{sub OH}{sup *} orbital, thereby breaking the bond.

  6. Lattice QCD study of four-quark components of the isosinglet scalar mesons: Significance of disconnected diagrams

    NASA Astrophysics Data System (ADS)

    Wakayama, Masayuki; Kunihiro, Teiji; Muroya, Shin; Nakamura, Atsushi; Nonaka, Chiho; Sekiguchi, Motoo; Wada, Hiroaki; Scalar Collaboration

    2015-05-01

    We study the possible significance of four-quark states in the isosinglet scalar mesons (JP C=0++ , I =0 ) by performing two-flavor full lattice QCD simulations on an 83×16 lattice using the improved gauge action and the clover-improved Wilson quark action. In particular, we evaluate the propagators of molecular and tetraquark operators together with singly disconnected diagrams. In the computation of the singly disconnected diagrams we employ the Z2-noise method with the truncated eigenmode approach. We show that the quark loops given by the disconnected diagrams play an essential role in propagators of tetraquark and molecular operators.

  7. 6 Semiempirical Molecular Orbital Study of

    E-print Network

    Elliott, James

    the structure of iron car- bide catalyst particles [13], thus providing some degree of control over the chiral. There exist an abundance of transmis- sion electron microscope images of the catalytic metals attached

  8. Superfluid helium on-orbit resupply

    NASA Technical Reports Server (NTRS)

    Eberhardt, Ralph N.; Gille, John P.

    1990-01-01

    The requirements for superfluid helium (SFHe) resupply were investigated, and the results were used to develop a conceptual design for a superfluid helium tanker (SFHT) which is designed to meet a 50-mission requirement. The SFHT design uses a conventional dewar approach with multiple vapor cooled shields, and a porous-plug phase separator for on-orbit temperature control. An open loop refrigeration approach is used for ground conversion of normal He to SFHe, allowing near-total fill of the supply tank. Design diagrams of the SFHT concept and of various SFHT subsystems are presented.

  9. Rock-Around Orbits 

    E-print Network

    Bourgeois, Scott K.

    2010-07-14

    me to be a better engineer and to persist because there is always an answer. I would also like to thank the sta at the Spacecraft Technology Center for their help and support. I have learned that patience is not only a good virtue to have as a person... of Minimum Distance from Spacecraft to Circular Target Orbit 16 10 Minimum Distance between RAO and GEO Orbits for One RAO Orbital Period (Example 1) : : : : : : : : : : : : : : : : : : : : : : : 17 11 Compatible Orbits for Elliptical Target Orbit (Example 2...

  10. OTV orbital tanking systems

    NASA Technical Reports Server (NTRS)

    Heald, D. A.; Merino, F.

    1979-01-01

    Orbital transfer of cryogenic propellants could benefit spacecraft and Orbital Transfer Vehicle (OTV) missions in the 1980s by supplying main propulsion, attitude control, or other fluid systems. The Space Shuttle can operate as a tanker when equipped with cryogenic propellant storage and orbital transfer systems. The key technologies are multilayer insulation, capillary propellant acquisition, zero-g gaging, orbital chilldown, and possibly large flight weight dewars. The technologies and operations could be realistically demonstrated using a Centaur that has been integrated with the Shuttle. Orbital refueling capability can enhance the usefulness of the whole Shuttle program

  11. Orbit correction in an orbit separated cyclotron

    NASA Astrophysics Data System (ADS)

    Plostinar, C.; Rees, G. H.

    2014-04-01

    The orbit separated proton cyclotron (OSC) described in [1] differs in concept from that of a separated orbit cyclotron (SOC) [2]. Synchronous acceleration in an OSC is based on harmonic number jumps and orbit length adjustments via reverse bending. Four-turn acceleration in the OSC enables it to have four times fewer cryogenic-cavity systems than in a superconducting linac of the same high beam power and energy range. Initial OSC studies identified a progressive distortion of the spiral beam orbits by the off-axis, transverse deflecting fields in its accelerating cavities. Compensation of the effects of these fields involves the repeated use of a cavity field map, in a 3-D linac tracking code, to determine the modified arc bends required for the OSC ring. Subsequent tracking studies confirm the compensation scheme and show low emittance growth in acceleration.

  12. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.

  13. Pseudoatom molecular dynamics

    NASA Astrophysics Data System (ADS)

    Starrett, C. E.; Daligault, J.; Saumon, D.

    2015-01-01

    An approach to simulating warm and hot dense matter that combines density-functional-theory-based calculations of the electronic structure to classical molecular dynamics simulations with pair interaction potentials is presented. The method, which we call pseudoatom molecular dynamics, can be applied to single-component or multicomponent plasmas. It gives equation of state and self-diffusion coefficients with an accuracy comparable to orbital-free molecular dynamics simulations but is computationally much more efficient.

  14. Global petrologic variations of the Moon: A ternary-diagram approach

    NASA Technical Reports Server (NTRS)

    Davis, Philip A.; Spudis, Paul D.

    1987-01-01

    A ternary-diagram approach is used to show on a single map as much detailed geochemical information concerning petrologic variations within the lunar crust as is possible. The classification map shows the global spatial distributions of end-member compositions, the transitional spatial relations between end-member compositions, and quantitative estimates of relative proportions of each end member at each pixel location within the orbital groundtracks. The use of elemental ratios in this analysis, instead of the commonly used elemental bivariate diagrams, shows geologic information that is otherwise hidden in individual elemental databases.

  15. Determination of cellulose crystallinity from powder diffraction diagrams.

    PubMed

    Lindner, Benjamin; Petridis, Loukas; Langan, Paul; Smith, Jeremy C

    2015-02-01

    One-dimensional (1D) (spherically averaged) powder diffraction diagrams are commonly used to determine the degree of cellulose crystallinity in biomass samples. Here, it is shown using molecular modeling how disorder in cellulose fibrils can lead to considerable uncertainty in conclusions drawn concerning crystallinity based on 1D powder diffraction data alone. For example, cellulose microfibrils that contain both crystalline and noncrystalline segments can lead to powder diffraction diagrams lacking identifiable peaks, while microfibrils without any crystalline segments can lead to such peaks. This leads to false positives, that is, assigning disordered cellulose as crystalline, and false negatives, that is, categorizing fibrils with crystalline segments as amorphous. The reliable determination of the fraction of crystallinity in any given biomass sample will require a more sophisticated approach combining detailed experiment and simulation. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 67-73, 2015. PMID:25269646

  16. Phase diagram of coupled ladders

    Microsoft Academic Search

    T. F. A. Muller; T. M. Rice

    1998-01-01

    The 2-leg t-J ladder forms a spin liquid at half-filling which evolves to a\\u000aLuther-Emery liquid upon doping. Our aim is to obtain a complete phase diagram\\u000afor isotropic coupling (i.e. rungs and legs equal) as a function of electron\\u000adensity n and the ratio J\\/t (>0). Two known limiting cases are: n<1\\/2 which is\\u000aa single band Luttinger liquid

  17. Reactivity index based on orbital energies.

    PubMed

    Tsuneda, Takao; Singh, Raman K

    2014-05-30

    This study shows that the chemical reactivities depend on the orbital energy gaps contributing to the reactions. In the process where a reaction only makes progress through charge transfer with the minimal structural transformation of the reactant, the orbital energy gap gradient (OEGG) between the electron-donating and electron-accepting orbitals is proven to be very low. Using this relation, a normalized reaction diagram is constructed by plotting the normalized orbital energy gap with respect to the normalized intrinsic reaction coordinate. Application of this reaction diagram to 43 fundamental reactions showed that the majority of the forward reactions provide small OEGGs in the initial stages, and therefore, the initial processes of the forward reactions are supposed to proceed only through charge transfer. Conversely, more than 60% of the backward reactions are found to give large OEGGs implying very slow reactions associated with considerable structural transformations. Focusing on the anti-activation-energy reactions, in which the forward reactions have higher barriers than those of the backward ones, most of these reactions are shown to give large OEGGs for the backward reactions. It is also found that the reactions providing large OEGGs in the forward directions inconsistent with the reaction rate constants are classified into SN 2, symmetric, and methyl radical reactions. Interestingly, several large-OEGG reactions are experimentally established to get around the optimum pathways. This indicates that the reactions can take significantly different pathways from the optimum ones provided no charge transfer proceeds spontaneously without the structural transformations of the reactants. PMID:24740548

  18. High Harmonic Generation from Multiple Orbitals in N2

    SciTech Connect

    McFarland, B.; Farrell, Joseph P.; Bucksbaum, Philip H.; Guehr, Markus; /SLAC, Pulse /Stanford U., Phys. Dept.

    2009-03-05

    Molecular electronic states energetically below the highest occupied molecular orbital (HOMO) should contribute to laser-driven high harmonic generation (HHG), but this behavior has not been observed previously. Our measurements of the HHG spectrum of N{sub 2} molecules aligned perpendicular to the laser polarization showed a maximum at the rotational half-revival. This feature indicates the influence of electrons occupying the orbital just below the N{sub 2} HOMO, referred to as the HOMO-1. Such observations of lower-lying orbitals are essential to understanding subfemtosecond/subangstrom electronic motion in laser-excited molecules.

  19. Frustration and Entanglement in Compass and Spin-Orbital Models

    E-print Network

    Andrzej M. Ole?

    2014-10-24

    We review the consequences of intrinsic frustration of the orbital superexchange and of spin-orbital entanglement. While Heisenberg perturbing interactions remove frustration in the compass model, the lowest columnar excitations are robust in the nanoscopic compass clusters and might be used for quantum computations. Entangled spin-orbital states determine the ground states in some cases, while in others concern excited states and lead to measurable consequences, as in the $R$VO$_3$ perovskites. On-site entanglement for strong spin-orbit coupling generates the frustrated Kitaev-Heisenberg model with a rich magnetic phase diagram on the honeycomb lattice. Frustration is here reflected in hole propagation which changes from coherent in an antiferromagnet via hidden quasiparticles in zigzag and stripe phases to entirely incoherent one in the Kitaev spin liquid.

  20. Orbit Determination of the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-01-01

    We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

  1. Binary alloy phase diagrams requiring further studies

    Microsoft Academic Search

    H. Okamoto; T. B. Massalski

    1994-01-01

    Binary Alloy Phase Diagrams , 2nd ed. 90Mas, covering ?3000 systems and ?2200 phase diagrams, is the most current compilation of binary systems. However,\\u000a ?500 of them include thermodynamically unlikely features. These problems are classified into more than 30 groups, and a few\\u000a typical examples are shown for each group. If a phase diagram shows an improbable feature, it implies

  2. The box diagram in Yukawa theory

    E-print Network

    Bernard L. G. Bakker; Jorn K. Boomsma; Chueng-Ryong Ji

    2006-10-30

    We present a light-front calculation of the box diagram in Yukawa theory. The covariant box diagram is finite for the case of spin-1/2 constituents exchanging spin-0 particles. In light-front dynamics, however, individual time-ordered diagrams are divergent. We analyze the corresponding light-front singularities and show the equivalence between the light-front and covariant results by taming the singularities.

  3. F K-edge X-ray absorption near-edge structure (XANES) of AlF3 polymorphs: combining ab initio calculations with Walsh correlation diagrams.

    PubMed

    Schroeder, Sven L M; Weiher, Norbert

    2006-04-21

    The X-ray absorption near-edge structures (XANES) at the F K-edge of alpha-AlF(3), beta-AlF(3) and a tetragonal AlF(3) phase are analysed by a combination of ab initio calculations with the FEFF8 code and a phenomenological discussion of local molecular orbital (MO) symmetries at the absorbing fluorine atoms. By means of a Walsh correlation diagram it is shown that the two intense absorption bands observed at the F K-edges of the AlF(3) polymorphs can be interpreted as transitions to anti-bonding MOs in [Al-F-Al]-units that have C(2v) and D(infinity h) point group symmetries. The energies of both anti-bonding orbitals are very insensitive to the angle between the Al-F bonds, which explains the close similarity of the XANES signatures from the three polymorphs. The FEFF8 analysis shows that the increased broadening of the XANES structure for beta-AlF(3) and the tetragonal AlF(3) phase is due to the superposition of the individual absorption spectra from the crystallographically distinct F species. The interpretation in terms of local MOs provides for the first time a "chemically intuitive" approach to investigations of solid fluorides by XANES spectroscopy and provides a simple conceptual framework for the discussion of the electronic structure in AlF(3) materials. PMID:16633665

  4. Classical 3-loop 2-body diagrams

    E-print Network

    Barak Kol; Ruth Shir

    2013-07-30

    As part of the study of the two-body problem in Einstein's gravity, the fourth post-Newtonian order (4PN) of the two-body effective action is being computed presently by both effective field theory (EFT) methods and others. Diagrams with 3 (or 4) classical loops appear to be a significant obstacle. In this paper we develop a method to compute such 3-loop diagrams and demonstrate it through a specific diagram. We reduce the classical diagrams through shrinking the body worldlines to a form more familiar in Quantum Field Theory. A key ingredient in the evaluation is the Integration By Parts method for Feynman integrals.

  5. Hofstadter Butterfly Diagram in Noncommutative Space

    E-print Network

    Hidenori Takahashi; Masanori Yamanaka

    2006-06-23

    We study an energy spectrum of electron moving under the constant magnetic field in two dimensional noncommutative space. It take place with the gauge invariant way. The Hofstadter butterfly diagram of the noncommutative space is calculated in terms of the lattice model which is derived by the Bopp's shift for space and by the Peierls substitution for external magnetic field. We also find the fractal structure in new diagram. Although the global features of the new diagram are similar to the diagram of the commutative space, the detail structure is different from it.

  6. Equations of state and phase diagrams of hydrogen isotopes

    SciTech Connect

    Urlin, V. D., E-mail: urlin@vniief.ru [Russian Federal Nuclear Center All-Russia Research Institute of Experimental Physics (Russian Federation)

    2013-11-15

    A new form of the semiempirical equation of state proposed for the liquid phase of hydrogen isotopes is based on the assumption that its structure is formed by cells some of which contain hydrogen molecules and others contain hydrogen atoms. The values of parameters in the equations of state of the solid (molecular and atomic) phases as well as of the liquid phase of hydrogen isotopes (protium and deuterium) are determined. Phase diagrams, shock adiabats, isentropes, isotherms, and the electrical conductivity of compressed hydrogen are calculated. Comparison of the results of calculations with available experimental data in a wide pressure range demonstrates satisfactory coincidence.

  7. Phase Diagram of Optimal Paths

    E-print Network

    Alex Hansen; Janos Kertesz

    2004-02-17

    We show that choosing appropriate distributions of the randomness, the search for optimal paths links diverse problems of disordered media like directed percolation, invasion percolation, directed and non-directed spanning polymers. We also introduce a simple and efficient algorithm, which solves the d-dimensional model numerically in order N^(1+d_f/d) steps where d_f is the fractal dimension of the path. Using extensive simulations in two dimensions we identify the phase boundaries of the directed polymer universality class. A new strong-disorder phase occurs where the optimum paths are self-affine with parameter-dependent scaling exponents. Furthermore, the phase diagram contains directed and non-directed percolation as well as the directed random walk models at specific points and lines.

  8. Hubble's diagram and cosmic expansion

    PubMed Central

    Kirshner, Robert P.

    2004-01-01

    Edwin Hubble's classic article on the expanding universe appeared in PNAS in 1929 [Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168–173]. The chief result, that a galaxy's distance is proportional to its redshift, is so well known and so deeply embedded into the language of astronomy through the Hubble diagram, the Hubble constant, Hubble's Law, and the Hubble time, that the article itself is rarely referenced. Even though Hubble's distances have a large systematic error, Hubble's velocities come chiefly from Vesto Melvin Slipher, and the interpretation in terms of the de Sitter effect is out of the mainstream of modern cosmology, this article opened the way to investigation of the expanding, evolving, and accelerating universe that engages today's burgeoning field of cosmology. PMID:14695886

  9. Ligand field theory for the orbit-lattice coupling coefficients to E strains of d5 ions in tetrahedral symmetry

    Microsoft Academic Search

    D. Boulanger; R. Parrot

    1987-01-01

    A molecular orbital model has been elaborated to determine the orbit–lattice coupling coefficients to strains of symmetry E of the orbital triplet states of d5 ions in tetrahedral symmetry. The wave functions and energies of the monoelectronic molecular orbitals have been determined for a tetrahedral molecule MnX4 in a crystal and for a slightly distorted molecule of symmetry D2d corresponding

  10. Orbital granulocytic sarcoma

    PubMed Central

    Stockl, F.; Dolmetsch, A.; Saornil, M; Font, R.; Burnier, M.

    1997-01-01

    AIM—Orbital granulocytic sarcoma is a localised tumour composed of cells of myeloid origin. Histological diagnosis can be difficult in patients with poorly differentiated orbital tumours and no evidence of systemic leukaemia. The naphthol AS-D chloracetate esterase (Leder stain) and immunohistochemical stains for lysozyme and MAC387 were used to determine the staining characteristics of these tumours. A case series of seven patients with orbital granulocytic sarcoma is presented.?METHODS—Seven patients with orbital granulocytic sarcoma were studied. Haematoxylin and eosin, Leder, and lysozyme stained sections were available in seven cases. Unstained formalin fixed paraffin embedded sections of seven cases were available for immunohistochemical evaluation using the avidin-biotin-complex technique for MAC387.?RESULTS—The mean age of presentation of the orbital tumour was 8.8 years. Four patients presented with an orbital tumour before any systemic manifestations of leukaemia. In two cases the diagnosis of the orbital tumour and systemic leukaemia was made simultaneously. There was one case of established systemic myeloid leukaemia in remission with the subsequent development of orbital granulocytic sarcoma. Six of seven cases (86%) were positive for the Leder stain. Five of seven cases (71%) showed positive immunoreactivity with lysozyme. The immunohistochemical stain for MAC387 was positive in all seven cases (100%) including one case that was negative for both lysozyme and Leder stains.?CONCLUSIONS—Orbital granulocytic sarcoma is a tumour that affects children and can present with rapidly progressive proptosis. This tumour may develop before, during, or after the occurrence of systemic leukaemia. The combination of Leder and lysozyme stains is useful in the diagnosis of orbital granulocytic sarcoma. MAC387 may be a more reliable marker for orbital granulocytic sarcoma.?? PMID:9497470

  11. PC-402 Pioneer Venus orbiter spacecraft mission operational characteristics document

    NASA Technical Reports Server (NTRS)

    Barker, F. C.; Butterworth, L. W.; Daniel, R. E.; Drean, R. J.; Filetti, K. A.; Fisher, J. N.; Nowak, L. A.; Porzucki, J.; Salvatore, J. O.; Tadler, G. A.

    1978-01-01

    The operational characteristics of the Orbiter spacecraft and its subsystems are described. In extensive detail. Description of the nominal phases, system interfaces, and the capabilities and limitations of system level performance are included along with functional and operational descriptions at the subsystem and unit level the subtleties of nominal operation as well as detailed capabilities and limitations beyond nominal performance are discussed. A command and telemetry logic flow diagram for each subsystem is included. Each diagram encountered along each command signal path into, and each telemetry signal path out of the subsystem. Normal operating modes that correspond to the performance of specific functions at the time of specific events in the mission are also discussed. Principal backup means of performing the normal Orbiter operating modes are included.

  12. Viking Orbiter stereophotogrammetry

    Microsoft Academic Search

    M. Benesh

    1978-01-01

    Orbit characteristics of the two Viking Orbiter spacecraft made possible the acquisition of high-resolution imagery of the Martian surface, resulting in many excellent convergent stereopairs. Evaluation of these stereopairs presented a few unconventional problems because the routine relative orientation was not feasible, mainly due to a lack of good passpoints and to the technical peculiarities of TV vidicon imaging techniques.

  13. From surface to orbit

    Microsoft Academic Search

    Andras Bela Olah

    2011-01-01

    Space travel is highly expensive and has significant limitations. Among all space activities the process of travelling from the surface to orbit requires the greatest amount of energy, materials and cost. Basically even today, more than 61 years after the first artificial satellite was set to orbit, these difficulties have been the greatest barriers of the dawn of the real

  14. Orbits R Us!

    NSDL National Science Digital Library

    This site introduces the principle of geosynchronous orbits and geostationary weather satellites in non-technical terms. Several animations show how they work. The GOES (Geostationary Operational Environmental Satellite) and POES (Polar-orbiting Operational Environmental Satellites) satellite programs at NASA and NOAA are briefly explained.

  15. Orbital Shape Representations.

    ERIC Educational Resources Information Center

    Kikuchi, Osamu; Suzuki, Keizo

    1985-01-01

    Discusses the use of orbital shapes for instructional purposes, emphasizing that differences between polar, contour, and three-dimensional plots must be made clear to students or misconceptions will occur. Also presents three-dimensional contour surfaces for the seven 4f atomic orbitals of hydrogen and discusses their computer generation. (JN)

  16. Titan Orbiter Aerorover Mission

    NASA Technical Reports Server (NTRS)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  17. Analyzing Shuttle Orbiter Trajectories

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1986-01-01

    LRBET4 program best-estimated-of-trajectory (BET) calculation for post-flight trajectory analysis of Shuttle orbiter. Produces estimated measurements for comparing predicted and actual trajectory of Earth-orbiting spacecraft. Kalman filter and smoothing filter applied to input data to estimate state vector, reduce noise, and produce BET. LRBET4 written in FORTRAN IV for batch execution.

  18. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.

  19. Orbital Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.; Stansbery, G.

    2014-01-01

    Policies on limiting orbital debris are found throughout the US Government, many foreign space agencies, and as adopted guidelines in the United Nations. The underlying purpose of these policies is to ensure the environment remains safe for the operation of robotic and human spacecraft in near- Earth orbit. For this reason, it is important to consider orbital debris mitigation during the design of all space vehicles. Documenting compliance with the debris mitigation guidelines occurs after the vehicle has already been designed and fabricated for many CubeSats, whereas larger satellites are evaluated throughout the design process. This paper will provide a brief explanation of the US Government Orbital Debris Mitigation Standard Practices, a discussion of international guidelines, as well as NASA's process for compliance evaluation. In addition, it will discuss the educational value of considering orbital debris mitigation requirements as a part of student built satellite design.

  20. Orbital Causes of Incomitant Strabismus

    PubMed Central

    Lueder, Gregg T.

    2015-01-01

    Strabismus may result from abnormal innervation, structure, or function of the extraocular muscles. Abnormalities of the orbital bones or masses within the orbit may also cause strabismus due to indirect effects on the extraocular muscles. This paper reviews some disorders of the orbit that are associated with strabismus, including craniofacial malformations, orbital masses, trauma, and anomalous orbital structures. PMID:26180465

  1. Counting planar diagrams with various restrictions

    Microsoft Academic Search

    Gerard't Hooft

    1999-01-01

    Explicit expressions are considered for the generating functions concerning the number of planar diagrams with given numbers of 3- and 4-point vertices. It is observed that planar renormalization theory requires diagrams with restrictions, in the sense that one wishes to omit ‘tadpole’ insertions and ‘seagull’ insertions; at a later stage also self-energy insertions are to be removed, and finally also

  2. On the convergence of planar diagram expansions

    Microsoft Academic Search

    Gerard't Hooft

    1982-01-01

    Renormalizable quantum field theories whose perturbation expansions are described by planar Feynman diagrams only, such as SU(8) gauge theory, are considered in 4 dimensional Euclidean space. For studying asymptotic properties of the perturbation series one might wish to isolate first all those planar diagrams that do not contain any ultraviolet divergent subgraphs. In this paper it is proved that this

  3. User applications of alloy phase diagrams

    Microsoft Academic Search

    V. Raghavan

    2009-01-01

    the Schaeffler diagram. Apart from Cr and Ni, other intentionally added or residual alloying elements in stainless steels are usually present in smaller concentrations. The empirical diagrams take these into account by using either a chromium equivalent or a nickel equivalent, depending on whether the alloying element stabilizes ferrite or austenite. Fixed values of the equivalents obtained from a limited

  4. Towards Flexible Graphical Communication Using Adaptive Diagrams

    Microsoft Academic Search

    Kim Marriott; Bernd Meyer; Peter J. Stuckey

    2004-01-01

    Unlike today where the majority of diagrams are static, life- less objects reflecting their origin in print media, the computer of the near future will provide more flexible visual computer interfaces in which di- agrams adapt to their viewing context, support interactive exploration and provide semantics-based retrieval and adaptation. We provide an overview of the Adaptive Diagram Research Project whose

  5. Combinatorial Gelfand Models for Diagram Algebras

    E-print Network

    Halverson, Tom

    Combinatorial Gelfand Models for Diagram Algebras Tom Halverson Department of Mathematics, Statistics, and Computer Science MACALESTER COLLEGE January 11, 2013 JMM San Diego Tom Halverson (Macalester appears with multiplicity exactly 1. Tom Halverson (Macalester College) Diagram Models 1/11/2013 2 / 16

  6. MCS 360 L-5 use case diagram

    E-print Network

    Verschelde, Jan

    MCS 360 L-5 1 Sep 2010 an online phone book use case diagram encapsulating a file Command Line phonebook.h and phonebook.cpp the main program MCS 360 Lecture 5 Introduction to Data Structures Jan Verschelde, 1 September 2010 #12;MCS 360 L-5 1 Sep 2010 an online phone book use case diagram encapsulating

  7. MCS 360 L5 use case diagram

    E-print Network

    Verschelde, Jan

    MCS 360 L­5 1 Sep 2010 an online phone book use case diagram encapsulating file Command Line phonebook.h and phonebook.cpp the main program MCS 360 Lecture 5 Introduction to Data Structures Jan Verschelde, 1 September 2010 MCS 360 L­5 1 Sep 2010 an online phone book use case diagram encapsulating file

  8. Phase diagram of a random tiling quasicrystal

    Microsoft Academic Search

    Weixiong Li; Michael Widom

    1992-01-01

    We study the phase diagram of a two-dimensional random tiling model for quasicrystals. At proper concentrations the model has 8-fold rotational symmetry. Landau theory correctly gives most of the qualitative features of the phase diagram, which is in turn studied in detail numerically using a transfer matrix approach. We find that the system can enter the quasicrystal phase from many

  9. A Monitoring Profile for UML Sequence Diagrams

    Microsoft Academic Search

    Kai Xu; Donglin Liang

    UML sequence diagrams are widely used during require- ments analysis and design for specifying the expected behaviors of a system. In this paper, we present a monitoring profile that extends se- quence diagrams to facilitate the comparison between the actual behav- iors and expected behaviors of a system. With the profile, the developers can precisely specify the runtime objects to

  10. Sematics of UML Sequence Diagrams in PVS

    Microsoft Academic Search

    Demissie B. Aredo

    In this paper, we present formal semantics of UML (Unified Modeling Language) sequence diagrams using the PVS (Prototype Ver- ification System) (8) as an underlying semantic foundation. We give a formal definition of a trace-based semantics (5) of UML sequence dia- grams; i.e. a sequence diagram is interpreted as a set of traces of events that may occur in the

  11. Fundamental Traffic Diagrams of Elementary Road Networks

    Microsoft Academic Search

    N. Farhi; M. Goursat; J. P. Quadrat

    The fundamental traffic diagram gives the relation between the flow and the density of vehicles on a road. This diagram has been obtained for one circular road in the deterministic and stochastic cases. In this paper we revisit the simplest example of two roads and one crossing given in (2) and we study the interaction between crossings on a system

  12. Jamming phase diagram of colloidal dispersions by molecular dynamics simulations

    E-print Network

    Wu, Jianzhong

    for reasons that appear quite unrelated to each other.1 Phrases such as gelation, coagulation, kinetic arrest the crystalli- zation of the proteins in solution3,4 or in the fabrication of ordered nano-structures by self

  13. Recognition of On-Line Handwritten Commutative Diagrams

    Microsoft Academic Search

    Andreas Stoffel; Ernesto Tapia; Ra ´ ul Rojas

    2009-01-01

    We present a method for the recognition of on-line hand- written commutative diagrams. Diagrams are formed with arrows that join relatively simple mathematical expressions. Diagram recognition consists in grouping isolated symbols into simple expressions, recognizing the arrows that join such expressions, and finding the layout that best describes the diagram. We model the layout of the diagram with a grid

  14. Fingerprints of spin-orbital entanglement in transition metal oxides

    E-print Network

    Andrzej M. Ole?

    2012-07-12

    The concept of spin-orbital entanglement on superexchange bonds in transition metal oxides is introduced and explained on several examples. It is shown that spin-orbital entanglement in superexchange models destabilizes the long-range (spin and orbital) order and may lead either to a disordered spin-liquid state or to novel phases at low temperature which arise from strongly frustrated interactions. Such novel ground states cannot be described within the conventionally used mean field theory which separates spin and orbital degrees of freedom. Even in cases where the ground states are disentangled, spin-orbital entanglement occurs in excited states and may become crucial for a correct description of physical properties at finite temperature. As an important example of this behaviour we present spin-orbital entanglement in the $R$VO$_3$ perovskites, with $R$=La,Pr,...,Yb,Lu, where such finite temperature properties of these compounds can be understood only using entangled states: ($i$) thermal evolution of the optical spectral weights, ($ii$) the dependence of transition temperatures for the onset of orbital and magnetic order on the ionic radius in the phase diagram of the $R$VO$_3$ perovskites, and ($iii$) dimerization observed in the magnon spectra for the $C$-type antiferromagnetic phase of YVO$_3$. Finally, it is shown that joint spin-orbital excitations in an ordered phase with coexisting antiferromagnetic and alternating orbital order introduces topological constraints for the hole propagation and will thus radically modify transport properties in doped Mott insulators where hole motion implies simultaneous spin and orbital excitations.

  15. Fingerprints of spin-orbital entanglement in transition metal oxides.

    PubMed

    Ole?, Andrzej M

    2012-08-01

    The concept of spin-orbital entanglement on superexchange bonds in transition metal oxides is introduced and explained on several examples. It is shown that spin-orbital entanglement in superexchange models destabilizes the long-range (spin and orbital) order and may lead either to a disordered spin-liquid state or to novel phases at low temperature which arise from strongly frustrated interactions. Such novel ground states cannot be described within the conventionally used mean field theory which separates spin and orbital degrees of freedom. Even in cases where the ground states are disentangled, spin-orbital entanglement occurs in excited states and may become crucial for a correct description of physical properties at finite temperature. As an important example of this behaviour we present spin-orbital entanglement in the RV O(3) perovskites, with R = La,Pr,…,Y b,Lu, where the finite temperature properties of these compounds can be understood only using entangled states: (i) the thermal evolution of the optical spectral weights, (ii) the dependence of the transition temperatures for the onset of orbital and magnetic order on the ionic radius in the phase diagram of the RV O(3) perovskites, and (iii) the dimerization observed in the magnon spectra for the C-type antiferromagnetic phase of Y V O(3). Finally, it is shown that joint spin-orbital excitations in an ordered phase with coexisting antiferromagnetic and alternating orbital order introduce topological constraints for the hole propagation and will thus radically modify the transport properties in doped Mott insulators where hole motion implies simultaneous spin and orbital excitations. PMID:22776856

  16. Lattice QCD study of four-quark components of the iso-singlet scalar mesons --- significance of disconnected diagrams ---

    E-print Network

    Masayuki Wakayama; Teiji Kunihiro; Shin Muroya; Atsushi Nakamura; Chiho Nonaka; Motoo Sekiguchi; Hiroaki Wada

    2014-12-12

    We study the possible significance of four-quark states in the iso-singlet scalar mesons ($J^{PC}=0^{++}$, $I=0$) by performing two-flavor full lattice QCD simulations on an $8^3 \\times 16$ lattice using the improved gauge action and the clover-improved Wilson quark action. In particular, we evaluate the propagators of molecular and tetra-quark states together with singly disconnected diagrams. For the computation of the singly disconnected diagrams we employ the $Z_2$-noise method with the truncated eigenmode approach. We show that the quark loops given by the disconnected diagrams play an essential role in making the four-quark states exist. We find that the light iso-singlet scalar meson $\\sigma$ may be the molecular state. The main component of the propagator of the tetra-quark state originates from the singly disconnected diagrams.

  17. Orbit Stabilization of Nanosat

    SciTech Connect

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  18. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  19. OL- ORBITAL LIFETIME PROGRAM

    NASA Technical Reports Server (NTRS)

    Orr, L. H.

    1994-01-01

    The Orbital Lifetime (OL) program analyzes the long-term motion of Earth-orbiting spacecraft at altitudes of up to 2500 kilometers. It models perturbations to the orbit caused by solar radiation pressure, atmospheric drag, and gravitational effects due to the sun, the moon, and Earth oblateness. OL can be used to predict the orbital lifetime and decay rate of a satellite. The atmospheric density models used in OL are the U.S. Standard Atmosphere for altitudes below 90 km and the Jacchia model for altitudes above 90 km. The Jacchia model requires solar flux and geomagnetic index for the date of orbit. An input file containing these values for 1984 to 1998 is supplied with the OL package. The solar radiation pressure calculations in OL will predict the amount of time a spacecraft is subjected to the Earth's shadow. Input to OL includes spacecraft physical characteristics, initial orbit parameters, and launch date/time. OL calculates time histories of the orbital elements, total lifetime, and decay rates. A spacecraft is considered 'down' at an altitude of 64 km. OL also generates a file of plot data which can be input to a user-supplied graphics program for lifetime plots of altitude against time. OL is written in FORTRAN 77 for interactive or batch execution and has been implemented on a DEC VAX series computer operating under VMS. This program was developed in 1985.

  20. Visualization of atom's orbits.

    PubMed

    Kim, Byungwhan

    2014-02-01

    High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions. PMID:24749452

  1. Phase diagram of coupled ladders

    NASA Astrophysics Data System (ADS)

    Müller, T. F. A.; Rice, T. M.

    1998-08-01

    The two-leg t-J ladder forms a spin liquid at half filling that evolves to a Luther-Emery liquid upon doping. Our aim is to obtain a complete phase diagram for isotropic coupling (i.e., rungs and legs equal) as a function of electron density n and the ratio J/t. Two known limiting cases are n<12, which is a single band Luttinger liquid, and small hole doping ?<<1 for J/t-->0, which is a Nagaoka ferromagnet. Using Lanczos techniques we examine the region between the Nagaoka and Luther-Emery phases for 1>n>12. We find evidences for gapless behavior in both spin and charge channels for J/t<0.3, consistent with Luttinger liquids in both bonding and antibonding bands (i.e., C2S2). This proposal is based on the behavior of spin and charge correlation functions. For example, the hole-hole correlation function that displays hole pairing at larger J/t shows hole-hole repulsion in this region. As a further test, we examined the dependence of the energy on a relative phase shift between bonding and antibonding bands. For J/t<0.3 this is very weak, indicating a lack of pairing between these channels.

  2. A Hubble Diagram for Quasars

    E-print Network

    Risaliti, Guido

    2015-01-01

    We present a new method to test the cosmological model, and to estimate the cosmological parameters, based on the non-linear relation between ultraviolet and X-ray luminosity of quasars. We built a data set of ~1,250 quasars by merging several literature samples with X-ray measurements at 2 keV and SDSS photometry, which was used to estimate the extinction-corrected 2500~\\AA\\ flux. We obtained three main results: (1) we checked the non-linear relation between X-ray and UV luminosities in small redshift bins up to z~6, confirming that it holds at all redshifts with the same slope; (2) we built a Hubble diagram for quasars up to z~6, which is well matched to that of supernovae in the common z=0-1.4 redshift interval, and extends the test of the cosmological model up to z~6; (3) we showed that this non-linear relation is a powerful tool to estimate cosmological parameters. With present data, assuming a $\\Lambda$CDM model, we obtain $\\Omega_M$=0.21$^{+0.08}_{-0.10}$ and $\\Omega_\\Lambda$=0.95$^{+0.30}_{-0.20}$ ($\\...

  3. Phase separation in a polarized Fermi gas with spin-orbit coupling

    SciTech Connect

    Yi, W.; Guo, G.-C. [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei, Anhui, 230026 (China)

    2011-09-15

    We study the phase separation of a spin-polarized Fermi gas with spin-orbit coupling near a wide Feshbach resonance. As a result of the competition between spin-orbit coupling and population imbalance, the phase diagram for a uniform gas develops a rich structure of phase separation involving topologically nontrivial gapless superfluid states. We then demonstrate the phase separation induced by an external trapping potential and discuss the optimal parameter region for the experimental observation of the gapless superfluid phases.

  4. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual notation point missions. This paper collects both published and unpublished results from four previous notation point missions (ISEE-3, SOHO, ACE and MAP) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard marine and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using onboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN, missions must find alternatives to the standard OD scenario.

  5. The Amplituhedron from Momentum Twistor Diagrams

    E-print Network

    Yuntao Bai; Song He

    2014-08-11

    We propose a new diagrammatic formulation of the all-loop scattering amplitudes/Wilson loops in planar N=4 SYM, dubbed the "momentum-twistor diagrams". These are on-shell-diagrams obtained by gluing trivalent black and white vertices defined in momentum twistor space, which, in the reduced diagram case, are known to be related to diagrams in the original twistor space. The new diagrams are manifestly Yangian invariant, and they naturally represent factorization and forward-limit contributions in the all-loop BCFW recursion relations in momentum twistor space, in a fashion that is completely different from those in momentum space. We show how to construct and evaluate momentum-twistor diagrams, and how to use them to obtain tree-level amplitudes and loop-level integrands; in particular for the latter we identify an isolated bubble-structure for each loop variable, arising from a forward limit, or entangled removal of particles. From a given diagram one can directly read off the C, D matrices via a generalized "boundary measurement"; this in turn determines a cell in the amplituhedron associated with the amplitude, and our diagrammatic representations of the amplitude can provide triangulations of the amplituhedron with generally very intricate geometries. To demonstrate the computational power of the formalism, we give explicit results for general two-loop integrands, and the cells of the complete amplituhedron for two-loop MHV amplitudes.

  6. Method for constructing theoretical phase diagrams for tetramethylammonium family crystals

    NASA Astrophysics Data System (ADS)

    Sannikov, D. G.

    2012-11-01

    A method for constructing theoretical phase diagrams for tetramethylammonium family crystals is proposed. Temperature-pressure phase diagrams are constructed for different crystals of this family and compared with experimental diagrams. The assumptions and approximations of the method are discussed.

  7. Fundamental Diagram Calibration: A Stochastic Approach to Linear Fitting

    E-print Network

    Horowitz, Roberto

    Fundamental Diagram Calibration: A Stochastic Approach to Linear Fitting Brian Phegley Department methodology is proposed for characterizing and identifying key parameters of the fundamental diagram on traffic data obtained from a vehicle detection station. The proposed fundamental diagram characterization

  8. orbit.ps

    E-print Network

    consist of an arbitrary number of troughs are found numerically. The bifurca- ... Key words: water wave, Boussinesq system, traveling wave, homoclinic orbit,. multi-pulsed solution ... But to the best of my knowledge, there is no result regarding.

  9. Imaging in orbital trauma

    PubMed Central

    Lin, Ken Y.; Ngai, Philip; Echegoyen, Julio C.; Tao, Jeremiah P.

    2012-01-01

    Orbital trauma is one of the most common reasons for ophthalmology specialty consultation in the emergency department setting. We survey the literature from 1990 to present to describe the role of computed tomography (CT), magnetic resonance imaging (MRI) and their associated angiography in some of the most commonly encountered orbital trauma conditions. CT orbit can often detect certain types of foreign bodies, lens dislocation, ruptured globe, choroidal or retinal detachments, or cavernous sinus thrombosis and thus complement a bedside ophthalmic exam that can sometimes be limited in the setting of trauma. CT remains the workhorse for acute orbital trauma owing to its rapidity and ability to delineate bony abnormalities; however MRI remains an important modality in special circumstances such as soft tissue assessment or with organic foreign bodies. PMID:23961028

  10. Tethered orbital refueling study

    NASA Technical Reports Server (NTRS)

    Fester, Dale A.; Rudolph, L. Kevin; Kiefel, Erlinda R.; Abbott, Peter W.; Grossrode, Pat

    1986-01-01

    One of the major applications of the space station will be to act as a refueling depot for cryogenic-fueled space-based orbital transfer vehicles (OTV), Earth-storable fueled orbit maneuvering vehicles, and refurbishable satellite spacecraft using hydrazine. One alternative for fuel storage at the space station is a tethered orbital refueling facility (TORF), separated from the space station by a sufficient distance to induce a gravity gradient force that settles the stored fuels. The technical feasibility was examined with the primary focus on the refueling of LO2/LH2 orbital transfer vehicles. Also examined was the tethered facility on the space station. It was compared to a zero-gravity facility. A tethered refueling facility should be considered as a viable alternative to a zero-gravity facility if the zero-gravity fluid transfer technology, such as the propellant management device and no vent fill, proves to be difficult to develop with the required performance.

  11. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

  12. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  13. PPPL Lorentz orbit code

    SciTech Connect

    Felt, J.; Barnes, C.W.; Chrien, R.E.; Cohen, S.A.; Heidbrink, W.W.; Manos, D.; Zweben, S. (Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (USA))

    1990-10-01

    A code that integrates the Lorentz force equation has been developed to trace a single charged particle's trajectory under the influence of toroidally symmetric magnetic fields found in tokamaks. This code is used primarily to design and estimate the efficiency of charged fusion product probes, which detect escaping energetic ions such as the 1 MeV tritons, 3 MeV protons, 15 MeV protons, and 3.5 MeV alphas created in TFTR. This interactive code has also been used as a teaching tool to illustrate classes of orbits such as trapped and passing, as well as subtle orbital motions, e.g., precession of banana orbits in tokamaks, or orbits in dipole magnetic field configuration. This paper describes the code as well as recent modifications which (1) include Shafranov shifts of the magnetic surfaces, (2) use more realistic current density profiles, and (3) allow modeling of the detector and limiters.

  14. Mars parking orbit selection

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Braun, Robert D.

    1990-01-01

    For a Mars mission, the selection of a parking orbit is greatly influenced by the precession caused by the oblateness of the planet. This affects the departure condition for earth return, and therefore, the mass required in LEO for a Mars mission. In this investigation, minimum LEO mass penalties were observed for parking orbits characterized by having near-equatorial inclinations, high eccentricities, and requiring a three-dimensional departure burn. However, because near-equatorial inclination orbits have poor planetary coverage characteristics, they are not desirable from a science viewpoint. To enhance these science requirements along with landing-site accessibility, a penalty in initial LEO mass is required. This study shows that this initial LEO mass penalty is reduced for orbits characterized with low to moderate eccentricities, nonequatorial inclinations, and a tangential periapsis arrival and departure burn.

  15. Indian Mars Orbiter Mission

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil

    The Mars Orbiter Mission (MOM) is the first interplanetary mission of India launched by Indian Polar Satellite Launch Vehicle (PSLV-XL) on 5 November 2013. It departed from Earth's orbit on Dec. 1, 2013, on its 300-days journey to Mars. MOM will reach Mars on Sept. 24, 2014. The orbit of MOM around Mars is highly elliptical with periapsis ~370 km and apoapsis ~80000 km, inclination 151 degree, and orbital period 3.15 sols. The spacecraft mass is 1350 kg, with dry mass of 500 kg and science payload mass of 14 kg. The spacecraft carries five science payloads, namely: Methane Sensor for Mars (MSM), Mars Colour Camera (MCC), Lyman Alpha Photometer (LAP), Mars Exospheric Neutral Composition Analyzer (MENCA), TIR Imaging Spectrometer (TIS). This paper will present the details of the instruments, observation plan, and expected science.

  16. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  17. Novel P-T Phase Diagram of the Multiorbital Mott Insulator Sr2VO4.

    PubMed

    Karmakar, S; Malavi, Pallavi S

    2015-04-24

    The electrical and optical properties of the Mott insulator Sr2VO4 are investigated under high pressure on a phase pure polycrystalline sample. The system undergoes a pressure-driven insulator to metal transition (IMT) with a crossover between 20 and 24 GPa. The effect of pressure on the thermally driven electronic changes resulting from spin-orbital ordering transitions is studied. A multiorbital analysis of the low frequency optical conductivity spectra suggests a bandwidth-controlled and orbital selective nature of the Mott IMT transition. Dramatic enhancement of the low energy spectral weight in the high pressure correlated metallic phase is explained in terms of the formation of a quasiparticle peak in the spectral function of the narrow and degenerate d(yz,zx) orbitals. Our results overall establish a novel electronic phase diagram of tetragonal Sr2VO4. PMID:25955060

  18. Molecular Interaction Maps of Bioregulatory Networks: A General Rubric for Systems Biology

    Microsoft Academic Search

    Kurt W. Kohn; Mirit I. Aladjem; John N. Weinstein; Yves Pommier

    2005-01-01

    A standard for bioregulatory network diagrams is urgently needed in the same way that circuit diagrams are needed in electronics. Several graphical notations have been proposed, but none has become standard. We have prepared many detailed bioregulatory network diagrams using the Molecular Interaction Map (MIM) notation, and now feel confident that it is suitable as a standard. Here we describe

  19. Phase diagram of carbon-oxygen plasma mixtures in white dwarf stars

    NASA Astrophysics Data System (ADS)

    Schneider, A. S.; Horowitz, C. J.; Hughto, J.; Berry, D. K.

    2012-12-01

    The liquid-solid phase-diagram of dense carbon-oxygen plasma mixtures found in white dwarf stars interiors is determined from molecular dynamics (MD) simulations. Our MD simulations consist of boxes with 55296 ions with different carbon to oxygen ratios. Finite size effects are estimated comparing the new MD simulations results to previous smaller simulations. We use bond angle metric to identify whether an ion is in the solid, liquid or interface and study non-equilibrium effects by obtaining the diffusion coefficients in the different phases. Our phase diagram agrees with predictions from Medin and Cumming obtained by an independent method.

  20. Phase diagram to design passive nanostructures

    E-print Network

    Lee, Jeng Yi

    2015-01-01

    A phase diagram, defined by the amplitude square and phase of scattering coefficients for absorption cross-section in each individual channel, is introduced as a universal map on the electromagnetic properties for passive scatterers. General physical bounds are naturally revealed based on the intrinsic power conservation in a passive scattering system, entailing power competitions among scattering, absorption, and extinction. Exotic scattering and absorption phenomena, from resonant scattering, invisible cloaking, coherent perfect absorber, and subwavelength superscattering can all be illustrated in this phase diagram. With electrically small core-shell scatterers as an example, we demonstrate a systematic method to design field-controllable structures based on the allowed trajectories in the phase diagram. The proposed phase diagram not only provides a simple tool to design optical devices but also promotes a deep understanding on Mie's scattering theory.

  1. x DYNAMIC INFLUENCE DIAGRAMS: APPLICATIONS TO

    E-print Network

    Hazen, Gordon

    hip arthroplasty. CHN.1 INTRODUCTION Influence diagrams are well-known graphical tools for formulating, including a previously published cost-effectiveness analysis for total hip replacement. Keywords: Influence

  2. Sequential influence diagrams: A unified asymmetry framework

    E-print Network

    Jensen, Finn V.; Nielsen, Thomas D.; Shenoy, Prakash P.

    2006-05-01

    We describe a new graphical language for specifying asymmetric decision problems. The language is based on a filtered merge of several existing languages including sequential valuation networks, asymmetric influence diagrams, and unconstrained...

  3. ConcepTest: Relative Time Diagram #4

    NSDL National Science Digital Library

    Match the features in the relative time diagram below with the events described in the short sentence. Assume all rocks are sedimentary unless otherwise indicated. Which sedimentary unit did not experience contact ...

  4. A Feynman diagram analyzer DIANA: recent development

    E-print Network

    M. Tentyukov; J. Fleischer

    2002-10-11

    New developments concerning the extension of the Feynman diagram analyzer DIANA are presented. We discuss new graphic facilities, application of DIANA to processes with Majorana fermions and different approaches to automation of momenta distribution.

  5. Communicating Phylogeny: Evolutionary Tree Diagrams in Museums

    E-print Network

    MacDonald, Teresa; Wiley, Edward O.

    2012-01-01

    Tree of life diagrams are graphic representations of phylogeny—the evolutionary history and relationships of lineages—and as such these graphics have the potential to convey key evolutionary ideas and principles to a variety of audiences. Museums...

  6. Architecture flow diagrams under teamwork reg sign

    SciTech Connect

    Nicinski, T.

    1992-02-01

    The Teamwork CASE tool allows Data Flow Diagrams (DFDs) to be maintained for structured analysis. Fermilab has extended teamwork under UNIX{trademark} to permit Hatley and Pirbhai Architecture Flow Diagrams (AFDs) to be associated with DFDs and subsequently maintained. This extension, called TWKAFD, allows a user to open an AFD, graphically edit it, and replace it into a TWKAFD maintained library. Other aspects of Hatley and Pirbhai's methodology are supported. This paper presents a quick tutorial on Architecture Diagrams. It then describes the user's view of TWKAFD, the experience incorporating it into teamwork, and the successes with using the Architecture Diagram methodology along with the shortcomings of using the teamwork/TWKAFD tool. 8 refs.

  7. ConcepTest: Relative Time Diagram #1

    NSDL National Science Digital Library

    Match the features in the relative time diagram below with the events described in the short sentence. Assume all rocks are sedimentary unless otherwise indicated. Which is the oldest rock unit? a. A b. B c. C d. D ...

  8. Revised Diagnostic Diagrams for Planetary Nebulae

    E-print Network

    H. Riesgo; J. A. López

    2006-02-08

    Diagnostic diagrams of electron density - excitation for a sample of 613 planetary nebulae are presented. The present extensive sample allows the definition of new statistical limits for the distribution of planetary nebulae in the log [Ha/[SII

  9. A Smart Thermal Block Diagram Tool

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn; Miyake, Robert; Dodge, Kyle

    2008-01-01

    The presentation describes a Smart Thermal Block Diagram Tool. It is used by JPL's Team X in studying missions during the Pre-Phase A. It helps generate cost and mass estimates using proprietary data bases.

  10. ConcepTest: Relative Time Diagram #2

    NSDL National Science Digital Library

    Match the features in the relative time diagram below with the events described in the short sentences. Assume all rocks are sedimentary unless otherwise indicated. Which unit was formed before A but after E? a. C ...

  11. Attribute Reduction Based on Property Pictorial Diagram

    PubMed Central

    Wan, Qing; Wei, Ling

    2014-01-01

    This paper mainly studies attribute reduction which keeps the lattice structure in formal contexts based on the property pictorial diagram. Firstly, the property pictorial diagram of a formal context is defined. Based on such diagram, an attribute reduction approach of concept lattice is achieved. Then, through the relation between an original formal context and its complementary context, an attribute reduct of complementary context concept lattice is obtained, which is also based on the property pictorial diagram of the original formal context. Finally, attribute reducts in property oriented concept lattice and object oriented concept lattice can be acquired by the relations of attribute reduction between these two lattices and concept lattice of complementary context. In addition, a detailed illustrative example is presented. PMID:25247200

  12. Sequential Influence Diagrams: A Unified Asymmetry Framework

    E-print Network

    Jensen, Finn V.; Nielsen, Thomas D.; Shenoy, Prakash P.

    2004-10-01

    We describe a new graphical language for specifying asymmetric decision problems. The language is based on a filtered merge of several existing languages including sequential valuation networks, asymmetric influence diagrams, ...

  13. Towards molecular spintronics

    Microsoft Academic Search

    Alexandre R. Rocha; Víctor M. García-suárez; Steve W. Bailey; Colin J. Lambert; Jaime Ferrer; Stefano Sanvito

    2005-01-01

    The ability to manipulate electron spin in organic molecular materials offers a new and extremely tantalizing route towards spin electronics, both from fundamental and technological points of view. This is mainly due to the unquestionable advantage of weak spin–orbit and hyperfine interactions in organic molecules, which leads to the possibility of preserving spin-coherence over times and distances much longer than

  14. Context Aware On-line Diagramming Recognition

    Microsoft Academic Search

    Mudit Agrawal; Alexander Zotov; Ming Ye; Sashi Raghupathy

    2010-01-01

    This paper presents a context aware, online immediate-mode diagramming recognition and beautification software for hand-sketched diagrams. The system is independent of stroke-order, -number, -direction and is invariant to scaling, translation and rotation. In our stroke-based recognition model, we propose convexity features along with spatial and temporal proximity features to prune the combinatorial search space of possible stroke configurations to form

  15. Campbell diagrams of weakly anisotropic flexible rotors

    Microsoft Academic Search

    Oleg N. Kirillov

    2009-01-01

    We consider an axi-symmetric rotor perturbed by dissipative, conservative,\\u000aand non-conservative positional forces originated at the contact with the\\u000aanisotropic stator. The Campbell diagram of the unperturbed system is a\\u000amesh-like structure in the frequency-speed plane with double eigenfrequencies\\u000aat the nodes. The diagram is convenient for the analysis of the traveling waves\\u000ain the rotating elastic continuum. Computing sensitivities

  16. Campbell diagrams of weakly anisotropic flexible rotors

    Microsoft Academic Search

    O. N. Kirillov

    2009-01-01

    We consider an axi-symmetric rotor perturbed by dissipative, conservative, and non-conservative positional forces originated at the contact with the anisotropic stator. The Campbell diagram of the unperturbed system is a mesh-like structure in the frequency-speed plane with double eigenfrequencies at the nodes. The diagram is convenient for the analysis of the traveling waves in the rotating elastic continuum. Computing sensitivities

  17. Diffusion and phase diagram in binary alloys

    Microsoft Academic Search

    J. Mimkes; M. Wuttig

    1996-01-01

    The relationship betwwen diffusion and phase diagram is discussed in more detail for Ag?Au and Au?Ni alloys. For each alloy tracer diffusion and interdiffusion data have been compared with the corresponding phase diagram.Tracer diffusion is related to the solid-liquid phase transition. Ag and Au tracer diffusivities D?(x) in Ag?Au alloys and melting temperature Tm(x) of Ag?Au show opposite curvatures. The

  18. Reliability computation from reliability block diagrams

    NASA Technical Reports Server (NTRS)

    Chelson, P. O.; Eckstein, R. E.

    1971-01-01

    A method and a computer program are presented to calculate probability of system success from an arbitrary reliability block diagram. The class of reliability block diagrams that can be handled include any active/standby combination of redundancy, and the computations include the effects of dormancy and switching in any standby redundancy. The mechanics of the program are based on an extension of the probability tree method of computing system probabilities.

  19. Algebraic decision diagrams and their applications

    Microsoft Academic Search

    R. Iris Bahar; Erica A. Frohm; Charles M. Gaona; Gary D. Hachtel; Enrico Macii; Abelardo Pardo; Fabio Somenzi

    1993-01-01

    In this paper we present theory and experiments on the AlgebraicDecision Diagrams (ADD's). These diagrams extend BDD'sby allowing values from an arbitrary finite domain to be associatedwith the terminal nodes. We present a treatment foundedin boolean algebras and discuss algorithms and results in applicationslike matrix multiplication and shortest path algorithms.Furthermore, we outline possible applications of ADD's to logicsynthesis, formal verification,

  20. Bode Diagrams of Transfer Functions and Impedances

    Microsoft Academic Search

    R. W. Erickson

    In the design of a signal processing network, control system, or other analog system, it is usually necessary to work with frequency-dependent transfer functions and impedances, and to construct Bode diagrams. The Bode diagram is a log-log plot of the magnitude and phase of an impedance, transfer function, or other frequency-dependent complex-valued quantity, as a function of the frequency of

  1. Mars Geoscience Orbiter and Lunar Geoscience Orbiter

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.; Kaskiewicz, P. F.

    1983-01-01

    The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.

  2. Creating High-Harmonic Beams with Controlled Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Gariepy, Genevieve; Leach, Jonathan; Kim, Kyung Taec; Hammond, T. J.; Frumker, E.; Boyd, Robert W.; Corkum, P. B.

    2014-10-01

    A beam with an angular-dependant phase ? =?? about the beam axis carries an orbital angular momentum of ?? per photon. Such beams are exploited to provide superresolution in microscopy. Creating extreme ultraviolet or soft-x-ray beams with controllable orbital angular momentum is a critical step towards extending superresolution to much higher spatial resolution. We show that orbital angular momentum is conserved during high-harmonic generation. Experimentally, we use a fundamental beam with |?|=1 and interferometrically determine that the harmonics each have orbital angular momentum equal to their harmonic number. Theoretically, we show how any small value of orbital angular momentum can be coupled to any harmonic in a controlled manner. Our results open a route to microscopy on the molecular, or even submolecular, scale.

  3. Class diagram based evaluation of software performance

    NASA Astrophysics Data System (ADS)

    Pham, Huong V.; Nguyen, Binh N.

    2013-03-01

    The evaluation of software performance in the early stages of the software life cycle is important and it has been widely studied. In the software model specification, class diagram is the important object-oriented software specification model. The measures based on a class diagram have been widely studied to evaluate quality of software such as complexity, maintainability, reuse capability, etc. However the software performance evaluation based on Class model has not been widely studied, especially for object-oriented design of embedded software. Therefore, in this paper we propose a new approach to directly evaluate the software performance based on class diagrams. From a class diagram, we determine the parameters which are used to evaluate and build formula of the measures such as Size of Class Variables, Size of Class Methods, Size of Instance Variables, Size of Instance Methods, etc. Then, we do analysis of the dependence of performance on these measures and build the performance evaluation function from class diagram. Thereby we can choose the best class diagram based on this evaluation function.

  4. Gravity and Orbits

    NSDL National Science Digital Library

    National Science Teachers Association (NSTA)

    2007-03-21

    The Gravity and Orbits SciPack explores concepts related to Earth's universal gravitation and how gravity affects the universe around us. The focus is on Standards and Benchmarks related to universal gravitation including variables that influence the amount of gravitational force and how gravity governs the motion of the solar system.In addition to comprehensive inquiry-based learning materials tied to Science Education Standards and Benchmarks, the SciPack includes the following additional components:? Pedagogical Implications section addressing common misconceptions, teaching resources and strand maps linking grade band appropriate content to standards. ? Access to one-on-one support via e-mail to content "Wizards".? Final Assessment which can be used to certify mastery of the concepts.Learning Outcomes:Gravity and Orbits: Universal Gravitation? Identify gravity as an attractive force associated with all objects, including less intuitive examples (such as soda cans and pencils).? Recognize some examples of phenomena that are the result of Earth's gravity and objects and structures in the universe in general.? Reject the idea that Earth's gravity is an effect of air pushing down toward the surface.? Recognize that gravitational force does not require air (or any other substance) as a medium to act.? Describe gravitational force as a mutual attraction, rather than as one object pulling on another.Gravity and Orbits: Gravitational Force? Identify variables that affect the strength of the gravitational force acting between any two objects.? Provide a quantitative description of the relationship between the mass of two object and the gravitational force between them.? Provide a qualitative description of the relationship between the mass of two objects and the gravitational force between them.? Provide a quantitative description of the relationship between distance and gravitational force. ? Provide a qualitative description of the inverse square relationship.? Recognize the effect of air resistance on object falling near Earth's surface, and thus be able to explain why two objects with different masses, at the same distance from Earth's surface, will have equal accelerations if air resistance is ignored. Gravity and Orbits: Orbits? Describe the conditions that would lead an object into orbital motion in terms of the effects of gravitational force.? Explain how an object orbits a planet in terms of trajectories and free fall.? Identify gravity as the force that keeps the planets in their orbits around the Sun and the moons in their orbits around the planets.

  5. Aperiodic orbits of piecewise rational rotations of convex polygons with recursive tiling

    Microsoft Academic Search

    J. H. Lowenstein

    2007-01-01

    We study piecewise rational rotations of convex polygons with a recursive tiling property. For these dynamical systems, the set ? of discontinuity-avoiding aperiodic orbits decomposes into invariant subsets endowed with a hierarchical symbolic dynamics (Vershik map on a Bratteli diagram). Under conditions which guarantee a form of asymptotic temporal scaling, we prove minimality and unique ergodicity for each invariant component.

  6. Schematic displays for the Space Shuttle Orbiter multifunction cathode-ray-tube display system

    NASA Technical Reports Server (NTRS)

    Weiss, W.

    1979-01-01

    A standardized procedure for developing cathode ray tube displayed schematic diagrams. The displaying of Spacelab information on the space shuttle orbiter multifunction cathode ray tube display system is used to illustrate this procedure. Schematic displays with the equivalent tabular displays are compared.

  7. GOCE Precise Science Orbits

    NASA Astrophysics Data System (ADS)

    Bock, Heike; Jäggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Heinze, Markus; Hugentobler, Urs

    GOCE (Gravity field and steady-state Ocean Circulation Explorer), as the first ESA (European Space Agency) Earth Explorer Core Mission, is dedicated for gravity field recovery of unprece-dented accuracy using data from the gradiometer, its primary science instrument. Data from the secondary instrument, the 12-channel dual-frequency GPS (Global Positioning System) receiver, is used for precise orbit determination of the satellite. These orbits are used to accu-rately geolocate the gradiometer observations and to provide complementary information for the long-wavelength part of the gravity field. A precise science orbit (PSO) product is provided by the GOCE High-Level Processing Facility (HPF) with a precision of about 2 cm and a 1-week latency. The reduced-dynamic and kinematic orbit determination strategies for the PSO product are presented together with results of about one year of data. The focus is on the improvement achieved by the use of empirically derived azimuth-and elevation-dependent variations of the phase center of the GOCE GPS antenna. The orbits are validated with satellite laser ranging (SLR) measurements.

  8. Sedna Orbit Comparisons

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These four panels show the location of the newly discovered planet-like object, dubbed 'Sedna,' which lies in the farthest reaches of our solar system. Each panel, moving counterclockwise from the upper left, successively zooms out to place Sedna in context. The first panel shows the orbits of the inner planets, including Earth, and the asteroid belt that lies between Mars and Jupiter. In the second panel, Sedna is shown well outside the orbits of the outer planets and the more distant Kuiper Belt objects. Sedna's full orbit is illustrated in the third panel along with the object's current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. The final panel zooms out much farther, showing that even this large elliptical orbit falls inside what was previously thought to be the inner edge of the Oort cloud. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  9. Orbits For Sixteen Binaries

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Z.; Novakovic, B.

    2006-12-01

    In this paper orbits for 13 binaries are recalculated and presented. The reason is that recent observations show higher residuals than the corresponding ephemerides calculated by using the orbital elements given in the Sixth Catalog of Orbits of Visual Binary Stars. The binaries studied were: WDS 00182+7257 = A 803, WDS 00335+4006 = HO 3, WDS 00583+2124 = BU 302, WDS 01011+6022 = A 926, WDS 01014+1155 = BU 867, WDS 01112+4113 = A 655, WDS 01361-2954 + HJ 3447, WDS 02333+5219 = STT 42 AB, WDS 04362+0814 = A 1840 AB, WDS 08017-0836 = A 1580, WDS 08277-0425 = A 550, WDS 17471+1742 = STF 2215 and WDS 18025+4414 = BU 1127 Aa-B. In addition, for three binaries - WDS 01532+1526 = BU 260, WDS 02563+7253 =STF 312 AB and WDS 05003+3924 = STT 92 AB - the orbital elements are calculated for the first time. In this paper the authors present not only the orbital elements, but the masses, dynamical parallaxes, absolute magnitudes and ephemerides for the next five years, as well.

  10. High density limit of the correlation energy of a two dimensional electron liquid in the presence of Rashba spin-orbit

    Microsoft Academic Search

    Gabriele F. Giuliani; Stefano Chesi

    2007-01-01

    We obtain analytic expressions for the high density limit of the correlation energy of a two dimensional electron liquid in the presence of Rashba spin-orbit. As a byproduct we have derived an analytic expression for the dependence of the ring diagrams contribution to this quantity on the fractional spin polarization of the system in the absence of spin-orbit. We will

  11. Orbit maintenance for low altitude near-circular lunar orbits

    NASA Technical Reports Server (NTRS)

    Cook, Richard A.; Sweetser, Theodore H.

    1992-01-01

    The behavior of low altitude near-circular lunar orbits is a key design issue for some missions in the proposed Space Exploration Initiative. The lunar gravity field strongly perturbs low altitude orbits, so an effective orbit maintenance strategy is needed. This strategy must contend with the long term orbit evolution due to the zonal gravity field. Two possible orbit control scenarios are passive control using a frozen orbit and active orbit control using maneuvers. A maneuver strategy can be designed which optimizes the propellant required for long term orbit sustenance. The long term requirements dominate the total propellant required for orbit control. Additional propellant may be required to offset the impact of medium period gravity field effects. Careful selection of maneuver times and directions, however, can eliminate any medium period penalty.

  12. Elliptical vs Circular Orbit

    NSDL National Science Digital Library

    Bob Urschel

    Find the contrast between a highly exaggerated earth elliptical orbit and circular orbit depicted in .mov format. It should be mentioned to students that in reality the earth's elliptical orbit around the sun would hardly be noticeable if viewed from this distance. Taken alone, the video could unfortunately perpetuate the misconception that earth sun distance is responsible for the seasons. Still, the video is useful for pointing out that the earth's speed around the sun is not constant, with the earth moving fastest in January and slowest in July. This phenomenon helps explain why summer is longer in the Northern Hemisphere and for the analemma. The animation can be paused and rewound to emphasize important points.

  13. Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.

    2007-01-01

    The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.

  14. Co-orbital Oligarchy

    E-print Network

    Benjamin F. Collins; Re'em Sari

    2009-01-13

    We present a systematic examination of the changes in semi-major axis caused by the mutual interactions of a group of massive bodies orbiting a central star in the presence of eccentricity dissipation. For parameters relevant to the oligarchic stage of planet formation, dynamical friction keeps the typical eccentricities small and prevents orbit crossing. Interactions at impact parameters greater than several Hill radii cause the protoplanets to repel each other; if the impact parameter is instead much less than the Hill radius, the protoplanets shift slightly in semi-major axis but remain otherwise unperturbed. If the orbits of two or more protoplanets are separated by less than a Hill radius, they are each pushed towards an equilibrium spacing between their neighbors and can exist as a stable co-orbital system. In the shear-dominated oligarchic phase of planet formation we show that the feeding zones contain several oligarchs instead of only one. Growth of the protoplanets in the oligarchic phase drives the disk to an equilibrium configuration that depends on the mass ratio of protoplanets to planetesimals, $\\Sigma/\\sigma$. Early in the oligarchic phase, when $\\Sigma/\\sigma$ is low, the spacing between rows of co-orbital oligarchs are about 5 Hill radii wide, rather than the 10 Hill radii cited in the literature. It is likely that at the end of oligarchy the average number of co-orbital oligarchs is greater than unity. In the outer solar system this raises the disk mass required to form the ice giants. In the inner solar system this lowers the mass of the final oligarchs and requires more giant impacts than previously estimated. This result provides additional evidence that Mars is not an untouched leftover from the oligarchic phase, but must be composed of several oligarchs assembled through giant impacts.

  15. Trajectories and Orbits

    NSDL National Science Digital Library

    Materials presented here outline some basic concepts associated with space flight. Users can read about orbits and the difference between an orbit and a trajectory, escape velocities for Earth and some planets, launch velocities and transit times for interplanetary flights, and the effects of time dilation for astronauts travelling at near-light speeds. This is part of the famous Rand corporation study that was commissioned by Congress in 1958 after the Soviet Union stunned the world by launching Sputnik, the world's first artificial satellite.

  16. 49 CFR 1152.10 - System diagram map.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 false System diagram map. 1152.10 Section 1152.10 Transportation...Diagram § 1152.10 System diagram map. (a) Each carrier shall prepare a diagram of its rail system on a map, designating all lines in its...

  17. 49 CFR 1152.10 - System diagram map.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 false System diagram map. 1152.10 Section 1152.10 Transportation...Diagram § 1152.10 System diagram map. (a) Each carrier shall prepare a diagram of its rail system on a map, designating all lines in its...

  18. 49 CFR 1152.10 - System diagram map.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 false System diagram map. 1152.10 Section 1152.10 Transportation...Diagram § 1152.10 System diagram map. (a) Each carrier shall prepare a diagram of its rail system on a map, designating all lines in its...

  19. 49 CFR 1152.10 - System diagram map.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 false System diagram map. 1152.10 Section 1152.10 Transportation...Diagram § 1152.10 System diagram map. (a) Each carrier shall prepare a diagram of its rail system on a map, designating all lines in its...

  20. 49 CFR 1152.10 - System diagram map.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 false System diagram map. 1152.10 Section 1152.10 Transportation...Diagram § 1152.10 System diagram map. (a) Each carrier shall prepare a diagram of its rail system on a map, designating all lines in its...