Science.gov

Sample records for molecular pattern molecules

  1. Endogenous Damage-Associated Molecular Pattern Molecules at the Crossroads of Inflammation and Cancer1

    PubMed Central

    Srikrishna, Geetha; Freeze, Hudson H

    2009-01-01

    Inflammatory mediators play important roles in the development and progression of cancer. Cellular stress, damage, inflammation, and necrotic cell death cause release of endogenous damage-associated molecular pattern (DAMP) molecules or alarmins, which alert the host of danger by triggering immune responses and activating repair mechanisms through their interaction with pattern recognition receptors. Recent studies show that abnormal persistence of these molecules in chronic inflammation and in tumor microenvironments underlies carcinogenesis and tumor progression, indicating that DAMP molecules and their receptors could provide novel targets for therapy. This review focuses on the role of DAMP molecules high-mobility group box 1 and S100 proteins in inflammation, tumor growth, and early metastatic events. PMID:19568407

  2. Endogenous Molecules Induced by a Pathogen-Associated Molecular Pattern (PAMP) Elicit Innate Immunity in Shrimp

    PubMed Central

    Chen, Yu-Yuan; Chen, Jiann-Chu; Lin, Yong-Chin; Kitikiew, Suwaree; Li, Hui-Fang; Bai, Jia-Chin; Tseng, Kuei-Chi; Lin, Bo-Wei; Liu, Po-Chun; Shi, Yin-Ze; Kuo, Yi-Hsuan; Chang, Yu-Hsuan

    2014-01-01

    Invertebrates rely on an innate immune system to combat invading pathogens. The system is initiated in the presence of cell wall components from microbes like lipopolysaccharide (LPS), ?-1,3-glucan (?G) and peptidoglycan (PG), altogether known as pathogen-associated molecular patterns (PAMPs), via a recognition of pattern recognition protein (PRP) or receptor (PRR) through complicated reactions. We show herein that shrimp hemocytes incubated with LPS, ?G, and PG caused necrosis and released endogenous molecules (EMs), namely EM-L, EM-?, and EM-P, and found that shrimp hemocytes incubated with EM-L, EM-?, and EM-P caused changes in cell viability, degranulation and necrosis of hemocytes, and increased phenoloxidase (PO) activity and respiratory burst (RB) indicating activation of immunity in vitro. We found that shrimp receiving EM-L, EM-?, and EM-P had increases in hemocyte count and other immune parameters as well as higher phagocytic activity toward a Vibrio pathogen, and found that shrimp receiving EM-L had increases in proliferation cell ratio and mitotic index of hematopoietic tissues (HPTs). We identified proteins of EMs deduced from SDS-PAGE and LC-ESI-MS/MS analyses. EM-L and EM-P contained damage-associated molecular patterns (DAMPs) including HMGBa, HMGBb, histone 2A (H2A), H2B, and H4, and other proteins including proPO, Rab 7 GPTase, and Rab 11 GPTase, which were not observed in controls (EM-C, hemocytes incubated in shrimp salt solution). We concluded that EMs induced by PAMPs contain DAMPs and other immune molecules, and they could elicit innate immunity in shrimp. Further research is needed to identify which individual molecule or combined molecules of EMs cause the results, and determine the mechanism of action in innate immunity. PMID:25517999

  3. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules.

    PubMed

    Foell, Dirk; Wittkowski, Helmut; Vogl, Thomas; Roth, Johannes

    2007-01-01

    Damage-associated molecular pattern (DAMP) molecules have been introduced as important proinflammatory factors of innate immunity. One example known for many years to be expressed in cells of myeloid origin are phagocytic S100 proteins, which mediate inflammatory responses and recruit inflammatory cells to sites of tissue damage. An emerging concept of pattern recognition involves the multiligand receptor for advanced glycation end products (RAGE) and Toll-like receptors (TLRs) in sensing not only pathogen-associated molecular patterns (PAMPs) but also endogenous DAMPs, including S100 proteins. S100A8, S100A9, and S100A12 are found at high concentrations in inflamed tissue, where neutrophils and monocytes belong to the most abundant cell types. They exhibit proinflammatory effects in vitro at concentrations found at sites of inflammation in vivo. Although S100A12 binds to RAGE, at least part of the proinflammatory effects of the S100A8/S100A9 complex depend upon interaction with other receptors. Because of the divergent expression patterns, the absence of S100A12 in rodents, the different interaction partners described, and the specific intracellular and extracellular effects reported for these proteins, it is important to differentiate between distinct S100 proteins rather than subsuming them with the term "S100/calgranulins." Analyzing the molecular basis of the specific effects exhibited by these proteins in greater detail bears the potential to elucidate important mechanisms of innate immunity, to establish valid biomarkers of phagocytic inflammation, and eventually to reveal novel targets for innovative anti-inflammatory therapies. PMID:16943388

  4. Cell Death-Associated Molecular-Pattern Molecules: Inflammatory Signaling and Control

    PubMed Central

    Sangiuliano, Beatriz; Pérez, Nancy Marcela; Moreira, Dayson F.; Belizário, José E.

    2014-01-01

    Apoptosis, necroptosis, and pyroptosis are different cellular death programs characterized in organs and tissues as consequence of microbes infection, cell stress, injury, and chemotherapeutics exposure. Dying and death cells release a variety of self-proteins and bioactive chemicals originated from cytosol, nucleus, endoplasmic reticulum, and mitochondria. These endogenous factors are named cell death-associated molecular-pattern (CDAMP), damage-associated molecular-pattern (DAMP) molecules, and alarmins. Some of them cooperate or act as important initial or delayed inflammatory mediators upon binding to diverse membrane and cytosolic receptors coupled to signaling pathways for the activation of the inflammasome platforms and NF-κB multiprotein complexes. Current studies show that the nonprotein thiols and thiol-regulating enzymes as well as highly diffusible prooxidant reactive oxygen and nitrogen species released together in extracellular inflammatory milieu play essential role in controlling pro- and anti-inflammatory activities of CDAMP/DAMP and alarmins. Here, we provide an overview of these emerging concepts and mechanisms of triggering and maintenance of tissue inflammation under massive death of cells. PMID:25140116

  5. Molecular structure determination from x-ray scattering patterns of laser-aligned symmetric-top molecules

    SciTech Connect

    Ho, P. J.; Starodub, D.; Saldin, D. K.; Shneerson, V. L.; Ourmazd, A.; Santra, R.

    2009-10-07

    We investigate the molecular structure information contained in the x-ray diffraction patterns of an ensemble of rigid CF{sub 3}Br molecules aligned by an intense laser pulse at finite rotational temperature. The diffraction patterns are calculated at an x-ray photon energy of 20 keV to probe molecular structure at angstrom-scale resolution. We find that a structural reconstruction algorithm based on iterative phase retrieval fails to extract a reliable structure. However, the high atomic number of Br compared with C or F allows each diffraction pattern to be treated as a hologram. Using this approach, the azimuthal projection of the molecular electron density about the alignment axis may be retrieved.

  6. Molecular structure determination from x-ray scattering patterns of laser-aligned symmetric-top molecules.

    SciTech Connect

    Ho, P. J.; Starodub, D.; Saldin, D. K.; Shneerson, V. L.; Ourmazd, A.; Santra, R.; Arizona State Univ.; Univ. of Wisconsin at Milwaukee; Univ. of Chicago

    2009-10-07

    We investigate the molecular structure information contained in the x-ray diffraction patterns of an ensemble of rigid CF{sub 3}Br molecules aligned by an intense laser pulse at finite rotational temperature. The diffraction patterns are calculated at an x-ray photon energy of 20 keV to probe molecular structure at angstrom-scale resolution. We find that a structural reconstruction algorithm based on iterative phase retrieval fails to extract a reliable structure. However, the high atomic number of Br compared with C or F allows each diffraction pattern to be treated as a hologram. Using this approach, the azimuthal projection of the molecular electron density about the alignment axis may be retrieved.

  7. Kawasaki Disease-Specific Molecules in the Sera Are Linked to Microbe-Associated Molecular Patterns in the Biofilms

    PubMed Central

    Murata, Kenji; Kanno, Shunsuke; Nishio, Hisanori; Saito, Mitsumasa; Tanaka, Tamami; Yamamura, Kenichiro; Sakai, Yasunari; Takada, Hidetoshi; Miyamoto, Tomofumi; Mizuno, Yumi; Ouchi, Kazunobu; Waki, Kenji; Hara, Toshiro

    2014-01-01

    Background Kawasaki disease (KD) is a systemic vasculitis of unknown etiology. The innate immune system is involved in its pathophysiology at the acute phase. We have recently established a novel murine model of KD coronary arteritis by oral administration of a synthetic microbe-associated molecular pattern (MAMP). On the hypothesis that specific MAMPs exist in KD sera, we have searched them to identify KD-specific molecules and to assess the pathogenesis. Methods We performed liquid chromatography-mass spectrometry (LC-MS) analysis of fractionated serum samples from 117 patients with KD and 106 controls. Microbiological and LC-MS evaluation of biofilm samples were also performed. Results KD samples elicited proinflammatory cytokine responses from human coronary artery endothelial cells (HCAECs). By LC-MS analysis of KD serum samples collected at 3 different periods, we detected a variety of KD-specific molecules in the lipophilic fractions that showed distinct m/z and MS/MS fragmentation patterns in each cluster. Serum KD-specific molecules showed m/z and MS/MS fragmentation patterns almost identical to those of MAMPs obtained from the biofilms formed in vitro (common MAMPs from Bacillus cereus, Yersinia pseudotuberculosis and Staphylococcus aureus) at the 1st study period, and from the biofilms formed in vivo (common MAMPs from Bacillus cereus, Bacillus subtilis/Bacillus cereus/Yersinia pseudotuberculosis and Staphylococcus aureus) at the 2nd and 3rd periods. The biofilm extracts from Bacillus cereus, Bacillus subtilis, Yersinia pseudotuberculosis and Staphylococcus aureus also induced proinflammatory cytokines by HCAECs. By the experiments with IgG affinity chromatography, some of these serum KD-specific molecules bound to IgG. Conclusions We herein conclude that serum KD-specific molecules were mostly derived from biofilms and possessed molecular structures common to MAMPs from Bacillus cereus, Bacillus subtilis, Yersinia pseudotuberculosis and Staphylococcus aureus. Discovery of these KD-specific molecules might offer novel insight into the diagnosis and management of KD as well as its pathogenesis. PMID:25411968

  8. Molecular cloning, expression pattern, and phylogenetic analysis of a tetraspanin CD82-like molecule in lamprey Lampetra japonica.

    PubMed

    Zhang, Xiaoping; Song, Xueying; Su, Peng; Gou, Meng; Wang, Hao; Liu, Xin; Li, Qingwei

    2016-03-01

    CD82, a member of the tetraspanins, is originally identified as an accessory molecule in T cell activation, and it participates in the formation of immune synapse both in T cells and antigen-presenting cells of jawed vertebrates. In the present study, a CD82 homologous complementary DNA (cDNA) sequence is identified in the lamprey Lampetra japonica. The open reading frame of this sequence is 801 bp long and encodes a 266-amino acid protein. The multialignment of this sequence with several typical CD82s and CD37s of jawed vertebrates shows that it also possesses their conserved four transmembrane domains and a six-cysteine motif Cys-Cys-Gly…Cys-Ser-Cys…Cys…Cys, which is a characteristic motif of CD82 and CD37 vertebrate tetraspanin sequences. Since it is close to CD82s in sequence similarity, we name it as Lja-CD82-like. From the distribution profile of the conserved motifs of CD82-like, CD82, and CD37 molecules from molluscas to mammals, it seems that the CD82s and CD37s evolved from a common ancestral gene through a gene duplication event to their modern forms by a short insertion or substitution approaches. The phylogenetic analysis indicated that CD82 and CD37 molecules of jawed vertebrates originated from a common ancestral gene which is close to agnathan CD82-like and evolved into two distinct paralogous groups maybe after the divergence of jawed and jawless vertebrates. An expression vector with trigger factor (TF) was constructed to ensure that Lja-CD82-like express in prokaryotic expression host. The expressions of Lja-CD82-like messenger RNA (mRNA) and protein in immune-related tissues of lamprey were detected by real-time quantitative polymerase chain reaction and western blotting. Results showed that the mRNA and the protein levels of Lja-CD82-like were significantly upregulated in lymphocyte-like cells, gills, and supraneural myeloid bodies after stimulation with mixed antigens, respectively. Our data provided a foundation for the further study of Lja-CD82-like and its role in immune response process of jawless vertebrates. PMID:26935717

  9. Sequence-specific molecular lithography on single DNA molecules.

    PubMed

    Keren, Kinneret; Krueger, Michael; Gilad, Rachel; Ben-Yoseph, Gdalyahu; Sivan, Uri; Braun, Erez

    2002-07-01

    Recent advances in the realization of individual molecular-scale electronic devices emphasize the need for novel tools and concepts capable of assembling such devices into large-scale functional circuits. We demonstrated sequence-specific molecular lithography on substrate DNA molecules by harnessing homologous recombination by RecA protein. In a sequence-specific manner, we patterned the coating of DNA with metal, localized labeled molecular objects and grew metal islands on specific sites along the DNA substrate, and generated molecularly accurate stable DNA junctions for patterning the DNA substrate connectivity. In our molecular lithography, the information encoded in the DNA molecules replaces the masks used in conventional microelectronics, and the RecA protein serves as the resist. The molecular lithography works with high resolution over a broad range of length scales from nanometers to many micrometers. PMID:12098693

  10. Molecular Cloning, Expression Pattern, and Immunocytochemical Localization of a Gonadotropin-Releasing Hormone-like Molecule in the Gastropod Mollusk, Aplysia californica

    PubMed Central

    Zhang, Lihong; Tello, Javier A.; Zhang, Weimin; Tsai, Pei-San

    2008-01-01

    Successful reproduction in vertebrates depends upon the actions of gonadotropin-releasing hormone (GnRH). Despite the wide presence of GnRH in Phylum Chordata, GnRH has not been isolated in protostomes other than the common octopus. To provide information on the evolution of this critical hormone, we isolated the full-length cDNA of a GnRH-like molecule from the central nervous system of a gastropod mollusk, the sea hare Aplysia californica. The open reading frame of this cDNA encodes a protein of 147 amino acids. The molecular architecture of the deduced protein is highly homologous to that reported for the prepro-octopus GnRH (oct-GnRH) and consists of a putative signal peptide, a GnRH dodecapeptide, a downstream processing site, and a GnRH-associated peptide (GAP). The deduced amino acid sequence of the Aplysia GnRH (ap-GnRH) is QNYHFSNGWYAG and differs from oct-GnRH by only two amino acids. The transcript for ap-GnRH is widely expressed in the central nervous system (CNS), the ovotestis, and the atrial gland, an exocrine gland. Immunocytochemistry (ICC) using an antiserum against oct-GnRH detected immunoreactive neurons in all CNS ganglia examined, and the staining was abolished by the preadsorption of the antiserum with synthetic ap-GnRH. In sum, ap-GnRH sequence is the first gastropod GnRH-like molecule to be elucidated. Further, it represents one of the only two GnRH-like molecules found outside Phylum Chordata. These data refute the possibility that oct-GnRH arose singly in cephalopods by convergent evolution and provide valuable support for an ancient origin of GnRH during metazoan evolution. PMID:18178211

  11. DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: role of DDX21-TRIF-TLR4-MyD88 pathway.

    PubMed

    Tsai, Su-Yu; Segovia, Jesus A; Chang, Te-Hung; Morris, Ian R; Berton, Michael T; Tessier, Philippe A; Tardif, Mélanie R; Cesaro, Annabelle; Bose, Santanu

    2014-01-01

    Pathogen-associated molecular patterns (PAMPs) trigger host immune response by activating pattern recognition receptors like toll-like receptors (TLRs). However, the mechanism whereby several pathogens, including viruses, activate TLRs via a non-PAMP mechanism is unclear. Endogenous "inflammatory mediators" called damage-associated molecular patterns (DAMPs) have been implicated in regulating immune response and inflammation. However, the role of DAMPs in inflammation/immunity during virus infection has not been studied. We have identified a DAMP molecule, S100A9 (also known as Calgranulin B or MRP-14), as an endogenous non-PAMP activator of TLR signaling during influenza A virus (IAV) infection. S100A9 was released from undamaged IAV-infected cells and extracellular S100A9 acted as a critical host-derived molecular pattern to regulate inflammatory response outcome and disease during infection by exaggerating pro-inflammatory response, cell-death and virus pathogenesis. Genetic studies showed that the DDX21-TRIF signaling pathway is required for S100A9 gene expression/production during infection. Furthermore, the inflammatory activity of extracellular S100A9 was mediated by activation of the TLR4-MyD88 pathway. Our studies have thus, underscored the role of a DAMP molecule (i.e. extracellular S100A9) in regulating virus-associated inflammation and uncovered a previously unknown function of the DDX21-TRIF-S100A9-TLR4-MyD88 signaling network in regulating inflammation during infection. PMID:24391503

  12. Patterns and conformations in molecularly thin films

    NASA Astrophysics Data System (ADS)

    Basnet, Prem B.

    Molecularly thin films have been a subject of great interest for the last several years because of their large variety of industrial applications ranging from micro-electronics to bio-medicine. Additionally, molecularly thin films can be used as good models for biomembrane and other systems where surfaces are critical. Many different kinds of molecules can make stable films. My research has considered three such molecules: a polymerizable phospholipid, a bent-core molecules, and a polymer. One common theme of these three molecules is chirality. The phospolipid molecules studied here are strongly chiral, which can be due to intrinsically chiral centers on the molecules and also due to chiral conformations. We find that these molecules give rise to chiral patterns. Bent-core molecules are not intrinsically chiral, but individual molecules and groups of molecules can show chiral structures, which can be changed by surface interactions. One major, unconfirmed hypothesis for the polymer conformation at surface is that it forms helices, which would be chiral. Most experiments were carried out at the air/water interface, in what are called Langmuir films. Our major tools for studying these films are Brewster Angle Microscopy (BAM) coupled with the thermodynamic information that can be deduced from surface pressure isotherms. Phospholipids are one of the important constituents of liposomes -- a spherical vesicle com-posed of a bilayer membrane, typically composed of a phospholipid and cholesterol bilayer. The application of liposomes in drug delivery is well-known. Crumpling of vesicles of polymerizable phospholipids has been observed. With BAM, on Langmuir films of such phospholipids, we see novel spiral/target patterns during compression. We have found that both the patterns and the critical pressure at which they formed depend on temperature (below the transition to a i¬‘uid layer). Bent-core liquid crystals, sometimes knows as banana liquid crystals, have drawn increasing attention because of the richness in phases that they exhibit. Due to the unique coupling between dipole properties and the packing constraints placed by the bent shape, these molecules are emerging as strong candidates in electromechanical devices. However, most applications require that the molecules be aligned, which has proved difficult. Our group has tested such molecules both as Langmuir layers and, when transferred to a solid, as alignment layers with some limited success. However, these molecules do not behave well with the surfaces and the domains at the air/water interface tend to form ill-controlled multilayer structures since attraction with the surfaces is relatively weak. New bent-core molecules obtained from Prof. Dr. C. Tsehiemke from Department of Chemistry Institute of Organic Chemistry, Martin-Luther-University, Germany, have a hydrophilic group at one end. We expect this molecule to behave better on the surface because of the stronger attraction of the hydrophilic group towards the surface than for the bent-core molecules without the hydrophilic group. Polydimethylsiloxane (PDMS) is a polymer which finds many applications in modifying surface properties. It is used in manufacturing lubricants, protective coatings, hair conditioner and glass-coating. However its properties are not well understood. This polymer has been proposed to follow either helical or caterpillar conformations on a surface. The orientational order of CH3 side groups can test for these conformations (they would be predominantly up/down for the caterpillar conformation, but rotating through the entire 360 degree for the helical one). Thus previous work on the Langmuir polymer films at the air/water interface were complemented by deuterium NMR studies to probe their conformations at a surface. These experiments were performed using humid porous solids, in order to provide sufficient surface area for the technique. Previous tests in this group at room temperature were suggestive but inconclusive because of the rapid averaging motion of the molecules. Here, we attempt to freeze the molecules on the surface.

  13. Molecular-beam spectroscopy of interhalogen molecules

    SciTech Connect

    Sherrow, S.A.

    1983-08-01

    A molecular-beam electric-resonance spectrometer employing a supersonic nozzle source has been used to obtain hyperfine spectra of /sup 79/Br/sup 35/Cl. Analyses of these spectra and of microwave spectra published by other authors have yielded new values for the electric dipole moment and for the nuclear quadrupole coupling constants in this molecule. The new constants are significantly different from the currently accepted values. Van der Waals clusters containing chlorine monofluoride have been studied under various expansion conditions by the molecular-beam electric-deflection method. The structural possibilities indicated by the results are discussed, and cluster geometries are proposed.

  14. Rotation and Anisotropic Molecular Orbital Effect in a Single H2TPP Molecule Transistor

    NASA Astrophysics Data System (ADS)

    Sakata, Shuichi; Yoshida, Kenji; Kitagawa, Yuichi; Ishii, Kazuyuki; Hirakawa, Kazuhiko

    2013-12-01

    Electron transport through a single molecule is determined not only by the intrinsic properties of the molecule but also by the configuration of the molecule with respect to the lead electrodes. Here, we show how electron transport through a single H2TPP molecule is modulated by changes in the configuration. The Coulomb stability diagram of a single H2TPP molecule transistor exhibited a few different patterns in different measurement scans. Furthermore, the sample exhibited negative differential resistance, the magnitude of which changed with the pattern in the Coulomb stability diagram. Such behavior can be explained by the rotation of the molecule with anisotropic molecular orbitals in the gap electrodes induced by electrical stress. Moreover, we find that the energy separations between molecular orbitals are also affected by the rotation, confirming that the metal-molecule interface configuration renormalizes the electronic levels in the molecule.

  15. Orientation detection of a single molecule using pupil filter with electrically controllable polarization pattern

    NASA Astrophysics Data System (ADS)

    Hashimoto, Mamoru; Yoshiki, Keisuke; Kurihara, Makoto; Hashimoto, Nobuyuki; Araki, Tsutomu

    2015-12-01

    We have developed a system for measuring the orientation of single molecules using a conventional wide-field fluorescence microscope with a polarization filter consisting of a polarizer and a compact polarization mode converter. The polarization filter electrically controls the pattern of polarization filtering. Since the polarization of the fluorescence from a single molecule highly depends on the angle between the observation direction and the molecular direction, polarization pattern filtering at the pupil plane of the objective lens allows the orientation of a single molecule to be visualized. Using this system, we demonstrated the orientation detection of single molecules.

  16. Single Molecular Spectroscopy: Identification of Individual Fullerene Molecules

    NASA Astrophysics Data System (ADS)

    Tizei, Luiz H. G.; Liu, Zheng; Koshino, Masanori; Iizumi, Yoko; Okazaki, Toshiya; Suenaga, Kazu

    2014-10-01

    We report the molecule-by-molecule spectroscopy of individual fullerenes by means of electron spectroscopy based on scanning transmission electron microscopy. Electron energy-loss fine structure analysis of carbon 1 s absorption spectra is used to discriminate carbon allotropes with known symmetries. C60 and C70 molecules randomly stored inside carbon nanotubes are successfully identified at a single-molecular basis. We show that a single molecule impurity is detectable, allowing the recognition of an unexpected contaminant molecule with a different symmetry. Molecules inside carbon nanotubes thus preserve their intact molecular symmetry. In contrast, molecules anchored at or sandwiched between atomic BN layers show spectral modifications possibly due to a largely degraded structural symmetry. Moreover, by comparing the spectrum from a single C60 molecule and its molecular crystal, we find hints of the influence of solid-state effects on its electronic structure.

  17. Molecular docking with ligand attached water molecules.

    PubMed

    Lie, Mette A; Thomsen, Ren; Pedersen, Christian N S; Schitt, Birgit; Christensen, Mikael H

    2011-04-25

    A novel approach to incorporate water molecules in protein-ligand docking is proposed. In this method, the water molecules display the same flexibility during the docking simulation as the ligand. The method solvates the ligand with the maximum number of water molecules, and these are then retained or displaced depending on energy contributions during the docking simulation. Instead of being a static part of the receptor, each water molecule is a flexible on/off part of the ligand and is treated with the same flexibility as the ligand itself. To favor exclusion of the water molecules, a constant entropy penalty is added for each included water molecule. The method was evaluated using 12 structurally diverse protein-ligand complexes from the PDB, where several water molecules bridge the ligand and the protein. A considerable improvement in successful docking simulations was found when including flexible water molecules solvating hydrogen bonding groups of the ligand. The method has been implemented in the docking program Molegro Virtual Docker (MVD). PMID:21452852

  18. Single Molecule Approaches Embrace Molecular Cohorts

    PubMed Central

    Ha, Taekjip

    2013-01-01

    Enormous mechanistic insight has been gained by studying the behavior of single molecules. The same approaches used to study proteins in isolation are now being leveraged to examine the changes in functional behavior that emerge when single molecules have company. PMID:23953107

  19. Controlling single-molecule junction conductance by molecular interactions

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Y.; Habuka, S.; Okuyama, H.; Hatta, S.; Aruga, T.; Frederiksen, T.; Paulsson, M.; Ueba, H.

    2015-07-01

    For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and precise conductivity measurements, we utilize relatively weak π-bonding between a phenoxy molecule and a STM-tip to form and cleave one contact to the molecule. The anchoring to the other electrode is kept stable using a chalcogen atom with strong bonding to a Cu(110) substrate. These non-destructive measurements permit us to investigate the variation in single-molecule conductance under different but controlled environmental conditions. Combined with density functional theory calculations, we clarify the role of the electrostatic field in the environmental effect that influences the molecular level alignment.

  20. Controlling single-molecule junction conductance by molecular interactions

    PubMed Central

    Kitaguchi, Y.; Habuka, S.; Okuyama, H.; Hatta, S.; Aruga, T.; Frederiksen, T.; Paulsson, M.; Ueba, H.

    2015-01-01

    For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and precise conductivity measurements, we utilize relatively weak ?-bonding between a phenoxy molecule and a STM-tip to form and cleave one contact to the molecule. The anchoring to the other electrode is kept stable using a chalcogen atom with strong bonding to a Cu(110) substrate. These non-destructive measurements permit us to investigate the variation in single-molecule conductance under different but controlled environmental conditions. Combined with density functional theory calculations, we clarify the role of the electrostatic field in the environmental effect that influences the molecular level alignment. PMID:26135251

  1. Parallel Molecular Dynamics Program for Molecules

    Energy Science and Technology Software Center (ESTSC)

    1995-03-07

    ParBond is a parallel classical molecular dynamics code that models bonded molecular systems, typically of an organic nature. It uses classical force fields for both non-bonded Coulombic and Van der Waals interactions and for 2-, 3-, and 4-body bonded (bond, angle, dihedral, and improper) interactions. It integrates Newton''s equation of motion for the molecular system and evaluates various thermodynamical properties of the system as it progresses.

  2. Single DNA Molecule Patterning for High-Throughput Epigenetic Mapping

    PubMed Central

    Cerf, Aline; Cipriany, Benjamin R.; Bentez, Jaime J.; Craighead, Harold G.

    2013-01-01

    We present a method for profiling the 5-methyl cytosine distribution on single DNA molecules. Our method combines soft-lithography and molecular elongation to form ordered arrays of more than 250,000 individual DNA molecules immobilized on a solid substrate. The methylation state of the DNA is detected and mapped by binding of fluorescently labeled methyl-CpG binding domain peptides to the elongated dsDNA molecules and imaging of their distribution. The stretched molecules are fixed in their extended configuration by adsorption onto the substrate so analysis can be performed with high spatial resolution and signal averaging. We further prove this technique allows imaging of DNA molecules with different methylation states. PMID:21981444

  3. Molecular machines: Molecules bearing robotic arms

    NASA Astrophysics Data System (ADS)

    Aprahamian, Ivan

    2016-02-01

    Mass production at the nanoscale requires molecular machines that can control, with high fidelity, the spatial orientation of other reactive species. The demonstration of a synthetic system in which a molecular robotic arm can be used to manipulate the position of a chemical cargo is a significant step towards achieving this goal.

  4. Regular and anomalous torsional splitting patterns: a trend in ethane-like molecules and general perspectives

    NASA Astrophysics Data System (ADS)

    Lattanzi, F.; di Lauro, C.

    2004-01-01

    It is shown that torsional Coriolis coupling can alter the torsional splittings in molecules with hindered internal rotation. Splitting patterns that would occur in the absence of any vibrational contribution to the torsional angular momentum, with reference to a molecular axis system (IAM), are called regular. It is shown that different sets of vibrational coordinates, corresponding to vibrational states with different splitting patterns, can be defined for modes normal to the internal rotation axis. The forms of normal coordinates appropriate to basis vibrational states with regular and inverted splitting patterns are identified. It is found that in normal coordinates appropriate to vibrational states with regular torsional splitting patterns, the relative orientation of the displacements of pairs of atoms belonging to different molecular moieties is independent of the internal rotation angle, and relative displacements normal to the internal rotation axis can be cis or trans at any conformation. On the contrary, in normal coordinates appropriate to vibrational states with inverted torsional splitting patterns the relative orientation of such displacements changes by ?(cis-trans interchange) upon half the internal rotation converting two neighbor equivalent conformations (as in a staggered-eclipsed conformational conversion). The formation of the actual torsional splitting patterns in degenerate vibrational states of CH3CH3-type molecules depends on the joint effect of torsional Coriolis and head-tail coupling. The torsional Coriolis operator can tune pairs of levels to resonance for the action of typical head-tail coupling operators (torsion-dependent vibrational operators), depending on the values of the torsional Coriolis coefficients, generating vibrational states with either regular or inverted torsional splitting patterns and affecting the splitting magnitude. It is shown that operators with a sin3?-type torsional dependence favor the formation of inverted splitting patterns. In less symmetric molecules torsional Coriolis coupling affects the torsional splitting patterns by the same mechanism as in CH3CH3-type molecules, but the torsion-dependent operators are different and their action is expected to be less effective. Typical anomalous perpendicular splitting patterns can be predicted for non-degenerate modes localized in a single molecular moiety, normal or with a component normal to the internal rotation axis, having fixed orientation in that moiety (as the C=O or C-H stretchings of acetaldehyde). Adopting a barrier-hindered torsional basis, where the lower torsional levels can be seen as vibrational states with quantum numbers v? exhibiting tunneling splitting, one finds that all operators generating matrix elements with ?v?=+/-1, or in general odd, work toward the formation of inverted splitting patterns, generating anomalous patterns.

  5. A random rotor molecule: Vibrational analysis and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhang, Rui-Qin; Shi, Xing-Qiang; Lin, Zijing; Van Hove, Michel A.

    2012-12-01

    Molecular structures that permit intramolecular rotational motion have the potential to function as molecular rotors. We have employed density functional theory and vibrational frequency analysis to study the characteristic structure and vibrational behavior of the molecule (4',4??-(bicyclo[2,2,2]octane-1,4-diyldi-4,1-phenylene)-bis-2,2':6',2?-terpyridine. IR active vibrational modes were found that favor intramolecular rotation. To demonstrate the rotor behavior of the isolated single molecule, ab initio molecular dynamics simulations at various temperatures were carried out. This molecular rotor is expected to be thermally triggered via excitation of specific vibrational modes, which implies randomness in its direction of rotation.

  6. Resolution-associated molecular patterns (RAMP): RAMParts defending immunological homeostasis?

    PubMed Central

    Shields, A M; Panayi, G S; Corrigall, V M

    2011-01-01

    The resolution of inflammation is central to the maintenance of good health and immune homeostasis. Recently, several intracellular stress proteins have been described as having extracellular properties that are anti-inflammatory or favour the resolution of inflammation. We propose that these molecules should be defined as resolution-associated molecular patterns (RAMPs). RAMPs are released at times of cellular stress and help to counterbalance the inflammatory effects of pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns. We propose that heat shock protein 10 (HSP10), ?B-crystallin (?BC), HSP27 and binding immunoglobulin protein (BiP) should be considered founding members of the RAMP family. A greater understanding of RAMP biology may herald the development of novel immunotherapies. PMID:21671907

  7. Effects of fixed pattern noise on single molecule localization microscopy.

    PubMed

    Long, F; Zeng, S Q; Huang, Z L

    2014-10-21

    The newly developed scientific complementary metal oxide semiconductor (sCMOS) cameras are capable of realizing fast single molecule localization microscopy without sacrificing field-of-view, benefiting from their readout speed which is significantly higher than that of conventional charge-coupled device (CCD) cameras. However, the poor image uniformity (suffered from fixed pattern noise, FPN) is a major obstruction for widespread use of sCMOS cameras in single molecule localization microscopy. Here we present a quantitative investigation on the effects of FPN on single molecule localization microscopy via localization precision and localization bias. We found that FPN leads to almost no effect on localization precision, but introduces a certain amount of localization bias. However, for a commercial Hamamatsu Flash 4.0 sCMOS camera, such localization bias is usually <2 nm and thus can be neglected for most localization microscopy experiments. This study addresses the FPN concern which worries researchers, and thus will promote the application of sCMOS cameras in single molecule localization microscopy. PMID:25189193

  8. Photocleavable linker for the patterning of bioactive molecules

    PubMed Central

    Wegner, Seraphine V.; Sentürk, Oya I.; Spatz, Joachim P.

    2015-01-01

    Herein, we report the use of a versatile photocleavable nitrobenzyl linker to micropattern a wide variety of bioactive molecules and photorelease them on demand. On one end, the linker has an NHS group that can be coupled with any amine, such as peptides, proteins or amine-linkers, and on the other end an alkyne for convenient attachment to materials with an azide functional group. This linker was conjugated with NTA-amine or the cell adhesion peptide cRGD to enable straightforward patterning of His6-tagged proteins or cells, respectively, on PEGylated glass surfaces. This approach provides a practical way to control the presentation of a wide variety of bioactive molecules with high spatial and temporal resolution. The extent of photocleavage can also be controlled to tune the biomolecule density and degree of cell attachment to the surface. PMID:26670693

  9. Single DNA molecule analysis: applications of molecular combing.

    PubMed

    Lebofsky, Ronald; Bensimon, Aaron

    2003-01-01

    Dynamic changes to the genomic structure and to the DNA replication programme are important determinants of normal and abnormal cell development. To understand these changes and how they vary from cell to cell, single DNA molecules from both normal and abnormal cell populations must be examined and compared. Physical characterisation of single genomes at the kilobase level of resolution over large genomic regions is possible with molecular combing technology. An array of combed single DNA molecules is prepared by stretching molecules attached by their extremities to a silanised glass surface with a receding air-water meniscus. By performing fluorescent hybridisation on combed DNA, genomic probe position can be directly visualised, providing a means to construct physical maps and detect micro-rearrangements. Single-molecule DNA replication can also be monitored through fluorescent detection of incorporated nucleotide analogues on combed DNA molecules. These and other single-molecule applications of molecular combing are discussed in this paper and future developments of the technology are considered. PMID:15239885

  10. Novel Vein Patterns in Arabidopsis Induced by Small Molecules.

    PubMed

    Carland, Francine; Defries, Andrew; Cutler, Sean; Nelson, Timothy

    2016-01-01

    The critical role of veins in transporting water, nutrients, and signals suggests that some key regulators of vein formation may be genetically redundant and, thus, undetectable by forward genetic screens. To identify such regulators, we screened more than 5000 structurally diverse small molecules for compounds that alter Arabidopsis (Arabidopsis thaliana) leaf vein patterns. Many compound-induced phenotypes were observed, including vein networks with an open reticulum; decreased or increased vein number and thickness; and misaligned, misshapen, or nonpolar vascular cells. Further characterization of several individual active compounds suggests that their targets include hormone cross talk, hormone-dependent transcription, and PIN-FORMED trafficking. PMID:26574596

  11. Molecular Rotation Signals: Molecule Chemistry and Particle Physics

    NASA Astrophysics Data System (ADS)

    Grabow, Jens-Uwe

    2015-06-01

    Molecules - large or small - are attractive academic resources, with numerous questions on their chemical behaviour as well as problems in fundamental physics now (or still) waiting to be answered: Targeted by high-resolution spectroscopy, a rotating molecular top can turn into a laboratory for molecule chemistry or a laboratory for particle physics. Once successfully entrained (many species - depending on size and chemical composition - have insufficient vapour pressures or are of transient nature, such that specifically designed pulsed-jet sources are required for their transfer into the gas phase or in-situ generation) into the collision-free environment of a supersonic-jet expansion, each molecular top comes with its own set of challenges, theoretically and experimentally: Multiple internal interactions are causing complicated energy level schemes and the resulting spectra will be rather difficult to predict theoretically. Experimentally, these spectra are difficult to assess and assign. With today's broad-banded chirp microwave techniques, finding and identifying such spectral features have lost their major drawback of being very time consuming for many molecules. For other molecules, the unrivalled resolution and sensitivity of the narrow-banded impulse microwave techniques provide a window to tackle - at the highest precision available to date - fundamental questions in physics, even particle physics - potentially beyond the standard model. Molecular charge distribution, properties of the chemical bond, details on internal dynamics and intermolecular interaction, the (stereo-chemical) molecular structure (including the possibility of their spatial separation) as well as potential evidence for tiny yet significant interactions encode their signature in pure molecular rotation subjected to time-domain microwave spectroscopic techniques. Ongoing exciting technical developments promise rapid progress. We present recent examples from Hannover, new directions, and an outlook at the future of molecular rotation spectroscopy.

  12. Molecular plasmonics: light meets molecules at the nanoscale.

    PubMed

    Csaki, Andrea; Schneider, Thomas; Wirth, Janina; Jahr, Norbert; Steinbrck, Andrea; Stranik, Ondrej; Garwe, Frank; Mller, Robert; Fritzsche, Wolfgang

    2011-09-13

    Certain metal nanoparticles exhibit the effect of localized surface plasmon resonance when interacting with light, based on collective oscillations of their conduction electrons. The interaction of this effect with molecules is of great interest for a variety of research disciplines, both in optics and in the life sciences. This paper attempts to describe and structure this emerging field of molecular plasmonics, situated between the molecular world and plasmonic effects in metal nanostructures, and demonstrates the potential of these developments for a variety of applications. PMID:21807723

  13. Reconstruction of three-dimensional molecular structure from diffraction of laser-aligned molecules

    PubMed Central

    Yang, Jie; Makhija, Varun; Kumarappan, Vinod; Centurion, Martin

    2014-01-01

    Diffraction from laser-aligned molecules has been proposed as a method for determining 3-D molecular structures in the gas phase. However, existing structural retrieval algorithms are limited by the imperfect alignment in experiments and the rotational averaging in 1-D alignment. Here, we demonstrate a two-step reconstruction comprising a genetic algorithm that corrects for the imperfect alignment followed by an iterative phase retrieval method in cylindrical coordinates. The algorithm was tested with simulated diffraction patterns. We show that the full 3-D structure of trifluorotoluene, an asymmetric-top molecule, can be reconstructed with atomic resolution.

  14. Reconstruction of three-dimensional molecular structure from diffraction of laser-aligned molecules.

    PubMed

    Yang, Jie; Makhija, Varun; Kumarappan, Vinod; Centurion, Martin

    2014-07-01

    Diffraction from laser-aligned molecules has been proposed as a method for determining 3-D molecular structures in the gas phase. However, existing structural retrieval algorithms are limited by the imperfect alignment in experiments and the rotational averaging in 1-D alignment. Here, we demonstrate a two-step reconstruction comprising a genetic algorithm that corrects for the imperfect alignment followed by an iterative phase retrieval method in cylindrical coordinates. The algorithm was tested with simulated diffraction patterns. We show that the full 3-D structure of trifluorotoluene, an asymmetric-top molecule, can be reconstructed with atomic resolution. PMID:26798781

  15. A new class of push pull molecules for molecular electronics

    NASA Astrophysics Data System (ADS)

    Saraiva-Souza, Aldilene; de Melo, Celso P.; Peixoto, Paulo; Del Nero, Jordan

    2007-04-01

    In this work, we have found that large conjugated pyridinium betaines, molecules composed by a donor (D) and acceptor (A) pair connected through a long conjugated chain, exhibit an inversion in the expected direction of the electron transfer resulting from photoexcitation. Once the connecting bridge is increased beyond a given size, the electron transfer is predicted to occur in a reversed manner, i.e. from the acceptor to the donor side of the molecule. This effect seems to be associated to an inversion of the spatial localization of the frontier molecular orbitals. We present results for the spatial localization of the frontier molecular orbitals and the theoretical absorption spectra of members of increasing size of a specific family of pyridinium betaines.

  16. Molecular Design of Branched and Binary Molecules at Ordered Interfaces

    SciTech Connect

    Kirsten Larson Genson

    2005-12-27

    This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformation which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.

  17. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, Stephen; Benner, W. Henry; Madden, Norman; Searles, William

    1998-01-01

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e.sup.- are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation.

  18. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, S.; Benner, W.H.; Madden, N.M.; Searles, W.

    1998-06-23

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e{sup {minus}} are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation. 14 figs.

  19. Localization of molecular orbitals: from fragments to molecule.

    PubMed

    Li, Zhendong; Li, Hongyang; Suo, Bingbing; Liu, Wenjian

    2014-09-16

    Conspectus Localized molecular orbitals (LMO) not only serve as an important bridge between chemical intuition and molecular wave functions but also can be employed to reduce the computational cost of many-body methods for electron correlation and excitation. Therefore, how to localize the usually completely delocalized canonical molecular orbitals (CMO) into confined physical spaces has long been an important topic: It has a long history but still remains active to date. While the known LMOs can be classified into (exact) orthonormal and nonorthogonal, as well as (approximate) absolutely localized MOs, the ways for achieving these can be classified into two categories, a posteriori top-down and a priori bottom-up, depending on whether they invoke the global CMOs (or equivalently the molecular density matrix). While the top-down approaches have to face heavy tasks of minimizing or maximizing a given localization functional typically of many adjacent local extrema, the bottom-up ones have to invoke some tedious procedures for first generating a local basis composed of well-defined occupied and unoccupied subsets and then maintaining or resuming the locality when solving the Hartree-Fock/Kohn-Sham (HF/KS) optimization condition. It is shown here that the good of these kinds of approaches can be combined together to form a very efficient hybrid approach that can generate the desired LMOs for any kind of gapped molecules. Specifically, a top-down localization functional, applied to individual small subsystems only, is minimized to generate an orthonormal local basis composed of functions centered on the preset chemical fragments. The familiar notion for atomic cores, lone pairs, and chemical bonds emerges here automatically. Such a local basis is then employed in the global HF/KS calculation, after which a least action is taken toward the final orthonormal localized molecular orbitals (LMO), both occupied and virtual. This last step is very cheap, implying that, after the CMOs, the LMOs can be obtained essentially for free. Because molecular fragments are taken as the basic elements, the approach is in the spirit of "from fragments to molecule". Two representatives of highly conjugated molecules, that is, C12H2 and C60, are taken as showcases for demonstrating the success of the proposed approach. The use of the so-obtained LMOs will lead naturally to low-order scaling post-HF/KS methods for electron correlation or excitation. In addition, the underlying fragment picture allows for easy and pictorial interpretations of the correlation/excitation dynamics. PMID:25019464

  20. Maskless RGB color patterning of vacuum-deposited small molecule OLED displays by diffusion of luminescent dopant molecules.

    PubMed

    Kajiyama, Yoshitaka; Kajiyama, Koichi; Aziz, Hany

    2015-06-29

    A maskless RGB color patterning technique based on diffusion of luminescent dopant molecules is proposed here for vacuum-deposited small molecule OLED displays. The proposed maskless color patterning technique enables us to overcome challenging issues in OLED display manufacturing arising from shadow mask limitations. This approach utilizes selective diffusion of luminescent dopant molecules from a donor substrate to an acceptor substrate. Results show that sufficiently high doping levels can be achieved through this technique and that devices with performance similar to those produced by standard co-deposition can be easily produced. Red, green and blue OLEDs are successfully fabricated side by side on one substrate using this technique. PMID:26191677

  1. Small-Molecule Hormones: Molecular Mechanisms of Action

    PubMed Central

    Budzińska, Monika

    2013-01-01

    Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30–60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes. PMID:23533406

  2. Molecular dynamics simulation of paracetamol molecules ordering around glycogen

    NASA Astrophysics Data System (ADS)

    Lim, Wilber; Feng, Yuan Ping; Liu, X. Y.

    2005-05-01

    By the use of classical atomistic molecular dynamics simulations, we demonstrate that paracetamol molecules exist in a highly ordered phase in the presence of a glycogen substrate at 317K whereas the paracetamol fluid exists in an isotropic phase in the absence of the glycogen substrate at the same temperature. This result further validates the studies made on polysaccharide regarding its abilities to promote nucleation of paracetamol via liquid preordering. As little is known regarding liquid ordering induced by a polymeric substrate, we seek to explore the ordering mechanism from an energy perspective. This is accomplished using conformation mappings. Our analysis shows that the conformation space accessible to the paracetamol molecule at 317K in the vicinity of glycogen is smaller than the one in the absence of glycogen. An investigation on the orientation of the dipole moments of the glycogen monomers and paracetamol molecules were carried out as well. From the investigations, we show that dipolar interactions play an important role in the ordering process. These studies bear significance to the understanding of the ordering process as well as the promotion and effective control of the nucleation rate.

  3. Microscopic approach to the kinetics of pattern formation of charged molecules on surfaces

    SciTech Connect

    Kuzovkov, V. N.; Zvejnieks, G.; Kotomin, E. A.; Olvera de la Cruz, Monica

    2010-08-09

    A microscopic formalism based on computing many-particle densities is applied to the analysis of the diffusion-controlled kinetics of pattern formation in oppositely charged molecules on surfaces or adsorbed at interfaces with competing long-range Coulomb and short-range Lennard-Jones interactions. Particular attention is paid to the proper molecular treatment of energetic interactions driving pattern formation in inhomogeneous systems. The reverse Monte Carlo method is used to visualize the spatial molecular distribution based on the calculated radial distribution functions (joint correlation functions). We show the formation of charge domains for certain combinations of temperature and dynamical interaction parameters. The charge segregation evolves into quasicrystalline clusters of charges, due to the competing long- and short-range interactions. The clusters initially co-exist with a gas phase of charges that eventually add to the clusters, generating fingers or line of charges of the same sign, very different than the nanopatterns expected by molecular dynamics in systems with competing interactions in two dimensions, such as strain or dipolar versus van der Waals interactions.

  4. Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules

    PubMed Central

    Ren, Pengyu; Wu, Chuanjie; Ponder, Jay W.

    2011-01-01

    An empirical potential based on permanent atomic multipoles and atomic induced dipoles is reported for alkanes, alcohols, amines, sulfides, aldehydes, carboxylic acids, amides, aromatics and other small organic molecules. Permanent atomic multipole moments through quadrupole moments have been derived from gas phase ab initio molecular orbital calculations. The van der Waals parameters are obtained by fitting to gas phase homodimer QM energies and structures, as well as experimental densities and heats of vaporization of neat liquids. As a validation, the hydrogen bonding energies and structures of gas phase heterodimers with water are evaluated using the resulting potential. For 32 homo- and heterodimers, the association energy agrees with ab initio results to within 0.4 kcal/mol. The RMS deviation of hydrogen bond distance from QM optimized geometry is less than 0.06 Å. In addition, liquid self-diffusion and static dielectric constants computed from molecular dynamics simulation are consistent with experimental values. The force field is also used to compute the solvation free energy of 27 compounds not included in the parameterization process, with a RMS error of 0.69 kcal/mol. The results obtained in this study suggest the AMOEBA force field performs well across different environments and phases. The key algorithms involved in the electrostatic model and a protocol for developing parameters are detailed to facilitate extension to additional molecular systems. PMID:22022236

  5. Libraries of Extremely Localized Molecular Orbitals. 1. Model Molecules Approximation and Molecular Orbitals Transferability.

    PubMed

    Meyer, Benjamin; Guillot, Benoît; Ruiz-Lopez, Manuel F; Genoni, Alessandro

    2016-03-01

    Despite more and more remarkable computational ab initio results are nowadays continuously obtained for large macromolecular systems, the development of new linear-scaling techniques is still an open and stimulating field of research in theoretical chemistry. In this family of methods, an important role is occupied by those strategies based on the observation that molecules are generally constituted by recurrent functional units with well-defined intrinsic features. In this context, we propose to exploit the notion of extremely localized molecular orbitals (ELMOs) that, due to their strict localization on small molecular fragments (e.g., atoms, bonds, or functional groups), are in principle transferable from one molecule to another. Accordingly, the construction of orbital libraries to almost instantaneously build up approximate wave functions and electron densities of very large systems becomes conceivable. In this work, the ELMOs transferability is further investigated in detail and, furthermore, suitable rules to construct model molecules for the computation of ELMOs to be stored in future databanks are also defined. The obtained results confirm the reliable transferability of the ELMOs and show that electron densities obtained from the transfer of extremely localized molecular orbitals are very close to the corresponding Hartree-Fock ones. These observations prompt us to construct new ELMOs databases that could represent an alternative/complement to the already popular pseudoatoms databanks both for determining electron densities and for refining crystallographic structures of very large molecules. PMID:26799516

  6. GAS-PHASE MOLECULAR DYNAMICS: VIBRATIONAL DYNAMICS OF POLYATOMIC MOLECULES

    SciTech Connect

    MUCKERMAN,J.T.

    1999-06-09

    The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions and properties of short-lived chemical intermediates. High-resolution, high-sensitivity, laser absorption methods are augmented by high-temperature, flow-tube reaction kinetics studies with mass-spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular free radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in radicals involved in chemical systems. The experimental work is supported by theoretical studies using time-dependent quantum wavepacket calculations, which provide insight into energy flow among the vibrational modes of polyatomic molecules and interference effects in multiple-surface dynamics.

  7. Molecular line parameters for the atmospheric trace molecule spectroscopy experiment

    NASA Technical Reports Server (NTRS)

    Brown, L. R.; Farmer, C. B.; Toth, R. A.; Rinsland, Curtis P.

    1987-01-01

    During its first mission in 1985 onboard Spacelab 3, the ATMOS (atmospheric trace molecule spectroscopy) instrument, a high speed Fourier transform spectrometer, produced a large number of high resolution infrared solar absorption spectra recorded in the occultation mode. The analysis and interpretation of these data in terms of composition, chemistry, and dynamics of the earth's upper atmosphere required good knowledge of the molecular line parameters for those species giving rise to the absorptions in the atmospheric spectra. This paper describes the spectroscopic line parameter database compiled for the ATMOS experiment and referenced in other papers describing ATMOS results. With over 400,000 entries, the linelist catalogs parameters of 46 minor and trace species in the 1-10,000/cm region.

  8. Accurate Energies for Molecular Dynamics Simulations of Molecules and Liquids

    NASA Astrophysics Data System (ADS)

    Grossman, Jeffrey C.

    2005-03-01

    A method is presented to treat electrons within the many-body quantum Monte Carlo (QMC) approach ``on-the-fly'' throughout a molecular dynamics (MD) simulation. Our approach leverages the large (10--100) ratio of QMC electron to MD ion motion to couple the stochastic, imaginary-time electronic and real-time ionic trajectories. This continuous evolution of the QMC electrons results in highly accurate total energies for the full dynamical trajectory at a fraction of the cost of conventional, discrete sampling. We show that this can be achieved efficiently for both ground and excited states with only a modest overhead to an ab initio MD method. The accuracy of this dynamical QMC approach will be demonstrated for a variety of systems, phases, and properties, including optical gaps of hot silicon quantum dots, dissociation energy of a single water-molecule, and heat of vaporization of liquid water. We also evaluate forces on ions along the MD trajectories in QMC and compare these with forces computed by other methods. Finally, we carry out a molecular dynamics simulation completely within the QMC framework for both forces and energies. This work was performed under the auspices of the US Department of Energy by the University of California at the LLNL under contract no W-7405-Eng-48.

  9. Simple molecular model for the binding of antibiotic molecules to bacterial ion channels

    NASA Astrophysics Data System (ADS)

    Maf, Salvador; Ramrez, Patricio; Alcaraz, Antonio

    2003-10-01

    A molecular model aimed at explaining recent experimental data by Nestorovich et al. [Proc. Natl. Acad. Sci. USA 99, 9789 (2002)] on the interaction of ampicillin molecules with the constriction zone in a channel of the general bacterial porin, OmpF (outer membrane protein F), is presented. The model extends T. L. Hill's theory for intermolecular interactions in a pair of binding sites [J. Am. Chem. Soc. 78, 3330 (1956)] by incorporating two binding ions and two pairs of interacting sites. The results provide new physical insights on the role of the complementary pattern of the charge distributions in the ampicillin molecule and the narrowest part of the channel pore. Charge matching of interacting sites facilitates drug binding. The dependence of the number of ampicillin binding events per second with the solution pH and salt concentration is explained qualitatively using a reduced number of fundamental concepts.

  10. ION AND MOLECULE SENSORS USING MOLECULAR RECOGNITION IN LUMINESCENT, CONDUCTIVE POLYMERS

    EPA Science Inventory

    This program integrates three individual, highly interactive projects that will use molecular recognition strategies to develop sensor technology based on luminescent, conductive polymers that contain sites for binding specific molecules or ions in the presence of related molecul...

  11. MAMP (microbe-associated molecular pattern) triggered immunity in plants

    PubMed Central

    Newman, Mari-Anne; Sundelin, Thomas; Nielsen, Jon T.; Erbs, Gitte

    2013-01-01

    Plants are sessile organisms that are under constant attack from microbes. They rely on both preformed defenses, and their innate immune system to ward of the microbial pathogens. Preformed defences include for example the cell wall and cuticle, which act as physical barriers to microbial colonization. The plant immune system is composed of surveillance systems that perceive several general microbe elicitors, which allow plants to switch from growth and development into a defense mode, rejecting most potentially harmful microbes. The elicitors are essential structures for pathogen survival and are conserved among pathogens. The conserved microbe-specific molecules, referred to as microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs), are recognized by the plant innate immune systems pattern recognition receptors (PRRs). General elicitors like flagellin (Flg), elongation factor Tu (EF-Tu), peptidoglycan (PGN), lipopolysaccharides (LPS), Ax21 (Activator of XA21-mediated immunity in rice), fungal chitin, and ?-glucans from oomycetes are recognized by plant surface localized PRRs. Several of the MAMPs and their corresponding PRRs have, in recent years, been identified. This review focuses on the current knowledge regarding important MAMPs from bacteria, fungi, and oomycetes, their structure, the plant PRRs that recognizes them, and how they induce MAMP-triggered immunity (MTI) in plants. PMID:23720666

  12. Investigating the correlations among the chemical structures, bioactivity profiles and molecular targets of small molecules

    PubMed Central

    Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.

    2010-01-01

    Motivation: Most of the previous data mining studies based on the NCI-60 dataset, due to its intrinsic cell-based nature, can hardly provide insights into the molecular targets for screened compounds. On the other hand, the abundant information of the compoundtarget associations in PubChem can offer extensive experimental evidence of molecular targets for tested compounds. Therefore, by taking advantages of the data from both public repositories, one may investigate the correlations between the bioactivity profiles of small molecules from the NCI-60 dataset (cellular level) and their patterns of interactions with relevant protein targets from PubChem (molecular level) simultaneously. Results: We investigated a set of 37 small molecules by providing links among their bioactivity profiles, protein targets and chemical structures. Hierarchical clustering of compounds was carried out based on their bioactivity profiles. We found that compounds were clustered into groups with similar mode of actions, which strongly correlated with chemical structures. Furthermore, we observed that compounds similar in bioactivity profiles also shared similar patterns of interactions with relevant protein targets, especially when chemical structures were related. The current work presents a new strategy for combining and data mining the NCI-60 dataset and PubChem. This analysis shows that bioactivity profile comparison can provide insights into the mode of actions at the molecular level, thus will facilitate the knowledge-based discovery of novel compounds with desired pharmacological properties. Availability: The bioactivity profiling data and the target annotation information are publicly available in the PubChem BioAssay database (ftp://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/). Contact: ywang@ncbi.nlm.nih.gov; bryant@ncbi.nlm.nih.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20947527

  13. Sensing of protein molecules through nanopores: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kannam, Sridhar Kumar; Kim, Sung Cheol; Rogers, Priscilla R.; Gunn, Natalie; Wagner, John; Harrer, Stefan; Downton, Matthew T.

    2014-04-01

    Solid-state nanopores have been shown to be suitable for single molecule detection. While numerous modeling investigations exist for DNA within nanopores, there are few simulations of protein translocations. In this paper, we use atomistic molecular dynamics to investigate the translocation of proteins through a silicon nitride nanopore. The nanopore dimensions and profile are representative of experimental systems. We are able to calculate the change in blockade current and friction coefficient for different positions of the protein within the pore. The change in ionic current is found to be negligible until the protein is fully within the pore and the current is lowest when the protein is in the pore center. Using a simple theory that gives good quantitative agreement with the simulation results we are able to show that the variation in current with position is a function of the pore shape. In simulations that guide the protein through the nanopore we identify the effect that confinement has on the friction coefficient of the protein. This integrated view of translocation at the nanoscale provides useful insights that can be used to guide the design of future devices.

  14. Langmuir films of chiral lipid molecules and Pattern Formation .

    NASA Astrophysics Data System (ADS)

    Basnet, Prem; Mann, Elizabeth; Chaieb, Sahraoui

    2009-03-01

    Langmuir films of 1,2-bis(10,12 Tricosadiynoyl)-sn-Glycero-3-Phosphoethanolamine form spiral and target patterns when compressed between two movable barriers in a Langmuir trough above 30^0C, up to the chain-melting transition at 37^0C. The critical pressure, at which spirals appear, increases with temperature. The patterns themselves also depend on temperature, with single-armed spirals with many defects forming near 30^0C and defect-free target patterns at higher temperatures. The mechanism of spiral formation could be a competition among elasticity, chirality, and the boundary conditions at the core of the domains. Optical anisotropy and the growth rate of internal structures test this suggested mechanism. .

  15. Exploration of target molecules for molecular imaging of inflammatory bowel disease

    SciTech Connect

    Higashikawa, Kei; Akada, Naoki; Yagi, Katsuharu; Watanabe, Keiko; Kamino, Shinichiro; Kanayama, Yousuke; Hiromura, Makoto; Enomoto, Shuichi; Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe 650-0047

    2011-07-08

    Highlights: {sup {yields}18}F-FDG PET could discriminate each inflamed area of IBD model mice clearly. {sup {yields}18}F-FDG PET could not discriminate the difference of pathogenic mechanism. {yields} Cytokines and cytokine receptors expression was different by pathogenic mechanism. {yields} Cytokines and cytokine receptors would be new target molecules for IBD imaging. -- Abstract: Molecular imaging technology is a powerful tool for the diagnosis of inflammatory bowel disease (IBD) and the efficacy evaluation of various drug therapies for it. However, it is difficult to elucidate directly the relationships between the responsible molecules and IBD using existing probes. Therefore, the development of an alternative probe that is able to elucidate the pathogenic mechanism and provide information on the appropriate guidelines for treatment is earnestly awaited. In this study, we investigated pathognomonic molecules in the intestines of model mice. The accumulation of fluorine-18 fluorodeoxyglucose ({sup 18}F-FDG) in the inflamed area of the intestines of dextran sulfate sodium (DSS)- or indomethacin (IND)-induced IBD model mice was measured by positron emission tomography (PET) and autoradiography to confirm the inflamed area. The results suggested that the inflammation was selectively induced in the colons of mice by the administration of DSS, whereas it was induced mainly in the ilea and the proximal colons of mice by the administration of IND. To explore attractive target molecules for the molecular imaging of IBD, we evaluated the gene expression levels of cytokines and cytokine receptors in the inflamed area of the intestines of both model mice. We found that the expression levels of cytokines and cytokine receptors were significantly increased during the progression of IBD, whereas the expression levels were decreased as the mucosa began to heal. In particular, the expression levels of these molecules had already changed before the symptoms of IBD appeared. In addition, the alterations of cytokine and cytokine receptor expression levels indicated differences in the expression pattern depending on the pathogenic mechanism or the region of inflammation (e.g., TNF-{alpha}). Our results suggest that these cytokines or cytokine receptors participate in the pathogenesis of IBD and are valuable biomarkers for the detection of the different circumstances underlying inflammation by the molecular imaging method. Finally, the development of an imaging probe for our target molecules is expected to improve our understanding of the inflammatory conditions of IBD.

  16. From Molecular Oxygen to Primordial Molecules with the Odin Satellite

    NASA Astrophysics Data System (ADS)

    Persson, C.; Encrenaz, P.; Hjalmarson, .; Sandqvist, Aa.

    2008-08-01

    Odin is a mm/submm-wave-spectroscopy Astronomy and Aeronomy satellite. Its design life time was two years, but it has now operated successfully for more than six years. Its 1.1 m high-precision telescope, with a beam efficiency of 90%, has beamwidths of 10 arcmin and 2 arcmin at mm and submm wavelengths, respectively. It is equipped with a cryogenic receiver package of four tunable, SSB, submm Schottky mixers covering the 486-504 and 541-581 GHz frequency range, and a fixed-tuned HEMT receiver at a frequency of 118-119 GHz. Odin has discovered the elusive oxygen (O2) molecule at 119 GHz---the detection was made in the ? Oph A molecular-cloud core. The O2 abundance, X(O2), is ? 5 10-8---Larsson et al. (2007: A&A, 466, 999). Odin has also discovered water (H2O) at 557 GHz in the core of the Milky Way Galaxy---the Sgr A CircumNuclear Disk (CND)---and mapped its distribution in the Sgr A Complex including the +20 and +50 km s-1 Molecular Clouds---Sandqvist et al. (2006: J.Phys. Conf.Ser., 54, 72). Furthermore, devoting about 1,100 orbits (each of which contains 1 hour of observable astronomy time) Odin has performed a spectral-line survey of Orion KL in the ranges 487-492 and 542-577 GHz. There are 280 identified spectral lines from 38 species and 64 unidentified lines [Olofsson et al. (2007: A&A, 476, 791) and Persson et al. (2007: A&A, 476, 807)]. Odin has searched for emission from the 557 GHz ortho-H2O line in six nearby starburst galaxies yielding three-sigma upper limits to the water abundance relative to H2 (NGC253 - <2.0 10-9; IC342 - <2.6 10-9; M82 - <1.7 10-9; NGC 4258 - <1.3 10-8; CenA - <7.8 10-9 and M51 - <2.4 10-9) [Wilson et al. (2007: A&A, 469, 121)]. Odin has an ongoing project for studying the first phases of structure formation in the early universe. The presence of primordial molecules (e.g., HD, H2+, LiH, HeH+) is investigated by searching for spectral lines produced by resonant scattering of the cosmic microwave background (CMB). During the summer of 2004, Odin performed a spectral scan (547-578 GHz, 1 MHz resolution) towards two Wilkinson Microwave Anisotropy Probe CMB Hot Spots using 350 orbits (5 orbits per LO setting and point). No lines were detected down to an rms level of 65 mK. A new observing strategy was developed for a second observing session (430 orbits) during the winter of 2006/7 to accommodate for the spatial uncertainty of primordial clouds. The spectral range is 486.5-492.0 and 542.0-547.5 GHz (10 orbits per LO setting and point, 1 MHz resolution yielding an rms of about 30 mK). Analysis of these data is ongoing. This is a pilot programme for GTO time on ESA's Herschel Space Observatory, planned for launch in late 2008.

  17. Speckle Patterns with Atomic and Molecular de Broglie Waves

    SciTech Connect

    Patton, Forest S.; Deponte, Daniel P.; Kevan, Stephen D.; Elliott, Greg S.

    2006-07-07

    We have developed a nozzle source that delivers a continuous beam of atomic helium or molecular hydrogen having a high degree of transverse coherence and with adequate optical brightness to enable new kinds of experiments. Using this source we have measured single slit diffraction patterns and the first ever speckle-diffraction patterns using atomic and molecular de Broglie waves. Our results suggest fruitful application of coherent matter beams in dynamic scattering and diffractive imaging at short wavelength and with extreme surface sensitivity.

  18. Information theory, atoms in molecules, and molecular similarity

    PubMed Central

    Nalewajski, Roman F.; Parr, Robert G.

    2000-01-01

    Using information theory, it is argued that from among possible definitions of what an atom is when it is in a molecule, a particular one merits special attention. Namely, it is the atom defined by the stockholders partitioning of a molecule invented by Hirshfeld [(1977) Theor. Chim. Acta 44, 129]. The theoretical tool used is the minimum entropy deficiency principle (minimum missing information principle) of Kullback and Liebler [(1951) Ann. Math. Stat. 22, 79]. A corresponding analysis is given of the problem of assessing similarity between molecules or pieces of molecules. PMID:10922049

  19. Elements of the theory of molecular spectra. [multiatomic molecules

    NASA Technical Reports Server (NTRS)

    Gribov, L. A.

    1979-01-01

    The basic aspects of the theory concerning the spectra of multiatomic molecules are presented. The classification of the forms of motions in a molecule, the methods for determining the corresponding Schroudinger levels, the spectral types and the selection rules are discussed in order to identify their presence and state in outer space.

  20. Biogeographic, molecular evolution, and diversification patterns in Neotropical plants

    NASA Astrophysics Data System (ADS)

    Smith, S. A.; Dick, C. W.

    2014-12-01

    Neotropical plants demonstrate a phenomenal range of ecological and morphological diversity. We will explore the phylogenetic and biogeographic patterns of a group of Neotropical plants and how these patterns relate to the geological history of the area. This includes the timing and location of biological exchange between areas. Neotropical plants also demonstrate repeated examples of rapid speciation and diversification. We will examine these evolutionary patterns and how they relate to molecular evolution.

  1. Organic molecules as chemical fossils - The molecular fossil record

    NASA Technical Reports Server (NTRS)

    Eglinton, G.

    1983-01-01

    The study of biochemical clues to the early earth and the origin of life is discussed. The methods used in such investigation are described, including the extraction, fractionation, and analysis of geolipids and the analysis of kerogen. The occurrence of molecular fossils in the geological record is examined, discussing proposed precursor-product relationships and the molecular assessment of deep sea sediments, ancient sediments, and crude petroleums. Alterations in the molecular record due to diagenesis and catagenesis are considered, and the use of microbial lipids as molecular fossils is discussed. The results of searches for molecular fossils in Precambrian sediments are assessed.

  2. Time-Resolved Molecular Frame Dynamics of Fixed-in-Space CS2 Molecules

    SciTech Connect

    Bisgaard, Christer; Clarkin, Owen; Wu, Guorong; Lee, Anthony; Gessner, Oliver; Hayden, Carl; Stolow, Albert

    2009-04-02

    Random orientation of molecules within a sample leads to blurred observationsof chemical reactions studied from the laboratory perspective. Methodsdeveloped for the dynamic imaging of molecular structures and processesstruggle with this, as measurements are optimally made in the molecular frame.Here we uselaser alignment to transiently fix CS2 molecules in space longenough to elucidate, in the molecular reference frame, details of ultrafast electronic vibrationaldynamics during a photochemical reaction. These three-dimensional photoelectron imaging results, combined with ongoing efforts in molecular alignment and orientation, presage a wide range of insights obtainable fromtime-resolved studies in the molecular frame.

  3. Single Molecule Switches and Molecular Self-Assembly: Low Temperature STM Investigations and Manipulations

    SciTech Connect

    Iancu, Violeta

    2006-08-01

    This dissertation is devoted to single molecule investigations and manipulations of two porphyrin-based molecules, chlorophyll-a and Co-popphyrin. The molecules are absorbed on metallic substrates and studied at low temperatures using a scanning tunneling microscope. The electronic, structural and mechanical properties of the molecules are investigated in detail with atomic level precision. Chlorophyll-a is the key ingredient in photosynthesis processes while Co-porphyrin is a magnetic molecule that represents the recent emerging field of molecular spintronics. Using the scanning tunneling microscope tip and the substrate as electrodes, and the molecules as active ingredients, single molecule switches made of these two molecules are demonstrated. The first switch, a multiple and reversible mechanical switch, is realized by using chlorophyll-a where the energy transfer of a single tunneling electron is used to rotate a C-C bond of the molecule's tail on a Au(111) surface. Here, the det

  4. Molecular polarizability in quantum defect theory: Nonpolar molecules

    NASA Astrophysics Data System (ADS)

    Akindinova, E. V.; Chernov, V. E.; Kretinin, I. Yu.; Zon, B. A.

    2009-03-01

    The method of reduced-added Greens function in quantum defect approximation [V. E. Chernov, D. L. Dorofeev, I. Yu. Kretinin, and B. A. Zon, Phys. Rev. A 71, 022505 (2005)] is generalized for calculation of dynamic polarizabilities of nonpolar molecules. The method is applied to alkali-metal dimers Li2 , Na2 , and Rb2 . The accuracy achieved in benchmark calculation ( H2 molecule) is comparable to that of ab initio calculations.

  5. Ultrafast electron diffraction from aligned molecules

    SciTech Connect

    Centurion, Martin

    2015-08-17

    The aim of this project was to record time-resolved electron diffraction patterns of aligned molecules and to reconstruct the 3D molecular structure. The molecules are aligned non-adiabatically using a femtosecond laser pulse. A femtosecond electron pulse then records a diffraction pattern while the molecules are aligned. The diffraction patterns are then be processed to obtain the molecular structure.

  6. Chains of quantum dot molecules grown on Si surface pre-patterned by ion-assisted nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Smagina, Zh. V.; Stepina, N. P.; Zinovyev, V. A.; Novikov, P. L.; Kuchinskaya, P. A.; Dvurechenskii, A. V.

    2014-10-01

    An original approach based on the combination of nanoimprint lithography and ion irradiation through mask has been developed for fabrication of large-area periodical pattern on Si(100). Using the selective etching of regions amorphized by ion irradiation ordered structures with grooves and ridges were obtained. The shape and depth of the relief were governed by ion energy and by the number of etching stages as well. Laterally ordered chains of Ge quantum dots were fabricated by molecular beam epitaxy of Ge on the pre-patterned Si substrates. For small amount of Ge deposited chains contain separate quantum dot molecules. The increase of deposition amount leads to overlapping of quantum dot molecules with formation of dense homogeneous chains of quantum dots. It was shown that the residual irradiation-induced bulk defects underneath the grooves suppress nucleation of Ge islands at the bottom of grooves. On pre-patterned substrates with whole defect regions, etched quantum dots grow at the bottom of grooves. The observed location of Ge quantum dots is interpreted in terms of local strain-mediated surface chemical potential which controls the sites of islands nucleation. The local chemical potential is affected by additional strain formed by the residual defects. It was shown by molecular dynamics calculations that these defects form the compressive strain at the bottom of grooves.

  7. Chains of quantum dot molecules grown on Si surface pre-patterned by ion-assisted nanoimprint lithography

    SciTech Connect

    Smagina, Zh. V.; Stepina, N. P. Zinovyev, V. A.; Kuchinskaya, P. A.; Novikov, P. L.; Dvurechenskii, A. V.

    2014-10-13

    An original approach based on the combination of nanoimprint lithography and ion irradiation through mask has been developed for fabrication of large-area periodical pattern on Si(100). Using the selective etching of regions amorphized by ion irradiation ordered structures with grooves and ridges were obtained. The shape and depth of the relief were governed by ion energy and by the number of etching stages as well. Laterally ordered chains of Ge quantum dots were fabricated by molecular beam epitaxy of Ge on the pre-patterned Si substrates. For small amount of Ge deposited chains contain separate quantum dot molecules. The increase of deposition amount leads to overlapping of quantum dot molecules with formation of dense homogeneous chains of quantum dots. It was shown that the residual irradiation-induced bulk defects underneath the grooves suppress nucleation of Ge islands at the bottom of grooves. On pre-patterned substrates with whole defect regions, etched quantum dots grow at the bottom of grooves. The observed location of Ge quantum dots is interpreted in terms of local strain-mediated surface chemical potential which controls the sites of islands nucleation. The local chemical potential is affected by additional strain formed by the residual defects. It was shown by molecular dynamics calculations that these defects form the compressive strain at the bottom of grooves.

  8. Three-dimensional Molecular Modeling with Single Molecule FRET

    PubMed Central

    Brunger, Axel T.; Strop, Pavel; Vrljic, Marija; Chu, Steven; Weninger, Keith R.

    2011-01-01

    Single molecule fluorescence energy transfer experiments enable investigations of macromolecular conformation and folding by the introduction of fluorescent dyes at specific sites in the macromolecule. Multiple such experiments can be performed with different labeling site combinations in order to map complex conformational changes or interactions between multiple molecules. Distances that are derived from such experiments can be used for determination of the fluorophore positions by triangulation. When combined with a known structure of the macromolecule(s) to which the fluorophores are attached, a three-dimensional model of the system can be determined. However, care has to be taken to properly derive distance from fluorescence energy transfer efficiency and to recognize the systematic or random errors for this relationship. Here we review the experimental and computational methods used for three-dimensional modeling based on single molecule fluorescence resonance transfer, and describe recent progress in pushing the limits of this approach to macromolecular complexes. PMID:20837146

  9. Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns

    NASA Astrophysics Data System (ADS)

    Zhu, Rong; Howorka, Stefan; Prll, Johannes; Kienberger, Ferry; Preiner, Johannes; Hesse, Jan; Ebner, Andreas; Pastushenko, Vassili Ph.; Gruber, Hermann J.; Hinterdorfer, Peter

    2010-11-01

    Atomic force microscopy (AFM) is a powerful tool for analysing the shapes of individual molecules and the forces acting on them. AFM-based force spectroscopy provides insights into the structural and energetic dynamics of biomolecules by probing the interactions within individual molecules, or between a surface-bound molecule and a cantilever that carries a complementary binding partner. Here, we show that an AFM cantilever with an antibody tether can measure the distances between 5-methylcytidine bases in individual DNA strands with a resolution of 4 , thereby revealing the DNA methylation pattern, which has an important role in the epigenetic control of gene expression. The antibody is able to bind two 5-methylcytidine bases of a surface-immobilized DNA strand, and retracting the cantilever results in a unique rupture signature reflecting the spacing between two tagged bases. This nanomechanical approach might also allow related chemical patterns to be retrieved from biopolymers at the single-molecule level.

  10. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanhui; Soeriyadi, Alexander H.; Rosa, Lorenzo; Ng, Soon Hock; Bach, Udo; Justin Gooding, J.

    2015-11-01

    Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods.

  11. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection

    PubMed Central

    Zheng, Yuanhui; Soeriyadi, Alexander H.; Rosa, Lorenzo; Ng, Soon Hock; Bach, Udo; Justin Gooding, J.

    2015-01-01

    Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods. PMID:26549539

  12. Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection.

    PubMed

    Zheng, Yuanhui; Soeriyadi, Alexander H; Rosa, Lorenzo; Ng, Soon Hock; Bach, Udo; Justin Gooding, J

    2015-01-01

    Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods. PMID:26549539

  13. The Virtual Museum of Minerals and Molecules: Molecular Visualization in a Virtual Hands-On Museum

    ERIC Educational Resources Information Center

    Barak, Phillip; Nater, Edward A.

    2005-01-01

    The Virtual Museum of Minerals and Molecules (VMMM) is a web-based resource presenting interactive, 3-D, research-grade molecular models of more than 150 minerals and molecules of interest to chemical, earth, plant, and environmental sciences. User interactivity with the 3-D display allows models to be rotated, zoomed, and specific regions of…

  14. A Novel Pictorial Approach to Teaching Molecular Motions in Polyatomic Molecules.

    ERIC Educational Resources Information Center

    Verkade, John G.

    1987-01-01

    Describes a procedure for teaching the "generator orbital" (GO) approach of molecular orbital bonding in polyatomic molecules. Explains how the GO can be utilized with students in generating the vibrational, rotational, and translational modes of molecules in a completely pictorial manner. (ML)

  15. The Virtual Museum of Minerals and Molecules: Molecular Visualization in a Virtual Hands-On Museum

    ERIC Educational Resources Information Center

    Barak, Phillip; Nater, Edward A.

    2005-01-01

    The Virtual Museum of Minerals and Molecules (VMMM) is a web-based resource presenting interactive, 3-D, research-grade molecular models of more than 150 minerals and molecules of interest to chemical, earth, plant, and environmental sciences. User interactivity with the 3-D display allows models to be rotated, zoomed, and specific regions of

  16. Molecular polarizability in quantum defect theory: polar molecules

    SciTech Connect

    Akindinova, E. V.; Chernov, V. E.; Kretinin, I. Yu.; Zon, B. A.

    2010-04-15

    The reduced-added Green's function technique in the quantum defect theory combines the advantages of analytical and ab initio methods in calculating frequency-dependent (dynamic) polarizabilities of atoms and molecules, providing an exact account for the high-excited and continuum electronic states. In the present paper this technique is modified to take into account the long-range dipole potential of a polar molecule core. The method developed is applied to calculation of the dynamic polarizability tensors of alkali-metal hydrides LiH and NaH as well as to some fluorides (CaF and BF) in the frequency range up to the first resonances. The results are in good agreement with ab initio calculations available for some frequencies.

  17. Laser Induced Molecular Spectroscopy of Zn{sub 2} Molecule

    SciTech Connect

    Singh, Subhash C.; Gopal, Ram

    2008-11-14

    Laser produced spectra of zinc molecule have been recorded in the region of 540-670 nm using second harmonics of Nd: YAG laser, computer--controlled TRIAX 320 M monochromator with a reciprocal linear dispersion 2.64 nm/mm fitted with ICCD detector. The spectrum consists of 35 bands, which are classified into D ({sup 1} product {sub u}){yields}A({sup 3} product {sub g}) and C ({sup 1}{sigma}{sub u}{sup +}){yields}A({sup 3} product {sub g}) systems. We have recorded the florescence spectrum of zinc dimer by pumping and probing with the same laser, which proves that produced molecules are stable for more than 0.1 seconds.

  18. Role of hydrogen interaction in two-dimensional molecular packing with strong molecule-substrate bonding

    SciTech Connect

    Langlais, V.; Torrelles, X.; Gauthier, Y.; De Santis, M.

    2007-07-15

    Calixarene molecules deposited on Au(110) self-organize giving rise to a (19x6) coincidence cell with the substrate. Using grazing incidence x-ray diffraction, the structure has been completely resolved: gold reconstructs with a (1x3) missing-row structure while the molecules form a (19/6x6) surface cell containing two molecules. This study opens perspectives to create long-range ordered molecular templates to be used as receptors for other species providing an example of collaborative self-arrangement through a metallic substrate acting as guide and molecular flexibility.

  19. A comparison of the molecular surfaces of sandalwood odour molecules.. Conformational calculations on sandalwood odour VIII

    NASA Astrophysics Data System (ADS)

    Neumann, Andrea; Wei, Petra; Wolschann, Peter

    1993-07-01

    Molecular surface comparisons offer a possibility for investigating small differences in molecular shape between biologically active and inactive compounds of the same structural type. The method of comparison described here is based on volume matching followed by the calculation of comparable surface dots. Subsequently, the surfaces are matched. The method was applied to the stereoisomers of some sandalwood odour molecules.

  20. Research Update: Molecular electronics: The single-molecule switch and transistor

    SciTech Connect

    Sotthewes, Kai; Heimbuch, René Kumar, Avijit; Zandvliet, Harold J. W.; Geskin, Victor

    2014-01-01

    In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.

  1. Signatures of molecular structure in the strong-field response of aligned molecules

    NASA Astrophysics Data System (ADS)

    Lein, M.; de Nalda, R.; Heesel, E.; Hay, N.; Springate, E.; Velotta, R.; Castillejo, M.; Knight, P. L.; Marangos, J. P.

    2005-02-01

    The strong-field response of molecules exhibits interference effects due to the geometric and electronic structure of the molecules and provides a basis for ultrafast imaging of molecular structure. This is demonstrated for high-order harmonic generation and high-order above-threshold ionization in aligned molecules by numerical solution of the time-dependent Schrdinger equation. Experimental and theoretical results for high-order harmonic generation with aligned CO2 molecules show that the harmonics exhibit an orientation dependence that is explained by the valence orbital symmetry. A detailed discussion of phase-matching effects due to the presence of different molecular orientations in an ensemble of imperfectly aligned molecules is presented.

  2. Molecular cloning of a glycosylphosphatidylinositol-anchored molecule CDw108.

    PubMed

    Yamada, A; Kubo, K; Takeshita, T; Harashima, N; Kawano, K; Mine, T; Sagawa, K; Sugamura, K; Itoh, K

    1999-04-01

    CDw108, also known as the John-Milton-Hagen human blood group Ag, is an 80-kDa glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein that is preferentially expressed on activated lymphocytes and E. The molecular characteristics and biological function of the CDw108 were not clarified previously. In this manuscript, we identify the cDNA clone containing the entire coding sequence of the CDw108 gene and report its molecular characteristics. The 1998-base pairs of the open reading frame of the cloned cDNA encoded a protein of 666 amino acids (aa), including the 46 aa of the signal peptide and the 19 aa of the GPI-anchor motif. Thus, the membrane-anchoring form of CDw108 was the 602 aa, and the estimated molecular mass of the unglycosylated form was 68 kDa. The RGD (Arg-Gly-Asp) cell attachment sequence and the five potential N-linked glycosylation sites were located on the membrane-anchoring form. Flow cytometric and immunoprecipitation analyses of the CDw108 cDNA transfectants confirmed that the cloned cDNA encoded the native form of CDw108. The CDw108 mRNA was expressed in activated PBMCs as well as in the spleen, thymus, testis, placenta, and brain, but was not expressed in any other tissues tested. Radiation hybrid mapping indicated that the CDw108 gene was located in the middle of the long arm of chromosome 15 (15q23-24). This molecular information will be critical for understanding the biological function of the CDw108 Ag. PMID:10201933

  3. Evidence on single-molecule transport in electrostatically-gated molecular transistors

    NASA Astrophysics Data System (ADS)

    Bldea, Ioan; Kppel, Horst

    2012-03-01

    We show that, if adequately formulated for molecular electronics, the barrier picture can quantitatively reproduce the currents and describe the orbital gating in the molecular transistors fabricated by Song et al. [H. Song, Y. Kim, Y.H. Jang, H. Jeong, M.A. Reed, T. Lee, Nature 462 (2009) 1039]. Based on our results, we demonstrate (i) that the measured current represents the contribution of a single molecule, and (ii) the linear dependence of the molecular orbital energy offset ?g on the voltage Vt at the Fowler-Nordheim minimum, validating thereby the transition voltage spectroscopy for the gated single molecule devices of Song et al.

  4. Molecular assembly of highly symmetric molecules under a hydrogen bond framework controlled by alkyl building blocks: a simple approach to fine-tune nanoscale structures.

    PubMed

    Tanphibal, Pimsai; Tashiro, Kohji; Chirachanchai, Suwabun

    2015-12-23

    To date, molecular assemblies under the contribution of hydrogen bond in combination with weak interactions and their consequent morphologies have been variously reported; however, how the systematic variation of the structure can fine-tune the morphologies has not yet been answered. The present work finds an answer through highly symmetric molecules, i.e. diamine-based benzoxazine dimers. This type of molecule develops unique molecular assemblies with their networks formed by hydrogen bonds at the terminal, while, at the same time, their hydrogen bonded frameworks are further controlled by the hydrophobic segment at the center of the molecule. When this happens, slight differences in hydrophobic alkyl chain lengths (, , and ) bring a significant change to the molecular assemblies, thus resulting in tunable morphologies, i.e. spheres, needles and dendrites. The superimposition between the crystal lattice obtained from X-ray single crystal analysis and the electron diffraction pattern obtained from transmission electron microscopy allows us to identify the molecular alignment from single molecules to self-assembly until the morphologies developed. The present work, for the first time, shows the case of symmetric molecules, where the hydrophobic building block controls the hydrogen bond patterns, leading to the variation of molecular assemblies with tunable morphologies. PMID:26482133

  5. Molecular dynamics study of water molecule diffusion in oil-paper insulation materials

    NASA Astrophysics Data System (ADS)

    Liao, Rui-Jin; Zhu, Meng-Zhao; Yang, Li-Jun; Zhou, Xin; Gong, Chun-Yan

    2011-03-01

    Moisture is an important factor that influences the safe operation of transformers. In this study, molecular dynamics was employed to investigate the diffusion behavior of water molecules in the oil-paper insulation materials of transformers. Two oil-cellulose models were built. In the first model, water molecules were initially distributed in oil, and in the second model, water molecules were distributed in cellulose. The non-bonding energies of interaction between water molecules and oil, and between water molecules and cellulose, were calculated by the Dreiding force field. The interaction energy was found to play a dominant role in influencing the equilibrium distribution of water molecules. The radial direction functions of water molecules toward oil and cellulose indicate that the hydrogen bonds between water molecules and cellulose are sufficiently strong to withstand the operating temperature of the transformer. Mean-square displacement analysis of water molecules diffusion suggests that water molecules initially distributed in oil showed anisotropic diffusion; they tended to diffuse toward cellulose. Water molecules initially distributed in cellulose diffused isotropically. This study provides a theoretical contribution for improvements in online monitoring of water in transformers, and for subsequent research on new insulation materials.

  6. Dissociation dynamics of ethylene molecules on a Ni cluster using ab initio molecular dynamics simulations.

    PubMed

    Shimamura, K; Shibuta, Y; Ohmura, S; Arifin, R; Shimojo, F

    2016-04-13

    The atomistic mechanism of dissociative adsorption of ethylene molecules on a Ni cluster is investigated by ab initio molecular-dynamics simulations. The activation free energy to dehydrogenate an ethylene molecule on the Ni cluster and the corresponding reaction rate is estimated. A remarkable finding is that the adsorption energy of ethylene molecules on the Ni cluster is considerably larger than the activation free energy, which explains why the actual reaction rate is faster than the value estimated based on only the activation free energy. It is also found from the dynamic simulations that hydrogen molecules and an ethane molecule are formed from the dissociated hydrogen atoms, whereas some exist as single atoms on the surface or in the interior of the Ni cluster. On the other hand, the dissociation of the C-C bonds of ethylene molecules is not observed. On the basis of these simulation results, the nature of the initial stage of carbon nanotube growth is discussed. PMID:26953616

  7. Dissociation dynamics of ethylene molecules on a Ni cluster using ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shimamura, K.; Shibuta, Y.; Ohmura, S.; Arifin, R.; Shimojo, F.

    2016-04-01

    The atomistic mechanism of dissociative adsorption of ethylene molecules on a Ni cluster is investigated by ab initio molecular-dynamics simulations. The activation free energy to dehydrogenate an ethylene molecule on the Ni cluster and the corresponding reaction rate is estimated. A remarkable finding is that the adsorption energy of ethylene molecules on the Ni cluster is considerably larger than the activation free energy, which explains why the actual reaction rate is faster than the value estimated based on only the activation free energy. It is also found from the dynamic simulations that hydrogen molecules and an ethane molecule are formed from the dissociated hydrogen atoms, whereas some exist as single atoms on the surface or in the interior of the Ni cluster. On the other hand, the dissociation of the C-C bonds of ethylene molecules is not observed. On the basis of these simulation results, the nature of the initial stage of carbon nanotube growth is discussed.

  8. A molecular dynamics study of the relaxation of an excited molecule in crystalline nitromethane

    NASA Astrophysics Data System (ADS)

    Rivera-Rivera, Luis A.; Siavosh-Haghighi, Ali; Sewell, Thomas D.; Thompson, Donald L.

    2014-07-01

    Classical molecular dynamics simulations were used to study the relaxation of an excited nitromethane molecule in perfect crystalline nitromethane at 250 K and 1 atm pressure. The molecule was instantaneously excited by statistically distributing energy E? between 25.0 kcal/mol and 125.0 kcal/mol among the 21 degrees of freedom of the molecule. The relaxation occurs exponentially with time constants between 11.58 ps and 13.57 ps. Energy transfer from the excited molecule to surrounding quasi-spherical shells of molecules occurs concurrently to both the nearest and next-nearest neighbor shells, but with more energy per molecule transferred more rapidly to the first shell.

  9. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device.

    PubMed

    Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher

    2015-07-31

    This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction's perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule's magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs' electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ?50% of the interatomic exchange coupling for the FM electrodes. PMID:26159362

  10. Tracking molecular resonance forms of donor–acceptor push–pull molecules by single-molecule conductance experiments

    PubMed Central

    Lissau, Henriette; Frisenda, Riccardo; Olsen, Stine T.; Jevric, Martyn; Parker, Christian R.; Kadziola, Anders; Hansen, Thorsten; van der Zant, Herre S. J.; Brøndsted Nielsen, Mogens; Mikkelsen, Kurt V.

    2015-01-01

    The ability of molecules to change colour on account of changes in solvent polarity is known as solvatochromism and used spectroscopically to characterize charge-transfer transitions in donor–acceptor molecules. Here we report that donor–acceptor-substituted molecular wires also exhibit distinct properties in single-molecule electronics under the influence of a bias voltage, but in absence of solvent. Two oligo(phenyleneethynylene) wires with donor–acceptor substitution on the central ring (cruciform-like) exhibit remarkably broad conductance peaks measured by the mechanically controlled break-junction technique with gold contacts, in contrast to the sharp peak of simpler molecules. From a theoretical analysis, we explain this by different degrees of charge delocalization and hence cross-conjugation at the central ring. Thus, small variations in the local environment promote the quinoid resonance form (off), the linearly conjugated (on) or any form in between. This shows how the conductance of donor–acceptor cruciforms is tuned by small changes in the environment. PMID:26667583

  11. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface.

    PubMed

    Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-01

    The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules. PMID:26156491

  12. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface

    NASA Astrophysics Data System (ADS)

    Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-01

    The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.

  13. Structure-dependent reactivity of low molecular weight fulvic acid molecules during ozonation.

    PubMed

    These, Anja; Reemtsma, Thorsten

    2005-11-01

    Size-exclusion chromatography coupled to quadrupole time-of-flight mass spectrometry (SEC-Q-TOF-MS) was used to study changes in the molecular composition of a Suwannee River fulvic acid isolate by ozonation. The composition of all three SEC fractions showed strong changes and a relative increase of the low molecular weight anions. Further mass spectrometric investigations focused on the low molecular weight fulvic acid molecules, where a preferential removal of fulvic acid molecules with a low oxidation state (low O/C ratio) and a high degree of unsaturation (low H/C ratio) was observed. Besides their elemental composition, also the structure of the fulvic acid molecules influenced their reactivity toward ozone. The data suggestthat molecules with a more extended carbon skeleton and less carboxylate substituents showed higher reactivitywhereas some highly unsaturated molecules did not show measurable removal up to a specific ozone dose of 2.5 mg/mg of DOC due to sterical shielding of the reactive structures. Newly formed molecules were determined by SEC-Q-TOF-MS, which were characterized by a very high number of carboxylate groups (high O/C ratio) and a highly saturated carbon skeleton (high H/C ratio). These investigations explain on a molecular level many observations previously made with whole mixtures or fractions of natural organic matter. PMID:16294877

  14. Microbes, molecular mimicry and molecules of mood and motivation.

    PubMed

    Morris, J A; Broughton, S J; Wessels, Q

    2016-02-01

    The hypothesis proposed is that functional disorders, such as irritable bowel syndrome, chronic fatigue syndrome and anorexia nervosa are caused by auto-antibodies to neuronal proteins induced by molecular mimicry with microbial antigens. The age incidence of these conditions, the marked female excess, increase with economic and technological advance, precipitation by infection, and the paucity of histological changes are all consistent with the hypothesis. It can be tested directly using human sera to search for cross reaction with brain proteins in model systems such as Drosophila melanogaster. The conditions might be amenable to treatment using pooled immunoglobulin. Identification and elimination from the microbial flora of the bacteria that express the cross reacting antigens should be possible. PMID:26826639

  15. MoFlow: visualizing conformational changes in molecules as molecular flow improves understanding

    PubMed Central

    2015-01-01

    Background Current visualizations of molecular motion use a Timeline-analogous representation that conveys "first the molecule was shaped like this, then like this...". This scheme is orthogonal to the Pathline-like human understanding of motion "this part of the molecule moved from here to here along this path". We present MoFlow, a system for visualizing molecular motion using a Pathline-analogous representation. Results The MoFlow system produces high-quality renderings of molecular motion as atom pathlines, as well as interactive WebGL visualizations, and 3D printable models. In a preliminary user study, MoFlow representations are shown to be superior to canonical representations for conveying molecular motion. Conclusions Pathline-based representations of molecular motion are more easily understood than timeline representations. Pathline representations provide other advantages because they represent motion directly, rather than representing structure with inferred motion. PMID:26361501

  16. Conventional, molecular methods and biomarkers molecules in detection of septicemia

    PubMed Central

    Arabestani, Mohammad Reza; Rastiany, Sahar; Kazemi, Sima; Mousavi, Seyed Masoud

    2015-01-01

    Sepsis is a leading cause of morbidity and mortality in hospitalized patients worldwide and based on studies, 30–40% of all cases of severe sepsis and septic shock results from the blood stream infections (BSIs). Identifying of the disease, performing laboratory tests, and consequently treatment are factors that required for optimum management of BSIs. In addition, applying precise and immediate identification of the etiologic agent is a prerequisite for specific antibiotic therapy of pathogen and thereby decreasing mortality rates. The diagnosis of sepsis is difficult because clinical signs of sepsis often overlap with other noninfectious cases of systemic inflammation. BSIs are usually diagnosed by performing a series of techniques such as blood cultures, polymerase chain reaction-based methods, and biomarkers of sepsis. Extremely time-consuming even to take up to several days is a major limitation of conventional methods. In addition, yielding false-negative results due to fastidious and slow-growing microorganisms and also in case of antibiotic pretreated samples are other limitations. In comparison, molecular methods are capable of examining a blood sample obtained from suspicious patient with BSI and gave the all required information to prescribing antimicrobial therapy for detected bacterial or fungal infections immediately. Because of an emergency of sepsis, new methods are being developed. In this review, we discussed about the most important sepsis diagnostic methods and numbered the advantage and disadvantage of the methods in detail. PMID:26261822

  17. Molecular Tension Sensors Report Forces Generated by Single Integrin Molecules in Living Cells

    PubMed Central

    Morimatsu, Masatoshi; Mekhdjian, Armen H.; Adhikari, Arjun S.; Dunn, Alexander R.

    2013-01-01

    Living cells are exquisitely responsive to mechanical cues, yet how cells produce and detect mechanical force remains poorly understood due to a lack of methods that visualize cell-generated forces at the molecular scale. Here we describe Frster resonance energy transfer (FRET)-based molecular tension sensors that allow us to directly visualize cell-generated forces with single-molecule sensitivity. We apply these sensors to determine the distribution of forces generated by individual integrins, a class of cell adhesion molecules with prominent roles throughout cell and developmental biology. We observe strikingly complex distributions of tensions within individual focal adhesions. FRET values measured for single probe molecules suggest that relatively modest tensions at the molecular level are sufficient to drive robust cellular adhesion. PMID:23859772

  18. Fuzzy symmetries of molecule and molecular orbital: characterization and simple application

    NASA Astrophysics Data System (ADS)

    Zhao, Xuezhuang; Xu, Xiufang; Wang, Guichang; Pan, Yinming; Cai, Zunsheng

    A fuzzy point group has been constructed to describe imperfect molecular symmetry by using fuzzy set theory. Then the fuzzy symmetry of the molecular orbital has also been analyzed, and several concepts, such as fuzzy irreducible representation and fuzzy characters (fuzzy generalized parity) for molecular orbitals have been advanced. The results show that sometimes the symmetry of the molecule as a whole is not obvious, however, that of some molecular orbital may be obvious. Although oscillator strength in the electronic spectrum is not determined solely by fuzzy symmetry, it is obviously related to the fuzzy symmetry, which seems to be a fuzzy rule for the electronic spectrum.

  19. Different molecular patterns in glioblastoma multiforme subtypes upon recurrence.

    PubMed

    Martinez, Ramon; Rohde, Veit; Schackert, Gabriele

    2010-02-01

    One of the hallmarks of glioblastoma is its inherent tendency to recur. At this point patients with relapsed GBM show a survival time of only few months. The molecular basis of the recurrence process in GBM is still poorly understood. The aim of the present study was to investigate the genetic profile of relapsed GBM compared to their respective primary tumors. We have included 20 paired GBMs. In all tumor samples, we have analyzed p53 and PTEN status by sequencing analysis, EGFR amplification by semiquantitative PCR and a wide-genome fingerprinting was performed by microsatellite analysis. Among primary GBM, we observed twelve type 2 GBM, four type 1 GBM and four further GBM showing neither p53 mutations nor EGFR amplification (non-type 1-non-type 2 GBM). Upon recurrence, we have detected two molecular patterns of tumor progression: GBM initially showing either type 1 or type 2 profiles conserved them at the time of relapse. In contrast, non-type 1-non-type 2 GBM acquired the typical pattern of type 2 GBM and harbor EGFR amplification without p53 mutation. New PTEN mutations upon relapse were only detected in type 2 GBM. Additional LOH were more frequently identified in relapses of type 2 GBM than in those showing the type 1 signature. Taken together, our results strongly suggest that recurrences of GBM may display two distinct pattern of accumulation of molecular alterations depending on the profile of the original tumor. PMID:19644652

  20. Role of molecule flexibility on the nucleation of dislocations in molecular crystals

    NASA Astrophysics Data System (ADS)

    Munday, Lynn B.; Mitchell, Robert L.; Knap, Jaroslaw; Chung, Peter W.

    2013-10-01

    We show that a molecule's flexibility described by changes to its conformation and orientation during deformation is vital for the proper representation of dislocation nucleation in molecular crystals. This is shown for the molecular crystal hexahydro-1,3,5-trinitro-s-triazine (RDX) by comparing direct atomistic simulations to two alternate forms of a continuum dislocation nucleation model for a crack tip loaded in pure shear. The atomistic simulations show the emission of partial dislocations. These are compared to continuum dislocation nucleation models based on generalized stacking fault (GSF) energy surfaces where the molecules are allowed to be either rigid or flexible. The rigid molecules are unable to represent the partial dislocations whereas the flexible molecules agree with the direct atomistic model to within 17% of the stress intensity factor for emission of the first partial dislocation and to within 1% for the second partial. This agreement first indicates that the molecule flexibility serves a critical role in the ductile behavior of the molecular crystal and, second, the continuum dislocation nucleation model represents the correct atomistic behavior, showing two partial dislocations connected by a stacking fault, when parameterized with GSF energy surfaces that account for the molecule flexibility.

  1. Dynamic expression patterns of ECM molecules in the developing mouse olfactory pathway

    PubMed Central

    Shay, Elaine L.; Greer, Charles A.; Treloar, Helen B.

    2009-01-01

    Olfactory sensory neuron (OSN) axons follow stereotypic spatio-temporal paths in the establishment of the olfactory pathway. Extracellular matrix (ECM) molecules are expressed early in the developing pathway and are proposed to have a role in its initial establishment. During later embryonic development, OSNs sort out and target specific glomeruli to form precise, complex topographic projections. We hypothesized that ECM cues may help to establish this complex topography. The aim of this study was to characterize expression of ECM molecules during the period of glomerulogenesis, when synaptic contacts are forming. We examined expression of laminin-1, perlecan, tenascin-C and CSPGs and found a coordinated pattern of expression of these cues in the pathway. These appear to restrict axons to the pathway while promoting axon outgrowth within. Thus, ECM molecules are present in dynamic spatio-temporal positions to affect OSN axons as they navigate to the olfactory bulb and establish synapses. PMID:18570250

  2. Laser Field Alignment of Organic Molecules on Semiconductor Surfaces: Toward Ultrafast Molecular Switches

    SciTech Connect

    Reuter, Matthew G.; Sukharev, Maxim; Seideman, Tamar

    2008-11-14

    An ultrafast, nanoscale molecular switch is proposed, based on extension of the concept of nonadiabatic alignment to surface-adsorbed molecules. The switch consists of a conjugated organic molecule adsorbed onto a semiconducting surface and placed near a scanning tunneling microscope tip. A low-frequency, polarized laser field is used to switch the system by orienting the molecule with the field polarization axis, enabling conductance through the junction. Enhancement and spatial localization of the incident field by the metallic tip allow operation at low intensities. The principles of nonadiabatic alignment lead to switch on and off time scales far below rotational time scales.

  3. Super-Resolution Imaging of Molecular Emission Spectra and Single Molecule Spectral Fluctuations

    PubMed Central

    Mlodzianoski, Michael J.; Curthoys, Nikki M.; Gunewardene, Mudalige S.; Carter, Sean; Hess, Samuel T.

    2016-01-01

    Localization microscopy can image nanoscale cellular details. To address biological questions, the ability to distinguish multiple molecular species simultaneously is invaluable. Here, we present a new version of fluorescence photoactivation localization microscopy (FPALM) which detects the emission spectrum of each localized molecule, and can quantify changes in emission spectrum of individual molecules over time. This information can allow for a dramatic increase in the number of different species simultaneously imaged in a sample, and can create super-resolution maps showing how single molecule emission spectra vary with position and time in a sample. PMID:27002724

  4. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device

    NASA Astrophysics Data System (ADS)

    Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher

    2015-07-01

    This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction’s perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule’s magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs’ electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ˜50% of the interatomic exchange coupling for the FM electrodes.

  5. Carbon Nanotube Biosensors for Space Molecule Detection and Clinical Molecular Diagnostics

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2001-01-01

    Both space molecule detection and clinical molecule diagnostics need to develop ultra sensitive biosensors for detection of less than attomole molecules such as amino acids for DNA. However all the electrode sensor systems including those fabricated from the existing carbon nanotubes, have a background level of nA (nanoAmp). This has limited DNA or other molecule detection to nA level or molecules whose concentration is, much higher than attomole level. A program has been created by NASA and NCI (National Cancer Institute) to exploit the possibility of carbon nanotube based biosensors to solve this problem for both's interest. In this talk, I will present our effort on the evaluation and novel design of carbon nanotubes as electrode biosensors with strategies to minimize background currents while maximizing signal intensity.The fabrication of nanotube electrode arrays, immobilization of molecular probes on nanotube electrodes and in vitro biosensor testing will also be discussed.

  6. Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns

    PubMed Central

    Zhu, Rong; Howorka, Stefan; Prll, Johannes; Kienberger, Ferry; Preiner, Johannes; Hesse, Jan; Ebner, Andreas; Pastushenko, Vassili Ph.; Gruber, Hermann J.; Hinterdorfer, Peter

    2011-01-01

    Atomic force microscopy1 (AFM) is a powerful tool for analysing the shapes of individual molecules and the forces acting on them. AFM-based force spectroscopy provides insights into the structural and energetic dynamics2-4 of biomolecules by probing the interactions within individual molecules5,6, or between a surface-bound molecule and a cantilever that carries a complementary binding partner7-9. Here, we show that an AFM cantilever with an antibody tether can measure the distances between 5-methylcytidine bases in individual DNA strands with a resolution of 4 , thereby revealing the DNA methylation pattern, which has an important role in the epigenetic control of gene expression. The antibody is able to bind two 5-methylcytidine bases of a surface-immobilized DNA strand, and retracting the cantilever results in a unique rupture signature reflecting the spacing between two tagged bases. This nanomechanical approach might also allow related chemical patterns to be retrieved from biopolymers at the single-molecule level. PMID:21037576

  7. Molecular Dynamics Simulations of the Interaction between Water Molecules and Aggregates of Acetic or Propionic Acid Molecules.

    PubMed

    Radola, Bastien; Picaud, Sylvain; Vardanega, Delphine; Jedlovszky, Pl

    2015-12-24

    Water adsorption around small acetic and propionic acid aggregates has been studied by means of molecular dynamics simulation in the temperature range of 100-265 K as a function of the water content. Calculations have shown that acetic and propionic acid molecules behave similarly and that both the temperature and the water content have a strong influence on the behavior of the corresponding systems. Two situations have been evidenced for the acid-water aggregates, corresponding either to water adsorption on large acid grains at very low temperatures or to the formation of droplets consisting of acid molecules adsorbed at the surface of water aggregates at higher temperatures and high water content. At low water content and high temperature, only a partial mixing between water and acid molecules has been observed. The results of the present simulations emphasize the need for further experimental and simulation works to achieve a better characterization of the effects of both temperature and humidity on the behavior of organic aerosols in the troposphere. PMID:26601716

  8. A new graph-based molecular descriptor using the canonical representation of the molecule.

    PubMed

    Hentabli, Hamza; Saeed, Faisal; Abdo, Ammar; Salim, Naomie

    2014-01-01

    Molecular similarity is a pervasive concept in drug design. The basic idea underlying molecular similarity is the similar property principle, which states that structurally similar molecules will exhibit similar physicochemical and biological properties. In this paper, a new graph-based molecular descriptor (GBMD) is introduced. The GBMD is a new method of obtaining a rough description of 2D molecular structure in textual form based on the canonical representations of the molecule outline shape and it allows rigorous structure specification using small and natural grammars. Simulated virtual screening experiments with the MDDR database show clearly the superiority of the graph-based descriptor compared to many standard descriptors (ALOGP, MACCS, EPFP4, CDKFP, PCFP, and SMILE) using the Tanimoto coefficient (TAN) and the basic local alignment search tool (BLAST) when searches were carried. PMID:25140330

  9. Damage-Associated Molecular Patterns in the Course of Lung Cancer--A Review.

    PubMed

    ?agiedo, M; Sikora, J; Kaczmarek, M

    2015-08-01

    More than 20 years ago, the 'danger theory' was proposed which explains why potent immune responses with no microbial components are elicited against tissue transplants, injuries, tumours and autoimmune diseases. It states that the immune system can distinguish between dangerous and innocuous endogenous signals. In response to trauma or other types of tissue and cell damage, certain molecules that function inside the cell are released or secreted from damaged or dying cells. Such mechanisms initiate an immune response in the absence of infection. These immunostimulatory molecules were named damage-associated molecular patterns (DAMPs). In this article, we will review the available data on the influence of select DAMPs on lung cancer cells and tumour microenvironments. We will also summarize the current information regarding the interactions between lung cancer-associated DAMPs and their toll-like receptors. PMID:25966741

  10. The Role of Damage-Associated Molecular Patterns in Human Diseases

    PubMed Central

    Land, Walter G.

    2015-01-01

    There is increasing interest by physicians in the impact of the innate immune system on human diseases. In particular, the role of the molecules that initiate and amplify innate immune pathways, namely damage-associated molecular patterns (DAMPs), is of interest as these molecules are involved in the pathogenesis of many human disorders. The first part of this review identifies five classes of cell stress/tissue injury-induced DAMPs that are sensed by various recognition receptor-bearing cells of the innate immune system, thereby mounting inflammation, promoting apoptosis and shaping adaptive immune responses. The DAMPs activate and orchestrate several innate immune machineries, including inflammasomes and the unfolded protein response that synergistically operates to induce inflammatory, metabolic and adaptive immune pathologies. Two examples of autoimmune diseases are discussed as they represent a typical paradigm of the intimate interplay between innate and adaptive immune responses. PMID:25685392

  11. Emergence of single-molecule sequencing and potential for molecular diagnostic applications.

    PubMed

    Milos, Patrice M

    2009-10-01

    The effective demonstration of single-molecule sequencing at scale over the last several years offers the exciting opportunity for a new era in the field of molecular diagnostics. As we aim to personalize and deliver cost-effective healthcare, we must consider the need to fully integrate genomics into decision-making. We must be able to accurately and cost effectively obtain a complete genome sequence for disease diagnosis, interrogate a molecular signature from blood for therapeutic monitoring, obtain a tumor mutation profile for optimizing therapeutic choice - each molecular diagnostic measurement utilized to better inform patient care. Would a physician or molecular pathology laboratory want to utilize a PCR process in which millions of DNA copies of a patient's nucleic acid are created when an alternative approach allowing direct measurement of the nucleic acids is possible? I would suggest not! In this article we will focus on the emergence of single-molecule sequencing, the single-molecule sequencing methodologies in the marketplace or under development today, as well as the importance of these methods for molecular characterization and diagnosis of disease with the ultimate application for molecular diagnostics. PMID:19817551

  12. Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds.

    PubMed

    Jafri, S Hassan M; Lfs, Henrik; Blom, Tobias; Wallner, Andreas; Grigoriev, Anton; Ahuja, Rajeev; Ottosson, Henrik; Leifer, Klaus

    2015-01-01

    Reproducibility, stability and the coupling between electrical and molecular properties are central challenges in the field of molecular electronics. The field not only needs devices that fulfill these criteria but they also need to be up-scalable to application size. In this work, few-molecule based electronics devices with reproducible electrical characteristics are demonstrated. Our previously reported 5?nm gold nanoparticles (AuNP) coated with ?-triphenylmethyl (trityl) protected 1,8-octanedithiol molecules are trapped in between sub-20?nm gap spacing gold nanoelectrodes forming AuNP-molecule network. When the trityl groups are removed, reproducible devices and stable Au-thiol junctions are established on both ends of the alkane segment. The resistance of more than 50 devices is reduced by orders of magnitude as well as a reduction of the spread in the resistance histogram is observed. By density functional theory calculations the orders of magnitude decrease in resistance can be explained and supported by TEM observations thus indicating that the resistance changes and strongly improved resistance spread are related to the establishment of reproducible and stable metal-molecule bonds. The same experimental sequence is carried out using 1,6-hexanedithiol functionalized AuNPs. The average resistances as a function of molecular length, demonstrated herein, are comparable to the one found in single molecule devices. PMID:26395225

  13. Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds

    NASA Astrophysics Data System (ADS)

    Jafri, S. Hassan M.; Lfs, Henrik; Blom, Tobias; Wallner, Andreas; Grigoriev, Anton; Ahuja, Rajeev; Ottosson, Henrik; Leifer, Klaus

    2015-09-01

    Reproducibility, stability and the coupling between electrical and molecular properties are central challenges in the field of molecular electronics. The field not only needs devices that fulfill these criteria but they also need to be up-scalable to application size. In this work, few-molecule based electronics devices with reproducible electrical characteristics are demonstrated. Our previously reported 5?nm gold nanoparticles (AuNP) coated with ?-triphenylmethyl (trityl) protected 1,8-octanedithiol molecules are trapped in between sub-20?nm gap spacing gold nanoelectrodes forming AuNP-molecule network. When the trityl groups are removed, reproducible devices and stable Au-thiol junctions are established on both ends of the alkane segment. The resistance of more than 50 devices is reduced by orders of magnitude as well as a reduction of the spread in the resistance histogram is observed. By density functional theory calculations the orders of magnitude decrease in resistance can be explained and supported by TEM observations thus indicating that the resistance changes and strongly improved resistance spread are related to the establishment of reproducible and stable metal-molecule bonds. The same experimental sequence is carried out using 1,6-hexanedithiol functionalized AuNPs. The average resistances as a function of molecular length, demonstrated herein, are comparable to the one found in single molecule devices.

  14. Resonance enhanced multiphoton ionization spectra of molecules and molecular fragments. Technical report, January 1990--December 1990

    SciTech Connect

    1997-07-01

    The objective of our effort is to carry out theoretical studies of resonance enhanced multiphoton ionization processes in molecules and molecular fragments. These studies are designed to provide a quantitatively robust analysis and prediction of key spectral features of interest in several ongoing experimental studies and applications of this technique.

  15. Ab-initio molecular geometry and normal coordinate analysis of tetrahydrothiophene molecule

    NASA Astrophysics Data System (ADS)

    El-Gogary, Tarek M.

    2001-06-01

    The molecular geometry of tetrahydrothiophene (THT) was quantum mechanically calculated using the split valence 6-31G** basis set. Electron correlation energy has been computed employing MP2 method. The molecule showed a twist form puckered structure with a twist torsion angle of 13 and has a total energy of -347?877.514 kcal/mol of which a 436.715 kcal/mol electron correlation energy. The envelope form of the molecule showed an inter-plane angle of 22 and has a total energy of - 347?974.430 kcal/mol involving -436.558 kcal/mol electron correlation energy. The normal coordinates of the molecule were theoretically analyzed and the fundamental vibrational frequencies were calculated. The IR and laser Raman spectra of THT molecule was measured. All the observed vibrational bands including combination bands and overtones were assigned to normal modes with the aid of the potential energy distribution values obtained from normal coordinate calculations. The molecular force field was determined by refining the initial set of force constants using the least square fit method instead of using the less accurate scaling factor methods. The determined molecular force field has produced simulated frequencies which best match the observed values. The lowest-energy modes of vibration were two molecular out-of-plane deformations, observed at 114 and 166 cm -1. The barrier of ring twisting estimated from the observed ring out-of-plane vibrational mode at 114 cm -1 was estimated.

  16. Ultra high resolution molecular beam cars spectroscopy with application to planetary atmospheric molecules

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1982-01-01

    The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.

  17. Renormalization of Molecular Energy Levels in Single-Molecule Nanojunctions: An Ab-initio Approach

    NASA Astrophysics Data System (ADS)

    Parashar, Sweta; Srivastava, Pankaj; Pattanaik, Manisha

    2015-02-01

    Using first-principle calculations based on Density Functional Theory (DFT) in conjunction with the Non-Equilibrium Greens Functions (NEGF) technique, we have studied the effect of electrostatic environment in molecular energy levels of single-molecule transistors. This approach is applied to three polycyclic aromatic hydrocarbons (PAHs) anthracene, tetracene and pentacene, for calculating charging energies of molecular systems weakly coupled to an electrostatic environment. The result shows renormalization of molecular energy levels in an electrostatic environment. Further, it is observed that on increasing the number of aromatic rings, the addition energy value decreases which increases the conductivity of the system. Subsequently charge stability diagram for PAHs has been obtained.

  18. Energy-Level Related Nuclear-Spin Effects and Super-Hyperfine Spectral Patterns: how Molecules do Self-Nmr

    NASA Astrophysics Data System (ADS)

    Harter, William; Mitchell, Justin

    2009-06-01

    At several points in his defining works on molecular spectroscopy, Herzberg notes that ``because nuclear moments ldots are so very slight ldots transitions between species ldots are very strictly forbiddenldots '' Herzberg's most recent statement of such selection rules pertained to spherical top spin-species. It has since been shown that spherical top species (as well as those of lower symmetry molecules) converge exponentially with momentum quanta J and K to degenerate level clusters wherein even ``very slight'' nuclear fields and moments cause pervasive resonance and total spin species mixing. Ultra-high resolution spectra of Borde, et .al and Pfister et .al shows how SF_6 and SiF_4 Fluorine nuclear spin levels rearrange from total-spin multiplets to NMR-like patterns as their superfine structure converges. Similar super-hyperfine effects are anticipated for lower symmetry molecules exhibiting converging superfine level-clusters. Examples include PH_3 molecules and asymmetric tops. Following this we consider models that treat nuclear spins as coupled rotors undergoing generalized Hund-case transitions from spin-lab-momentum coupling to various spin-rotor correlations. G. A. Herzberg, Electronic Spectra of Polyatomic Molecules, (Von Norstrand Rheinhold 1966) p. 246. W G. Harter and C. W Patterson, Phys. Rev. A 19, 2277 (1979) W. G. Harter, Phys. Rev. A 24, 192 (1981). Ch. J. Borde, J. Borde, Ch. Breant, Ch. Chardonnet, A. Van Lerberghe, and Ch. Salomon, in Laser Spectroscopy VII, T. W Hensch and Y. R. Shen, eds. (Springer-Verlag, Berlin, 1985). O. Pfister, F. Guernet, G. Charton, Ch. Chardonnet, F. Herlemont, and J. Legrand, J. Opt. Soc. Am. B 10, 1521 (1993). O. Pfister, Ch. Chardonnet, and Ch. J. Bordè, Phys. Rev. Lett. 76, 4516 (1996) S. N. Yurchenko, W. Thiel, S. Patchkovskii, and P. Jensen, Phys. Chem. Chem. Phys.7, 573 (2005)

  19. Xylan decoration patterns and the plant secondary cell wall molecular architecture.

    PubMed

    Busse-Wicher, Marta; Grantham, Nicholas J; Lyczakowski, Jan J; Nikolovski, Nino; Dupree, Paul

    2016-02-15

    The molecular architecture of plant secondary cell walls is still not resolved. There are several proposed structures for cellulose fibrils, the main component of plant cell walls and the conformation of other molecules is even less well known. Glucuronic acid (GlcA) substitution of xylan (GUX) enzymes, in CAZy family glycosyl transferase (GT)8, decorate the xylan backbone with various specific patterns of GlcA. It was recently discovered that dicot xylan has a domain with the side chain decorations distributed on every second unit of the backbone (xylose). If the xylan backbone folds in a similar way to glucan chains in cellulose (2-fold helix), this kind of arrangement may allow the undecorated side of the xylan chain to hydrogen bond with the hydrophilic surface of cellulose microfibrils. MD simulations suggest that such interactions are energetically stable. We discuss the possible role of this xylan decoration pattern in building of the plant cell wall. PMID:26862191

  20. Dynamic molecules: molecular dynamics for everyone. An internet-based access to molecular dynamic simulations: basic concepts.

    PubMed

    Frank, Martin; Gutbrod, Peter; Hassayoun, Chokri; von Der Lieth, Claus-W

    2003-10-01

    Molecular dynamics is a rapidly developing field of science and has become an established tool for studying the dynamic behavior of biomolecules. Although several high quality programs for performing molecular dynamic simulations are freely available, only well-trained scientists are currently able to make use of the broad scientific potential that molecular dynamic simulations offer to gain insight into structural questions at an atomic level. The "Dynamic Molecules" approach is the first internet portal that provides an interactive access to set up, perform and analyze molecular dynamic simulations. It is completely based on standard web technologies and uses only publicly available software. The aim is to open molecular dynamics techniques to a broader range of users including undergraduate students, teachers and scientists outside the bioinformatics field. The time-limiting factors are the availability of free capacity on the computing server to run the simulations and the time required to transport the history file through the internet for the animation mode. The interactive access mode of the portal is acceptable for animations of molecules having up to about 500 atoms. PMID:12908101

  1. A scale-bridging modeling approach for anisotropic organic molecules at patterned semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Kleppmann, Nicola; Klapp, Sabine H. L.

    2015-02-01

    Hybrid systems consisting of organic molecules at inorganic semiconductor surfaces are gaining increasing importance as thin film devices for optoelectronics. The efficiency of such devices strongly depends on the collective behavior of the adsorbed molecules. In the present paper, we propose a novel, coarse-grained model addressing the condensed phases of a representative hybrid system, that is, para-sexiphenyl (6P) at zinc-oxide (ZnO). Within our model, intermolecular interactions are represented via a Gay-Berne potential (describing steric and van-der-Waals interactions) combined with the electrostatic potential between two linear quadrupoles. Similarly, the molecule-substrate interactions include a coupling between a linear molecular quadrupole to the electric field generated by the line charges characterizing ZnO(10-10). To validate our approach, we perform equilibrium Monte Carlo simulations, where the lateral positions are fixed to a 2D lattice, while the rotational degrees of freedom are continuous. We use these simulations to investigate orientational ordering in the condensed state. We reproduce various experimentally observed features such as the alignment of individual molecules with the line charges on the surface, the formation of a standing uniaxial phase with a herringbone structure, as well as the formation of a lying nematic phase.

  2. Molecular Nanoshearing: An Innovative Approach to Shear off Molecules with AC-Induced Nanoscopic Fluid Flow

    PubMed Central

    Shiddiky, Muhammad J. A.; Vaidyanathan, Ramanathan; Rauf, Sakandar; Tay, Zhikai; Trau, Matt

    2014-01-01

    Early diagnosis of disease requires highly specific measurement of molecular biomarkers from femto to pico-molar concentrations in complex biological (e.g., serum, blood, etc.) samples to provide clinically useful information. While reaching this detection limit is challenging in itself, these samples contain numerous other non-target molecules, most of which have a tendency to adhere to solid surfaces via nonspecific interactions. Herein, we present an entirely new methodology to physically displace nonspecifically bound molecules from solid surfaces by utilizing a newly discovered tuneable force, induced by an applied alternating electric field, which occurs within few nanometers of an electrode surface. This methodology thus offers a unique ability to shear-off loosely bound molecules from the solid/liquid interface. Via this approach, we achieved a 5-fold reduction in nonspecific adsorption of non-target protein molecules and a 1000-fold enhancement for the specific capture of HER2 protein in human serum. PMID:24430114

  3. Molecular Nanoshearing: An Innovative Approach to Shear off Molecules with AC-Induced Nanoscopic Fluid Flow

    NASA Astrophysics Data System (ADS)

    Shiddiky, Muhammad J. A.; Vaidyanathan, Ramanathan; Rauf, Sakandar; Tay, Zhikai; Trau, Matt

    2014-01-01

    Early diagnosis of disease requires highly specific measurement of molecular biomarkers from femto to pico-molar concentrations in complex biological (e.g., serum, blood, etc.) samples to provide clinically useful information. While reaching this detection limit is challenging in itself, these samples contain numerous other non-target molecules, most of which have a tendency to adhere to solid surfaces via nonspecific interactions. Herein, we present an entirely new methodology to physically displace nonspecifically bound molecules from solid surfaces by utilizing a newly discovered ``tuneable force'', induced by an applied alternating electric field, which occurs within few nanometers of an electrode surface. This methodology thus offers a unique ability to shear-off loosely bound molecules from the solid/liquid interface. Via this approach, we achieved a 5-fold reduction in nonspecific adsorption of non-target protein molecules and a 1000-fold enhancement for the specific capture of HER2 protein in human serum.

  4. Observation of CS Trilobite Molecules with Kilo-Debye Molecular Frame Permanent Electric Dipole Moments

    NASA Astrophysics Data System (ADS)

    Shaffer, James P.

    2015-06-01

    We present results on Cs ultracold Rydberg atom experiments involving trilobite and butterfly molecules. Trilobite molecules are predicted to have giant, body-fixed permanent dipole moments, on the order of 1000 Debye. We present spectra for nS1/2+6S1/2 ^3σ^+ molecules, where n=37, 39 and 40, and measurements of the Stark broadenings of selected trilobite states in Cs due to the application of a constant external electric field. These results show that for Cs, because of its near integer s-state quantum defect, it is possible to photoassociate molecules whose wavefunction is predominantly of trilobite character yielding molecular frame dipole moments of around 2000 Debye. In addition, we have also recently observed states whose spectra show characteristics of p-wave dominated butterfly states. The work on what we believe to be the butterfly states will be compared and contrasted to the measurements of the trilobite states.

  5. Molecular Threading: Mechanical Extraction, Stretching and Placement of DNA Molecules from a Liquid-Air Interface

    PubMed Central

    Kemmish, Kent; Hamalainen, Mark; Bowell, Charlotte; Bleloch, Andrew; Klejwa, Nathan; Lehrach, Wolfgang; Schatz, Ken; Stark, Heather; Marblestone, Adam; Church, George; Own, Christopher S.; Andregg, William

    2013-01-01

    We present molecular threading, a surface independent tip-based method for stretching and depositing single and double-stranded DNA molecules. DNA is stretched into air at a liquid-air interface, and can be subsequently deposited onto a dry substrate isolated from solution. The design of an apparatus used for molecular threading is presented, and fluorescence and electron microscopies are used to characterize the angular distribution, straightness, and reproducibility of stretched DNA deposited in arrays onto elastomeric surfaces and thin membranes. Molecular threading demonstrates high straightness and uniformity over length scales from nanometers to micrometers, and represents an alternative to existing DNA deposition and linearization methods. These results point towards scalable and high-throughput precision manipulation of single-molecule polymers. PMID:23935923

  6. Spin-split antibonding molecular ground state in manganese-doped quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Qu, Fanyao; Villegas-Lelovsky, L.; Morais, P. C.

    2015-09-01

    Tunnel coupling between two dots in manganese-doped InAs/GaAs quantum dot molecules (QDMs), valence band mixing, and p -d exchange interaction between holes and localized d electrons give rise to a tunability of charge, spin, and molecular orbitals. The interplay among them determines the nature of the molecular ground state. Remarkably, unlike usual diatomic molecules in which the bonding (BD) state is always the ground state, we found that the molecular ground state in Mn-doped QDMs is of antibonding (AB) character. Furthermore, it is a spin-split state and can be switched into the spin-split BD type. We also demonstrate that this unusual behavior can be tuned by the lateral confinement strength of the QDMs, the concentration, and the distribution of manganese as well as the electric field applied along the direction of the QDM axis.

  7. The role of dimensionality on the molecule-lead coupling in molecular electronic junctions

    NASA Astrophysics Data System (ADS)

    Zelovich, Tamar; Kronik, Leeor; Hod, Oded

    We present new insights into the role dimensionality plays in the lead-molecule coupling scheme at molecular electronic junctions. A key ingredient of our approach is a transformation of the Hamiltonian matrix from an atomistic to a state representation of the molecular junction. This provides direct access to the different couplings between the molecular states and the energy manifold of the leads, which underlie the transport properties of molecular junctions. We explore several tight-binding junction models and predict the appearance of coupling bands that depend on the dimensionality and shape of the leads. We believe that a similar analysis may contribute to the understanding of many phenomena characteristic to the fields of nano- and molecular-electronics.

  8. Molecular release from patterned nanoporous gold thin films

    NASA Astrophysics Data System (ADS)

    Kurtulus, Ozge; Daggumati, Pallavi; Seker, Erkin

    2014-05-01

    Nanostructured materials have shown significant potential for biomedical applications that require high loading capacity and controlled release of drugs. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising novel material that benefits from compatibility with microfabrication, tunable pore morphology, electrical conductivity, well-established gold-thiol conjugate chemistry, and biocompatibility. While np-Au's non-biological applications are abundant, its performance in the biomedical field is nascent. In this work, we employ a combination of techniques including nanoporous thin film synthesis, quantitative electron microscopy, fluorospectrometry, and electrochemical surface characterization to study loading capacity and molecular release kinetics as a function of film properties and discuss underlying mechanisms. The sub-micron-thick sputter-coated nanoporous gold films provide small-molecule loading capacities up to 1.12 μg cm-2 and molecular release half-lives between 3.6 hours to 12.8 hours. A systematic set of studies reveals that effective surface area of the np-Au thin films on glass substrates plays the largest role in determining loading capacity. The release kinetics on the other hand depends on a complex interplay of micro- and nano-scale morphological features.Nanostructured materials have shown significant potential for biomedical applications that require high loading capacity and controlled release of drugs. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising novel material that benefits from compatibility with microfabrication, tunable pore morphology, electrical conductivity, well-established gold-thiol conjugate chemistry, and biocompatibility. While np-Au's non-biological applications are abundant, its performance in the biomedical field is nascent. In this work, we employ a combination of techniques including nanoporous thin film synthesis, quantitative electron microscopy, fluorospectrometry, and electrochemical surface characterization to study loading capacity and molecular release kinetics as a function of film properties and discuss underlying mechanisms. The sub-micron-thick sputter-coated nanoporous gold films provide small-molecule loading capacities up to 1.12 μg cm-2 and molecular release half-lives between 3.6 hours to 12.8 hours. A systematic set of studies reveals that effective surface area of the np-Au thin films on glass substrates plays the largest role in determining loading capacity. The release kinetics on the other hand depends on a complex interplay of micro- and nano-scale morphological features. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01288g

  9. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode

    PubMed Central

    Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S.; Tremoli, Elena; Catapano, Alberico L.; Norata, Giuseppe D.; Bottazzi, Barbara; Garlanda, Cecilia

    2015-01-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372

  10. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode.

    PubMed

    Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S; Tremoli, Elena; Catapano, Alberico L; Norata, Giuseppe D; Bottazzi, Barbara; Garlanda, Cecilia; Mantovani, Alberto

    2015-06-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372

  11. Electron transport in asymmetric biphenyl molecular junctions: effects of conformation and molecule-electrode distance

    NASA Astrophysics Data System (ADS)

    Parashar, Sweta; Srivastava, Pankaj; Pattanaik, Manisha; Jain, Sandeep Kumar

    2014-09-01

    On the basis of ab-initio calculations, we predict the effect of conformation and molecule-electrode distance on transport properties of asymmetric molecular junctions for different electrode materials M (M = Au, Ag, Cu, and Pt). The asymmetry in these junctions is created by connecting one end of the biphenyl molecule to conjugated double thiol (model A) and single thiol (model B) groups, while the other end to Cu atom. A variety of phenomena viz. rectification, negative differential resistance (NDR), switching has been observed that can be controlled by tailoring the interface state properties through molecular conformation and molecule-electrode distance for various M. These properties are further analyzed by calculating transmission spectra, molecular orbitals, and orbital energy. It is found that Cu electrode shows significantly enhanced rectifying performance with change in torsion angles, as well as with increase in molecule-electrode distances than Au and Ag electrodes. Moreover, Pt electrode manifests distinctive multifunctional behavior combining switch, diode, and NDR. Thus, the Pt electrode is suggested to be a good potential candidate for a novel multifunctional electronic device. Our findings are compared with available experimental and theoretical results. Supplementary material in the form of one pdf file available from the Journal web page at http://http//dx.doi.org/10.1140/epjb/e2014-50133-2

  12. Identifying molecular dynamics in single-molecule FRET experiments with burst variance analysis.

    PubMed

    Torella, Joseph P; Holden, Seamus J; Santoso, Yusdi; Hohlbein, Johannes; Kapanidis, Achillefs N

    2011-03-16

    Histograms of single-molecule Frster resonance energy transfer (FRET) efficiency are often used to study the structures of biomolecules and relate these structures to function. Methods like probability distribution analysis analyze FRET histograms to detect heterogeneities in molecular structure, but they cannot determine whether this heterogeneity arises from dynamic processes or from the coexistence of several static structures. To this end, we introduce burst variance analysis (BVA), a method that detects dynamics by comparing the standard deviation of FRET from individual molecules over time to that expected from theory. Both simulations and experiments on DNA hairpins show that BVA can distinguish between static and dynamic sources of heterogeneity in single-molecule FRET histograms and can test models of dynamics against the observed standard deviation information. Using BVA, we analyzed the fingers-closing transition in the Klenow fragment of Escherichia coli DNA polymerase I and identified substantial dynamics in polymerase complexes formed prior to nucleotide incorporation; these dynamics may be important for the fidelity of DNA synthesis. We expect BVA to be broadly applicable to single-molecule FRET studies of molecular structure and to complement approaches such as probability distribution analysis and fluorescence correlation spectroscopy in studying molecular dynamics. PMID:21402040

  13. Molecular monolayers for attaching electroactive molecules to vertically aligned carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Landis, Elizabeth C.

    Integrating molecular monolayers with nanoscale carbon materials is attractive for a variety of applications including electroanalysis, sensing, and electrocatalysis due to the high stability and high surface area of nanoscale carbon. Vertically aligned carbon nanofibers are particularly interesting because their molecular structure indicates that they may have relatively reactive surfaces compared to other types of nanoscale carbon. This work explores the use of vertically aligned carbon nanofibers as a platform for electrocatalysis. We determined the morphology and binding locations of molecular layers on the nanofiber surface, then describe two methods for covalently binding electroactive molecules to the surface. The electron transfer process through the molecular layers was studied with emphasis on understanding the effects of the molecular linkage between the electroactive molecule and the surface and understanding the role of solvent and electrolyte in the electron transfer process. We determined that the electron transfer mechanism through monolayers on vertically aligned carbon nanofibers is controlled by the morphology of the molecular layers on the surface. Several potential catalysts were attached to the surface to evaluate the carbon nanofibers as scaffolds for electrocatalytic reactions.

  14. Novel Vein Patterns in Arabidopsis Induced by Small Molecules1[OPEN

    PubMed Central

    Cutler, Sean

    2016-01-01

    The critical role of veins in transporting water, nutrients, and signals suggests that some key regulators of vein formation may be genetically redundant and, thus, undetectable by forward genetic screens. To identify such regulators, we screened more than 5000 structurally diverse small molecules for compounds that alter Arabidopsis (Arabidopsis thaliana) leaf vein patterns. Many compound-induced phenotypes were observed, including vein networks with an open reticulum; decreased or increased vein number and thickness; and misaligned, misshapen, or nonpolar vascular cells. Further characterization of several individual active compounds suggests that their targets include hormone cross talk, hormone-dependent transcription, and PIN-FORMED trafficking. PMID:26574596

  15. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.

    PubMed

    Jia, Chuancheng; Ma, Bangjun; Xin, Na; Guo, Xuefeng

    2015-09-15

    The development of reliable approaches to integrate individual or a small collection of molecules into electrical nanocircuits, often termed "molecular electronics", is currently a research focus because it can not only overcome the increasing difficulties and fundamental limitations of miniaturization of current silicon-based electronic devices, but can also enable us to probe and understand the intrinsic properties of materials at the atomic- and/or molecular-length scale. This development might also lead to direct observation of novel effects and fundamental discovery of physical phenomena that are not accessible by traditional materials or approaches. Therefore, researchers from a variety of backgrounds have been devoting great effort to this objective, which has started to move beyond simple descriptions of charge transport and branch out in different directions, reflecting the interdisciplinarity. This Account exemplifies our ongoing interest and great effort in developing efficient lithographic methodologies capable of creating molecular electronic devices through the combination of top-down micro/nanofabrication with bottom-up molecular assembly. These devices use nanogapped carbon nanomaterials (such as single-walled carbon nanotubes (SWCNTs) and graphene), with a particular focus on graphene, as point contacts formed by electron beam lithography and precise oxygen plasma etching. Through robust amide linkages, functional molecular bridges terminated with diamine moieties are covalently wired into the carboxylic acid-functionalized nanogaps to form stable carbon electrode-molecule junctions with desired functionalities. At the macroscopic level, to improve the contact interface between electrodes and organic semiconductors and lower Schottky barriers, we used SWCNTs and graphene as efficient electrodes to explore the intrinsic properties of organic thin films, and then build functional high-performance organic nanotransistors with ultrahigh responsivities. At the molecular level, to form robust covalent bonds between electrodes and molecules and improve device stability, we developed a reliable system to immobilize individual molecules within a nanoscale gap of either SWCNTs or graphene through covalent amide bond formation, thus affording two classes of carbon electrode-molecule single-molecule junctions. One unique feature of these devices is the fact that they contain only one or two molecules as conductive elements, thus forming the basis for building new classes of chemo/biosensors with ultrahigh sensitivity. We have used these approaches to reveal the dependence of the charge transport of individual metallo-DNA duplexes on ?-stacking integrity, and fabricate molecular devices capable of realizing label-free, real-time electrical detection of biological interactions at the single-event level, or switching their molecular conductance upon exposure to external stimuli, such as ion, pH, and light. These investigations highlight the unique advantages and importance of these universal methodologies to produce functional carbon electrode-molecule junctions in current and future researches toward the development of practical molecular devices, thus offering a reliable platform for molecular electronics and the promise of a new generation of multifunctional integrated circuits and sensors. PMID:26190024

  16. Molecular release from patterned nanoporous gold thin films.

    PubMed

    Kurtulus, Ozge; Daggumati, Pallavi; Seker, Erkin

    2014-06-21

    Nanostructured materials have shown significant potential for biomedical applications that require high loading capacity and controlled release of drugs. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising novel material that benefits from compatibility with microfabrication, tunable pore morphology, electrical conductivity, well-established gold-thiol conjugate chemistry, and biocompatibility. While np-Au's non-biological applications are abundant, its performance in the biomedical field is nascent. In this work, we employ a combination of techniques including nanoporous thin film synthesis, quantitative electron microscopy, fluorospectrometry, and electrochemical surface characterization to study loading capacity and molecular release kinetics as a function of film properties and discuss underlying mechanisms. The sub-micron-thick sputter-coated nanoporous gold films provide small-molecule loading capacities up to 1.12 μg cm(-2) and molecular release half-lives between 3.6 hours to 12.8 hours. A systematic set of studies reveals that effective surface area of the np-Au thin films on glass substrates plays the largest role in determining loading capacity. The release kinetics on the other hand depends on a complex interplay of micro- and nano-scale morphological features. PMID:24842586

  17. Porous substrates for label-free molecular level detection of nonresonant organic molecules.

    PubMed

    Ko, Hyunhyub; Chang, Sehoon; Tsukruk, Vladimir V

    2009-01-27

    We report on the design of practical surface enhanced Raman scattering (SERS) substrate based upon 3D alumina membranes with cylindrical nanopores chemically modified with polyelectrolyte coating and loaded with gold nanoparticle clusters. These substrates allow for a molecular-level, label-free detection of common plastic explosive materials (TNT, DNT) down to 5-10 zeptograms or 15-30 molecules and a common liquid explosive (HMTD) down to 1 picogram. Such a sensitive detection of organic molecules by utilizing efficient SERS substrates opens the path for affordable and label-free detection of trace amount of practically important chemical compounds. PMID:19206265

  18. A virus-like molecule in the early stage of encoded molecular evolution

    NASA Astrophysics Data System (ADS)

    Nemoto, Naoto; Yanagawa, Hiroshi; Husimi, Yuzuru

    1996-10-01

    The recent advances of the evolutionary molecular engineering revealed the effectiveness of bonding strategy for assignment of the phenotype to its genotype, which non-enveloped viruses such as simple bacteriophages adopt. On the other hand, cellular organisms adopt another kind of the strategy, namely the compartmentalzation of both genotype and phenotype molecules in a single compartment enclosed with a cell membrane. The simplest strategy is that adopted by ribozymes in the RNA world. A single molecule carries both genotype and its phenotype. Based on the definition of virus-type and cell-type of the assignment strategy, we propose a virus-early/cell-late model of the history of life.

  19. Rotational Spectromicroscopy: Imaging the Orbital Interaction between Molecular Hydrogen and an Adsorbed Molecule.

    PubMed

    Li, Shaowei; Yuan, Dingwang; Yu, Arthur; Czap, Gregory; Wu, Ruqian; Ho, W

    2015-05-22

    A hydrogen molecule can diffuse freely on the surface and be trapped above an adsorbed molecule within the junction of a scanning tunneling microscope. The trapped dihydrogen exhibits the properties of a free rotor. Here we show that the intermolecular interaction between dihydrogen and Mg-porphyrin (MgP) can be visualized by imaging j=0 to 2 rotational excitation of dihydrogen. The interaction leads to a weakened H-H bond and modest electron donation from the dihydrogen to the lowest unoccupied molecular orbital of MgP, a process similarly observed for the interaction between dihydrogen and an adsorbed Au atom. PMID:26047242

  20. Rotational Spectromicroscopy: Imaging the Orbital Interaction between Molecular Hydrogen and an Adsorbed Molecule

    NASA Astrophysics Data System (ADS)

    Li, Shaowei; Yuan, Dingwang; Yu, Arthur; Czap, Gregory; Wu, Ruqian; Ho, W.

    2015-05-01

    A hydrogen molecule can diffuse freely on the surface and be trapped above an adsorbed molecule within the junction of a scanning tunneling microscope. The trapped dihydrogen exhibits the properties of a free rotor. Here we show that the intermolecular interaction between dihydrogen and Mg-porphyrin (MgP) can be visualized by imaging j =0 to 2 rotational excitation of dihydrogen. The interaction leads to a weakened H-H bond and modest electron donation from the dihydrogen to the lowest unoccupied molecular orbital of MgP, a process similarly observed for the interaction between dihydrogen and an adsorbed Au atom.

  1. Molecular Dynamics Simulation of Multivalent-Ion Mediated Attraction between DNA Molecules

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Mu, Yuguang; Nordenskild, Lars; van der Maarel, Johan R. C.

    2008-03-01

    All atom molecular dynamics simulations with explicit water were done to study the interaction between two parallel double-stranded DNA molecules in the presence of the multivalent counterions putrescine (2+), spermidine (3+), spermine (4+) and cobalt hexamine (3+). The inter-DNA interaction potential is obtained with the umbrella sampling technique. The attractive force is rationalized in terms of the formation of ion bridges, i.e., multivalent ions which are simultaneously bound to the two opposing DNA molecules. The lifetime of the ion bridges is short on the order of a few nanoseconds.

  2. Proposed Molecular Beam Determination of Energy Partition in the Photodissociation of Polyatomic Molecules

    DOE R&D Accomplishments Database

    Zare, P. N.; Herschbach, D. R.

    1964-01-29

    Conventional photochemical experiments give no information about the partitioning of energy between translational recoil and internal excitation of the fragment molecules formed in photodissociation of a polyatomic molecule. In a molecular beam experiment, it becomes possible to determine the energy partition from the form of the laboratory angular distribution of one of the photodissociation products. A general kinematic analysis is worked out in detail, and the uncertainty introduced by the finite angular resolution of the apparatus and the velocity spread in the parent beam is examined. The experimental requirements are evaluated for he photolysis of methyl iodide by the 2537 angstrom Hg line.

  3. Resonant multiphoton ionization spectra of molecules and molecular fragments. Annual technical report, October 1987--September 1988

    SciTech Connect

    1988-12-31

    The objective of the research under this contract is to carry out studies of resonant enhanced multiphoton ionization (REMPI) processes in molecules. In the (n+1)-REMPI process of interest an atom or molecule in a specific initial state absorbs n photons making a transition to an intermediate state from which it is subsequently ionized by absorption of an additional photon. The studies are designed to provide a quantitatively robust analysis and prediction of key spectral features in several ongoing experimental studies and potentially practical applications of this technique. The specific problems of interest to the authors in these studied are (1) the vibrational distributions of ions that can be expected in REMPI of small molecules and molecular fragments with particular emphasis on their non-Franck-Condon behavior. Such non-Franck-Condon behavior introduces serious complications in the use of the technique for state-specific production of ions, e.g., O{sub 2}{sup +}({nu}) and OH{sup +}({nu}), and in the extraction of state populations from REMPI signals, (2) rotational distributions of ions that can be produced in various REMPI schemes and how these distributions can be tuned by choice of the resonant state and influenced by the molecular character of the photoelectron, and (3) the circular dichroism in photoelectron angular distributions, i.e., the difference in photoelectron angular distributions produced by right- and left-circularly polarized, and their use as a probe of molecular alignment. Here the author will summarize the progress that has been made to date in the studies of these features and applications of REMPI of molecules and molecular fragments. A significant feature of these studies, which will be explicitly assumed throughout the discussion below, is that they are carried out using quantitatively reliable molecular photoelectron orbitals.

  4. Beyond Tissue Injury—Damage-Associated Molecular Patterns, Toll-Like Receptors, and Inflammasomes Also Drive Regeneration and Fibrosis

    PubMed Central

    2014-01-01

    Tissue injury initiates an inflammatory response through the actions of immunostimulatory molecules referred to as damage-associated molecular patterns (DAMPs). DAMPs encompass a group of heterogenous molecules, including intracellular molecules released during cell necrosis and molecules involved in extracellular matrix remodeling such as hyaluronan, biglycan, and fibronectin. Kidney-specific DAMPs include crystals and uromodulin released by renal tubular damage. DAMPs trigger innate immunity by activating Toll-like receptors, purinergic receptors, or the NLRP3 inflammasome. However, recent evidence revealed that DAMPs also trigger re-epithelialization upon kidney injury and contribute to epithelial-mesenchymal transition and, potentially, to myofibroblast differentiation and proliferation. Thus, these discoveries suggest that DAMPs drive not only immune injury but also kidney regeneration and renal scarring. Here, we review the data from these studies and discuss the increasingly complex connection between DAMPs and kidney diseases. PMID:24762401

  5. Site-Selection in Single-Molecule Junction for Highly Reproducible Molecular Electronics.

    PubMed

    Kaneko, Satoshi; Murai, Daigo; Marqus-Gonzlez, Santiago; Nakamura, Hisao; Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Ikeda, Katsuyoshi; Tsukagoshi, Kazuhito; Kiguchi, Manabu

    2016-02-01

    Adsorption sites of molecules critically determine the electric/photonic properties and the stability of heterogeneous molecule-metal interfaces. Then, selectivity of adsorption site is essential for development of the fields including organic electronics, catalysis, and biology. However, due to current technical limitations, site-selectivity, i.e., precise determination of the molecular adsorption site, remains a major challenge because of difficulty in precise selection of meaningful one among the sites. We have succeeded the single site-selection at a single-molecule junction by performing newly developed hybrid technique: simultaneous characterization of surface enhanced Raman scattering (SERS) and current-voltage (I-V) measurements. The I-V response of 1,4-benzenedithiol junctions reveals the existence of three metastable states arising from different adsorption sites. Notably, correlated SERS measurements show selectivity toward one of the adsorption sites: "bridge sites". This site-selectivity represents an essential step toward the reliable integration of individual molecules on metallic surfaces. Furthermore, the hybrid spectro-electric technique reveals the dependence of the SERS intensity on the strength of the molecule-metal interaction, showing the interdependence between the optical and electronic properties in single-molecule junctions. PMID:26728229

  6. Molecular Dynamics Simulations of RNA: An In Silico Single Molecule Approach

    PubMed Central

    McDowell, S. Elizabeth; pa?kov, Nad'a; poner, Ji?; Walter, Nils G.

    2007-01-01

    RNA molecules are now known to be involved in the processing of genetic information at all levels, taking on a wide variety of central roles in the cell. Understanding how RNA molecules carry out their biological functions will require an understanding of structure and dynamics at the atomistic level, which can be significantly improved by combining computational simulation with experiment. This review provides a critical survey of the state of molecular dynamics (MD) simulations of RNA, including a discussion of important current limitations of the technique and examples of its successful application. Several types of simulations are discussed in detail, including those of structured RNA molecules and their interactions with the surrounding solvent and ions, catalytic RNAs, and RNAsmall molecule and RNAprotein complexes. Increased cooperation between theorists and experimentalists will allow expanded judicious use of MD simulations to complement conceptually related single molecule experiments. Such cooperation will open the door to a fundamental understanding of the structurefunction relationships in diverse and complex RNA molecules. PMID:17080418

  7. Sputtering of a polycyclic hydrocarbon molecule: TOF?SIMS experiments and molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Solomko, V.; Delcorte, A.; Garrison, B. J.; Bertrand, P.

    2004-06-01

    This study focuses on the desorption and ionization processes of an aromatic molecule containing several phenyl rings, 1,2,3,4-tetraphenylnaphthalene (TPN), adsorbed on a Au surface, via the comparison of experimental secondary ion mass spectrometry (SIMS) data and molecular dynamic (MD) simulations. The mass spectra and kinetic energy distribution (KED) measurements were obtained using both TOF-SIMS and MD simulation methods. For entire TPN molecules, a good agreement is observed between the calculated and experimental KEDs, except for high energies, where they start diverging. This difference is partly caused by the unimolecular dissociation of internally excited molecules over larger time intervals than those considered in the simulation. In turn, using an internal energy threshold to remove the most excited molecules from the calculated KEDs provides a better agreement with the experiment. The MD simulations also show that molecules surrounding the impact point of the projectile are sputtered with more kinetic energy and shorter emission times than molecules located farther away from it. The distinct emission mechanisms inducing these different energy spectra are identified by the analysis of the simulation results.

  8. Molecule-Lead Coupling at Molecular Junctions: Relation between the Real- and State-Space Perspectives.

    PubMed

    Zelovich, Tamar; Kronik, Leeor; Hod, Oded

    2015-10-13

    We present insights into the lead-molecule coupling scheme in molecular electronics junctions. Using a "site-to-state" transformation that provides direct access to the coupling matrix elements between the molecular states and the eigenstate manifold of each lead, we find coupling bands whose character depends on the geometry and dimensionality of the lead. We use a standard tight-binding model to elucidate the origin of the coupling bands and explain their nature via simple "particle-in-a-box" type considerations. We further show that these coupling bands can shed light on the charge transport behavior of the junction. The picture presented in this study is not limited to the case of molecular electronics junctions and is relevant to any scenario where a finite molecular entity is coupled to a (semi)infinite system. PMID:26574274

  9. SABRE: ligand/structure-based virtual screening approach using consensus molecular-shape pattern recognition.

    PubMed

    Wei, Ning-Ning; Hamza, Adel

    2014-01-27

    We present an efficient and rational ligand/structure shape-based virtual screening approach combining our previous ligand shape-based similarity SABRE (shape-approach-based routines enhanced) and the 3D shape of the receptor binding site. Our approach exploits the pharmacological preferences of a number of known active ligands to take advantage of the structural diversities and chemical similarities, using a linear combination of weighted molecular shape density. Furthermore, the algorithm generates a consensus molecular-shape pattern recognition that is used to filter and place the candidate structure into the binding pocket. The descriptor pool used to construct the consensus molecular-shape pattern consists of four dimensional (4D) fingerprints generated from the distribution of conformer states available to a molecule and the 3D shapes of a set of active ligands computed using SABRE software. The virtual screening efficiency of SABRE was validated using the Database of Useful Decoys (DUD) and the filtered version (WOMBAT) of 10 DUD targets. The ligand/structure shape-based similarity SABRE algorithm outperforms several other widely used virtual screening methods which uses the data fusion of multiscreening tools (2D and 3D fingerprints) and demonstrates a superior early retrieval rate of active compounds (EF(0.1%) = 69.0% and EF(1%) = 98.7%) from a large size of ligand database (?95,000 structures). Therefore, our developed similarity approach can be of particular use for identifying active compounds that are similar to reference molecules and predicting activity against other targets (chemogenomics). An academic license of the SABRE program is available on request. PMID:24328054

  10. Microfluidic parallel patterning and cellular delivery of molecules with a nanofountain probe.

    PubMed

    Kang, Wonmo; McNaughton, Rebecca L; Yavari, Fazel; Minary-Jolandan, Majid; Safi, Asmahan; Espinosa, Horacio D

    2014-02-01

    This brief report describes a novel tool for microfluidic patterning of biomolecules and delivery of molecules into cells. The microdevice is based on integration of nanofountain probe (NFP) chips with packaging that creates a closed system and enables operation in liquid. The packaged NFP can be easily coupled to a micro/nano manipulator or atomic force microscope for precise position and force control. We demonstrate here the functionality of the device for continuous direct-write parallel patterning on a surface in air and in liquid. Because of the small volume of the probes (~3 pL), we can achieve flow rates as low as 1 fL/s and have dispensed liquid drops with submicron to 10 m diameters in a liquid environment. Furthermore, we demonstrate that this microdevice can be used for delivery of molecules into single cells by transient permeabilization of the cell membrane (i.e., electroporation). The significant advantage of NFP-based electroporation compared with bulk electroporation and other transfection techniques is that it allows for precise and targeted delivery while minimizing stress to the cell. We discuss the ongoing development of the tool toward automated operation and its potential as a multifunctional device for microarray applications and time-dependent single-cell studies. PMID:23897012

  11. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    SciTech Connect

    Balliou, A.; Douvas, A. M.; Normand, P.; Argitis, P.; Glezos, N.; Tsikritzis, D.; Kennou, S.

    2014-10-14

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW₁₂O₄₀³⁻, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  12. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Balliou, A.; Douvas, A. M.; Normand, P.; Tsikritzis, D.; Kennou, S.; Argitis, P.; Glezos, N.

    2014-10-01

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW12O403-, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  13. A journey in bioinspired supramolecular chemistry: from molecular tweezers to small molecules that target myotonic dystrophy

    PubMed Central

    2016-01-01

    Summary This review summarizes part of the author’s research in the area of supramolecular chemistry, beginning with his early life influences and early career efforts in molecular recognition, especially molecular tweezers. Although designed to complex DNA, these hosts proved more applicable to the field of host–guest chemistry. This early experience and interest in intercalation ultimately led to the current efforts to develop small molecule therapeutic agents for myotonic dystrophy using a rational design approach that heavily relies on principles of supramolecular chemistry. How this work was influenced by that of others in the field and the evolution of each area of research is highlighted with selected examples. PMID:26877815

  14. Molecular sieve separation of ground state HF molecules in a non-chain HF laser

    NASA Astrophysics Data System (ADS)

    Ma, Lianying; Zhou, Songqing; Huang, Chao; Cheng, Hongwei; Zhu, Feng

    2015-05-01

    A 3A molecular sieve separation device was designed and mounted in a closed-cycled non-chain HF laser to separate the ground state molecule being produced in discharge region from gas stream in order to improve the stability of laser output energy. Experiments were carried out with several different discharge voltages and gas flow velocities, and the preliminary results show that the molecular sieve separation device could dramatically decrease the decay of output energy of HF laser while improving the laser energy stability.

  15. Molecular physics. Production of trilobite Rydberg molecule dimers with kilo-Debye permanent electric dipole moments.

    PubMed

    Booth, D; Rittenhouse, S T; Yang, J; Sadeghpour, H R; Shaffer, J P

    2015-04-01

    Permanent electric dipole moments are important for understanding symmetry breaking in molecular physics, control of chemical reactions, and realization of strongly correlated many-body quantum systems. However, large molecular permanent electric dipole moments are challenging to realize experimentally. We report the observation of ultralong-range Rydberg molecules with bond lengths of ~100 nanometers and kilo-Debye permanent electric dipole moments that form when an ultracold ground-state cesium (Cs) atom becomes bound within the electronic cloud of an extended Cs electronic orbit. The electronic character of this hybrid class of "trilobite" molecules is dominated by degenerate Rydberg manifolds, making them difficult to produce by conventional photoassociation. We used detailed coupled-channel calculations to reproduce their properties quantitatively. Our findings may lead to progress in ultracold chemistry and strongly correlated many-body physics. PMID:25838380

  16. Analytical equation of state for molecular fluids: Kihara model for rodlike molecules

    NASA Astrophysics Data System (ADS)

    Song, Yuhua; Mason, E. A.

    1990-10-01

    We present an analytical equation of state for convex-molecule fluids in any number of dimensions, based on statistical-mechanical perturbation theory for hard convex bodies. The second virial coefficient is calculated exactly. Two temperature-dependent parameters in addition to the second virial coefficient arise, an effective molecular volume (or van der Waals covolume) and a scaling factor for the average contact pair distribution function of hard convex bodies. The equation is tested against computer simulations and perturbation calculations for the model of rodlike molecules interacting via a Kihara (12,6) potential. This model allows the two temperature-dependent parameters to be calculated from the intermolecular potential by simple quadrature, without further approximations for averaging over molecular orientations. The agreement is quite good.

  17. Correlating Molecular Structures with Transport Dynamics in High-Efficiency Small-Molecule Organic Photovoltaics.

    PubMed

    Peng, Jiajun; Chen, Yani; Wu, Xiaohan; Zhang, Qian; Kan, Bin; Chen, Xiaoqing; Chen, Yongsheng; Huang, Jia; Liang, Ziqi

    2015-06-24

    Efficient charge transport is a key step toward high efficiency in small-molecule organic photovoltaics. Here we applied time-of-flight and organic field-effect transistor to complementarily study the influences of molecular structure, trap states, and molecular orientation on charge transport of small-molecule DRCN7T (D1) and its analogue DERHD7T (D2). It is revealed that, despite the subtle difference of the chemical structures, D1 exhibits higher charge mobility, the absence of shallow traps, and better photosensitivity than D2. Moreover, charge transport is favored in the out-of-plane structure within D1-based organic solar cells, while D2 prefers in-plane charge transport. PMID:26066398

  18. Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene.

    PubMed

    Jing, Yu; Tang, Qing; He, Peng; Zhou, Zhen; Shen, Panwen

    2015-03-01

    Systematical computations on the density functional theory were performed to investigate the adsorption of three typical organic molecules, tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF), on the surface of phosphorene monolayers and thicker layers. There exist considerable charge transfer and strong non-covalent interaction between these molecules and phosphorene. In particular, the band gap of phosphorene decreases dramatically due to the molecular modification and can be further tuned by applying an external electric field. Meanwhile, surface molecular modification has proven to be an effective way to enhance the light harvesting of phosphorene in different directions. Our results predict a flexible method toward modulating the electronic and optical properties of phosphorene and shed light on its experimental applications. PMID:25665596

  19. Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene

    NASA Astrophysics Data System (ADS)

    Jing, Yu; Tang, Qing; He, Peng; Zhou, Zhen; Shen, Panwen

    2015-03-01

    Systematical computations on the density functional theory were performed to investigate the adsorption of three typical organic molecules, tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF), on the surface of phosphorene monolayers and thicker layers. There exist considerable charge transfer and strong non-covalent interaction between these molecules and phosphorene. In particular, the band gap of phosphorene decreases dramatically due to the molecular modification and can be further tuned by applying an external electric field. Meanwhile, surface molecular modification has proven to be an effective way to enhance the light harvesting of phosphorene in different directions. Our results predict a flexible method toward modulating the electronic and optical properties of phosphorene and shed light on its experimental applications.

  20. Theoretical estimation of the electron molecular vibration coupling in several organic donor molecules

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.; Misaki, Y.; Tanaka, K.

    2000-03-01

    The electron-molecular vibration (EMV) coupling constants and the accompanying vibronic energy values of five kinds of organic donor molecules (TTF +1, TTP +1, TTPY +1, TOF +1 and TSF +1) are crucial ingredients of metallic organic salts, and have been theoretically estimated in order to systematically investigate their dependencies on the molecular structures. The effect of the replacement of sulfur atoms in TTF +1 with oxygen and selenium atoms (TOF +1 and TSF +1) has been paid particular attention. It has been found that the EMV coupling constant decreases in the order of TOF +1>TTF +1>TSF +1>TTP +1>TTPY +1. That is, the smaller coupling constants appear in the larger-sized molecule with heavier atoms.

  1. Rotation of water molecules in plastic phase at extreme conditions from first principles molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Tasaka, Tomofumi; Tsumuraya, Kazuo

    2014-03-01

    Water has a variety of polymorphs in wide ranges of temperature and pressure. Ice VII phase transforms to ice X with increased pressure. However the ice VII transforms to a superionic phase at higher temperatures around 2000K and pressure 30GPa in which the protons migrate in the body centered cubic lattice of oxygens. The ice VII transforms into rotator phase (so called plastic phase at lower temperatures around 600K and 5 to 50GPa. The formation of the phase has been confirmed only with the empirical potentials, whereas the experimental confirmation has been postponed until now. The present study elucidates the mechanism of the rotation of the water molecules and the correlation between the molecules during the rotation with the first principles molecular dynamics method. The water molecules rotate around each oxygen atom to conserve the ice VII positions of the protons.

  2. Femtosecond observation of benzyne intermediates in a molecular beam: Bergman rearrangement in the isolated molecule

    PubMed Central

    Diau, Eric W.-G.; Casanova, Joseph; Roberts, John D.; Zewail, Ahmed H.

    2000-01-01

    In this communication, we report our femtosecond real-time observation of the dynamics for the three didehydrobenzene molecules (p-, m-, and o-benzyne) generated from 1,4-, 1,3-, and 1,2-dibromobenzene, respectively, in a molecular beam, by using femtosecond time-resolved mass spectrometry. The time required for the first and the second C-Br bond breakage is less than 100 fs; the benzyne molecules are produced within 100 fs and then decay with a lifetime of 400 ps or more. Density functional theory and high-level ab initio calculations are also reported herein to elucidate the energetics along the reaction path. We discuss the dynamics and possible reaction mechanisms for the disappearance of benzyne intermediates. Our effort focuses on the isolated molecule dynamics of the three isomers on the femtosecond time scale. PMID:10660684

  3. Damage-associated molecular patterns and their receptors in upper airway pathologies.

    PubMed

    Van Crombruggen, Koen; Jacob, Fenila; Zhang, Nan; Bachert, Claus

    2013-11-01

    Inflammation of the nasal (rhinitis) and sinus mucosa (sinusitis) are prevalent medical conditions of the upper airways that are concurrent in many patients; hence the terminology "rhinosinusitis". The disease status is further defined to be "chronic" in case symptoms persist for more than 12 weeks without resolution. A diverse spectrum of external factors including viral and bacterial insults together with epithelial barrier malfunctions could be implicated in the chronicity of the inflammatory responses in chronic rhinosinusitis (CRS). However, despite massive research efforts in an attempt to unveil the pathophysiology, the exact reason for a lack of resolution still remains poorly understood. A novel set of molecules that could be implicated in sustaining the inflammatory reaction may be found within the host itself. Indeed, besides mediators of inflammation originating from outside, some endogenous intracellular and/or extracellular matrix (ECM) components from the host can be released into the extracellular space upon damage induced during the initial inflammatory reaction where they gain functions distinct from those during normal physiology. These "host-self" molecules are known to modulate inflammatory responses under pathological conditions, potentially preventing resolution and contributing to the development of chronic inflammation. These molecules are collectively classified as damage-associated molecular patterns (DAMPs). This review summarizes the current knowledge regarding DAMPs in upper airway pathologies, also covering those that were previously investigated for their intracellular and/or ECM functions often acting as an antimicrobial agent or implicated in tissue/cell homeostasis, and for which their function as a danger signaling molecule was not assessed. It is, however, of importance to assess these molecules again from a point of view as a DAMP in order to further unravel the pathogenesis of CRS. PMID:23673984

  4. Charge mobility in molecules: charge fluxes from second derivatives of the molecular dipole.

    PubMed

    Galimberti, Daria; Milani, Alberto; Castiglioni, Chiara

    2013-04-28

    On the basis of the analytical model previously suggested by Dinur, we discuss here a method for the calculation of vibrational charge fluxes in planar molecules, obtained as numerical second derivatives of the molecular dipole moment. This model is consistent with the partitioning of the atomic polar tensors into atomic charge and charge fluxes according to the Equilibrium Charges-Charge Fluxes model and it is directly related to experimentally measurable quantities such as IR intensities. On the basis of density functional theory calculations carried out for several small benchmark molecules, the complete set of charge fluxes is calculated for each molecule and compared with the approximated flux parameters previously derived and reported in the past literature. The degree of localization of charge fluxes is investigated and discussed; in addition, some approximations are analyzed in order to verify the applicability of the method to large and?or non-planar molecules, aimed at obtaining a description of the electron charge mobility in different molecular environments. PMID:23635119

  5. Mechanics and Chemistry: Sinle Molecule Bond Rupture Forces Correlate with Molecular Backbone Structure

    SciTech Connect

    Frei, M.; Hybertsen, M.; Aradhya, S.V.; Koentopp, M.; Venkataraman, L.

    2011-03-02

    We simultaneously measure conductance and force across nanoscale junctions. A new, two-dimensional histogram technique is introduced to statistically extract bond rupture forces from a large data set of individual junction elongation traces. For the case of Au point contacts, we find a rupture force of 1.4 {+-} 0.2 nN, which is in good agreement with previous measurements. We then study systematic trends for single gold metal-molecule-metal junctions for a series of molecules terminated with amine and pyridine linkers. For all molecules studied, single molecule junctions rupture at the Au-N bond. Selective binding of the linker group allows us to correlate the N-Au bond-rupture force to the molecular backbone. We find that the rupture force ranges from 0.8 nN for 4,4' bipyridine to 0.5 nN in 1,4 diaminobenzene. These experimental results are in excellent quantitative agreement with density functional theory based adiabatic molecular junction elongation and rupture calculations.

  6. Photodissociation of laboratory oriented molecules: Revealing molecular frame properties of nonaxial recoil

    SciTech Connect

    Brom, Alrik J. van den; Rakitzis, T. Peter; Janssen, Maurice H.M.

    2004-12-15

    We report the photodissociation of laboratory oriented OCS molecules. A molecular beam of OCS molecules is hexapole state-selected and spatially oriented in the electric field of a velocity map imaging lens. The oriented OCS molecules are dissociated at 230 nm with the linear polarization set at 45 deg. to the orientation direction of the OCS molecules. The CO({nu}=0,J) photofragments are quantum state-selectively ionized by the same 230 nm pulse and the angular distribution is measured using the velocity map imaging technique. The observed CO({nu}=0,J) images are strongly asymmetric and the degree of asymmetry varies with the CO rotational state J. From the observed asymmetry in the laboratory frame we can directly extract the molecular frame angles between the final photofragment recoil velocity and the permanent dipole moment and the transition dipole moment. The data for CO fragments with high rotational excitation reveal that the dissociation dynamics is highly nonaxial, even though conventional wisdom suggests that the nearly limiting {beta} parameter results from fast axial recoil dynamics. From our data we can extract the relative contribution of parallel and perpendicular transitions at 230 nm excitation.

  7. Probing charge transport of ruthenium-complex-based molecular wires at the single-molecule level.

    PubMed

    Liu, Ke; Wang, Xianhong; Wang, Fosong

    2008-11-25

    A ruthenium(II) bis(sigma-arylacetylide)-complex-based molecular wire functionalized with thiolacetyl alligator clips at both ends (OPERu) was used to fabricate gold substrate-molecular wire-conductive tip junctions. To elucidate the ruthenium-complex-enhanced charge transport, we conducted a single-molecule level investigation using the technique-combination method, where electronic decay constant, single-molecular conductance, and barrier height were obtained by scanning tunneling microscopy (STM) apparent height measurements, STM break junction measurements, and conductive probe-atomic force microscopy (CP-AFM) measurements, respectively. A quantitative comparison of OPERu with the well-studied pi-conjugated molecular wire oligo(1,4-phenylene ethynylene) (OPE) indicated that the lower electronic decay constant as well as the higher conductance of OPERu resulted from its lower band gap between the highest occupied molecular orbital (HOMO) and the gold Fermi level. The small offset of 0.25 eV was expected to be beneficial for the long-range charge transport of molecular wires. Moreover, the observed cross-platform agreement proved that this technique-combination method could serve as a benchmark for the detailed description of charge transport through molecular wires. PMID:19206398

  8. Distance-dependent patterns of molecular divergences in Tuatara mitogenomes.

    PubMed

    Subramanian, Sankar; Mohandesan, Elmira; Millar, Craig D; Lambert, David M

    2015-01-01

    Population genetic models predict that populations that are geographically close to each other are expected to be genetically more similar to each other compared to those that are widely separate. However the patterns of relationships between geographic distance and molecular divergences at neutral and constrained regions of the genome are unclear. We attempted to clarify this relationship by sequencing complete mitochondrial genomes of the relic species Tuatara (Sphenodon punctatus) from ten offshore islands of New Zealand. We observed a positive relationship that showed a proportional increase in the neutral diversity at synonymous sites (dS), with increasing geographical distance. In contrast we showed that diversity at evolutionarily constrained sites (dC) was elevated in the case of comparisons involving closely located populations. Conversely diversity was reduced in the case of comparisons between distantly located populations. These patterns were confirmed by a significant negative relationship between the ratio of dC/dS and geographic distance. The observed high dC/dS could be explained by the abundance of deleterious mutations in comparisons involving closely located populations, due to the recent population divergence times. Since distantly related populations were separated over long periods of time, deleterious mutations might have been removed by purifying selection. PMID:25731894

  9. Distance-dependent patterns of molecular divergences in tuatara mitogenomes

    PubMed Central

    Subramanian, Sankar; Mohandesan, Elmira; Millar, Craig D.; Lambert, David M.

    2015-01-01

    Population genetic models predict that populations that are geographically close to each other are expected to be genetically more similar to each other compared to those that are widely separate. However the patterns of relationships between geographic distance and molecular divergences at neutral and constrained regions of the genome are unclear. We attempted to clarify this relationship by sequencing complete mitochondrial genomes of the relic species Tuatara (Sphenodon punctatus) from ten offshore islands of New Zealand. We observed a positive relationship that showed a proportional increase in the neutral diversity at synonymous sites (dS), with increasing geographical distance. In contrast we showed that diversity at evolutionarily constrained sites (dC) was elevated in the case of comparisons involving closely located populations. Conversely diversity was reduced in the case of comparisons between distantly located populations. These patterns were confirmed by a significant negative relationship between the ratio of dC/dS and geographic distance. The observed high dC/dS could be explained by the abundance of deleterious mutations in comparisons involving closely located populations, due to the recent population divergence times. Since distantly related populations were separated over long periods of time, deleterious mutations might have been removed by purifying selection. PMID:25731894

  10. Manipulating the motion of large molecules: Information from the molecular frame

    NASA Astrophysics Data System (ADS)

    Küpper, Jochen

    2011-05-01

    Large molecules have complex potential-energy surfaces with many local minima. They exhibit multiple stereoisomers, even at the low temperatures (~1 K) in a molecular beam, with rich intra- and intermolecular dynamics. Over the last years, we have developed methods to manipulate the motion of large, complex molecules and to select their quantum states. We have exploited this state-selectivity, for example, to spatially separate individual structural isomers of complex molecules and to demonstrate unprecedented degrees of laser alignment and mixed-field orientation of these molecules. Such clean, well-defined samples strongly benefit, or simply allow, novel experiments on the dynamics of complex molecules, for instance, femtosecond pump-probe measurements, X-ray or electron diffraction of molecular ensembles (including diffraction-from-within experiments), or tomographic reconstructions of molecular orbitals. These samples could also be very advantageous for metrology applications, such as, for example, matter-wave interferometry or the search for electroweak interactions in chiral molecules. Moreover, they provide an extreme level of control for stereo-dynamically controlled reaction dynamics. We have recently exploited these state-selected and oriented samples to measure photoelectron angular distributions in the molecular frame (MFPADs) from non-resonant femtosecond-laser photoionization and using the X-ray Free-Electron-Laser LCLS. We have also investigated X-ray diffraction imaging and, using ion momentum imaging, the induced radiation damage of these samples using the LCLS. This work was carried out within a collaboration for which J. Küpper, H. Chapman, and D. Rolles are spokespersons. The collaboration consists of CFEL (DESY, MPG, University Hamburg), Fritz-Haber-Institute Berlin, MPI Nuclear Physics Heidelberg, MPG Semi-conductor Lab, Aarhus University, FOM AMOLF Amsterdam, Lund University, MPI Medical Research Heidelberg, TU Berlin, Max Born Institute Berlin, and SLAC Menlo Park, CA, USA. The experiments were carried out using CAMP (designed and built by the MPG-ASG at CFEL) at the LCLS (operated by Stanford University on behalf of the US DOE).

  11. Building foundations for molecular electronics: Growth of organic molecules on alkali halides as prototypical insulating substrates

    NASA Astrophysics Data System (ADS)

    Burke, Sarah A.

    The epitaxy and growth of a series of organic molecules deposited on insulating surfaces were investigated by noncontact atomic force microscopy (nc-AFM). The molecules studied, C60, 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA), 3,4,9,10-perylene tetracarboxlylic diimide (PTCDI), and copper (II) phthalocyanine (CuPc), were selected to investigate the effect of different molecular geometries, charge distributions and intermolecular interactions and as interesting candidates in molecular electronic applications. As it is known that the properties of molecules are influenced by their structural arrangements, an understanding of the interactions of molecules with substrates of interest as well as the dominant processes involved in growth are of great interest. Model insulating substrates KBr and NaCl were used for growth studies, due to the necessity of insulators in electrically isolating device regions. Dewetting processes were observed in several of these systems: C 60 on KBr and NaCl, PTCDA on NaCl and PTCDI on NaCl. The specific influences of de- wetting are discussed for each system, in particular the morphological impact of dewetting and the driving of dewetting by strained metastable monolayers. For C60 deposits, interesting branched structures are formed in the process of dewetting which are remarkably stable once formed, yet do not represent the equilibrium growth morphology. A determination of the large cell coincident epitaxy reveals a small, yet significant discrepancy between the observed overlayer and calculated stable adsorption sites indicating a dominance of the intermolecular interaction over the molecule---substrate interaction. For both PTCDA and PTCDI on NaCl, strained metastable monolayer epitaxies were observed giving rise to a transition in both interface structure and morphology: a dewetting transition. A comparison of the observed molecular scale structures and growth modalities is made in order to build a framework for understanding the prevalence of dewetting for molecules on ionic surfaces. Finally, in order to better understand the connection between molecular scale structures and interesting opto-electronic properties, the application of a hybrid-electrostatic characterization technique by nc-AFM is discussed. Using this technique, the opto-electrostatic response of three different PTCDA arrangements on a nanotemplated NaCl surface are shown to differ according to the degree of intermolecular interaction permitted by the structure.

  12. The Correlation of Physical Properties of Organic Molecules with Computed Molecular Surface Areas

    NASA Astrophysics Data System (ADS)

    Mebane, Robert C.; Schanley, Shannon A.; Rybolt, Thomas R.; Bruce, Chrystal D.

    1999-05-01

    Considerable interest has been shown in the calculation of molecular surface areas because molecular behavior is influenced by the outer surface of molecules. The objective of this paper is to show that a student's understanding of molecular properties can be enhanced with the study of molecular surface areas obtained from readily available molecular modeling software. We develop correlations using molecular surface areas (A), or solvent-accessible surface areas (S), for various organic compounds and a variety of physical properties that are sensitive to intermolecular forces of attraction. For n-alkanes, heat of vaporization (DHvap) and the ratio of critical temperature to the square root of critical pressure (Tc/Pc0.5) give linear relationships with A. A linear correlation is also observed between the logarithm of molal aqueous solubility (ln Sol) and the S of ketones and ethyl esters. Distinct curves are obtained when the boiling points of n-alkanes and alcohols are plotted versus their respective solvent-accessible surface areas. The alcohol curve tends to converge with the n-alkane curve with increasing surface area, demonstrating the increasing hydrocarbon contribution to the boiling point of alcohols.

  13. Exploring the aqueous vertical ionization of organic molecules by molecular simulation and liquid microjet photoelectron spectroscopy.

    PubMed

    Tentscher, Peter R; Seidel, Robert; Winter, Bernd; Guerard, Jennifer J; Arey, J Samuel

    2015-01-01

    To study the influence of aqueous solvent on the electronic energy levels of dissolved organic molecules, we conducted liquid microjet photoelectron spectroscopy (PES) measurements of the aqueous vertical ionization energies (VIEaq) of aniline (7.49 eV), veratrole alcohol (7.68 eV), and imidazole (8.51 eV). We also reanalyzed previously reported experimental PES data for phenol, phenolate, thymidine, and protonated imidazolium cation. We then simulated PE spectra by means of QM/MM molecular dynamics and EOM-IP-CCSD calculations with effective fragment potentials, used to describe the aqueous vertical ionization energies for six molecules, including aniline, phenol, veratrole alcohol, imidazole, methoxybenzene, and dimethylsulfide. Experimental and computational data enable us to decompose the VIEaq into elementary processes. For neutral compounds, the shift in VIE upon solvation, ΔVIEaq, was found to range from ≈-0.5 to -0.91 eV. The ΔVIEaq was further explained in terms of the influence of deforming the gas phase solute into its solution phase conformation, the influence of solute hydrogen-bond donor and acceptor interactions with proximate solvent molecules, and the polarization of about 3000 outerlying solvent molecules. Among the neutral compounds, variability in ΔVIEaq appeared largely controlled by differences in solute-solvent hydrogen-bonding interactions. Detailed computational analysis of the flexible molecule veratrole alcohol reveals that the VIE is strongly dependent on molecular conformation in both gas and aqueous phases. Finally, aqueous reorganization energies of the oxidation half-cell ionization reaction were determined from experimental data or estimated from simulation for the six compounds aniline, phenol, phenolate, veratrole alcohol, dimethylsulfide, and methoxybenzene, revealing a surprising constancy of 2.06 to 2.35 eV. PMID:25516011

  14. Affinity flow fractionation of cells via transient interactions with asymmetric molecular patterns

    NASA Astrophysics Data System (ADS)

    Bose, Suman; Singh, Rishi; Hanewich-Hollatz, Mikhail; Shen, Chong; Lee, Chia-Hua; Dorfman, David M.; Karp, Jeffrey M.; Karnik, Rohit

    2013-07-01

    Flow fractionation of cells using physical fields to achieve lateral displacement finds wide applications, but its extension to surface molecule-specific separation requires labeling. Here we demonstrate affinity flow fractionation (AFF) where weak, short-range interactions with asymmetric molecular patterns laterally displace cells in a continuous, label-free process. We show that AFF can directly draw neutrophils out of a continuously flowing stream of blood with an unprecedented 400,000-fold depletion of red blood cells, with the sorted cells being highly viable, unactivated, and functionally intact. The lack of background erythrocytes enabled the use of AFF for direct enumeration of neutrophils by a downstream detector, which could distinguish the activation state of neutrophils in blood. The compatibility of AFF with capillary microfluidics and its ability to directly separate cells with high purity and minimal sample preparation will facilitate the design of simple and portable devices for point-of-care diagnostics and quick, cost-effective laboratory analysis.

  15. Symmetry of extremely floppy molecules: Molecular states beyond rotation-vibration separation

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per

    2015-10-01

    Traditionally, molecules are theoretically described as near-static structures rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in highly fluxional molecules, where all vibrational motions have amplitudes comparable in size to the linear dimensions of the molecule. An example is protonated methane (CH 5+ ) [P. Kumar and D. Marx, Phys. Chem. Chem. Phys. 8, 573 (2006); Z. Jin et al., J. Phys. Chem. A 110, 1569 (2006); and A. S. Petit et al., J. Phys. Chem. A 118, 7206 (2014)]. For these molecules, customary theory fails to simulate reliably even the low-energy spectrum [T. Oka, Science 347, 1313-1314 (2015) and O. Asvany et al., Science 347, 1346-1349 (2015)]. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group [P. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, NRC Monograph Publishing Program (NRC Research Press, 2006)]. In this article, we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are isomorphic to subgroups of the special orthogonal group in three dimensions SO(3). This leads to a group theoretical foundation of the technique of equivalent rotations [H. Longuet-Higgins, Mol. Phys. 6, 445 (1963)]. The group G240 (the MS group of protonated methane) represents, to the best of our knowledge, the first example of a MS group which is not isomorphic to a subgroup of SO(3) (nor of O(3) or of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We discuss here the consequences of this. In conclusion, we show that the prototypical, extremely floppy molecule CH 5+ represents a new class of molecules, where customary group theoretical methods for determining selection rules and spectral assignments fail so that new methods have to be developed.

  16. Symmetry of extremely floppy molecules: Molecular states beyond rotation-vibration separation.

    PubMed

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per

    2015-10-21

    Traditionally, molecules are theoretically described as near-static structures rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in highly fluxional molecules, where all vibrational motions have amplitudes comparable in size to the linear dimensions of the molecule. An example is protonated methane (CH5(+)) [P. Kumar and D. Marx, Phys. Chem. Chem. Phys. 8, 573 (2006); Z. Jin et al., J. Phys. Chem. A 110, 1569 (2006); and A. S. Petit et al., J. Phys. Chem. A 118, 7206 (2014)]. For these molecules, customary theory fails to simulate reliably even the low-energy spectrum [T. Oka, Science 347, 1313-1314 (2015) and O. Asvany et al., Science 347, 1346-1349 (2015)]. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group [P. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, NRC Monograph Publishing Program (NRC Research Press, 2006)]. In this article, we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are isomorphic to subgroups of the special orthogonal group in three dimensions SO(3). This leads to a group theoretical foundation of the technique of equivalent rotations [H. Longuet-Higgins, Mol. Phys. 6, 445 (1963)]. The group G240 (the MS group of protonated methane) represents, to the best of our knowledge, the first example of a MS group which is not isomorphic to a subgroup of SO(3) (nor of O(3) or of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We discuss here the consequences of this. In conclusion, we show that the prototypical, extremely floppy molecule CH5(+) represents a new class of molecules, where customary group theoretical methods for determining selection rules and spectral assignments fail so that new methods have to be developed. PMID:26493902

  17. Molecular features determining different partitioning patterns of papain and bromelain in aqueous two-phase systems.

    PubMed

    Rocha, Maria Victoria; Nerli, Bibiana Beatriz

    2013-10-01

    The partitioning patterns of papain (PAP) and bromelain (BR), two well-known cysteine-proteases, in polyethyleneglycol/sodium citrate aqueous two-phase systems (ATPSs) were determined. Polyethyleneglycols of different molecular weight (600, 1000, 2000, 4600 and 8000) were assayed. Thermodynamic characterization of partitioning process, spectroscopy measurements and computational calculations of protein surface properties were also carried out in order to explain their differential partitioning behavior. PAP was observed to be displaced to the salt-enriched phase in all the assayed systems with partition coefficients (KpPAP) values between 0.2 and 0.9, while BR exhibited a high affinity for the polymer phase in systems formed by PEGs of low molecular weight (600 and 1000) with partition coefficients (KpBR) values close to 3. KpBR values resulted higher than KpPAP in all the cases. This difference could be assigned neither to the charge nor to the size of the partitioned biomolecules since PAP and BR possess similar molecular weight (23,000) and isoelectric point (9.60). The presence of highly exposed tryptophans and positively charged residues (Lys, Arg and His) in BR molecule would be responsible for a charge transfer interaction between PEG and the protein and, therefore, the uneven distribution of BR in these systems. PMID:23831382

  18. Principal Component Analysis of Lipid Molecule Conformational Changes in Molecular Dynamics Simulations.

    PubMed

    Buslaev, Pavel; Gordeliy, Valentin; Grudinin, Sergei; Gushchin, Ivan

    2016-03-01

    Molecular dynamics simulations of lipid bilayers are ubiquitous nowadays. Usually, either global properties of the bilayer or some particular characteristics of each lipid molecule are evaluated in such simulations, but the structural properties of the molecules as a whole are rarely studied. Here, we show how a comprehensive quantitative description of conformational space and dynamics of a single lipid molecule can be achieved via the principal component analysis (PCA). We illustrate the approach by analyzing and comparing simulations of DOPC bilayers obtained using eight different force fields: all-atom generalized AMBER, CHARMM27, CHARMM36, Lipid14, and Slipids and united-atom Berger, GROMOS43A1-S3, and GROMOS54A7. Similarly to proteins, most of the structural variance of a lipid molecule can be described by only a few principal components. These major components are similar in different simulations, although there are notable distinctions between the older and newer force fields and between the all-atom and united-atom force fields. The DOPC molecules in the simulations generally equilibrate on the time scales of tens to hundreds of nanoseconds. The equilibration is the slowest in the GAFF simulation and the fastest in the Slipids simulation. Somewhat unexpectedly, the equilibration in the united-atom force fields is generally slower than in the all-atom force fields. Overall, there is a clear separation between the more variable previous generation force fields and significantly more similar new generation force fields (CHARMM36, Lipid14, Slipids). We expect that the presented approaches will be useful for quantitative analysis of conformations and dynamics of individual lipid molecules in other simulations of lipid bilayers. PMID:26765212

  19. Structural distributions from single-molecule measurements as a tool for molecular mechanics

    PubMed Central

    Hanson, Jeffrey A.; Brokaw, Jason; Hayden, Carl C.; Chu, Jhih-Wei; Yang, Haw

    2011-01-01

    A mechanical view provides an attractive alternative for predicting the behavior of complex systems since it circumvents the resource-intensive requirements of atomistic models; however, it remains extremely challenging to characterize the mechanical responses of a system at the molecular level. Here, the structural distribution is proposed to be an effective means to extracting the molecular mechanical properties. End-to-end distance distributions for a series of short poly-L-proline peptides with the sequence PnCG3K-biotin (n = 8, 12, 15 and 24) were used to experimentally illustrate this new approach. High-resolution single-molecule Frster-type resonance energy transfer (FRET) experiments were carried out and the conformation-resolving power was characterized and discussed in the context of the conventional constant-time binning procedure for FRET data analysis. It was shown that the commonly adopted theoretical polymer modelsincluding the worm-like chain, the freely jointed chain, and the self-avoiding chaincould not be distinguished by the averaged end-to-end distances, but could be ruled out using the molecular details gained by conformational distribution analysis because similar polymers of different sizes could respond to external forces differently. Specifically, by fitting the molecular conformational distribution to a semi-flexible polymer model, the effective persistence lengths for the series of short poly-L-proline peptides were found to be size-dependent with values of ~190 , ~67 , ~51 , and ~76 for n = 8, 12, 15, and 24, respectively. A comprehensive computational modeling was carried out to gain further insights for this surprising discovery. It was found that P8 exists as the extended all-trans isomaer whereas P12 and P15 predominantly contained one proline residue in the cis conformation. P24 exists as a mixture of one-cis (75%) and two-cis (25%) isomers where each isomer contributes to an experimentally resolvable conformational mode. This work demonstrates the resolving power of the distribution-based approach, and the capacity of integrating high-resolution single-molecule FRET experiments with molecular modeling to reveal detailed structural information about the conformation of molecules on the length scales relevant to the study of biological molecules. PMID:22661822

  20. Molecular tailoring approach for geometry optimization of large molecules: Energy evaluation and parallelization strategies

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Dongare, Rameshwar K.; Balanarayan, P.; Gadre, Shridhar R.

    2006-09-01

    A linear-scaling scheme for estimating the electronic energy, gradients, and Hessian of a large molecule at ab initio level of theory based on fragment set cardinality is presented. With this proposition, a general, cardinality-guided molecular tailoring approach (CG-MTA) for ab initio geometry optimization of large molecules is implemented. The method employs energy gradients extracted from fragment wave functions, enabling computations otherwise impractical on PC hardware. Further, the method is readily amenable to large scale coarse-grain parallelization with minimal communication among nodes, resulting in a near-linear speedup. CG-MTA is applied for density-functional-theory-based geometry optimization of a variety of molecules including ?-tocopherol, taxol, ?-cyclodextrin, and two conformations of polyglycine. In the tests performed, energy and gradient estimates obtained from CG-MTA during optimization runs show an excellent agreement with those obtained from actual computation. Accuracy of the Hessian obtained employing CG-MTA provides good hope for the application of Hessian-based geometry optimization to large molecules.

  1. Resonant multiphoton ionization spectra of molecules and molecular fragments. Technical report, October 1987--September 1988

    SciTech Connect

    1997-07-01

    The objective of our research under this contract is to carry out studies of resonant enhanced multiphoton ionization (REMPI) processes in molecules. In the (n + 1) - REMPI process of interest an atom or molecule in a specific initial state absorbs n photons making a transition to an intermediate state from which it is subsequently ionized by absorption of an additional photon. A remarkable feature of resonant enhanced multiphoton ionization is that the narrow bandwidth radiation of lasers makes it possible (i) to select a specific rovibrational level in the initial state of a molecule or fragment, (ii) to resonantly pump this level up to a selected rotational-vibrational level of an excited electronic state, and (iii) to subsequently photoionize the state that has been resonantly excited. The extreme state-selectivity and sensitivity make REMPI both a tool with several practical applications and an important technique for probing the photoionization dynamics of vibrationally and electronically excited states. Some significant applications of this technique include its use for state-specific detection of species and diagnostics in combustion and chemical etching media and plasmas, (ii) for state-specific generation of molecular ions for use in ion-molecule reaction studies, and (iii) as a probe of photofragmentation and gas-surface scattering including alignment and orientation effects in these processes.

  2. Novel method to estimate solubility of small molecules in cis-polyisoprene by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kikuchi, Hiroaki; Kuwajima, Satoru; Fukuda, Mitsuhiro

    2001-10-01

    A novel method to predict gas solubility in cis-1,4-polyisoprene is developed using molecular dynamics (MD) simulations under constant particle number, constant pressure and constant temperature (NPT) conditions. Analogous to the experimental sorption technique, the binary-phase model constructed of gas/polymer was prepared. In order to maintain external pressure of the whole system during long NPT-MD runs, the vapor phase was filled with virtual liquid which has no interaction with the gas molecules and has only a repulsive interaction with the polymer. After attaining equilibration of the system, the solubility of oxygen and carbon dioxide in the polymer phase were estimated in the temperature range from 273 K to 373 K by counting the number of gas molecules inside the polymer phase. The average solubility linearly increased with the increase in the external pressure, indicating that Henry's Law was satisfied. The solubility coefficient obtained from the present method showed good agreement with the experimental data. Concentration profiles of gas molecule showed that it was significantly higher near the interface than both in the gas phase and inside the polymer phase. The distinction between "adsorbed" and "absorbed" gas molecules and also their effect on the solubility was discussed.

  3. Biological carrier molecules of radiopharmaceuticals for molecular cancer imaging and targeted cancer therapy.

    PubMed

    Aerts, A; Impens, N R E N; Gijs, M; D'Huyvetter, M; Vanmarcke, H; Ponsard, B; Lahoutte, T; Luxen, A; Baatout, S

    2014-01-01

    Many tumors express one or more proteins that are either absent or hardly present in normal tissues, and which can be targeted by radiopharmaceuticals for either visualization of tumor cells or for targeted therapy. Radiopharmaceuticals can consist of a radionuclide and a carrier molecule that interacts with the tumor target and as such guides the attached radionuclide to the right spot. Radiopharmaceuticals hold great promise for the future of oncology by providing early, precise diagnosis and better, personalized treatment. Most advanced developments with marketed products are based on whole antibodies or antibody fragments as carrier molecules. However, a substantial number of (pre)clinical studies indicate that radiopharmaceuticals based on other carrier molecules, such as peptides, nonimmunoglobulin scaffolds, or nucleic acids may be valuable alternatives. In this review, we discuss the biological molecules that can deliver radionuclide payloads to tumor cells in terms of their structure, the selection procedure, their (pre)clinical status, and advantages or obstacles to their use in a radiopharmaceutical design. We also consider the plethora of molecular targets existing on cancer cells that can be targeted by radiopharmaceuticals, as well as how to select a radionuclide for a given diagnostic or therapeutic product. PMID:24606796

  4. Conjugated molecules as amplifiers of anisotropic magneto-resistance in molecular junctions

    NASA Astrophysics Data System (ADS)

    Rakhmilevitch, David; Sarkar, Soumyajit; Bitton, Ora; Kronik, Leeor; Tal, Oren

    2015-03-01

    The simplest way to manipulate spin transport at the atomic scale is based on the anisotropic magneto-resistance (AMR) effect which refers to the dependence of current through a ferromagnetic element on the direction of its magnetization. However the resulting change in resistance is limited to 15%, making AMR an unlikely candidate for spintronic applications. In this respect, molecules adsorbed on ferromagnetic surfaces, were shown to modify local spin properties and therefore may facilitate in enhancing AMR effect at the atomic scale. Here we demonstrate a 210% AMR in a single molecule junction based on a benzene molecule suspended between two nickel (Ni) electrodes. These results are in strike contrast with the AMR for bulk Ni (2%) or atomic Ni junctions (10%) measured on our devices. In addition, we take advantage of the electro-mechanical sensitivity of molecular junctions to show the measured AMR can be effectively tuned by elongating the junction. These results are explained by ab-initio calculations in the context of selective orbital hybridization. Our findings pave the way for simple and highly-effective control of spin transport at the atomic scale, promoting the feasibility of single-molecule spintronics.

  5. Molecular dynamics simulations on aqueous two-phase systems - Single PEG-molecules in solution

    PubMed Central

    2012-01-01

    Background Molecular Dynamics (MD) simulations are a promising tool to generate molecular understanding of processes related to the purification of proteins. Polyethylene glycols (PEG) of various length are commonly used in the production and purification of proteins. The molecular mechanisms behind PEG driven precipitation, aqueous two-phase formation or the effects of PEGylation are however still poorly understood. Results In this paper, we ran MD simulations of single PEG molecules of variable length in explicitly simulated water. The resulting structures are in good agreement with experimentally determined 3D structures of PEG. The increase in surface hydrophobicity of PEG of longer chain length could be explained on an atomic scale. PEG-water interactions as well as aqueous two-phase formation in the presence of PO4 were found to be correlated to PEG surface hydrophobicity. Conclusions We were able to show that the taken MD simulation approach is capable of generating both structural data as well as molecule descriptors in agreement with experimental data. Thus, we are confident of having a good in silico representation of PEG. PMID:22873343

  6. Probing molecular adsorption and mechanics at the atomic scale: The Nanocar family of molecules

    NASA Astrophysics Data System (ADS)

    Osgood, Andrew J.

    Molecular machines, typically thought to be only the fanciful imaginings of speculative fiction, have taken great strides in recent years towards real-world viability and usefulness. Under variable temperature scanning tunneling microscopy, (STM) one family of these nascent devices is characterized with atomic resolution, and probed and manipulated with sub-angstrom precision, adding to the growing body of knowledge of how molecular devices behave and react at nanometer scales. Evidence of temperature-dependent rolling of wheel-like fullerene constituents on the Nanocar is discussed in light of newly developed image analysis techniques. Additionally, charge-transfer mediated behavior at step edges, both static and dynamic, is investigated on a Au(111) surface for a more complete understanding of translation and surface diffusion. Molecular flexibility is thought to aid in this three-dimensional atomic-step-crossing diffusion, and is explored and discussed across many species in the Nanocar family of molecules. In all, many similar molecules have been characterized and explored via STM with an eye towards their dynamic capabilities and surface behaviors, in the hopes that future, more complex versions can build on the nascent knowledge base beginning to be established here.

  7. Molecular spectroscopy for ground-state transfer of ultracold RbCs molecules.

    PubMed

    Debatin, Markus; Takekoshi, Tetsu; Rameshan, Raffael; Reichsllner, Lukas; Ferlaino, Francesca; Grimm, Rudolf; Vexiau, Romain; Bouloufa, Nadia; Dulieu, Olivier; Ngerl, Hanns-Christoph

    2011-11-14

    We perform one- and two-photon high resolution spectroscopy on ultracold samples of RbCs Feshbach molecules with the aim to identify a suitable route for efficient ground-state transfer in the quantum-gas regime to produce quantum gases of dipolar RbCs ground-state molecules. One-photon loss spectroscopy allows us to probe deeply bound rovibrational levels of the mixed excited (A(1)?(+)-b(3)?)0(+) molecular states. Two-photon dark state spectroscopy connects the initial Feshbach state to the rovibronic ground state. We determine the binding energy of the lowest rovibrational level |v'' = 0, J'' = 0> of the X(1)?(+) ground state to be D = 3811.5755(16) cm(-1), a 300-fold improvement in accuracy with respect to previous data. We are now in the position to perform stimulated two-photon Raman transfer to the rovibronic ground state. PMID:21853182

  8. Molecular length dictates the nature of charge carriers in single-molecule junctions of oxidized oligothiophenes

    NASA Astrophysics Data System (ADS)

    Dell, Emma J.; Capozzi, Brian; Xia, Jianlong; Venkataraman, Latha; Campos, Luis M.

    2015-03-01

    To develop advanced materials for electronic devices, it is of utmost importance to design organic building blocks with tunable functionality and to study their properties at the molecular level. For organic electronic and photovoltaic applications, the ability to vary the nature of charge carriers and so create either electron donors or acceptors is critical. Here we demonstrate that charge carriers in single-molecule junctions can be tuned within a family of molecules that contain electron-deficient thiophene-1,1-dioxide (TDO) building blocks. Oligomers of TDO were designed to increase electron affinity and maintain delocalized frontier orbitals while significantly decreasing the transport gap. Through thermopower measurements we show that the dominant charge carriers change from holes to electrons as the number of TDO units is increased. This results in a unique system in which the charge carrier depends on the backbone length, and provides a new means to tune p- and n-type transport in organic materials.

  9. Nanotubule and Tour Molecule Based Molecular Electronics: Suggestion for a Hybrid Approach

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Recent experimental and theoretical attempts and results indicate two distinct broad pathways towards future molecular electronic devices and architectures. The first is the approach via Tour type ladder molecules and their junctions which can be fabricated with solution phase chemical approaches. Second are fullerenes or nanotubules and their junctions which may have better conductance, switching and amplifying characteristics but can not be made through well controlled and defined chemical means. A hybrid approach combining the two pathways to take advantage of the characteristics of both is suggested. Dimension and scale of such devices would be somewhere in between isolated molecule and nanotubule based devices but it maybe possible to use self-assembly towards larger functional and logicalunits.

  10. High-resolution single-molecule recognition imaging of the molecular details of ricin-aptamer interaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular details of DNA aptamer-ricin interactions were investigated. The toxic protein ricin molecules were immobilized on Au(111) surface using N-hydroxysuccinimide (NHS) ester to specifically react with lysine residues located on the ricin B chains. A single ricin molecule was visualized in ...

  11. Single molecule vibrationally mediated chemistry. Towards state-specific strategies for molecular handling

    NASA Astrophysics Data System (ADS)

    Pascual, J. I.

    2005-08-01

    Tunnelling electrons may scatter inelastically with an adsorbate, releasing part of their energy through the excitation of molecular vibrations. The resolution of inelastic processes with a low temperature scanning tunnelling microscope (STM) provides a valuable tool to chemically characterize single adsorbates and their adsorption mechanisms. Here, we present a molecular scale picture of single molecule vibrational chemistry, as resolved by STM. To understand the way a reaction proceed it is needed knowledge about both the excitation and damping of a molecular vibration. The excitation is mediated by the specific coupling between electronic molecular resonances present at the Fermi level and vibrational states of the adsorbate. Thus, the two-dimensional mapping of the inelastic signal with an STM provides the spatial distribution of the adsorbate electronic states (near the Fermi level) which are predominantly coupled to the particular vibrational mode observed. The damping of the vibration follows a competition between different mechanisms, mediated via the creation of electron-hole pairs or via anharmonic coupling between vibrational states. This latter case give rise to effective energy transfer mechanisms which eventually may focus vibrational energy in a specific reaction coordinate. In this single-molecule work-bench, STM provides alternative tools to understand reactivity in the limit of low excitation rate, which demonstrate the existence of state-specific excitation strategies which may lead to selectivity in the product of a reaction. The author acknowledges his co-workers in the work presented here, H. Conrad, N. Lorente, H.-P. Rust, and Z. Song, as well as collaborations with J. Gmez Herrero, J.J. Jackiw, D. Snchez-Portal and P.S. Weiss.

  12. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants

    PubMed Central

    Tanaka, Kiwamu; Choi, Jeongmin; Cao, Yangrong; Stacey, Gary

    2014-01-01

    As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded) plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs). ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling roles in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor kinase), which is plant-specific. P2K1 (DORN1) is required for ATP-induced cellular responses (e.g., cytosolic Ca2+ elevation, MAPK phosphorylation, and gene expression). Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of future research on extracellular ATP as a DAMP signal. PMID:25232361

  13. Signatures of the molecular potential in the ellipticity of high-order harmonics from aligned molecules

    NASA Astrophysics Data System (ADS)

    Sherratt, Paul A. J.; Ramakrishna, S.; Seideman, Tamar

    2011-05-01

    We explore the information content of the polarization of high-order harmonics emitted from aligned molecules driven by a linearly polarized field. The study builds upon our previous work [Ramakrishna , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.021802 81, 021802(R) (2010)], which illustrated that the phase of the continuum electronic wave function, and hence the underlying molecular potential, is responsible, at least in part, for the ellipticity observed in harmonic spectra. We use a simple model potential and systematically vary the potential parameters to investigate the sense in which, and the degree to which, the shape of the molecular potential is imprinted onto the polarization of the emitted harmonics. Strong ellipticity is observed over a wide range of potential parameters, suggesting that the emission of elliptically polarized harmonics is a general phenomenon, yet qualitatively determined by the molecular properties. The sensitivity of the ellipticity to the model parameters invites the use of ellipticity measurements as a probe of the continuum wave function and the underlying molecular potential.

  14. Signatures of the molecular potential in the ellipticity of high-order harmonics from aligned molecules

    SciTech Connect

    Sherratt, Paul A. J.; Ramakrishna, S.; Seideman, Tamar

    2011-05-15

    We explore the information content of the polarization of high-order harmonics emitted from aligned molecules driven by a linearly polarized field. The study builds upon our previous work [Ramakrishna et al., Phys. Rev. A 81, 021802(R) (2010)], which illustrated that the phase of the continuum electronic wave function, and hence the underlying molecular potential, is responsible, at least in part, for the ellipticity observed in harmonic spectra. We use a simple model potential and systematically vary the potential parameters to investigate the sense in which, and the degree to which, the shape of the molecular potential is imprinted onto the polarization of the emitted harmonics. Strong ellipticity is observed over a wide range of potential parameters, suggesting that the emission of elliptically polarized harmonics is a general phenomenon, yet qualitatively determined by the molecular properties. The sensitivity of the ellipticity to the model parameters invites the use of ellipticity measurements as a probe of the continuum wave function and the underlying molecular potential.

  15. LC-MS with electron ionization of cold molecules in supersonic molecular beams

    NASA Astrophysics Data System (ADS)

    Granot, Ori; Amirav, Aviv

    2005-06-01

    A new approach is described for the combination of electron ionization and LC-MS based on sample ionization as vibrationally cold molecules in a supersonic molecular beam (Cold EI). Cold EI of sample compounds in liquid solutions (methanol, acetonitrile, water, etc.) is achieved through spray formation, followed by soft thermal vaporization of the sample particles prior to their supersonic expansion and direct electron ionization of the sample compounds while they are contained in a supersonic molecular beam (SMB). Cold EI mass spectra were demonstrated to combine an enhanced molecular ion and improved mass spectral information (in comparison with standard EI), plus all the library searchable fragments. Cold EI enables the ionization of a broad range of compounds, including the full range of non-polar samples. Four orders of magnitude linear dynamic range is demonstrated and a detection limit of 2 pg was achieved for a 774 amu compound in single ion monitoring mode at m/z = 774. The method and apparatus are under continuous development and we feel that it can excel particularly in the analysis of unknown samples, while enabling fast LC-MS analysis through automated mass spectral deconvolution of coeluting LC peaks. In addition, the same MS system can also serve as an advanced GC-MS with supersonic molecular beams.

  16. On the separability of the extended molecule: Constructing the best localized molecular orbitals for an organic molecule bridging two model electrodes

    SciTech Connect

    Moreira, Rodrigo A.; Melo, Celso P. de

    2014-09-28

    Based on a quantum chemical valence formalism that allows the rigorous construction of best-localized molecular orbitals on specific parts of an extended system, we examined the separability of individual components of model systems relevant to the description of electron transport in molecular devices. We started by examining how to construct the maximally localized electronic density at the tip of a realistic model of a gold electrode. By varying the number of gold atoms included in the local region where to project the total electronic density, we quantitatively assess how many molecular orbitals are entirely localized in that region. We then considered a 1,4-benzene-di-thiol molecule connected to two model gold electrodes and examined how to localize the electronic density of the total system in the extended molecule, a fractional entity comprising the organic molecule plus an increasing number of the closest metal atoms. We were able to identify in a rigorous manner the existence of three physically different electronic populations, each one corresponding to a distinct set of molecular orbitals. First, there are those entirely localized in the extended molecule, then there is a second group of those completely distributed in the gold atoms external to that region, and, finally, there are those delocalized over the entire system. This latter group can be associated to the shared electronic population between the extended molecule and the rest of the system. We suggest that the treatment here presented could be useful in the theoretical analysis of the electronic transport in nanodevices whenever the use of localized molecular states are required by the physics of the specific problem, such as in cases of weak coupling and super-exchange limits.

  17. Circular dichroism in molecular-frame photoelectron angular distributions in the dissociative photoionization of H2 and D2 molecules

    NASA Astrophysics Data System (ADS)

    Prez-Torres, J. F.; Sanz-Vicario, J. L.; Veyrinas, K.; Billaud, P.; Picard, Y. J.; Elkharrat, C.; Poullain, S. Marggi; Saquet, N.; Lebech, M.; Houver, J. C.; Martn, F.; Dowek, D.

    2014-10-01

    The presence of net circular dichroism in the photoionization of nonchiral homonuclear molecules has been put in evidence recently through the measurement of molecular-frame photoelectron angular distributions in dissociative photoionization of H2 [Dowek et al., Phys. Rev. Lett. 104, 233003 (2010), 10.1103/PhysRevLett.104.233003]. In this work we present a detailed study of circular dichroism in the photoelectron angular distributions of H2 and D2 molecules, oriented perpendicularly to the propagation vector of the circularly polarized light, at different photon energies (20, 27, and 32.5 eV). Circular dichroism in the angular distributions at 20 and to a large extent 27 eV exhibits the usual pattern in which inversion symmetry is preserved. In contrast, at 32.5 eV, the inversion symmetry breaks down, which eventually leads to total circular dichroism after integration over the polar emission angle. Time-dependent ab initio calculations support and explain the observed results for H2 in terms of quantum interferences between direct photoionization and delayed autoionization from the Q1 and Q2 doubly excited states into ionic states (1 s ?g and 2 p ?u ) of different inversion symmetry. Nevertheless, for D2 at 32.5 eV, there is a particular case where theory and experiment disagree in the magnitude of the symmetry breaking: when D+ ions are produced with an energy of around 5 eV. This reflects the subleties associated to such simple molecules when exposed to this fine scrutiny.

  18. The peptide-receptive transition state of MHC-1 molecules: Insight from structure and molecular dynamics

    SciTech Connect

    Robinson H.; Mage, M.; Dolan, M.; Wang, R.; Boyd, L.; Revilleza, M.; Natarajan, K.; Myers, N.; Hansen, T.; Margulies, D.

    2012-05-01

    MHC class I (MHC-I) proteins of the adaptive immune system require antigenic peptides for maintenance of mature conformation and immune function via specific recognition by MHC-I-restricted CD8(+) T lymphocytes. New MHC-I molecules in the endoplasmic reticulum are held by chaperones in a peptide-receptive (PR) transition state pending release by tightly binding peptides. In this study, we show, by crystallographic, docking, and molecular dynamics methods, dramatic movement of a hinged unit containing a conserved 3(10) helix that flips from an exposed 'open' position in the PR transition state to a 'closed' position with buried hydrophobic side chains in the peptide-loaded mature molecule. Crystallography of hinged unit residues 46-53 of murine H-2L(d) MHC-I H chain, complexed with mAb 64-3-7, demonstrates solvent exposure of these residues in the PR conformation. Docking and molecular dynamics predict how this segment moves to help form the A and B pockets crucial for the tight peptide binding needed for stability of the mature peptide-loaded conformation, chaperone dissociation, and Ag presentation.

  19. Electron capture from a hydrogen molecule at a fixed orientation of the molecular axis

    SciTech Connect

    Deb, N.C.; Jain, A.; McGuire, J.H.

    1988-10-01

    Electron capture in fast-proton--H/sub 2/ collisions has been reexamined in the Brinkman-Kramers approximation. The interference, first noted by T. F. Tuan and E. Gerjuoy (Phys. Rev. 117, 756 (1960)), between two capture amplitudes associated with two centers in the molecule is found to be more pronounced at fixed orientations of the molecular axis as compared to the results obtained by averaging over all orientations. This interference effect varies significantly with the orientations of the molecule. For example, in a certain angular range the number of oscillations in the differential cross sections (DCS) is maximum at theta/sub rho/ = 90/sup 0/, phi/sub rho/ = 0/sup 0/, where theta/sub rho/ and phi/sub rho/ are the polar and azimuthal angles, respectively, of the molecular axis with respect to the incident-beam direction. The number of oscillations of the DCS decreases (i) as impact energy decreases at a fixed value of orientation and (ii) as the orientation changes from the perpendicular position (theta/sub rho/ = 90/sup 0/, phi/sub rho/ = 0/sup 0/) to other orientations for a fixed proton energy. This interference effect has not yet been observed experimentally.

  20. Molecular architecture governs the kinetics of single molecule unfolding under force

    NASA Astrophysics Data System (ADS)

    Brujic, Jasna

    2010-03-01

    Proteins are a paradigm of complexity due to the broad energy scales involved in holding their folded structure intact under thermal fluctuations. Moreover, a subset of all proteins is known to withstand stretching forces on the order of 100 pN on the timescale of seconds. The dynamic mechanism by which these proteins support stress on the molecular level remains largely unknown. With the advent of single molecule techniques using the atomic force microscope (AFM), we measure the kinetics of unfolding as a function of a constant force for the archetypal mechanically stable proteins: the degradation protein ubiquitin and the 27th immunoglobulin domain (I27) in muscle. Instead of filtering the data, we develop a maximum likelihood method to analyze all force-clamp unfolding dwell times in order to deduce the underlying kinetics. We find that the large pool of data for both proteins is best fit with stretched exponential distributions, whose exponent depends on the molecular architecture of the protein. Our analysis of previously published kinetic data on ubiquitin as a function of force [PNAS, Garcia-Manyes et. al., 2009] follows stretched exponential kinetics at all forces. Rescaling the data by the exponent shows that the characteristic timescale for the rupture of the molecules increases slower than exponentially with the force, challenging the Bell model. The observed complex kinetics may therefore be of evolutionary importance, as it increases the protein's mechanical resilience. We discuss competing microscopic mechanisms by which the complex kinetic profiles may arise.

  1. Hybridized molecular materials based on [ Mn2III] single molecule magnets with molecular conductors [Ni(dmit) 2] n-

    NASA Astrophysics Data System (ADS)

    Kubo, Kazuya; Miyasaka, Hitoshi; Yamashita, Masahiro

    A new hybridized molecular crystal [Mn(5-MeOsaltmen)(acetone)] 2[Ni(dmit) 2] 6 (5-MeOsaltmen 2-=N,N?-(1,1,2,2-tetramethylethylene)bis(5-methoxysalicylideneiminate), dmit 2-=2-thioxo-1,3-dithiole-4,5-dithiolate) based on [Mn]22+ dimer as a single molecule magnet (SMM) and the dithiolene complex [Ni(dmit) 2] as a conducting part was prepared by electrochemical crystallization of (Bu 4N)[Ni(dmit) 2] in acetone with [Mn(5-MeOsalmen)(H 2O)](PF 6). An segregating stacking arrangement of the SMM layers and conducting layers is formed, where the magnetic and conducting layers involve one crystallographically independent [Mn] + monomer and three [Ni(dmit) 2] molecules. The SMM units were formed by dimerization of the Mn complex. Ferromagnetic exchange parameter JF in the dimeric core (1.85 cm -1) can be estimated by Mn-O distance (2.298 ) in the out-of-plane dimeric core. For conducting part, overlap integral calculation between [Ni(dmit) 2] acceptors in the salt suggests the existence of quasi one-dimensional interactions among the acceptors. The compound exhibits semiconducting behavior from room temperature to 50 K ( ?r.t=0.3 ? cm, Ea=0.08 eV in a crystal) without structural phase transition at ambient pressure. Then, this is a new type of conducting SMM.

  2. Hybridized molecular materials based on [Mn2III] single molecule magnets with molecular conductors [Ni(dmit)2]n-

    NASA Astrophysics Data System (ADS)

    Kubo, Kazuya; Miyasaka, Hitoshi; Yamashita, Masahiro

    2010-06-01

    A new hybridized molecular crystal [Mn(5-MeOsaltmen)(acetone)]2[Ni(dmit)2]6 (5-MeOsaltmen2-=N,N?-(1,1,2,2-tetramethylethylene)bis(5-methoxysalicylideneiminate), dmit2-=2-thioxo-1,3-dithiole-4,5-dithiolate) based on [Mn]22+ dimer as a single molecule magnet (SMM) and the dithiolene complex [Ni(dmit)2] as a conducting part was prepared by electrochemical crystallization of (Bu4N)[Ni(dmit)2] in acetone with [Mn(5-MeOsalmen)(H2O)](PF6). An segregating stacking arrangement of the SMM layers and conducting layers is formed, where the magnetic and conducting layers involve one crystallographically independent [Mn]+ monomer and three [Ni(dmit)2] molecules. The SMM units were formed by dimerization of the Mn complex. Ferromagnetic exchange parameter JF in the dimeric core (1.85 cm-1) can be estimated by Mn-O distance (2.298 ) in the out-of-plane dimeric core. For conducting part, overlap integral calculation between [Ni(dmit)2] acceptors in the salt suggests the existence of quasi one-dimensional interactions among the acceptors. The compound exhibits semiconducting behavior from room temperature to 50 K (?r.t=0.3 ? cm, Ea=0.08 eV in a crystal) without structural phase transition at ambient pressure. Then, this is a new type of conducting SMM.

  3. Molecular resonant dissociation of surface-adsorbed molecules by plasmonic nanoscissors

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenglong; Sheng, Shaoxiang; Zheng, Hairong; Xu, Hongxing; Sun, Mengtao

    2014-04-01

    The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis, photosynthesis and the degradation of plastic, it is hard to break individual molecular bonds for those molecules adsorbed on the surface because of the weak light-absorption in molecules and the redistribution of the resulting vibrational energy both inside the molecule and to its surrounding environment. Here we show how to overcome these obstacles with a plasmonic hot-electron mediated process and demonstrate a new method that allows the sensitive control of resonant dissociation of surface-adsorbed molecules by `plasmonic' scissors. To that end, we used a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup to dissociate resonantly excited NC2H6 fragments from Malachite green. The surface plasmons (SPs) excited at the sharp metal tip not only enhance the local electric field to harvest the light incident from the laser, but crucially supply `hot electrons' whose energy can be transferred to individual bonds. These processes are resonant Raman, which result in some active chemical bonds and then weaken these bonds, followed by dumping in lots of indiscriminant energy and breaking the weakest bond. The method allows for sensitive control of both the rate and probability of dissociation through their dependence on the density of hot electrons, which can be manipulated by tuning the laser intensity or tunneling current/bias voltage in the HV-TERS setup, respectively. The concepts of plasmonic scissors open up new versatile avenues for the deep understanding of in situ surface-catalyzed chemistry.The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis, photosynthesis and the degradation of plastic, it is hard to break individual molecular bonds for those molecules adsorbed on the surface because of the weak light-absorption in molecules and the redistribution of the resulting vibrational energy both inside the molecule and to its surrounding environment. Here we show how to overcome these obstacles with a plasmonic hot-electron mediated process and demonstrate a new method that allows the sensitive control of resonant dissociation of surface-adsorbed molecules by `plasmonic' scissors. To that end, we used a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup to dissociate resonantly excited NC2H6 fragments from Malachite green. The surface plasmons (SPs) excited at the sharp metal tip not only enhance the local electric field to harvest the light incident from the laser, but crucially supply `hot electrons' whose energy can be transferred to individual bonds. These processes are resonant Raman, which result in some active chemical bonds and then weaken these bonds, followed by dumping in lots of indiscriminant energy and breaking the weakest bond. The method allows for sensitive control of both the rate and probability of dissociation through their dependence on the density of hot electrons, which can be manipulated by tuning the laser intensity or tunneling current/bias voltage in the HV-TERS setup, respectively. The concepts of plasmonic scissors open up new versatile avenues for the deep understanding of in situ surface-catalyzed chemistry. Electronic supplementary information (ESI) available: Further experimental spectra and theoretical calculations. See DOI: 10.1039/c3nr06799h

  4. Nanofibers for drug delivery incorporation and release of model molecules, influence of molecular weight and polymer structure

    PubMed Central

    Hrib, Jakub; Hobzova, Radka; Hampejsova, Zuzana; Bosakova, Zuzana; Munzarova, Marcela; Michalek, Jiri

    2015-01-01

    Summary Nanofibers were prepared from polycaprolactone, polylactide and polyvinyl alcohol using NanospiderTM technology. Polyethylene glycols with molecular weights of 2 000, 6 000, 10 000 and 20 000 g/mol, which can be used to moderate the release profile of incorporated pharmacologically active compounds, served as model molecules. They were terminated by aromatic isocyanate and incorporated into the nanofibers. The release of these molecules into an aqueous environment was investigated. The influences of the molecular length and chemical composition of the nanofibers on the release rate and the amount of released polyethylene glycols were evaluated. Longer molecules released faster, as evidenced by a significantly higher amount of released molecules after 72 hours. However, the influence of the chemical composition of nanofibers was even more distinct the highest amount of polyethylene glycol molecules released from polyvinyl alcohol nanofibers, the lowest amount from polylactide nanofibers. PMID:26665065

  5. Body-fixed relativistic molecular Hamiltonian and its application to nuclear spin-rotation tensor: Linear molecules

    NASA Astrophysics Data System (ADS)

    Xiao, Yunlong; Liu, Wenjian

    2013-07-01

    The relativistic molecular Hamiltonian written in the body-fixed frame of reference is the basis for high-precision calculations of spectroscopic parameters involving nuclear vibrations and/or rotations. Such a Hamiltonian that describes electrons fully relativistically and nuclei quasi-relativistically is just developed for semi-rigid nonlinear molecules [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)], 10.1063/1.4797496. Yet, the formulation should somewhat be revised for linear molecules thanks to some unusual features arising from the redundancy of the rotation around the molecular axis. Nonetheless, the resulting isomorphic Hamiltonian is rather similar to that for nonlinear molecules. Consequently, the relativistic formulation of nuclear spin-rotation (NSR) tensor for linear molecules is very much the same as that for nonlinear molecules. So is the relativistic mapping between experimental NSR and NMR.

  6. Therapeutic Opportunities in Damage-Associated Molecular Pattern-Driven Metabolic Diseases

    PubMed Central

    Garcia-Martinez, Irma; Shaker, Mohamed E.

    2015-01-01

    Abstract Significance: Sterile inflammation is a common finding present in various metabolic disorders. This type of inflammation is mediated by damage-associated molecular patterns (DAMPs) that are released upon cellular injury to activate pattern recognition receptors on innate immune cells and amplify organ damage. Recent Advances: In the last decade, DAMPs, such as high-mobility group protein B1, nucleic acids (DNA, RNA), adenosine triphosphate, and other metabolites, were found to contribute to the inflammatory response in diabetes, gout, obesity, steatohepatitis, and atherosclerosis. Varied receptors, including Toll-like receptors (TLRs), the purinergic P2X7 receptors, and nucleotide-binding domain, and leucine-rich repeat protein 3 (NLRP3)-inflammasome sense DAMPs and DAMP-like molecules and release the proinflammatory cytokines, interleukin (IL)-1β and IL-18. Critical Issues: Available therapeutic approaches that interfered with the signaling of TLRs, P2X7, NLRP3-inflammasome, and IL-1β showed encouraging results in metabolic diseases, which will be also highlighted in this review. Future Directions: It is important to understand the origination of DAMPs and how they contribute to the inflammatory response in metabolic disorders to develop selective and efficient therapeutics for intervention. Antioxid. Redox Signal. 23, 1305–1315. PMID:26055926

  7. Surface-mounted altitudinal molecular rotors in alternating electric field: single-molecule parametric oscillator molecular dynamics.

    PubMed

    Horinek, Dominik; Michl, Josef

    2005-10-01

    Molecular dynamics simulations of the response to oscillating electric field elicited from an altitudinal dipolar molecular rotor mounted on the Au(111) surface and previously studied experimentally in static fields show unidirectional rotation in one of the three pairs of conformational enantiomers. The simulations are based on the universal force field and take into account electronic friction in the metal through its effect on the image charges. The rotor consists of two cobalt sandwich posts whose upper decks carry a biphenyl-like rotator with a dipole moment perpendicular to the rotation axle, mounted parallel to the surface. A phase diagram of rotor performance at 10 K as a function of field frequency and amplitude contains five unidirectional rotation regions: synchronous, half-synchronous (every other cycle skipped), quarter-synchronous (only indistinctly), asynchronous, and essentially no response. The nature of the subharmonic "single-molecule parametric oscillator" behavior is understood in mechanistic detail. Simulations at higher temperatures distinguish the thermal ("Brownian") and driven regimes of rotation, elucidated in terms of time-dependent potential energy surfaces for the rotation. PMID:16186490

  8. Molecular Formula Identification Using Isotope Pattern Analysis and Calculation of Fragmentation Trees

    PubMed Central

    Dhrkop, Kai; Hufsky, Franziska; Bcker, Sebastian

    2014-01-01

    We present the results of a fully automated de novo approach for identification of molecular formulas in the CASMI 2013 contest. Only results for Category 1 (molecular formula identification) were submitted. Our approach combines isotope pattern analysis and fragmentation pattern analysis and is completely independent from any (spectral and structural) database. We correctly identified the molecular formula for ten out of twelve challenges, being the best automated method competing in this category.

  9. Dressed-bound-state molecular strong-field approximation: Application to above-threshold ionization of heteronuclear diatomic molecules

    SciTech Connect

    Hasovic, E.; Busuladzic, M.; Becker, W.; Milosevic, D. B.

    2011-12-15

    The molecular strong-field approximation (MSFA), which includes dressing of the molecular bound state, is introduced and applied to above-threshold ionization of heteronuclear diatomic molecules. Expressions for the laser-induced molecular dipole and polarizability as functions of the laser parameters (intensity and frequency) and molecular parameters [molecular orientation, dipole, and parallel and perpendicular polarizabilities of the highest occupied molecular orbital (HOMO)] are presented. Our previous MSFA theory, which incorporates the rescattering effects, is generalized from homonuclear to heteronuclear diatomic molecules. Angle- and energy-resolved high-order above-threshold ionization spectra of oriented heteronuclear diatomic molecules, exemplified by the carbon monoxide (CO) molecule, exhibit pronounced minima, which can be related to the shape of their HOMO-electron-density distribution. For the CO molecule we have found an analytical condition for the positions of these minima. We have also shown that the effect of the dressing of the HOMO is twofold: (i) the laser-induced Stark shift decreases the ionization yield and (ii) the laser-induced time-dependent dipole and polarizability change the oscillatory structure of the spectra.

  10. The Role of Molecular Dipole Orientation in Single-Molecule Fluorescence Microscopy and Implications for Super-Resolution Imaging

    PubMed Central

    Backlund, Mikael P.; Lew, Matthew D.; Backer, Adam S.; Sahl, Steffen J.

    2014-01-01

    Numerous methods for determining the orientation of single-molecule transition dipole moments from microscopic images of the molecular fluorescence have been developed in recent years. At the same time, techniques that rely on nanometer-level accuracy in the determination of molecular position, such as single-molecule super-resolution imaging, have proven immensely successful in their ability to access unprecedented levels of detail and resolution previously hidden by the optical diffraction limit. However, the level of accuracy in the determination of position is threatened by insufficient treatment of molecular orientation. Here we review a number of methods for measuring molecular orientation using fluorescence microscopy, focusing on approaches that are most compatible with position estimation and single-molecule super-resolution imaging. We highlight recent methods based on quadrated pupil imaging and on double-helix point spread function microscopy and apply them to the study of fluorophore mobility on immunolabeled microtubules. PMID:24382708

  11. Molecular jigsaw: pattern diversity encoded by elementary geometrical features.

    PubMed

    Rohr, C; Balbás Gambra, M; Gruber, K; Constable, E C; Frey, E; Franosch, T; Hermann, B A

    2010-03-10

    Scanning tunneling microscopy (STM) images of self-organized monolayers of Frechet dendrons display a variety of two-dimensional ordering motifs, which are influenced by engineering the molecular interactions. An interaction-site model condenses the essential molecular properties determined by molecular mechanics modeling, which in a Monte Carlo approach successfully predicts the various ordering motifs. This confirms that geometry as well as a few salient weak interaction sites encode these structural motifs. PMID:20158248

  12. Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments

    NASA Astrophysics Data System (ADS)

    Novotn, O.; Allgeier, S.; Enss, C.; Fleischmann, A.; Gamer, L.; Hengstler, D.; Kempf, S.; Krantz, C.; Pabinger, A.; Pies, C.; Savin, D. W.; Schwalm, D.; Wolf, A.

    2015-09-01

    We have systematically investigated the energy resolution of a magnetic micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies ranging from E ? 13 to 150 keV. For atoms we obtained absolute energy resolutions down to ? E ? 120 eV and relative energy resolutions down to ? E / E ? 10 - 3 . We also studied in detail the MMC energy-response function to molecular projectiles of up to mass 56 u. We have demonstrated the capability of identifying neutral fragmentation products of these molecules by calorimetric mass spectrometry. We have modeled the MMC energy-response function for molecular projectiles and concluded that backscattering is the dominant source of the energy spread at the impact energies investigated. We have successfully demonstrated the use of a detector absorber coating to suppress such spreads. We briefly outline the use of MMC detectors in experiments on gas-phase collision reactions with neutral products. Our findings are of general interest for mass spectrometric techniques, particularly for those desiring to make neutral-particle mass measurements.

  13. Computer-aided molecular selection and design of natural bioactive molecules.

    PubMed

    Bernard, P; Berthon, J Y; Chrtien, J R

    1999-05-01

    The search for natural bioactive compounds has led to a renewal of interest in exploring the plant kingdom. Indeed, a more rational search for innovative natural active compounds has become a priority. This review describes the search for new, natural, active compounds by combining the classical ethnopharmacology approach with newer strategies. The proposed computer-aided molecular selection and design (CAMSD) strategy is based on an in-depth exploitation of all the ethnopharmacological, chemical and biological information available. In the first step, the information extracted from various complementary sources - private, literature, Internet - is organized within a database called Phytotech. In the second step, bioinformatic technologies are used to search for new leads based on the molecular and/or the botanical diversity analysis of the Phytotech database. Once a lead is found, the knowledge of involved protein/ligand interaction is improved by molecular modeling. Finally, the activity of the derived bioactive compounds is optimized by pharmacomodulation of the previously selected leads with the help of two- or three-dimensional quantitative structure-activity relationships (2D- or 3D-QSAR) database exploitation. This coherent and global strategy, specially designed for selecting and designing natural bioactive molecules, is based on the hybridization of various chemometric strategies and supported by our own recent examples dealing with acetylcholinesterase inhibition. PMID:19649949

  14. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    SciTech Connect

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V{yields}T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V{yields}T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH{sub 3} production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.

  15. Molecular Dynamics Study of the Disruption of H-BONDS by Water Molecules and its Diffusion Behavior in Amorphous Cellulose

    NASA Astrophysics Data System (ADS)

    Liao, Ruijin; Zhu, Mengzhao; Zhou, Xin; Zhang, Fuzhou; Yan, Jiaming; Zhu, Wenbin; Gu, Chao

    2012-06-01

    Hydrolysis is an important component of the aging of cellulose, and it severely affects the insulating performance of cellulosic materials. The diffusion behavior of water molecules in amorphous cellulose and their destructive effect on the hydrogen bonding structure of cellulose were investigated by molecular dynamics. The change in the hydrogen bonding structure indicates that water molecules have a considerable effect on the hydrogen bonding structure within cellulose: both intermolecular and intramolecular hydrogen bonds decreased with an increase in ingressive water molecules. Moreover, the stabilities of the cellulose molecules were disrupted when the number of intermolecular hydrogen bonds declined to a certain degree. Both the free volumes of amorphous cells and water molecule-cellulose interaction affect the diffusion of water molecules. The latter, especially the hydrogen bonding interaction between water molecules and cellulose, plays a predominant role in the diffusion behavior of water molecules in the models of which the free volume rarely varies. The diffusion coefficient of water molecules has an excellent correlation with water molecule-cellulose interaction and the average hydrogen bonds between each water molecule and cellulose; however, this relationship was not apparent between the diffusion coefficient and free volume.

  16. Ultraviolet Pretreatment of Titanium Dioxide and Tin-Doped Indium Oxide Surfaces as a Promoter of the Adsorption of Organic Molecules in Dry Deposition Processes: Light Patterning of Organic Nanowires.

    PubMed

    Oulad-Zian, Youssef; Sanchez-Valencia, Juan R; Parra-Barranco, Julian; Hamad, Said; Espinos, Juan P; Barranco, Angel; Ferrer, Javier; Coll, Mariona; Borras, Ana

    2015-08-01

    In this article we present the preactivation of TiO2 and ITO by UV irradiation under ambient conditions as a tool to enhance the incorporation of organic molecules on these oxides by evaporation at low pressures. The deposition of π-stacked molecules on TiO2 and ITO at controlled substrate temperature and in the presence of Ar is thoroughly followed by SEM, UV-vis, XRD, RBS, and photoluminescence spectroscopy, and the effect is exploited for the patterning formation of small-molecule organic nanowires (ONWs). X-ray photoelectron spectroscopy (XPS) in situ experiments and molecular dynamics simulations add critical information to fully elucidate the mechanism behind the increase in the number of adsorption centers for the organic molecules. Finally, the formation of hybrid organic/inorganic semiconductors is also explored as a result of the controlled vacuum sublimation of organic molecules on the open thin film microstructure of mesoporous TiO2. PMID:26168350

  17. Link molecule method for quantum mechanical/molecular mechanical hybrid simulations

    SciTech Connect

    Nakamura, Yoshimichi . E-mail: NAKAMURA.Yoshimichi@nims.go.jp; Takahashi, Norihiko; Okamoto, Masakuni; Uda, Tsuyoshi; Ohno, Takahisa . E-mail: OHNO.Takahisa@nims.go.jp

    2007-08-10

    We present a new coupling method for hybrid simulations in which the system is partitioned into covalently linked quantum mechanical (QM) and molecular mechanical (MM) regions. Our method, called the 'link molecule method (LMM),' is substantially different from the link atom methods in that LMM is free from the delicate issue of how to remove the additional degrees of freedom with respect to the position of the virtual atoms linking the QM and the MM regions. The force acting on the atom at the regional boundary is obtained in a simple form based on the total energy conservation. The accuracy of LMM is demonstrated in detail using a system of silicon partitioned into the QM and the MM region at the (1 0 0) boundary plane. This condition has been difficult to simulate by conventional methods employing the link atoms because of the strong repulsion between the nearby link atoms.

  18. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules.

    PubMed

    Moseti, Dorothy; Regassa, Alemu; Kim, Woo-Kyun

    2016-01-01

    Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor ? (PPAR?), and the CCAAT/enhancer binding proteins (C/EBPs) such as C/EBP?, ? and ? are considered the key early regulators of adipogenesis, while fatty acid binding protein 4 (FABP4), adiponectin, and fatty acid synthase (FAS) are responsible for the formation of mature adipocytes. Excess accumulation of lipids in the adipose tissue leads to obesity, which is associated with cardiovascular diseases, type II diabetes and other pathologies. Thus, investigating adipose tissue development and the underlying molecular mechanisms is vital to develop therapeutic agents capable of curbing the increasing incidence of obesity and related pathologies. In this review, we address the process of adipogenic differentiation, key transcription factors and proteins involved, adipogenic regulators and potential anti-adipogenic bioactive molecules. PMID:26797605

  19. Rotation commensurate echo of asymmetric moleculesMolecular fingerprints in the time domain

    NASA Astrophysics Data System (ADS)

    Chesnokov, E. N.; Kubarev, V. V.; Koshlyakov, P. V.

    2014-12-01

    Using the pulses of terahertz free electron laser and ultra-fast Schottky diode detectors, we observed the coherent transients within a free induction decay of gaseous nitrogen dioxide NO2. The laser excited different sub-bands of rotation spectra of NO2 containing about 50-70 lines. The free induction signal continued more than 30 ns and consisted of many echo-like bursts duration about 0.2 ns. Unlike the similar effect observed previously for linear and symmetric top molecules, the sequence of echo bursts is not periodic. The values for delay of individual echo are stable, and the set of these delays can be considered as a "molecular fingerprint" in the time domain.

  20. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules

    PubMed Central

    Moseti, Dorothy; Regassa, Alemu; Kim, Woo-Kyun

    2016-01-01

    Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor γ (PPARγ), and the CCAAT/enhancer binding proteins (C/EBPs) such as C/EBPα, β and δ are considered the key early regulators of adipogenesis, while fatty acid binding protein 4 (FABP4), adiponectin, and fatty acid synthase (FAS) are responsible for the formation of mature adipocytes. Excess accumulation of lipids in the adipose tissue leads to obesity, which is associated with cardiovascular diseases, type II diabetes and other pathologies. Thus, investigating adipose tissue development and the underlying molecular mechanisms is vital to develop therapeutic agents capable of curbing the increasing incidence of obesity and related pathologies. In this review, we address the process of adipogenic differentiation, key transcription factors and proteins involved, adipogenic regulators and potential anti-adipogenic bioactive molecules. PMID:26797605

  1. Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations.

    PubMed

    Merchant, Kusai A; Best, Robert B; Louis, John M; Gopich, Irina V; Eaton, William A

    2007-01-30

    To obtain quantitative information on the size and dynamics of unfolded proteins we combined single-molecule lifetime and intensity FRET measurements with molecular simulations. We compared the unfolded states of the 64-residue, alpha/beta protein L and the 66-residue, all-beta cold-shock protein CspTm. The average radius of gyration (Rg) calculated from FRET data on freely diffusing molecules was identical for the two unfolded proteins at guanidinium chloride concentrations >3 M, and the FRET-derived Rg of protein L agreed well with the Rg previously measured by equilibrium small-angle x-ray scattering. As the denaturant concentration was lowered, the mean FRET efficiency of the unfolded subpopulation increased, signaling collapse of the polypeptide chain, with protein L being slightly more compact than CspTm. A decrease in Rg with decreasing denaturant was also observed in all-atom molecular dynamics calculations in explicit water/urea solvent, and Langevin simulations of a simplified representation of the polypeptide suggest that collapse can result from either increased interresidue attraction or decreased excluded volume. In contrast to both the FRET and simulation results, previous time-resolved small-angle x-ray scattering experiments showed no collapse for protein L. Analysis of the donor fluorescence decay of the unfolded subpopulation of both proteins gives information about the end-to-end chain distribution and suggests that chain dynamics is slow compared with the donor life-time of approximately 2 ns, whereas the bin-size independence of the small excess width above the shot noise for the FRET efficiency distributions may result from incomplete conformational averaging on even the 1-ms time scale. PMID:17251351

  2. Configurational biomimesis in drug delivery: molecular imprinting of biologically significant molecules.

    PubMed

    Hilt, J Zachary; Byrne, Mark E

    2004-09-22

    This review focuses on trends in the macromolecular recognition of biologically significant molecules (e.g., drugs, amino acids, steroids, nucleotide bases, carbohydrates, etc.) via molecular imprinting methods. An extensive list of prior art including type of functional monomers and crosslinkers for each biomolecule imprinted polymer is presented. Representative samples of receptor-ligand dissociation constants and polymer capacities are presented as well as typical values that occur in classes of biological recognition systems. Imprinting technology has direct impact in enhanced drug loading of controlled-release carriers for the sustained release of therapeutic agents as well as robust biosensors for novel therapeutic and diagnostic devices. This review also discusses the future of designed recognition, configurational biomimesis within polymeric gels, and highlights recent efforts toward integrating imprinted polymers in controlled drug delivery systems and sensing devices. In particular, the application of imprinted polymers for sustained release, enhanced loading capacity, and enantioselective loading or release are discussed. This article also highlights the most important problems to be solved in the design of synthetic recognition-based networks for biological molecules. PMID:15350291

  3. A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices

    SciTech Connect

    Welch, Gregory C.; Perez, Louis A.; Hoven, Corey V.; Zhang, Yuan; Dang, Xuan-Dung; Sharenko, Alexander; Toney, Michael F.; Kramer, Edward J.; Nguyen, Thuc-Quyen; Bazan, Guillermo C.

    2011-07-22

    We report on the design, synthesis and characterization of light harvesting small molecules for use in solution-processed small molecule bulk heterojunction (SM-BHJ) solar cell devices. These molecular materials are based upon an acceptor/donor/acceptor (A/D/A) core with donor endcapping units. Utilization of a dithieno(3,2-b;2',3'-d)silole (DTS) donor and pyridal[2,1,3]thiadiazole (PT) acceptor leads to strong charge transfer characteristics, resulting in broad optical absorption spectra extending well beyond 700 nm. SM-BHJ solar cell devices fabricated with the specific example 5,5'-bis{7-(4-(5-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine}-3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene (6) as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor component showed short circuit currents above -10 mA cm-2 and power conversion efficiencies (PCEs) over 3%. Thermal processing is a critical factor in obtaining favorable active layer morphologies and high PCE values. A combination of UV-visible spectroscopy, conductive and photo-conductive atomic force microscopies, dynamic secondary mass ion spectrometry (DSIMS), and grazing incident wide angle X-ray scattering (GIWAXS) experiments were carried out to characterize how thermal treatment influences the active layer structure and organization.

  4. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules.

    PubMed

    Tanaka, Kyoko K; Tanaka, Hidekazu; Yamamoto, Tetsuo; Kawamura, Katsuyuki

    2011-05-28

    We performed molecular dynamics (MD) simulations of nucleation from vapor at temperatures below the triple point for systems consisting of 10(4)-10(5) Lennard-Jones (L-J) type molecules in order to test nucleation theories at relatively low temperatures. Simulations are performed for a wide range of initial supersaturation ratio (S(0) ? 10-10(8)) and temperature (kT = 0.2-0.6?), where ? and k are the depth of the L-J potential and the Boltzmann constant, respectively. Clusters are nucleated as supercooled liquid droplets because of their small size. Crystallization of the supercooled liquid nuclei is observed after their growth slows. The classical nucleation theory (CNT) significantly underestimates the nucleation rates (or the number density of critical clusters) in the low-T region. The semi-phenomenological (SP) model, which corrects the CNT prediction of the formation energy of clusters using the second virial coefficient of a vapor, reproduces the nucleation rate and the cluster size distributions with good accuracy in the low-T region, as well as in the higher-T cases considered in our previous study. The sticking probability of vapor molecules onto the clusters is also obtained in the present MD simulations. Using the obtained values of sticking probability in the SP model, we can further refine the accuracy of the SP model. PMID:21639446

  5. Nectin family of cell-adhesion molecules: structural and molecular aspects of function and specificity.

    PubMed

    Samanta, Dibyendu; Almo, Steven C

    2015-02-01

    Cell-cell adhesive processes are central to the physiology of multicellular organisms. A number of cell surface molecules contribute to cell-cell adhesion, and the dysfunction of adhesive processes underlies numerous developmental defects and inherited diseases. The nectins, a family of four immunoglobulin superfamily members (nectin-1 to -4), interact through their extracellular domains to support cell-cell adhesion. While both homophilic and heterophilic interactions among the nectins are implicated in cell-cell adhesion, cell-based and biochemical studies suggest heterophilic interactions are stronger than homophilic interactions and control a range of physiological processes. In addition to interactions within the nectin family, heterophilic associations with nectin-like molecules, immune receptors, and viral glycoproteins support a wide range of biological functions, including immune modulation, cancer progression, host-pathogen interactions and immune evasion. We review current structural and molecular knowledge of nectin recognition processes, with a focus on the biochemical and biophysical determinants of affinity and selectivity that drive distinct nectin associations. These proteins and interactions are discussed as potential targets for immunotherapy. PMID:25326769

  6. Hierarchical protein patterning by meso to molecular scale self-assembly

    NASA Astrophysics Data System (ADS)

    Andersen, Andreas S.; Sutherland, Duncan S.; Ogaki, Ryosuke

    2015-10-01

    Numerous protein patterning methodologies are used extensively for biomedical research and development. We have developed a novel bottom-up protein patterning method using a combination of self-assembly processes in the meso to molecular scale range to allow hierarchical protein patterns to be straightforwardly fabricated with low cost over large areas. As a proof of principle, we patterned vitronectin in various dimensional hierarchies using meso to nanoscale colloids and self-assembled monolayers.

  7. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation

    PubMed Central

    Hiatt, Joseph B.; Pritchard, Colin C.; Salipante, Stephen J.; O'Roak, Brian J.; Shendure, Jay

    2013-01-01

    The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low relative abundance in a given DNA sample. Here we describe smMIP, an assay that combines single molecule tagging with multiplex targeted capture to enable practical and highly sensitive detection of low-frequency or subclonal variation. To demonstrate the potential of the method, we simultaneously resequenced 33 clinically informative cancer genes in eight cell line and 45 clinical cancer samples. Single molecule tagging facilitated extremely accurate consensus calling, with an estimated per-base error rate of 8.4 10?6 in cell lines and 2.6 10?5 in clinical specimens. False-positive mutations in the single molecule consensus base-calls exhibited patterns predominantly consistent with DNA damage, including 8-oxo-guanine and spontaneous deamination of cytosine. Based on mixing experiments with cell line samples, sensitivity for mutations above 1% frequency was 83% with no false positives. At clinically informative sites, we identified seven low-frequency point mutations (0.2%4.7%), including BRAF p.V600E (melanoma, 0.2% alternate allele frequency), KRAS p.G12V (lung, 0.6%), JAK2 p.V617F (melanoma, colon, two lung, 0.3%1.4%), and NRAS p.Q61R (colon, 4.7%). We anticipate that smMIP will be broadly adoptable as a practical and effective method for accurately detecting low-frequency mutations in both research and clinical settings. PMID:23382536

  8. Molecular Quantum Spintronics: Supramolecular Spin Valves Based on Single-Molecule Magnets and Carbon Nanotubes

    PubMed Central

    Urdampilleta, Matias; Nguyen, Ngoc-Viet; Cleuziou, Jean-Pierre; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2011-01-01

    We built new hybrid devices consisting of chemical vapor deposition (CVD) grown carbon nanotube (CNT) transistors, decorated with TbPc2 (Pc = phthalocyanine) rare-earth based single-molecule magnets (SMMs). The drafting was achieved by tailoring supramolecular π-π interactions between CNTs and SMMs. The magnetoresistance hysteresis loop measurements revealed steep steps, which we can relate to the magnetization reversal of individual SMMs. Indeed, we established that the electronic transport properties of these devices depend strongly on the relative magnetization orientations of the grafted SMMs. The SMMs are playing the role of localized spin polarizer and analyzer on the CNT electronic conducting channel. As a result, we measured magneto-resistance ratios up to several hundred percent. We used this spin valve effect to confirm the strong uniaxial anisotropy and the superparamagnetic blocking temperature (TB ~ 1 K) of isolated TbPc2 SMMs. For the first time, the strength of exchange interaction between the different SMMs of the molecular spin valve geometry could be determined. Our results introduce a new design for operable molecular spintronic devices using the quantum effects of individual SMMs. PMID:22072910

  9. Room-temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device

    NASA Astrophysics Data System (ADS)

    Cuberes, M. T.; Schlittler, R. R.; Gimzewski, J. K.

    1996-11-01

    C60 molecules absorbed on a monoatomic Cu step have been reversibly repositioned at room temperature with the tip of a scanning tunneling microscope by performing controlled displacements along the step direction. We demonstrate the feasibility of building an abacus on the nanometer scale using single molecules as ``counters,'' Cu monoatomic steps as ``rods'' that constrain the molecular motion to one dimension, and the scanning tunneling microscope as an ``actuator'' for counting operations.

  10. A molecular symmetry analysis of the electronic states and transition dipole moments for molecules with two torsional degrees of freedom

    SciTech Connect

    Obaid, R.; Leibscher, M.

    2015-02-14

    We present a molecular symmetry analysis of electronic states and transition dipole moments for molecules which undergo large amplitude intramolecular torsions. The method is based on the correlation between the point group of the molecule at highly symmetric configurations and the molecular symmetry group. As an example, we determine the global irreducible representations of the electronic states and transition dipole moments for the quinodimethane derivative 2-[4-(cyclopenta-2,4-dien-1-ylidene)cyclohexa-2,5-dien-1-ylidene]-2H-1, 3-dioxole for which two torsional degrees of freedom can be activated upon photo-excitation and construct the resulting symmetry adapted transition dipole functions.

  11. Reconstruction of two-dimensional molecular structure with laser-induced electron diffraction from laser-aligned polyatomic molecules

    DOE PAGESBeta

    Yu, Chao; Wei, Hui; Wang, Xu; Le, Anh -Thu; Lu, Ruifeng; Lin, C. D.

    2015-10-27

    Imaging the transient process of molecules has been a basic way to investigate photochemical reactions and dynamics. Based on laser-induced electron diffraction and partial one-dimensional molecular alignment, here we provide two effective methods for reconstructing two-dimensional structure of polyatomic molecules. We demonstrate that electron diffraction images in both scattering angles and broadband energy can be utilized to retrieve complementary structure information, including positions of light atoms. Lastly, with picometre spatial resolution and the inherent femtosecond temporal resolution of lasers, laser-induced electron diffraction method offers significant opportunities for probing atomic motion in a large molecule in a typical pump-probe measurement.

  12. Reconstruction of two-dimensional molecular structure with laser-induced electron diffraction from laser-aligned polyatomic molecules

    PubMed Central

    Yu, Chao; Wei, Hui; Wang, Xu; Le, Anh-Thu; Lu, Ruifeng; Lin, C. D.

    2015-01-01

    Imaging the transient process of molecules has been a basic way to investigate photochemical reactions and dynamics. Based on laser-induced electron diffraction and partial one-dimensional molecular alignment, here we provide two effective methods for reconstructing two-dimensional structure of polyatomic molecules. We demonstrate that electron diffraction images in both scattering angles and broadband energy can be utilized to retrieve complementary structure information, including positions of light atoms. With picometre spatial resolution and the inherent femtosecond temporal resolution of lasers, laser-induced electron diffraction method offers significant opportunities for probing atomic motion in a large molecule in a typical pump-probe measurement. PMID:26503116

  13. Reconstruction of two-dimensional molecular structure with laser-induced electron diffraction from laser-aligned polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Wei, Hui; Wang, Xu; Le, Anh-Thu; Lu, Ruifeng; Lin, C. D.

    2015-10-01

    Imaging the transient process of molecules has been a basic way to investigate photochemical reactions and dynamics. Based on laser-induced electron diffraction and partial one-dimensional molecular alignment, here we provide two effective methods for reconstructing two-dimensional structure of polyatomic molecules. We demonstrate that electron diffraction images in both scattering angles and broadband energy can be utilized to retrieve complementary structure information, including positions of light atoms. With picometre spatial resolution and the inherent femtosecond temporal resolution of lasers, laser-induced electron diffraction method offers significant opportunities for probing atomic motion in a large molecule in a typical pump-probe measurement.

  14. Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: a molecular dynamics free energy perturbation study.

    PubMed Central

    Roux, B; Nina, M; Poms, R; Smith, J C

    1996-01-01

    The proton transfer activity of the light-driven proton pump, bacteriorhodopsin (bR) in the photochemical cycle might imply internal water molecules. The free energy of inserting water molecules in specific sites along the bR transmembrane channel has been calculated using molecular dynamics simulations based on a microscopic model. The existence of internal hydration is related to the free energy change on transfer of a water molecule from bulk solvent into a specific binding site. Thermodynamic integration and perturbation methods were used to calculate free energies of hydration for each hydrated model from molecular dynamics simulations of the creation of water molecules into specific protein-binding sites. A rigorous statistical mechanical formulation allowing the calculation of the free energy of transfer of water molecules from the bulk to a protein cavity is used to estimate the probabilities of occupancy in the putative bR proton channel. The channel contains a region lined primarily by nonpolar side-chains. Nevertheless, the results indicate that the transfer of four water molecules from bulk water to this apparently hydrophobic region is thermodynamically permitted. The column forms a continuous hydrogen-bonded chain over 12 A between a proton donor, Asp 96, and the retinal Schiff base acceptor. The presence of two water molecules in direct hydrogen-bonding association with the Schiff base is found to be strongly favorable thermodynamically. The implications of these results for the mechanism of proton transfer in bR are discussed. PMID:8842206

  15. Molecular dynamics study on evaporation and reflection of monatomic molecules to construct kinetic boundary condition in vapor-liquid equilibria

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazumichi; Hori, Kazumasa; Kon, Misaki; Sasaki, Kiyofumi; Watanabe, Masao

    2015-10-01

    Using molecular dynamics simulations, the present study investigates the precise characteristics of evaporating and reflecting monatomic molecules (argon) composing a kinetic boundary condition (KBC) in a vapor-liquid equilibria. We counted the evaporating and reflecting molecules utilizing two boundaries (vapor and liquid boundaries) proposed by the previous studies (Meland et al. in Phys Fluids 16:223-243, 2004; Gu et al. in Fluid Phase Equilib 297:77-89, 2010). In the present study, we improved the method using the two boundaries incorporating the concept of the spontaneously evaporating molecular mass flux. The present method allows us to count the evaporating and reflecting molecules easily, to investigate the detail motion of the evaporating and reflecting molecules, and also to evaluate the velocity distribution function of the KBC at the vapor-liquid interface, appropriately. From the results, we confirm that the evaporating and reflecting molecules in the normal direction to the interface have slightly faster and significantly slower average velocities than that of the Maxwell distribution at the liquid temperature, respectively. Also, the stall time of the reflecting molecules at the interphase that is the region in the vicinity of the vapor-liquid interface is much shorter than those of the evaporating molecules. Furthermore, we discuss our method for constructing the KBC that incorporates condensation and evaporation coefficients. Based on these results, we suggest that the proposed method is appropriate for investigating KBC in various nonequilibrium states or multi-component systems.

  16. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns.

    PubMed

    Benedetti, Manuel; Pontiggia, Daniela; Raggi, Sara; Cheng, Zhenyu; Scaloni, Flavio; Ferrari, Simone; Ausubel, Frederick M; Cervone, Felice; De Lorenzo, Giulia

    2015-04-28

    Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP-PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense. PMID:25870275

  17. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns

    PubMed Central

    Benedetti, Manuel; Pontiggia, Daniela; Raggi, Sara; Cheng, Zhenyu; Scaloni, Flavio; Ferrari, Simone; Ausubel, Frederick M.; Cervone, Felice; De Lorenzo, Giulia

    2015-01-01

    Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP–PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense. PMID:25870275

  18. Pattern Speeds of BIMA SONG Galaxies with Molecule-dominated Interstellar Mediums Using the Tremaine-Weinberg Method

    NASA Astrophysics Data System (ADS)

    Rand, Richard J.; Wallin, John F.

    2004-10-01

    We apply the Tremaine-Weinberg method of pattern speed determination to data cubes of CO emission in six spiral galaxies from the BIMA Survey of Nearby Galaxies, each with an interstellar medium dominated by molecular gas. We compare derived pattern speeds with estimates based on other methods, usually involving the identification of a predicted behavior at one or more resonances of the pattern(s). In two cases (NGC 1068 and NGC 4736), we find evidence for a central bar pattern speed that is greater than that of the surrounding spiral and roughly consistent with previous estimates. However, the spiral pattern speed in both cases is much larger than previous determinations. For the barred spirals NGC 3627 and NGC 4321, the method is insensitive to the bar pattern speed (the bar in each is nearly parallel to the major axis; in this case the method will not work), but for the former galaxy the spiral pattern speed found agrees with previous estimates of the bar pattern speed, suggesting that these two structures are part of a single pattern. For the latter, the spiral pattern speed found is in agreement with several previous determinations. For the flocculent spiral NGC 4414 and the ``Evil Eye'' galaxy NGC 4826, the method does not support the presence of a large-scale coherent pattern. We also apply the method to a simulated barred galaxy in order to demonstrate its validity and to understand its sensitivity to various observational parameters. In addition, we study the results of applying the method to a simulated, clumpy axisymmetric disk with no wave present. The Tremaine & Weinberg method in this case may falsely indicate a well-defined pattern.

  19. Pattern Formations in Polymer-Molecular Motor Networks

    NASA Astrophysics Data System (ADS)

    Smith, David; Humphrey, David; Duggan, Cynthia; Ks, Josef

    2001-03-01

    In previous studies with the microtubule-kinesin system, organized patterns such as asters and rotating vortices have been seen (Nedelec et al, Nature 1997), which were of a dynamic nature and dependent on active motors. A similar system was constructed using actin and myosin, which displays similar patterns, however, with drastically different dynamics. These patterns arise independent of the initial amount of immediate use energy (in the form of ATP), assembling only upon the near exhaustion of available ATP. Further studies have clearly shown that in fact these patterns are not dependent upon the motor activity of the myosin but its propensity to serve as a cross-linking element in an actin network, with the motor activity serving to prevent the arising of order in the system. We believe the dynamic differences inherent between the two polymer-motor systems studied lies primarily in the structural nature of the motor complexes, with the kinesin complex ordering the system by pushing multiple filaments in a parallel direction, and the myosin complexes disordering the system by pushing filaments in an antiparallel manner.

  20. Evolution of complex organic molecules in hot molecular cores. Synthetic spectra at (sub-)mm wavebands

    NASA Astrophysics Data System (ADS)

    Choudhury, R.; Schilke, P.; Stéphan, G.; Bergin, E.; Möller, T.; Schmiedeke, A.; Zernickel, A.

    2015-03-01

    Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH3OH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims: We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods: We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results: Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (~100 K) expands and the spatial distribution of gas phase abundances of these COMs also spreads out. We calculated the temporal variation of the radial profiles of these COMs for different hot core models. These profiles resemble the so-called jump profiles with relative abundances higher than 10-9 within the evaporation font will furthermore be useful to model the observed spectra of hot cores. We present the simulated spectra of these COMs for different hot core models at various evolutionary timescales. A qualitative comparison of the simulated and observed spectra suggests that these self-consistent hot core models can reproduce the notable trends in hot core spectral variation within the typical hot core timescales of 105 year. These models predict that the spatial distribution of various emission line maps will also expand with evolutionary time; this feature can be used to constrain the relative desorption energies of the molecules that mainly form on the grain surface and return to the gas phase via thermal desorption. The detailed modeling of the thermal structure of hot cores with similar masses along with the characterization of the desorption energies of different molecules can be used to constrain the luminosity evolution of the central protostars. The model predictions can be compared with high resolution observation that can probe scales of a few thousand AU in high-mass star forming regions such as from Atacama Large Millimeter/submillimeter Array (ALMA). We used a spectral fitting method to analyze the simulated spectra and find that it significantly underestimates some of the physical parameters such as temperature. The coupling of chemical evolution with radiative transfer models will be particularly useful to decipher the physical structure of hot cores and also to constrain the initial evolutionary stages of high-mass star formation. Appendices are available in electronic form at http://www.aanda.org

  1. Molecular properties from combined QM/MM methods. 2. Chemical shifts in large molecules

    SciTech Connect

    Cui, Q.; Karplus, M.

    2000-04-20

    A method for calculating the chemical shielding tensor of any atom with the QM/MM approach has been developed. The method is described and applied to a number of model systems including the water dimer, NMA-water complexes, cytosine monophosphate, paired and stacked nucleic acid bases, imidazole-metal complexes, and 1{prime}-deoxyribose-metal ion complexes. The results demonstrate that with an appropriate QM/MM partition, good descriptions of the environmental effects on chemical shift tensors are obtained. The typical error compared to full QM calculations is 1--2 ppm for heavy atoms. At distances below 2.5 {angstrom}, such as occur in hydrogen bonding, larger errors arise due to the lack of Pauli repulsion and magnetic susceptibility of the nearby groups in the current QM/MM model; including the hydrogen bonded molecules as part of the QM region is a way of solving this problem. The method is also applied to a simple model of myoglobin-CO and it is shown that the significant influence from the distal histidine on the shielding of Fe and CO is well reproduced by a QM/MM calculation. Application to the chemical shift of the 1-N nitrogen in nicotinamide adenine dinucleotide (NAD{sup +}), relative to N-methyl nicotinamide, gives good results, indicating that accurate chemical shifts can be obtained for specific atoms in large molecules that cannot be treated by QM at the MP2 level. The effect of solvation on the chemical shift of water was also studied with the QM/MM approach in a molecular dynamics framework. The test calculations described in this paper demonstrate that the QM/MM method for estimating shielding tensors and chemical shifts is a useful approach for large systems.

  2. PDMS-Glass bonding using grafted polymeric adhesive - Alternative process flow for compatibility with patterned biological molecules

    PubMed Central

    Beh, Cyrus Weijie; Zhou, Weizhuang

    2013-01-01

    We report a novel modification of silicone elastomer, polydimethylsiloxane (PDMS) with a polymer graft that allows interfacial bonding between elastomer and glass substrate to be performed without exposure of said substrate to harsh treatment conditions like oxygen plasma. Organic molecules can thus be patterned within microfluidic channels and still remain functional post-bonding. In addition, after polymer grafting the PDMS can be stored in a desiccator for at least 40 days, and activated upon exposure to acidic buffer for bonding. The bonded devices remain fully bonded in excess of 80 psi driving pressure, with no signs of compromise to the bond integrity. Finally, we demonstrate the compatibility of our method with biological molecules using a proof-of-concept DNA sensing device, in which fluorescently-labelled DNA targets are successfully captured by a patterned probe in a device sealed using our method, while the pattern on a plasma-treated device was completely destroyed. Therefore, this method provides a much-needed alternative bonding process for incorporation of biological molecules in microfluidic devices. PMID:22858861

  3. Probing ion-molecule structure and dynamics in isolated molecular clusters and proteins

    NASA Astrophysics Data System (ADS)

    Abate, Yohannes

    Ion-molecule interactions in isolated molecular clusters and proteins are studied in this work using experimental and theoretical methods. Photodissociation spectroscopy and chemical dynamics of several metal ion-molecule clusters are studied. The experimental tool used for these studies is an Angular Reflectron Time Of Flight Mass Spectrometer (ARTOFMS). The experimental work is supported by ab initio electronic structure calculations on the Gaussian and GAMESS platforms. This work also describes a computational study of the interaction of protonated histidine with other aromatic residues in proteins. We have studied the photodissociation spectroscopy of weakly bound Zn +(H2O) and Zn+(D2O) bimolecular complexes. We assign two molecular absorption bands in the near UV correlating to Zn+ (4s-4p)-metal centered transitions, and identify vibrational progressions associated with both intermolecular and intramolecular vibrational modes of the cluster. Partially resolved rotational structure is consistent with a C2 V equilibrium complex geometry. The photodissociation spectroscopy and chemical dynamics of Zn +-formaldehyde and Zn+-acetaldehyde clusters are investigated in the near UV spectral range. The work is also supported by ab initio electronic structure calculations to study the ground-state bonding and interactions in the low-lying doublet excited states. We identify absorption bands corresponding to photoinduced charge transfer, Zn+(4s-4p)-based transitions, and aldehyde-based excitations. We propose a reaction mechanism for the reactive dissociation that proceeds via H-atom abstraction on the charge-transfer surface. This work shows important differences with results from earlier experiments on Mg+- and Ca+-aldehyde complexes despite the similar valence character for these metal ions. In the study of Mg+-acetic acid we observe three distinct absorption bands, two red-shifted and one blue-shifted from the Mg +(3s ? 3p) resonance at 280 nm (35714 cm-1). We identify several distinct isomers in the (MgC2O2H4)+ cluster that can dissociate directly following internal conversion to the major observed daughter ions, Mg+, MgOH+, and Mg(H2O) +. We have discovered new structural determinants that significantly improve pKa predictions of His residues: Cation-pi and pi-pi interactions of histidine with aromatic residues (Tyr, Trp and Phe), N-H hydrogen bonds from backbone amide groups and coupled titration effects. Cation-pi and pi-pi interactions are key contributors to the prediction of Histidine pKa values in proteins.

  4. Limited-projection-angle hybrid fluorescence molecular tomography of multiple molecules.

    PubMed

    Radrich, Karin; Mohajerani, Pouyan; Bussemer, Johanna; Schwaiger, Markus; Beer, Ambros J; Ntziachristos, Vasilis

    2014-04-01

    An advantage of fluorescence methods over other imaging modalities is the ability to concurrently resolve multiple moieties using fluorochromes emitting at different spectral regions. Simultaneous imaging of spectrally separated agents is helpful in interrogating multiple functions or establishing internal controls for accurate measurements. Herein, we investigated multimoiety imaging in the context of a limited-projection-angle hybrid fluorescence molecular tomography (FMT), and x-ray computed tomography implementation and the further registration with positron emission tomography (PET) data. Multichannel FMT systems may image fluorescent probes of varying distribution patterns. Therefore, it is possible that different channels may require different use of priors and regularization parameters. We examined the performance of automatically estimating regularization factors implementing priors, using data-driven regularization specific for limited-projection-angle schemes. We were particularly interested in identifying the implementation variations between hybrid-FMT channels due to probe distribution variation. For this reason, initial validation of the data-driven algorithm on a phantom was followed by imaging different agent distributions in animals, assuming superficial and deep seated activity. We further demonstrate the benefits of combining hybrid FMT with PET to gain multiple readings on the molecular composition of disease. PMID:24770661

  5. Biomimicry issues: the quest for sensing molecules at the origin of life using molecularly imprinter polymer

    NASA Astrophysics Data System (ADS)

    Carbonnier, Benjamin; Chehimi, Mohamed M.; Bakas, Idriss; Salmi, Zakaria; Mazerie, Isabelle; Floner, Didier; Geneste, Florence; Guerrouache, Mohamed

    The use of real time sensing analysis is becoming very popular in many applications and research areas such as, environment and agriculture for in situ monitoring of contaminants and food safety analysis, fundamental biology for studying for example protein-membrane interactions or drug discovery, health research for clinical diagnosis.[1] More recently, chip technology involving antibody-based detection system has been envisioned to search for life outside the Earth with a specific focus on Mars. [2] Sensors using such natural receptors are usually costly and suffer from the unstability of the surface-immobilized receptors. In this respect, the use of synthetic receptors appears as a very promising approach. Molecularly imprinting is undoubtedly one of the most promising approaches for designing biomimetic materials. In this respect, sensing microdevices based on molecularly imprinted polymers (MIPs) have attracted a great deal of interest over the recent years given their ability to recognize specifically and selectively molecules, proteins and even microorganisms, with excellent detection limits. MIPs can be prepared as powders, colloids and ultrathin films. The latter option is particularly interesting because it limits diffusion of the analytes to the artificial receptor sites within the sensing layers [3] and facilitates the making of nanostructured MIP grafts [4]. In addition, MIP sensing ultrathin layers are amenable to the detection of the analytes with varied transducing methods among which electrochemistry, a simple, versatile and easy to implement technique is very appealing to detect analytes concentrations in the picomolar or sub-picomolar range [5]. In this contribution, the important parameters in obtaining molecularly imprinted polymer layers grafted on gold working electrodes and exhibiting high sensitivity towards acid and base molecules are addressed. Square wave voltammetry is demonstrated to be a very powerful electroanalytical while the limit of detection of analytes can be decreased down to sub-nanomolar by controlling the MIP layers thickness. Finally, it is shown that such an approach offers potentials and opportunities for miniaturization to fulfill workspace constraints inherent to space exploration. Indeed, electrode arrays grafted with MIPs are prepared for portable sensor devices design. This work undoubtedly highlights molecularly imprinting in tandem with electrochemical detection as a very promising approach for sensing organic matter in a fast, highly sensitive and specific way. MIP-based biomimetic materials and their applications of as recognition layers within sensors are increasingly considered and it is expected that MIP will become a generic sensing technology This work is funded by the French National Research Agency (ANR) References: [1] C. Ayela, F. Roquet, L. Valera, C. Granier, L. Nicu, M. Pugnière, M. Biosensors and Bioelectronics 22 (2007) 3113. [2] M.A. Sephton, M.R. Sims, R.W. Court, D. Luong, D.C. Cullen, Planetary and Space Science 86 (2013) 66. [3] S. Lepinay, K. Khémara, M.-C. Millot, B. Carbonnier, Chem. Pap. 66 (2012) 340. [4] Y. Fuchs, O. Soppera, K. Haupt, Anal. Chim. Acta, 717 (2012) 7. [5] C. Malitesta, E. Mazzotta, R. A. Picca, A. Poma, I. Chianella, S. A. Piletsky, Anal. Bioanal. Chem. 402 (2012) 1827

  6. Laser guiding of cold molecules in a hollow optical fiber and continuous-wave cold molecular beam generation

    NASA Astrophysics Data System (ADS)

    Liu, Run-Qin; Yin, Ya-Ling; Yin, Jian-Ping

    2012-03-01

    A novel scheme for guiding arbitrary buffer-gas cooled neutral molecules in a hollow optical fiber (HOF) using a red-detuned HE11 mode is proposed and analysed theoretically. We give the electromagnetic field distribution of the HE11 mode in the HOF and calculate the optical potential of an I2 molecule, and study the molecule guiding mechanism using a classical Monte Carlo simulation. Using a 6 kW input laser, an S-shape HOF with a 2 cm curvature radius for both bends, and an input molecular beam with a transverse temperature of 0.5 K and longitudinal temperature of 5 K, we obtain a guiding efficiency of ~0.126% for the scheme, and the transverse and longitudinal temperatures of the guided molecular beam are 1.9 mK and 0.5 K, respectively.

  7. Molecular-scale quantitative charge density measurement of biological molecule by frequency modulation atomic force microscopy in aqueous solutions.

    PubMed

    Umeda, Kenichi; Kobayashi, Kei; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi

    2015-07-17

    Surface charge distributions on biological molecules in aqueous solutions are essential for the interactions between biomolecules, such as DNA condensation, antibody-antigen interactions, and enzyme reactions. There has been a significant demand for a molecular-scale charge density measurement technique for better understanding such interactions. In this paper, we present the local electric double layer (EDL) force measurements on DNA molecules in aqueous solutions using frequency modulation atomic force microscopy (FM-AFM) with a three-dimensional force mapping technique. The EDL forces measured in a 100 mM KCl solution well agreed with the theoretical EDL forces calculated using reasonable parameters, suggesting that FM-AFM can be used for molecular-scale quantitative charge density measurements on biological molecules especially in a highly concentrated electrolyte. PMID:26120025

  8. Molecular-scale quantitative charge density measurement of biological molecule by frequency modulation atomic force microscopy in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Umeda, Kenichi; Kobayashi, Kei; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi

    2015-07-01

    Surface charge distributions on biological molecules in aqueous solutions are essential for the interactions between biomolecules, such as DNA condensation, antibody-antigen interactions, and enzyme reactions. There has been a significant demand for a molecular-scale charge density measurement technique for better understanding such interactions. In this paper, we present the local electric double layer (EDL) force measurements on DNA molecules in aqueous solutions using frequency modulation atomic force microscopy (FM-AFM) with a three-dimensional force mapping technique. The EDL forces measured in a 100 mM KCl solution well agreed with the theoretical EDL forces calculated using reasonable parameters, suggesting that FM-AFM can be used for molecular-scale quantitative charge density measurements on biological molecules especially in a highly concentrated electrolyte.

  9. Angle-Resolved High-Order Above-Threshold Ionization of a Molecule: Sensitive Tool for Molecular Characterization

    SciTech Connect

    Busuladzic, M.; Gazibegovic-Busuladzic, A.; Milosevic, D. B.; Becker, W.

    2008-05-23

    The strong-field approximation for ionization of diatomic molecules by an intense laser field is generalized to include rescattering of the ionized electron off the various centers of its molecular parent ion. The resulting spectrum and its interference structure strongly depend on the symmetry of the ground state molecular orbital. For N{sub 2}, if the laser polarization is perpendicular to the molecular axis, we observe a distinct minimum in the emission spectrum, which survives focal averaging and allows determination of, e.g., the internuclear separation. In contrast, for O{sub 2}, rescattering is absent in the same situation.

  10. Non-equilibrium all-atom molecular dynamics simulations of free and tethered DNA molecules in nanochannel shear flows

    NASA Astrophysics Data System (ADS)

    Wang, Guan M.; Sandberg, William C.

    2007-04-01

    In order to gain insight into the mechanical and dynamical behaviour of free and tethered short chains of ss/ds DNA molecules in flow, and in parallel to investigate the properties of long chain molecules in flow fields, we have developed a series of quantum and molecular methods to extend the well developed equilibrium software CHARMM to handle non-equilibrium dynamics. These methods have been applied to cases of DNA molecules in shear flows in nanochannels. Biomolecules, both free and wall-tethered, have been simulated in the all-atom style in solvent-filled nanochannels. The new methods were demonstrated by carrying out NEMD simulations of free single-stranded DNA (ssDNA) molecules of 21 bases as well as double-stranded DNA (dsDNA) molecules of 21 base pairs tethered on gold surfaces in an ionic water shear flow. The tethering of the linker molecule (6-mercapto-1-hexanol) to perfect Au(111) surfaces was parametrized based on density functional theory (DFT) calculations. Force field parameters were incorporated into the CHARMM database. Gold surfaces are simulated in a Lennard-Jones style model that was fitted to the Morse potential model of bulk gold. The bonding force of attachment of the DNA molecules to the gold substrate linker molecule was computed to be up to a few nN when the DNA molecules are fully stretched at high shear rates. For the first time, we calculated the relaxation time of DNA molecules in picoseconds (ps) and the hydrodynamic force up to a few nanoNewtons (nN) per base pair in a nanochannel flow. The velocity profiles in the solvent due to the presence of the tethered DNA molecules were found to be nonlinear only at high shear flow rates. Free ssDNA molecules in a shear flow were observed to behave differently from each other depending upon their initial orientation in the flow field. Both free and tethered DNA molecules are clearly observed to be stretching, rotating and relaxing. Methods developed in this initial work can be incorporated into multiscale simulations including quantum mechanical, molecular and the microfluidic continuum regimes. The results may also be useful in extending existing macroscopic empirical models of DNA response dynamics in shear flows.

  11. Small molecule kinase inhibitors alleviate different molecular features of myotonic dystrophy type 1

    PubMed Central

    Wojciechowska, Marzena; Taylor, Katarzyna; Sobczak, Krzysztof; Napierala, Marek; Krzyzosiak, Wlodzimierz J

    2014-01-01

    Expandable (CTG)n repeats in the 3′ UTR of the DMPK gene are a cause of myotonic dystrophy type 1 (DM1), which leads to a toxic RNA gain-of-function disease. Mutant RNAs with expanded CUG repeats are retained in the nucleus and aggregate in discrete inclusions. These foci sequester splicing factors of the MBNL family and trigger upregulation of the CUGBP family of proteins resulting in the mis-splicing of their target transcripts. To date, many efforts to develop novel therapeutic strategies have been focused on disrupting the toxic nuclear foci and correcting aberrant alternative splicing via targeting mutant CUG repeats RNA; however, no effective treatment for DM1 is currently available. Herein, we present results of culturing of human DM1 myoblasts and fibroblasts with two small-molecule ATP-binding site-specific kinase inhibitors, C16 and C51, which resulted in the alleviation of the dominant-negative effects of CUG repeat expansion. Reversal of the DM1 molecular phenotype includes a reduction of the size and number of foci containing expanded CUG repeat transcripts, decreased steady-state levels of CUGBP1 protein, and consequent improvement of the aberrant alternative splicing of several pre-mRNAs misregulated in DM1. PMID:24824895

  12. Molecular dynamics of host-guest complexes of small gas molecules with calix[4]arenes.

    PubMed

    Adams, John E; Cox, Jack R; Christiano, Andrew J; Deakyne, Carol A

    2008-07-31

    The unexpected sorption of gases by a low-density p-tert-butylcalix[4]arene crystal polymorph raises fundamental questions about differential gas transport and sequestration in the organic solid state. To gain insight into the processes underlying these observations, we have used molecular dynamics simulations, augmented with calculations of potentials of mean force, to investigate the stability of isolated host-guest complexes and the relationship between the dynamics of these complexes and the dynamics of a solvated host molecule. Thermal fluctuations of the calixarenes themselves are found to be consistent with proposed mechanisms for gas entry into the host cavities, while relative host-guest stabilities correlate well with experimental absorption-desorption isotherms in some cases (CO2 and CH4) but not in others (C2H2). In these isolated systems, stable complexes characteristically form when the attractive interactions of the guest with the ring of negative charge density on the inner surface of the host cavity are not disrupted by thermal motion. The experimentally observed efficient uptake of gases such as C2H2 by the host crystals suggests, however, that stabilization of host-guest complexes in some systems may derive from dynamical constraints imposed by the crystal lattice. PMID:18593133

  13. Resonance enhanced multiphoton ionization spectra of molecules and molecular fragments. Annual technical report

    SciTech Connect

    1997-07-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes pulsed laser radiation to prepare a molecule in an excited state via absorption of one or more photons and to subsequently ionize that state before it can decay. A remarkable feature of REMPI, and one that is very basic to many of its applications and uses, is that the very narrow bandwidth of the {open_quotes}pump{close_quotes} laser makes it possible to select a specific vibrational and rotational level in the initial state and to prepare the excited state of interest in a single vibrational and rotational level. Thus, by suitable choice of the photon pump transition, it is possible to selectively ionize a species of interest without ionizing any other species that might be present. This feature makes REMPI one of the most powerful tools for ultrasensitive detection of species. With REMPI it is also possible to study the photoionization dynamics of a single rotational level of an excited electronic state. Such state-resolved studies can certainly be expected to provide significant insight into the underlying dynamics of molecular photoionization.

  14. Photoisomerization dynamics of a rhodopsin-based molecule (potential molecular switch) with high quantum yields

    NASA Astrophysics Data System (ADS)

    Allen, Roland; Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li

    2015-03-01

    It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-Methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al. We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C =C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Research Fund for the Doctoral Program of Higher Education of China; Fundamental Research Funds for the Central Universities; Robert A. Welch Foundation; National Natural Science Foundation of China.

  15. Mosaic cellular patterning in the nose: Adhesion molecules give their two scents.

    PubMed

    Beaudoin, Gerard M J

    2016-02-29

    The sense of smell is mediated by the olfactory epithelium, which is composed of a mosaic pattern of olfactory sensory cells surrounded by supporting cells. In this issue, Katsunuma et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201509020) show that the differential expression of nectins and cadherins establishes this pattern. PMID:26929448

  16. Comparison of DNA hydration patterns obtained using two distinct computational methods, molecular dynamics simulation and three-dimensional reference interaction site model theory

    NASA Astrophysics Data System (ADS)

    Yonetani, Yoshiteru; Maruyama, Yutaka; Hirata, Fumio; Kono, Hidetoshi

    2008-05-01

    Because proteins and DNA interact with each other and with various small molecules in the presence of water molecules, we cannot ignore their hydration when discussing their structural and energetic properties. Although high-resolution crystal structure analyses have given us a view of tightly bound water molecules on their surface, the structural data are still insufficient to capture the detailed configurations of water molecules around the surface of these biomolecules. Thanks to the invention of various computational algorithms, computer simulations can now provide an atomic view of hydration. Here, we describe the apparent patterns of DNA hydration calculated by using two different computational methods: Molecular dynamics (MD) simulation and three-dimensional reference interaction site model (3D-RISM) theory. Both methods are promising for obtaining hydration properties, but until now there have been no thorough comparisons of the calculated three-dimensional distributions of hydrating water. This rigorous comparison showed that MD and 3D-RISM provide essentially similar hydration patterns when there is sufficient sampling time for MD and a sufficient number of conformations to describe molecular flexibility for 3D-RISM. This suggests that these two computational methods can be used to complement one another when evaluating the reliability of the calculated hydration patterns.

  17. Hunting complex differential gene interaction patterns across molecular contexts

    PubMed Central

    Song, Mingzhou; Zhang, Yang; Katzaroff, Alexia J.; Edgar, Bruce A.; Buttitta, Laura

    2014-01-01

    Heterogeneity in genetic networks across different signaling molecular contexts can suggest molecular regulatory mechanisms. Here we describe a comparative chi-square analysis (CPχ2) method, considerably more flexible and effective than other alternatives, to screen large gene expression data sets for conserved and differential interactions. CPχ2 decomposes interactions across conditions to assess homogeneity and heterogeneity. Theoretically, we prove an asymptotic chi-square null distribution for the interaction heterogeneity statistic. Empirically, on synthetic yeast cell cycle data, CPχ2 achieved much higher statistical power in detecting differential networks than alternative approaches. We applied CPχ2 to Drosophila melanogaster wing gene expression arrays collected under normal conditions, and conditions with overexpressed E2F and Cabut, two transcription factor complexes that promote ectopic cell cycling. The resulting differential networks suggest a mechanism by which E2F and Cabut regulate distinct gene interactions, while still sharing a small core network. Thus, CPχ2 is sensitive in detecting network rewiring, useful in comparing related biological systems. PMID:24482443

  18. Ion and molecule sensors using molecular recognition in luminescent, conductive polymers. FY 1997 year-end progress report

    SciTech Connect

    Wasielewski, M.R.

    1997-01-01

    'The purpose of this project is to use molecular recognition strategies to develop sensor technology based on luminescent, conductive polymers that contain sites for binding specific molecules or ions in the presence of related molecules or ions. Selective binding of a particular molecule or ion of interest to these polymers will result in a large change in their luminescence and/or conductivity, which can be used to both qualitatively and quantitatively sense the presence of the bound molecules or ions. The main thrusts and accomplishments in the first year of this project involve developing polymer syntheses that yield conjugated polymers to which a wide variety of ligands for metal ion binding can be readily incorporated.'

  19. Continuously Adjustable, Molecular-Sieving "Gate" on 5A Zeolite for Distinguishing Small Organic Molecules by Size.

    PubMed

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-01-01

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01?nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving "gate" at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01?nm size differences were effectively distinguished via appropriate misalignment. This novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation. PMID:26358480

  20. Continuously Adjustable, Molecular-Sieving Gate on 5A Zeolite for Distinguishing Small Organic Molecules by Size

    PubMed Central

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-01-01

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01?nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving gate at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01?nm size differences were effectively distinguished via appropriate misalignment. This novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation. PMID:26358480

  1. Single-molecule imaging of organic semiconductors: Toward nanoscale insights into photophysics and molecular packing

    NASA Astrophysics Data System (ADS)

    Shepherd, W. E. B.; Grollman, R.; Robertson, A.; Paudel, K.; Hallani, R.; Loth, M. A.; Anthony, J. E.; Ostroverkhova, O.

    2015-06-01

    Photophysical properties of functionalized anthradithiophene (ADT) and pentacene (Pn) derivatives, as well as energy and charge transfer properties of donor-acceptor (D/A) pairs of these derivatives, are presented. The molecules studied were imaged on the single-molecule level in a polymeric and in a functionalized benzothiophene (BTBTB) crystalline host using room-temperature wide-field epifluorescence microscopy. The BTBTB host imposed orientational constraints on the guest molecules, depending on their functionalization. Flexibility of functionalization of both guest (ADT, Pn) and host (BTBTB) molecules can be used for systematic studies of nanoscale morphology and photophysics of D/A organic semiconductor bulk heterojunctions using single-molecule fluorescence microscopy.

  2. Real-Space Imaging of Molecular Structure by Single-Molecule Inelastic Tunneling Probe

    NASA Astrophysics Data System (ADS)

    Han, Zhumin; Chiang, Chi-Lun; Xu, Chen; Ho, Wilson

    2014-03-01

    The scanning tunneling microscope is one of the most powerful tools to perform real space imaging of the electronic, magnetic, optical, and vibrational signatures of a single molecule. However, the spatial distributions of these signatures do not always relate directly to the geometric structures of the molecules. In this study, a CO molecule is transferred from the surface to a STM tip. The energy and intensity of the hindered translational mode of the CO vary when the tip is scanned across an adsorbed molecule (such as cobalt phthalocyanine). By monitoring these variations in space, we are able to resolve the geometric structure of the molecule and even subtle intramolecular and intermolecular interactions.

  3. Scanning tunneling microscopy of individual molecules: beyond imaging

    NASA Astrophysics Data System (ADS)

    Gimzewski, J. K.; Jung, T. A.; Cuberes, M. T.; Schlittler, R. R.

    1997-10-01

    We discuss several concepts of handling molecule-adsorbent and hetero-molecular structures on an individual molecular basis. Molecular recognition using scanning tunneling microscopy underpins the fundamental progress made. "Beyond imaging" implies repositioning, patterning, and exploring the functionality of individual molecules. Using porphyrin- and fullerene-based systems, we discuss issues such as conformational analysis, supramolecular systems, patterning, and the fabrication of a molecular adding machine. These examples form the beginnings of a bottom-up approach to fabrication and "sciengineering" from a molecule-by-molecule perspective.

  4. Opening the way to molecular cycloaddition of large molecules on supported silicene.

    PubMed

    Stephan, Rgis; Hanf, Marie-Christine; Sonnet, Philippe

    2015-10-21

    Within density functional theory, the adsorption of the H2Pc molecule on the (3 3) silicene/(4 4) Ag(111) surface has been investigated. We observe an electronic redistribution in the central macrocycle of the H2Pc molecule and the formation of two Si - N covalent bonds between the molecule and the silicene, in agreement with a cycloaddition reaction. However, while on SiC(0001)(3 3) or Si(111)(?3?3)R30-boron, the H2Pc molecule remains planar, and the H2Pc molecule takes a butterfly conformation on the silicene/Ag substrate due to an electrostatic or a polarization repulsion between the molecule and the silicene. Our study opens a way to the experimental adsorption of large organic molecules on supported silicene. PMID:26493921

  5. Opening the way to molecular cycloaddition of large molecules on supported silicene

    NASA Astrophysics Data System (ADS)

    Stephan, Régis; Hanf, Marie-Christine; Sonnet, Philippe

    2015-10-01

    Within density functional theory, the adsorption of the H2Pc molecule on the (3 × 3) silicene/(4 × 4) Ag(111) surface has been investigated. We observe an electronic redistribution in the central macrocycle of the H2Pc molecule and the formation of two Si - N covalent bonds between the molecule and the silicene, in agreement with a cycloaddition reaction. However, while on SiC(0001)(3 × 3) or Si ( 111 ) ( √{ 3 } × √{ 3 } ) R 30 °-boron, the H2Pc molecule remains planar, and the H2Pc molecule takes a butterfly conformation on the silicene/Ag substrate due to an electrostatic or a polarization repulsion between the molecule and the silicene. Our study opens a way to the experimental adsorption of large organic molecules on supported silicene.

  6. A Purification Method for a Molecular Complex in Which a Scaffold Molecule Is Fully Loaded with Heterogeneous Molecules

    PubMed Central

    Ohuchi, Shoji J.; Sagawa, Fumihiko; Ohno, Hirohisa; Inoue, Tan

    2015-01-01

    An affinity resin-based pull-down method is convenient for the purification of biochemical materials. However, its use is difficult for the isolation of a molecular complex fully loaded with multiple components from a reaction mixture containing the starting materials and intermediate products. To overcome this problem, we have developed a new purification procedure that depends on sequential elimination of the residues. In practice, two affinity resins were used for purifying a triangular-shaped RNP (RNA-protein complex) consisting of three ribosomal proteins (L7Ae) bound to an RNA scaffold. First, a resin with immobilized L7Ae protein captured the incomplete RNP complexes and the free RNA scaffold. Next, another resin with an immobilized chemically modified RNA of a derivative of Box C/D motif, the binding partner of L7Ae, was used to capture free protein. The complete triangular RNP was successfully purified from the mixture by these two steps. Obviously, the purified triangular RNP displaying three protein-binding peptides exhibited an improved performance when compared with the unrefined product. Conceptually, this purification procedure should be applicable for the purification of a variety of complexes consisting of multiple components other than RNP. PMID:25781936

  7. Patterning of polypyrrole using a fluoropolymer as an adsorption-protecting molecule

    NASA Astrophysics Data System (ADS)

    Kwon, Sunil; Ha, Jong-Wook; Noh, Jiwhan; Lee, Sang-Yup

    2010-10-01

    Patterning of the conducting polymer polypyrrole (PPy) was achieved using perfluoropolyether (PFPE) as a mask material. The fluoropolymer PFPE has both hydrophobic and oleophobic properties that allowed the generation of passivated patterns against PPy deposition. We exploited these properties to achieve the selective micropattern deposition of PPy, by simple chemical oxidation in an aqueous solution. Using a microcontact printing method, circle patterns with exposed carboxyl groups were prepared, while other region was protected by PFPE. Chemical oxidation of PPy on the patterned substrate resulted in selective deposition of PPy onto only the carboxylate-terminated regions, with little deposition on the PFPE layer. Cross-sectional analysis of the pattern revealed that the PFPE layer would form a hole-like structure around the carboxylate-terminated surfaces, with PPy deposition only in the holes. The PFPE layer had little influence on surface smoothness, compared to other self-assembled monolayers. These results suggest that PFPE can be used as a protective material for the surface modification and patterning of various materials.

  8. A tripodal molecule on a gold surface: orientation-dependent coupling and electronic properties of the molecular legs.

    PubMed

    Lukas, Maya; Dössel, Kerrin; Schramm, Alexandrina; Fuhr, Olaf; Stroh, Christophe; Mayor, Marcel; Fink, Karin; v Löhneysen, Hilbert

    2013-07-23

    The realization of molecular electronics demands a detailed knowledge of the correlation between chemical groups and electronic function. It has become obvious during the last years that the conformation of a molecule and its coupling to the connecting electrodes plays a crucial role in its conductance behavior and its electronic function, e.g., as a switch. Knowledge about these relationships is therefore essential for future design of molecular electronic building blocks. We present a new three-dimensional molecule, consisting of three identical molecular wires connected to a headgroup. Due to the well-defined spatial arrangement of the molecule in a nonplanar geometry, it is possible to investigate the conductance behavior of these wires with respect to their position and coupling to the surface electrode with the submolecular resolution of a scanning tunneling microscope. The experimental findings are supported by calculations of the electronic structure and conformation of the molecule on the surface by density functional theory with dispersion corrections. PMID:23790078

  9. Monitoring patterned enzymatic polymerization on DNA origami at single-molecule level

    NASA Astrophysics Data System (ADS)

    Okholm, A. H.; Aslan, H.; Besenbacher, F.; Dong, M.; Kjems, J.

    2015-06-01

    DNA origami has been used to orchestrate reactions with nano-precision using a variety of biomolecules. Here, the dynamics of albumin-assisted, localized single-molecule DNA polymerization by terminal deoxynucleotidyl transferase on a 2D DNA origami are monitored using AFM in liquid. Direct visualization of the surface activity revealed the mechanics of growth.DNA origami has been used to orchestrate reactions with nano-precision using a variety of biomolecules. Here, the dynamics of albumin-assisted, localized single-molecule DNA polymerization by terminal deoxynucleotidyl transferase on a 2D DNA origami are monitored using AFM in liquid. Direct visualization of the surface activity revealed the mechanics of growth. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01945a

  10. Molecule-pharmacophore superpositioning and pattern matching in computational drug design.

    PubMed

    Wolber, Gerhard; Seidel, Thomas; Bendix, Fabian; Langer, Thierry

    2008-01-01

    Three-dimensional (3D) pharmacophore modeling is a technique for describing the interaction of a small molecule ligand with a macromolecular target. Since chemical features in a pharmacophore model are well known and highly transparent for medicinal chemists, these models are intuitively understandable and have been increasingly successful in computational drug discovery in the past few years. The performance and applicability of pharmacophore modeling depends on two main factors: the definition and placement of pharmacophoric features and the alignment techniques used to overlay 3D pharmacophore models and small molecules. An overview of key technologies and latest developments in the area of 3D pharmacophores is given and provides insight into different approaches as implemented by the 3D pharmacophore modeling packages like Catalyst, MOE, Phase and LigandScout. PMID:18190860

  11. Dynamical behavior of one-dimensional water molecule chains in zeolites: Nanosecond time-scale molecular dynamics simulations of bikitaite

    NASA Astrophysics Data System (ADS)

    Demontis, Pierfranco; Stara, Giovanna; Suffritti, Giuseppe B.

    2004-05-01

    Nanosecond scale molecular dynamics simulations of the behavior of the one-dimensional water molecule chains adsorbed in the parallel nanochannels of bikitaite, a rare lithium containing zeolite, were performed at different temperatures and for the fully and partially hydrated material. New empirical potential functions have been developed for representing lithium-water interactions. The structure and the vibrational spectrum of bikitaite were in agreement both with experimental data and Car-Parrinello molecular dynamics results. Classical molecular dynamics simulations were extended to the nanosecond time scale in order to study the flip motion of water molecules around the hydrogen bonds connecting adjacent molecules in the chains, which has been observed by NMR experiments, and the dehydration mechanism at high temperature. Computed relaxation times of the flip motion follow the Arrhenius behavior found experimentally, but the activation energy of the simulated system is slightly underestimated. Based on the results of the simulations, it may be suggested that the dehydration proceeds by a defect-driven stepwise diffusion. The diffusive mechanism appears as a single-file motion: the molecules never pass one another, even at temperatures as high as about 1000 K, nor can they switch between different channels. However, the mean square displacement (MSD) of the molecules, computed with respect to the center of mass of the simulated system, shows an irregular trend from which the single-file diffusion cannot be clearly evidenced. If the MSDs are evaluated with respect to the center of mass of the molecules hosted in each channel, the expected dependence on the square root of time finally appears.

  12. Genetic basis of dental agenesis - molecular genetics patterning clinical dentistry

    PubMed Central

    Goswami, Mridula; Chhabra, Anuj

    2014-01-01

    Tooth agenesis is one of the most common congenital malformations in humans. Hypodontia can either occur as an isolated condition (non-syndromic hypodontia) or can be associated with a syndrome (syndromic hypodontia), highlighting the heterogeneity of the condition. Though much progress has been made to identify the developmental basis of tooth formation, knowledge of the etiological basis of inherited tooth loss is still lacking. To date, the mutation spectra of non-syndromic form of familial and sporadic tooth agenesis in humans have revealed defects in various such genes that encode transcription factors, MSX1 and PAX9 or genes that code for a protein involved in canonical Wnt signaling (AXIN2), and a transmembrane receptor of fibroblast growth factors (FGFR1). The aim of this paper is to review the current literature on the molecular mechanisms responsible for selective hypodontia in humans and to present a detailed overview of causative genes and syndromes associated with hypodontia. Key words:Tooth agenesis, hypodontia, growth factors, mutations. PMID:24121910

  13. A molecular dynamics study of the relaxation of an excited benzene molecule chemisorbed to the surface of crystalline RDX

    NASA Astrophysics Data System (ADS)

    Pereverzev, Andrey; Sewell, Thomas D.; Piryatinski, Andrei

    2015-06-01

    Molecular dynamics simulations with a full-dimensional non-reactive potential-energy surface were used to study energy transfer from an excited benzene molecule covalently bonded to the surface of RDX crystal at 298 K and atmospheric pressure. The crystal is treated as a periodic, freestanding thin film approximately 5 nm thick. Initial conditions for the excited molecule were obtained from quantum mechanical calculations. Dominant energy redistribution pathways both in the space of atomic coordinates and in the space of crystal normal modes will be reported. Theoretical models of energy relaxation processes in this and similar systems will be discussed.

  14. Electronic transport in biphenyl single-molecule junctions with carbon nanotubes electrodes: The role of molecular conformation and chirality

    SciTech Connect

    Brito Silva, C. A. Jr.; Granhen, E. R.; Silva, S. J. S. da; Leal, J. F. P.; Del Nero, J.; Pinheiro, F. A.

    2010-08-15

    We investigate, by means of ab initio calculations, electronic transport in molecular junctions composed of a biphenyl molecule attached to metallic carbon nanotubes. We find that the conductance is proportional to cos{sup 2} {theta}, with {theta} the angle between phenyl rings, when the Fermi level of the contacts lies within the frontier molecular orbitals energy gap. This result, which agrees with experiments in biphenyl junctions with nonorganic contacts, suggests that the cos{sup 2} {theta} law has a more general applicability, irrespective of the nature of the electrodes. We calculate the geometrical degree of chirality of the junction, which only depends on the atomic positions, and demonstrate that it is not only proportional to cos{sup 2} {theta} but also is strongly correlated with the current through the system. These results indicate that molecular conformation plays the preponderant role in determining transport properties of biphenyl-carbon nanotubes molecular junctions.

  15. A two-color tunable infrared/vacuum ultraviolet spectrometer for high-resolution spectroscopy of molecules in molecular beams

    SciTech Connect

    Woodward, Jonathan R.; Watanabe, Hirokazu; Ishiuchi, Shun-Ichi; Fujii, Masaaki

    2012-01-15

    We describe here the key technical elements of a two-color tunable IR/VUV photoionization TOF mass spectrometer system which allows a wide-range of high-resolution experiments to be performed on a diverse range of cold molecules and clusters in a molecular beam. In particular we highlight the methods we have applied to provide efficient wavelength separation of the VUV radiation from the longer wavelength components used to generate it and discuss a number of systems that we have studied with the instrument which highlight its flexibility for use in the study of molecular spectroscopy.

  16. Molecular model of biaxial ordering in nematic liquid crystals composed of flat molecules with four mesogenic groups

    NASA Astrophysics Data System (ADS)

    Gorkunov, M. V.; Osipov, M. A.; Kocot, A.; Vij, J. K.

    2010-06-01

    Relative stability of uniaxial and biaxial nematic phases is analyzed in a model nematic liquid crystal composed of flat molecules of C2h symmetry with four mesogenic groups rigidly linked to the same center. The generalized effective quadrupole mean-field potential is proposed and its constants are evaluated numerically for the pair intermolecular potential based on Gay-Berne interaction between mesogenic groups. The dependencies of the constants on molecular shape parameters are systematically analyzed. Order parameters of the uniaxial and biaxial nematic phases are evaluated by direct minimization of the free energy at different temperatures. The corresponding phase diagrams are obtained enabling one to study the effects of molecular model parameters on the stability regions of uniaxial and biaxial phases. The results are used to clarify the nature of experimentally observed biaxial ordering in nematic liquid crystals composed of tetrapode molecules with the same symmetry.

  17. Molecular orientation effect on the differential cross sections for the electron-impact double ionization of oriented water molecules

    SciTech Connect

    Champion, C.; Dal Cappello, C.; Oubaziz, D.; Aouchiche, H.; Popov, Yu. V.

    2010-03-15

    Double ionization of isolated water molecules fixed in space is here investigated in a theoretical approach based on the first Born approximation. Secondary electron angular distributions are reported for particular (e,3e) kinematical conditions and compared in terms of shape and magnitude. Strong dependence of the fivefold differential cross sections on the molecular target orientation is clearly observed in (e,3-1e) as well as (e,3e) channels. Furthermore, for the major part of the kinematics considered, we identified the different mechanisms involved in the double ionization of water molecule, namely, the direct shake-off process as well as the two-step1 process. They are both discussed and analyzed with respect to the molecular target orientation.

  18. A graphene-based affinity nanosensor for detection of low-charge and low-molecular-weight molecules

    NASA Astrophysics Data System (ADS)

    Zhu, Yibo; Hao, Yufeng; Adogla, Enoch A.; Yan, Jing; Li, Dachao; Xu, Kexin; Wang, Qian; Hone, James; Lin, Qiao

    2016-03-01

    This paper presents a graphene nanosensor for affinity-based detection of low-charge, low-molecular-weight molecules, using glucose as a representative. The sensor is capable of measuring glucose concentration in a practically relevant range of 2 μM to 25 mM, and can potentially be used in noninvasive glucose monitoring.This paper presents a graphene nanosensor for affinity-based detection of low-charge, low-molecular-weight molecules, using glucose as a representative. The sensor is capable of measuring glucose concentration in a practically relevant range of 2 μM to 25 mM, and can potentially be used in noninvasive glucose monitoring. Electronic supplementary information (ESI) available: Further details on experiments, materials, fabrication, and data analysis. See DOI: 10.1039/c5nr08866f

  19. Single Molecule PCR Reveals Similar Patterns of Non-Homologous DSB Repair in Tobacco and Arabidopsis

    PubMed Central

    Lloyd, Andrew H.; Wang, Dong; Timmis, Jeremy N.

    2012-01-01

    DNA double strand breaks (DSBs) occur constantly in eukaryotes. These potentially lethal DNA lesions are repaired efficiently by two major DSB repair pathways: homologous recombination and non-homologous end joining (NHEJ). We investigated NHEJ in Arabidopsis thaliana and tobacco (Nicotiana tabacum) by introducing DNA double-strand breaks through inducible expression of I-SceI, followed by amplification of individual repair junction sequences by single-molecule PCR. Using this process over 300 NHEJ repair junctions were analysed in each species. In contrast to previously published variation in DSB repair between Arabidopsis and tobacco, the two species displayed similar DSB repair profiles in our experiments. The majority of repair events resulted in no loss of sequence and small (120 bp) deletions occurred at a minority (2545%) of repair junctions. Approximately ?1.5% of the observed repair events contained larger deletions (>20 bp) and a similar percentage contained insertions. Strikingly, insertion events in tobacco were associated with large genomic deletions at the site of the DSB that resulted in increased micro-homology at the sequence junctions suggesting the involvement of a non-classical NHEJ repair pathway. The generation of DSBs through inducible expression of I-SceI, in combination with single molecule PCR, provides an effective and efficient method for analysis of individual repair junctions and will prove a useful tool in the analysis of NHEJ. PMID:22389691

  20. Plasma ion-induced molecular ejection on the Galilean satellites - Energies of ejected molecules

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Boring, J. W.; Reimann, C. T.; Barton, L. A.; Sieveka, E. M.; Garrett, J. W.; Farmer, K. R.; Brown, W. L.; Lanzerotti, L. J.

    1983-01-01

    First measurements of the energy of ejection of molecules from icy surfaces by fast incident ions are presented. Such results are needed in discussions of the Jovian and Saturnian plasma interactions with the icy satellites. In this letter parameters describing the ion-induced ejection and redistribution of molecules on the Galilean satellites are recalculated in light of the new laboratory data.

  1. H2 Molecular Clusters with Embedded Molecules and Atoms as the Source of the Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Bernstein, L. S.; Clark, F. O.; Lynch, D. K.

    2013-05-01

    We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ("seed"), embedded in a single-layer shell of H2 molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H2 molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H2 shell. We refer to these clusters as contaminated H2 clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectral profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from ~centimeter-sized, dirty H2 ice balls, called contaminated H2 ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H2 molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the ~10-100 GHz spectral region.

  2. Resonance enhanced multiphoton ionization spectra of molecules and molecular fragments. Annual technical report, March 1991--February 1992

    SciTech Connect

    1993-12-31

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes pulsed laser radiation to prepare a molecule in an excited state via absorption of one or more photons and to subsequently ionize that state before it can decay. The overall objective of this effort is to carry out theoretical studies of these REMPI processes in molecules and molecular fragments which are designed to provide a robust analysis and prediction of key spectral features of interest in several experimental studies and applications of this technique. A specific and very important objective of the effort is to predict the vibrational and rotational ion distributions which result from REMPI of representative molecules and to understand the underlying mechanisms that give use to these ion distributions. The author highlights progress made during this period.

  3. In situ formation and photo patterning of emissive quantum dots in small organic molecules.

    PubMed

    Bansal, Ashu K; Sajjad, Muhammad T; Antolini, Francesco; Stroea, Lenuta; Ge?ys, Paulius; Raciukaitis, Gediminas; Andr, Pascal; Hirzer, Andreas; Schmidt, Volker; Ortolani, Luca; Toffanin, Stefano; Allard, Sybille; Scherf, Ullrich; Samuel, Ifor D W

    2015-07-01

    Nanostructured composites of inorganic and organic materials are attracting extensive interest for electronic and optoelectronic device applications. Here we report a novel method for the fabrication and patterning of metal selenide nanoparticles in organic semiconductor films that is compatible with solution processable large area device manufacturing. Our approach is based upon the controlled in situ decomposition of a cadmium selenide precursor complex in a film of the electron transporting material 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBI) by thermal and optical methods. In particular, we show that the photoluminescence quantum yield (PLQY) of the thermally converted CdSe quantum dots (QDs) in the TPBI film is up to 15%. We also show that laser illumination can form the QDs from the precursor. This is an important result as it enables direct laser patterning (DLP) of the QDs. DLP was performed on these nanocomposites using a picosecond laser. Confocal microscopy shows the formation of emissive QDs after laser irradiation. The optical and structural properties of the QDs were also analysed by means of UV-Vis, PL spectroscopy and transmission electron microscopy (TEM). The results show that the QDs are well distributed across the film and their emission can be tuned over a wide range by varying the temperature or irradiated laser power on the blend films. Our findings provide a route to the low cost patterning of hybrid electroluminescent devices. PMID:26062105

  4. In situ formation and photo patterning of emissive quantum dots in small organic molecules

    NASA Astrophysics Data System (ADS)

    Bansal, Ashu K.; Sajjad, Muhammad T.; Antolini, Francesco; Stroea, Lenuta; Gečys, Paulius; Raciukaitis, Gediminas; André, Pascal; Hirzer, Andreas; Schmidt, Volker; Ortolani, Luca; Toffanin, Stefano; Allard, Sybille; Scherf, Ullrich; Samuel, Ifor D. W.

    2015-06-01

    Nanostructured composites of inorganic and organic materials are attracting extensive interest for electronic and optoelectronic device applications. Here we report a novel method for the fabrication and patterning of metal selenide nanoparticles in organic semiconductor films that is compatible with solution processable large area device manufacturing. Our approach is based upon the controlled in situ decomposition of a cadmium selenide precursor complex in a film of the electron transporting material 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBI) by thermal and optical methods. In particular, we show that the photoluminescence quantum yield (PLQY) of the thermally converted CdSe quantum dots (QDs) in the TPBI film is up to 15%. We also show that laser illumination can form the QDs from the precursor. This is an important result as it enables direct laser patterning (DLP) of the QDs. DLP was performed on these nanocomposites using a picosecond laser. Confocal microscopy shows the formation of emissive QDs after laser irradiation. The optical and structural properties of the QDs were also analysed by means of UV-Vis, PL spectroscopy and transmission electron microscopy (TEM). The results show that the QDs are well distributed across the film and their emission can be tuned over a wide range by varying the temperature or irradiated laser power on the blend films. Our findings provide a route to the low cost patterning of hybrid electroluminescent devices.

  5. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm

    NASA Astrophysics Data System (ADS)

    Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Markevicius, Augustinas; Solà, Jordi

    2016-02-01

    Modern-day factory assembly lines often feature robots that pick up, reposition and connect components in a programmed manner. The idea of manipulating molecular fragments in a similar way has to date only been explored using biological building blocks (specifically DNA). Here, we report on a wholly artificial small-molecule robotic arm capable of selectively transporting a molecular cargo in either direction between two spatially distinct, chemically similar, sites on a molecular platform. The arm picks up/releases a 3-mercaptopropanehydrazide cargo by formation/breakage of a disulfide bond, while dynamic hydrazone chemistry controls the cargo binding to the platform. Transport is controlled by selectively inducing conformational and configurational changes within an embedded hydrazone rotary switch that steers the robotic arm. In a three-stage operation, 79–85% of 3-mercaptopropanehydrazide molecules are transported in either (chosen) direction between the two platform sites, without the cargo at any time fully dissociating from the machine nor exchanging with other molecules in the bulk.

  6. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm.

    PubMed

    Kassem, Salma; Lee, Alan T L; Leigh, David A; Markevicius, Augustinas; Solà, Jordi

    2016-02-01

    Modern-day factory assembly lines often feature robots that pick up, reposition and connect components in a programmed manner. The idea of manipulating molecular fragments in a similar way has to date only been explored using biological building blocks (specifically DNA). Here, we report on a wholly artificial small-molecule robotic arm capable of selectively transporting a molecular cargo in either direction between two spatially distinct, chemically similar, sites on a molecular platform. The arm picks up/releases a 3-mercaptopropanehydrazide cargo by formation/breakage of a disulfide bond, while dynamic hydrazone chemistry controls the cargo binding to the platform. Transport is controlled by selectively inducing conformational and configurational changes within an embedded hydrazone rotary switch that steers the robotic arm. In a three-stage operation, 79-85% of 3-mercaptopropanehydrazide molecules are transported in either (chosen) direction between the two platform sites, without the cargo at any time fully dissociating from the machine nor exchanging with other molecules in the bulk. PMID:26791896

  7. PTX3, a humoral pattern recognition molecule at the interface between microbe and matrix recognition.

    PubMed

    Garlanda, Cecilia; Jaillon, Sebastien; Doni, Andrea; Bottazzi, Barbara; Mantovani, Alberto

    2016-02-01

    Innate immunity consists of a cellular and a humoral arm. PTX3 is a fluid patter recognition molecule (PRM) with antibody-like properties. Gene targeted mice and genetic associations in humans suggest that PTX3 plays a non-redundant role in resistance against selected pathogens (e.g. Aspergillus fumigatus, Pseudomonas aeruginosa, uropathogenic Escherichia coli) and in the regulation of inflammation. PTX3 acts as an extrinsic oncosuppressor by taming complement elicited tumor-promoting inflammation. Recent results indicate that, by interacting with provisional matrix components, PTX3 contributes to the orchestration of tissue repair. An acidic pH sets PTX3 in a tissue repair mode, while retaining anti-microbial recognition. Based on these data and scattered information on humoral PRM and matrix components, we surmise that matrix and microbial recognition are related functions in evolution. PMID:26650391

  8. Molecular analysis of different classes of RNA molecules from formalin-fixed paraffin-embedded autoptic tissues: a pilot study.

    PubMed

    Muciaccia, Barbara; Vico, Carmen; Aromatario, Mariarosaria; Fazi, Francesco; Cecchi, Rossana

    2015-01-01

    For a long time, it has been thought that fresh and frozen tissues are the only possible source of biological material useful to extract nucleic acids suitable for downstream molecular analysis. Recently, for forensic purpose such as personal identification, also fixed tissues have been used to recover DNA molecules, whereas RNA extracted from such material is still considered too degraded for gene expression studies. In the present pilot study, we evaluated the possibility to use forensic formalin-fixed paraffin-embedded (FFPE) samples, collected at autopsy at different postmortem intervals (PMI) from four individuals, to perform advanced molecular analyses. In particular, we performed qualitative and quantitative analyses of total RNAs extracted from different FFPE tissues and put expression profiles in relation with the organ type and the duration of PMI. Different classes of RNA molecular targets were studied by real-time quantitative RT-PCR. We report molecular evidence that small RNAs are the only RNA molecules still detectable in all the FFPE autoptic tissues. In particular, microRNAs (miRNAs) represent a consistent, stable, and well-preserved molecular target detectable even from tissue sources displaying signs of ongoing putrefaction at autopsy. In this pilot study, we show that miRNAs could represent a highly sensitive and potentially useful forensic marker. Amplification of specific miRNAs using paraffin-embedded blocks could facilitate retrospective molecular analysis using specific forensic-archived tissues chosen as most suitable according to PMI, and this approach would address molecular evidence in forensic cases in which fresh or frozen material is no longer available. PMID:25135750

  9. Oxidation-Specific Epitopes are Danger Associated Molecular Patterns Recognized by Pattern Recognition Receptors of Innate Immunity

    PubMed Central

    Miller, Yury I.; Choi, Soo-Ho; Wiesner, Philipp; Fang, Longhou; Harkewicz, Richard; Hartvigsen, Karsten; Boullier, Agns; Gonen, Ayelet; Diehl, Cody J.; Que, Xuchu; Montano, Erica; Shaw, Peter X.; Tsimikas, Sotirios; Binder, Christoph J.; Witztum, Joseph L.

    2010-01-01

    Oxidation reactions are vital parts of metabolism and signal transduction. However, they also produce reactive oxygen species, which damage lipids, proteins and DNA, generating oxidation-specific epitopes. In this review, we will discuss the hypothesis that such common oxidation-specific epitopes are a major target of innate immunity, recognized by a variety of pattern recognition receptors (PRRs). By analogy with microbial pathogen associated molecular patterns (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered to represent danger (or damage) associated molecular patterns (DAMPs). We also argue that oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the primary evolutionary pressure for the selection of such PRRs. Further, because many PAMPs on microbes share molecular identity and/or mimicry with oxidation-specific epitopes, such PAMPs provided a strong secondary selecting pressure for the same set of oxidation-specific PRRs as well. Because lipid peroxidation is ubiquitous and a major component of the inflammatory state associated with atherosclerosis, the understanding that oxidation-specific epitopes are DAMPs, and thus the target of multiple arcs of innate immunity, provides novel insights into the pathogenesis of atherosclerosis. As examples, we show that both cellular and soluble PRRs, such as CD36, toll-like receptor-4, natural antibodies, and CRP recognize common oxidation-specific DAMPs, such as oxidized phospholipids and oxidized cholesteryl esters, and mediate a variety of immune responses, from expression of proinflammatory genes to excessive intracellular lipoprotein accumulation to atheroprotective humoral immunity. These insights may lead to improved understanding of inflammation and atherogenesis and suggest new approaches to diagnosis and therapy. PMID:21252151

  10. A molecular dynamics study of Hras-GTP and GDP complexes: The properties of water molecules around guanine nucleotide

    NASA Astrophysics Data System (ADS)

    Miyakawa, T.; Morikawa, R.; Takasu, M.; Sugimori, K.; Kawaguchi, K.; Saito, H.; Nagao, H.

    2013-02-01

    We study the structures of Hras-GTP and Hras-GDP complexes in water in order to investigate the mechanism of hydrolysis of GTP in the Hras-GTP complex. Understanding of the mechanism of hydrolysis of GTP in the Hras-GTP complex plays a key role in overcoming the human cancer. We performed molecular dynamics (MD) simulations of Hras-GTP complex and Hras-GDP complex in water using AMBER03 parameters and our calculated parameters around Mg2+. Using the trajectories of the MD simulations, we calculated the radial distribution functions of water molecules around the phosphorus atoms in guanine nucleotide in each complex. We also calculated the radius of the first hydration sphere, the averaged number of water molecules in the first hydration sphere, and the distribution of duration time of water molecules in the first hydration sphere. We also calculated the distribution of water molecules with respect to the angle around the PG in GTP and PB in GDP. It is suggested that the hydrolysis is triggered by water molecules attacking ?-phosphate from the direction rotated 35 to the O1B from the axis defined by PG and O3B.

  11. Molecular and developmental contributions to divergent pigment patterns in marine and freshwater sticklebacks.

    PubMed

    Greenwood, Anna K; Cech, Jennifer N; Peichel, Catherine L

    2012-07-01

    Pigment pattern variation across species or populations offers a tractable framework in which to investigate the evolution of development. Juvenile threespine sticklebacks (Gasterosteus aculeatus) from marine and freshwater environments exhibit divergent pigment patterns that are associated with ecological differences. Juvenile marine sticklebacks have a silvery appearance, whereas sticklebacks from freshwater environments exhibit a pattern of vertical bars. We investigated both the developmental and molecular basis of this population-level variation in pigment pattern. Time course imaging during the transition from larval to juvenile stages revealed differences between marine and freshwater fish in spatial patterns of chromatophore differentiation as well as in pigment amount and dispersal. In freshwater fish, melanophores appear primarily within dark bars whereas iridophores appear within light bars. By contrast, in marine fish, these chromatophores are interspersed across the flank. In addition to spatially segregated chromatophore differentiation, pigment amount and dispersal within melanophores varies spatially across the flank of freshwater, but not marine fish. To gain insight into the molecular pathways that underlie the differences in pigment pattern development, we evaluated differential gene expression in the flanks of developing fish using high-throughput cDNA sequencing (RNA-seq) and quantitative PCR. We identified several genes that were differentially expressed across dark and light bars of freshwater fish, and between freshwater and marine fish. Together, these experiments begin to shed light on the process of pigment pattern evolution in sticklebacks. PMID:22765206

  12. Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope.

    PubMed

    Green, Matthew F B; Esat, Taner; Wagner, Christian; Leinen, Philipp; Grötsch, Alexander; Tautz, F Stefan; Temirov, Ruslan

    2014-01-01

    One of the paramount goals in nanotechnology is molecular-scale functional design, which includes arranging molecules into complex structures at will. The first steps towards this goal were made through the invention of the scanning probe microscope (SPM), which put single-atom and single-molecule manipulation into practice for the first time. Extending the controlled manipulation to larger molecules is expected to multiply the potential of engineered nanostructures. Here we report an enhancement of the SPM technique that makes the manipulation of large molecular adsorbates much more effective. By using a commercial motion tracking system, we couple the movements of an operator's hand to the sub-angstrom precise positioning of an SPM tip. Literally moving the tip by hand we write a nanoscale structure in a monolayer of large molecules, thereby showing that our method allows for the successful execution of complex manipulation protocols even when the potential energy surface that governs the interaction behaviour of the manipulated nanoscale object(s) is largely unknown. PMID:25383304

  13. Soluble Collectin-12 (CL-12) Is a Pattern Recognition Molecule Initiating Complement Activation via the Alternative Pathway.

    PubMed

    Ma, Ying Jie; Hein, Estrid; Munthe-Fog, Lea; Skjoedt, Mikkel-Ole; Bayarri-Olmos, Rafael; Romani, Luigina; Garred, Peter

    2015-10-01

    Soluble defense collagens including the collectins play important roles in innate immunity. Recently, a new member of the collectin family named collectin-12 (CL-12 or CL-P1) has been identified. CL-12 is highly expressed in umbilical cord vascular endothelial cells as a transmembrane receptor and may recognize certain bacteria and fungi, leading to opsonophagocytosis. However, based on its structural and functional similarities with soluble collectins, we hypothesized the existence of a fluid-phase analog of CL-12 released from cells, which may function as a soluble pattern-recognition molecule. Using recombinant CL-12 full length or CL-12 extracellular domain, we determined the occurrence of soluble CL-12 shed from in vitro cultured cells. Western blot showed that soluble recombinant CL-12 migrated with a band corresponding to ? 120 kDa under reducing conditions, whereas under nonreducing conditions it presented multimeric assembly forms. Immunoprecipitation and Western blot analysis of human umbilical cord plasma enabled identification of a natural soluble form of CL-12 having an electrophoretic mobility pattern close to that of shed soluble recombinant CL-12. Soluble CL-12 could recognize Aspergillus fumigatus partially through the carbohydrate-recognition domain in a Ca(2+)-independent manner. This led to activation of the alternative pathway of complement exclusively via association with properdin on A. fumigatus as validated by detection of C3b deposition and formation of the terminal complement complex. These results demonstrate the existence of CL-12 in a soluble form and indicate a novel mechanism by which the alternative pathway of complement may be triggered directly by a soluble pattern-recognition molecule. PMID:26290605

  14. LARGE SCALE EVALUATION OF A PATTERN RECOGNITION/EXPERT SYSTEM FOR MASS SPECTRAL MOLECULAR WEIGHT ESTIMATION

    EPA Science Inventory

    A fast, personal-computer based method of estimating molecular weights of organic compounds from low resolution mass I spectra has been thoroughly evaluated. he method is based on a rule-based pattern,recognition/expert system approach which uses empirical linear corrections whic...

  15. A rigid core-flexible chain model for mesogenic molecules in molecular dynamics simulations of liquid crystals

    NASA Astrophysics Data System (ADS)

    La Penna, Giovanni; Catalano, Donata; Veracini, Carlo Alberto

    1996-10-01

    A model of a mesogenic molecule, built up as a rigid anisotropic Gay-Berne site mimicking the aromatic core, connected to an array of isotropic sites mimicking a flexible chain, is proposed and tested in molecular dynamics calculations. Simulations have been performed on a system composed of 256 molecules with three different numbers of methylenic units in the chain, in order to explore the effect of chain length on static and dynamic properties. The systems are all at the same mass density and temperature and result in nematic liquid crystalline phases. The order parameters for various molecular fragments and the T1z nuclear magnetic resonance (NMR) relaxation times of deuterons are in agreement with previous molecular dynamics simulations on atomistic systems and, at least qualitatively, with 2H-NMR experimental results. The intermolecular interactions are always dominated by the anisotropic site simulating the molecular core. The influence of the phase order on the chain static and dynamic properties is put in evidence. Extensions of the model are suggested in order to have a better reproduction of the dynamical features of such systems.

  16. Molecular Combing of Single DNA Molecules on the 10 Megabase Scale

    PubMed Central

    Kaykov, Atanas; Taillefumier, Thibaud; Bensimon, Aaron; Nurse, Paul

    2016-01-01

    DNA combing allows the investigation of DNA replication on genomic single DNA molecules, but the lengths that can be analysed have been restricted to molecules of 200–500 kb. We have improved the DNA combing procedure so that DNA molecules can be analysed up to the length of entire chromosomes in fission yeast and up to 12 Mb fragments in human cells. Combing multi-Mb-scale DNA molecules revealed previously undetected origin clusters in fission yeast and shows that in human cells replication origins fire stochastically forming clusters of fired origins with an average size of 370 kb. We estimate that a single human cell forms around 3200 clusters at mid S-phase and fires approximately 100,000 origins to complete genome duplication. The procedure presented here will be adaptable to other organisms and experimental conditions. PMID:26781994

  17. Molecular Combing of Single DNA Molecules on the 10 Megabase Scale.

    PubMed

    Kaykov, Atanas; Taillefumier, Thibaud; Bensimon, Aaron; Nurse, Paul

    2016-01-01

    DNA combing allows the investigation of DNA replication on genomic single DNA molecules, but the lengths that can be analysed have been restricted to molecules of 200-500?kb. We have improved the DNA combing procedure so that DNA molecules can be analysed up to the length of entire chromosomes in fission yeast and up to 12?Mb fragments in human cells. Combing multi-Mb-scale DNA molecules revealed previously undetected origin clusters in fission yeast and shows that in human cells replication origins fire stochastically forming clusters of fired origins with an average size of 370?kb. We estimate that a single human cell forms around 3200 clusters at mid S-phase and fires approximately 100,000 origins to complete genome duplication. The procedure presented here will be adaptable to other organisms and experimental conditions. PMID:26781994

  18. Molecular modelling studies and the chromatographic behaviour of oxiracetam and some closely related molecules.

    PubMed

    Camilleri, P; Murphy, J A; Saunders, M R; Thorpe, C J

    1991-08-01

    Modelling studies have been carried out on the cellulose-based chiral stationary phase used to separate the enantiomers of three simple lactams. These studies have helped in understanding differences in the chromatographic behaviour of these molecules. PMID:1795177

  19. The Distribution of Complex Organic Molecules in the Orion KL Molecular Core

    NASA Technical Reports Server (NTRS)

    Kuan, Yi-Jehng; Hsu, Yu-Sen; Charnley, Steven B.; Wang, Kuo-Song

    2011-01-01

    We conducted high angular-resolution observations toward the massive star-forming region Orion KL at 1.3 mm using the Submillimeter Array (SMA). Spectral emission from twelve complex organic molecules was simultaneously imaged. We discuss the distinct chemical characteristics among four sub- regions in Orion KL by comparing the spatial distributions and fractional abundances of these complex molecules. These observations will allow us to test and constrain chemical models of interstellar organic synthesis.

  20. Differential adhesiveness between blood and marrow leukemic cells having similar pattern of VLA adhesion molecule expression.

    PubMed

    Thomas, X; Anglaret, B; Bailly, M; Maritaz, O; Magaud, J P; Archimbaud, E

    1998-10-01

    Functional adhesion of blood and marrow leukemic cells from 14 acute myeloid leukemia patients presenting with hyperleukocytosis was evaluated by performing cytoadhesion assays on purified (extracellular matrix proteins) and non-purified supports (MRC5 fibroblastic cell line). Results, in 30-min chromium release assay, show a mean +/- S.D. adhesion to fibronectin, collagen, and laminin respectively of 30 +/- 17%, 20 +/- 13%, 25 +/- 17% for blood leukemic cells and 18 +/- 11%, 11 +/- 10%, 11 +/- 8% for marrow leukemic cells. These differences between blood and marrow cells were statistically significant (respectively P = 0.005, P = 0.01 and P = 0.002), while no difference was noted regarding adhesion to non-purified supports. The higher adhesion of blood blast cells to purified supports was observed regardless of CD34 expression. No significant difference was observed in the expression of cell surface VLA-molecules (CD29, CD49b, CD49d, CD49e, CD49f) between blood and marrow blast cells. The addition of GM-CSF or G-CSF induced increased adhesion of marrow blasts and decreased adhesion of blood blasts leading to a loss of the difference between blood and marrow cells. In a 60-min chromium release assay, marrow blasts adhered even more than blood leukemic cells to fibronectin. In contrast, marrow blasts from 'aleukemic' acute myeloid leukemia patients did not show any modification regarding their adhesion to extracellular matrix proteins when co-cultured with growth factors. PMID:9766756

  1. RNA:DNA hybrids are a novel molecular pattern sensed by TLR9

    PubMed Central

    Rigby, Rachel E; Webb, Lauren M; Mackenzie, Karen J; Li, Yue; Leitch, Andrea; Reijns, Martin A M; Lundie, Rachel J; Revuelta, Ailsa; Davidson, Donald J; Diebold, Sandra; Modis, Yorgo; MacDonald, Andrew S; Jackson, Andrew P

    2014-01-01

    The sensing of nucleic acids by receptors of the innate immune system is a key component of antimicrobial immunity. RNA:DNA hybrids, as essential intracellular replication intermediates generated during infection, could therefore represent a class of previously uncharacterised pathogen-associated molecular patterns sensed by pattern recognition receptors. Here we establish that RNA:DNA hybrids containing viral-derived sequences efficiently induce pro-inflammatory cytokine and antiviral type I interferon production in dendritic cells. We demonstrate that MyD88-dependent signalling is essential for this cytokine response and identify TLR9 as a specific sensor of RNA:DNA hybrids. Hybrids therefore represent a novel molecular pattern sensed by the innate immune system and so could play an important role in host response to viruses and the pathogenesis of autoimmune disease. PMID:24514026

  2. Molecular Electronic Devices Based On Electrooptical Behavior Of Heme-Like Molecules

    NASA Astrophysics Data System (ADS)

    Simic-Glavaski, B.

    1986-02-01

    This paper discusses application of the electrically modulated and unusually strong Raman emitted light produced by an adsorbed monolayer of phthalocyanine molecules on silver electrode or silver bromide substrates and on neural membranes. The analysis of electronic energy levels in semiconducting silver bromide and the adsorbed phthalocyanine molecules suggests a lasing mechanism as a possible origin of the high enhancement factor in surface enhanced Raman scattering. Electrically modulated Raman scattering may be used as a carrier of information which is drawn fran the fast intramolecular electron transfer aN,the multiplicity of quantum wells in phthalocyanine molecules. Fast switching times on the order of 10-13 seconds have been measured at room temperature. Multilevel and multioutput optical signals have also been obtained fran such an electrically modulated adsorbed monolayer of phthalocyanine molecules which can be precisely addressed and interrogated. This may be of practical use to develop Nlecular electronic devices with high density memory and fast parallel processing systems with a typical 1020 gate Hz/cm2 capacity at room temperature for use in optical computers. The paper also discusses the electrooptical modulation of Raman signals obtained from adsorbed bio-compatible phthalocyanine molecules on nerve membranes. This optical probe of neural systems can be used in studies of complex information processing in neural nets and provides a possible method for interfacing natural and man-made information processing devices.

  3. Sialyllactose in Viral Membrane Gangliosides Is a Novel Molecular Recognition Pattern for Mature Dendritic Cell Capture of HIV-1

    PubMed Central

    Contreras, F.-Xabier; Rodriguez-Plata, Maria T.; Glass, Brbel; Erkizia, Itziar; Prado, Julia G.; Casas, Josefina; Fabris, Gemma; Krusslich, Hans-Georg; Martinez-Picado, Javier

    2012-01-01

    HIV-1 is internalized into mature dendritic cells (mDCs) via an as yet undefined mechanism with subsequent transfer of stored, infectious virus to CD4+ T lymphocytes. Thus, HIV-1 subverts a DC antigen capture mechanism to promote viral spread. Here, we show that gangliosides in the HIV-1 membrane are the key molecules for mDC uptake. HIV-1 virus-like particles and liposomes mimicking the HIV-1 lipid composition were shown to use a common internalization pathway and the same trafficking route within mDCs. Hence, these results demonstrate that gangliosides can act as viral attachment factors, in addition to their well known function as cellular receptors for certain viruses. Furthermore, the sialyllactose molecule present in specific gangliosides was identified as the determinant moiety for mDC HIV-1 uptake. Thus, sialyllactose represents a novel molecular recognition pattern for mDC capture, and may be crucial both for antigen presentation leading to immunity against pathogens and for succumbing to subversion by HIV-1. PMID:22545022

  4. Excitation of Ultracold Molecules to ``TRILOBITE-LIKE" Long-Range Molecular Rydberg States

    NASA Astrophysics Data System (ADS)

    Bellos, M. A.; Carollo, R.; Banerjee, J.; Eyler, E. E.; Gould, P. L.; Stwalley, W. C.

    2013-06-01

    A class of long-range Rydberg molecules, sometimes called ``trilobite states", occurs when a ground-state atom is embedded in the electronic cloud of a Rydberg atom. The bond between the Rydberg atom and the ground-state atom originates from the low-energy scattering of the Rydberg electron from the ground-state atom. We produce trilobite-like states of ultracold Rb_2 at low principal quantum numbers and at internuclear separations less than 40 bohr. We populate these states through single-photon ultraviolet transitions starting from molecules in high-lying vibrational levels of the lowest triplet state. This demonstrates that long-range Rydberg molecules can also be excited through bound-bound transitions, in addition to previous studies that used free-bound transitions. We also discuss the advantages of a bound-bound pathway. C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, Phys. Rev. Lett. 85, 2458 (2000).

  5. Molecular locks and keys: the role of small molecules in phytohormone research

    PubMed Central

    Fonseca, Sandra; Rosado, Abel; Vaughan-Hirsch, John; Bishopp, Anthony; Chini, Andrea

    2014-01-01

    Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signaling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signaling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function. Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signaling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated mechanisms. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds. PMID:25566283

  6. Direct observation of molecularly-aligned molecules in the second physisorbed layer-CO/Ag(110)

    SciTech Connect

    Lee, J.-G.; Hong, S.-H.; Ahner, J.; Zhao, X.; Chen, L.; Johnson, J.K.; Yates, J.T., Jr.

    2006-01-25

    We report the direct observation of oriented second-layer physisorbed molecules on a single crystal surface by electron stimulated desorption. Experiments and simulations show that the orientation of the second-layer physisorbed CO molecules on Ag(110) is the result of both electrostatic and dispersion forces from the underlying chemisorbed CO and Ag atoms. At 25 K, the physisorbed C-O bond is tilted and azimuthally oriented with the C-O bond axis inclined in an azimuthal plane at 45 to the principal Ag( 110) azimuthal crystallographic directions. The O atom in CO is directed outward, giving an O+ beam at 43 to the normal.

  7. Effect of an improved molecular potential on strong-field tunneling ionization of molecules

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Jin, Cheng; Le, Anh-Thu; Lin, C. D.

    2010-09-01

    We study the effect of one-electron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified Leeuwen-Baerends (LB ?) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB ? do not differ much from the earlier calculations [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.033423 81, 033423 (2010)], in which the local correlation potential was neglected.

  8. Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns

    PubMed Central

    2010-01-01

    Introduction Five different molecular subtypes of breast cancer have been identified through gene expression profiling. Each subtype has a characteristic expression pattern suggested to partly depend on cellular origin. We aimed to investigate whether the molecular subtypes also display distinct methylation profiles. Methods We analysed methylation status of 807 cancer-related genes in 189 fresh frozen primary breast tumours and four normal breast tissue samples using an array-based methylation assay. Results Unsupervised analysis revealed three groups of breast cancer with characteristic methylation patterns. The three groups were associated with the luminal A, luminal B and basal-like molecular subtypes of breast cancer, respectively, whereas cancers of the HER2-enriched and normal-like subtypes were distributed among the three groups. The methylation frequencies were significantly different between subtypes, with luminal B and basal-like tumours being most and least frequently methylated, respectively. Moreover, targets of the polycomb repressor complex in breast cancer and embryonic stem cells were more methylated in luminal B tumours than in other tumours. BRCA2-mutated tumours had a particularly high degree of methylation. Finally, by utilizing gene expression data, we observed that a large fraction of genes reported as having subtype-specific expression patterns might be regulated through methylation. Conclusions We have found that breast cancers of the basal-like, luminal A and luminal B molecular subtypes harbour specific methylation profiles. Our results suggest that methylation may play an important role in the development of breast cancers. PMID:20565864

  9. Molecular architecture of the MHC I peptide-loading complex: one tapasin molecule is essential and sufficient for antigen processing.

    PubMed

    Hulpke, Sabine; Baldauf, Christoph; Tamp, Robert

    2012-12-01

    The loading of antigen-derived peptides onto MHC class I molecules for presentation to cytotoxic T cells is a key process in adaptive immune defense. Loading of MHC I is achieved by a sophisticated machinery, the peptide-loading complex (PLC), which is organized around the transporter associated with antigen processing (TAP) with the help of several auxiliary proteins. As an essential adapter protein recruiting MHC I molecules to TAP, tapasin catalyzes peptide loading of MHC I. However, the exact stoichiometry and basic molecular architecture of TAP and tapasin within the PLC remains elusive. Here, we demonstrate that two tapasin molecules are assembled in the PLC, with one tapasin bound to each TAP subunit. However, one tapasin molecule bound either to TAP1 or TAP2 is sufficient for efficient MHC I antigen presentation. By specifically blocking the interaction between tapasin-MHC I complexes and the translocation complex TAP, the MHC I surface expression is impaired to the same extent as with soluble tapasin. Thus, the proximity of the peptide supplier TAP to the acceptor MHC I is crucial for antigen processing. In summary, the human PLC consists maximally of 2 tapasin-ERp57/MHC I per TAP complex, but one tapasin-ERp57/MHC I in the PLC is essential and sufficient for antigen processing. PMID:22923333

  10. Why is the crystal shape of TATB is so similar to its molecular shape? Understanding by only its root molecule.

    PubMed

    Zhang, Chaoyang; Kang, Bin; Cao, Xia; Xiang, Bin

    2012-05-01

    We present an understanding of the quasi-regular or regular hexagonal enlargement of 1,3,5-triamino-2,4,6 (TATB) from its root molecule to its bulk crystal, by only its root molecule. That is, the mechanism of regular hexagonal TATB molecules stacking to a quasi-regular or regular hexagonal TATB crystal was discussed using a combined method of a density functional theory BLYP and Dreiding forcefield, and a series of static scanning calculations. As a result, we found that there are two styles of forming the most energetically favored TATB dimers: a hydrogen bonding along the molecular plane and an offset ?-stacking vertical to the plane, just leading to the outspread and the thickening of the regular hexagon during the crystal growth, respectively. At the same time, it was found that the rotation of one TATB layer in any parallel stacked double-layer should overcome a very high energy barrier. It suggests that the TATB molecules or layers are arranged on the crystal face always along the special orientation of a regular hexagon and other orientations are strongly thermodynamically forbidden, resulting in a hexagonal crystal bulk. PMID:21965034

  11. Array Formatting of the Heat-Transfer Method (HTM) for the Detection of Small Organic Molecules by Molecularly Imprinted Polymers

    PubMed Central

    Wackers, Gideon; Vandenryt, Thijs; Cornelis, Peter; Kellens, Evelien; Thoelen, Ronald; De Ceuninck, Ward; Losada-Pérez, Patricia; van Grinsven, Bart; Peeters, Marloes; Wagner, Patrick

    2014-01-01

    In this work we present the first steps towards a molecularly imprinted polymer (MIP)-based biomimetic sensor array for the detection of small organic molecules via the heat-transfer method (HTM). HTM relies on the change in thermal resistance upon binding of the target molecule to the MIP-type receptor. A flow-through sensor cell was developed, which is segmented into four quadrants with a volume of 2.5 μL each, allowing four measurements to be done simultaneously on a single substrate. Verification measurements were conducted, in which all quadrants received a uniform treatment and all four channels exhibited a similar response. Subsequently, measurements were performed in quadrants, which were functionalized with different MIP particles. Each of these quadrants was exposed to the same buffer solution, spiked with different molecules, according to the MIP under analysis. With the flow cell design we could discriminate between similar small organic molecules and observed no significant cross-selectivity. Therefore, the MIP array sensor platform with HTM as a readout technique, has the potential to become a low-cost analysis tool for bioanalytical applications. PMID:24955945

  12. Binding site identification and role of permanent water molecule of PIM-3 kinase: A molecular dynamics study.

    PubMed

    Ul-Haq, Zaheer; Gul, Sana; Usmani, Saman; Wadood, Abdul; Khan, Waqasuddin

    2015-11-01

    The kinome is a protein kinase complement of the human genome, categorized as serine/threonine and tyrosine kinases. These kinases catalyze phosphorylation reaction by using ATP as phosphoryl donor. Proviral Integration Site for Moloney Murine Leukemia Virus (PIM) kinase encodes serine/threonine protein kinases that recognized as proto-oncogene, responsible for rapid growth of cancerous cells. It is implicated in cell survival and function via cell cycle progression and its metabolism. PIM-3, sub-member of PIM kinases is a proto-oncogene, its overexpression inhibits apoptosis, and results in progression of hepatocellular carcinoma. PIM-3 is considered as a promising drug target but attempts to develop its specific inhibitors is slowed down due to the lack of 3D structure by any experimental technique. In silico techniques generally facilitate scientist to explore hidden structural features in order to improve drug discovery. In the present study, homology modeling, molecular docking and MD simulation techniques were utilized to explore the structure and dynamics of PIM-3 kinase. Induction of water molecules during molecular docking simulation explored differences in the hinge region between PIM-1 and PIM-3 kinases that may be responsible for specificity. Furthermore, role of water molecules in the active site was also explored via radial distribution function (RDF) after a 10ns molecular dynamics (MD) simulations. Generated RDF plots exhibited the importance of water for inhibitor binding through their bridging capability that links the ligand with binding site residues. PMID:26529487

  13. The inherent dynamics of a molecular liquid: geodesic pathways through the potential energy landscape of a liquid of linear molecules.

    PubMed

    Jacobson, Daniel; Stratt, Richard M

    2014-05-01

    Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation-molecules largely thread their way through narrow channels available in the potential energy landscape. PMID:24811642

  14. Healthy dietary patterns and risk of breast cancer by molecular subtype.

    PubMed

    Hirko, Kelly A; Willett, Walter C; Hankinson, Susan E; Rosner, Bernard A; Beck, Andrew H; Tamimi, Rulla M; Eliassen, A Heather

    2016-02-01

    We examined associations between dietary quality indices and breast cancer risk by molecular subtype among 100,643 women in the prospective Nurses' Health Study (NHS) cohort, followed from 1984 to 2006. Dietary quality scores for the Alternative Healthy Eating Index (AHEI), alternate Mediterranean diet (aMED), and Dietary Approaches to Stop Hypertension (DASH) dietary patterns were calculated from semi-quantitative food frequency questionnaires collected every 2-4 years. Breast cancer molecular subtypes were defined according to estrogen receptor (ER), progesterone receptor, human epidermal growth factor 2 (HER2), cytokeratin 5/6 (CK5/6), and epidermal growth factor receptor status from immunostained tumor microarrays in combination with histologic grade. Cox proportional hazards models, adjusted for age and breast cancer risk factors, were used to estimate hazard ratios (HRs) and 95 % confidence intervals (CIs). Competing risk analyses were used to assess heterogeneity by subtype. We did not observe any significant associations between the AHEI or aMED dietary patterns and risk of breast cancer by molecular subtype. However, a significantly reduced risk of HER2-type breast cancer was observed among women in 5th versus 1st quintile of the DASH dietary pattern [n = 134 cases, Q5 vs. Q1 HR (95 % CI) = 0.44 (0.25-0.77)], and the inverse trend across quintiles was significant (p trend = 0.02). We did not observe any heterogeneity in associations between AHEI (p het = 0.25), aMED (p het = 0.71), and DASH (p het = 0.12) dietary patterns and breast cancer by subtype. Adherence to the AHEI, aMED, and DASH dietary patterns was not strongly associated with breast cancer molecular subtypes. PMID:26872903

  15. A molecular method for the delivery of small molecules and proteins across the cell wall of algae using molecular transporters.

    PubMed

    Hyman, Joel M; Geihe, Erika I; Trantow, Brian M; Parvin, Bahram; Wender, Paul A

    2012-08-14

    Interest in algae has significantly accelerated with the increasing recognition of their potentially unique role in medical, materials, energy, bioremediation, and synthetic biological research. However, the introduction of tools to study, control, or expand the inner-workings of algae has lagged behind. Here we describe a general molecular method based on guanidinium-rich molecular transporters (GR-MoTrs) for bringing small and large cargos into algal cells. Significantly, this method is shown to work in wild-type algae that have an intact cell wall. Developed using Chlamydomonas reinhardtii, this method is also successful with less studied algae including Neochloris oleoabundans and Scenedesmus dimorphus thus providing a new and versatile tool for algal research. PMID:22847404

  16. A molecular method for the delivery of small molecules and proteins across the cell wall of algae using molecular transporters

    PubMed Central

    Hyman, Joel M.; Geihe, Erika I.; Trantow, Brian M.; Parvin, Bahram; Wender, Paul A.

    2012-01-01

    Interest in algae has significantly accelerated with the increasing recognition of their potentially unique role in medical, materials, energy, bioremediation, and synthetic biological research. However, the introduction of tools to study, control, or expand the inner-workings of algae has lagged behind. Here we describe a general molecular method based on guanidinium-rich molecular transporters (GR-MoTrs) for bringing small and large cargos into algal cells. Significantly, this method is shown to work in wild-type algae that have an intact cell wall. Developed using Chlamydomonas reinhardtii, this method is also successful with less studied algae including Neochloris oleoabundans and Scenedesmus dimorphus thus providing a new and versatile tool for algal research. PMID:22847404

  17. Resonant multiphoton ionization spectra of molecules and molecular fragments. Technical progress report

    SciTech Connect

    1997-07-01

    objectives of this research are the development and application of theoretical techniques for studying several resonant multiphoton ionization processes in molecules. Specific problems of interest pertain to experimental studies of such spectra in which the photoelectron energy and angular distributions are determined.

  18. Tonal Interface to MacroMolecules (TIMMol): A Textual and Tonal Tool for Molecular Visualization

    ERIC Educational Resources Information Center

    Cordes, Timothy J.; Carlson, C. Britt; Forest, Katrina T.

    2008-01-01

    We developed the three-dimensional visualization software, Tonal Interface to MacroMolecules or TIMMol, for studying atomic coordinates of protein structures. Key features include audio tones indicating x, y, z location, identification of the cursor location in one-dimensional and three-dimensional space, textual output that can be easily linked…

  19. Tonal Interface to MacroMolecules (TIMMol): A Textual and Tonal Tool for Molecular Visualization

    ERIC Educational Resources Information Center

    Cordes, Timothy J.; Carlson, C. Britt; Forest, Katrina T.

    2008-01-01

    We developed the three-dimensional visualization software, Tonal Interface to MacroMolecules or TIMMol, for studying atomic coordinates of protein structures. Key features include audio tones indicating x, y, z location, identification of the cursor location in one-dimensional and three-dimensional space, textual output that can be easily linked

  20. Templating effects in molecular growth of blended films for efficient small-molecule photovoltaics.

    PubMed

    Wang, Zhiping; Miyadera, Tetsuhiko; Yamanari, Toshihiro; Yoshida, Yuji

    2014-05-14

    A strategy to control the molecular growth of coevaporated zinc phthalocyanine (ZnPc) and fullerene (C60) blended films for efficient organic photovoltaic (OPV) cells was demonstrated. Introduction of a 2,5-bis(4-biphenylyl)-bithiophene (BP2T) film or a ZnPc film on BP2T as nanostructured templates not only results in phase-separated domains in blended films with clear interpenetrating networks but also improves the crystallinity of ZnPc domains, both of which enhance photocurrent generation and charge carrier transport. Such morphology is strongly associated with the molecular growth of the templating layers. Roughness and adhesion of the templating layers are of great importance for the molecular growth of the blended films and in turn for cell characteristics. By carefully regulating the molecular growth of the blended films, the power conversion efficiency was improved by 125%, from 1.85 to 4.15% under 1 sun. PMID:24712371

  1. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE PAGESBeta

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  2. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    SciTech Connect

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materials science, chemistry, and biology.

  3. Design and development of a field-deployable single-molecule detector (SMD) for the analysis of molecular markers†

    PubMed Central

    Emory, Jason M.; Peng, Zhiyong; Young, Brandon; Hupert, Mateusz L.; Rousselet, Arnold; Patterson, Donald; Ellison, Brad; Soper, Steven A.

    2012-01-01

    Single-molecule detection (SMD) has demonstrated some attractive benefits for many types of biomolecular analyses including enhanced processing speed by eliminating processing steps, elimination of ensemble averaging and single-molecule sensitivity. However, it's wide spread use has been hampered by the complex instrumentation required for its implementation when using fluorescence as the readout modality. We report herein a simple and compact fluorescence single-molecule instrument that is straightforward to operate and consisted of fiber optics directly coupled to a microfluidic device. The integrated fiber optics served as waveguides to deliver the laser excitation light to the sample and collecting the resulting emission, simplifying the optical requirements associated with traditional SMD instruments by eliminating the need for optical alignment and simplification of the optical train. Additionally, the use of a vertical cavity surface emitting laser and a single photon avalanche diode serving as the excitation source and photon transducer, respectively, as well as a field programmable gate array (FPGA) integrated into the processing electronics assisted in reducing the instrument footprint. This small footprint SMD platform was tested using fluorescent microspheres and single AlexaFluor 660 molecules to determine the optimal operating parameters and system performance. As a demonstration of the utility of this instrument for biomolecular analyses, molecular beacons (MBs) were designed to probe bacterial cells for the gene encoding Gram-positive species. The ability to monitor biomarkers using this simple and portable instrument will have a number of important applications, such as strain-specific detection of pathogenic bacteria or the molecular diagnosis of diseases requiring rapid turn-around-times directly at the point-of-use. PMID:22005669

  4. Water-inducing molecular self-assembly of amphiphilic molecules into nanofibers

    SciTech Connect

    Zhang, Weiguang; Zhao, Pusu; Song, Jie; Materials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094

    2011-12-15

    Graphical abstract: TPDP nanofibers with smooth surfaces can be obtained by reprecipitation method using ethanol as good solvent and water as poor solvent. In the self-assembly process, during the water adding to the amphiphilic molecules' saturated solution, the amphiphilic molecules firstly assembled into needle-like small rods. With an increase in the self-assembled time, a large number of the nanofibers are produced. The assembly behavior was revealed in the course of direct in situ monitoring of its growth with optical microscopy. Highlights: Black-Right-Pointing-Pointer 2,3,6,7-Tetramethoxy-9,10-di(4-pyridyl)-9,10-dihydroanthracen (TPDP) was synthesized. Black-Right-Pointing-Pointer TPDP nanofibers can be obtained by reprecipitation method. Black-Right-Pointing-Pointer The assembly behavior was revealed in situ monitoring with optical microscopy. -- Abstract: We present investigations on the microcosmic self-assembly process of new synthesized amphiphilic TPDP molecules. It can be seen that pure TPDP nanofibers with smooth surfaces can be obtained by reprecipitation method using ethanol as good solvent and water as poor solvent. In the self-assembly process, during the water adding to the amphiphilic molecules' saturated solution, the amphiphilic molecules firstly assembled into needle-like small rods. With an increase in the self-assembled time, a large number of the nanofibers are produced. The assembly behavior was revealed in the course of direct in situ monitoring of its growth with optical microscopy. Field emission scanning electron microscopy was adopted to characterize the morphologies of the products.

  5. Musical molecules: the molecular junction as an active component in audio distortion circuits

    NASA Astrophysics Data System (ADS)

    Bergren, Adam Johan; Zeer-Wanklyn, Lucas; Semple, Mitchell; Pekas, Nikola; Szeto, Bryan; McCreery, Richard L.

    2016-03-01

    Molecular junctions that have a non-linear current–voltage characteristic consistent with quantum mechanical tunneling are demonstrated as analog audio clipping elements in overdrive circuits widely used in electronic music, particularly with electric guitars. The performance of large-area molecular junctions fabricated at the wafer level is compared to currently standard semiconductor diode clippers, showing a difference in the sound character. The harmonic distributions resulting from the use of traditional and molecular clipping elements are reported and discussed, and differences in performance are noted that result from the underlying physics that controls the electronic properties of each clipping component. In addition, the ability to tune the sound using the molecular junction is demonstrated. Finally, the hybrid circuit is compared to an overdriven tube amplifier, which has been the standard reference electric guitar clipped tone for over 60 years. In order to investigate the feasibility of manufacturing molecular junctions for use in commercial applications, devices are fabricated using a low-density format at the wafer level, where 38 dies per wafer, each containing two molecular junctions, are made with exceptional non-shorted yield (99.4%, representing 718 out of 722 tested devices) without requiring clean room facilities.

  6. Musical molecules: the molecular junction as an active component in audio distortion circuits.

    PubMed

    Bergren, Adam Johan; Zeer-Wanklyn, Lucas; Semple, Mitchell; Pekas, Nikola; Szeto, Bryan; McCreery, Richard L

    2016-03-01

    Molecular junctions that have a non-linear current-voltage characteristic consistent with quantum mechanical tunneling are demonstrated as analog audio clipping elements in overdrive circuits widely used in electronic music, particularly with electric guitars. The performance of large-area molecular junctions fabricated at the wafer level is compared to currently standard semiconductor diode clippers, showing a difference in the sound character. The harmonic distributions resulting from the use of traditional and molecular clipping elements are reported and discussed, and differences in performance are noted that result from the underlying physics that controls the electronic properties of each clipping component. In addition, the ability to tune the sound using the molecular junction is demonstrated. Finally, the hybrid circuit is compared to an overdriven tube amplifier, which has been the standard reference electric guitar clipped tone for over 60 years. In order to investigate the feasibility of manufacturing molecular junctions for use in commercial applications, devices are fabricated using a low-density format at the wafer level, where 38 dies per wafer, each containing two molecular junctions, are made with exceptional non-shorted yield (99.4%, representing 718 out of 722 tested devices) without requiring clean room facilities. PMID:26871885

  7. H{sub 2} MOLECULAR CLUSTERS WITH EMBEDDED MOLECULES AND ATOMS AS THE SOURCE OF THE DIFFUSE INTERSTELLAR BANDS

    SciTech Connect

    Bernstein, L. S.; Clark, F. O.; Lynch, D. K. E-mail: dave@thulescientific.com

    2013-05-01

    We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ({sup s}eed{sup )}, embedded in a single-layer shell of H{sub 2} molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H{sub 2} molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H{sub 2} shell. We refer to these clusters as contaminated H{sub 2} clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectral profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from {approx}centimeter-sized, dirty H{sub 2} ice balls, called contaminated H{sub 2} ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H{sub 2} molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the {approx}10-100 GHz spectral region.

  8. A recombinant horseshoe crab plasma lectin recognizes specific pathogen-associated molecular patterns of bacteria through rhamnose.

    PubMed

    Ng, Sim-Kun; Huang, Yu-Tsyr; Lee, Yuan-Chuan; Low, Ee-Ling; Chiu, Cheng-Hsun; Chen, Shiu-Ling; Mao, Liang-Chi; Chang, Margaret Dah-Tsyr

    2014-01-01

    Horseshoe crab is an ancient marine arthropod that, in the absence of a vertebrate-like immune system, relies solely on innate immune responses by defense molecules found in hemolymph plasma and granular hemocytes for host defense. A plasma lectin isolated from the hemolymph of Taiwanese Tachypleus tridentatus recognizes bacteria and lipopolysaccharides (LPSs), yet its structure and mechanism of action remain unclear, largely because of limited availability of horseshoe crabs and the lack of a heterogeneous expression system. In this study, we have successfully expressed and purified a soluble and functional recombinant horseshoe crab plasma lectin (rHPL) in an Escherichia coli system. Interestingly, rHPL bound not only to bacteria and LPSs like the native HPL but also to selective medically important pathogens isolated from clinical specimens, such as Gram-negative Pseudomonas aeruginosa and Klebsiella pneumoniae and Gram-positive Streptococcus pneumoniae serotypes. The binding was demonstrated to occur through a specific molecular interaction with rhamnose in pathogen-associated molecular patterns (PAMPs) on the bacterial surface. Additionally, rHPL inhibited the growth of P. aeruginosa PAO1 in a concentration-dependent manner. The results suggest that a specific protein-glycan interaction between rHPL and rhamnosyl residue may further facilitate development of novel diagnostic and therapeutic strategies for microbial pathogens. PMID:25541995

  9. A Recombinant Horseshoe Crab Plasma Lectin Recognizes Specific Pathogen-Associated Molecular Patterns of Bacteria through Rhamnose

    PubMed Central

    Ng, Sim-Kun; Huang, Yu-Tsyr; Lee, Yuan-Chuan; Low, Ee-Ling; Chiu, Cheng-Hsun; Chen, Shiu-Ling; Mao, Liang-Chi; Chang, Margaret Dah-Tsyr

    2014-01-01

    Horseshoe crab is an ancient marine arthropod that, in the absence of a vertebrate-like immune system, relies solely on innate immune responses by defense molecules found in hemolymph plasma and granular hemocytes for host defense. A plasma lectin isolated from the hemolymph of Taiwanese Tachypleus tridentatus recognizes bacteria and lipopolysaccharides (LPSs), yet its structure and mechanism of action remain unclear, largely because of limited availability of horseshoe crabs and the lack of a heterogeneous expression system. In this study, we have successfully expressed and purified a soluble and functional recombinant horseshoe crab plasma lectin (rHPL) in an Escherichia coli system. Interestingly, rHPL bound not only to bacteria and LPSs like the native HPL but also to selective medically important pathogens isolated from clinical specimens, such as Gram-negative Pseudomonas aeruginosa and Klebsiella pneumoniae and Gram-positive Streptococcus pneumoniae serotypes. The binding was demonstrated to occur through a specific molecular interaction with rhamnose in pathogen-associated molecular patterns (PAMPs) on the bacterial surface. Additionally, rHPL inhibited the growth of P. aeruginosa PAO1 in a concentration-dependent manner. The results suggest that a specific protein-glycan interaction between rHPL and rhamnosyl residue may further facilitate development of novel diagnostic and therapeutic strategies for microbial pathogens. PMID:25541995

  10. Anisotropic time-resolved solution X-ray scattering patterns from explicit-solvent molecular dynamics

    NASA Astrophysics Data System (ADS)

    Brinkmann, Levin U. L.; Hub, Jochen S.

    2015-09-01

    Time-resolved wide-angle X-ray scattering (TR-WAXS) is an emerging experimental technique used to track chemical reactions and conformational transitions of proteins in real time. Thanks to increased time resolution of the method, anisotropic TR-WAXS patterns were recently reported, which contain more structural information than isotropic patterns. So far, however, no method has been available to compute anisotropic WAXS patterns of biomolecules, thus limiting the structural interpretation. Here, we present a method to compute anisotropic TR-WAXS patterns from molecular dynamics simulations. The calculations accurately account for scattering of the hydration layer and for thermal fluctuations. For many photo-excitable proteins, given a low intensity of the excitation laser, the anisotropic pattern is described by two independent components: (i) an isotropic component, corresponding to common isotropic WAXS experiments and (ii) an anisotropic component depending on the orientation of the excitation dipole of the solute. We present a set of relations for the calculation of these two components from experimental scattering patterns. Notably, the isotropic component is not obtained by a uniform azimuthal average on the detector. The calculations are illustrated and validated by computing anisotropic WAXS patterns of a spheroidal protein model and of photoactive yellow protein. Effects due to saturated excitation at high intensities of the excitation laser are discussed, including opportunities to extract additional structural information by modulating the laser intensity.

  11. Sulphur-bearing molecules in diffuse molecular clouds: new results from SOFIA/GREAT and the IRAM 30 m telescope

    NASA Astrophysics Data System (ADS)

    Neufeld, D. A.; Godard, B.; Gerin, M.; Pineau des Forêts, G.; Bernier, C.; Falgarone, E.; Graf, U. U.; Güsten, R.; Herbst, E.; Lesaffre, P.; Schilke, P.; Sonnentrucker, P.; Wiesemeyer, H.

    2015-05-01

    We have observed five sulphur-bearing molecules in foreground diffuse molecular clouds lying along the sight-lines to five bright continuum sources. We have used the GREAT instrument on SOFIA to observe the SH 1383 GHz 2Π3/2 J = 5/2 ← 3/2 lambda doublet toward the star-forming regions W31C, G29.96-0.02, G34.3+0.1, W49N and W51, detecting foreground absorption towards all five sources; and the EMIR receivers on the IRAM 30 m telescope at Pico Veleta to detect the H2S 110-101 (169 GHz), CS J = 2-1 (98 GHz) and SO 32-21 (99 GHz) transitions. Upper limits on the H3S+10-00 (293 GHz) transition were also obtained at the IRAM 30 m. In nine foreground absorption components detected towards these sources, the inferred column densities of the four detected molecules showed relatively constant ratios, with N(SH) /N(H2S) in the range 1.1-3.0, N(CS) /N(H2S) in the range 0.32-0.61, and N(SO) /N(H2S) in the range 0.08-0.30. The column densities of the sulphur-bearing molecules are very well correlated amongst themselves, moderately well correlated with CH (a surrogate tracer for H2), and poorly correlated with atomic hydrogen. The observed SH/H2 ratios - in the range 5 to 26 × 10-9 - indicate that SH (and other sulphur-bearing molecules) account for ≪ 1% of the gas-phase sulphur nuclei. The observed abundances of sulphur-bearing molecules, however, greatly exceed those predicted by standard models of cold diffuse molecular clouds, providing further evidence for the enhancement of endothermic reaction rates by elevated temperatures or ion-neutral drift. We have considered the observed abundance ratios in the context of shock and turbulent dissipation region (TDR) models. Using the TDR model, we find that the turbulent energy available at large scale in the diffuse ISM is sufficient to explain the observed column densities of SH and CS. Standard shock and TDR models, however, fail to reproduce the column densities of H2S and SO by a factor of about 10; more elaborate shock models - in which account is taken of the velocity drift, relative to H2, of SH molecules produced by the dissociative recombination of H3S+ - reduce this discrepancy to a factor ~3. Appendices are available in electronic form at http://www.aanda.org

  12. Image-charge-induced localization of molecular orbitals at metal-molecule interfaces: Self-consistent GW calculations

    NASA Astrophysics Data System (ADS)

    Strange, M.; Thygesen, K. S.

    2012-11-01

    Quasiparticle (QP) wave functions, also known as Dyson orbitals, extend the concept of single-particle states to interacting electron systems. Here we employ many-body perturbation theory in the GW approximation to calculate the QP wave functions for a semiempirical model describing a ?-conjugated molecular wire in contact with a metal surface. We find that image charge effects pull the frontier molecular orbitals toward the metal surface, while orbitals with higher or lower energy are pushed away. This affects both the size of the energetic image charge shifts and the coupling of the individual orbitals to the metal substrate. Full diagonalization of the QP equation and, to some extent, self-consistency in the GW self-energy, is important to describe the effect, which is not captured by standard density functional theory or Hartree-Fock. These results should be important for the understanding and theoretical modeling of electron transport across metal-molecule interfaces.

  13. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development

    PubMed Central

    Ferrari, Simone; Savatin, Daniel V.; Sicilia, Francesca; Gramegna, Giovanna; Cervone, Felice; Lorenzo, Giulia De

    2013-01-01

    Oligogalacturonides (OGs) are oligomers of alpha-1,4-linked galacturonosyl residues released from plant cell walls upon partial degradation of homogalacturonan. OGs are able to elicit defense responses, including accumulation of reactive oxygen species and pathogenesis-related proteins, and protect plants against pathogen infections. Recent studies demonstrated that OGs are perceived by wall-associated kinases and share signaling components with microbe-associated molecular patterns. For this reason OGs are now considered true damage-associated molecular patterns that activate the plant innate immunity and may also be involved in the activation of responses to mechanical wounding. Furthermore, OGs appear to modulate developmental processes, likely through their ability to antagonize auxin responses. Here we review our current knowledge on the role and mode of action of this class of oligosaccharides in plant defense and development. PMID:23493833

  14. Modeling Stochastic Kinetics of Molecular Machines at Multiple Levels: From Molecules to Modules

    PubMed Central

    Chowdhury, Debashish

    2013-01-01

    A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here. PMID:23746505

  15. Phospholipid Membrane Protection by Sugar Molecules during Dehydration-Insights into Molecular Mechanisms Using Scattering Techniques

    SciTech Connect

    Garvey, Christopher J.; Lenné, Thomas; Koster, Karen L.; Kent, Ben; Bryant, Gary

    2014-09-24

    Scattering techniques have played a key role in our understanding of the structure and function of phospholipid membranes. These techniques have been applied widely to study how different molecules (e.g., cholesterol) can affect phospholipid membrane structure. However, there has been much less attention paid to the effects of molecules that remain in the aqueous phase. One important example is the role played by small solutes, particularly sugars, in protecting phospholipid membranes during drying or slow freezing. In this paper, we present new results and a general methodology, which illustrate how contrast variation small angle neutron scattering (SANS) and synchrotron-based X-ray scattering (small angle (SAXS) and wide angle (WAXS)) can be used to quantitatively understand the interactions between solutes and phospholipids. Specifically, we show the assignment of lipid phases with synchrotron SAXS and explain how SANS reveals the exclusion of sugars from the aqueous region in the particular example of hexagonal II phases formed by phospholipids.

  16. Molecular Mechanics of Single Protein Molecules Measured with the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Hansma, Paul K.

    2000-03-01

    After a short history of AFM development in our lab, including recent developments with small cantilevers, this talk will focus on 1) pulling single protein molecules to explore the forces involved in unfolding and 2) watching single protein molecules in action to learn how they function mechanically. 1) Pulling experiments on proteins used as marine adhesives in abalone shells and other biological composite materials reveal modules bound together by sacrificial bonds that are weaker than the backbone bonds in the polypeptide chain.1 These self-healing modules provide effective energy absorption and appear to be a real key to understanding the impressive fracture resistance of biological composite materials. For example, the abalone shell is 3000 times more fracture resistant than a single crystal of calcium carbonate, despite the fact that 97% of the mass of the shell is crystalline calcium carbonate. 2) It is becoming possible, again with AFMs, to learn how some enzymes, nature's nanomachines, do their exquisite materials synthesis and processing. The talk will focus on the chaperonin system of GroEL and GroES that processes incorrectly folded proteins and assists them in refolding correctly. It is becoming possible not only to see single molecule events such as the association and disassociation of the GroEL-Gro-ES complex, but also to measure potential energy functions for the molecules in various conformational states. These new measurements, together with detailed structural measurements from other techniques, give new clues about how these proteins use the energy of ATP to do their work. Since the AFMs of today are very far from fundamental limits, this is only the beginning. 1. B. L. Smith, T. E. Schaffer, M. Viani, J. B. Thompson, N. A. Frederick, J. Kindt, A. Belcher, G. D. Stucky, D. E. Morse and P. K. Hansma, Nature 399, 761 (1999)

  17. Initiating Molecular Growth in the Interstellar Medium via Dimeric Complexes of Observed Ions and Molecules

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Head-Gordon, Martin; Lee, Timothy J.

    2011-01-01

    A feasible initiation step for particle growth in the interstellar medium (ISM) is simulated by means of ab quantum chemistry methods. The systems studied are dimer ions formed by pairing nitrogen containing small molecules known to exist in the ISM with ions of unsaturated hydrocarbons or vice versa. Complexation energies, structures of ensuing complexes and electronic excitation spectra of the encounter complexes are estimated using various quantum chemistry methods. Moller-Plesset perturbation theory (MP2, Z-averaged perturbation theory (ZAP2), coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)), and density functional theory (DFT) methods (B3LYP) were employed along with the correlation consistent cc-pVTZ and aug-cc-pVTZ basis sets. Two types of complexes are predicted. One type of complex has electrostatic binding with moderate (7-20 kcal per mol) binding energies, that are nonetheless significantly stronger than typical van der Waals interactions between molecules of this size. The other type of complex develops strong covalent bonds between the fragments. Cyclic isomers of the nitrogen containing complexes are produced very easily by ion-molecule reactions. Some of these complexes show intense ultraviolet visible spectra for electronic transitions with large oscillator strengths at the B3LYP, omegaB97, and equations of motion coupled cluster (EOM-CCSD) levels. The open shell nitrogen containing carbonaceous complexes especially exhibit a large oscillator strength electronic transition in the visible region of the electromagnetic spectrum.

  18. Multicomponent redox catalysts for reduction of large biological molecules using molecular hydrogen as the reductant

    SciTech Connect

    Chao, S.; Simon, R.A.; Mallouk, T.E.; Wrighton, M.S.

    1988-03-30

    One-electron reduction of the large biological molecules horse heart cytochrome c, sperm whale myoglobin, and horseradish peroxidase using H/sub 2/ as the reductant can be catalyzed by two-component, high surface area heterogeneous catalysts. The catalysts can be prepared by first functionalizing high surface area SiO/sub 2/ with a polycationic polymer into which is dispersed MCl/sub 4//sup 2 -/ (M = Pd, Pt). Reduction with H/sub 2/ yields elemental Pd or Pt dispersed in the polymer. The particles are finally functionalized with a redox polymer derived from hydrolysis of Si(OR)/sub 3/ groups of an N,N'-dialkyl-4,4'-bipyridinium- or from a cobalticenium-based monomer. The two components of the heterogeneous catalysts are the buried noble metal capable of activating the H/sub 2/ and the redox polymer, which can equilibrate both with the noble metal and with the large biological molecule. Reduction of the large biological molecules in aqueous solution can be effected at room temperature and 1 atm H/sub 2/ using the catalysts under conditions where the biological materials would not be reducible with H/sub 2/ alone or when the noble metal alone would be used as the catalyst.

  19. Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules.

    PubMed

    Herce, Henry D; Garcia, Angel E; Cardoso, M Cristina

    2014-12-17

    Guanidinium-rich molecules, such as cell-penetrating peptides, efficiently enter living cells in a non-endocytic energy-independent manner and transport a wide range of cargos, including drugs and biomarkers. The mechanism by which these highly cationic molecules efficiently cross the hydrophobic barrier imposed by the plasma membrane remains a fundamental open question. Here, a combination of computational results and in vitro and live-cell experimental evidence reveals an efficient energy-independent translocation mechanism for arginine-rich molecules. This mechanism unveils the essential role of guanidinium groups and two universal cell components: fatty acids and the cell membrane pH gradient. Deprotonated fatty acids in contact with the cell exterior interact with guanidinium groups, leading to a transient membrane channel that facilitates the transport of arginine-rich peptides toward the cell interior. On the cytosolic side, the fatty acids become protonated, releasing the peptides and resealing the channel. This fundamental mechanism appears to be universal across cells from different species and kingdoms. PMID:25405895

  20. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    PubMed Central

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  1. Regional pattern of the molecular types of Cryptococcus neoformans and Cryptococcus gattii in Brazil.

    PubMed

    Trilles, Luciana; Lazra, Mrcia dos Santos; Wanke, Bodo; Oliveira, Raquel Vasconcelos; Barbosa, Glucia Gonalves; Nishikawa, Marlia Martins; Morales, Bernardina Penarrieta; Meyer, Wieland

    2008-08-01

    The molecular types of 443 Brazilian isolates of Cryptococcus neoformans and Cryptococcus gattii were analyzed to determine their geographic distribution within Brazil and their underlying host conditions. The following data, imported from previous epidemiological studies as well as two culture collections, were analyzed for: place of isolation, source (clinical or environmental), host risk factors, species, serotype, mating type, and molecular type. Molecular typing by PCR-fingerprinting using primers for the minisatellite-specific core sequence of the wild-type phage M13 or microsatellites [(GACA)4, (GTG)5], restriction fragment length polymorphism of URA5 gene analysis, and/or amplified fragment length polymorphism (AFLP) identified eight major genotypes: VNI/AFLP1, VNII/AFLP1A, VNIII/AFLP2, and VNIV/AFLP3 for C. neoformans, and VGI/AFLP4, VGII/AFLP6, VGIII/AFLP5, and VGIV/AFLP7 for C. gattii. The most common molecular type found in Brazil was VNI (64%), followed by VGII (21%), VNII (5%), VGIII (4%), VGI and VNIV (3% each), and VNIII (< 1%). Primary cryptococcosis caused by the molecular type VGII (serotype B, MAT alpha) prevails in immunocompetent hosts in the North and Northeast regions, disclosing an endemic regional pattern for this specific molecular type in the Northern Brazil. PMID:18797758

  2. Analysis of Bonding Patterns in the Valence Isoelectronic series O-3, S-3, SO2 and OS2 in Terms of Oriented Quasi-Atomic Molecular Orbitals

    SciTech Connect

    Glezakou, Vassiliki Alexandra; Elbert, Stephen T.; Xantheas, Sotiris S.; Ruedenberg, Klaus

    2010-08-26

    A novel analysis of the chemical bonding pattern in the valence isoelectronic series of triatomic molecules O3, S3, SO2 and OS2 is reported. The analysis is based on examining the bond order matrix elements between the Oriented Localized Molecular Orbitals (OLMOs) that are localized on the three individual left (L), center (C) and right (R) atoms. The analysis indicates that there is a (L-C) and (C-R) π-bonding interaction and a (L-R) π−antibonding interaction. This finding supports the previously proposed "partial biradical" interpretation of these triatomic systems, which had recently been challenged.

  3. How do molecular marker patterns of BC change at increasing age of chars?

    NASA Astrophysics Data System (ADS)

    Schneider, M. P. W.; Hilf, M.; Schmidt, M. W. I.

    2009-04-01

    Black carbon (BC) is considered to be a relatively stable form of organic carbon. However, previous results have shown that the physical and chemical properties of BC can vary considerably with formation temperature. Thus, to understand the long-term carbon sink potential of BC there is increasing interest to gain more information about i) the conditions under which BC was formed, and ii) the resulting degradability of BC under natural conditions. In a first step, we synthesised chars from two different sources of biomass (chestnut wood, rice straw) under well-defined conditions as model substances to analyse the changes in their molecular structure at increasing formation temperature. Results are presented obtained from a set of laboratory produced char samples pyrolysed at increasing temperatures with a high resolution between 200 and 1000 °C. The chars were characterized by a molecular marker method for pyrogenic carbon quantification, which additionally provides information about the degree of condensation of chars. At temperatures between 275 and 500°C, which typically are observed during wildfires and thus are relevant for natural char formation, the molecular marker pattern of the chars remains almost constant. In a next step, we analysed changes in the molecular marker patterns of chars from a chronosequence, with BC deposited between 0 and 100 years ago. Based on the data obtained from the laboratory char series, we compare changes in the molecular marker patterns of the chars from the chronosequence over time. These results show if less condensed forms of BC are degraded preferentially and more condensed, aromatic backbone of BC becomes enriched in the soils with time of degradation. Our results provide information about the fate of BC in the environment, which has important implications in the context of carbon sequestration strategies.

  4. Single molecule force spectroscopy reveals the molecular mechanical anisotropy of the FeS4 metal center in rubredoxin.

    PubMed

    Zheng, Peng; Chou, Chih-Chung; Guo, Ying; Wang, Yanyan; Li, Hongbin

    2013-11-27

    Mechanical anisotropy is an important feature of materials. Depending on the direction it is pulled, a material can exhibit very different mechanical properties. Mechanical anisotropy on the microscopic scale has also been observed for individual elastomeric proteins. Depending upon the direction along which it is stretched, a protein can unfold via different mechanical unfolding pathways and exhibit vastly different mechanical stability. However, it remains to be demonstrated if the concept of mechanical anisotropy can be extended to the molecular scale for small molecular objects containing only a few chemical bonds. Here, we choose the iron-sulfur center FeS4 in the simplest iron-sulfur protein rubredoxin as a model system to demonstrate the molecular level mechanical anisotropy. We used single molecule atomic force spectroscopy to investigate the mechanical rupture of the FeS4 center along different pulling directions. The FeS4 cluster is a simple molecular object with defined three-dimensional structure, where a ferric ion and four coordinating cysteinyl ligands are arranged into a distorted tetrahedral geometry. Mutating two specific residues in rubredoxin to cysteines provides anchoring points that enable us to stretch and rupture the FeS4 center along five distinct and precisely controlled directions. Our results showed that the mechanical stability as well as the rupture mechanism and kinetics of the FeS4 center are strongly dependent upon the direction along which it is stretched, suggesting that the very small and simple FeS4 center exhibits considerable mechanical anisotropy. It is likely that structural asymmetry in the FeS4 cluster and the modulation of the local environment due to partial unfolding of rubredoxin are responsible for the observed mechanical anisotropy. Our results suggest that mechanical anisotropy is a universal feature for any asymmetrical three-dimensional structure, even down to a molecular scale, and such mechanical anisotropy can be potentially utilized to control the mechanochemical reactivity of molecular objects. PMID:24171546

  5. Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals

    NASA Astrophysics Data System (ADS)

    Gutman, Ivan

    2016-02-01

    Lower and upper bounds for the total π-electron energy are obtained, which are applicable to conjugated π-electron systems with non-bonding molecular orbitals (NBMOs). These improve the earlier estimates, in which the number of NBMOs has not been taken into account.

  6. Meet the Molecules in Chocolate: Informal Opportunities for Building Thematic Molecular Models with Children

    ERIC Educational Resources Information Center

    Amey, Jennifer R.; Fletcher, Matthew D.; Fletcher, Rachael V.; Jones, Alison; Roberts, Erica W.; Roberts, Ieuan O.

    2008-01-01

    We describe the development and use of a molecular model building activity with a chocolate theme, suitable for a public presentation of chemistry through interaction with visitors to science festivals and museums, and as a special classroom activity during science weeks, and so forth. (Contains 3 figures.)

  7. Studying functional dynamics in bio-molecules using accelerated molecular dynamics.

    PubMed

    Markwick, Phineus R L; McCammon, J Andrew

    2011-12-01

    Many biologically important processes such as enzyme catalysis, signal transduction, ligand binding and allosteric regulation occur on the micro- to millisecond time-scale. Despite the sustained and rapid increase in available computational power and the development of efficient simulation algorithms, molecular dynamics (MD) simulations of proteins and bio-machines are generally limited to time-scales of tens to hundreds of nano-seconds. In this perspective article we present a comprehensive review of Accelerated Molecular Dynamics (AMD), an extended biased potential molecular dynamics approach that allows for the efficient study of bio-molecular systems up to time-scales several orders of magnitude greater than those accessible using standard classical MD methods, whilst still maintaining a fully atomistic representation of the system. Compared to many other approaches, AMD affords efficient enhanced conformational space sampling without any a priori understanding of the underlying free energy surface, nor does it require the specific prior definition of a reaction coordinate or a set of collective variables. Successful applications of the AMD method, including the study of slow time-scale functional dynamics in folded proteins and the conformational behavior of natively unstructured proteins are discussed and an outline of the different variants and extensions to the standard AMD approach is presented. PMID:22015376

  8. Molecular entomology: analyzing tiny molecules to answer big questions about disease vectors and their biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The entomologists at the Arthropod-Borne Animal Diseases Research Unit at USDA-Agricultural Research Service are tasked with protecting the nations livestock from domestic, foreign and emerging vector-borne diseases. To accomplish this task, a vast array of molecular techniques are being used in pr...

  9. Red Fluorescent Line Emission from Hydrogen Molecules in Diffuse Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Spaans, Marco

    1996-01-01

    We have modeled the fluorescent pumping of electronic and vibrational emissions of molecular hydrogen (H2) within diffuse molecular clouds that are illuminated by ultraviolet continuum radiation. Fluorescent line intensities are predicted for transitions at ultraviolet, infrared, and red visible wavelengths as functions of the gas density, the visual extinction through the cloud, and the intensity of the incident UV continuum radiation. The observed intensity in each fluorescent transition is roughly proportional to the integrated rate of H2 photodissociation along the line of sight. Although the most luminous fluorescent emissions detectable from ground-based observatories lie at near-infrared wavelengths, we argue that the lower sky brightness at visible wavelengths makes the red fluorescent transitions a particularly sensitive probe. Fabry-Perot spectrographs of the type that have been designed to observe very faint diffuse Ha emissions are soon expected to yield sensitivities that will be adequate to detect H2 vibrational emissions from molecular clouds that are exposed to ultraviolet radiation no stronger than the mean radiation field within the Galaxy. Observations of red H2 fluorescent emission together with cospatial 21 cm H I observations could serve as a valuable probe of the gas density in diffuse molecular clouds.

  10. Resonance enhanced multiphoton and single-photon ionization of molecules and molecular fragments. Final report, May 1993--April 1997

    SciTech Connect

    McKoy, V.

    1998-09-01

    Resonance enhanced multiphoton ionization (REMPI) utilizes pulsed laser radiation to prepare a molecule in an excited state via absorption of one or more photons and to subsequently ionize that level before it decays. A remarkable feature of REMPI is that the very narrow bandwidth of laser radiation makes it possible to select a specific rotational level in the initial (ground) state and to prepare the excited state of interest in a single rotational level. Thus, by suitable choice of the excitation step, it is possible to selectively ionize a species that may be present. The key objective of the effort is to carry out quantitative studies of REMPI of molecules and molecular fragments, as well as of single-photon ionization of these species by coherent VUV radiation, in order to provide a robust description of significant spectral features of interest in related experiments and needed insight into the underlying dynamics of these spectra. A major focus of the effort is joint theoretical and experimental studies of these ion rotational distributions which are being widely studied by the zero-kinetic-energy (ZEKE) technique. This technique, which is based on the detection of photoelectrons resulting from pulsed-field ionization of very high Rydberg states lying just below an ion threshold, makes it possible to obtain cation distributions with subwavenumber resolution. The unprecedented resolution of this ZEKE technique is opening up entirely new vistas in studies of photoionization dynamics, ion spectroscopy, and state-selected ion-molecule reactions. Emerging applications built on the ultra-high resolution of this technique include its use for accurate determination of thermochemically important ionization energies, for characterization of ion rovibrational level structure of large organic molecules, of elemental clusters, and of weakly bound molecular complexes, for probing reactive fragments, and for pump-probe photoelectron studies of wavepacket dynamics. This surge of experimental activity in ultra-high resolution studies of molecular photoelectron spectra continues to raise new theoretical challenges and has provided the stimulus for several of the collaborations with experimental groups in North America and Europe.

  11. Mechanical Operation and Intersubunit Coordination of Ring-Shaped Molecular Motors: Insights from Single-Molecule Studies

    PubMed Central

    Liu, Shixin; Chistol, Gheorghe; Bustamante, Carlos

    2014-01-01

    Ring NTPases represent a large and diverse group of proteins that couple their nucleotide hydrolysis activity to a mechanical task involving force generation and some type of transport process in the cell. Because of their shape, these enzymes often operate as gates that separate distinct cellular compartments to control and regulate the passage of chemical species across them. In this manner, ions and small molecules are moved across membranes, biopolymer substrates are segregated between cells or moved into confined spaces, double-stranded nucleic acids are separated into single strands to provide access to the genetic information, and polypeptides are unfolded and processed for recycling. Here we review the recent advances in the characterization of these motors using single-molecule manipulation and detection approaches. We describe the various mechanisms by which ring motors convert chemical energy to mechanical force or torque and coordinate the activities of individual subunits that constitute the ring. We also examine how single-molecule studies have contributed to a better understanding of the structural elements involved in motor-substrate interaction, mechanochemical coupling, and intersubunit coordination. Finally, we discuss how these molecular motors tailor their operationoften through regulation by other cofactorsto suit their unique biological functions. PMID:24806916

  12. The hydrogen molecule and the H+2 molecular ion inside padded prolate spheroidal cavities with arbitrary nuclear positions

    NASA Astrophysics Data System (ADS)

    Coln-Rodrguez, R.; Daz-Garca, C.; Cruz, S. A.

    2011-12-01

    A generalization of previous theoretical studies of molecular confinement based on the molecule-in-a-box model for the H+2 and H2 systems whereby the confining cavity is assumed to be prolate spheroidal in shape is presented. A finite height for the confining barrier potential is introduced and the independent variation of the nuclear positions from the cavity size and shape is allowed. Within this scheme, the non-separable Schrdinger problem for the confined H+2 and H2 molecules in their ground states is treated variationally. In both cases, an important dependence of the equilibrium bond length and total energy on the confining barrier height is observed for fixed cavity sizes and shapes. It is also shown thatgiven a barrier heightas the cavity size is reduced, the limit of stability of the confined molecule is attained for a critical size. The results of this work suggest the adequacy of the proposed method for more realistic studies of electronic and vibrational properties of confined one- and two-electron diatomics for proper comparison with experiment.

  13. Lubrication by physisorbed molecules in equilibrium with vapor at ambient condition: effects of molecular structure and substrate chemistry.

    PubMed

    Barthel, Anthony J; Kim, Seong H

    2014-06-10

    The effects of physisorbed organic vapor molecules on friction and wear were studied for various materials with different surface chemistries (metals, ceramics, glasses, carbons, polymers) and adsorbed species with distinct functional groups (short linear-chain, branched, and fluorinated alcohols with alkyl chain lengths up to five carbons as well as acetone and n-decane). Friction test results of stainless steel under equilibrium vapor adsorption conditions indicated that the longer chain length of the adsorbed alcohols results in lower friction and that n-pentanol gives the lowest friction and wear among the molecules investigated. The adsorption isotherm measurements revealed that the functional groups of the adsorbed molecules appear to play important roles in lubrication. Friction coefficients that ranged from 0.02 to 0.9 for the various materials in dry and humid environments converged to ?0.15 for the inorganic solid materials tested in n-pentanol. These findings indicate that the molecular lubrication by the physisorbed species dominates the tribological behaviors of the inorganic solid materials, regardless of bulk mechanical properties. Tribotests using polymeric materials did not show the same lubricating effects for n-pentanol vapor. The failure of n-pentanol to lubricate polymeric materials may be due to vapor ingress into the polymer and the absence of an adsorbed surface layer. PMID:24827583

  14. Crossed molecular beams study of O({sup 1}D) reactions with H{sub 2} molecules

    SciTech Connect

    Miau, T.T.

    1995-05-01

    Reaction dynamics of O({sup 1}D) atoms with H{sub 2} molecules was reinvestigated using the crossed molecular beams technique with pulsed beams. The O({sup 1}D) beam was generated by photodissociating O{sub 3} molecules at 248 nm. Time-of-flight spectra and the laboratory angular distribution of the OH products were measured. The derived OH product center-of-mass flux-velocity contour diagram shows more backward scattered intensity with respect to the O({sup 1}D) beam. In contrast to previous studies which show that the insertion mechanism is the dominant process, our results indicate that the contribution from the collinear approach of the O({sup 1}D) atom to the H{sub 2} molecule on the first excited state potential energy surface is significant and the energy barrier for the collinear approach is therefore minimal. Despite the increased time resolution in this experiment, no vibrational structure in the OH product time-of-flight spectra was resolved. This is in agreement with LIF studies, which have shown that the rotational distributions of the OH products in all vibrational states are broad and highly inverted.

  15. High-throughput screening identifies small molecule inhibitors of molecular chaperones.

    PubMed

    Kondoh, Yasumitsu; Osada, Hiroyuki

    2013-01-01

    Heat shock proteins (HSPs) are involved in a number of cellular processes, including cell cycle, growth, and survival, apoptosis, stress responses, angiogenesis, and oncogenesis. Among the characterized HSPs, the molecular chaperone HSP90 has emerged as an exciting molecular target for cancer therapy since its discovery as the target protein of the antibiotic geldanamycin. The stress-inducible HSP70, which is upregulated in many cancers, contributing to tumor cell survival and resistance to therapy, has important roles as a housekeeper in the cell, assisting in the correct folding, trafficking, and degradation of many proteins. 2-Phenylethynesulfonamide (PES) physically interacts with HSP70 and disrupts the association between HSP70 and several of its cofactors and client proteins, leading to cancer cell death that is selectively mediated through caspase-independent mechanisms involving increased protein aggregation, impairment of lysosomal functions, and inhibition of autophagy. Mammalian HSP60 has several functions in the cell, including apoptosis, an immune-regulatory function, and cell spreading. HSP60 is a mitochondrial protein that is essential for the folding and assembly of newly imported proteins in the mitochondria. Epolactaene/ETB covalently binds to HSP60, inhibiting its chaperone activity. Molecular chaperone inhibitors are significantly valuable not only as tools to reveal the unknown cellular functions of molecular chaperones, but also as lead compounds for drug discovery. Thus, high-throughput screening systems are necessary for the discovery of more effective inhibitors. Here, we describe the methodology for 4 characteristic types of high-throughput screening systems for inhibitors of molecular chaperones, mainly HSP90 and HSP70: the colorimetric method, the fluorescence polarization method, the chemical array method, and the AlphaScreen method. PMID:22920900

  16. Proton Donor/acceptor Propensities of Ammonia: Rotational Studies of its Molecular Complexes with Organic Molecules

    NASA Astrophysics Data System (ADS)

    Giuliano, Barbara M.; Maris, Assimo; Melandri, Sonia; Favero, Laura B.; Evangelisti, Luca; Caminati, Walther

    2009-06-01

    We studied the rotational spectra of the adducts of ammonia with several organic molecules, namely tert-butanol, glycidol, ethyl alcohol, anisol and 1,4-difluorobenzene. The adducts with glycidol and ethanol have been observed for both conformers of the substrate molecule. Based on the rotational and ^{14}N quadrupole coupling constants of the various complexes, we found a considerably different behaviour of ammonia, with respect to water, in its proton donor/acceptor double role. In the interaction with the three alcohol molecules, NH_{3} acts as a proton acceptor and the OH groups as a proton donor. However, in the case of glycidol-NH_{3}, a secundary N-H\\cdotsO interaction occurrs between ammonia and the ether oxygen. This interaction generates a sizable V_{3} barrier to the internal rotation of the NH_{3} moiety, while NH_{3} undergoes a free rotation in tert-butanol-NH_{3} and in ethanol-NH_{3}. As to the anisole-NH_{3} and 1,4-difluorobenzene-NH_{3} complexes, the NH_{3} group explicits its double proton donor/acceptor role, although through two weak (C_{Me}-H\\cdotsN and N-H\\cdotsπ) H-bonds. There is, however, an important difference between the two complexes, because in the first one NH_{3} lies out of the aromatic plane, while in the second one it is in the plane of the aromatic ring. B. M. Giuliano, M. C. Castrovilli, A. Maris, S. Melandri, W. Caminati and E. A. Cohen, Chem.Phys.Lett., 2008, 463, 330 B. M. Giuliano, S. Melandri, A. Maris, L. B. Favero and W. Caminati, Angew.Chem.Int.Ed., 2009, 48, 1102

  17. Molecular Probing of the HPV-16 E6 Protein Alpha Helix Binding Groove with Small Molecule Inhibitors

    PubMed Central

    Rietz, Anne; Petrov, Dino P.; Bartolowits, Matthew; DeSmet, Marsha; Davisson, V. Jo; Androphy, Elliot J.

    2016-01-01

    The human papillomavirus (HPV) HPV E6 protein has emerged as a central oncoprotein in HPV-associated cancers in which sustained expression is required for tumor progression. A majority of the E6 protein interactions within the human proteome use an alpha-helix groove interface for binding. The UBE3A/E6AP HECT domain ubiquitin ligase binds E6 at this helix-groove interface. This enables formation of a trimeric complex with p53, resulting in destruction of this tumor suppressor. While recent x-ray crystal structures are useful, examples of small molecule probes that can modulate protein interactions at this interface are limited. To develop insights useful for potential structure-based design of ligands for HPV E6, a series of 2,6-disubstituted benzopyranones were prepared and tested as competitive antagonists of E6-E6AP helix-groove interactions. These small molecule probes were used in both binding and functional assays to evaluate recognition features of the E6 protein. Evidence for an ionic functional group interaction within the helix groove was implicated by the structure-activity among the highest affinity ligands. The molecular topographies of these protein-ligand interactions were evaluated by comparing the binding and activities of single amino acid E6 mutants with the results of molecular dynamic simulations. A group of arginine residues that form a rim-cap over the E6 helix groove offer compensatory roles in binding and recognition of the small molecule probes. The flexibility and impact on the overall helix-groove shape dictated by these residues offer new insights for structure-based targeting of HPV E6. PMID:26915086

  18. Orbital tomography: Molecular band maps, momentum maps and the imaging of real space orbitals of adsorbed molecules

    PubMed Central

    Offenbacher, Hannes; Lftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg; Puschnig, Peter; Ramsey, Michael G.

    2015-01-01

    The frontier orbitals of molecules are the prime determinants of their chemical, optical and electronic properties. Arguably, the most direct method of addressing the (filled) frontier orbitals is ultra-violet photoemission spectroscopy (UPS). Although UPS is a mature technique from the early 1970s on, the angular distribution of the photoemitted electrons was thought to be too complex to be analysed quantitatively. Recently angle resolved UPS (ARUPS) work on conjugated molecules both, in ordered thick films and chemisorbed monolayers, has shown that the angular (momentum) distribution of the photocurrent from orbital emissions can be simply understood. The approach, based on the assumption of a plane wave final state is becoming known as orbital tomography. Here we will demonstrate, with selected examples of pentacene (5A) and sexiphenyl (6P), the potential of orbital tomography. First it will be shown how the full angular distribution of the photocurrent (momentum map) from a specific orbital is related to the real space orbital by a Fourier transform. Examples of the reconstruction of 5A orbitals will be given and the procedure for recovering the lost phase information will be outlined. We then move to examples of sexiphenyl where we interrogate the original band maps of thick sexiphenyl in the light of our understanding of orbital tomography that has developed since then. With comparison to theoretical simulations of the molecular band maps, the molecular conformation and orientation will be concluded. New results for the sexiphenyl monolayer on Al(110) will then be presented. From the band maps it will be concluded that the molecule is planarised and adopts a tilted geometry. Finally the momentum maps down to HOMO-11 will be analysed and real space orbitals reconstructed. PMID:26752804

  19. Molecular Probing of the HPV-16 E6 Protein Alpha Helix Binding Groove with Small Molecule Inhibitors.

    PubMed

    Rietz, Anne; Petrov, Dino P; Bartolowits, Matthew; DeSmet, Marsha; Davisson, V Jo; Androphy, Elliot J

    2016-01-01

    The human papillomavirus (HPV) HPV E6 protein has emerged as a central oncoprotein in HPV-associated cancers in which sustained expression is required for tumor progression. A majority of the E6 protein interactions within the human proteome use an alpha-helix groove interface for binding. The UBE3A/E6AP HECT domain ubiquitin ligase binds E6 at this helix-groove interface. This enables formation of a trimeric complex with p53, resulting in destruction of this tumor suppressor. While recent x-ray crystal structures are useful, examples of small molecule probes that can modulate protein interactions at this interface are limited. To develop insights useful for potential structure-based design of ligands for HPV E6, a series of 2,6-disubstituted benzopyranones were prepared and tested as competitive antagonists of E6-E6AP helix-groove interactions. These small molecule probes were used in both binding and functional assays to evaluate recognition features of the E6 protein. Evidence for an ionic functional group interaction within the helix groove was implicated by the structure-activity among the highest affinity ligands. The molecular topographies of these protein-ligand interactions were evaluated by comparing the binding and activities of single amino acid E6 mutants with the results of molecular dynamic simulations. A group of arginine residues that form a rim-cap over the E6 helix groove offer compensatory roles in binding and recognition of the small molecule probes. The flexibility and impact on the overall helix-groove shape dictated by these residues offer new insights for structure-based targeting of HPV E6. PMID:26915086

  20. The RCSB PDB “Molecule of the Month”: Inspiring a Molecular View of Biology

    PubMed Central

    Goodsell, David S.; Dutta, Shuchismita; Zardecki, Christine; Voigt, Maria; Berman, Helen M.; Burley, Stephen K.

    2015-01-01

    The Research Collaboratory for Structural Bioinformatics (RCSB) Molecule of the Month series provides a curated introduction to the 3-D biomolecular structures available in the Protein Data Bank archive and the tools that are available at the RCSB website for accessing and exploring them. A variety of educational materials, such as articles, videos, posters, hands-on activities, lesson plans, and curricula, build on this series for use in a variety of educational settings as a general introduction to key topics, such as enzyme action, protein synthesis, and viruses. The series and associated educational materials are freely available at www.rcsb.org. PMID:25942442

  1. Effect of molecular structure on fragmentation of isolated organic molecules in solid rare gas matrices

    NASA Astrophysics Data System (ADS)

    Kobzarenko, A. V.; Sukhov, F. F.; Orlov, A. Yu.; Kovalev, G. V.; Baranova, I. A.; Feldman, V. I.

    2012-09-01

    The effect of excess energy on the primary radical cations of bifunctional carbonyl compounds and aliphatic alkynes was simulated by matrix isolation method using rare gas matrices with various ionization potentials. The formation of fragmentation products was monitored by EPR and FTIR spectroscopy. It was shown that the radical cations of bifunctional compounds (CH3OCH2COCH3 and CH3COCOCH3) dissociated effectively yielding rad CH3 radicals upon irradiation in solid argon matrix at T≤16 K. In addition to isolated methyl radicals, the radical pairs consisting of two methyl radicals separated by two CO molecules were detected in the case of diacetyl. The probability of fragmentation decreases with the decreasing excess energy by switching from Ar to Xe. In general, bifunctional molecules were found to be less stable to "hot" ionic fragmentation in low-temperature solids in comparison with simple prototype compounds. In the case of alkynes of the RCCH type, a noticeable yield of fragmentation products was observed when R=-C(CH3)3, but it was negligible for R=-CH3. The mechanisms of "hot" reactions and excess energy relaxation are discussed.

  2. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  3. Optimization of molecular design in the evolution of metabolism: the glycogen molecule.

    PubMed Central

    Meléndez-Hevia, E; Waddell, T G; Shelton, E D

    1993-01-01

    The animal glycogen molecule has to be designed in accordance with its metabolic function as a very effective fuel store allowing quick release of large amounts of glucose. In addition, the design should account for a high capacity of glucose storage in the least possible space. We have studied the optimization of these variables by means of a mathematical model of the glycogen molecule. Our results demonstrate that the structure is optimized to maximize (a) the total glucose stored in the smallest possible volume, (b) the proportion of it that can be directly released by phosphorylase before any debranching occurs, and (c) the number of non-reducing ends (points of attack for phosphorylase), which maximizes the speed of fuel release. The optimization of these four variables is achieved with appropriate values for two key parameters in glycogen design: the degree of branching and the length of the chains. The optimal values of these two parameters are precisely those found in cellular glycogen. PMID:8240246

  4. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules.

    PubMed

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lnn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, Joo; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Krten, Andreas; Kurtn, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipil, Mikko; Tom, Antnio; Tsagkogeorgas, Georgios; Vehkamki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petj, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-10-22

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytil boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  5. Dust around AFGL 2688, molecular shielding, and the production of carbon chain molecules

    NASA Technical Reports Server (NTRS)

    Jura, M.; Kroto, H.

    1990-01-01

    The molecular, IR, and optical maps of the evolved carbon star AFGL 2688 (the 'Egg' Nebula) are all consistent with a model of a bipolar outflow of approximately 0.0001 solar masses/yr that stopped as this object evolved beyond the asymptotic giant branch about 200 years ago. In order to explain the extended HC7N emission around this star, it is proposed that carbon grains are collisionally fragmented as they supersonically steam through the circumstellar envelope.

  6. Universal scaling behavior of molecular electronic stopping cross section for protons colliding with small molecules and nucleobases

    NASA Astrophysics Data System (ADS)

    Trujillo-Lpez, L. N.; Martnez-Flores, C.; Cabrera-Trujillo, R.

    2013-10-01

    The electronic stopping cross section and mean excitation energy for molecules and 5 nucleobases have been calculated within the first Born approximation in terms of an orbital decomposition to take into account the molecular structure. The harmonic oscillator (HO) description of the stopping cross section together with a Floating Spherical Gaussian Orbital (FSGO) model is implemented to account for the chemical composition of the target. This approach allows us to use bonds, cores, and lone pairs as HO basis to describe the ground state molecular structure. In the HO model, the orbital angular frequency is the only parameter that connects naturally with the mean excitation energy. As a result, we obtain a simple expression for the equivalent mean excitation energy in terms of the orbital radius parameter, as well as an analytical expression of the stopping cross section. For gas phase molecular targets, we provide HO based orbital mean excitation energies to describe any molecule containing C, N, O, H, and P atoms. We present results for protons colliding with H2, N2, O2, H2O, CO2, propylene (C3H6), methane (CH4), ethylene (C2H4) and the nucleobases - guanine (C5H5N5O), cytosine (C4H5N2O2), thymine (C5H6N2O2), adenine (C5H5N5) and uracil (C4H4N2O2). The results for the stopping cross section are compared with available experimental and theoretical data showing good to excellent agreement in the region of validity of the model. The HO approach allows us to obtain a universal stopping cross section formula to describe a universal scaling behavior for the energy loss process. The universal scaled curve is confirmed by the experimental data.

  7. Dual reorientation relaxation routes of water molecules in oxyanion's hydration shell: A molecular geometry perspective

    NASA Astrophysics Data System (ADS)

    Xie, Wen Jun; Yang, Yi Isaac; Gao, Yi Qin

    2015-12-01

    In this study, we examine how complex ions such as oxyanions influence the dynamic properties of water and whether differences exist between simple halide anions and oxyanions. Nitrate anion is taken as an example to investigate the hydration properties of oxyanions. Reorientation relaxation of its hydration water can occur through two different routes: water can either break its hydrogen bond with the nitrate to form one with another water or switch between two oxygen atoms of the same nitrate. The latter molecular mechanism increases the residence time of oxyanion's hydration water and thus nitrate anion slows down the translational motion of neighbouring water. But it is also a "structure breaker" in that it accelerates the reorientation relaxation of hydration water. Such a result illustrates that differences do exist between the hydration of oxyanions and simple halide anions as a result of different molecular geometries. Furthermore, the rotation of the nitrate solute is coupled with the hydrogen bond rearrangement of its hydration water. The nitrate anion can either tilt along the axis perpendicularly to the plane or rotate in the plane. We find that the two reorientation relaxation routes of the hydration water lead to different relaxation dynamics in each of the two above movements of the nitrate solute. The current study suggests that molecular geometry could play an important role in solute hydration and dynamics.

  8. Torsion-Inversion Tunneling Patterns in the Ch-Stretch Vibrationally Excited States of the G{_1}{_2} Molecules

    NASA Astrophysics Data System (ADS)

    Dawadi, Mahesh B.; Bhatta, Ram S.; Perry, David S.

    2013-06-01

    Torsion-inversion tunneling models have been developed for CH-stretch vibrationally excited states in G{_1}{_2} molecules, including 2-methylmalonaldehyde (2-MMA), 5-methyltropolone (5-MT), and methylamine. These models are extensions of the group theoretical approach of Hougen and the internal coordinate model of Wang and Perry in which the inversion motion is included in addition to the torsion and the small-amplitude (e.g., CH stretch) vibrations. The present models incorporate torsion-inversion tunneling parameters {_2}{_V} and {_3}{_V}, respectively and a number of low-order terms couplings to the CH-stretch vibrations. Of the three methyl CH stretch vibrations, Model I includes only the two asymmetric stretches that correlate to the E-type degenerate CH stretch in a symmetric rotor; Model II includes all three. The models yield the torsion-inversion tunneling patterns of the four symmetry species, A, B, E{_1} and E{_2}, in the CH-stretch excited states. The principal results are as follows. (i) Both models and each of the coupling terms considered yield the same tunneling patterns, which are different in the asymmetric CH stretch excited states as compared to those in the ground state. (ii) In Model I, the magnitude of the tunneling splittings in the two asymmetric CH stretch excited states is exactly half of that in the ground state. (iii) In Model II, the relative magnitude of these splittings depends on the ratio \\vert?\\vert/(\\vert{_2}{_V}\\vert+\\vert{_3}{_V}\\vert) where ? is the torsion-inversion-vibration coupling parameter. This ratio varies from 3 to 308 across the series methanol, methylamine, 2-methylmalonaldehyde and 5-methyltropolone, with a consequent variation in the magnitude of the tunneling splittings. J. T. HougenJ. Mol. Spectrosc. {207}, 60, (2001). X. Wang and D. S. PerryJ. Chem. Phys. {109}, 10795, (1998).

  9. Exploring molecular complexity with ALMA (EMoCA): Deuterated complex organic molecules in Sagittarius B2(N2)

    NASA Astrophysics Data System (ADS)

    Belloche, A.; Müller, H. S. P.; Garrod, R. T.; Menten, K. M.

    2016-03-01

    Context. Deuteration is a powerful tracer of the history of the cold prestellar phase in star-forming regions. Apart from methanol, little is known about deuterium fractionation of complex organic molecules in the interstellar medium, especially in regions forming high-mass stars. Aims: Our goal is to detect deuterated complex organic molecules toward the high mass star-forming region Sagittarius B2 (Sgr B2) and derive the level of deuteration for these molecules. Methods: We use a complete 3-mm spectral line survey performed with the Atacama Large Millimeter/submillimeter Array (ALMA) to search for deuterated complex organic molecules toward the hot molecular core Sgr B2(N2). We constructed population diagrams and integrated intensity maps to fit rotational temperatures and emission sizes for each molecule. Column densities are derived by modeling the full spectrum under the assumption of local thermodynamic equilibrium. We compare the results to predictions of two astrochemical models that treat the deuteration process. Results: We report the detection of CH2DCN toward Sgr B2(N2) with a deuteration level of 0.4%, and tentative detections of CH2DOH, CH2DCH2CN, the chiral molecule CH3CHDCN, and DC3N with levels in the range 0.05%-0.12%. A stringent deuteration upper limit is obtained for CH3OD (<0.07%). Upper limits in the range 0.5-1.8% are derived for the three deuterated isotopologues of vinyl cyanide, the four deuterated species of ethanol, and CH2DOCHO. Ethyl cyanide is less deuterated than methyl cyanide by at least a factor five. The [CH2DOH]/[CH3OD] abundance ratio is higher than 1.8. It may still be consistent with the value obtained in Orion KL. Except for methyl cyanide, the measured deuteration levels lie at least a factor four below the predictions of current astrochemical models. The deuteration levels in Sgr B2(N2) are also lower than in Orion KL by a factor of a few up to a factor ten. Conclusions: The discrepancy between the deuteration levels of Sgr B2(N2) and the predictions of chemical models, and the difference between Sgr B2(N2) and Orion KL may both be due to the higher kinetic temperatures that characterize the Galactic center region compared to nearby clouds. Alternatively, they may result from a lower overall abundance of deuterium itself in the Galactic center region by up to a factor ten.

  10. Recognizing molecular patterns by machine learning: An agnostic structural definition of the hydrogen bond

    SciTech Connect

    Gasparotto, Piero; Ceriotti, Michele

    2014-11-07

    The concept of chemical bonding can ultimately be seen as a rationalization of the recurring structural patterns observed in molecules and solids. Chemical intuition is nothing but the ability to recognize and predict such patterns, and how they transform into one another. Here, we discuss how to use a computer to identify atomic patterns automatically, so as to provide an algorithmic definition of a bond based solely on structural information. We concentrate in particular on hydrogen bonding – a central concept to our understanding of the physical chemistry of water, biological systems, and many technologically important materials. Since the hydrogen bond is a somewhat fuzzy entity that covers a broad range of energies and distances, many different criteria have been proposed and used over the years, based either on sophisticate electronic structure calculations followed by an energy decomposition analysis, or on somewhat arbitrary choices of a range of structural parameters that is deemed to correspond to a hydrogen-bonded configuration. We introduce here a definition that is univocal, unbiased, and adaptive, based on our machine-learning analysis of an atomistic simulation. The strategy we propose could be easily adapted to similar scenarios, where one has to recognize or classify structural patterns in a material or chemical compound.

  11. Recognizing molecular patterns by machine learning: an agnostic structural definition of the hydrogen bond.

    PubMed

    Gasparotto, Piero; Ceriotti, Michele

    2014-11-01

    The concept of chemical bonding can ultimately be seen as a rationalization of the recurring structural patterns observed in molecules and solids. Chemical intuition is nothing but the ability to recognize and predict such patterns, and how they transform into one another. Here, we discuss how to use a computer to identify atomic patterns automatically, so as to provide an algorithmic definition of a bond based solely on structural information. We concentrate in particular on hydrogen bonding--a central concept to our understanding of the physical chemistry of water, biological systems, and many technologically important materials. Since the hydrogen bond is a somewhat fuzzy entity that covers a broad range of energies and distances, many different criteria have been proposed and used over the years, based either on sophisticate electronic structure calculations followed by an energy decomposition analysis, or on somewhat arbitrary choices of a range of structural parameters that is deemed to correspond to a hydrogen-bonded configuration. We introduce here a definition that is univocal, unbiased, and adaptive, based on our machine-learning analysis of an atomistic simulation. The strategy we propose could be easily adapted to similar scenarios, where one has to recognize or classify structural patterns in a material or chemical compound. PMID:25381505

  12. Recognizing molecular patterns by machine learning: An agnostic structural definition of the hydrogen bond

    NASA Astrophysics Data System (ADS)

    Gasparotto, Piero; Ceriotti, Michele

    2014-11-01

    The concept of chemical bonding can ultimately be seen as a rationalization of the recurring structural patterns observed in molecules and solids. Chemical intuition is nothing but the ability to recognize and predict such patterns, and how they transform into one another. Here, we discuss how to use a computer to identify atomic patterns automatically, so as to provide an algorithmic definition of a bond based solely on structural information. We concentrate in particular on hydrogen bonding - a central concept to our understanding of the physical chemistry of water, biological systems, and many technologically important materials. Since the hydrogen bond is a somewhat fuzzy entity that covers a broad range of energies and distances, many different criteria have been proposed and used over the years, based either on sophisticate electronic structure calculations followed by an energy decomposition analysis, or on somewhat arbitrary choices of a range of structural parameters that is deemed to correspond to a hydrogen-bonded configuration. We introduce here a definition that is univocal, unbiased, and adaptive, based on our machine-learning analysis of an atomistic simulation. The strategy we propose could be easily adapted to similar scenarios, where one has to recognize or classify structural patterns in a material or chemical compound.

  13. Molecular patterns of X chromosome-linked color vision genes among 134 menof European ancestry

    SciTech Connect

    Drummond-Borg, M.; Deeb, S.S.; Motulsky, A.G. )

    1989-02-01

    The authors used Southern blot hybridization to study X chromosome-linked color vision genes encoding the apoproteins of red and green visual pigments in 134 unselected Caucasian men. One hundred and thirteen individuals (84.3%) had a normal arrangement of their color vision pigment genes. All had one red pigment gene; the number of green pigment genes ranged from one to five with a mode of two. The frequency of molecular genotypes indicative of normal color vision (84.3%) was significantly lower than had been observed in previous studies of color vision phenotypes. Color vision defects can be due to deletions of red or green pigment genes or due to formation of hybrid genes comprising portions of both red and green pigment genes. Characteristic anomalous patterns were seen in 15 (11.2%) individuals: 7 (5.2%) had patterns characteristic of deuteranomaly, 2 (1.5%) had patterns characteristic of deuteranopia, and 6 (4.5%) had protan patterns. Previously undescribed hybrid gene patterns consisting of both green and red pigment gene fragments in addition to normal red and green genes were observed in another 6 individuals (4.5%). Thus, DNA testing detected anomalous color vision pigment genes at a higher frequency than expected from phenotypic color vision tests.

  14. Extracting an electron's angle of return from shifted interference patterns in macroscopic high-order-harmonic spectra of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Das, T.; Augstein, B. B.; Figueira de Morisson Faria, C.; Chipperfield, L. E.; Hoffmann, D. J.; Marangos, J. P.

    2015-08-01

    We investigate high-order-harmonic spectra from aligned diatomic molecules in intense driving fields whose components have orthogonal polarizations. We focus on how the driving-field ellipticity influences structural interference patterns in a macroscopic medium. In a previous publication [Phys. Rev. A 88, 023404 (2013), 10.1103/PhysRevA.88.023404] we have shown that the nonvanishing ellipticity introduces an effective dynamic shift in the angle for which the two-center interference maxima and minima occur, with regard to the existing condition for linearly polarized fields. In this work we show through simulation that it is still possible to observe this shift in harmonic spectra that have undergone macroscopic propagation, and discuss the parameter range for doing so. These features are investigated for H2 in a bichromatic field composed of two orthogonally polarized waves. The shift is visible both in the near- and in the far-field regime, so that, in principle, it can be observed in experiments.

  15. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection.

    PubMed

    Jaillon, Sbastien; Moalli, Federica; Ragnarsdottir, Bryndis; Bonavita, Eduardo; Puthia, Manoj; Riva, Federica; Barbati, Elisa; Nebuloni, Manuela; Cvetko Krajinovic, Lidija; Markotic, Alemka; Valentino, Sonia; Doni, Andrea; Tartari, Silvia; Graziani, Giorgio; Montanelli, Alessandro; Delneste, Yves; Svanborg, Catharina; Garlanda, Cecilia; Mantovani, Alberto

    2014-04-17

    Immunity in the urinary tract has distinct and poorly understood pathophysiological characteristics and urinary tract infections (UTIs) are important causes of morbidity and mortality. We investigated the role of the soluble pattern recognition molecule pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity, in UTIs. PTX3-deficient mice showed defective control of UTIs and exacerbated inflammation. Expression of PTX3 was induced in uroepithelial cells by uropathogenic Escherichia coli (UPEC) in a Toll-like receptor 4 (TLR4)- and MyD88-dependent manner. PTX3 enhanced UPEC phagocytosis and phagosome maturation by neutrophils. PTX3 was detected in urine of UTI patients and amounts correlated with disease severity. In cohorts of UTI-prone patients, PTX3 gene polymorphisms correlated with susceptibility to acute pyelonephritis and cystitis. These results suggest that PTX3 is an essential component of innate resistance against UTIs. Thus, the cellular and humoral arms of innate immunity exert complementary functions in mediating resistance against UTIs. PMID:24745336

  16. Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo

    PubMed Central

    Levin, Michael

    2014-01-01

    In addition to biochemical gradients and transcriptional networks, cell behavior is regulated by endogenous bioelectrical cues originating in the activity of ion channels and pumps, operating in a wide variety of cell types. Instructive signals mediated by changes in resting potential control proliferation, differentiation, cell shape, and apoptosis of stem, progenitor, and somatic cells. Of importance, however, cells are regulated not only by their own Vmem but also by the Vmem of their neighbors, forming networks via electrical synapses known as gap junctions. Spatiotemporal changes in Vmem distribution among nonneural somatic tissues regulate pattern formation and serve as signals that trigger limb regeneration, induce eye formation, set polarity of whole-body anatomical axes, and orchestrate craniofacial patterning. New tools for tracking and functionally altering Vmem gradients in vivo have identified novel roles for bioelectrical signaling and revealed the molecular pathways by which Vmem changes are transduced into cascades of downstream gene expression. Because channels and gap junctions are gated posttranslationally, bioelectrical networks have their own characteristic dynamics that do not reduce to molecular profiling of channel expression (although they couple functionally to transcriptional networks). The recent data provide an exciting opportunity to crack the bioelectric code, and learn to program cellular activity at the level of organs, not only cell types. The understanding of how patterning information is encoded in bioelectrical networks, which may require concepts from computational neuroscience, will have transformative implications for embryogenesis, regeneration, cancer, and synthetic bioengineering. PMID:25425556

  17. Molecular Framework of a Regulatory Circuit Initiating Two-Dimensional Spatial Patterning of Stomatal Lineage

    PubMed Central

    Rychel, Amanda L.; Garrick, Jacqueline M.; Kawaguchi, Masayoshi; Peterson, Kylee M.; Torii, Keiko U.

    2015-01-01

    Stomata, valves on the plant epidermis, are critical for plant growth and survival, and the presence of stomata impacts the global water and carbon cycle. Although transcription factors and cell-cell signaling components regulating stomatal development have been identified, it remains unclear as to how their regulatory interactions are translated into two-dimensional patterns of stomatal initial cells. Using molecular genetics, imaging, and mathematical simulation, we report a regulatory circuit that initiates the stomatal cell-lineage. The circuit includes a positive feedback loop constituting self-activation of SCREAMs that requires SPEECHLESS. This transcription factor module directly binds to the promoters and activates a secreted signal, EPIDERMAL PATTERNING FACTOR2, and the receptor modifier TOO MANY MOUTHS, while the receptor ERECTA lies outside of this module. This in turn inhibits SPCH, and hence SCRMs, thus constituting a negative feedback loop. Our mathematical model accurately predicts all known stomatal phenotypes with the inclusion of two additional components to the circuit: an EPF2-independent negative-feedback loop and a signal that lies outside of the SPCHSCRM module. Our work reveals the intricate molecular framework governing self-organizing two-dimensional patterning in the plant epidermis. PMID:26203655

  18. The toll of the gridiron: damage-associated molecular patterns and hypertension in American football.

    PubMed

    McCarthy, Cameron G; Webb, R Clinton

    2016-01-01

    American football has unequivocally been linked to elevations in blood pressure and hypertension, especially in linemen. However, the mechanisms of this increase cannot be attributed solely to increased body weight and associated cardiometabolic risk factors (e.g.,dyslipidemia or hyperglycemia). Therefore, understanding the etiology of football-associated hypertension is essential for improving the quality of life in this mostly young population, as well as for lowering the potential for chronic disease in the future. We propose that inflammatogenic damage-associated molecular patterns (DAMPs) released into the circulation from football-induced musculoskeletal trauma activate pattern-recognition receptors of the innate immune system-specifically, high mobility group box 1 protein (HMGB1) and mitochondrial (mt)DNA which activate Toll-like receptor (TLR)4 and -9, respectively. Previously, we observed that circulating levels of these 2 DAMPs are increased in hypertension, and activation of TLR4 and -9 causes endothelial dysfunction and hypertension. Therefore, our novel hypothesis is that musculoskeletal injury from repeated hits in football players, particularly in linemen, leads to elevated circulating HMGB1 and mtDNA to activate TLRs on endothelial cells leading to impaired endothelium-dependent vasodilation, increased vascular tone, and hypertension.-McCarthy, C. G., Webb, R. C. The toll of the gridiron: damage-associated molecular patterns and hypertension in American football. PMID:26316270

  19. Molecular phylogeny of the phylum Gastrotricha: new data brings together molecules and morphology.

    PubMed

    Paps, Jordi; Riutort, Marta

    2012-04-01

    Gastrotricha is a species-rich phylum of microscopical animals that contains two main orders, Chaetonotida and Macrodasyida. Gastrotrichs are important members of the aquatic environment and significant players in the study of animal evolution. In spite of their ecological and evolutionary importance, their internal relationships are not yet well understood. We have produced new sequences for the 18S rDNA gene to improve both the quality and quantity of taxon sampling for the gastrotrichs. Our phylogeny recovers the monophyly of the two main Gastrotricha clades, in contrast to recent studies with similar sampling, but in agreement with morphology based analyses. However, our topology is not able to resolve the first branches of the macrodasyidans or settle the position of the puzzling Neodasys, a controversial genus classified as a chaetonotidan on morphological grounds but placed within macrodasyidans by molecular studies. This analysis is the most exhaustive molecular phylogeny of the phylum to date, and significantly increases our knowledge of gastrotrich evolution. PMID:22198640

  20. Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells

    PubMed Central

    SARIN, HEMANT

    2016-01-01

    For proper determination of the apoptotic potential of chemoxenobiotics in synergism, it is important to understand the modes, levels and character of interactions of chemoxenobiotics with cells in the context of predicted conserved biophysical properties. Chemoxenobiotic structures are studied with respect to atom distribution over molecular space, the predicted overall octanol-to-water partition coefficient (Log OWPC; unitless) and molecular size viz a viz van der Waals diameter (vdWD). The Log OWPC-to-vdWD (nm−1) parameter is determined, and where applicable, hydrophilic interacting moiety/core-to-vdWD (nm−1) and lipophilic incorporating hydrophobic moiety/core-to-vdWD (nm−1) parameters of their part-structures are determined. The cellular and sub-cellular level interactions of the spectrum of xenobiotic chemotherapies have been characterized, for which a classification system has been developed based on predicted conserved biophysical properties with respect to the mode of chemotherapeutic effect. The findings of this study are applicable towards improving the effectiveness of existing combination chemotherapy regimens and the predictive accuracy of personalized cancer treatment algorithms as well as towards the selection of appropriate novel xenobiotics with the potential to be potent chemotherapeutics for dendrimer nanoparticle-based effective transvascular delivery. PMID:26998284

  1. Mechanism of Mcl-1 Conformational Regulation Upon Small Molecule Binding Revealed by Molecular Dynamic Simulation.

    PubMed

    Wang, Anhui; Song, Ting; Wang, Ziqian; Liu, Yubo; Fan, Yudan; Zhang, Yahui; Zhang, Zhichao

    2016-04-01

    Inhibition of interactions between Mcl-1 and proapoptotic proteins is considered to be a therapeutic strategy to induce apoptosis in cancer cells. Here, we adopted molecular dynamics simulation with molecular mechanics-Poisson Boltzmann/surface area method (MM-PB/SA) to study the inhibition mechanism of three Mcl-1 inhibitors, compounds 1, 2 and 3. Analysis of energy components shows that the better binding free energy of compound 3 than compounds 1 and 2 is attributable to the van der Waals energy (ΔEvdw ) and non-polar solvation energy (ΔGnp ) upon binding. In addition to the excellent agreement with previous experimentally determined affinities, our simulation results further show a bend of helix 4 on Mcl-1 upon compound 3 binding, which is driven by hydrophobic interaction with residue Val(253) , leading to a narrowed BH3-binding groove to impede Puma(BH) (3) binding. The computational result is consistent with our competitive isothermal titration calorimetry (ITC) assays, which shows that the competitive ability of compound 3 toward Mcl-1/Puma(BH) (3) complex is improved beyond its direct binding affinity toward Mcl-1 itself, and compound 3 exhibits much more efficiency to compete with Puma(BH) (3) than compound 2. Our study provides a new strategy to improve inhibitory activity on Mcl-1 based on the conformational dynamic change. PMID:26518611

  2. Monte Carlo simulations of ferroelectric crystal growth and molecular electronic structure of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Suewattana, Malliga

    In this thesis, we explore two stochastic techniques to study properties of materials in realistic systems. Specifically, the kinetic Monte Carlo (KMC) method is utilized to study the crystal growth process of ferroelectric materials and the quantum Monte Carlo (QMC) approach is used to investigate the ground state properties of atoms and molecules. In the growth simulations, we study the growth rates and chemical ordering of ferroelectric alloys using an electrostatic model with long-range Coulomb interactions. Crystal growth is characterized by thermodynamic processes involving adsorption and evaporation, with solid-on-solid restrictions and excluding diffusion. A KMC algorithm is formulated to simulate this model efficiently in the presence of long-range interactions. The growth process is simulated as a function of temperature, chemical composition, and substrate orientation. We carried out the simulations on two heterovalent binaries, those of the NaCl and the Ba(Mg1/3Nb2/3))O3(BMN) structures. Compared to the simple rocksalt ordered structures, ordered BMN grows only at very low temperatures and only under finely tuned conditions. For materials with tetravalent compositions, such as (1-x)Ba(Mg 1/3Nb2/3))O3 + x BaZrO3 (BMN-BZ), the model does not incorporate tetravalent ions at low-temperature, exhibiting a phase-separated ground state instead. At higher temperatures, tetravalent ions can be incorporated, but the resulting crystals show no chemical ordering in the absence of diffusive mechanisms. In the second part of the thesis, we present results from an auxiliary field quantum Monte Carlo (AFQMC) study of ground state properties, in particular dissociation and ionization energy, of second-row atoms and molecules. The method projects the many-body ground state from a trial wavefunction by random walks in the space of Slater determinants. The Hubbard-Stratonovich transformation is employed to decouple the Coulomb interaction between electrons. A trial wave function is used in the approximation to control the "phase problem". We also carry out Hartree-Fock (HF) and Density Functional Theory (DFT) calculations for comparison to AFQMC results and to serve as starting wavefunctions for our AFQMC calculations. Results of dissociation energy are in excellent agreement with experimental values. Ionization energy errors are somewhat larger than those of other methods. We conclude with a discussion of several possible sources of error as well as a direction for the improvement.

  3. Studies of Molecular Lasers, Atmospheric Molecules and Imaging in the Millimeter/submillimeter Spectral Region.

    NASA Astrophysics Data System (ADS)

    Crownover, Richard L.

    The millimeter/submillimeter portion of the electromagnetic spectrum is able to address fundamental questions in astronomy, cosmology, atmospheric science, molecular physics, quantum electronics, plasma physics, and other fields. Also, this spectral region has transmission characteristics which make it desirable for communications within the atmosphere and potentially for imaging. In order to demonstrate that detector technology in this region is sufficiently mature to permit the construction of reliable quasi-optical devices using off the shelf components, we have generated passive images using a broadband detector cooled to 0.35 K with a commercially produced ^3He refrigerator. We have shown the possibility of an extremely simple, highly sensitive, passive imaging system which operates in an attractive spectral region and is capable of upscaling to provide practical spatial resolution and real time operation over useful ranges. International public concern about acid rain, ozone depletion, and urban smog has spurred intense study of atmospheric chemistry. Spectra of two minor atmospheric constituents (HNO_3, ^ {16}O^{18}O) have been studied in the laboratory to assist with remote monitoring of atmospheric dynamics, modelling of atmospheric chemistry, and selection of communication frequencies which have some immunity to atmospheric perturbations. The nitric acid observations have allowed us to determine effective rotational constants for the first five vibrational states (nu_0, nu_9 , nu_7, nu _6, nu_8) and assign transitions in the perturbed nu_5 state. In addition, the concentration of ^{16}O^{18 }O in interstellar molecular clouds has been identified as a key discriminator between competing models of stellar formation; the measurements presented here will assist astronomers attempting to determine the abundance of this species in molecular clouds and proto-stars. We have recorded and analyzed the spectra of two important lasing species (^{12} CH_3F, ^{12 }CH_2F_2 ). We have also determined the collisional broadening parameters for a number of transitions in n3 excited vibrational state of ^{12}CH _3F. Since the absolute frequency stability and reproducibility of OPFIR lasers is of considerable interest, we have studied the gain profile of ^{12}CH _3F as a function of both pump offset and pressure; this is in response to a current controversy concerning possible large pressure shifts which may occur in some OPFIR lasers. We have been able to place a stringent upper limit on the presence of such shifts in longitudinally pumped lasers. (Abstract shortened with permission of author.).

  4. Histologic characteristics of non-microsatellite-instable colon adenomas correlate with distinct molecular patterns.

    PubMed

    Neuville, Agns; Nicolet, Cline; Meyer, Nicolas; Schneider, Anne; Legrain, Michle; Brigand, Ccile; Duclos, Bernard; Bachellier, Philippe; Oudet, Pierre; Bellocq, Jean-Pierre; Kedinger, Michle; Gaub, Marie-Pierre; Guenot, Dominique

    2011-02-01

    Colon carcinogenesis encompasses the stepwise accumulation of genomic aberrations correlated with the transition of aberrant crypt-adenoma-carcinoma. Recent data have revealed that, in addition to the microsatellite-instable phenotype, the chromosome instability pathway, representing four fifth of the colon carcinoma, could be involved in heterogeneous molecular alterations. Our project was aimed at determining the existence of distinct molecular subtypes in 159 non-microsatellite-instable colon polyps and their correlation with histology and dysplasia, using allelotyping, MGMT promoter gene methylation status, and K-RAS mutation analyses. Allelic imbalance, MGMT methylation, and K-RAS mutations arise in 62%, 39%, and 32% of polyps, respectively. Only 14% of polyps had no alterations. A 2-way hierarchical clustering analysis of the allelic imbalances identified subgroups of polyps according to their allelic imbalance frequency and distribution. Not only tubulovillous adenoma but also high-grade adenomas were correlated with high global allelic imbalance frequency (P = .005 and P = .003), with allelic imbalance at microsatellites targeting chromosomes 1, 6, and 9. In conclusion, the data presented in this study show that a large heterogeneity exists in the molecular patterns of alterations in precancerous colon lesions, favoring different modes of tumor initiation. Therefore, molecular alterations correlated with tubulovillous-type and high-grade dysplasia could represent targets identifying predictive factors of progression. PMID:21238786

  5. SI-BEARING MOLECULES TOWARD IRC+10216: ALMA UNVEILS THE MOLECULAR ENVELOPE OF CWLEO

    PubMed Central

    Prieto, L. Velilla; Cernicharo, J.; Quintana–Lacaci, G.; Agúndez, M.; Castro–Carrizo, A.; Fonfŕia, J. P.; Marcelino, N.; Zúñiga, J.; Requena, A.; Bastida, A.; Lique, F.; Guélin, M.

    2015-01-01

    We report the detection of SiS rotational lines in high-vibrational states as well as SiO and SiC2 lines in their ground vibrational state toward IRC+10216 during the Atacama Large Millimeter Array Cycle 0. The spatial distribution of these molecules shows compact emission for SiS and a more extended emission for SiO and SiC2, and also proves the existence of an increase in the SiC2 emission at the outer shells of the circumstellar envelope. We analyze the excitation conditions of the vibrationally excited SiS using the population diagram technique, and we use a large velocity gradient model to compare with the observations. We found moderate discrepancies between the observations and the models that could be explained if SiS lines detected are optically thick. Additionally, the line profiles of the detected rotational lines in the high energy vibrational states show a decreasing linewidth with increasing energy levels. This may be evidence that these lines could be excited only in the inner shells, i.e., the densest and hottest, of the circumstellar envelope of IRC+10216. PMID:26688711

  6. Folding and assembly of the large molecular machine Hsp90 studied in single-molecule experiments.

    PubMed

    Jahn, Markus; Buchner, Johannes; Hugel, Thorsten; Rief, Matthias

    2016-02-01

    Folding of small proteins often occurs in a two-state manner and is well understood both experimentally and theoretically. However, many proteins are much larger and often populate misfolded states, complicating their folding process significantly. Here we study the complete folding and assembly process of the 1,418 amino acid, dimeric chaperone Hsp90 using single-molecule optical tweezers. Although the isolated C-terminal domain shows two-state folding, we find that the isolated N-terminal as well as the middle domain populate ensembles of fast-forming, misfolded states. These intradomain misfolds slow down folding by an order of magnitude. Modeling folding as a competition between productive and misfolding pathways allows us to fully describe the folding kinetics. Beyond intradomain misfolding, folding of the full-length protein is further slowed by the formation of interdomain misfolds, suggesting that with growing chain lengths, such misfolds will dominate folding kinetics. Interestingly, we find that small stretching forces applied to the chain can accelerate folding by preventing the formation of cross-domain misfolding intermediates by leading the protein along productive pathways to the native state. The same effect is achieved by cotranslational folding at the ribosome in vivo. PMID:26787848

  7. Manipulating photogenerated radical ion pair lifetimes in wirelike molecules using microwave pulses: molecular spintronic gates.

    PubMed

    Miura, Tomoaki; Wasielewski, Michael R

    2011-03-01

    We have studied spin-dependent charge transfer dynamics in wirelike donor-bridge-acceptor (D-B-A) molecules comprising a phenothiazine (PTZ) donor, an oligo(2,7-fluorene) (FL(n)) bridge, and a perylene-3,4:9,10-bis(dicarboximide) (PDI) acceptor, PTZ-FL(3)-PDI (1) and PTZ-FL(4)-PDI (2), dissolved in the magnetic field-aligned nematic phase of 4-cyano-4'-n-pentylbiphenyl (5CB) at 295 K. Time-resolved EPR spectroscopy using both continuous wave and pulsed microwaves shows that the photogenerated radical pairs (RPs), PTZ(+•)-FL(3)-PDI(-•) and PTZ(+•)-FL(4)-PDI(-•), recombine much faster from the singlet RP manifold than the triplet RP manifold. When a strong resonant microwave π pulse is applied following RP photogeneration in 1 and 2, the RP lifetimes increase about 50-fold as indicated by electron spin-echo detection. This result shows that the RP lifetime can be greatly extended by rapidly switching off fast triplet RP recombination. PMID:21319821

  8. The Synthesis of Organic Molecules of Intrinsic Microporosity Designed to Frustrate Efficient Molecular Packing.

    PubMed

    Taylor, Rupert G D; Bezzu, C Grazia; Carta, Mariolino; Msayib, Kadhum J; Walker, Jonathan; Short, Rhys; Kariuki, Benson M; McKeown, Neil B

    2016-02-01

    Efficient reactions between fluorine-functionalised biphenyl and terphenyl derivatives with catechol-functionalised terminal groups provide a route to large, discrete organic molecules of intrinsic microporosity (OMIMs) that provide porous solids solely by their inefficient packing. By altering the size and substituent bulk of the terminal groups, a number of soluble compounds with apparent BET surface areas in excess of 600?m(2) ?g(-1) are produced. The efficiency of OMIM structural units for generating microporosity is in the order: propellane>triptycene>hexaphenylbenzene>spirobifluorene>naphthyl=phenyl. The introduction of bulky hydrocarbon substituents significantly enhances microporosity by further reducing packing efficiency. These results are consistent with findings from previously reported packing simulation studies. The introduction of methyl groups at the bridgehead position of triptycene units reduces intrinsic microporosity. This is presumably due to their internal position within the OMIM structure so that they occupy space, but unlike peripheral substituents they do not contribute to the generation of free volume by inefficient packing. PMID:26751824

  9. UCLA's Molecular Screening Shared Resource: enhancing small molecule discovery with functional genomics and new technology.

    PubMed

    Damoiseaux, Robert

    2014-05-01

    The Molecular Screening Shared Resource (MSSR) offers a comprehensive range of leading-edge high throughput screening (HTS) services including drug discovery, chemical and functional genomics, and novel methods for nano and environmental toxicology. The MSSR is an open access environment with investigators from UCLA as well as from the entire globe. Industrial clients are equally welcome as are non-profit entities. The MSSR is a fee-for-service entity and does not retain intellectual property. In conjunction with the Center for Environmental Implications of Nanotechnology, the MSSR is unique in its dedicated and ongoing efforts towards high throughput toxicity testing of nanomaterials. In addition, the MSSR engages in technology development eliminating bottlenecks from the HTS workflow and enabling novel assays and readouts currently not available. PMID:24661210

  10. Organic molecules in the atmosphere of Jupiter. [low molecular weight hydrocarbons

    NASA Technical Reports Server (NTRS)

    Ponnamperuma, C. A.

    1978-01-01

    Organic synthesis in the primitive solar system was simulated by Fischer Tropsch type experiments. Particular attention was given to the formation of lower molecular weight hydrocarbons. In a gas flow experiment, a gas mixture of H2 and CO was introduced into a heated reaction tube at a constant flow rate and passed through a catalyst (powdered Canyon Diablo). The products that emerged were directly analyzed by gas chromatography. The results of 21 runs under various gas mixing rations, reaction temperatures, and gas-catalyst contact times showed the predominance of the saturated hydrocarbon formation at C sub 4 and C sub 5 over the unsaturated ones. Saturate/unsaturate ratios were mostly less than 0.4 and none showed over 0.7.

  11. Excited-State Structure Modifications Due to Molecular Substituents and Exciton Scattering in Conjugated Molecules.

    PubMed

    Li, Hao; Catanzaro, Michael J; Tretiak, Sergei; Chernyak, Vladimir Y

    2014-02-20

    Attachment of chemical substituents (such as polar moieties) constitutes an efficient and convenient way to modify physical and chemical properties of conjugated polymers and oligomers. Associated modifications in the molecular electronic states can be comprehensively described by examining scattering of excitons in the polymer's backbone at the scattering center representing the chemical substituent. Here, we implement effective tight-binding models as a tool to examine the analytical properties of the exciton scattering matrices in semi-infinite polymer chains with substitutions. We demonstrate that chemical interactions between the substitution and attached polymer are adequately described by the analytical properties of the scattering matrices. In particular, resonant and bound electronic excitations are expressed via the positions of zeros and poles of the scattering amplitude, analytically continued to complex values of exciton quasi-momenta. We exemplify the formulated concepts by analyzing excited states in conjugated phenylacetylenes substituted by perylene. PMID:26270830

  12. Electronic structure of donor-spacer-acceptor molecules of potential interest for molecular electronics. I. Donor-?-spacer-acceptor

    NASA Astrophysics Data System (ADS)

    Broo, Anders

    1993-01-01

    A self-consistent reaction field method is incorporated in a ZDO based semi-empirical quantum mechanical calculation method to account for solvent effects in calculated spectroscopical properties. Absorption spectra for a number of donor-?-spacer-acceptor molecules, which are of interest in connection to molecular electronics, are calculated and compared with experimental results. The solvent dependence of the spectra of 1-julolidyl-4-trifluoromethylphenyl-butadiene (JUL) is calculated and the effects of the different donors are discussed. The amount of direct charge separation upon excitation is estimated to about 10-15% of a complete transfer of one electron. The dipole moments of very polar excited states are canceled out during the configuration interaction (CI) calculation. Thus, the excited states after CI have just moderate dipole moments.

  13. Molecular basis of natural variation and environmental control of trichome patterning

    PubMed Central

    Hauser, Marie-Theres

    2014-01-01

    Trichomes are differentiated epidermal cells on above ground organs of nearly all land plants. They play important protective roles as structural defenses upon biotic attacks such as herbivory, oviposition and fungal infections, and against abiotic stressors such as drought, heat, freezing, excess of light, and UV radiation. The pattern and density of trichomes is highly variable within natural population suggesting tradeoffs between traits positively affecting fitness such as resistance and the costs of trichome production. The spatial distribution of trichomes is regulated through a combination of endogenous developmental programs and external signals. This review summarizes the current understanding on the molecular basis of the natural variation and the role of phytohormones and environmental stimuli on trichome patterning. PMID:25071803

  14. Molecular basis of natural variation and environmental control of trichome patterning.

    PubMed

    Hauser, Marie-Theres

    2014-01-01

    Trichomes are differentiated epidermal cells on above ground organs of nearly all land plants. They play important protective roles as structural defenses upon biotic attacks such as herbivory, oviposition and fungal infections, and against abiotic stressors such as drought, heat, freezing, excess of light, and UV radiation. The pattern and density of trichomes is highly variable within natural population suggesting tradeoffs between traits positively affecting fitness such as resistance and the costs of trichome production. The spatial distribution of trichomes is regulated through a combination of endogenous developmental programs and external signals. This review summarizes the current understanding on the molecular basis of the natural variation and the role of phytohormones and environmental stimuli on trichome patterning. PMID:25071803

  15. Getting a handle on embryo limb development: Molecular interactions driving limb outgrowth and patterning.

    PubMed

    Sheeba, Caroline J; Andrade, Raquel P; Palmeirim, Isabel

    2016-01-01

    Development of the vertebrate embryo involves multiple segmentation processes to generate a functional, articulated organism. Cell proliferation, differentiation and patterning involve spatially and temporally regulated gene expression and signal transduction mechanisms. The developing vertebrate limb is an excellent model to study such fine-tuned regulations, whereby cells proliferate and are differentially sculptured along the proximal-distal, anterior-posterior and dorsal-ventral axes to form a functional limb. Complementary experimental approaches in different organisms have enhanced our knowledge on the molecular events underlying limb development. Herein, we summarize the current knowledge of the main signaling mechanisms governing vertebrate limb initiation, outgrowth, specification of limb segments and termination. PMID:25617599

  16. Symbolic computation engines and molecular modeling templates: Maple-assisted point group analysis of the vibrational activity of molecules

    NASA Astrophysics Data System (ADS)

    Vail, Benjamin; Aris, Damian; Scarlete, Mihai

    The present study proposes an algorithm for point-group analysis (PGA) of the vibrational activity of molecules, adapted for the efficient utilization of the linear packages incorporated into currently available symbolic computation engines (SCE), such as Maple, Mathcad, or Mathematica. By the creation of this algorithm, we have addressed the need for a numerically friendly environment, outside the "locked" procedures within molecular modeling packages, which will preserve its flexibility, transparency, and maneuverability, regardless of the complexity of the calculation. The format of the character tables of the point groups significant to chemical species has been adapted to ensure automatic numerization, and consistent input of the alphanumeric data from the existent character tables into the SCE templates designed to perform the PGA. The two proposed templates address two complementary objectives: (i) a totally transparent and interactive file has been designed to allow access to all intermediate results at all levels of the procedure for easy implementation of potential additional modules of special interest 1-5, and (ii) for fast output and routine calculations of the IR/Raman vibrational activity of molecules based on their point groups, a totally automatic file with a highly simplified input interface has been designed. The numerical interface conveniently replaces the usual graphic user interface that is common to most commercial molecular modeling software packages, requiring minimum input determination. The structure for both templates is based on the use of the digitized forms for the character tables, for the symmetry operations, and for symmetry elements, all saved in dedicated libraries uploaded to the numerical database of the SCE.

  17. Reconciling molecules and morphology: molecular systematics and biogeography of Neotropical blennies (Acanthemblemaria).

    PubMed

    Eytan, Ron I; Hastings, Philip A; Holland, Barbara R; Hellberg, Michael E

    2012-01-01

    Neotropical reef fish communities are species-poor compared to those of the Indo-West Pacific. An exception to that pattern is the blenny clade Chaenopsidae, one of only three rocky and coral reef fish families largely endemic to the Neotropics. Within the chaenopsids, the genus Acanthemblemaria is the most species-rich and is characterized by elaborate spinous processes on the skull. Here we construct a species tree using five nuclear markers and compare the results to those from Bayesian and parsimony phylogenetic analyses of 60 morphological characters. The sequence-based species tree conflicted with the morphological phylogenies for Acanthemblemaria, primarily due to the convergence of a suite of characters describing the distribution of spines on the head. However, we were able to resolve some of these conflicts by performing phylogenetic analyses on suites of characters not associated with head spines. By using the species tree as a guide, we used a quantitative method to identify suites of correlated morphological characters that, together, produce the distinctive skull phenotypes found in these fishes. A time calibrated phylogeny with nearly complete taxon sampling provided divergence time estimates that recovered a mid-Miocene origin for the genus, with a temporally and geographically complex pattern of speciation both before and after the closure of the Isthmus of Panama. Some sister taxa are broadly sympatric, but many occur in allopatry. The ability to infer the geography of speciation in Acanthemblemaria is complicated by extinctions, incomplete knowledge of their present geographic ranges and by wide-spread taxa that likely represent cryptic species complexes. PMID:22040767

  18. Pro-Coagulant Endothelial Dysfunction Results from EHEC Shiga Toxins and Host Damage-Associated Molecular Patterns

    PubMed Central

    Mayer, Chad L.; Parello, Caitlin S. L.; Lee, Benjamin C.; Itagaki, Kiyoshi; Kurosawa, Shinichiro; Stearns-Kurosawa, Deborah J.

    2015-01-01

    Hemolytic uremic syndrome (HUS) from enterohemorrhagic Escherichia coli infection is a leading cause of kidney failure in otherwise healthy U.S. children. The bacterial Shiga toxins (Stx) induce the characteristic coagulopathy of HUS, but the damage to toxin-receptor expressing cells and organ injury due to ischemia likely also releases inflammatory damage-associated molecular patterns (DAMPs), which may exacerbate injury along with the toxins. To examine this, human aortic and renal glomerular cell anti-coagulant and barrier functions were studied after in vitro challenge with Stx1, Stx2, and DAMPs. There was significant loss of surface anti-coagulant protein C pathway molecules, increased expression of pro-thrombotic PAR1 and reduced protein C activation capability by 1527%. Histones nearly completely prevented the activated protein C protection of endothelial cells from thrombin-induced permeability. In mice, lethal Stx2 challenge elevated plasma HMGB1 (day 2, 321??118%; p?

  19. Mitochondrial Damage-Associated Molecular Patterns (MTDs) Are Released during Hepatic Ischemia Reperfusion and Induce Inflammatory Responses

    PubMed Central

    Hu, Qianni; Wood, Caroline Ruth; Cimen, Sanem; Venkatachalam, Ananda Baskaran; Alwayn, Ian Patrick Joseph

    2015-01-01

    Ischemia / reperfusion injury (IRI) during the course of liver transplantation enhances the immunogenicity of allografts and thus impacts overall graft outcome. This sterile inflammatory insult is known to activate innate immunity and propagate organ damage through the recognition of damage-associate molecular pattern (DAMP) molecules. The purpose of the present study was to investigate the role of mitochondrial DAMPs (MTDs) in the pathogenesis of hepatic IRI. Using in vitro models we observed that levels of MTDs were significantly higher in both transplantation-associated and warm IR, and that co-culture of MTDs with human and rat hepatocytes significantly increased cell death. MTDs were also released in an in vivo rat model of hepatic IRI and associated with increased secretion of inflammatory cytokines (TNF-?, IL-6, and IL-10) and increased liver injury compared to the sham group. Our results suggest that hepatic IR results in a significant increase of MTDs both in vitro and in vivo suggesting that MTDs may serve as a novel marker in hepatic IRI. Co-culture of MTDs with hepatocytes showed a decrease in cell viability in a concentration dependent manner, which indicates that MTDs is a toxic mediator participating in the pathogenesis of liver IR injury. PMID:26451593

  20. Liquid crystals with patterned molecular orientation as an electrolytic active medium

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui; Guo, Yubing; Conklin, Christopher; Viñals, Jorge; Shiyanovskii, Sergij V.; Wei, Qi-Huo; Lavrentovich, Oleg D.

    2015-11-01

    Transport of fluids and particles at the microscale is an important theme in both fundamental and applied science. One of the most successful approaches is to use an electric field, which requires the system to carry or induce electric charges. We describe a versatile approach to generate electrokinetic flows by using a liquid crystal (LC) with surface-patterned molecular orientation as an electrolyte. The surface patterning is produced by photoalignment. In the presence of an electric field, the spatially varying orientation induces space charges that trigger flows of the LC. The active patterned LC electrolyte converts the electric energy into the LC flows and transport of embedded particles of any type (fluid, solid, gaseous) along a predesigned trajectory, posing no limitation on the electric nature (charge, polarizability) of these particles and interfaces. The patterned LC electrolyte exhibits a quadratic field dependence of the flow velocities; it induces persistent vortices of controllable rotation speed and direction that are quintessential for micro- and nanoscale mixing applications.

  1. Magnetic interaction between a radical spin and a single-molecule magnet in a molecular spin-valve.

    PubMed

    Urdampilleta, Matias; Klayatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2015-04-28

    Molecular spintronics using single molecule magnets (SMMs) is a fast growing field of nanoscience that proposes to manipulate the magnetic and quantum information stored in these molecules. Herein we report evidence of a strong magnetic coupling between a metallic ion and a radical spin in one of the most extensively studied SMMs: the bis(phtalocyaninato)terbium(III) complex (TbPc2). For that we use an original multiterminal device comprising a carbon nanotube laterally coupled to the SMMs. The current through the device, sensitive to magnetic interactions, is used to probe the magnetization of a single Tb ion. Combining this electronic read-out with the transverse field technique has allowed us to measure the interaction between the terbium ion, its nuclear spin, and a single electron located on the phtalocyanine ligands. We show that the coupling between the Tb and this radical is strong enough to give extra resonances in the hysteresis loop that are not observed in the anionic form of the complex. The experimental results are then modeled by diagonalization of a three-spins Hamiltonian. This strong coupling offers perspectives for implementing nuclear and electron spin resonance techniques to perform basic quantum operations in TbPc2. PMID:25858088

  2. Resonances in molecular photoionization. IV. Theory of one-color and two-color near-threshold photoionization of molecules

    NASA Astrophysics Data System (ADS)

    Domcke, W.; Sobolewski, A. L.; Lin, S. H.

    1988-11-01

    A relatively comprehensive theoretical description of one-color and two-color photoionization of molecules by strong laser fields is developed. The molecular system is modeled by a number of discrete electronic configurations and a number of electronic ionization continua in a diabatic representation, allowing for intramolecular coupling of the discrete states and the continua. The vibrational degrees of freedom are included in compact operator notation without invoking the Born-Oppenheimer approximation. The relevant radiative dipole couplings are treated nonperturbatively on an equal footing with the intramolecular couplings. The important Coulomb threshold effects (accumulating Rydberg series at the electronic-vibrational ionization thresholds) are included via a threshold expansion of the complex level-shift operators representing intramolecular and radiative couplings. The weak-field, long-time ionization rate (golden-rule formula) is rederived from the general theory both in the one-color and the two-color case. In the two-color case, strong-field effects caused by either one of the two lasers are briefly discussed. We derive a simplified multichannel-quantum-defect model from the general two-color formalism which nicely reproduces a number of characteristic features of vibronic autoionization recently observed in several polyatomic molecules.

  3. WebMTA: a web-interface for ab initio geometry optimization of large molecules using molecular tailoring approach.

    PubMed

    Kavathekar, Ritwik; Khire, Subodh; Ganesh, V; Rahalkar, Anuja P; Gadre, Shridhar R

    2009-05-01

    A web-interface for geometry optimization of large molecules using a linear scaling method, i.e., cardinality guided molecular tailoring approach (CG-MTA), is presented. CG-MTA is a cut-and-stitch, fragmentation-based method developed in our laboratory, for linear scaling of conventional ab initio techniques. This interface provides limited access to CG-MTA-enabled GAMESS. It can be used to obtain fragmentation schemes for a given spatially extended molecule depending on the maximum allowed fragment size and minimum cut radius values provided by the user. Currently, we support submission of single point or geometry optimization jobs at Hartree-Fock and density functional theory levels of theory for systems containing between 80 to 200 first row atoms and comprising up to 1000 basis functions. The graphical user interface is built using HTML and Python at the back end. The back end farms out the jobs on an in-house Linux-based cluster running on Pentium-4 Class or higher machines using an @Home-based parallelization scheme (http://chem.unipune.ernet.in/ approximately tcg/mtaweb/). PMID:18942724

  4. Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia

    PubMed Central

    Hoyte, Lisa C; Brooks, Keith J; Nagel, Simon; Akhtar, Asim; Chen, Ruoli; Mardiguian, Sylvie; McAteer, Martina A; Anthony, Daniel C; Choudhury, Robin P; Buchan, Alastair M; Sibson, Nicola R

    2010-01-01

    The pathogenesis of stroke is multifactorial, and inflammation is thought to have a critical function in lesion progression at early time points. Detection of inflammatory processes associated with cerebral ischemia would be greatly beneficial in both designing individual therapeutic strategies and monitoring outcome. We have recently developed a new approach to imaging components of the inflammatory response, namely endovascular adhesion molecule expression on the brain endothelium. In this study, we show specific imaging of vascular cell adhesion molecule (VCAM)-1 expression in a mouse model of middle cerebral artery occlusion (MCAO), and a reduction in this inflammatory response, associated with improved behavioral outcome, as a result of preconditioning. The spatial extent of VCAM-1 expression is considerably greater than the detectable lesion using diffusion-weighted imaging (25% versus 3% total brain volume), which is generally taken to reflect the core of the lesion at early time points. Thus, VCAM-1 imaging seems to reveal both core and penumbral regions, and our data implicate VCAM-1 upregulation and associated inflammatory processes in the progression of penumbral tissue to infarction. Our findings indicate that such molecular magnetic resonance imaging (MRI) approaches could be important clinical tools for patient evaluation, acute monitoring of therapy, and design of specific treatment strategies. PMID:20087364

  5. Fast and General Method To Predict the Physicochemical Properties of Druglike Molecules Using the Integral Equation Theory of Molecular Liquids.

    PubMed

    Palmer, David S; Miin, Maksim; Fedorov, Maxim V; Llinas, Antonio

    2015-09-01

    We report a method to predict physicochemical properties of druglike molecules using a classical statistical mechanics based solvent model combined with machine learning. The RISM-MOL-INF method introduced here provides an accurate technique to characterize solvation and desolvation processes based on solute-solvent correlation functions computed by the 1D reference interaction site model of the integral equation theory of molecular liquids. These functions can be obtained in a matter of minutes for most small organic and druglike molecules using existing software (RISM-MOL) (Sergiievskyi, V. P.; Hackbusch, W.; Fedorov, M. V. J. Comput. Chem. 2011, 32, 1982-1992). Predictions of caco-2 cell permeability and hydration free energy obtained using the RISM-MOL-INF method are shown to be more accurate than the state-of-the-art tools for benchmark data sets. Due to the importance of solvation and desolvation effects in biological systems, it is anticipated that the RISM-MOL-INF approach will find many applications in biophysical and biomedical property prediction. PMID:26212723

  6. Molecular and Biochemical Characterization of Human Galactokinase and its small molecule inhibitors

    PubMed Central

    M, Tang; K, Wierenga; LJ, Elsas; K, Lai

    2010-01-01

    Human galactokinase (GALK) is the first enzyme in the Leloir pathway, converting ?-D-galactose into galactose-1-phosphate (Gal-1-P). Recently, there is increasing interest in targeting GALK as a novel therapy to ameliorate the disease manifestations in patients with Classic Galactosemia as it would, in combination with (ga-)lactose restriction reduce accumulation of Gal-1-P, a cytotoxic agent. Previously, we identified 34 small molecule compounds that inhibited GALK in vitro using experimental high-throughput screening. In order to isolate useful lead compounds, we characterized these hits with regards to their kinase selectivity profiles, potency and capability to reduce Gal-1-P accumulation in patient cell lines, and their modes of action. We found that the majority of these compounds had IC50s ranging from 0.7?M to 33.3?M. When tested against other members of the GHMP kinase family, three compounds (1, 4, and 24) selectively inhibited GALK with high potency. Through alignment of GALK and mevalonate kinase (MVK) crystal structures, we identified that eight amino acid residues and an L1 loop were different within the ATP-binding pockets of these two closely related kinases. By site-directed mutagenesis experiments, we identified one amino acid residue required for the inhibitory function of two of the three selective compounds. Based on these results, we generated binding models of these two compounds using a high-precision docking program. Compounds 4 and 24 inhibited GALK in a mixed model, while compound 1 exhibited parabolic competitive inhibition. Most importantly, using cells from galactosemic patients we found that selected compounds lowered Gal-1-P concentrations. PMID:20696150

  7. Molecular Population Genetics of the Male and Female Mitochondrial DNA Molecules of the California Sea Mussel, Mytilus californianus

    PubMed Central

    Ort, Brian S.; Pogson, Grant H.

    2007-01-01

    The presence of two gender-associated mitochondrial genomes in marine mussels provides a unique opportunity to investigate the dynamics of mtDNA evolution without complications inherent in interspecific comparisons. Here, we assess the relative importance of selection, mutation, and differential constraint in shaping the patterns of polymorphism within and divergence between the male (M) and female (F) mitochondrial genomes of the California sea mussel, Mytilus californianus. Partial sequences were obtained from homologous regions of four genes (nad2, cox1, atp6, and nad5) totaling 2307 bp in length. The M and F mtDNA molecules of M. californianus exhibited extensive levels of nucleotide polymorphism and were more highly diverged than observed in other mytilids (overall Tamura–Nei distances >40%). Consistent with previous studies, the M molecule had significantly higher levels of silent and replacement polymorphism relative to F. Both genomes possessed large numbers of singleton and low-frequency mutations that gave rise to significantly negative Tajima's D values. Mutation-rate scalars estimated for silent and replacement mutations were elevated in the M genome but were not sufficient to account for its higher level of polymorphism. McDonald–Kreitman tests were highly significant at all loci due to excess numbers of fixed replacement mutations between molecules. Strong purifying selection was evident in both genomes in keeping the majority of replacement mutations at low population frequencies but appeared to be slightly relaxed in M. Our results suggest that a reduction in selective constraint acting on the M genome remains the best explanation for its greater levels of polymorphism and faster rate of evolution. PMID:17720935

  8. Dye-laser intracavity absorption spectrum of deuterium molecule and the collisional quenching of molecular hydrogen

    SciTech Connect

    Banerjee, A.K.

    1988-01-01

    The intracavity absorption technique (ICA) in a continuous wave (cw) multimode dye laser has been applied to the study of the molecular spectrum of D{sub 2} in the optical region (6185.28-5797.37 {angstrom}). This work represents the first attempt to directly observe the optical absorption spectrum of D{sub 2} whereas only the emission spectrum in the region was previously available. In the course of an extensive analysis of our data, new transition assignments were given to lines that were not previously observed in emission. Furthermore, some wrong assignments that existed in the previously published literature have been corrected. Besides the expected transitions originating from the 2c{sup {minus}} state ({tau}: 10{sup {minus}3}s), transitions from very short lived states such as 2a, 2c{sup +}, 2C{sup {plus minus}}, 2B ({tau}: 10{sup {minus}8} {yields} 10{sup {minus}9}s) were also observed, which shows ICA to be highly sensitive to detection of very weak absorption lines. In the second part of this research project the proportionality of the ICA signal to number density has been used to investigate the collisional quenching of the 2c{sup 3}{Phi}{sub u} state of H{sub 2} by H{sub 2}, N{sub 2} Ar, Ne, and He over various vibrational and rotational levels. The study was carried out in an rf (radio frequency) produced plasma containing mixtures of the various gases.

  9. Imaging superatomic molecular orbitals in a C60 molecule through four 800-nm photons

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; Zhu, H. P.; Bai, Y. H.; Bonacum, J.; Wu, X. S.; George, Thomas F.

    2015-05-01

    Superatomic molecular orbitals (SAMOs) in C60 are ideal building blocks for functional nanostructures. However, imaging them spatially in the gas phase has been unsuccessful. It is found experimentally that if C60 is excited by an 800-nm laser, the photoelectron casts an anisotropic velocity image, but the image becomes isotropic if excited at a 400-nm wavelength. This diffuse image difference has been attributed to electron thermal ionization, but more recent experiments (800 nm) reveal a clear nondiffuse image superimposed on the diffuse image, whose origin remains a mystery. Here we show that the nondiffuse anisotropic image is the precursor of the f SAMOs. We predict that four 800-nm photons can directly access the 1f SAMO, and with one more photon, can image the orbital, with the photoelectron angular distribution having two maxima at 0 and 180 and two humps separated by 56.5. Since two 400-nm photons only resonantly excite the spherical 1s SAMO and four 800-nm photons excite the anisotropic 1f SAMO, our finding gives a natural explanation of the nondiffuse image difference, complementing the thermal scenario.

  10. A Molecular Dynamics Study on the Confinement of Carbon Dioxide Molecules in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Lazor, Meagan; Rende, Deniz; Baysal, Nihat; Ozisik, Rahmi

    2012-02-01

    The influence of atmospheric carbon dioxide (CO2) concentration on global warming is considered as one of the primary environmental issues of the past two decades. The main source of CO2 emission is human activity, such as the use of fossil fuels in transportation and industrial plants. Following the release of Kyoto Protocol in 1997, effective ways of controlling CO2 emissions received much attention. As a result, various materials such as activated carbon, zeolites, and carbon nanotubes (CNTs) were investigated for their CO2 adsorbing properties. CNTs were reported to have CO2 adsorption capability twice that of activated carbon, hence they received the most attention. In the current study, single walled carbon nanotubes (SWNTs) were used as one dimensional nanoporous materials and their CO2 adsorption capacity was analyzed with Molecular Dynamics simulations. Results indicated that SWNTs are excellent CO2 adsorbers and their effectiveness increase at low CO2 concentrations. In addition, we showed that by varying temperature, CO2 can be removed from the SWNTs, providing a simple method to reuse SWNTs.

  11. Predicting Adsorption Affinities of Small Molecules on Carbon Nanotubes Using Molecular Dynamics Simulation.

    PubMed

    Comer, Jeffrey; Chen, Ran; Poblete, Horacio; Vergara-Jaque, Ariela; Riviere, Jim E

    2015-12-22

    Computational techniques have the potential to accelerate the design and optimization of nanomaterials for applications such as drug delivery and contaminant removal; however, the success of such techniques requires reliable models of nanomaterial surfaces as well as accurate descriptions of their interactions with relevant solutes. In the present work, we evaluate the ability of selected models of naked and hydroxylated carbon nanotubes to predict adsorption equilibrium constants for about 30 small aromatic compounds with a variety of functional groups. The equilibrium constants determined using molecular dynamics coupled with free-energy calculation techniques are directly compared to those derived from experimental measurements. The calculations are highly predictive of the relative adsorption affinities of the compounds, with excellent correlation (r ? 0.9) between calculated and measured values of the logarithm of the adsorption equilibrium constant. Moreover, the agreement in absolute terms is also reasonable, with average errors of less than one decade. We also explore possible effects of surface loading, although we demonstrate that they are negligible for the experimental conditions considered. Given the degree of reliability demonstrated, we move on to employing the in silico techniques in the design of nanomaterials, using the optimization of adsorption affinity for the herbacide atrazine as an example. Our simulations suggest that, compared to other modifications of graphenic carbon, polyvinylpyrrolidone conjugation gives the highest affinity for atrazine-substantially greater than that of graphenic carbon alone-and may be useful as a nanomaterial for delivery or sequestration of atrazine. PMID:26506132

  12. Second virial coefficient of rod-shaped molecules and molecular dynamics simulations of the isotropic phase

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.; Turner, P.; English, R. J.; Williams, R.; Bra?ka, A. C.

    2015-04-01

    The second virial coefficient, B2 is computed of linear rigid rods composed of m equally spaced sites interacting with sites on other rods via the hard-sphere or Weeks-Chandler-Andersen (WCA) pair potentials. The dependence of B2 on a wide range of separation distance between the sites L and m for both types of potential is computed. Molecular dynamics simulations were carried out of the thermodynamic, static, and percolation properties of the WCA rigid rods in the isotropic phase as a function of rod number density ? . Simple scaling relationships are discovered between thermodynamic and other static properties as a function of ? and m , which extend well into the semidilute density range. The percolation threshold distance (PTD) between the centers of mass of the rods complies well with a mean-field random orientation approximation from low density well into the semidilute regime. The corresponding site-site PTD proved more problematic to represent by simple functions, but at high rod density, scales better with the number of sites density rather than the rod number density.

  13. Intracellular patterns of sialophorin expression define a new molecular classification of breast cancer and represent new targets for therapy

    PubMed Central

    Fu, Q; Cash, S E; Andersen, J J; Kennedy, C R; Madadi, A R; Raghavendra, M; Dietrich, L L; Agger, W A; Shelley, C S

    2014-01-01

    Background: Sialophorin is a transmembrane sialoglycoprotein. Normally, the molecule is only produced by white blood cells where it regulates functions such as intercellular adhesion, intracellular signalling, apoptosis, migration and proliferation. Methods: Normal breast tissue and primary breast tumours were analysed by immunohistochemistry for sialophorin expression. The sialophorin-positive breast cancer cell line MCF7 was engineered to stably express either non-targeted or sialophorin-targeted small interfering RNA (siRNA). Assays were then performed in vitro to assess apoptosis, intracellular adhesion, transendothelial migration and cytotoxicity. An orthotopic mouse model assayed ability to produce tumours in vivo. Results: Normal breast epithelial cells exhibit expression of the N-terminal domain of sialophorin in the cytoplasm but not the nucleus. The majority of these normal cells are also negative for expression of the C-terminal domain. In contrast, malignant breast epithelial cells exhibit N-terminal expression both in the cytoplasm and nucleus and the majority express the C-terminus in the nucleus. Using differential patterns of intracellular expression of the N and C termini of sialophorin, we define six subtypes of breast cancer that are independent of histological and receptor status classification. Targeting sialophorin with siRNA resulted in the MCF7 breast cancer cell line exhibiting increased homotypic adhesion, decreased transendothelial migration, increased susceptibility to apoptosis, increased vulnerability to lysis by natural killer cells and decreased ability to produce tumours in mice. Conclusion: Our results indicate that intracellular patterns of sialophorin expression define a new molecular classification of breast cancer and that sialophorin represents a novel therapeutic target. PMID:24281005

  14. An important impact of the molecule-electrode coupling asymmetry on the efficiency of bias-driven redox processes in molecular junctions.

    PubMed

    Bâldea, Ioan

    2015-06-28

    Two recent experimental and theoretical studies (Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 1282-1287; Phys. Chem. Chem. Phys., 2014, 16, 25942-25949) have addressed the problem of tuning the molecular charge and vibrational properties of single molecules embedded in nanojunctions. These are molecular characteristics escaping so far from an efficient experimental control in broad ranges. Here, we present a general argument demonstrating why, out of various experimental platforms possible, those wherein active molecules are asymmetrically coupled to electrodes are to be preferred to those symmetrically coupled for achieving a(n almost) complete redox process, and why an electrochemical environment has advantages over "dry" setups. This study aims at helping to nanofabricate molecular junctions using the most appropriate platforms allowing the broadest possible bias-driven control over the redox state and vibrational modes of single molecules linked to electrodes. PMID:26018297

  15. Molecular Dynamics Simulation of the Aggregation Patterns in Aqueous Solutions of Bile Salts at Physiological Conditions.

    PubMed

    Mustan, Fatmegyul; Ivanova, Anela; Madjarova, Galia; Tcholakova, Slavka; Denkov, Nikolai

    2015-12-24

    Classical molecular dynamics simulations are employed to monitor the aggregation behavior of six bile salts (nonconjugated and glycine- and taurine-conjugated sodium cholate and sodium deoxycholate) with concentration of 10 mM in aqueous solution in the presence of 120 mM NaCl. There are 150 ns trajectories generated to characterize the systems. The largest stable aggregates are analyzed to determine their shape, size, and stabilizing forces. It is found that the aggregation is a hierarchical process and that its kinetics depends both on the number of hydroxyl groups in the steroid part of the molecules and on the type of conjugation. The micelles of all salts are similar in shape-deformed spheres or ellipsoids, which are stabilized by hydrophobic forces, acting between the steroid rings. The differences in the aggregation kinetics of the various conjugates are rationalized by the affinity for hydrogen bond formation for the glycine-modified salts or by the longer time needed to achieve optimum packing for the tauro derivatives. Evidence is provided for the hypothesis from the literature that the entirely hydrophobic core of all aggregates and the enhanced dynamics of the molecules therein should be among the prerequisites for their pronounced solubilization capacity for hydrophobic substances in vivo. PMID:26605858

  16. Mixed-metal molecular complexes: Single-molecule nanomagnets and bioinorganic models of the water oxidizing complex of photosystem II

    NASA Astrophysics Data System (ADS)

    Mishra, Abhudaya

    2006-12-01

    The current burgeoning research in high nuclearity manganese-containing carboxylate clusters is primarily due to their relevance in areas as diverse as magnetic materials and bioinorganic chemistry. In the former, the ability of single molecules to retain, below a critical temperature (T B), their magnetization vector, resulting in the observation of bulk magnetization in the absence of a field and without long-range ordering of the spins, has termed such molecules as Single-Molecule Magnets (SMMs), or molecular nanomagnets. These molecules display superparamagnet like slow magnetization relaxation arising from the combination of a large molecular spin, S, and a large and negative magnetoanisotropy, D. Traditionally, these nanomagnets have been Mn containing species. An out of the box approach towards synthesizing SMMs is engineering mixed-metal Mn-containing compounds. An attractive choice towards this end is the use of Lanthanides (Ln), which possess both a high spin, S, and a large D. A family of related MnIII8Ce IV SMMs has been synthesized. However, the Ce ion of these complexes is diamagnetic (CeIV). Thus, further investigation has led to the isolation of a family of MnIII11Ln III4 complexes in which all but the Ln = Eu complex function as single-molecule nanomagnets. The mixed-metal synthetic effort has been extended to include actinides with the successful isolation of a Mn IV10ThIV6 complex, albeit this homovalent complex is not a SMM. In the bioinorganic research, the Water Oxidizing Complex (WOC) in Photosystem II (PS II) catalyzes the oxidation of H2O to O2 in green plants, algae and cyanobacteria. Recent crystal structures of the WOC confirm it to be a Mn4CaOx cluster with primarily carboxylate ligation. To date, various multinuclear Mn complexes have been synthesized as putative models of the WOC. On the contrary, there have been no synthetic MnCa(Sr) mixed-metal complexes. Thus, in this bioinorganic modeling research of the WOC, various synthetic methods have been developed to prepare a variety of heterometallic MnCa(Sr) complexes, namely, Mn13Ca2, Mn11Ca4, Mn8Ca and Mn14Sr; these are the first of their kind. X-ray absorption spectroscopy has been performed on all of these complexes and the results compared with analogous data on the WOC of PS II. In particular, Ca, Sr, and Mn, EXAFS and XANES reveal a distinct similarity between the sub-units within these complexes and the Mn 4CaOx site of the WOC. The data strongly suggest that a single-atom O bridge exists between the Mn atoms and the Ca atom of the WOC.

  17. Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK.

    PubMed

    Arita-Morioka, Ken-ichi; Yamanaka, Kunitoshi; Mizunoe, Yoshimitsu; Ogura, Teru; Sugimoto, Shinya

    2015-01-01

    Biofilms are complex communities of microorganisms that attach to surfaces and are embedded in a self-produced extracellular matrix. Since these cells acquire increased tolerance against antimicrobial agents and host immune systems, biofilm-associated infectious diseases tend to become chronic. We show here that the molecular chaperone DnaK is important for biofilm formation and that chemical inhibition of DnaK cellular functions is effective in preventing biofilm development. Genetic, microbial, and microscopic analyses revealed that deletion of the dnaK gene markedly reduced the production of the extracellular functional amyloid curli, which contributes to the robustness of Escherichia coli biofilms. We tested the ability of DnaK inhibitors myricetin (Myr), telmisartan, pancuronium bromide, and zafirlukast to prevent biofilm formation of E. coli. Only Myr, a flavonol widely distributed in plants, inhibited biofilm formation in a concentration-dependent manner (50% inhibitory concentration [IC50] = 46.2 μM); however, it did not affect growth. Transmission electron microscopy demonstrated that Myr inhibited the production of curli. Phenotypic analyses of thermosensitivity, cell division, intracellular level of RNA polymerase sigma factor RpoH, and vulnerability to vancomycin revealed that Myr altered the phenotype of E. coli wild-type cells to make them resemble those of the isogenic dnaK deletion mutant, indicating that Myr inhibits cellular functions of DnaK. These findings provide insights into the significance of DnaK in curli-dependent biofilm formation and indicate that DnaK is an ideal target for antibiofilm drugs. PMID:25403660

  18. Novel Strategy for Biofilm Inhibition by Using Small Molecules Targeting Molecular Chaperone DnaK

    PubMed Central

    Arita-Morioka, Ken-ichi; Yamanaka, Kunitoshi; Mizunoe, Yoshimitsu; Ogura, Teru

    2014-01-01

    Biofilms are complex communities of microorganisms that attach to surfaces and are embedded in a self-produced extracellular matrix. Since these cells acquire increased tolerance against antimicrobial agents and host immune systems, biofilm-associated infectious diseases tend to become chronic. We show here that the molecular chaperone DnaK is important for biofilm formation and that chemical inhibition of DnaK cellular functions is effective in preventing biofilm development. Genetic, microbial, and microscopic analyses revealed that deletion of the dnaK gene markedly reduced the production of the extracellular functional amyloid curli, which contributes to the robustness of Escherichia coli biofilms. We tested the ability of DnaK inhibitors myricetin (Myr), telmisartan, pancuronium bromide, and zafirlukast to prevent biofilm formation of E. coli. Only Myr, a flavonol widely distributed in plants, inhibited biofilm formation in a concentration-dependent manner (50% inhibitory concentration [IC50] = 46.2 ?M); however, it did not affect growth. Transmission electron microscopy demonstrated that Myr inhibited the production of curli. Phenotypic analyses of thermosensitivity, cell division, intracellular level of RNA polymerase sigma factor RpoH, and vulnerability to vancomycin revealed that Myr altered the phenotype of E. coli wild-type cells to make them resemble those of the isogenic dnaK deletion mutant, indicating that Myr inhibits cellular functions of DnaK. These findings provide insights into the significance of DnaK in curli-dependent biofilm formation and indicate that DnaK is an ideal target for antibiofilm drugs. PMID:25403660

  19. Prototropic tautomerism of 4-Methyl 1,2,4-Triazole-3-Thione molecule in solvent water medium: DFT and Car-Parrinello molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Dutta, Bipan; De, Rina; Chowdhury, Joydeep

    2015-12-01

    The ground state prototropic tautomerism of 4-Methyl 1,2,4-Triazole-3-Thione molecule in solvent water medium has been investigated with the aid of DFT and Car-Parrinello molecular dynamics (CPMD) simulation studies. The CPMD simulations envisage the possibility of proton transfer reactions of the molecule through the solvent water medium. Probable proton transfer pathways have been predicted from the DFT calculations which are substantiated by the natural bond orbital analyses. The evolution and breaking of the concerned bonds of the molecule for different proton transfer reaction pathways are also estimated.

  20. SPARCoC: A New Framework for Molecular Pattern Discovery and Cancer Gene Identification

    PubMed Central

    Ma, Shiqian; Johnson, Daniel; Ashby, Cody; Xiong, Donghai; Cramer, Carole L.; Moore, Jason H.; Zhang, Shuzhong; Huang, Xiuzhen

    2015-01-01

    It is challenging to cluster cancer patients of a certain histopathological type into molecular subtypes of clinical importance and identify gene signatures directly relevant to the subtypes. Current clustering approaches have inherent limitations, which prevent them from gauging the subtle heterogeneity of the molecular subtypes. In this paper we present a new framework: SPARCoC (Sparse-CoClust), which is based on a novel Common-background and Sparse-foreground Decomposition (CSD) model and the Maximum Block Improvement (MBI) co-clustering technique. SPARCoC has clear advantages compared with widely-used alternative approaches: hierarchical clustering (Hclust) and nonnegative matrix factorization (NMF). We apply SPARCoC to the study of lung adenocarcinoma (ADCA), an extremely heterogeneous histological type, and a significant challenge for molecular subtyping. For testing and verification, we use high quality gene expression profiling data of lung ADCA patients, and identify prognostic gene signatures which could cluster patients into subgroups that are significantly different in their overall survival (with p-values < 0.05). Our results are only based on gene expression profiling data analysis, without incorporating any other feature selection or clinical information; we are able to replicate our findings with completely independent datasets. SPARCoC is broadly applicable to large-scale genomic data to empower pattern discovery and cancer gene identification. PMID:25768286

  1. SPARCoC: a new framework for molecular pattern discovery and cancer gene identification.

    PubMed

    Ma, Shiqian; Johnson, Daniel; Ashby, Cody; Xiong, Donghai; Cramer, Carole L; Moore, Jason H; Zhang, Shuzhong; Huang, Xiuzhen

    2015-01-01

    It is challenging to cluster cancer patients of a certain histopathological type into molecular subtypes of clinical importance and identify gene signatures directly relevant to the subtypes. Current clustering approaches have inherent limitations, which prevent them from gauging the subtle heterogeneity of the molecular subtypes. In this paper we present a new framework: SPARCoC (Sparse-CoClust), which is based on a novel Common-background and Sparse-foreground Decomposition (CSD) model and the Maximum Block Improvement (MBI) co-clustering technique. SPARCoC has clear advantages compared with widely-used alternative approaches: hierarchical clustering (Hclust) and nonnegative matrix factorization (NMF). We apply SPARCoC to the study of lung adenocarcinoma (ADCA), an extremely heterogeneous histological type, and a significant challenge for molecular subtyping. For testing and verification, we use high quality gene expression profiling data of lung ADCA patients, and identify prognostic gene signatures which could cluster patients into subgroups that are significantly different in their overall survival (with p-values < 0.05). Our results are only based on gene expression profiling data analysis, without incorporating any other feature selection or clinical information; we are able to replicate our findings with completely independent datasets. SPARCoC is broadly applicable to large-scale genomic data to empower pattern discovery and cancer gene identification. PMID:25768286

  2. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses

    PubMed Central

    Pitino, Marco; Armstrong, Cheryl M; Duan, Yongping

    2015-01-01

    Citrus canker, caused by the bacterial pathogen Xanthomonas citri ssp. citri (Xcc), has been attributed to millions of dollars in loss or damage to commercial citrus crops in subtropical production areas of the world. Since identification of resistant plants is one of the most effective methods of disease management, the ability to screen for resistant seedlings plays a key role in the production of a long-term solution to canker. Here, an inverse correlation between reactive oxygen species (ROS) production by the plant and the ability of Xcc to grow and form lesions on infected plants is reported. Based on this information, a novel screening method that can rapidly identify citrus seedlings that are less susceptible to early infection by Xcc was devised by measuring ROS accumulation triggered by a 22-amino acid sequence of the conserved N-terminal part of flagellin (flg22) from X. citri ssp. citri (Xcc-flg22). In addition to limiting disease symptoms, ROS production was also correlated with the expression of basal defense-related genes such as the pattern recognition receptors LRR8 and FLS2, the leucine-rich repeat receptor-like protein RLP12, and the defense-related gene PR1, indicating an important role for pathogen-associated molecular pattern-triggered immunity (PTI) in determining resistance to citrus canker. Moreover, the differential expression patterns observed amongst the citrus seedlings demonstrated the existence of genetic variations in the PTI response among citrus species/varieties. PMID:26504581

  3. Patterns of Eurasian HSV-1 molecular diversity and inferences of human migrations.

    PubMed

    Bowden, Rory; Sakaoka, Hiroshi; Ward, Ryk; Donnelly, Peter

    2006-01-01

    Following our recent report of high levels of recombination and geographic structuring amongst isolates from two populations, we have investigated global patterns of herpes simplex virus type 1 (HSV-1) molecular diversity using population samples from six countries in Europe, Asia and Africa. Sequence comparisons show that HSV-1 from Kenya is both highly diverse and distinct from either European or Asian HSV-1. HSV-1 populations are much more highly differentiated than human populations at the same geographic scales, with 35% of total variation at the level of inter-population comparisons, a difference likely to be due to higher rates of both mutation and genetic drift in HSV-1 than in equivalent human data. There is substantial differentiation between northwestern European HSV-1 populations and those from East Asia, and while patterns of British and Swedish HSV-1 variation were indistinguishable, differentiation was detectable amongst Chinese, Korean and Japanese HSV-1 samples, in spite of their lower overall diversity. The program Structure was used to reconstruct ancestral Eurasian lineages, which we estimated to have originated approximately 60,000 years ago. A specific pattern detected amongst East Asian HSV-1 isolates is currently best explained by the two waves of migration responsible for the peopling of Japan. PMID:16376841

  4. Phases, line tension and pattern formation in molecularly thin films at the air-water interface

    NASA Astrophysics Data System (ADS)

    Mandal, Pritam

    A Langmuir film, which is a molecularly thin insoluble film on a liquid substrate, is one practical realization of a quasi-two dimensional matter. The major advantages of this system for the study of phase separation and phase co-existence are (a) it allows accurate control of the components and molecular area of the film and (b) it can be studied by various methods that require very flat films. Phase separation in molecularly thin films plays an important role in a range of systems from biomembranes to biosensors. For example, phase-separated lipid nano-domains in biomembranes are thought to play crucial roles in membrane function. I use Brewster Angel Microscopy (BAM) coupled with Fluorescence Microscopy (FM) and static Light Scattering Microscopy (LSM) to image phases and patterns within Langmuir films. The three microscopic techniques --- BAM, FM and LSM --- are complimentary to each other, providing distinct sets of information. They allow direct comparison with literature results in lipid systems. I have quantitatively validated the use of detailed hydrodynamic simulations to determine line tension in monolayers. Line tension decreases as temperature rises. This decrease gives us information on the entropy associated with the line, and thus about line structure. I carefully consider the thermodynamics of line energy and entropy to make this connection. In the longer run, LSM will be exploited to give us further information about line structure. I have also extended the technique by testing it on domains within the curved surface of a bilayer vesicle. I also note that in the same way that the presence of surface-active agents, known as surfactants, affects surface energy, the addiction of line active agents alters the inter-phase line energy. Thus my results set to stage to systematically study the influence of line active agents ---'linactants' --- on the inter-phase line energy. Hierarchal self-assembled chiral patterns were observed as a function of temperature. I found that the appearance of these domains could be explained with a simple uniaxial optical axis in the underlying structure, which is the first critical step to understanding the origin of these patterns.

  5. Directed-assembly of single-walled carbon nanotubes using self-assembled monolayer patterns comprising conjugated molecular wires

    NASA Astrophysics Data System (ADS)

    Im, Jiwoon; Lee, Minbaek; Myung, Sung; Huang, Ling; Rao, Saleem G.; Lee, Dong Joon; Koh, Juntae; Hong, Seunghun

    2006-07-01

    Self-assembled monolayer (SAM) patterns on electrodes are often utilized to guide the assembly of single-walled carbon nanotubes (SWCNTs) onto the electrodes to form desired device structures. In this case, the SWCNTs are in contact with the electrodes through the SAM which comprises molecular wires. Presumably, it is desirable to use conjugated molecular wires for a low contact resistance because they have been reported as a better electric conductor than non-conjugated ones. However, until now, the directed-assembly of SWCNTs has been driven mostly via molecular wires with alkane backbones which are known to be relatively poor conductors. Herein, we report large-scale directed-assembly of SWCNTs utilizing SAM patterns comprising conjugated molecular wires. We achieved highly selective adsorption and precision alignment of SWCNTs utilizing polar SAM patterns comprising conjugated molecular wires, while SAM patterns with non-polar terminal groups efficiently prevented adsorption of SWCNTs. Furthermore, we developed a process for assembling a SWCNT across two electrodes coated with conjugated molecular wires, and the electrical conduction through the SWCNT was measured via a conducting atomic force microscope. This result could be an important guideline for large-scale directed-assembly of SWCNT-based devices in the future.

  6. Low Energy Positron Interactions with Biological Molecules

    NASA Astrophysics Data System (ADS)

    Wanniarachchi, Indika; Morgan, Caroline; Schlegel, Bernhard; Kedziora, Gary; Burgrraf, Larry; Pak, Michael; Hammes-Schiffer, Sharon

    2012-10-01

    There is some experimental evidence that positrons can produce distinctive molecular fragmentation patterns. It is known that tuning the incident positron energy to near resonance with molecule vibrations can strongly enhance the positron annihilation probability for a molecule. This suggests that fragmentation induced by slow positrons may provide valuable complementary information to existing techniques for identification and study of proteins. In order to study this concept, we are developing a general quantum method for reliably calculating the density distribution for positrons bound to large biological molecules using NEO/GAMESS. We find that the outer molecular orbitals as well as the higher p orbitals on the O atoms contribute heavily to the total annihilation rate. Using the basis sets and approximations we have tested to predict where annihilation occurs can ultimately help us understand the resulting fragmentation patterns of larger biological molecules.

  7. Molecular and structural characterization of dissolved organic matter from the deep ocean by FTICR-MS, including hydrophilic nitrogenous organic molecules

    USGS Publications Warehouse

    Reemtsma, T.; These, A.; Linscheid, M.; Leenheer, J.; Spitzy, A.

    2008-01-01

    Dissolved organic matter isolated from the deep Atlantic Ocean and fractionated into a so-called hydrophobic (HPO) fraction and a very hydrophilic (HPI) fraction was analyzed for the first time by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to resolve the molecular species, to determine their exact masses, and to calculate their molecular formulas. The elemental composition of about 300 molecules was identified. Those in the HPO fraction (14C age of 5100 year) are very similar to much younger freshwater fulvic acids, but less aromatic and more oxygenated molecules are more frequent. This trend continues toward the HPI fraction and may indicate biotic and abiotic aging processes that this material experienced since its primary production thousands of years ago. In the HPI fraction series of nitrogenous molecules containing one, two, or three nitrogens were identified by FTICR-MS. Product ion spectra of the nitrogenous molecules suggest that the nitrogen atoms in these molecules are included in the (alicyclic) backbone of these molecules, possibly in reduced form. These mass spectrometric data suggest that a large set of stable fulvic acids is ubiquitous in all aquatic compartments. Although sources may differ, their actual composition and structure appears to be quite similar and largely independent from their source, because they are the remainder of intensive oxidative degradation processes. ?? 2008 American Chemical Society.

  8. Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein

    PubMed Central

    2011-01-01

    Background Pepino mosaic virus (PepMV) is considered one of the most dangerous pathogens infecting tomatoes worldwide. The virus is highly diverse and four distinct genotypes, as well as inter-strain recombinants, have already been described. The isolates display a wide range on symptoms on infected plant species, ranging from mild mosaic to severe necrosis. However, little is known about the mechanisms and pattern of PepMV molecular evolution and about the role of individual proteins in host-pathogen interactions. Methods The nucleotide sequences of the triple gene block 3 (TGB3) from PepMV isolates varying in symptomatology and geographic origin have been analyzed. The modes and patterns of molecular evolution of the TGBp3 protein were investigated by evaluating the selective constraints to which particular amino acid residues have been subjected during the course of diversification. The tridimensional structure of TGBp3 protein has been modeled de novo using the Rosetta algorithm. The correlation between symptoms development and location of specific amino acids residues was analyzed. Results The results have shown that TGBp3 has been evolving mainly under the action of purifying selection operating on several amino acid sites, thus highlighting its functional role during PepMV infection. Interestingly, amino acid 67, which has been previously shown to be a necrosis determinant, was found to be under positive selection. Conclusions Identification of diverse selection events in TGB3p3 will help unraveling its biological functions and is essential to an understanding of the evolutionary constraints exerted on the Potexvirus genome. The estimated tridimensional structure of TGBp3 will serve as a platform for further sequence, structural and function analysis and will stimulate new experimental advances. PMID:21702943

  9. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer.

    PubMed

    Marino, A; Cammarata, M; Matar, S F; Ltard, J-F; Chastanet, G; Chollet, M; Glownia, J M; Lemke, H T; Collet, E

    2016-03-01

    We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules. PMID:26798836

  10. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer

    PubMed Central

    Marino, A.; Cammarata, M.; Matar, S. F.; Létard, J.-F.; Chastanet, G.; Chollet, M.; Glownia, J. M.; Lemke, H. T.; Collet, E.

    2015-01-01

    We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules. PMID:26798836

  11. Theoretical study of quantum molecular reaction dynamics and of the effects of intense laser radiation on a diatomic molecule

    SciTech Connect

    Dardi, P.S.

    1984-11-01

    Within the very broad field of molecular dynamics, we have concentrated on two simple yet important systems. The systems are simple enough so that they are adequately described with a single Born-Oppenheimer potential energy surface and that the dynamics can be calculated accurately. They are important because they give insight into solving more complicated systems. First we discuss H + H/sub 2/ reactive scattering. We present an exact formalism for atom-diatom reactive scattering which avoids the problem of finding a coordinate system appropriate for both reactants and products. We present computational results for collinear H + H/sub 2/ reactive scattering which agree very well with previous calculations. We also present a coupled channel distorted wave Born approximation for atom-diatom reactive scattering which we show is a first order approximation to our exact formalism. We present coupled channel DWBA results for three dimensional H + H/sub 2/ reactive scattering. The second system is an isolated HF molecule in an intense laser field. Using classical trajectories and quantum dynamics, we look at energy absorbed and transition probabilities as a function of the laser pulse time and also averaged over the pulse time. Calculations are performed for both rotating and nonrotating HF. We examine one and two photon absorption about the fundamental frequency, multiphoton absorption, and overtone absorption. 127 references, 31 figures, 12 tables.

  12. Structure and energetics of model amphiphilic molecules at the water liquid-vapor interface - A molecular dynamics study

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Benjamin, Ilan

    1993-01-01

    A molecular dynamics study of adsorption of p-n-pentylphenol at infinite dilution at the water liquid-vapor interface is reported. The calculated free energy of adsorption is -8.8 +/- 0.7 kcal/mol, in good agreement with the experimental value of -7.3 kcal/mol. The transition between the interfacial region and the bulk solution is sharp and well-defined by energetic, conformational, and orientational criteria. At the water surface, the phenol head group is mostly immersed in aqueous solvent. The most frequent orientation of the hydrocarbon tail is parallel to the interface, due to dispersion interactions with the water surface. This arrangement of the phenol ring and the alkyl chain requires that the chain exhibits a kink. As the polar head group is being moved into the solvent, the chain length increases and the tail becomes increasingly aligned toward the surface normal, such that the nonpolar part of the molecule exposed to water is minimized. The same effect was achieved when phenol was replaced by a more polar head group, phenolate.

  13. Difference in Rotational Temperatures between Neutral Molecules and Molecular Ions of Low-Pressure Discharge N2-O2 Plasmas

    NASA Astrophysics Data System (ADS)

    Akatsuka, Hiroshi; Kawano, Hirokazu; Naoi, Koichi; Tan, Hao; Nezu, Atsushi; Matsuura, Haruaki

    2014-10-01

    For a microwave discharge nitrogen plasma with its discharge pressure about 1 Torr, our OES measurement showed that the rotational temperature of N2+ B state by the first negative system (1NS) is about 1.5 times higher than that of N2 C state by the second positive system (2PS). Meanwhile, it is found that the rotational temperature of O2+ b state by 1NS is almost the same as that of O2 b state by the atmospheric absorption band, which is quite different from N2 plasma. We consider that the rotational temperature of the ground state O2+ X ion should be higher than that of O2+ b state due to difference in the internuclear distance, where that of the O2+ b state is much larger than that of the ground state O2+ X. The angular momentum of both X and b states are almost conserved before and after the electron impact excitation due to small mass of an electron. Therefore, the rotational temperature of the X state of O2+ ion should be estimated to be about 1.3 times of that of O2+ b state. This value gives a similar result with that of nitrogen plasma, where the internuclear distances of B and X states of N2+ are almost the same. It is considered that the ground-state molecular ion has higher rotational temperature than neutral molecule.

  14. Damage-associated molecular patterns and their pathological relevance in diabetes mellitus.

    PubMed

    Shin, Jung Jae; Lee, Eun Kyung; Park, Tae Joo; Kim, Wook

    2015-11-01

    Diabetes, a group of metabolic and age-related diseases, is a major global health problem, the incidence of which has increased dramatically in recent decades. Type 1 diabetes mellitus (T1DM) is a complex, T cell-mediated autoimmune disease characterized by immune cell infiltration and chronic inflammation in the islets of Langerhans. Type 2 diabetes mellitus (T2DM) is a complex metabolic disease characterized by hyperglycemia (high blood sugar) resulting from insulin resistance and ?-cell dysfunction. The involvement of inflammatory processes, such as immune cell infiltration, and chronic inflammation in the pathogenesis of diabetes is less well understood in T2DM than in T1DM. However, studies conducted in the past decade have shown a strong link between inflammation and metabolic dysfunction. They have also shown that chronic inflammation plays a key role in the pathogenesis of both T1DM and T2DM. Two immunological factors commonly contribute to the pathogenesis of diabetes: the activation of inflammasomes and the release of proinflammatory cytokines in response to damage-associated molecular patterns (DAMPs). Inflammasomes are intracellular multiprotein molecular platforms. DAMPs act as endogenous danger signals. Here, we review current research on the function(s) of inflammasomes and DAMPs and discuss their pathological relevance and therapeutic implications in diabetes. PMID:26197086

  15. [Tuberculosis in Europe and Poland--new molecular families and new resistance patterns].

    PubMed

    Augustynowicz-Kope?, Ewa; Zwolska, Zofia

    2008-01-01

    At present despite methods of fast recognition of the disease and efficient antituberculosis drugs not only we cannot contain the epidemic but we can see an increase in new cases of tuberculosis including its drug resistant variety. Causes of aggravation of the situation are varied and ought to be examined separately in case of any particular region. One of the major ones are bad programmes of fighting against the disease or their inadequate realization, ignoring a problem of tuberculosis in developed countries, lack of money for treatment in developing countries and coincidence with HIV virus. Among the mentioned factors the phenomenon of drug resistance is considered one of most important reasons of expansion of tuberculosis in the modern world. In epidemiological investigations it is important to determine, apart from drug resistance patterns, what molecular families strains belong to. This allows us to track their transmission routes. Genotyping has given us knowledge of the threats connected with transmission of the infection and made it possible to identify a risk factor which is the cause of MDR (multidrug-resistant), XDR (extensively drug-resistant tuberculosis) strains dissemination as well as strains representing new molecular families. Results of some analyses proved to be surprising. For instance high proportion of genetically similar strains has been shown in countries of low incidence. It proves higher than expected transmission in societies of high economic standard. Analyses of DNA of mycobacteria led to distinguishing several genetic families among which M. tuberculosis Beijing is one of most important. PMID:18536233

  16. Identification of Nicotiana benthamiana genes involved in pathogen-associated molecular pattern-triggered immunity.

    PubMed

    Chakravarthy, Suma; Velásquez, André C; Ekengren, Sophia K; Collmer, Alan; Martin, Gregory B

    2010-06-01

    In order to identify components of pathogen-associated molecular pattern-triggered immunity (PTI) pathways in Nicotiana benthamiana, we conducted a large-scale forward-genetics screen using virus-induced gene silencing and a cell-death-based assay for assessing PTI. The assay relied on four combinations of PTI-inducing nonpathogens and cell-death-causing challenger pathogens and was first validated in plants silenced for FLS2 or BAK1. Over 3,200 genes were screened and 14 genes were identified that, when silenced, compromised PTI as judged by the cell-death-based assay. Further analysis indicated that the 14 genes were not involved in a general cell death response. A subset of the genes was found to act downstream of FLS2-mediated PTI induction, and silencing of three genes compromised production of reactive oxygen species in leaves exposed to flg22. The 14 genes encode proteins with potential functions in defense and hormone signaling, protein stability and degradation, energy and secondary metabolism, and cell wall biosynthesis and provide a new resource to explore the molecular basis for the involvement of these processes in PTI. PMID:20459311

  17. Evolutionary animation: how do molecular phylogenies compare to Mayr's reconstruction of speciation patterns in the sea?

    PubMed

    Palumbi, Stephen R; Lessios, H A

    2005-05-01

    Ernst Mayr used the geography of closely related species in various stages of increasing divergence to "animate" the process of geographic, or allopatric, speciation. This approach was applied to a wide set of taxa, and a seminal paper by Mayr used it to explore speciation patterns in tropical sea urchins. Since then, taxonomic information in several of these genera has been augmented by detailed molecular phylogenies. We compare Mayr's animation with the phylogenies of eight sea urchin genera placed by Mayr into four speciation groups. True to Mayr's predictions, early-stage genera have on average lower species divergence and more polytypic species than genera in later stages. For six of these genera, we also have information about the evolution of the gamete recognition protein bindin, which is critical to reproductive isolation. These comparisons show that later-stage genera with many sympatric species tend to be those with rapid bindin evolution. By contrast, early-stage genera with few sympatric species are not necessarily earlier in the divergence process; they happen to be those with slow rates of bindin evolution. These results show that the rate of speciation in sea urchins does not only depend on the steady accumulation of genome divergence over time, but also on the rate of evolution of gamete recognition proteins. The animation method used by Mayr is generally supported by molecular phylogenies. However, the existence of multiple rates in the acquisition of reproductive isolation complicates placement of different genera in an evolutionary series. PMID:15851681

  18. Analysis of molecular expression patterns and integration with other knowledge bases using probabilistic Bayesian network models

    SciTech Connect

    Moler, Edward J.; Mian, I.S.

    2000-03-01

    How can molecular expression experiments be interpreted with greater than ten to the fourth measurements per chip? How can one get the most quantitative information possible from the experimental data with good confidence? These are important questions whose solutions require an interdisciplinary combination of molecular and cellular biology, computer science, statistics, and complex systems analysis. The explosion of data from microarray techniques present the problem of interpreting the experiments. The availability of large-scale knowledge bases provide the opportunity to maximize the information extracted from these experiments. We have developed new methods of discovering biological function, metabolic pathways, and regulatory networks from these data and knowledge bases. These techniques are applicable to analyses for biomedical engineering, clinical, and fundamental cell and molecular biology studies. Our approach uses probabilistic, computational methods that give quantitative interpretations of data in a biological context. We have selected Bayesian statistical models with graphical network representations as a framework for our methods. As a first step, we use a nave Bayesian classifier to identify statistically significant patterns in gene expression data. We have developed methods which allow us to (a) characterize which genes or experiments distinguish each class from the others, (b) cross-index the resulting classes with other databases to assess biological meaning of the classes, and (c) display a gross overview of cellular dynamics. We have developed a number of visualization tools to convey the results. We report here our methods of classification and our first attempts at integrating the data and other knowledge bases together with new visualization tools. We demonstrate the utility of these methods and tools by analysis of a series of yeast cDNA microarray data and to a set of cancerous/normal sample data from colon cancer patients. We discuss extending our methods to inferring biological pathways and networks using more complex dynamic Bayesian networks.

  19. Characterization of currently marketed heparin products: analysis of molecular weight and heparinase-I digest patterns.

    PubMed

    Sommers, Cynthia D; Ye, Hongping; Kolinski, Richard E; Nasr, Moheb; Buhse, Lucinda F; Al-Hakim, Ali; Keire, David A

    2011-11-01

    We evaluated polyacrylamide gel electrophoresis (PAGE) and size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS) approaches to determine weight-average molecular weight (M(w)) and polydispersity (PD) of heparins. A set of unfractionated heparin sodium (UFH) and low-molecular-weight heparin (LMWH) samples obtained from nine manufacturers which supply the US market were assessed. For SEC-MALLS, we measured values for water content, refractive index increment (dn/dc), and the second virial coefficient (A(2)) for each sample prior to molecular weight assessment. For UFH, a mean standard deviation value for M(w) of 16,773 797 was observed with a range of 15,620 to 18,363 (n = 20, run in triplicate). For LMWHs by SEC-MALLS, we measured mean M(w) values for dalteparin, tinzaparin, and enoxaparin of 6,717 71 (n = 4), 6,670 417 (n = 3), and 3,959 145 (n = 3), respectively. PAGE analysis of the same UFH, dalteparin, tinzaparin, and enoxaparin samples showed values of 16,135 643 (n = 20), 5,845 45 (n = 4), 6,049 95 (n = 3), and 4,772 69 (n = 3), respectively. These orthogonal measurements are the first M(w) results obtained with a large heparin sample set on product being marketed after the heparin crisis of 2008 changed the level of scrutiny of this drug class. In this study, we compare our new data set to samples analyzed over 10 years earlier. In addition, we found that the PAGE analysis of heparinase digested UFH and neat LMWH samples yield characteristic patterns that provide a facile approach for identification and assessment of drug quality and uniformity. PMID:21901459

  20. Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

    PubMed Central

    Park, Hyeong Cheol; Lee, Shinyoung; Park, Bokyung; Choi, Wonkyun; Kim, Chanmin; Lee, Sanghun; Chung, Woo Sik; Lee, Sang Yeol; Sabir, Jamal; Bressan, Ray A.; Bohnert, Hans J.; Mengiste, Tesfaye; Yun, Dae-Jin

    2015-01-01

    In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense. PMID:25387755

  1. Vigilant keratinocytes trigger pathogen-associated molecular pattern signaling in response to streptococcal M1 protein.

    PubMed

    Persson, Sandra T; Wilk, Laura; Mörgelin, Matthias; Herwald, Heiko

    2015-12-01

    The human skin exerts many functions in order to maintain its barrier integrity and protect the host from invading microorganisms. One such pathogen is Streptococcus pyogenes, which can cause a variety of superficial skin wounds that may eventually progress into invasive deep soft tissue infections. Here we show that keratinocytes recognize soluble M1 protein, a streptococcal virulence factor, as a pathogen-associated molecular pattern to release alarming inflammatory responses. We found that this interaction initiates an inflammatory intracellular signaling cascade involving the activation of the mitogen-activated protein kinases extracellular signal-regulated kinase (ERK), p38, and Jun N-terminal protein kinase and the subsequent induction and mobilization of the transcription factors NF-κB and AP-1. We also determined the imprint of the inflammatory mediators released, such as interleukin-8 (IL-8), growth-related oncogene alpha, migration inhibitory factor, extracellular matrix metalloproteinase inducer, IL-1α, IL-1 receptor a, and ST2, in response to streptococcal M1 protein. The expression of IL-8 is dependent on Toll-like receptor 2 activity and subsequent activation of the mitogen-activated protein kinases ERK and p38. Notably, this signaling seems to be distinct for IL-8 release, and it is not shared with the other inflammatory mediators. We conclude that keratinocytes participate in a proinflammatory manner in streptococcal pattern recognition and that expression of the chemoattractant IL-8 by keratinocytes constitutes an important protective mechanism against streptococcal M1 protein. PMID:26416902

  2. Morphologic and molecular evaluation of Chlamydia trachomatis growth in human endocervix reveals distinct growth patterns

    PubMed Central

    Lewis, Maria E.; Belland, Robert J.; AbdelRahman, Yasser M.; Beatty, Wandy L.; Aiyar, Ashok A.; Zea, Arnold H.; Greene, Sheila J.; Marrero, Luis; Buckner, Lyndsey R.; Tate, David J.; McGowin, Chris L.; Kozlowski, Pamela A.; O'Brien, Michelle; Lillis, Rebecca A.; Martin, David H.; Quayle, Alison J.

    2014-01-01

    In vitro models of Chlamydia trachomatis growth have long been studied to predict growth in vivo. Alternative or persistent growth modes in vitro have been shown to occur under the influence of numerous stressors but have not been studied in vivo. Here, we report the development of methods for sampling human infections from the endocervix in a manner that permits a multifaceted analysis of the bacteria, host and the endocervical environment. Our approach permits evaluating total bacterial load, transcriptional patterns, morphology by immunofluorescence and electron microscopy, and levels of cytokines and nutrients in the infection microenvironment. By applying this approach to two pilot patients with disparate infections, we have determined that their contrasting growth patterns correlate with strikingly distinct transcriptional biomarkers, and are associated with differences in local levels of IFN?. Our multifaceted approach will be useful to dissect infections in the human host and be useful in identifying patients at risk for chronic disease. Importantly, the molecular and morphological analyses described here indicate that persistent growth forms can be isolated from the human endocervix when the infection microenvironment resembles the in vitro model of IFN?-induced persistence. PMID:24959423

  3. Morphologic and molecular evaluation of Chlamydia trachomatis growth in human endocervix reveals distinct growth patterns.

    PubMed

    Lewis, Maria E; Belland, Robert J; AbdelRahman, Yasser M; Beatty, Wandy L; Aiyar, Ashok A; Zea, Arnold H; Greene, Sheila J; Marrero, Luis; Buckner, Lyndsey R; Tate, David J; McGowin, Chris L; Kozlowski, Pamela A; O'Brien, Michelle; Lillis, Rebecca A; Martin, David H; Quayle, Alison J

    2014-01-01

    In vitro models of Chlamydia trachomatis growth have long been studied to predict growth in vivo. Alternative or persistent growth modes in vitro have been shown to occur under the influence of numerous stressors but have not been studied in vivo. Here, we report the development of methods for sampling human infections from the endocervix in a manner that permits a multifaceted analysis of the bacteria, host and the endocervical environment. Our approach permits evaluating total bacterial load, transcriptional patterns, morphology by immunofluorescence and electron microscopy, and levels of cytokines and nutrients in the infection microenvironment. By applying this approach to two pilot patients with disparate infections, we have determined that their contrasting growth patterns correlate with strikingly distinct transcriptional biomarkers, and are associated with differences in local levels of IFN?. Our multifaceted approach will be useful to dissect infections in the human host and be useful in identifying patients at risk for chronic disease. Importantly, the molecular and morphological analyses described here indicate that persistent growth forms can be isolated from the human endocervix when the infection microenvironment resembles the in vitro model of IFN?-induced persistence. PMID:24959423

  4. Molecular insights into the origin of the Hox-TALE patterning system

    PubMed Central

    Hudry, Bruno; Thomas-Chollier, Morgane; Volovik, Yael; Duffraisse, Marilyne; Dard, Amlie; Frank, Dale; Technau, Ulrich; Merabet, Samir

    2014-01-01

    Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anteriorposterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how HoxTALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI: http://dx.doi.org/10.7554/eLife.01939.001 PMID:24642410

  5. Self-Organized Density Patterns of Molecular Motors in Arrays of Cytoskeletal Filaments

    PubMed Central

    Klumpp, Stefan; Nieuwenhuizen, Theo M.; Lipowsky, Reinhard

    2005-01-01

    The stationary states of systems with many molecular motors are studied theoretically for uniaxial and centered (asterlike) arrangements of cytoskeletal filaments using Monte Carlo simulations and a two-state model. Mutual exclusion of motors from binding sites of the filaments is taken into account. For small overall motor concentration, the density profiles are exponential and algebraic in uniaxial and centered filament systems, respectively. For uniaxial systems, exclusion leads to the coexistence of regions of high and low densities of bound motors corresponding to motor traffic jams, which grow upon increasing the overall motor concentration. These jams are insensitive to the motor behavior at the end of the filament. In centered systems, traffic jams remain small and an increase in the motor concentration leads to a flattening of the profile if the motors move inwards, and to the buildup of a concentration maximum in the center of the aster if motors move outwards. In addition to motor density patterns, we also determine the corresponding patterns of the motor current. PMID:15855661

  6. Molecular fingerprinting of lacustrian cyanobacterial communities: regional patterns in summer diversity.

    PubMed

    Touzet, Nicolas; McCarthy, David; Fleming, Gerard T A

    2013-12-01

    The assessment of lacustrian water quality is necessary to comply with environmental regulations. At the regional scale, difficulties reside in the selection of representative lakes. Given the risks towards water quality associated with phytoplankton blooms, a mesoscale survey was carried out in Irish lakes to identify patterns in the distribution and diversity of planktonic cyanobacteria. A stratified sampling strategy was carried out via geographic information systems (GIS) analysis of river catchment attributes due to the range of hydrogeomorphological features and the high number of lakes within the study area. 16S rRNA gene denaturing gradient gel electrophoresis analysis showed variation between the cyanobacterial communities sampled, with lower occurrence of cyanobacteria in August concomitant to increased wind and precipitation regimes. Multivariate analysis delineated three ecoregions based on land cover typology and revealed significant patterns in the distribution of cyanobacterial diversity. A majority of filamentous cyanobacteria genotypes occurred in larger lakes contained river catchments with substantial forest cover. In contrast, higher diversity of spherical cyanobacteria genotypes was observed in lakes of lesser trophic state. In the context of aquatic resource management, the combined use of GIS-based sampling strategy and molecular methods offers promising prospects for assessing microbial community structure at varying scales of space and time. PMID:23802655

  7. COPD disease severity and innate immune response to pathogen-associated molecular patterns

    PubMed Central

    Fan, Vincent S; Gharib, Sina A; Martin, Thomas R; Wurfel, Mark M

    2016-01-01

    The airways of COPD patients are often colonized with bacteria leading to increased airway inflammation. This study sought to determine whether systemic cytokine responses to microbial pathogen-associated molecular patterns (PAMPs) are increased among subjects with severe COPD. In an observational cross-sectional study of COPD subjects, PAMP-induced cytokine responses were measured in whole blood ex vivo. We used PAMPs derived from microbial products recognized by toll-like receptors 1, 2, 4, 5, 6, 7, and 8. Patterns of cytokine response to PAMPs were assessed using hierarchical clustering. One-sided Student’s t-tests were used to compare PAMP-induced cytokine levels in blood from patients with and without severe COPD, and for subjects with and without chronic bronchitis. Of 28 male patients, 12 had moderate COPD (FEV1 50%–80%) and 16 severe COPD (FEV1 <50%); 27 participants provided data on self-reported chronic bronchitis, of which 15 endorsed chronic bronchitis symptoms and 12 did not. Cytokine responses to PAMPs in severe COPD were generally lower than in subjects with milder COPD. This finding was particularly strong for PAMP-induced interleukin (IL)-10, granulocyte colony stimulating factor, and IL-1β. Subjects with chronic bronchitis showed higher PAMP-induced IL-1RA responses to most of the PAMPs evaluated. COPD patients with more severe disease demonstrated a diminished cytokine response to PAMPs, suggesting that chronic colonization with bacteria may dampen the systemic innate immune response.

  8. Molecular Analysis of Geographic Patterns of Eukaryotic Diversity in Antarctic Soils

    PubMed Central

    Lawley, Blair; Ripley, Sarah; Bridge, Paul; Convey, Peter

    2004-01-01

    We describe the application of molecular biological techniques to estimate eukaryotic diversity (primarily fungi, algae, and protists) in Antarctic soils across a latitudinal and environmental gradient between approximately 60 and 87°S. The data were used to (i) test the hypothesis that diversity would decrease with increasing southerly latitude and environmental severity, as is generally claimed for “higher” faunal and plant groups, and (ii) investigate the level of endemicity displayed in different taxonomic groups. Only limited support was obtained for a systematic decrease in diversity with latitude, and then only at the level of a gross comparison between maritime (Antarctic Peninsula/Scotia Arc) and continental Antarctic sites. While the most southerly continental Antarctic site was three to four times less diverse than all maritime sites, there was no evidence for a trend of decreasing diversity across the entire range of the maritime Antarctic (60 to 72°S). Rather, we found the reverse pattern, with highest diversity at sites on Alexander Island (ca. 72°S), at the southern limit of the maritime Antarctic. The very limited overlap found between the eukaryotic biota of the different study sites, combined with their generally low relatedness to existing sequence databases, indicates a high level of Antarctic site isolation and possibly endemicity, a pattern not consistent with similar studies on other continents. PMID:15466539

  9. Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation.

    PubMed

    Norris, Scott A; Samela, Juha; Bukonte, Laura; Backman, Marie; Djurabekova, Flyura; Nordlund, Kai; Madi, Charbel S; Brenner, Michael P; Aziz, Michael J

    2011-01-01

    Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation. PMID:21505432

  10. Earle K. Plyler Prize for Molecular Spectroscopy Talk: Coherent Ultrafast Multidimensional Spectroscopy of Molecules; From NMR to X-rays

    NASA Astrophysics Data System (ADS)

    Mukamel, Shaul

    2011-03-01

    Multidimensional spectroscopic techniques which originated with NMR in the 1970s have been extended over the past 15 years to the optical regime. NMR spectroscopists have developed methods for the design of pulse sequences that resolve otherwise congested spectra, enhance selected spectral features and reveal desired dynamical events. The major experimental and computational advances required for extending these ideas to study electronic and vibrational motions on the femtosecond timescale will be surveyed. The response of complex molecules and semiconductor nanostructures to sequences of optical pulses provides snapshots of their structure and dynamical processes. Two-dimensional correlation plots of the signals show characteristic cross-peak patterns which carry information about hydrogen bonding, secondary structure fluctuations of proteins and amyloid fibrils, and coherent and incoherent energy and charge transfer in photosynthetic complexes. Double quantum coherence signals that are induced by correlations among electrons or excitons allow the visualization of correlated wavefunctions. Future extensions to the attosecond regime using xray pulses will be discussed. Since core excitations are highly localized at selected atoms, such signals can monitor the motions of valence electron wavepackets in real space with atomic spatial resolution. Common principles underlying coherent spectroscopy techniques for spins, valence electrons, and core electronic excitations, spanning frequencies from radiowaves, infrared, ultraviolet all the way to hard X-rays will be discussed.

  11. Molecular characterization and expression patterns of myogenin in compensatory growth of Megalobrama amblycephala.

    PubMed

    Zhu, Kecheng; Chen, Liping; Zhao, Jinkun; Wang, Huijuan; Wang, Weimin; Li, Zhong; Wang, Huanling

    2014-04-01

    Myogenin (myog) is a muscle-specific basic helix-loop-helix (bHLH) transcription factor that plays an essential role in regulating skeletal muscle development and growth. To investigate molecular characterization of myog and the effect of starvation/refeeding on the gene expression, we isolated the myog cDNA sequence and analyzed the expression patterns using quantitative real-time polymerase chain reaction in Megalobrama amblycephala. Sequence analysis indicated that M. amblycephala myog shared an analogous structure with the highly conserved His/Cys-rich, bHLH and C-terminal helix III domains with other vertebrates. Sequence alignment and phylogenetic tree showed that M. amblycephala myog had the highest identity with the homologues of Ctenopharyngodon idella and Cyprinus carpio. Spatio-temporal expression patterns revealed that myog mRNA levels at the segmentation period and 12 h post-hatching (hph) were significantly higher than at other development stages (P<0.05). Furthermore, the highest myog expression level was predominantly observed in white muscle compared with the other types of muscle. Fish body weight continuously decreased during 21-day starvation and then significantly increased after 7days of refeeding and reached the similar level to the control at 21days of refeeding, indicating that the pattern of complete compensatory growth possibly occurred in M. amblycephala; meanwhile, the relative somatic growth rate after refeeding was also dramatically higher than the control group. In addition, the myog expression decreased during 21days of starvation and then exhibited a strong rebound effect after 7days of refeeding and subsequently declined gradually to the control level by 21days of refeeding. PMID:24440962

  12. Phylogenetic Analysis and Molecular Evolution Patterns in the MIR482-MIR1448 Polycistron of Populus L

    PubMed Central

    Zhao, Jia-Ping; Diao, Shu; Zhang, Bing-Yu; Niu, Bao-Qing; Wang, Qing-Ling; Wan, Xian-Chong; Luo, You-Qing

    2012-01-01

    The microRNAs (miRNAs) miR482 and miR1448 are disease resistance-related miRNAs; the former is ubiquitously distributed in seed plants whereas the latter has only been reported in Populus trichocarpa. The precursor and mature sequences of poplar miR1448 are highly homologous to those of poplar miR482, and these two miRNAs are located in one transcript as a polycistron. Therefore, we hypothesized that the MIR1448 gene may have evolved from the MIR482 gene in poplar. However, the molecular evolution patterns of this process remain unclear. In this study, utilizing cloning and Blast analysis in NCBI ESTs and whole-genome shotgun contigs (WGS) dataset, we determined that the MIR482-MIR1448 polycistron is a family-specific clustered miRNA in Salicaceae. Moreover, phylogenetic analysis illustrated that MIR1448 is the product of a tandem duplication event from MIR482. Nucleotide substitution analysis revealed that both MIR482 and MIR1448 have more rapid evolution ratios than ribosomal DNA (rDNA) genes, and that compensatory mutations that occurred in the stem region of the secondary structure were the main mechanisms that drove the evolution of these MIRNA genes. Furthermore, by comparing the substitution patterns in the miRNA-target complexes of miR482 and miR1448, we inferred that co-evolution between miRNAs and their targets was the major force that drove the “duplicated MIR482” evolve to MIR1448. We propose a novel miRNA-target pairing pattern called the “frameshift targeted mechanism” to explain the gain of target genes by miR1448. The results also imply that the major role of miR482 was in resistance to disease or other stresses via NBS-LRR proteins, whereas the biological functions of miR1448 are more diverse. PMID:23094096

  13. Imaging of isolated molecules with ultrafast electron pulses.

    PubMed

    Hensley, Christopher J; Yang, Jie; Centurion, Martin

    2012-09-28

    Imaging isolated molecules in three dimensions with atomic resolution is important for elucidating complex molecular structures and intermediate states in molecular dynamics. This goal has so far remained elusive due to the random orientation of molecules in the gas phase. We show that three-dimensional structural information can be retrieved from multiple electron diffraction patterns of aligned molecules. The molecules are aligned impulsively with a femtosecond laser pulse and probed with a femtosecond electron pulse two picoseconds later, when the degree of alignment reaches a maximum. PMID:23030087

  14. Molecular profiling of experimental endometriosis identified gene expression patterns in common with human disease

    PubMed Central

    Flores, Idhaliz; Rivera, Elizabeth; Ruiz, Lynnette A.; Santiago, Olga I.; Vernon, Michael W.; Appleyard, Caroline B.

    2007-01-01

    OBJECTIVE To validate a rat model of endometriosis using cDNA microarrays by identifying common gene expression patterns beween experimental and natural disease. DESIGN Autotransplantation rat model. SETTING Medical school department. ANIMALS Female Sprague-Dawley rats. INTERVENTIONS Endometriosis was surgically-induced by suturing uterine horn implants next to the small intestine’s mesentery. Control rats received sutures with no implants. After 60 days, endometriotic implants and uterine horn were obtained. MAIN OUTCOME MEASURES Gene expression levels determined by cDNA microarrays and QRT-PCR. METHODS Cy5-labeled cDNA was synthesized from total RNA obtained from endometriotic implants. Cy3-labeled cDNA was synthesized using uterine RNA from a control rat. Gene expression levels were analyzed after hybridizing experimental and control labeled cDNA to PIQOR™ Toxicology Rat Microarrays (Miltenyi Biotec) containing 1,252 known genes. Cy5/Cy3 ratios were determined and genes with >2-fold higher or <0.5-fold lower expression levels were selected. Microarray results were validated by QRT-PCR. RESULTS We observed differential expression of genes previously shown to be upregulated in patients, including growth factors, inflammatory cytokines/receptors, tumor invasion/metastasis factors, adhesion molecules, and anti-apoptotic factors. CONCLUSIONS This study presents evidence in support of using this rat model to study the natural history of endometriosis and test novel therapeutics for this incurable disease. PMID:17478174

  15. Molecular Characterization and Clinical Implications of Spindle Cells in Nasopharyngeal Carcinoma: A Novel Molecule-Morphology Model of Tumor Progression Proposed

    PubMed Central

    Luo, Weiren; Yao, Kaitai

    2013-01-01

    Up to now, the precise molecular and morphological changes underlying the invasive and metastatic properties of nasopharyngeal carcinoma (NPC) remain largely unresolved. We speculate that neoplastic spindle cells, which are prominently found in the invasive tumor front and the surrounding stroma, might be responsible for the aggressive patterns. Expression profiling of various biomarkers relevant to cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) was performed by tissue microarray-based immunohistochemistry in NPC samples. The expression of EBER and LMP1 was detected by in situ hybridization and immunohistochemistry, respectively. We found that overexpression of CSCs-related markers (ALDH1, Nanog and ABCG2) and up-regulation of EMT markers (Fibronectin, MMP-2, Periostin, SPARC, Snail and Slug), together with E- to N-cadherin switching, occurred preferentially in tumors containing a large proportion of spindle-shaped malignant cells. Furthermore, CSCs-like properties were highly present in spindle cells compared with non-spindle cells of tumors, and correlated strongly with EMT features. In addition, EBV-related factors EBER and LMP1 were highly expressed and correlated strongly with CSCs and EMT characteristics in neoplastic spindle cells. Importantly, high proportion of spindle cells (?20%) correlated significantly with various aggressive aspects including lymph node metastasis (P = 0.031) and local recurrence (P = 0.014). Patients with high proportion of spindle cells had poor survival (P = 0.004), though it was not an independent value. In conclusion, we demonstrate that spindle cells could be valuable morphological indicators of tumor progression and unfavorable prognosis of NPC. An integrated molecule-morphology model of NPC firstly constructed may shed significant light on the metastatic cascade and clinical relevance of patients. PMID:24349446

  16. Intensity enhancement and selective detection of proximate solvent molecules by molecular near-field effect in resonance hyper-Raman scattering

    NASA Astrophysics Data System (ADS)

    Shimada, Rintaro; Kano, Hideaki; Hamaguchi, Hiro-o.

    2008-07-01

    A new molecular phenomenon associated with resonance hyper-Raman (HR) scattering in solution has been discovered. Resonance HR spectra of all-trans-?-carotene and all-trans-lycopene in various solvents exhibited several extra bands that were not assignable to the solute but were unequivocally assigned to the solvents. Neat solvents did not show detectable HR signals under the same experimental conditions. Similar experiments with all-trans-retinal did not exhibit such enhancement either. All-trans-?-carotene and all-trans-lycopene have thus been shown to induce enhanced HR scattering of solvent molecules through a novel molecular effect that is not associated with all-trans-retinal. We call this new effect the "molecular near-field effect." In order to explain this newly found effect, an extended vibronic theory of resonance HR scattering is developed where the vibronic interaction including the proximate solvent molecule (intermolecular vibronic coupling) is explicitly introduced in the solute hyperpolarizability tensor. The potential of "molecular near-field HR spectroscopy," which selectively detects molecules existing in the close vicinity of a HR probe in complex chemical or biological systems, is discussed.

  17. Nanopolaritonics with a continuum of molecules: simulations of molecular-induced selectivity in plasmonics transport through a continuous Y-shape.

    PubMed

    Neuhauser, Daniel

    2011-11-28

    Using the recent NF (near-field) formulation for electrodynamics on the nanoscale, we simulate transport in a Y-shape gold nanostructure in the presence of 2-level molecules. NF is shown to be easily integrated with the Liouville equation, producing a simple and efficient nanopolaritons (plasmons-excitons) solver, with a large time step. Two cases are considered: coating of the gold structure with molecular layers thinner than the structure, and filling space with aligned molecules. In both cases significant effects on the radiation transport are obtained even for low molecular densities. At low densities the effects are primarily an overall reduction of the plasmonics peak, but at higher densities there is a significant selectivity control by the molecules. A redshift is predicted, especially for the space-filling case. The combined nanopolariton shows qualitative hybridization, and the spectral peaks separate with increasing coupling, i.e., with increasing molecular densities. The results open the way to "control of light by light," i.e., controlling plasmonic light transport by inducing a change in the direction of the guiding molecular dipoles through radiation or other means. PMID:22128933

  18. Differential tapasin dependence of MHC class I molecules correlates with conformational changes upon peptide dissociation: A molecular dynamics simulation study

    SciTech Connect

    Sieker, Florian; Straatsma, TP; Springer, Sebastian; Zacharias, Martin W.

    2008-08-01

    Efficiency of peptide loading to MHC class I molecules in the endoplasmatic reticulum depends on the class I allele and can involve interaction with tapasin and other proteins of the loading complex. Allele HLA-B*4402 (Asp at position 116) depends on tapasin for efficient peptide loading whereas HLA-B*4405 (identical to B*4402 except for Tyr116) can efficiently load peptides in the absence of tapasin. Both alleles adopt very similar structures in the presence of the same peptide. Molecular dynamics (MD) simulations on induced peptide termini dissociation from the ?1/?2 peptide binding domains have been performed to characterize free energy changes and associated structural changes in the two alleles. A smooth free energy change along the distance dissociation coordinate was obtained for N terminus dissociation. A different shape and magnitude of the calculated free energy change and was obtained for induced peptide C terminus dissociation in case of the tapasin independent allele B*4405 compared to B*4402. Structural changes during C terminus dissociation occurred mainly in the first segment of the ?2-helix that flanks the peptide C-terminus binding region (F-pocket) and contacts residue 116. This segment is also close to the proposed tapasin contact region. For B*4402, a stable shift towards an altered open F-pocket structure deviating significantly from the bound form was observed. In contrast, B*4405 showed only a transient opening of the F-pocket followed by relaxation towards a structure close to the bound form upon C terminus dissociation. The greater tendency for peptide-receptive conformation in the absence of peptide combined with a more long-range character of the interactions with the peptide C terminus facilitates peptide binding to B*4405 and could be responsible for the tapasin independence of this allele. A possible role of tapasin in case of HLA-B*4402 and other tapasin-dependent alleles could be the stabilization of a peptide receptive class I conformation.

  19. Use of Mo/ller-Plesset perturbation theory in molecular calculations: Spectroscopic constants of first row diatomic molecules

    SciTech Connect

    Dunning, T.H. , Jr.; Peterson, K.A.

    1998-03-01

    The convergence of Mo/ller{endash}Plesset perturbation expansions (MP2{endash}MP4/MP5) for the spectroscopic constants of a selected set of diatomic molecules (BH, CH, HF, N{sub 2}, CO, and F{sub 2}) has been investigated. It was found that the second-order perturbation contributions to the spectroscopic constants are strongly dependent on basis set, more so for HF and CO than for BH. The MP5 contributions for HF were essentially zero for the cc-pVDZ basis set, but increased significantly with basis set illustrating the difficulty of using small basis sets as benchmarks for correlated calculations. The convergence behavior of the {ital exact} Mo/ller{endash}Plesset perturbation expansions were investigated using estimates of the {ital complete basis set limits} obtained using large correlation consistent basis sets. For BH and CH, the perturbation expansions of the spectroscopic constants converge monotonically toward the experimental values, while for HF, N{sub 2}, CO, and F{sub 2}, the expansions oscillate about the experimental values. The perturbation expansions are, in general, only slowly converging and, for HF, N{sub 2}, CO, and F{sub 2}, appear to be far from convergence at MP4. In fact, for HF, N{sub 2}, and CO, the errors in the calculated spectroscopic constants for the MP4 method are {ital larger} than those for the MP2 method (the only exception is D{sub e}). The current study, combined with other recent studies, raises serious doubts about the use of Mo/ller{endash}Plesset perturbation theory to describe electron correlation effects in atomic and molecular calculations. {copyright} {ital 1998 American Institute of Physics.}

  20. Methanol and ethanol modulate responses to danger- and microbe-associated molecular patterns

    PubMed Central

    Hann, Claire T.; Bequette, Carlton J.; Dombrowski, James E.; Stratmann, Johannes W.

    2014-01-01

    Methanol is a byproduct of cell wall modification, released through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play not only a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. Molecular mechanisms that explain how methanol affects plant defenses are poorly understood. Here we show that exogenously supplied methanol alone has weak effects on defense signaling in three dicot species, however, it profoundly alters signaling responses to danger- and microbe-associated molecular patterns (DAMPs, MAMPs) such as the alarm hormone systemin, the bacterial flagellum-derived flg22 peptide, and the fungal cell wall-derived oligosaccharide chitosan. In the presence of methanol the kinetics and amplitudes of DAMP/MAMP-induced MAP kinase (MAPK) activity and oxidative burst are altered in tobacco and tomato suspension-cultured cells, in Arabidopsis seedlings and tomato leaf tissue. As a possible consequence of altered DAMP/MAMP signaling, methanol suppressed the expression of the defense genes PR-1 and PI-1 in tomato. In cell cultures of the grass tall fescue (Festuca arundinacea, Poaceae, Monocots), methanol alone activates MAPKs and increases chitosan-induced MAPK activity, and in the darnel grass Lolium temulentum (Poaceae), it alters wound-induced MAPK signaling. We propose that methanol can be recognized by plants as a sign of the damaged self. In dicots, methanol functions as a DAMP-like alarm signal with little elicitor activity on its own, whereas it appears to function as an elicitor-active DAMP in monocot grasses. Ethanol had been implicated in plant stress responses, although the source of ethanol in plants is not well established. We found that it has a similar effect as methanol on responses to MAMPs and DAMPs. PMID:25360141

  1. Oxaliplatin induces different cellular and molecular chemoresistance patterns in colorectal cancer cell lines of identical origins

    PubMed Central

    2013-01-01

    Background Cancer cells frequently adopt cellular and molecular alterations and acquire resistance to cytostatic drugs. Chemotherapy with oxaliplatin is among the leading treatments for colorectal cancer with a response rate of 50%, inducing intrastrand cross-links on the DNA. Despite of this drugs efficiency, resistance develops in nearly all metastatic patients. Chemoresistance being of crucial importance for the drugs clinical efficiency this study aimed to contribute to the identification and description of some cellular and molecular alterations induced by prolonged oxaliplatin therapy. Resistance to oxaliplatin was induced in Colo320 (Colo320R) and HT-29 (HT-29R) colorectal adenocarcinoma cell lines by exposing the cells to increasing concentrations of the drug. Alterations in morphology, cytotoxicity, DNA cross-links formation and gene expression profiles were assessed in the parental and resistant variants with microscopy, MTT, alkaline comet and pangenomic microarray assays, respectively. Results Morphology analysis revealed epithelial-to-mesenchymal transition in the resistant vs parental cells suggesting alterations of the cells adhesion complexes, through which they acquire increased invasiveness and adherence. Cytotoxicity measurements demonstrated resistance to oxaliplatin in both cell lines; Colo320 being more sensitive than HT-29 to this drug (P?molecular chemoresistance patterns induced by prolonged treatment with oxaliplatin in cell lines with identical origins (colorectal adenocarcinomas). PMID:23865481

  2. Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules.

    PubMed Central

    Folger, K R; Wong, E A; Wahl, G; Capecchi, M R

    1982-01-01

    We examined the fate of DNA microinjected into nuclei of cultured mammalian cells. The sequence composition and the physical form of the vector carrying the selectable gene affected the efficiency of DNA-mediated transformation. Introduction of sequences near the simian virus 40 origin of DNA replication or in the long terminal repeat of avian sarcoma provirus into a recombinant plasmid containing the herpes simplex virus thymidine kinase gene. (pBR322/HSV-tk) enhanced the frequency of transformation of LMtk- and RAT-2tk- cells to the TK+ phenotype 20- to 40-fold. In cells receiving injections of only a few plasmid DNA molecules, the transformation frequency was 40-fold higher after injection of linear molecules than after injection of supercoiled molecules. By controlling the number of gene copies injected into a recipient cell, we could obtain transformants containing a single copy or as many as 50 to 100 copies of the selectable gene. Multiple copies of the transforming gene were not scattered throughout the host genome but were integrated as a concatemer at one or a very few sites in the host chromosome. Independent transformants contained the donated genes in different chromosomes. The orientation of the gene copies within the concatemer was not random; rather, the copies were organized as tandem head-to-tail arrays. By analyzing transformants obtained by coinjecting two vectors which were identical except that in one a portion of the vector was inverted, we were able to conclude that the head-to-tail concatemers were generated predominantly by homologous recombination. Surprisingly, these head-to-tail concatemers were found in transformants obtained by injecting either supercoiled or linear plasmid DNA. Even though we demonstrated that cultured mammalian cells contain the enzymes for ligating two DNA molecules very efficiently irrespective of the sequences or topology at their ends, we found that even linear plasmid DNA was recruited into the concatemer by homologous recombination. Images PMID:6298598

  3. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy

    PubMed Central

    Liu, Zheng; Ding, Song-Yuan; Chen, Zhao-Bin; Wang, Xiang; Tian, Jing-Hua; Anema, Jason R.; Zhou, Xiao-Shun; Wu, De-Yin; Mao, Bing-Wei; Xu, Xin; Ren, Bin; Tian, Zhong-Qun

    2011-01-01

    The conductance of single-molecule junctions may be governed by the structure of the molecule in the gap or by the way it bonds with the leads, and the information contained in a Raman spectrum is ideal for examining both. Here we demonstrate that molecule-to-surface bonding may be characterized during electron transport by 'fishing-mode' tip-enhanced Raman spectroscopy (FM-TERS). This technique allows mutually verifiable single-molecule conductance and Raman signals with single-molecule contributions to be acquired simultaneously at room temperature. Density functional theory calculations reveal that the most significant spectral change seen for a gold-4,4′-bipyridine-gold junction results from the deformation of the pyridine ring in contact with the drain electrode at high voltage, and these calculations suggest that a stronger bonding interaction between the molecule and the drain may account for the nonlinear dependence of conductance on bias voltage. FM-TERS will lead to a better understanding of electron-transport processes in molecular junctions. PMID:21556059

  4. Patterns of integration of DNA microinjected into cultured mammalian cells: Evidence for homologous recombination between injected plasmid DNA molecules

    SciTech Connect

    Folger, K.R.; Wong, E.A.; Wahl, G.; Capecchi, M.R.

    1982-11-01

    The authors examined the fate of DNA microinjected into nuclei of cultured mammalian cells. The sequence composition and the physical form of the vector carrying the selectable gene affected the efficiency of DNA-mediated transformation. Introduction of sequences near the simian virus 40 origin of DNA replication or in the long terminal repeat of avian sarcoma provirus into a recombinant plasmid containing the herpes simplex virus thymidine kinase gene (pBR322/HSV-tk) enhanced the frequency of transformation of LMtk/sup -/ and RAT-2tk/sup -/ cells to the TK/sup +/ phenotype 20- to 40-fold. In cells receiving injections of only a few plasmid DNA molecules, the transformation frequency was 40-fold higher after injection of linear molecules than after injection of supercoiled molecules. By controlling the number of gene copies injected into a recipient cell, we could obtain transformants containing a single copy or as many as 50 to 100 copies of the selectable gene. By analyzing transformants obtained by coinjecting two vectors which were identical except that in one a portion of the vector was inverted, the authors were able to conclude that the head-to-tail concatemers were generated predominantly by homologous recombination. Surprisingly, these head-to-tail concatemers were found in transformants obtained by injecting either supercoiled or linear plasmid DNA.

  5. Innate Immune Responses Activated in Arabidopsis Roots by Microbe-Associated Molecular Patterns[W][OA

    PubMed Central

    Millet, Yves A.; Danna, Cristian H.; Clay, Nicole K.; Songnuan, Wisuwat; Simon, Matthew D.; Werck-Reichhart, Danièle; Ausubel, Frederick M.

    2010-01-01

    Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of β-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid–jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways. PMID:20348432

  6. Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns.

    PubMed

    Gaulin, Elodie; Dram, Nani; Lafitte, Claude; Torto-Alalibo, Trudy; Martinez, Yves; Ameline-Torregrosa, Carine; Khatib, Moustafa; Mazarguil, Honor; Villalba-Mateos, Franois; Kamoun, Sophien; Mazars, Christian; Dumas, Bernard; Bottin, Arnaud; Esquerr-Tugay, Marie-Thrse; Rickauer, Martina

    2006-07-01

    The cellulose binding elicitor lectin (CBEL) from Phytophthora parasitica nicotianae contains two cellulose binding domains (CBDs) belonging to the Carbohydrate Binding Module1 family, which is found almost exclusively in fungi. The mechanism by which CBEL is perceived by the host plant remains unknown. The role of CBDs in eliciting activity was investigated using modified versions of the protein produced in Escherichia coli or synthesized in planta through the potato virus X expression system. Recombinant CBEL produced by E. coli elicited necrotic lesions and defense gene expression when injected into tobacco (Nicotiana tabacum) leaves. CBEL production in planta induced necrosis. Site-directed mutagenesis on aromatic amino acid residues located within the CBDs as well as leaf infiltration assays using mutated and truncated recombinant proteins confirmed the importance of intact CBDs to induce defense responses. Tobacco and Arabidopsis thaliana leaf infiltration assays using synthetic peptides showed that the CBDs of CBEL are essential and sufficient to stimulate defense responses. Moreover, CBEL elicits a transient variation of cytosolic calcium levels in tobacco cells but not in protoplasts. These results define CBDs as a novel class of molecular patterns in oomycetes that are targeted by the innate immune system of plants and might act through interaction with the cell wall. PMID:16766692

  7. Caspase-dependent cell death-associated release of nucleosome and damage-associated molecular patterns

    PubMed Central

    Yoon, S; Park, S J; Han, J H; Kang, J H; Kim, J-h; Lee, J; Park, S; Shin, H-J; Kim, K; Yun, M; Chwae, Y-J

    2014-01-01

    Apoptosis, which is anti-inflammatory, and necrosis, which is pro-inflammatory, represent the extremes of the cell death spectrum. Cell death is complex and both apoptosis and necrosis can be observed in the same cells or tissues. Here, we introduce a novel combined mode of cellular demise caspase-dependent regulated necrosis. Most importantly, it is mainly characterized with release of marked amount of oligo- or poly-nucleosomes and their attached damage-associated molecular patterns (DAMPs) and initiated by caspase activation. Caspase-activated DNase has dual roles in nucleosomal release as it can degrade extracellularly released chromatin into poly- or oligo-nucleosomes although it prohibits release of nucleosomes. In addition, osmotically triggered water movement following Cl? influx and subsequent Na+ influx appears to be the major driving force for nucleosomal and DAMPs release. Finally, Ca2+-activated cysteine protease, calpain, is an another essential factor in nucleosomal and DAMPs release because of complete reversion to apoptotic morphology from necrotic one and blockade of nucleosomal and DAMPs release by its inhibition. PMID:25356863

  8. Entropy-driven pattern formation of hybrid vesicular assemblies made from molecular and nanoparticle amphiphiles.

    PubMed

    Liu, Yijing; Li, Yanchun; He, Jie; Duelge, Kaleb John; Lu, Zhongyuan; Nie, Zhihong

    2014-02-12

    Although an analogy has been drawn between them, organic molecular amphiphiles (MAMs) and inorganic nanoparticle (NP) amphiphiles (NPAMs) are significantly different in dimension, geometry, and composition as well as their assembly behavior. Their concurrent assembly can synergetically combine the inherent properties of both building blocks, thus leading to new hybrid materials with increasing complexity and functionality. Here we present a new strategy to fabricate hybrid vesicles with well-defined shape, morphology, and surface pattern by coassembling MAMs of block copolymers (BCPs) and NPAMs comprising inorganic NPs tethered with amphiphilic BCPs. The assembly of binary mixtures generated unique hybrid Janus-like vesicles with different shapes, patchy vesicles, and heterogeneous vesicles. Our experimental and computational studies indicate that the different nanostructures arise from the delicate interplay between the dimension mismatch of the two types of amphiphiles, the entanglement of polymer chains, and the mobility of NPAMs. In addition, the entropic attraction between NPAMs plays a dominant role in controlling the lateral phase separation of the two types of amphiphiles in the membranes. The ability to utilize multiple distinct amphiphiles to construct discrete assemblies represents a promising step in the self-assembly of structurally complex functional materials. PMID:24447129

  9. Quantitative Analysis of Microbe-Associated Molecular Pattern (MAMP)-Induced Ca(2+) Transients in Plants.

    PubMed

    Trempel, Fabian; Ranf, Stefanie; Scheel, Dierk; Lee, Justin

    2016-01-01

    Ca(2+) is a secondary messenger involved in early signaling events triggered in response to a plethora of biotic and abiotic stimuli. In plants, environmental cues that induce cytosolic Ca(2+) elevation include touch, reactive oxygen species, cold shock, and salt or osmotic stress. Furthermore, Ca(2+) signaling has been implicated in early stages of plant-microbe interactions of both symbiotic and antagonistic nature. A long-standing hypothesis is that there is information encoded in the Ca(2+) signals (so-called Ca(2+) signatures) to enable plants to differentiate between these stimuli and to trigger the appropriate cellular response. Qualitative and quantitative measurements of Ca(2+) signals are therefore needed to dissect the responses of plants to their environment. Luminescence produced by the Ca(2+) probe aequorin upon Ca(2+) binding is a widely used method for the detection of Ca(2+) transients and other changes in Ca(2+) concentrations in cells or organelles of plant cells. In this chapter, using microbe-associated molecular patterns (MAMPs), such as the bacterial-derived flg22 or elf18 peptides as stimuli, a protocol for the quantitative measurements of Ca(2+) fluxes in apoaequorin-expressing seedlings of Arabidopsis thaliana in 96-well format is described. PMID:26867636

  10. Formation of Ga droplets on patterned GaAs (100) by molecular beam epitaxy

    PubMed Central

    2012-01-01

    In this paper, the formation of Ga droplets on photo-lithographically patterned GaAs (100) and the control of the size and density of Ga droplets by droplet epitaxy using molecular beam epitaxy are demonstrated. In extension of our previous result from the journal Physical Status Solidi A, volume 209 in 2012, the sharp contrast of the size and density of Ga droplets is clearly observed by high-resolution scanning electron microscope, atomic force microscope, and energy dispersive X-ray spectrometry. Also, additional monolayer (ML) coverage is added to strength the result. The density of droplets is an order of magnitude higher on the trench area (etched area), while the size of droplets is much larger on the strip top area (un-etched area). A systematic variation of ML coverage results in an establishment of the control of size and density of Ga droplets. The cross-sectional line profile analysis and root mean square roughness analysis show that the trench area (etched area) is?approximately?six times rougher. The atomic surface roughness is suggested to be the main cause of the sharp contrast of the size and density of Ga droplets and is discussed in terms of surface diffusion. PMID:23033893

  11. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?

    PubMed Central

    Condamine, Fabien L.; Clapham, Matthew E.; Kergoat, Gael J.

    2016-01-01

    Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders. PMID:26778170

  12. TLR activation regulates damage-associated molecular pattern isoforms released during pyroptosis.

    PubMed

    Nystrm, Sanna; Antoine, Daniel J; Lundbck, Peter; Lock, John G; Nita, Andreia F; Hgstrand, Kari; Grandien, Alf; Erlandsson-Harris, Helena; Andersson, Ulf; Applequist, Steven E

    2013-01-01

    Infection of macrophages by bacterial pathogens can trigger Toll-like receptor (TLR) activation as well as Nod-like receptors (NLRs) leading to inflammasome formation and cell death dependent on caspase-1 (pyroptosis). Complicating the study of inflammasome activation is priming. Here, we develop a priming-free NLRC4 inflammasome activation system to address the necessity and role of priming in pyroptotic cell death and damage-associated molecular pattern (DAMP) release. We find pyroptosis is not dependent on priming and when priming is re-introduced pyroptosis is unaffected. Cells undergoing unprimed pyroptosis appear to be independent of mitochondrial involvement and do not produce inflammatory cytokines, nitrous oxide (NO), or reactive oxygen species (ROS). Nevertheless, they undergo an explosive cell death releasing a chemotactic isoform of the DAMP high mobility group protein box 1 (HMGB1). Importantly, priming through surface TLRs but not endosomal TLRs during pyroptosis leads to the release of a new TLR4-agonist cysteine redox isoform of HMGB1. These results show that pyroptosis is dominant to priming signals and indicates that metabolic changes triggered by priming can affect how cell death is perceived by the immune system. PMID:23222484

  13. Integrating molecular, phenotypic and environmental data to elucidate patterns of crocodile hybridization in Belize

    PubMed Central

    Hekkala, Evon R.; Platt, Steven G.; Thorbjarnarson, John B.; Rainwater, Thomas R.; Tessler, Michael; Cunningham, Seth W.; Twomey, Christopher; Amato, George

    2015-01-01

    The genus Crocodylus comprises 12 currently recognized species, many of which can be difficult to differentiate phenotypically. Interspecific hybridization among crocodiles is known to occur in captivity and has been documented between some species in the wild. The identification of hybrid individuals is of importance for management and monitoring of crocodilians, many of which are Convention on International Trade in Endangered Species (CITES) listed. In this study, both mitochondrial and nuclear DNA markers were evaluated for their use in confirming a suspected hybrid zone between American crocodile (Crocodylus acutus) and Morelet’s crocodile (Crocodylus moreletii) populations in southern Belize where individuals and nests exhibiting atypical phenotypic features had previously been observed. Patterns observed in both phenotypic and molecular data indicate possible behavioural and ecological characteristics associated with hybridization events. The results of the combined analyses found that the majority of suspected hybrid samples represent crosses between female C. acutus and male C. moreletii. Phenotypic data could statistically identify hybrids, although morphological overlap between hybrids and C. moreletii reduced reliability of identification based solely on field characters. Ecologically, C. acutus was exclusively found in saline waters, whereas hybrids and C. moreletii were largely absent in these conditions. A hypothesized correlation between unidirectional hybridization and destruction of C. acutus breeding habitats warrants additional research. PMID:26473062

  14. The Role of Damage-Associated Molecular Patterns (DAMPs) in Human Diseases

    PubMed Central

    Land, Walter G.

    2015-01-01

    This article is the second part of a review that addresses the role of damage-associated molecular patterns (DAMPs) in human diseases by presenting examples of traumatic (systemic inflammatory response syndrome), cardiovascular (myocardial infarction), metabolic (type 2 diabetes mellitus), neurodegenerative (Alzheimer’s disease), malignant and infectious diseases. Various DAMPs are involved in the pathogenesis of all these diseases as they activate innate immune machineries including the unfolded protein response and inflammasomes. These subsequently promote sterile autoinflammation accompanied, at least in part, by subsequent adaptive autoimmune processes. This review article discusses the future role of DAMPs in routine practical medicine by highlighting the possibility of harnessing and deploying DAMPs either as biomarkers for the appropriate diagnosis and prognosis of diseases, as therapeutics in the treatment of tumours or as vaccine adjuncts for the prophylaxis of infections. In addition, this article examines the potential for developing strategies aimed at mitigating DAMPs-mediated hyperinflammatory responses, such as those seen in systemic inflammatory response syndrome associated with multiple organ failure. PMID:26052447

  15. Integrating molecular, phenotypic and environmental data to elucidate patterns of crocodile hybridization in Belize.

    PubMed

    Hekkala, Evon R; Platt, Steven G; Thorbjarnarson, John B; Rainwater, Thomas R; Tessler, Michael; Cunningham, Seth W; Twomey, Christopher; Amato, George

    2015-09-01

    The genus Crocodylus comprises 12 currently recognized species, many of which can be difficult to differentiate phenotypically. Interspecific hybridization among crocodiles is known to occur in captivity and has been documented between some species in the wild. The identification of hybrid individuals is of importance for management and monitoring of crocodilians, many of which are Convention on International Trade in Endangered Species (CITES) listed. In this study, both mitochondrial and nuclear DNA markers were evaluated for their use in confirming a suspected hybrid zone between American crocodile (Crocodylus acutus) and Morelet's crocodile (Crocodylus moreletii) populations in southern Belize where individuals and nests exhibiting atypical phenotypic features had previously been observed. Patterns observed in both phenotypic and molecular data indicate possible behavioural and ecological characteristics associated with hybridization events. The results of the combined analyses found that the majority of suspected hybrid samples represent crosses between female C. acutus and male C. moreletii. Phenotypic data could statistically identify hybrids, although morphological overlap between hybrids and C. moreletii reduced reliability of identification based solely on field characters. Ecologically, C. acutus was exclusively found in saline waters, whereas hybrids and C. moreletii were largely absent in these conditions. A hypothesized correlation between unidirectional hybridization and destruction of C. acutus breeding habitats warrants additional research. PMID:26473062

  16. Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities

    PubMed Central

    Levin, Michael

    2013-01-01

    Transformative impact in regenerative medicine requires more than the reprogramming of individual cells: advances in repair strategies for birth defects or injuries, tumor normalization, and the construction of bioengineered organs and tissues all require the ability to control large-scale anatomical shape. Much recent work has focused on the transcriptional and biochemical regulation of cell behaviour and morphogenesis. However, exciting new data reveal that bioelectrical properties of cells and their microenvironment exert a profound influence on cell differentiation, proliferation, and migration. Ion channels and pumps expressed in all cells, not just excitable nerve and muscle, establish resting potentials that vary across tissues and change with significant developmental events. Most importantly, the spatio-temporal gradients of these endogenous transmembrane voltage potentials (Vmem) serve as instructive patterning cues for large-scale anatomy, providing organ identity, positional information, and prepattern template cues for morphogenesis. New genetic and pharmacological techniques for molecular modulation of bioelectric gradients in vivo have revealed the ability to initiate complex organogenesis, change tissue identity, and trigger regeneration of whole vertebrate appendages. A large segment of the spatial information processing that orchestrates individual cells programs towards the anatomical needs of the host organism is electrical; this blurs the line between memory and decision-making in neural networks and morphogenesis in non-neural tissues. Advances in cracking this bioelectric code will enable the rational reprogramming of shape in whole tissues and organs, revolutionizing regenerative medicine, developmental biology, and synthetic bioengineering. PMID:23897652

  17. Cloning, molecular characterization, and expression pattern of FGF5 in Cashmere goat (Capra hircus).

    PubMed

    Bao, W L; Yao, R Y; He, Q; Guo, Z X; Bao, C; Wang, Y F; Wang, Z G

    2015-01-01

    Fibroblast growth factor 5 (FGF5) is a secreted signaling protein that belongs to the FGF family, and was found to be associated with hair growth in humans and other animals. The Inner Mongolia Cashmere goat (Capra hircus) is a goat breed that provides superior cashmere; this breed was formed by spontaneous mutation in China. Here, we report the cloning, molecular characterization, and expression pattern of the Cashmere goat FGF5. The cloned FGF5 cDNA was 813 base pairs (KM596772), including an open reading frame encoding a 270-amino-acid polypeptide. The nucleotide sequence shared 99% homology with Ovis aries FGF5 (NM_001246263.1). Bioinformatic analysis revealed that FGF5 contained a signal peptide, an FGF domain, and a heparin-binding growth factor/FGF family signature. There was 1 cAMP- and cGMP-dependent protein kinase phosphorylation site, 11 protein kinase C phosphorylation sites, 4 casein kinase II phosphorylation sites, 1 amidation site, 1 N-glycosylation site, and 1 tyrosine kinase phosphorylation site in FGF5. Real-time polymerase chain reaction showed that FGF5 mRNA levels were higher in testis than in the pancreas and liver. These data suggest that FGF5 may play a crucial role in Cashmere goat hair growth. PMID:26400346

  18. Changes in holothurian coelomocyte populations following immune stimulation with different molecular patterns

    PubMed Central

    Ramírez-Gómez, Francisco; Aponte-Rivera, Francisco; Méndez-Castaner, Lumen; García-Arrarás, Jose E.

    2010-01-01

    Echinoderms possess a variety of cells populating the coelomic fluid; these cells are responsible for mounting defense against foreign agents. In the sea cucumber Holothuria glaberrima, four different coelomocyte types were readily distinguished using morphological, histochemical and physiological (phagocytic activity) parameters: lymphocytes, phagocytes, spherulocytes and “giant” cells (listed in order of abundance). Monoclonal antibodies generated against sea cucumber tissues and one polyclonal against sea urchin mayor yolk protein (MYP) were also used to characterize these cell populations. The effects of several pathogen-associated molecular patterns (PAMPs): Lipopolysaccharides from E. coli (LPS), heat-killed Staphylococcus aureus (SA) and a synthetic dsRNA were studied on coelomocyte cell populations. PAMPs increased the phagocytic activity of the holothurian coelomocytes, and were able to induce selective immune responses in several of these populations, demonstrating the ability of the sea cucumber to respond to a different variety of immune challenges. Overall, these results show the variety of cells that populate the coelomic fluid of the holothurian and demonstrate their involvement in immune reactions. These animals represent an untapped resource for new findings into the evolution and development of the immune response not only in invertebrates but also in phylogenetically shared reactions with vertebrates. PMID:20412860

  19. Joint Measurements of Terahertz Wave Generation and High-Harmonic Generation from Aligned Nitrogen Molecules Reveal Angle-Resolved Molecular Structures

    NASA Astrophysics Data System (ADS)

    Huang, Yindong; Meng, Chao; Wang, Xiaowei; L, Zhihui; Zhang, Dongwen; Chen, Wenbo; Zhao, Jing; Yuan, Jianmin; Zhao, Zengxiu

    2015-09-01

    We report the synchronized measurements of terahertz wave generation and high-harmonic generation from aligned nitrogen molecules in dual-color laser fields. Both yields are found to be alignment dependent, showing the importance of molecular structures in the generation processes. By calibrating the angular ionization rates with the terahertz yields, we present a new way of retrieving the angular differential photoionization cross section (PICS) from the harmonic signals which avoids specific model calculations or separate measurements of the alignment-dependent ionization rates. The measured PICS is found to be consistent with theoretical predications, although some discrepancies exist. This all-optical method provides a new alternative for investigating molecular structures.

  20. Biochips - Can molecules compute?

    NASA Astrophysics Data System (ADS)

    Tucker, J. B.

    1984-02-01

    In recent years the possibility has been considered to build 'biochip' computers, in which the silicon transistors of present machines would be replaced by large organic molecules or genetically engineered proteins. Two major advantages of such biochips over current devices would be related to vastly increased densities of computing elements, and entirely new styles of data processing, suited to such high-level tasks as pattern recognition and context-dependent analysis. The limitations of the semiconductor chip with respect to the density of elementary units due to size considerations and heat development could be overcome by making use of molecular switches. Attention is given to soliton switching, soliton logic, bulk molecular devices, analog biochips, 'intelligent' switches based on the employment of enzymes, robot vision, questions of biochip fabrication, protein engineering, and a strategy for the development of biochips.

  1. Bacterial regulatory networks—from self-organizing molecules to cell shape and patterns in bacterial communities

    PubMed Central

    Hengge, Regine; Sourjik, Victor

    2013-01-01

    The ESF–EMBO Conference on ‘Bacterial Networks' (BacNet13) was held in March 2013, in Pultusk, Poland. It brought together 164 molecular microbiologists, bacterial systems biologists and synthetic biologists to discuss the architecture, function and dynamics of regulatory networks in bacteria. PMID:23846311

  2. Identification of a small molecule inhibitor of serine 276 phosphorylation of the p65 subunit of NF-?B using in silico molecular docking

    PubMed Central

    Law, Mary; Corsino, Patrick; Parker, Nicole Teoh; Law, Brian K.

    2009-01-01

    NF-?B is activated in many types of cancer. Phosphorylation of p65 at serine 276 is required for the expression of a subset of NF-?B regulated genes, including vascular cell adhesion molecule-1 (VCAM-1) and interleukin-8 (IL-8). Thus, inhibition of serine 276 phosphorylation may prevent metastasis and angiogenesis in certain tumor types. Using in silico molecular docking, small molecules that are predicted to bind to a structural pocket near serine 276 were identified. One compound, NSC-127102, hinders serine 276 phosphorylation and the expression of IL-8 and VCAM-1. Small molecules such as NSC-127102 may be optimized for the future treatment of cancer. PMID:19910110

  3. Radiative relaxation of molecular vibration of the nitric oxide molecule as a possible source of the infrared Shuttle glow

    NASA Technical Reports Server (NTRS)

    Mizushima, M.; Shimazaki, T.

    1985-01-01

    A model calculation to predict infrared Shuttle flow due to the radiative relaxation of vibration of the NO molecule is presented. Space Shuttles hit atmospheric NO molecules at a very high speed and excite vibrational and rotational motions up to the temperature of 54,000 K. With the electric dipole radiation of delta v = 1, 2, 3, and particularly 4 (v is the vibrational quantum number), the excited NO molecules emit infrared radiation before they collide with other molecules. The total radiation power is estimated to be 170 A micro-W, where A is the cross-section area of the Shuttle in sq m if no adsorption of the NO molecule takes place on the Shuttle surface. The intensity of each infrared line is calculated as a function of time, including all vibrational states up to v = 35.

  4. Strontium mono-chloride - A new molecule for the determination of chlorine using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    NASA Astrophysics Data System (ADS)

    Pereira, Éderson R.; Welz, Bernhard; Lopez, Alfredo H. D.; de Gois, Jefferson S.; Caramori, Giovanni F.; Borges, Daniel L. G.; Carasek, Eduardo; de Andrade, Jailson B.

    2014-12-01

    A new method has been developed for the determination of chlorine in biological reference materials using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) of the strontium mono-chloride (SrCl) molecule and direct solid sample analysis. The use of the SrCl molecule for high-temperature MAS was not described up to now in the literature. Preliminary time-dependent density functional theory calculations of the SrCl structure were carried out in order to obtain reasonable estimates of the absorption spectrum of the target molecule. The calculations, which were carried out at BHandHLyp/def2-QZVP level of theory, proved a very accurate and inexpensive way to get information about the spectrum of the SrCl molecule, which enabled us to perform the Cl determination with good sensitivity and specificity. The molecular absorption of the SrCl molecule has been measured using the wavelength at 635.862 nm, and zirconium and palladium have been evaluated as the chemical modifiers in order to increase the sensitivity of the gaseous SrCl molecule generated in the graphite furnace. The pyrolysis and vaporization temperatures were 600 °C and 2300 °C, respectively. Accuracy and precision of the method have been evaluated using biological certified reference materials of both animal and plant origins, showing good agreement with the informed and certified values. Limit of detection and characteristic mass were 1.0 and 2.2 ng, respectively. The results found using HR-CS GF MAS were in agreement (95% confidence level) compared to those obtained by electrothermal vaporization-inductively coupled plasma mass spectrometry.

  5. Covalent Chemistry beyond Molecules.

    PubMed

    Jiang, Juncong; Zhao, Yingbo; Yaghi, Omar M

    2016-03-16

    Linking molecular building units by covalent bonds to make crystalline extended structures has given rise to metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), thus bringing the precision and versatility of covalent chemistry beyond discrete molecules to extended structures. The key advance in this regard has been the development of strategies to overcome the "crystallization problem", which is usually encountered when attempting to link molecular building units into covalent solids. Currently, numerous MOFs and COFs are made as crystalline materials in which the large size of the constituent units provides for open frameworks. The molecular units thus reticulated become part of a new environment where they have (a) lower degrees of freedom because they are fixed into position within the framework; (b) well-defined spatial arrangements where their properties are influenced by the intricacies of the pores; and (c) ordered patterns onto which functional groups can be covalently attached to produce chemical complexity. The notion of covalent chemistry beyond molecules is further strengthened by the fact that covalent reactions can be carried out on such frameworks, with full retention of their crystallinity and porosity. MOFs are exemplars of how this chemistry has led to porosity with designed metrics and functionality, chemically-rich sequences of information within their frameworks, and well-defined mesoscopic constructs in which nanoMOFs enclose inorganic nanocrystals and give them new levels of spatial definition, stability, and functionality. PMID:26863450

  6. Single-Molecule Enzymology

    SciTech Connect

    Xie, Xiaoliang; Lu, H PETER.

    1999-06-04

    Viewing a movie of an enzyme molecule made from molecular dynamics (MD) simulation, we see incredible details of molecular motions, be it a change of the conformation or the action of a chemical reaction.

  7. The reactions of the molecular nitrogen doubly charged ion with neutral molecules of relevance to planetary ionospheres

    NASA Astrophysics Data System (ADS)

    Ricketts, Claire Louise

    Diatomic dications (e.g. C02+) have been known to exist for several decades and are believed to be important components of energised media. Molecular dications possess significant internal energy due to the Coulombic repulsion of their two positive charges, meaning that many possible reaction channels are available to dications in a collision with a neutral molecule. Modellers have recently predicted that N22+ is present in the ionosphere of Earth and Titan as well as the dications C>22+ and 02+ in the ionosphere of Earth and CC>22+ in the ionosphere of Mars. These recent predictions, of dications in planetary ionospheres, imply that dications, and processes involving dication-neutral collisions, may have more significance than previously thought in the upper atmospheres of planets. Therefore this thesis describes a study of the reactions between N2 dications and neutrals, potentially of relevance to the ionosphere of Earth and Titan. A position sensitive coincidence (PSCO) time-of flight (TOF) mass spectrometer is used to probe the reactivity, energetics and dynamics of the bimolecular reactions of N22 . Dication-neutrals reactions often result in a pair of singly charged ions. The PSCO experiment is used to collect these pairs of singly-charged ions in coincidence. From the position-sensitive data we extract the velocity vectors of the product ions, and if the reaction of interest involves the formation of a third, undetected, neutral species, its velocity can be determined via conservation of momentum. The electron transfer reactions between dications and neutrals have been well rationalized 2+ previously, so only the electron transfer reactions of N2 with Ne and NO are discussed in this thesis. This thesis concentrates on probing the less well rationalized, bond- forming reactions between dications and neutrals. The bond-forming reactions of N22+ with O2, CO2, H2O, C2H2, CH4, H2 and Ar have been investigated and discussed. Several new bond-forming reactions mechanisms are derived for example, the bond-forming reactions of N22+ with O2 proceed via a 'long' lived complex which dissociates via loss of a neutral and then charge separation, a mechanism which is also operating for one of the bond-forming reactions of N2 with CO2 and N2 with H2O. Additional bond-forming reactions are detected for N22+ with CO2 and H2O, which proceed via shorter lived collision complexes. The reactions of N22+ with C2H2, CH4, H2 and Ar all proceed via a variety of mechanisms involving short-lived collision complexes or H and electron stripping.

  8. Temporal Patterns of Soluble Adhesion Molecules in Cerebrospinal Fluid and Plasma in Patients with the Acute Brain Infraction

    PubMed Central

    Selakovic, Vesna; Raicevic, Ranko; Radenovic, Lidija

    2009-01-01

    The aim of this study was to define concentration changes of soluble adhesion molecules (sICAM-1, sVCAM-1 and sE-Selectin) in cerebrospinal fluid and plasma, as well as, number of peripheral blood leukocytes and the albumin coefficient in the patients with the acute brain infarction. We also, analyzed the correlation between the measured levels, the infarct volume and the degree of neurological and the functional deficit. The study included 50 patients with the acute cerebral infarction and the control group consisted of 16 patients, age and sex matched. Obtained results showed significant increase in number of leukocytes, the albumin coefficient and the level of soluble adhesion molecules within the first seven days in patients. The highest values of measured parameters were noted within the third and the fourth day after the insult, which is the suggested period of maximal intensity of inflammatory reactions. Significant correlation was found between measured parameters and the infarct volume, the degree of neurological and the functional deficit. The results suggest that investigated parameters in CSF and blood represent a dynamic index of inflammatory events as one of the fundametal mechanisms responsible for neuron damage during acute phase of brain infarction. PMID:19407361

  9. Molecular modeling of the inhibition of protein-protein interactions with small molecules: The IL2-IL2R? case

    NASA Astrophysics Data System (ADS)

    Pieraccini, Stefano; De Gonda, Riccardo; Sironi, Maurizio

    2011-12-01

    Developing drug like molecules targeting protein-protein interactions is one of the main goals of current medicinal chemistry. To drive the design process it is fundamental to locate those sites on the protein-protein contact surface that are more critical for protein binding, which are the most eligible targets to affect the protein complex formation. In this work we show how computational alanine scanning can be used to identify such critical sites and evaluate their interactions with small molecules designed to inhibit the complex formation. Complex of protein IL2 with IL2R? and with some small molecule inhibitors are used as an example.

  10. A molecular dynamics study of the lateral free energy profile of a pair of cholesterol molecules as a function of their distance in phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Andoh, Yoshimichi; Oono, Kimiko; Okazaki, Susumu; Hatta, Ichiro

    2012-04-01

    Free energy profile of a pair of cholesterol molecules in a leaflet of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers in the liquid-crystalline phase has been calculated as a function of their lateral distance using a combination of NPT-constant atomistic molecular dynamics calculations (P = 1 atm and T = 310.15 K) and the thermodynamic integration method. The calculated free energy clearly shows that the two cholesterol molecules form a dimer separated by a distance of 1.0-1.5 nm in POPC bilayers. Well depth of the free energy profile is about 3.5 kJ/mol, which is comparable to the thermal energy kBT at 310.15 K. This indicates that the aggregation of cholesterol molecules in the bilayers depends on the temperature as well as the concentration of the system. The free energy function obtained here may be used as a reference when coarse grained potential model is investigated for this two-component system. Local structure of POPC molecules around two cholesterol molecules has also been investigated.

  11. Danger-associated molecular patterns and danger signals in idiopathic pulmonary fibrosis.

    PubMed

    Ellson, Christian D; Dunmore, Rebecca; Hogaboam, Cory M; Sleeman, Matthew A; Murray, Lynne A

    2014-08-01

    The chronic debilitating lung disease, idiopathic pulmonary fibrosis (IPF), is characterized by a progressive decline in lung function, with a median mortality rate of 2-3 years after diagnosis. IPF is a disease of unknown cause and progression, and multiple pathways have been demonstrated to be activated in the lungs of these patients. A recent genome-wide association study of more than 1,000 patients with IPF identified genes linked to host defense, cell-cell adhesion, and DNA repair being altered due to fibrosis (Fingerlin, et al. Nat Genet 2013;45:613-620). Further emerging data suggest that the respiratory system may not be a truly sterile environment, and it exhibits an altered microbiome during fibrotic disease (Molyneaux and Maher. Eur Respir Rev 2013;22:376-381). These altered host defense mechanisms might explain the increased susceptibility of patients with IPF to microbial- and viral-induced exacerbations. Moreover, chronic epithelial injury and apoptosis are key features in IPF, which might be mediated, in part, by both pathogen-associated (PA) and danger-associated molecular patterns (MPs). Emerging data indicate that both PAMPs and danger-associated MPs contribute to apoptosis, but not necessarily in a manner that allows for the removal of dying cells, without further exacerbating inflammation. In contrast, both types of MPs drive cellular necrosis, leading to an exacerbation of lung injury and/or infection as the debris promotes a proinflammatory response. Thus, this Review focuses on the impact of MPs resulting from infection-driven apoptosis and necrosis during chronic fibrotic lung disease. PMID:24749648

  12. Molecular patterns in the evolution of serrated lesion of the colorectum.

    PubMed

    Gaiser, Timo; Meinhardt, Sandra; Hirsch, Daniela; Killian, Jonathan Keith; Gaedcke, Jochen; Jo, Peter; Ponsa, Immaculada; Mir, Rosa; Rschoff, Josef; Seitz, Gerhard; Hu, Yue; Camps, Jordi; Ried, Thomas

    2013-04-15

    Colorectal cancer (CRC) mostly develops from a variety of polyps following mainly three different molecular pathways: chromosomal instability (CIN), microsatellite instability (MSI) and CpG island methylation (CIMP). Polyps are classified histologically as conventional adenomas, hyperplastic polyps, sessile serrated adenomas/polyps (SSA/P) and traditional serrated adenomas (TSA). However, the association of these polyps with the different types of CRCs and the underlying genetic and epigenetic aberrations has yet to be resolved. In order to address this question we analyzed 140 tumors and 20 matched mucosae by array comparative genomic hybridization, by sequence analysis of the oncogenes BRAF, KRAS, PI3K3CA and by methylation arrays. MSI was tested indirectly by immunohistochemistry (IHC) and a loss of MLH1, MSH2, MSH6 or PMS2 was assigned as high microsatellite instability (MSI-H), while low microsatellite instability (MSI-L) was defined as MGMT IHC negativity only. CIN was detected in 78% of all MSI-H CRCs, most commonly as a gain of chromosome 8. Methylation data analyses allowed classification of samples into four groups and detected similar methylation profiles in SSA/P and MSI-H CRC. TSA also revealed aberrant methylation pattern, but clustered more heterogeneously and closer to microsatellite stable (MSS) CRCs. SSA/P, TSA and MSI-H CRCs had the highest degree of promotor methylation (CIMP pathway). Chromosomal instability, in contrast to the established doctrine, is a common phenomenon in MSI CRCs, yet to a lower extent and at later stages than in MSS CRCs. Methylation analyses suggest that SSA/P are precursors for MSI-H CRCs and follow the CIMP pathway. PMID:23011871

  13. Functional dissection of a strong and specific microbe-associated molecular pattern-responsive synthetic promoter.

    PubMed

    Lehmeyer, Mona; Kanofsky, Konstantin; Hanko, Erik K R; Ahrendt, Sarah; Wehrs, Maren; Machens, Fabian; Hehl, Reinhard

    2016-01-01

    Synthetic promoters are important for temporal and spatial gene expression in transgenic plants. To identify novel microbe-associated molecular pattern (MAMP)-responsive cis-regulatory sequences for synthetic promoter design, a combination of bioinformatics and experimental approaches was employed. One cis-sequence was identified which confers strong MAMP-responsive reporter gene activity with low background activity. The 35-bp-long cis-sequence was identified in the promoter of the Arabidopsis thaliana DJ1E gene, a homologue of the human oncogene DJ1. In this study, this cis-sequence is shown to be a tripartite cis-regulatory module (CRM). A synthetic promoter with four copies of the CRM linked to a minimal promoter increases MAMP-responsive reporter gene expression compared to the wild-type DJ1E promoter. The CRM consists of two WT-boxes (GGACTTTT and GGACTTTG) and a variant of the GCC-box (GCCACC), all required for MAMP and salicylic acid (SA) responsivity. Yeast one-hybrid screenings using a transcription factor (TF)-only prey library identified two AP2/ERFs, ORA59 and ERF10, interacting antagonistically with the CRM. ORA59 activates reporter gene activity and requires the consensus core sequence GCCNCC for gene expression activation. ERF10 down-regulates MAMP-responsive gene expression. No TFs interacting with the WT-boxes GGACTTTT and GGACTTTG were selected in yeast one-hybrid screenings with the TF-only prey library. In transgenic Arabidopsis, the synthetic promoter confers strong and specific reporter gene activity in response to biotrophs and necrotrophs as well as SA. PMID:25819608

  14. M-ficolin interacts with the long pentraxin PTX3: a novel case of cross-talk between soluble pattern-recognition molecules.

    PubMed

    Gout, Evelyne; Moriscot, Christine; Doni, Andrea; Dumestre-Prard, Chantal; Lacroix, Monique; Prard, Julien; Schoehn, Guy; Mantovani, Alberto; Arlaud, Grard J; Thielens, Nicole M

    2011-05-15

    Ficolins and pentraxins are soluble oligomeric pattern-recognition molecules that sense danger signals from pathogens and altered self-cells and might act synergistically in innate immune defense and maintenance of immune tolerance. The interaction of M-ficolin with the long pentraxin pentraxin 3 (PTX3) has been characterized using surface plasmon resonance spectroscopy and electron microscopy. M-ficolin was shown to bind PTX3 with high affinity in the presence of calcium ions. The interaction was abolished in the presence of EDTA and inhibited by N-acetyl-D-glucosamine, indicating involvement of the fibrinogen-like domain of M-ficolin. Removal of sialic acid from the single N-linked carbohydrate of the C-terminal domain of PTX3 abolished the interaction. Likewise, an M-ficolin mutant with impaired sialic acid-binding ability did not interact with PTX3. Interaction was also impaired when using the isolated recognition domain of M-ficolin or the monomeric C-terminal domain of PTX3, indicating requirement for oligomerization of both proteins. Electron microscopy analysis of the M-ficolin-PTX3 complexes revealed that the M-ficolin tetramer bound up to four PTX3 molecules. From a functional point of view, immobilized PTX3 was able to trigger M-ficolin-dependent activation of the lectin complement pathway. These data indicate that interaction of M-ficolin with PTX3 arises from its ability to bind sialylated ligands and thus differs from the binding to the short pentraxin C-reactive protein and from the binding of L-ficolin to PTX3. The M-ficolin-PTX3 interaction described in this study represents a novel case of cross-talk between soluble pattern-recognition molecules, lending further credit to the integrated view of humoral innate immunity that emerged recently. PMID:21490156

  15. Electron tunneling through molecule-electrode contacts of single alkane molecular junctions: experimental determination and a practical barrier model.

    PubMed

    Wang, Kun; Xu, Bingqian

    2016-04-14

    An advanced understanding of the molecule-electrode contact interfaces of single-molecule junctions is a necessity for real world application of future single-molecule devices. This study aims to elucidate the change in the contact tunnelling barrier induced by junction extension and how this change affects the resulting junction conductance. The contact barrier of Au-octanedithiol/octanediamine-Au junctions was studied under triangle (TRI) mechanical modulations using the modified scanning tunneling microscopy (STM) break junction technique. The experimental results reveal that as the junction separation extends, the contact barrier of octanedithiol follows a unique trend, a linear increase followed by a plateau in barrier height, which is in contrast to that of octanediamine, a nearly rectangle barrier. We propose a modified contact barrier model for the unique barrier shape of octanedithiol, based on which the calculation agrees well with the experimental data. This study shows unprecedented experimental features of the molecule-electrode contact barrier of single-molecule junctions and provides new insights into the nature of contact effect in determining electron transport t