Sample records for molecular research division

  1. Molecular coordination of Staphylococcus aureus cell division

    PubMed Central

    Cotterell, Bryony E; Walther, Christa G; Fenn, Samuel J; Grein, Fabian; Wollman, Adam JM; Leake, Mark C; Olivier, Nicolas; Cadby, Ashley; Mesnage, Stéphane; Jones, Simon

    2018-01-01

    The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components. PMID:29465397

  2. Division of Biological and Medical Research research summary 1984-1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, S.H.

    1985-08-01

    The Division of Biological and Medical Research at Argonne National Laboratory conducts multidisciplinary research aimed at defining the biological and medical hazards to man from energy technologies and new energy options. These technically oriented studies have a strong base in fundamental research in a variety of scientific disciplines, including molecular and cellular biology, biophysics, genetics, radiobiology, pharmacology, biochemistry, chemistry, environmental toxicology, and epidemiology. This research summary is organized into six parts. The first five parts reflect the Divisional structure and contain the scientific program chapters, which summarize the activities of the individual groups during the calendar year 1984 and themore » first half of 1985. To provide better continuity and perspective, previous work is sometimes briefly described. Although the summaries are short, efforts have been made to indicate the range of research activities for each group.« less

  3. Autonomous model protocell division driven by molecular replication.

    PubMed

    Taylor, J W; Eghtesadi, S A; Points, L J; Liu, T; Cronin, L

    2017-08-10

    The coupling of compartmentalisation with molecular replication is thought to be crucial for the emergence of the first evolvable chemical systems. Minimal artificial replicators have been designed based on molecular recognition, inspired by the template copying of DNA, but none yet have been coupled to compartmentalisation. Here, we present an oil-in-water droplet system comprising an amphiphilic imine dissolved in chloroform that catalyses its own formation by bringing together a hydrophilic and a hydrophobic precursor, which leads to repeated droplet division. We demonstrate that the presence of the amphiphilic replicator, by lowering the interfacial tension between droplets of the reaction mixture and the aqueous phase, causes them to divide. Periodic sampling by a droplet-robot demonstrates that the extent of fission is increased as the reaction progresses, producing more compartments with increased self-replication. This bridges a divide, showing how replication at the molecular level can be used to drive macroscale droplet fission.Coupling compartmentalisation and molecular replication is essential for the development of evolving chemical systems. Here the authors show an oil-in-water droplet containing a self-replicating amphiphilic imine that can undergo repeated droplet division.

  4. Foundation laid for understanding essentials of cell division | Center for Cancer Research

    Cancer.gov

    NCI Center for Cancer Research (CCR) scientists reported new molecular insights into understanding a critical aspect of cell division through a cross-disciplinary effort that combines cryo-electron microscopy (cryo-EM), biochemical and cell biological approaches. Errors in segregation of chromosomes during mitosis can lead to an aberrant number of chromosomes, a condition

  5. 2010-11 Research Portfolio: Research & Development Division

    ERIC Educational Resources Information Center

    Educational Testing Service, 2010

    2010-01-01

    This document describes the breadth of the research that the ETS (Educational Testing Service) Research & Development division is conducting in 2010. This portfolio will be updated in early 2011 to reflect changes to existing projects and new projects that were added after this document was completed. The research described in this portfolio falls…

  6. Research Networks Map | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention supports major scientific collaborations and research networks at more than 100 sites across the United States. Seven Major Programs' sites are shown on this map. | The Division of Cancer Prevention supports major scientific collaborations and research networks at more than 100 sites across the United States.

  7. Foundation laid for understanding essentials of cell division | Center for Cancer Research

    Cancer.gov

    NCI Center for Cancer Research (CCR) scientists reported new molecular insights into understanding a critical aspect of cell division through a cross-disciplinary effort that combines cryo-electron microscopy (cryo-EM), biochemical and cell biological approaches. Errors in segregation of chromosomes during mitosis can lead to an aberrant number of chromosomes, a condition known as aneuploidy, which can lead to cancer and birth defects. Read more…

  8. Molecular System for the Division of Self-Propelled Oil Droplets by Component Feeding.

    PubMed

    Banno, Taisuke; Toyota, Taro

    2015-06-30

    Unique dynamics using inanimate molecular assemblies have drawn a great amount of attention for demonstrating prebiomimetic molecular systems. For the construction of an organized logic combining two fundamental dynamics of life, we demonstrate here a molecular system that exhibits both division and self-propelled motion using oil droplets. The key molecule of this molecular system is a novel cationic surfactant containing a five-membered acetal moiety, and the molecular system can feed the self-propelled oil droplet composed of a benzaldehyde derivative and an alkanol. The division dynamics of the self-propelled oil droplets were observed through the hydrolysis of the cationic surfactant in bulk solution. The mechanism of the current dynamics is argued to be based on the supply of "fresh" oil components in the moving oil droplets, which is induced by the Marangoni instability. We consider this molecular system to be a prototype of self-reproducing inanimate molecular assembly exhibiting self-propelled motion.

  9. Consortium for Molecular Characterization of Screen-Detected Lesions Created: Eight Grants Awarded | Division of Cancer Prevention

    Cancer.gov

    The NCI has awarded eight grants to create the Consortium for Molecular Characterization of Screen-Detected Lesions. The consortium has seven molecular characterization laboratories (MCLs) and a coordinating center, and is supported by the Division of Cancer Prevention and the Division of Cancer Biology. | 7 laboratories and a coordinating center focused on identifying

  10. 59th Clinical Research Division Research Day Briefing

    DTIC Science & Technology

    2016-10-27

    59th Medical Wing a ’r’. ’ ( ~ ~ ’ ""· ~... ’ .,,,. lS! lflof!’~l. 59th Clinical Research Division Research Day Briefing Colonel Linda Steel...oversight and guidance to researchers in the development, performance, and dissemination of clinical investigations. CRD directly supports wing...Clinical Investigation Support 2. Training 3. Support of RDT&E protocols 4. Research Subject Protection • Human Subjects: IRS - Institutional

  11. Research and technology activities at Ames Research Center's Biomedical Research Division

    NASA Technical Reports Server (NTRS)

    Martello, N.

    1985-01-01

    Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.

  12. Engineering Research Division publication report, calendar year 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, E.K.; Livingston, P.L.; Rae, D.C.

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented.

  13. Division of Biological and Medical Research annual technical report 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, M.W.

    1983-05-01

    This report summarizes research during 1982 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Carcinogenesis address mechanisms of chemical and radiation carcinogenesis including the processes of tumor initiation and promotion. The studies employ rat liver and mouse skin models as well as human rodent cell culture systems. The use of liposomes for metal mobilization is also explored. Low Level Radiation studies include delineation of the hematopoietic and other responses of dogs to continuous low level gamma irradiation, comparison of lifetime effects in mice of low level neutron and gamma irradiation, and study of the geneticmore » effects of high LET radiation. Molecular Biology research develops two-dimensional electrophoresis systems for diagnosis and detection of cancer and other diseases. Fundamental structural and biophysical investigations of immunoglobulins and other key proteins are included, as are studies of cell growth, and of molecular and cellular effects of solar uv light. Research in Toxicology uses cellular, physiological, whole animal, and chronobiological end points and chemical separations to elucidate mechanisms and evaluate hazards of coal conversion by-products, actinides, and toxic metals. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies.« less

  14. MOLECULAR ANALYSIS OF HUMAN SPERMATOZOA: POTENTIAL FOR INFERTILITY RESEARCH AND SCREENING

    EPA Science Inventory

    Molecular Analysis of Human Spermatozoa: Potential for Infertility Research and Screening
    David Miller1, David Dix2, Robert Reid3, Susan Wykes3 and Stephen Krawetz3
    1Reproductive Biology Group, University of Leeds, UK
    2Reproductive Toxicology Division, U.S. Environmenta...

  15. Biology Division progress report, October 1, 1993--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1993, through September 30, 1995. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report. Attention is focused on the following research activities: molecular, cellular, and cancer biology; mammalian genetics and development; genome mapping program; and educational activities.

  16. Hurricane Research Division of AOML/NOAA

    Science.gov Websites

    Statement The mission of NOAA's Hurricane Research Division (HRD) is to advance the understanding and Learn More. What's New Links of Interest Hurricane Field Program Current Hurricane Data Hurricane FAQ

  17. RESEARCH AND TECHNOLOGY DIVISION REPORT FOR 1966.

    ERIC Educational Resources Information Center

    BAUM, C.

    THE WORK OF THE RESEARCH AND TECHNOLOGY DIVISION OF SYSTEM DEVELOPMENT CORPORATION DURING 1966 IS REPORTED. THE PROGRESS OF VARIOUS STUDIES AND ACTIVITIES DISCUSSED IN THE REPORT WERE ADVANCED PROGRAMING, INFORMATION PROCESSING RESEARCH, PROGRAMING SYSTEMS, DATA BASE SYSTEMS. LANGUAGE PROCESSING AND RETRIEVAL, BEHAVIORAL GAMING AND SIMULATION…

  18. Acoustics Division recent accomplishments and research plans

    NASA Technical Reports Server (NTRS)

    Clark, L. R.; Morgan, H. G.

    1986-01-01

    The research program currently being implemented by the Acoustics Division of NASA Langley Research Center is described. The scope, focus, and thrusts of the research are discussed and illustrated for each technical area by examples of recent technical accomplishments. Included is a list of publications for the last two calendar years. The organization, staff, and facilities are also briefly described.

  19. Biomedical Research Division significant accomplishments for FY 1983

    NASA Technical Reports Server (NTRS)

    Martello, N. V.

    1984-01-01

    Various research and technology activities of Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, human behavior and performance, general biomedical research, and gravitational biology.

  20. research_group | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Bayesian Research at the NASA Ames Research Center,Computational Sciences Division

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.

    2003-01-01

    NASA Ames Research Center is one of NASA s oldest centers, having started out as part of the National Advisory Committee on Aeronautics, (NACA). The site, about 40 miles south of San Francisco, still houses many wind tunnels and other aviation related departments. In recent years, with the growing realization that space exploration is heavily dependent on computing and data analysis, its focus has turned more towards Information Technology. The Computational Sciences Division has expanded rapidly as a result. In this article, I will give a brief overview of some of the past and present projects with a Bayesian content. Much more than is described here goes on with the Division. The web pages at http://ic.arc. nasa.gov give more information on these, and the other Division projects.

  2. Environmental Sciences Division: Summaries of research in FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principalmore » investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.« less

  3. Scientific Scope | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention conducts and supports research to determine a person's risk of developing cancer and to find ways to reduce that risk. Through laboratory, clinical, and epidemiologic research, scientists have shown that the diseases of cancer occur not as single, catastrophic events, but rather as the result of a complex and long-evolving molecular process

  4. Activities of the Structures Division, Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The purpose of the NASA Lewis Research Center, Structures Division's 1990 Annual Report is to give a brief, but comprehensive, review of the technical accomplishments of the Division during the past calendar year. The report is organized topically to match the Center's Strategic Plan. Over the years, the Structures Division has developed the technology base necessary for improving the future of aeronautical and space propulsion systems. In the future, propulsion systems will need to be lighter, to operate at higher temperatures and to be more reliable in order to achieve higher performance. Achieving these goals is complex and challenging. Our approach has been to work cooperatively with both industry and universities to develop the technology necessary for state-of-the-art advancement in aeronautical and space propulsion systems. The Structures Division consists of four branches: Structural Mechanics, Fatigue and Fracture, Structural Dynamics, and Structural Integrity. This publication describes the work of the four branches by three topic areas of Research: (1) Basic Discipline; (2) Aeropropulsion; and (3) Space Propulsion. Each topic area is further divided into the following: (1) Materials; (2) Structural Mechanics; (3) Life Prediction; (4) Instruments, Controls, and Testing Techniques; and (5) Mechanisms. The publication covers 78 separate topics with a bibliography containing 159 citations. We hope you will find the publication interesting as well as useful.

  5. RESEARCH PROGRAMS AT THE ECOSYSTEMS RESEARCH DIVISION, U.S. ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    This presentation presents information on the research programs at the Ecosystems Research Division (ERD) of the U.S. Environmental Protection Agency located in Athens, Georgia. The presentation gives an overview of the Agency, laws and regulations that the Agency operates under,...

  6. AN OVERVIEW OF PATHOGEN RESEARCH IN THE MICROBIOLOGICAL AND CHEMICAL EXPOSURE ASSESSMENT RESEARCH DIVISION

    EPA Science Inventory

    The Microbiological and Chemical Exposure Assessment Research Division of the EPA Office of Research and Development's National Exposure Research Laboratory has a robust in-house research program aimed at developing better occurrence and exposure methods for waterborne pathogens....

  7. Division of Biological and Medical Research annual technical report, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, M.W.

    1982-06-01

    This report summarizes research during 1981 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Low Level Radiation include comparison of lifetime effects in mice of low level neutron and gamma irradiation, delineation of the responses of dogs to continuous low level gamma irradiation, elucidation of mechanisms of radiation damage and repair in mammalian cells, and study of the genetic effects of high LET radiations. Carcinogenesis research addresses mechanisms of tumor initiation and promotion in rat liver, chemical carcinogenesis in cultured mammalian cells, and molecular and genetic mechanisms of chemical and ultraviolet mutagenesis in bacteria. Researchmore » in Toxicology uses a variety of cellular, whole animal, and chronobiological end points, chemical separations, and statistical models to evaluate the hazards and mechanisms of actions of metals, coal gasification by products, and other energy-related pollutants. Human Protein Index studies develop two-dimensional electrophoresis systems for diagnosis and detection of cancer and other disease. Biophysics research includes fundamental structural and biophysical investigations of immunoglobulins and key biological molecules using NMR, crystallographic, and x-ray and neutron small-angle scattering techniques. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies.« less

  8. EPA/OFFICE OF RESEARCH AND DEVELOPMENT'S NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY/WESTERN ECOLOGY DIVISION INTERNET SITE

    EPA Science Inventory

    The Western Ecology Division (WED) is one of four ecological effects divisions of the National Health and Environmental Effects Research Laboratory. The four divisions are distributed bio-geographically. WED's mission is 1) to provide EPA with national scientific leadership for t...

  9. RESEARCH ACTIVITIES AT THE US EPA'S GULF ECOLOGY DIVISION

    EPA Science Inventory

    The purpose of this talk was to present an overview of research activities at the US EPA's Office of Research and Development, Gulf Ecology Division located on Pensacola Beach, Florida. The talk was organized into three major sections. The first section covered my educational b...

  10. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    PubMed Central

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students’ conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α = 0.80) and test–retest stability (r = 0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. PMID:25713098

  11. NEAR ROADWAY RESEARCH IN THE ATMOSPHERIC MODELING DIVISION

    EPA Science Inventory

    This is a presentation to the CRC Mobile Source Air Toxics Workshop in Phoenix, AZ, on 23 October 2006. The presentation provides an overview of air quality modeling research in the USEPA/ORD/NERL's Atmospheric Modeling Division, with an emphasis on near-road pollutant character...

  12. Structural Biology and Molecular Applications Research

    Cancer.gov

    Part of NCI's Division of Cancer Biology's research portfolio, research and development in this area focuses on enabling technologies, models, and methodologies to support basic and applied cancer research.

  13. DCP's Early Detection Research Guides Future Science | Division of Cancer Prevention

    Cancer.gov

    Early detection research funded by the NCI's Division of Cancer Prevention has positively steered both public health and clinical outcomes, and set the stage for findings in the next generation of research. |

  14. Earth Sciences Division Research Summaries 2006-2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energymore » and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial

  15. Eva Szabo, MD | Division of Cancer Prevention

    Cancer.gov

    Dr. Eva Szabo is Chief of the Lung and Upper Aerodigestive Cancer Research Group at the NCI Division of Cancer Prevention. She graduated from Yale University with a BS in Molecular Biophysics and Biochemistry, received her MD from Duke University, and completed her internal medicine residency at Bellevue-NYU Medical Center. After completing her medical oncology fellowship at

  16. Division of Computer Research Summary of Awards. Fiscal Year 1984.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Mathematical and Physical Sciences.

    Provided in this report are summaries of grants awarded by the National Science Foundation Division of Computer Research in fiscal year 1984. Similar areas of research are grouped (for the purposes of this report only) into these major categories: (1) computational mathematics; (2) computer systems design; (3) intelligent systems; (4) software…

  17. Molecular Research in Aquaculture

    USDA-ARS?s Scientific Manuscript database

    Molecular research and biotechnology have long been fields of study with applications useful to aquaculture and other animal sciences. Molecular Research in Aquaculture looks to provide an understanding of molecular research and its applications to the aquaculture industry in a format that allows in...

  18. Nutrition and Cancer Prevention Research Practicum | Division of Cancer Prevention

    Cancer.gov

    The Nutritional Science Research Group in the Division of Cancer Prevention at the National Cancer Institute, National Institutes of Health and the Department of Nutrition at the Clinical Center, National Institutes of Health are offering a one week educational opportunity in "Nutrition and Cancer Prevention Research" for individuals with a sustained commitment to nutrition

  19. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnologymore » Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.« less

  20. Instrumentation and Controls Division Overview: Sensors Development for Harsh Environments at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Zeller, Mary V.; Lei, Jih-Fen

    2002-01-01

    The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.

  1. DIVISION OF ISOTOPES DEVELOPMENT RESEARCH AND DEVELOPMENT PROJECTS: 1968. Progress Reports on Sponsored Work.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1969-01-01

    This is the second edition of the Division of Isotopes Development project summaries. It presents a short summary of objectives, results, and future plans for each research or development project sponsored by the Division within each of eight program areas.

  2. Earth Sciences Division Research Summaries 2002-2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climatemore » change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4

  3. Young Kim, PhD | Division of Cancer Prevention

    Cancer.gov

    Young S Kim, PhD, joined the Division of Cancer Prevention at the National Cancer Institute in 1998 as a Program Director who oversees and monitors NCI grants in the area of Nutrition and Cancer. She serves as an expert in nutrition, molecular biology, and genomics as they relate to cancer prevention. Dr. Kim assists with research initiatives that will advance nutritional

  4. The molecular biology capstone assessment: a concept assessment for upper-division molecular biology students.

    PubMed

    Couch, Brian A; Wood, William B; Knight, Jennifer K

    2015-03-02

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α=0.80) and test-retest stability (r=0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. © 2015 B. A. Couch et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. CPFP Summer Curriculum: Molecular Prevention Course | Division of Cancer Prevention

    Cancer.gov

    This Cancer Prevention Fellowship Program (CPFP) one-week course on molecular aspects of cancer prevention follows the Principles and Practice of Cancer Prevention and Control course. It provides a strong background about molecular biology and genetics of cancer, and an overview of cutting-edge research and techniques in the fields of molecular epidemiology, biomarkers,

  6. Structures and Dynamics Division research and technology plans, fiscal year, 1981

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1981-01-01

    The objectives, expected results, approach, and FY 81 milestones for the Structures and Dynamics Division's research program are presented. This information will be useful in program coordination with other government organizations in areas of mutual interest.

  7. Overview of NASA Glenn Research Center's Communications and Intelligent Systems Division

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2016-01-01

    The Communications and Intelligent Systems Division provides expertise, plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for application in current and future aeronautics and space systems.

  8. Materials Division research and technical accomplishments for FY 1988 and plans for FY 1989

    NASA Technical Reports Server (NTRS)

    Brinkley, Kay L.

    1989-01-01

    The research program of the Materials Division is presented as FY-88 accomplishments and FY-89 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material is useful in program coordination with other government organizations, universities, and industry in areas of mutual interest.

  9. Engineering physics and mathematics division

    NASA Astrophysics Data System (ADS)

    Sincovec, R. F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period 1 Jan. 1993 - 31 Dec. 1994. This report is the final archival record of the EPM Division. On 1 Oct. 1994, ORELA was transferred to Physics Division and on 1 Jan. 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  10. Barrett's Esophagus Translational Research Network (BETRNet) | Division of Cancer Prevention

    Cancer.gov

    The goal of BETRNet is to reduce the incidence, morbidity, and mortality of esophageal adenocarcinoma by answering key questions related to the progression of the disease, especially in the premalignant stage. In partnership with NCI’s Division of Cancer Biology, multidisciplinary translational research centers collaborate to better understand the biology of Barrett's

  11. Active Early Detection Research Network Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Materials Division research and technology accomplishments for FY 87 and plans for FY 88

    NASA Technical Reports Server (NTRS)

    Brinkley, Kay L.

    1988-01-01

    The research program of the Materials Division is presented as FY 87 accomplishments and FY 88 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material will be useful in program coordination with other government organizations, universities, and industries in areas of mutual interest.

  13. Materials Division research and technology accomplishments for FY 89 and plans for FY 90

    NASA Technical Reports Server (NTRS)

    Brinkley, Kay L.

    1990-01-01

    The research program of the Materials Division is presented as FY-89 accomplishments and FY-90 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material will be useful in program coordination with other government organizations, universities, and industries in areas of mutual interest.

  14. Biomedical Research Group, Health Division annual report 1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langham, W.H.; Storer, J.B.

    1955-12-31

    This report covers the activities of the Biomedical Research Group (H-4) of the Health Division during the period January 1 through December 31, 1954. Organizationally, Group H-4 is divided into five sections, namely, Biochemistry, Radiobiology, Radiopathology, Biophysics, and Organic Chemistry. The activities of the Group are summarized under the headings of the various sections. The general nature of each section`s program, publications, documents and reports originating from its members, and abstracts and summaries of the projects pursued during the year are presented.

  15. Summaries of research projects for fiscal years 1996 and 1997, medical applications and biophysical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Medical Applications and Biophysical Research Division of the Office of Biological and Environmental Research supports and manages research in several distinct areas of science and technology. The projects described in this book are grouped by the main budgetary areas: General Life Sciences (structural molecular biology), Medical Applications (primarily nuclear medicine) and Measurement Science (analytical chemistry instrumentation), Environmental Management Science Program, and the Small Business Innovation Research Program. The research funded by this division complements that of the other two divisions in the Office of Biological and Environmental Research (OBER): Health Effects and Life Sciences Research, and Environmental Sciences. Mostmore » of the OBER programs are planned and administered jointly by the staff of two or all three of the divisions. This summary book provides information on research supported in these program areas during Fiscal Years 1996 and 1997.« less

  16. QA RESOURCE MATERIALS TO ASSIST IN DEVELOPING AND WRITING RESEARCH PLANS AT A USEPA OFFICE OF RESEARCH AND DEVELOPMENT DIVISION

    EPA Science Inventory

    In the process of adapting the Agency's Data Quality Objectives Workshop for presentation at an ORD Research Facility, ownership and consensus approval of the presentation by the Division's research staff was sought. Three groups of researchers, at various levels of responsibilit...

  17. Active Supportive and Palliative Care Research Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. NCI Community Oncology Research Program Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Active NCI Community Oncology Research Program Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Supportive and Palliative Care Research Funding Opportunities | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Supportive and Palliative Care Research Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Completed Supportive and Palliative Care Research Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Active Barrett's Esophagus Translational Research Network Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Health and Safety Research Division progress report, October 1, 1988--March 31, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-01

    The Health and Safety Research Division (HASRD) of the Oak Ridge National Laboratory (ORNL) continues to maintain an outstanding program of basic and applied research displaying a high level of creativity and achievement as documented by awards, publications, professional service, and successful completion of variety of projects. Our focus is on human health and the scientific basis for measurement and assessment of health-related impacts of energy technologies. It is our custom to publish a division progress report every 18 months that summarizes our programmatic progress and other measures of achievement over the reporting period. Since it is not feasible tomore » summarize in detail all of our work over the period covered by this report (October 1, 1988, to March 30, 1990), we intend this document to point the way to the expensive open literature that documents our findings. During the reporting period the Division continued to maintain strong programs in its traditional areas of R D, but also achieved noteworthy progress in other areas. Much of the Division's work on site characterization, development of new field instruments, compilation of data bases, and methodology development fits into this initiative. Other new work in tunneling microscopy in support of DOE's Human Genome Program and the comprehensive R D work related to surface-enhanced Raman spectroscopy have attained new and exciting results. These examples of our progress and numerous other activities are highlighted in this report.« less

  5. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  6. A History of the Acoustics Division of the Naval Research Laboratory: The First Eight Decades 1923 - 2008

    DTIC Science & Technology

    2013-08-01

    Superintendent” goes back to the early days of NRL in the 1920s and has been retained to the present, refer- ring to the director of each NRL research division...installation, energy for the final amplifiers was stored essentially in the fuel tank of a gas- turbine -driven generator. Signifi- cant research in the Sound...Division found a method for control of the gas turbine which permitted it to supply power in long pulses without damage to the turbine . Research on

  7. Research on Geographical Environment Unit Division Based on the Method of Natural Breaks (Jenks)

    NASA Astrophysics Data System (ADS)

    Chen, J.; Yang, S. T.; Li, H. W.; Zhang, B.; Lv, J. R.

    2013-11-01

    Zoning which is to divide the study area into different zones according to their geographical differences at the global, national or regional level, includes natural division, economic division, geographical zoning of departments, comprehensive zoning and so on. Zoning is of important practical significance, for example, knowing regional differences and characteristics, regional research and regional development planning, understanding the favorable and unfavorable conditions of the regional development etc. Geographical environment is arising from the geographical position linkages. Geographical environment unit division is also a type of zoning. The geographical environment indicators are deeply studied and summed up in the article, including the background, the associated and the potential. The background indicators are divided into four categories, such as the socio-economic, the political and military, the strategic resources and the ecological environment, which can be divided into more sub-indexes. While the sub-indexes can be integrated to comprehensive index system by weighted stacking method. The Jenks natural breaks classification method, also called the Jenks optimization method, is a data classification method designed to determine the best arrangement of values into different classes. This is done by seeking to minimize each class's average deviation from the class mean, while maximizing each class's deviation from the means of the other groups. In this paper, the experiment of Chinese surrounding geographical environment unit division has been done based on the natural breaks (jenks) method, the geographical environment index system and the weighted stacking method, taking South Asia as an example. The result indicates that natural breaks (jenks) method is of good adaptability and high accuracy on the geographical environment unit division. The geographical environment research was originated in the geopolitics and flourished in the geo

  8. The John Milner Nutrition and Cancer Prevention Research Practicum | Division of Cancer Prevention

    Cancer.gov

    The Nutritional Science Research Group in the Division of Cancer Prevention at the National Cancer Institute, National Institutes of Health and the Department of Nutrition at the Clinical Center, National Institutes of Health, and the US Department of Agriculture's Beltsville Human Nutrition Research Center are offering a one week educational opportunity in "Nutrition and

  9. The John Milner Nutrition and Cancer Prevention Research Practicum | Division of Cancer Prevention

    Cancer.gov

    The Nutritional Science Research Group in the Division of Cancer Prevention at the National Cancer Institute, National Institutes of Health and the Department of Nutrition at the Clinical Center, National Institutes of Health, and the U.S. Department of Agriculture’s Beltsville Human Nutrition Research Center are offering a one-week educational opportunity in Nutrition and

  10. The John Milner Nutrition and Cancer Prevention Research Practicum | Division of Cancer Prevention

    Cancer.gov

    The Nutritional Science Research Group in the Division of Cancer Prevention at the National Cancer Institute, National Institutes of Health and the Department of Nutrition at the Clinical Center, National Institutes of Health, and the U.S. Department of Agriculture’s (U.S.D.A.) Beltsville Human Nutrition Research Center are offering a one-week educational opportunity in

  11. Overview of the Applied Aerodynamics Division

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A major reorganization of the Aeronautics Directorate of the Langley Research Center occurred in early 1989. As a result of this reorganization, the scope of research in the Applied Aeronautics Division is now quite different than that in the past. An overview of the current organization, mission, and facilities of this division is presented. A summary of current research programs and sample highlights of recent research are also presented. This is intended to provide a general view of the scope and capabilities of the division.

  12. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People ; Finance Templates Travel One-Stop Investigators Division Staff Facilities and Centers Staff Jobs People Division, please use the links here. An outline of the Division structure is available at the Organization

  13. About the Western Ecology Division (WED) of EPA's National Health and Environmental Effects Research Laboratory

    EPA Pesticide Factsheets

    The Western Ecology Division (WED) conducts innovative research on watershed ecological epidemiology and the development of tools to achieve sustainable and resilient watersheds for application by stakeholders.

  14. On the Molecular Basis of Division of Labor in Solenopsis invicta (Hymenoptera: Formicidae) Workers: RNA-seq Analysis.

    PubMed

    Qiu, Hua-Long; Zhao, Cheng-Yin; He, Yu-Rong

    2017-01-01

    The fire ant Solenopsis invicta Buren is an important invasive pest. Among S. invicta workers behavioral changes depend on age where younger ants are nurses and older ants foragers. To identify potential genes associated with this division of labor, we compared gene expression between foragers and nurses by high-throughput sequencing. In total, we identified 1,618 genes significantly differently expressed between nurses and foragers, of which 542 were upregulated in foragers and 1,076 were upregulated in nurses. Several pathways related to metabolism were significantly enriched, such as lipid storage and fatty acid biosynthesis, which might contribute to the division of labor in S. invicta. Several genes involved in DNA methylation, transcription, and olfactory responses as well as resistance to stress were differentially expressed between nurses and foragers workers. Finally, a comparison between previously published microarray data and our RNA-seq data in S. invicta shows 116 genes overlap, and the GO term myofibril assembly (GO: 0030239) were simultaneously significantly enriched. These results advance knowledge of potentially important genes and molecular pathways associated with worker division of labor in S. invicta. We hope our dataset will provide . candidate target genes to disrupt organization in S. invicta as a control strategy against this invasive pest. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  15. Physics division annual report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways tomore » address this mission.« less

  16. Environmental Assessment for Air Force Research Laboratory Space Vehicles Integrated Experiments Division Office Space at Kirtland Air Force Base, Albuquerque, New Mexico

    DTIC Science & Technology

    2005-06-01

    AIR FORCE RESEARCH LABORATORY SPACE VEHICLES INTEGRATED EXPERMENTS DIVISION OFFICE SPACE AT KIRTLAND AIR FORCE ... Kirtland Air Force Base (KAFB). The office building would house the Air Force Research Laboratory Space Vehicles Integrated Experiments Division...ADDRESS(ES) Air Force Research Laboratory ,Space Vehicles Directorate,3550 Aberdeen Ave. SE, Kirtland

  17. About DCP | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) is the division of the National Cancer Institute (NCI) devoted to cancer prevention research. DCP provides funding and administrative support to clinical and laboratory researchers, community and multidisciplinary teams, and collaborative scientific networks. |

  18. Shugoshins function as a guardian for chromosomal stability in nuclear division.

    PubMed

    Yao, Yixin; Dai, Wei

    2012-07-15

    Accurate chromosome segregation during mitosis and meiosis is regulated and secured by several distinctly different yet intricately connected regulatory mechanisms. As chromosomal instability is a hallmark of a majority of tumors as well as a cause of infertility for germ cells, extensive research in the past has focused on the identification and characterization of molecular components that are crucial for faithful chromosome segregation during cell division. Shugoshins, including Sgo1 and Sgo2, are evolutionarily conserved proteins that function to protect sister chromatid cohesion, thus ensuring chromosomal stability during mitosis and meiosis in eukaryotes. Recent studies reveal that Shugoshins in higher animals play an essential role not only in protecting centromeric cohesion of sister chromatids and assisting bi-orientation attachment at the kinetochores, but also in safeguarding centriole cohesion/engagement during early mitosis. Many molecular components have been identified that play essential roles in modulating/mediating Sgo functions. This review primarily summarizes recent advances on the mechanisms of action of Shugoshins in suppressing chromosomal instability during nuclear division in eukaryotic organisms.

  19. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  20. Concerted control of Escherichia coli cell division

    PubMed Central

    Osella, Matteo; Nugent, Eileen; Cosentino Lagomarsino, Marco

    2014-01-01

    The coordination of cell growth and division is a long-standing problem in biology. Focusing on Escherichia coli in steady growth, we quantify cell division control using a stochastic model, by inferring the division rate as a function of the observable parameters from large empirical datasets of dividing cells. We find that (i) cells have mechanisms to control their size, (ii) size control is effected by changes in the doubling time, rather than in the single-cell elongation rate, (iii) the division rate increases steeply with cell size for small cells, and saturates for larger cells. Importantly, (iv) the current size is not the only variable controlling cell division, but the time spent in the cell cycle appears to play a role, and (v) common tests of cell size control may fail when such concerted control is in place. Our analysis illustrates the mechanisms of cell division control in E. coli. The phenomenological framework presented is sufficiently general to be widely applicable and opens the way for rigorous tests of molecular cell-cycle models. PMID:24550446

  1. 78 FR 28630 - Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division, Formerly Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ..., Comparative Medicine Department, Including On-Site Leased From Charles River Laboratories and Execupharm, Inc... & Development Division, Comparative Medicine Department, including on-site leased workers from Charles River... Division, formerly known as Warner Lambert Company, Comparative Medicine Department. The Department has...

  2. Division of Biological and Medical Research annual research summary, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, S.H.

    1984-08-01

    This research summary contains brief descriptions of research in the following areas: (1) mechanisms of hepatocarcinogenesis; (2) role of metals in cocarcinogenesis and the use of liposomes for metal mobilization; (3) control of mutagenesis and cell differentiation in cultured cells by tumor promoters; (4) radiation effects in mammalian cells; (5) radiation carcinogenesis and radioprotectors; (6) life shortening, tumor induction, and tissue dose for fission-neutron and gamma-ray irradiations; (7) mammalian genetics and biostatistics; (8) radiation toxicity studies; (9) hematopoiesis in chronic toxicity; (10) molecular biology studies; (11) chemical toxicology; (12) carcinogen identification and metabolism; (13) metal metabolism and toxicity; and (14)more » neurobehavioral chronobiology. (ACR)« less

  3. About the Atlantic Ecology Division (AED) of EPA's National Health and Environmental Effects Research Laboratory

    EPA Pesticide Factsheets

    The Atlantic Ecology Division (AED), conducts innovative research and predictive modeling to assess and forecast the risks of anthropogenic stressors to near coastal waters and their watersheds, to develop tools to support resilient watersheds.

  4. Lesbian women and household labor division: A systematic review of scholarly research from 2000 to 2015.

    PubMed

    Brewster, Melanie E

    2017-01-02

    Recent studies have begun to attend to distribution of household labor within same-gender couples compared to heterosexual couples, yet much of the available research with lesbian couples has attempted to superimpose division of household labor frameworks developed with heterosexual couples (e.g., gender role socialization, exchange bargaining theories) to fit the experiences of same-gender couples. Using two academic search databases, the present article provides a systematic review of the available 28 peer-reviewed articles published from 2000-2015 about lesbian partnerships and household labor divisions. Results indicate that lesbian couples engage in a more equal distribution of household labor than heterosexual couples, and that lesbian women often opt to eschew traditional gendered divisions of chores in favor of other factors such as quality of task or ability. The systematic review uncovered notable constraints in the demography of participants (e.g., race, socioeconomic status, geographic location) across studies. Strategies for deepening the depth and breadth of this line of work for future researchers, and implications for relationship satisfaction are also discussed.

  5. About the Mid-Continent Ecology Division (MED) of EPA's National Health and Environmental Effects Research Laboratory

    EPA Pesticide Factsheets

    The Mid-Continent Ecology Division (MED) conducts innovative research and predictive modeling to document and forecast the effects of pollutants on the integrity of watersheds and freshwater ecosystems.

  6. Structures and Dynamics Division research and technology plans for FY 1988 and accomplishments for FY 1987

    NASA Technical Reports Server (NTRS)

    Bales, Kay S.

    1988-01-01

    Presented are the Objectives, FY 1988 Plans, Approach, and FY 1988 Milestones for the Structures and Dynamics Division (Langley Research Center) research programs. FY 1987 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  7. Interdependency of formation and localisation of the Min complex controls symmetric plastid division.

    PubMed

    Maple, Jodi; Møller, Simon G

    2007-10-01

    Plastid division represents a fundamental biological process essential for plant development; however, the molecular basis of symmetric plastid division is unclear. AtMinE1 plays a pivotal role in selection of the plastid division site in concert with AtMinD1. AtMinE1 localises to discrete foci in chloroplasts and interacts with AtMinD1, which shows a similar localisation pattern. Here, we investigate the importance of Min protein complex formation during the chloroplast division process. Dissection of the assembly of the Min protein complex and determination of the interdependency of complex assembly and localisation in planta allow us to present a model of the molecular basis of selection of the division site in plastids. Moreover, functional analysis of AtMinE1 in bacteria demonstrates the level of functional conservation and divergence of the plastidic MinE proteins.

  8. Structures and Dynamics Division research and technology plans for FY 1894 and accomplishments for FY 1982

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1984-01-01

    The Objectives, Expected Results, Approach, and Fiscal Year FY 1984 Milestones for the Structures and Dynamics Division's research programs are examined. The FY 1983 Accomplishments are presented where applicable.

  9. Physics division. Progress report, January 1, 1995--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, M.; Bacon, D.S.; Aine, C.J.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the fivemore » groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.« less

  10. Physics division annual report 2000.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, K., ed.

    2001-10-04

    This report summarizes the research performed in 2000 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory and medium energy physics research, and accelerator research and development. As the Nuclear Science Advisory Committee and the nuclear science community create a new long range plan for the field in 2001, it is clear that the research of the Division is closely aligned with and continues to help define the national goals of our field. The NSAC 2001 Long Range Plan recommends as themore » highest priority for major new construction the Rare Isotope Accelerator (RIA), a bold step forward for nuclear structure and nuclear astrophysics. The accelerator R&D in the Physics Division has made major contributions to almost all aspects of the RIA design concept and the community was convinced that this project is ready to move forward. 2000 saw the end of the first Gammasphere epoch at ATLAS, One hundred Gammasphere experiments were completed between January 1998 and March 2000, 60% of which used the Fragment Mass Analyzer to provide mass identification in the reaction. The experimental program at ATLAS then shifted to other important research avenues including proton radioactivity, mass measurements with the Canadian Penning Trap and measurements of high energy gamma-rays in nuclear reactions with the MSU/ORNL/Texas A&M BaF{sub 2} array. ATLAS provided 5460 beam-research hours for user experiments and maintained an operational reliability of 95%. Radioactive beams accounted for 7% of the beam time. ATLAS also provided a crucial test of a key RIA concept, the ability to accelerate multiple charge states in a superconducting heavy-ion linac. This new capability was immediately used to increase the performance for a scheduled experiment. The medium energy program continued to make strides in examining how the quark-gluon structure

  11. Oriented cell division: new roles in guiding skin wound repair and regeneration

    PubMed Central

    Yang, Shaowei; Ma, Kui; Geng, Zhijun; Sun, Xiaoyan; Fu, Xiaobing

    2015-01-01

    Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration. PMID:26582817

  12. Cognitive and Neural Sciences Division 1990 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Jr., Ed.

    Research and development efforts carried out under sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research during fiscal year 1990 are described in this compilation of project description summaries. The Division's research is organized in three types of programs: (1) Cognitive Science (the human learner--cognitive…

  13. Lightning Talks 2015: Theoretical Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlachter, Jack S.

    2015-11-25

    This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.

  14. Biology Division progress report for period of October 1, 1988--September 30, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-02-01

    The Biology Division of the Oak Ridge National Laboratory is one component of the Department of Energy's intramural program in life sciences. With respect to experimental biology, the congressionally mandated mission of this Office is to study adverse health effects of energy production and utilization. Within this stated broad mission, common themes among the research programs of the Biology Division are interactions of animals, cells, and molecules with their respective environments. Investigations focus on genetic and somatic effects of radiation and chemicals. Goals include identification and quantification of these effects, elucidation of pathways by which the effects are expressed, assessmentmore » of risks associated with radiation and chemical exposures, and establishment of strategies for extrapolation of risk data from animals to humans. Concurrent basic studies in genetics, biochemistry, molecular biology, and cell biology illuminate normal life processes as prerequisites to comprehending mutagenic and carcinogenic effects of environmental agents. This Progress Report is intended to provide both broad perspectives of the Division's research programs and synopses of recent achievements. Readers are invited to contact individual principal investigators for more detailed information, including reprints of publications. 120 refs.« less

  15. Molecular dynamics simulations of high energy cascade in ordered alloys: Defect production and subcascade division

    NASA Astrophysics Data System (ADS)

    Crocombette, Jean-Paul; Van Brutzel, Laurent; Simeone, David; Luneville, Laurence

    2016-06-01

    Displacement cascades have been calculated in two ordered alloys (Ni3Al and UO2) in the molecular dynamics framework using the CMDC (Cell Molecular Dynamics for Cascade) code (J.-P. Crocombette and T. Jourdan, Nucl. Instrum. Meth. B 352, 9 (2015)) for energies ranking between 0.1 and 580 keV. The defect production has been compared to the prediction of the NRT (Norgett, Robinson and Torrens) standard. One observes a decrease with energy of the number of defects compared to the NRT prediction at intermediate energies but, unlike what is commonly observed in elemental solids, the number of produced defects does not always turn to a linear variation with ballistic energy at high energies. The fragmentation of the cascade into subcascades has been studied through the analysis of surviving defect pockets. It appears that the common knowledge equivalence of linearity of defect production and subcascades division does not hold in general for alloys. We calculate the average number of subcascades and average number of defects per subcascades as a function of ballistic energy. We find an unexpected variety of behaviors for these two average quantities above the threshold for subcascade formation.

  16. Friday's Agenda | Division of Cancer Prevention

    Cancer.gov

    TimeAgenda8:00 am - 8:10 amWelcome and Opening RemarksLeslie Ford, MDAssociate Director for Clinical ResearchDivision of Cancer Prevention, NCIEva Szabo, MD Chief, Lung and Upper Aerodigestive Cancer Research GroupDivision of Cancer Prevention, NCI8:10 am - 8:40 amClinical Trials Statistical Concepts for Non-StatisticiansKevin Dodd, PhD |

  17. Research and technology plans for FY 1989 and accomplishments for FY 1988. [Structural Mechanics Division

    NASA Technical Reports Server (NTRS)

    Bales, Kay S.

    1989-01-01

    The Objectives, FY 1989 Plans, Approach, and FY 1989 Milestones for the Structural Mechanics Division's research programs are presented. Fiscal year 1988 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  18. Structural Mechanics Division research and technology plans for FY 1990 and accomplishments for FY 1989

    NASA Technical Reports Server (NTRS)

    Bales, Kay S.

    1990-01-01

    The Objectives, FY 1990 Plans, Approach, and FY 1990 Milestones for the Structural Mechanics Division's research programs are presented. FY 1989 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  19. Research progress on bladder cancer molecular genetics.

    PubMed

    Kang, Zhengjun; Li, Yuhui; Yu, Yang; Guo, Zhan

    2014-11-01

    Bladder cancer is a common malignant urinary tumor with a high rate of recurrence and quick progression, which threats human health. With the research on bladder cancer molecular genetics, the knowledge of gene modification and the development of molecular detection methods, more tumor markers have been discovered, which may have potential for early diagnosis, clinical examination and prognosis. This article reviews the research progress on bladder cancer molecular genetics.

  20. Molecular imaging promotes progress in orthopedic research.

    PubMed

    Mayer-Kuckuk, Philipp; Boskey, Adele L

    2006-11-01

    Modern orthopedic research is directed towards the understanding of molecular mechanisms that determine development, maintenance and health of musculoskeletal tissues. In recent years, many genetic and proteomic discoveries have been made which necessitate investigation under physiological conditions in intact, living tissues. Molecular imaging can meet this demand and is, in fact, the only strategy currently available for noninvasive, quantitative, real-time biology studies in living subjects. In this review, techniques of molecular imaging are summarized, and applications to bone and joint biology are presented. The imaging modality most frequently used in the past was optical imaging, particularly bioluminescence and near-infrared fluorescence imaging. Alternate technologies including nuclear and magnetic resonance imaging were also employed. Orthopedic researchers have applied molecular imaging to murine models including transgenic mice to monitor gene expression, protein degradation, cell migration and cell death. Within the bone compartment, osteoblasts and their stem cells have been investigated, and the organic and mineral bone phases have been assessed. These studies addressed malignancy and injury as well as repair, including fracture healing and cell/gene therapy for skeletal defects. In the joints, molecular imaging has focused on the inflammatory and tissue destructive processes that cause arthritis. As described in this review, the feasibility of applying molecular imaging to numerous areas of orthopedic research has been demonstrated and will likely result in an increase in research dedicated to this powerful strategy. Molecular imaging holds great promise in the future for preclinical orthopedic research as well as next-generation clinical musculoskeletal diagnostics.

  1. Trends in plant research using molecular markers.

    PubMed

    Garrido-Cardenas, Jose Antonio; Mesa-Valle, Concepción; Manzano-Agugliaro, Francisco

    2018-03-01

    A deep bibliometric analysis has been carried out, obtaining valuable parameters that facilitate the understanding around the research in plant using molecular markers. The evolution of the improvement in the field of agronomy is fundamental for its adaptation to the new exigencies that the current world context raises. In addition, within these improvements, this article focuses on those related to the biotechnology sector. More specifically, the use of DNA markers that allow the researcher to know the set of genes associated with a particular quantitative trait or QTL. The use of molecular markers is widely extended, including: restriction fragment length polymorphism, random-amplified polymorphic DNA, amplified fragment length polymorphism, microsatellites, and single-nucleotide polymorphisms. In addition to classical methodology, new approaches based on the next generation sequencing are proving to be fundamental. In this article, a historical review of the molecular markers traditionally used in plants, since its birth and how the new molecular tools facilitate the work of plant breeders is carried out. The evolution of the most studied cultures from the point of view of molecular markers is also reviewed and other parameters whose prior knowledge can facilitate the approach of researchers to this field of research are analyzed. The bibliometric analysis of molecular markers in plants shows that top five countries in this research are: US, China, India, France, and Germany, and from 2013, this research is led by China. On the other hand, the basic research using Arabidopsis is deeper in France and Germany, while other countries focused its efforts in their main crops as the US for wheat or maize, while China and India for wheat and rice.

  2. Chemical Technology Division, Annual technical report, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  3. Using a Research-based Approach to Transform Upper-division Courses in Classical and Quantum Mechanics and E&M

    NASA Astrophysics Data System (ADS)

    Pollock, Steven

    2013-04-01

    At most universities, including the University of Colorado, upper-division physics courses are taught using a traditional lecture approach that does not make use of many of the instructional techniques that have been found to improve student learning at the introductory level. We are transforming several upper-division courses using principles of active engagement and learning theory, guided by the results of observations, interviews, and analysis of student work at CU and elsewhere. In this talk I outline these transformations, including the development of faculty consensus learning goals, clicker questions, tutorials, modified homeworks, and more. We present evidence of the effectiveness of these transformations relative to traditional courses, based on student grades, interviews, and through research-based assessments of student conceptual mastery and student attitudes. Our results suggest that many of the tools that have been effective in introductory courses are effective for our majors, and that further research is warranted in the upper-division environment. (See www.colorado.edu/sei/departments/physics.htm for materials)

  4. [50 years anniversary of Research Institute for Occupational Medicine and Human Ecology with Siberian Division of RAMSc].

    PubMed

    Rukavishnikov, V S; Shaiakhmetov, S F; Gus'kova, T M

    2010-01-01

    The article covers main steps of establishment and development of Research Institute for Occupational medicine and Human ecology with Siberian Division of RAMSc over 50 years of activities, major results of research, contribution of the Institute personnel into development of hygienic science and practical medicine in Siberia.

  5. Dr. Worta McCaskill-Stevens Named Recipient of AACR Minorities in Cancer Research Award | Division of Cancer Prevention

    Cancer.gov

    Worta McCaskill-Stevens, MD, MS, Chief of the Community Oncology and Prevention Trials Research Group, NCI Division of Cancer Prevention, was named the recipient of the 2016 American Association for Cancer Research Jane Cooke Wright Memorial Lectureship. |

  6. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, David S.

    2008-07-15

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute hasmore » adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function

  7. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    1999-01-01

    The Structures and Acoustics Division of NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported are a synopsis of the work and accomplishments reported by the Division during the 1996 calendar year. A bibliography containing 42 citations is provided.

  8. Cognitive and Neural Sciences Division, 1991 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…

  9. A crucial step in cell division identified | Center for Cancer Research

    Cancer.gov

    When cell division doesn’t go according to plan, the resulting daughter cells can become unstable or even cancerous. A team of CCR investigators has now discovered a crucial step required for normal cell division to occur. Read more...

  10. The use of biospecimens in population-based research: a review of the National Cancer Institute's Division of Cancer Control and Population Sciences grant portfolio.

    PubMed

    Carrick, Danielle M; Mette, Eliza; Hoyle, Brittany; Rogers, Scott D; Gillanders, Elizabeth M; Schully, Sheri D; Mechanic, Leah E

    2014-08-01

    Over the past two decades, researchers have increasingly used human biospecimens to evaluate hypotheses related to disease risk, outcomes and treatment. We conducted an analysis of population-science cancer research grants funded by the National Cancer Institute (NCI) to gain a more comprehensive understanding of biospecimens and common derivatives involved in those studies and identify opportunities for advancing the field. Data available for 1,018 extramural, peer-reviewed grants (active as of July 2012) supported by the Division of Cancer Control and Population Sciences (DCCPS), the NCI Division that supports cancer control and population-science extramural research grants, were analyzed. 455 of the grants were determined to involve biospecimens or derivatives. The most common specimen types included were whole blood (51% of grants), serum or plasma (40%), tissue (39%), and the biospecimen derivative, DNA (66%). While use of biospecimens in molecular epidemiology has become common, biospecimens for behavioral and social research is emerging, as observed in our analysis. Additionally, we found the majority of grants were using already existing biospecimens (63%). Grants that involved use of existing biospecimens resulted in lower costs (studies that used existing serum/plasma biospecimens were 4.2 times less expensive) and more publications per year (1.4 times) than grants collecting new biospecimens. This analysis serves as a first step at understanding the types of biospecimen collections supported by NCI DCCPS. There is room to encourage increased use of archived biospecimens and new collections of rarer specimen and cancer types, as well as for behavioral and social research. To facilitate these efforts, we are working to better catalogue our funded resources and make that data available to the extramural community.

  11. Division of Biological and Medical Research annual report 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, M.W.

    1978-01-01

    The research during 1978 in the Division of Biological and Medical Research, Argonne National Laboratory, is summarized. Studies related to nuclear energy include responses of beagles to continuous low-level /sup 60/Co gamma radiation, and development of leukemic indicators; comparison of lifetime effects in mice of low-level neutron and /sup 60/Co gamma radiation; genetic effects of high LET radiations; and metabolic and therapeutic studies of heavy metals. Studies of nonnuclear energy sources deal with characterization and toxicological evaluation of effluents of fluidized bed combustion and coal gasification; electrical storage systems; electric fields associated with energy transmission; and development of population projectionmore » models and assessment of human risk. Basic research studies include fundamental structural and biophysical investigations; circadian rhythms; mutagenesis in bacteria and mammalian cells; cell killing, damage, and repair in mammalian cells; carcinogenesis and cocarcinogenesis; the use of liposomes as biological carriers; and studies of environmental influences on life-span, physiological performance, and circadian cycles. In the area of medical development, proteins in urine and tissues of normal and diseased humans are analyzed, and advanced analytical procedures for use of stable isotopes in clinical research and diagnosis are developed and applied. The final sections of the report cover support facilities, educational activities, the seminar program, staff talks, and staff publications.« less

  12. Space Science Division cumulative bibliography: 1989-1994

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1995-01-01

    The Space Science Division at NASA's Ames Research Center is dedicated to research in astrophysics, exobiology, and planetary science. These research programs are structured around the study of origins and evolution of stars, planets, planetary atmospheres, and life, and address some of the most fundamental questions pursued by science; questions that examine the origin of life and of our place in the universe. This bibliography is the accumulation of peer-reviewed publications authored by Division scientists for the years 1989 through 1994. The list includes 777 papers published in over 5 dozen scientific journals representing the high productivity and interdisciplinary nature of the Space Science Division.

  13. About the Early Detection Research Group | Division of Cancer Prevention

    Cancer.gov

    The Early Detection Research Group supports research that seeks to determine the effectiveness, operating characteristics and clinical impact (harms as well as benefits) of cancer early detection technologies and practices, such as imaging and molecular biomarker approaches.   The group ran two large-scale early detection trials for which data and biospecimens are available

  14. Structures and Dynamics Division: Research and technology plans for FY 1983 and accomplishments for FY 1982

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1983-01-01

    The objectives, expected results, approach, and milestones for research projects of the IPAD Project Office and the impact dynamics, structural mechanics, and structural dynamics branches of the Structures and Dynamics Division are presented. Research facilities are described. Topics covered include computer aided design; general aviation/transport crash dynamics; aircraft ground performance; composite structures; failure analysis, space vehicle dynamics; and large space structures.

  15. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    2001-04-16

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures andmore » Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development of a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the

  16. An examination of the stretching practices of Division I and Division III college football programs in the midwestern United States.

    PubMed

    Judge, Lawrence W; Craig, Bruce; Baudendistal, Steve; Bodey, Kimberly J

    2009-07-01

    Research supports the use of preactivity warm-up and stretching, and the purpose of this study was to determine whether college football programs follow these guidelines. Questionnaires designed to gather demographic, professional, and educational information, as well as specific pre- and postactivity practices, were distributed via e-mail to midwestern collegiate programs from NCAA Division I and III conferences. Twenty-three male coaches (12 from Division IA schools and 11 from Division III schools) participated in the study. Division I schools employed certified strength coaches (CSCS; 100%), whereas Division III schools used mainly strength coordinators (73%), with only 25% CSCS. All programs used preactivity warm-up, with the majority employing 2-5 minutes of sport-specific jogging/running drills. Pre stretching (5-10 minutes) was performed in 19 programs (91%), with 2 (9%) performing no pre stretching. Thirteen respondents used a combination of static/proprioceptive neuromuscular facilitation/ballistic and dynamic flexibility, 5 used only dynamic flexibility, and 1 used only static stretching. All 12 Division I coaches used stretching, whereas only 9 of the 11 Division III coaches did (p = 0.22). The results indicate that younger coaches did not use pre stretching (p = 0.30). The majority of the coaches indicated that they did use post stretching, with 11 of the 12 Division I coaches using stretching, whereas only 5 of the 11 Division III coaches used stretching postactivity (p = 0.027). Divisional results show that the majority of Division I coaches use static-style stretching (p = 0.049). The results of this study indicate that divisional status, age, and certification may influence how well research guidelines are followed. Further research is needed to delineate how these factors affect coaching decisions.

  17. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    2001-01-01

    The Structures and Acoustics Division of the NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included in this report are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported is a synopsis of the work and accomplishments completed by the Division during the 1997, 1998, and 1999 calendar years. A bibliography containing 93 citations is provided.

  18. Structures and Dynamics Division research and technology plans for FY 1986 and accomplishments for FY 1985

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1986-01-01

    Presented are the Objectives, FY 1986 Plans, Approach, and FY 1986 Milestones for the Structures and Dynamics Division's research programs. FY 1985 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  19. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contactmore » is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.« less

  20. Website for the Space Science Division

    NASA Technical Reports Server (NTRS)

    Schilling, James; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  1. Loads and aeroelasticity division research and technology accomplishments for FY 1985 and plans for FY 1986

    NASA Technical Reports Server (NTRS)

    Gardner, J. E.; Dixon, S. C.

    1986-01-01

    The Langley Research Center Loads and Aeroelasticity Division's research accomplishments for FY85 and research plans for FY86 are presented. The rk under each branch (technical area) will be described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  2. [MUC4 research progress in tumor molecular markers].

    PubMed

    Zhu, Hua; You, Jinhui

    2014-02-01

    Mucin antigen 4 (MUC4) is a molecular marker for some malignant tumors for early tumor diagnosis, prognosis and targeted therapy. It provides a new research direction in tumor diagnosis and treatment that will have a wide application prospect. In recent years, there has been a large number of research reports on the basic and clini-a wide application prospect. In recent years, there has been a large number of research reports on the basic and clinical studies about MUC4, but the molecular imaging study about MUC4 is seldom reported. In this paper the recentcal studies about MUC4, but the molecular imaging study about MUC4 is seldom reported. In this paper the recent research about MUC4 on basic and clinical studies is briefly reviewed, and it is expected to promote the development of tumor molecular imaging.

  3. Structural dynamics division research and technology accomplishments for FY 1993 and plans for FY 1994

    NASA Technical Reports Server (NTRS)

    Wynne, Eleanor C.

    1994-01-01

    The purpose is to present the Structural Dynamics Division's research accomplishments for F.Y. 1993 and research plans for F.Y. 1994. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5-year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  4. Structural dynamics division research and technology accomplishments for FY 1989 and plans for FY 1990

    NASA Technical Reports Server (NTRS)

    Smith, Jacqueline G.; Gardner, James E.

    1990-01-01

    The purpose is to present the Structural Dynamics Division's research accomplishments for FY 1989 and research plans for FY 1990. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  5. Structures and Dynamics Division research and technology plans for FY 1987 and accomplishments for FY 1986

    NASA Technical Reports Server (NTRS)

    Bales, Kay S.

    1987-01-01

    This paper presents the Objectives, FY 1987 Plans, Approach, and FY 1987 Milestones for the Structures and Dynamics Division's research programs. FY 1986 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  6. Structures and Dynamics Division research and technology plans for FY 1985 and accomplishments for FY 1984

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1985-01-01

    The objectives, FY 1985 plans, approach, and FY 1985 milestones for the Structures and Dynamics Division's research programs are presented. The FY 1984 accomplishments are presented where applicable. This information is useful in program coordination with other government organizations in areas of mutual interest.

  7. Advancing research and practice: the revised APA Division 30 definition of hypnosis.

    PubMed

    Elkins, Gary R; Barabasz, Arreed F; Council, James R; Spiegel, David

    2015-01-01

    This article describes the history, rationale, and guidelines for developing a new definition of hypnosis by the Society of Psychological Hypnosis, Division 30 of the American Psychological Association. The definition was developed with the aim of being concise, heuristic, and allowing for alternative theories of the mechanisms (to be determined in empirical scientific study). The definition of hypnosis is presented as well as definitions of the following related terms: hypnotic induction, hypnotizability, and hypnotherapy. The implications for advancing research and practice are discussed. The definitions are presented within the article.

  8. Advancing Research and Practice: The Revised APA Division 30 Definition of Hypnosis.

    PubMed

    Elkins, Gary R; Barabasz, Arreed F; Council, James R; Spiegel, David

    2015-04-01

    This article describes the history, rationale, and guidelines for developing a new definition of hypnosis by the Society of Psychological Hypnosis, Division 30 of the American Psychological Association. The definition was developed with the aim of being concise, being heuristic, and allowing for alternative theories of the mechanisms (to be determined in empirical scientific study). The definition of hypnosis is presented as well as definitions of the following related terms: hypnotic induction, hypnotizability, and hypnotherapy. The implications for advancing research and practice are discussed. The definitions are presented within the article.

  9. Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes

    PubMed Central

    2016-01-01

    In vivo, mammalian cells proliferate within 3D environments consisting of numerous microcavities and channels, which contain a variety of chemical and physical cues. External environments often differ between normal and pathological states, such as the unique spatial constraints that metastasizing cancer cells experience as they circulate the vasculature through arterioles and narrow capillaries, where they can divide and acquire elongated cylindrical shapes. While metastatic tumors cause most cancer deaths, factors impacting early cancer cell proliferation inside the vasculature and those that can promote the formation of secondary tumors remain largely unknown. Prior studies investigating confined mitosis have mainly used 2D cell culture systems. Here, we mimic aspects of metastasizing tumor cells dividing inside blood capillaries by investigating single-cell divisions of living human cancer cells, trapped inside 3D rolled-up, transparent nanomembranes. We assess the molecular effects of tubular confinement on key mitotic features, using optical high- and super-resolution microscopy. Our experiments show that tubular confinement affects the morphology and dynamics of the mitotic spindle, chromosome arrangements, and the organization of the cell cortex. Moreover, we reveal that membrane blebbing and/or associated processes act as a potential genome-safety mechanism, limiting the extent of genomic instability caused by mitosis in confined circumstances, especially in tubular 3D microenvironments. Collectively, our study demonstrates the potential of rolled-up nanomembranes for gaining molecular insights into key cellular events occurring in tubular 3D microenvironments in vivo. PMID:27267364

  10. Teaching Cell Division: Basics and Recommendations.

    ERIC Educational Resources Information Center

    Smith, Mike U.; Kindfield, Ann C. H.

    1999-01-01

    Presents a concise overview of cell division that includes only the essential concepts necessary for understanding genetics and evolution. Makes recommendations based on published research and teaching experiences that can be used to judge the merits of potential activities and materials for teaching cell division. Makes suggestions regarding the…

  11. Genetic underpinnings of division of labor in the honeybee (Apis mellifera).

    PubMed

    Lattorff, H Michael G; Moritz, Robin F A

    2013-11-01

    Honeybees have been studied for centuries, starting with Aristotle, who wrote the first book about bee breeding. More than 2000 years later, the honeybee entered the genomic era as the first social insect whose genome was sequenced, leading to significant insight into the molecular mechanisms underlying social behavior. In addition, gene expression studies and knockdown using RNAi have extended the understanding of social interactions. Much of the work has focused on caste determination - the mechanism that results in reproductive division of labor, division of labor within the worker caste, and worker reproduction - an essential process underlying eusociality. Here we review the molecular factors involved in caste determination and the differential regulation of caste-specific genes. Recent findings suggest that division of labor is influenced by a small number of loci showing high levels of pleiotropy, suggesting that changes in a small number of genes lead to large changes in the phenotype. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Structural dynamics division research and technology accomplishments for FY 1992 and plans for FY 1993

    NASA Technical Reports Server (NTRS)

    Wynne, Eleanor C.

    1993-01-01

    The purpose of this paper is to present the Structural Dynamics Division's research accomplishments for F.Y. 1992 and research plans for F.Y. 1993. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5-year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  13. Molecular Programs Underlying Asymmetric Stem Cell Division and Their Disruption in Malignancy.

    PubMed

    Mukherjee, Subhas; Brat, Daniel J

    2017-01-01

    Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two unequal daughter cells. One retains its stem cell identity while the other becomes specialized through a differentiation program and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell in order to direct their destiny. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and non-canonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer.

  14. Cell and plastid division are coordinated through the prereplication factor AtCDT1

    PubMed Central

    Raynaud, Cécile; Perennes, Claudette; Reuzeau, Christophe; Catrice, Olivier; Brown, Spencer; Bergounioux, Catherine

    2005-01-01

    The cell division cycle involves nuclear and cytoplasmic events, namely organelle multiplication and distribution between the daughter cells. Until now, plastid and plant cell division have been considered as independent processes because they can be uncoupled. Here, down-regulation of AtCDT1a and AtCDT1b, members of the prereplication complex, is shown to alter both nuclear DNA replication and plastid division in Arabidopsis thaliana. These data constitute molecular evidence for relationships between the cell-cycle and plastid division. Moreover, the severe developmental defects observed in AtCDT1-RNA interference (RNAi) plants underline the importance of coordinated cell and organelle division for plant growth and morphogenesis. PMID:15928083

  15. [Research progress of molecular genetic analysis in Schistosoma variation].

    PubMed

    Zheng, Su-Yue; Li, Fei

    2014-02-01

    The development of molecular biology techniques makes important contributions to the researches of heritable variation of Schistosoma. In recent years, the molecular genetic analysis in the Schistosoma variation researches mainly includes the restriction fragment length polymorphism (RFLP), random amplified polymorphism technology (RAPD), microsatellite anchored PCR (SSR-PCR), and polymerase reaction single-strand conformation polymorphism (PCR-SSCP). This article reviews the research progress of molecular genetic analysis in Schistosoma variation in recent years.

  16. Job Opening for Medical Officer in DCP’s Breast and Gynecologic Cancer Research Group | Division of Cancer Prevention

    Cancer.gov

    The Breast and Gynecologic Cancer Research Group (BGCRG), Division of Cancer Prevention (DCP), National Cancer Institute (NCI), has an opening for an experienced Medical Officer. BGCRG focuses on fostering the development and conduct of research on the prevention and early detection of breast cancer, cervix and human papillomavirus (HPV)-related cancers, endometrial cancers,

  17. Loads and Aeroelasticity Division research and technology accomplishments for FY 1986 and plans for FY 1987

    NASA Technical Reports Server (NTRS)

    Gardner, James E.; Dixon, S. C.

    1987-01-01

    The Loads and Aeroelasticity Division's research accomplishments for FY 86 and research plans for FY 87 are presented. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  18. Cognitive and Neural Sciences Division 1991 Programs

    DTIC Science & Technology

    1991-08-01

    FUNDING NUMBERS Cognitive and Neural Sciences Division 1991 Programs PE 61153N 6. AUTHOR(S) Edited by Willard S. Vaughan 7. PERFORMING ORGANIZATION...NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Office of Naval Research 0CNR !1491-19 Cognitive and Neural Sciences Division Code 1142...NOTES iN This is a compilation of abstracts representing R&D sponsored by the ONR Cognitive and Neural Sciences Division. 12a. DISTRIBUTION

  19. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    sponsors. Distinguish by scope/specific aspects of research; or by institution; or by individual. Example Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People

  20. Chemical Technology Division annual technical report, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7)more » processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less

  1. A Case Study of Faculty Development Programs in Division I Research Institution Colleges: The Perspective of the Program Administrators

    ERIC Educational Resources Information Center

    FitzSimmons, Jason

    2010-01-01

    The purpose of this study was to investigate faculty development from the perspectives of program administrators in different colleges of a Division I research institution. The participants were administrators of faculty development programs from eight different colleges at the institution. The research questions were (a) How do the administrators…

  2. Using stochastic cell division and death to probe minimal units of cellular replication

    NASA Astrophysics Data System (ADS)

    Chib, Savita; Das, Suman; Venkatesan, Soumya; Sai Narain Seshasayee, Aswin; Thattai, Mukund

    2018-03-01

    The invariant cell initiation mass measured in bacterial growth experiments has been interpreted as a minimal unit of cellular replication. Here we argue that the existence of such minimal units induces a coupling between the rates of stochastic cell division and death. To probe this coupling we tracked live and dead cells in Escherichia coli populations treated with a ribosome-targeting antibiotic. We find that the growth exponent from macroscopic cell growth or decay measurements can be represented as the difference of microscopic first-order cell division and death rates. The boundary between cell growth and decay, at which the number of live cells remains constant over time, occurs at the minimal inhibitory concentration (MIC) of the antibiotic. This state appears macroscopically static but is microscopically dynamic: division and death rates exactly cancel at MIC but each is remarkably high, reaching 60% of the antibiotic-free division rate. A stochastic model of cells as collections of minimal replicating units we term ‘widgets’ reproduces both steady-state and transient features of our experiments. Sub-cellular fluctuations of widget numbers stochastically drive each new daughter cell to one of two alternate fates, division or death. First-order division or death rates emerge as eigenvalues of a stationary Markov process, and can be expressed in terms of the widget’s molecular properties. High division and death rates at MIC arise due to low mean and high relative fluctuations of widget number. Isolating cells at the threshold of irreversible death might allow molecular characterization of this minimal replication unit.

  3. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  4. Hybrid Molecular and Spin-Semiconductor Based Research

    DTIC Science & Technology

    2005-02-02

    thick layers of low- temperature-grown (LTG) GaAs, i.e. GaAs grown at lower than normal substrate temperatures in a molecular beam epitaxy system...1999 – Oct.31, 2004 4. TITLE AND SUBTITLE Hybrid Molecular and Spin-Semiconductor Based research 5. FUNDING NUMBERS DAAD19-99-1-0198...spintronic devices. Thrust III is entitled “ Molecular Electronics” and its objective is to develop, characterize and model organic/inorganic

  5. Biology Division progress report, October 1, 1991--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, F.C.; Cook, J.S.

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1991, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report.

  6. Cell Division in genus Corynebacterium: protein-protein interaction and molecular docking of SepF and FtsZ in the understanding of cytokinesis in pathogenic species.

    PubMed

    Oliveira, Alberto F; Folador, Edson L; Gomide, Anne C P; Goes-Neto, Aristóteles; Azevedo, Vasco A C; Wattam, Alice R

    2018-02-15

    The genus Corynebacterium includes species of great importance in medical, veterinary and biotechnological fields. The genus-specific families (PLfams) from PATRIC have been used to observe conserved proteins associated to all species. Our results showed a large number of conserved proteins that are associated with the cellular division process. Was not observe in our results other proteins like FtsA and ZapA that interact with FtsZ. Our findings point that SepF overlaps the function of this proteins explored by molecular docking, protein-protein interaction and sequence analysis. Transcriptomic analysis showed that these two (Sepf and FtsZ) proteins can be expressed in different conditions together. The work presents novelties on molecules participating in the cell division event, from the interaction of FtsZ and SepF, as new therapeutic targets.

  7. Changes in period mRNA levels in the brain and division of labor in honey bee colonies

    PubMed Central

    Toma, Dan P.; Bloch, Guy; Moore, Darrell; Robinson, Gene E.

    2000-01-01

    Previous research showed that age-related division of labor in honey bees is associated with changes in activity rhythms; young adult bees perform hive tasks with no daily rhythms, whereas older bees forage with strong daily rhythms. We report that this division of labor is also associated with differences in both circadian rhythms and mRNA levels of period, a gene well known for its role in circadian rhythms. The level of period mRNA in the brain oscillated in bees of all ages, but was significantly higher at all times in foragers. Elevated period mRNA levels cannot be attributed exclusively to aging, because bees induced to forage precociously because of a change in social environment had levels similar to normal age foragers. These results extend the regulation of a “clock gene” to a social context and suggest that there are connections at the molecular level between division of labor and chronobiology in social insects. PMID:10841583

  8. About the Nutritional Science Research Group | Division of Cancer Prevention

    Cancer.gov

    The Nutritional Science Research Group (NSRG) promotes and supports studies establishing a comprehensive understanding of the precise role of diet and food components in modulating cancer risk and tumor cell behavior. This focus includes approaches to characterize molecular targets and variability in individual responses to nutrients and dietary patterns. |

  9. Loads and aeroelasticity division research and technology accomplishments for FY 1987 and plans for FY 1988

    NASA Technical Reports Server (NTRS)

    Dixon, S. C.; Gardner, James E.

    1988-01-01

    The purpose of this paper is to present the Loads and Aeroelasticity Division's research accomplishments for FY87 and research plans for FY88. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  10. Systemic control of cell division and endoreduplication by NAA and BAP by modulating CDKs in root tip cells of Allium cepa.

    PubMed

    Tank, Jigna G; Thaker, Vrinda S

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.

  11. Systemic Control of Cell Division and Endoreduplication by NAA and BAP by Modulating CDKs in Root Tip Cells of Allium cepa

    PubMed Central

    Tank, Jigna G.; Thaker, Vrinda S.

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed. PMID:24955358

  12. Psychological Sciences Division: 1985 Programs.

    ERIC Educational Resources Information Center

    Office of Naval Research, Washington, DC. Psychological Sciences Div.

    This booklet describes research carried out under sponsorship of the Psychological Sciences Division of the U.S. Office of Naval Research during Fiscal Year 1985. The booklet is divided into three programmatic research areas: (1) Engineering Psychology; (2) Personnel and Training; and (3) Group Psychology. Each program is described by an overview…

  13. Structures Division

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented.

  14. A Balancing Act: Division III Student-Athletes Time Demands and Life Roles

    ERIC Educational Resources Information Center

    Hoover, Daniel R., Jr.

    2012-01-01

    A majority of the research on student-athletes occurs at the Division I level, acid less is known about Division III student-athletes. The scant research addressing the experiences of Division III students-athletes focused on academics, campus involvement, development, and athletic identity (Griffith & Johnson, 2002; Heuser & Gray, 2009;…

  15. Structural dynamics division research and technology accomplishments for fiscal year 1990 and plans for fiscal year 1991

    NASA Technical Reports Server (NTRS)

    Wynne, Eleanor C.

    1991-01-01

    The research accomplishments of the Structural Dynamics Division for F.Y. 1991 are presented. The work is discussed in terms of highlights of accomplishments during the past year and plans for the current year as they relate to 5-year plans and the objectives of each technical area. Included is research on unsteady aerodynamics, helicopter rotors, computational fluid dynamics, oscillations of leading edge flaps of a delta wing, and aircraft wing loads.

  16. Solid State Division progress report for period ending March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Hinton, L.W.

    1997-12-01

    This report covers research progress in the Solid State Division from April 1, 1995, through March 31, 1997. During this period, the division conducted a broad, interdisciplinary materials research program in support of Department of Energy science and technology missions. The report includes brief summaries of research activities in condensed matter theory, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. An addendum includes listings of division publications and professional activities.

  17. THE WESTERN ECOLOGY DIVISION STUDENT INTERN PROGRAM VIDEO

    EPA Science Inventory

    The Western Ecology Division of the National Health & Environmental Effects Research Laboratory has produced a 15 minute video documenting the internship program at the Division. The video highlights various CWEST student interns reporting on their experiences at an end-of-the-s...

  18. Environmental Sciences Division annual progress report for period ending September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and themore » interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.« less

  19. Loads and Aeroelasticity Division research and technology accomplishments for FY 1984 and plans for FY 1985

    NASA Technical Reports Server (NTRS)

    Gardner, J. E.; Dixon, S. C.

    1985-01-01

    The loads and aeroelasticity divisions research accomplishments are presented. The work under each branch or technical area, described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5 year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  20. Cancer vaccine enhanced, non-tumor-reactive CD8(+) T cells exhibit a distinct molecular program associated with "division arrest anergy".

    PubMed

    Beyer, Marc; Karbach, Julia; Mallmann, Michael R; Zander, Thomas; Eggle, Daniela; Classen, Sabine; Debey-Pascher, Svenja; Famulok, Michael; Jäger, Elke; Schultze, Joachim L

    2009-05-15

    Immune-mediated tumor rejection relies on fully functional T-cell responses and neutralization of an adverse tumor microenvironment. In clinical trials, we detected peptide-specific but non-tumor-reactive and therefore not fully functional CD8(+) T cells post-vaccination against tumor antigens. Understanding the molecular mechanisms behind nontumor reactivity will be a prerequisite to overcome this CD8(+) T-cell deviation. We report that these non-tumor-reactive CD8(+) T cells are characterized by a molecular program associated with hallmarks of "division arrest anergy." Non-tumor-reactive CD8(+) T cells are characterized by coexpression of CD7, CD25, and CD69 as well as elevated levels of lck(p505) and p27(kip1). In vivo quantification revealed high prevalence of non-tumor-reactive CD8(+) T cells with increased levels during cancer vaccination. Furthermore, their presence was associated with a trend toward shorter survival. Dynamics and frequencies of non-target-reactive CD8(+) T cells need to be further addressed in context of therapeutic vaccine development in cancer, chronic infections, and autoimmune diseases.

  1. Major Programs | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention supports major scientific collaborations, research networks, investigator-initiated grants, postdoctoral training, and specialized resources across the United States. |

  2. Home | Division of Cancer Prevention

    Cancer.gov

    Our Research The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into cancer. |

  3. Molecular communication among biological nanomachines: a layered architecture and research issues.

    PubMed

    Nakano, Tadashi; Suda, Tatsuya; Okaie, Yutaka; Moore, Michael J; Vasilakos, Athanasios V

    2014-09-01

    Molecular communication is an emerging communication paradigm for biological nanomachines. It allows biological nanomachines to communicate through exchanging molecules in an aqueous environment and to perform collaborative tasks through integrating functionalities of individual biological nanomachines. This paper develops the layered architecture of molecular communication and describes research issues that molecular communication faces at each layer of the architecture. Specifically, this paper applies a layered architecture approach, traditionally used in communication networks, to molecular communication, decomposes complex molecular communication functionality into a set of manageable layers, identifies basic functionalities of each layer, and develops a descriptive model consisting of key components of the layer for each layer. This paper also discusses open research issues that need to be addressed at each layer. In addition, this paper provides an example design of targeted drug delivery, a nanomedical application, to illustrate how the layered architecture helps design an application of molecular communication. The primary contribution of this paper is to provide an in-depth architectural view of molecular communication. Establishing a layered architecture of molecular communication helps organize various research issues and design concerns into layers that are relatively independent of each other, and thus accelerates research in each layer and facilitates the design and development of applications of molecular communication.

  4. Mechanical influences in bacterial morphogenesis and cell division

    NASA Astrophysics Data System (ADS)

    Sun, Sean

    2010-03-01

    Bacterial cells utilize a ring-like organelle (the Z-ring) to accomplish cell division. The Z-ring actively generates a contractile force and influences cell wall growth. We will discuss a general model of bacterial morphogenesis where mechanical forces are coupled to the growth dynamics of the cell wall. The model suggests a physical mechanism that determines the shapes of bacteria cells. The roles of several bacterial cytoskeletal proteins and the Z-ring are discussed. We will also explore molecular mechanisms of force generation by the Z-ring and how cells can generate mechanical forces without molecular motors.

  5. Contributions to advances in blend pellet products (BPP) research on molecular structure and molecular nutrition interaction by advanced synchrotron and globar molecular (Micro)spectroscopy.

    PubMed

    Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang

    2018-04-13

    To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.

  6. 49 CFR 177.841 - Division 6.1 and Division 2.3 materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Division 6.1 and Division 2.3 materials. 177.841... PUBLIC HIGHWAY Loading and Unloading § 177.841 Division 6.1 and Division 2.3 materials. (See also § 177...) or Division 6.1 (poisonous) materials. The transportation of a Division 2.3 (poisonous gas) or...

  7. Thursday's Agenda | Division of Cancer Prevention

    Cancer.gov

    TimeAgenda8:30 am - 8:50 amRegistration - Networking8:50 am - 8:55 amWelcome and Opening RemarksLeslie Ford, MDAssociate Director for Clinical ResearchDivision of Cancer Prevention, NCIEva Szabo, MD Chief, Lung and Upper Aerodigestive Cancer Research Group |

  8. Solid State Division progress report for period ending September 30, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Watson, D.M.

    1985-03-01

    During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)

  9. Environmental Sciences Division annual progress report for period ending September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and themore » interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD's accomplishment in these and other areas in FY 1991.« less

  10. 49 CFR 173.128 - Class 5, Division 5.2-Definitions and types.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...- groups per molecule of the i th species ci = concentration (mass percent) of the i th species mi = molecular mass of the i th species (b) Generic types. Division 5.2 organic peroxides are assigned to a...

  11. A novel cell division factor from tobacco 2B-13 cells that induced cell division in auxin-starved tobacco BY-2 cells

    NASA Astrophysics Data System (ADS)

    Shimizu, Takashi; Eguchi, Kentaro; Nishida, Ikuo; Laukens, Kris; Witters, Erwin; van Onckelen, Harry; Nagata, Toshiyuki

    2006-06-01

    Effects of auxin as plant hormones are widespread; in fact in almost all aspects of plant growth and development auxin plays a pivotal role. Although auxin is required for propagating cell division in plant cells, its effect upon cell division is least understood. If auxin is depleted from the culture medium, cultured cells cease to divide. It has been demonstrated in this context that the addition of auxin to auxin-starved nondividing tobacco BY-2 cells induced semisynchronous cell division. On the other hand, there are some cell lines, named habituated cells, that can grow without auxin. The cause and reason for the habituated cells have not been clarified. A habituated cell line named 2B-13 is derived from the tobacco BY-2 cell line, which has been most intensively studied among plant cell lines. When we tried to find the difference between two cell lines of BY-2 and 2B-13 cells, we found that the addition of culture filtrated from the auxin-habituated 2B-13 cells induced semisynchronous cell division in auxin-starved BY-2 cells. The cell division factor (CDF) that is responsible for inducing cell division in auxin-starved BY-2 cells was purified to near-homogeneity by sequential passage through a hydroxyapatite column, a ConA Sepharose column and a Sephadex gel filtration column. The resulting purified fraction appeared as a single band of high molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels by silver staining and was able to induce cell division in auxin-starved BY-2 cells. Identification of the protein by MALD-TOF-MS/MS revealed that it is structurally related to P-glycoprotein from Gossypioides kirkii, which belongs to ATP-binding cassette (ABC)-transporters. The significance of CDF as a possible ABC-transporter is discussed in relationship to auxin-autotrophic growth and auxin-signaling pathway.

  12. Hala Azzam, PhD, MPH | Division of Cancer Prevention

    Cancer.gov

    Dr. Hala Azzam is a Cancer Epidemiologist in the Cancer Prevention Fellowship Program (CPFP) in the Division of Cancer Prevention within the National Cancer Institute. She received her Bachelor's degree in molecular biology from Kings College London University, her PhD in anatomy and cell biology from Georgetown University Lombardi Cancer Center, and her MPH in epidemiology

  13. Functional redundancy of division specific penicillin-binding proteins in Bacillus subtilis.

    PubMed

    Sassine, Jad; Xu, Meizhu; Sidiq, Karzan R; Emmins, Robyn; Errington, Jeff; Daniel, Richard A

    2017-10-01

    Bacterial cell division involves the dynamic assembly of a diverse set of proteins that coordinate the invagination of the cell membrane and synthesis of cell wall material to create the new cell poles of the separated daughter cells. Penicillin-binding protein PBP 2B is a key cell division protein in Bacillus subtilis proposed to have a specific catalytic role in septal wall synthesis. Unexpectedly, we find that a catalytically inactive mutant of PBP 2B supports cell division, but in this background the normally dispensable PBP 3 becomes essential. Phenotypic analysis of pbpC mutants (encoding PBP 3) shows that PBP 2B has a crucial structural role in assembly of the division complex, independent of catalysis, and that its biochemical activity in septum formation can be provided by PBP 3. Bioinformatic analysis revealed a close sequence relationship between PBP 3 and Staphylococcus aureus PBP 2A, which is responsible for methicillin resistance. These findings suggest that mechanisms for rescuing cell division when the biochemical activity of PBP 2B is perturbed evolved prior to the clinical use of β-lactams. © 2017 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  14. Diet and Cancer Prevention: Chewing on the Human Complexities | Division of Cancer Prevention

    Cancer.gov

    Speaker Johanna W. Lampe, PhD, RD Research Professor University of Washington Full Member and Associate Division Director Cancer Prevention Program Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle, WA |

  15. IFLA General Conference, 1992. Division of General Research Libraries: Section on National Libraries; Section on Parliamentary Libraries; Section on University Libraries and Other General Research Libraries. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations and Institutions, London (England).

    Fifteen papers delivered for the Division of General Research Libraries at the 1992 International Federation of Library Associations and Institutions annual meeting are presented. These papers deal with national libraries, parliamentary (legislative) libraries, and university libraries. The papers are: (1) "Seeking Alternatives to National…

  16. Life Sciences Division annual report, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, B.L.; Cram, L.S.

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  17. ADP Analysis project for the Human Resources Management Division

    NASA Technical Reports Server (NTRS)

    Tureman, Robert L., Jr.

    1993-01-01

    The ADP (Automated Data Processing) Analysis Project was conducted for the Human Resources Management Division (HRMD) of NASA's Langley Research Center. The three major areas of work in the project were computer support, automated inventory analysis, and an ADP study for the Division. The goal of the computer support work was to determine automation needs of Division personnel and help them solve computing problems. The goal of automated inventory analysis was to find a way to analyze installed software and usage on a Macintosh. Finally, the ADP functional systems study for the Division was designed to assess future HRMD needs concerning ADP organization and activities.

  18. | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Metals and Ceramics Division progress report for period ending December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.

    1994-07-01

    This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative Rmore » and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.« less

  20. The mechanisms of labor division from the perspective of individual optimization

    NASA Astrophysics Data System (ADS)

    Zhu, Lirong; Chen, Jiawei; Di, Zengru; Chen, Liujun; Liu, Yan; Stanley, H. Eugene

    2017-12-01

    Although the tools of complexity research have been applied to the phenomenon of labor division, its underlying mechanisms are still unclear. Researchers have used evolutionary models to study labor division in terms of global optimization, but focusing on individual optimization is a more realistic, real-world approach. We do this by first developing a multi-agent model that takes into account information-sharing and learning-by-doing and by using simulations to demonstrate the emergence of labor division. We then use a master equation method and find that the computational results are consistent with the results of the simulation. Finally we find that the core underlying mechanisms that cause labor division are learning-by-doing, information cost, and random fluctuation.

  1. Earth Sciences Division annual report 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriatemore » chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.« less

  2. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    ERIC Educational Resources Information Center

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in…

  3. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, G.; Bair, K.; Ross, J.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listingmore » of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.« less

  4. Division of labour in the yeast: Saccharomyces cerevisiae.

    PubMed

    Wloch-Salamon, Dominika M; Fisher, Roberta M; Regenberg, Birgitte

    2017-10-01

    Division of labour between different specialized cell types is a central part of how we describe complexity in multicellular organisms. However, it is increasingly being recognized that division of labour also plays an important role in the lives of predominantly unicellular organisms. Saccharomyces cerevisiae displays several phenotypes that could be considered a division of labour, including quiescence, apoptosis and biofilm formation, but they have not been explicitly treated as such. We discuss each of these examples, using a definition of division of labour that involves phenotypic variation between cells within a population, cooperation between cells performing different tasks and maximization of the inclusive fitness of all cells involved. We then propose future research directions and possible experimental tests using S. cerevisiae as a model organism for understanding the genetic mechanisms and selective pressures that can lead to the evolution of the very first stages of a division of labour. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Health, Safety, and Environment Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, C

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from thesemore » applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.« less

  6. Chemical Biodynamics Division. Annual report 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

  7. Physics Division annual review, 1 April 1975--31 March 1976. [ANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, G. T.

    1976-01-01

    An overview is given of Physics Division activities in the following areas: the heavy-ion booster; medium-energy physics; heavy-ion physics; low-energy charged-particle physics; accelerator operations; neutron physics; theoretical nuclear physics, and atomic and molecular physics. A bibliography of publications amounts to 27 pages. (RWR)

  8. Translational research of optical molecular imaging for personalized medicine.

    PubMed

    Qin, C; Ma, X; Tian, J

    2013-12-01

    In the medical imaging field, molecular imaging is a rapidly developing discipline and forms many imaging modalities, providing us effective tools to visualize, characterize, and measure molecular and cellular mechanisms in complex biological processes of living organisms, which can deepen our understanding of biology and accelerate preclinical research including cancer study and medicine discovery. Among many molecular imaging modalities, although the penetration depth of optical imaging and the approved optical probes used for clinics are limited, it has evolved considerably and has seen spectacular advances in basic biomedical research and new drug development. With the completion of human genome sequencing and the emergence of personalized medicine, the specific drug should be matched to not only the right disease but also to the right person, and optical molecular imaging should serve as a strong adjunct to develop personalized medicine by finding the optimal drug based on an individual's proteome and genome. In this process, the computational methodology and imaging system as well as the biomedical application regarding optical molecular imaging will play a crucial role. This review will focus on recent typical translational studies of optical molecular imaging for personalized medicine followed by a concise introduction. Finally, the current challenges and the future development of optical molecular imaging are given according to the understanding of the authors, and the review is then concluded.

  9. Mound Laboratory activities for the Division of Physical Research: July--December 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-05-14

    Research and development are reported in the following areas: isotope separation and production for Ar, C, He, Kr, Ne, O, S, and Xe; testing of cubic B crystals for superconductivity; metal hydride research on band theory and electronic structure and spin-lattice relaxation times for VH/sub x/; separation chemistry of Pu, /sup 231/Pa, /sup 230/Th, /sup 229/Th, and /sup 234/U; adsorption of U and Pu by bone char; separation research for Ca and S isotopes; molecular beam scattering for Ar--Kr; and transport properties for the systems Ne--Ar, Ne--Kr, and Ar--Kr. (JSR)

  10. Control of cell division and the spatial localization of assembled gene products in Caulobacter crescentus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathan, P.D.

    Experiments are described that examine the role of penicillin-binding proteins (PBPs) in the regulation of cell division in Caulobacter crescentus; and the spatial localization of methyl-accepting chemotaxis proteins (MCPs) in C. crescentus swarmer and predivisional cells. In the analysis of PBP function, in vivo and in vitro assays are used to directly label C. crescentus PBPs with (/sup 3/H) penicillin G in wild type strain CB15, in a series of conditional cell division mutants and in new temperature sensitive cephalosporin C resistant mutants PC8002 and PC8003. 14 PBPs are characterized and a high molecular weight PBP (PBP 1B) that ismore » required for cell division is identified. PBP 1B competes for ..beta..-lactams that induce filament formation and may be a high affinity binding protein. A second high molecular weight PBP (PBP 1C) is also associated with defective cell division. The examination of PBP patterns in synchronous swarmer cells reveals that the in vivo activity of PBP 1B and PBP 1C increases at the time that the cell division pathway is initiated. None of the PBPs, however, appear to be differentially localized in the C. crescentus cell. In the analysis of MCP localization, in vivo and in vitro assays are used to directly label C. crescentus MCPs with methyl-/sup 3/H. MCPs are examined in flagellated and non-flagellated vesicles prepared from cells by immunoaffinity chromatography.« less

  11. Division of Chinese soft-shelled turtle intestine with molecular markers is slightly different from the morphological and histological observation.

    PubMed

    Zhang, Zuobing; Song, Ruxin; Xing, Xiao; Wang, Lan; Niu, Cuijuan

    2018-01-01

    The Chinese soft-shelled turtle (Pelodiscus sinensis) is a commercially important species in Asian countries. Knowledge of its nutritional requirements and physiology is essential for determining the appropriate content of the feed for this animal. However, the lack of functional characterization of the intestine of this turtle limits the understanding of its absorption and utilization of nutritional materials. To solve this problem, this work utilized anatomical and histological methods to characterize 9 segments sampled along the anterior-posterior axis of the intestine. Furthermore, 9 genes, which have been well documented in the intestine division of mammals and fish, were employed to functionally characterize the 9 sampled segments. Our results suggest that regions covering from the starting site to S3 (position at 29.9% of the total length from the starting of the intestine) are the equivalent of mammalian dedumonen, and those covering S4 (40.2%) and S5 (65.4%), posterior to S8 (92.7%), are the equivalent of the mammalian ileum and the large intestine, respectively. As to the region spaning S6 (81.3%) and S7 (87.3%), its functional equivalent (small intestine or large intestine) may be variable and depends on the functional genes. This molecular characterization in relation to the division of the intestine of Chinese soft-shelled turtle may contribute to the understanding of the nutritional physiology of the turtle, and promote Chinese soft-shelled turtle production. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  12. American Chemical Society division of fuel chemistry Henry H. Storch award.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chemistry

    American Chemical Society Division of Fuel Chemistry Henry H. Storch Award ... The purpose of the Henry H. Storch Award is to recognize distinguished contributions worldwide to fundamental or engineering research on the chemistry and utilization of all hydrocarbon fuels, with the exception of petroleum. ... The award was established in 1964 by the American Chemical Society Division of Fuel Chemistry and administered by the Division until 1985.

  13. PROFILE OF THE GULF ECOLOGY DIVISION, UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

    EPA Science Inventory

    A history of the man-made island on which the Gulf Ecology Division is located,from its origin in 1876 to the present day (2007). Contains a synopsis of current research and future plans of the division.

  14. National Research Program of the Water Resources Division, U.S. Geological Survey, fiscal year 1987

    USGS Publications Warehouse

    Friedman, Linda C.; Donato, Christine N.

    1988-01-01

    The National Research Program (NRP) of the U.S. Geological Survey's Water Resources Division (WRD) had its beginnings in the late 1950's when "core research" was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation's water resources. The knowledge gained and methods developed have great value to WRD's operational program. Results of the investigations conducted by the NRP are applicable not only to the solution of current water problems, but also to future issues, anticipated or unanticipated, that may affect the Nation's water resources.

  15. National Research Program of the Water Resources Division, U. S. Geological Survey, Fiscal Year 1989

    USGS Publications Warehouse

    Eggers, JoAnn; Friedman, Linda C.

    1989-01-01

    The National Research Program (NRP) of the U.S. Geological Survey's Water Resources Division (WRD) had its beginnings in the late 1950's when "core research" was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, ecology, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation's water resources. The knowledge gained and methods developed have great value to WRD's operational program. Results of the investigations conducted by the NRP are applicable not only to the solution of current water problems but also to future issues, anticipated or unanticipated, that may affect the Nation's water resources.

  16. Annual Report, Reservoir Control Center, Southwestern Division (1989)

    DTIC Science & Technology

    1990-01-01

    Division in the water quality field . This provides for water quality objectives being included as an effective part of our total water management...WES) selected Canyon Lake as a research field site for developing techniques to evaluate the impacts associated with installation of hydropower at Corps...term continuous goals of this Division, and consequently the Water Management Branch, in the water quality field . (1) To obtain sufficient water

  17. Clinical Trials Management | Division of Cancer Prevention

    Cancer.gov

    Information for researchers about developing, reporting, and managing NCI-funded cancer prevention clinical trials. Protocol Information Office The central clearinghouse for clinical trials management within the Division of Cancer Prevention.Read more about the Protocol Information Office. | Information for researchers about developing, reporting, and managing NCI-funded

  18. The value of public health research and the division between basic vs. applied science.

    PubMed

    Almeida-Filho, Namoar; Goldbaum, Moisés

    2003-02-01

    We question the movement towards exclusion of population and social health research from the field of science. The background under analysis is contemporary Brazil, where the scientific field that hosts this kind of research is known as Collective Health. First, the problem is formalized on logical grounds, evaluating the pertinence of considering unscientific the many objects and methods of public health research. Secondly, the cases of pulmonary tuberculosis and external causes are brought in as illustrations of the kind of scientific problem faced in health research today. The logical and epistemological basis of different forms of "scientific segregation" based on biomedical reductionism is analyzed, departing from three theses: (i) the ethics of the general application of science; (ii) the inappropriateness of monopolies for objectivity in the sciences; (iii) the specificity of scientific fields. In the current panorama of health research in Brazil, a residual hegemonic position that defends a narrow and specific definition of the object of knowledge was found. The denial of validity and specificity to objects, methods and research techniques that constitute social and population research in health is linked to elements of irrationality in reductionism approaches. Nevertheless, efforts should be directed to overcome this scientific division, in order to develop a pluralist and interdisciplinary national science, committed to the health care realities of our country.

  19. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  20. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  1. Drosophila Sulf1 is required for the termination of intestinal stem cell division during regeneration.

    PubMed

    Takemura, Masahiko; Nakato, Hiroshi

    2017-01-15

    Stem cell division is activated to trigger regeneration in response to tissue damage. The molecular mechanisms by which this stem cell mitotic activity is properly repressed at the end of regeneration are poorly understood. Here, we show that a specific modification of heparan sulfate is crucial for regulating Drosophila intestinal stem cell (ISC) division during normal midgut homeostasis and regeneration. Loss of the extracellular heparan sulfate endosulfatase Sulf1 resulted in increased ISC division during normal homeostasis, which was caused by upregulation of mitogenic signaling including the JAK-STAT, EGFR and Hedgehog pathways. Using a regeneration model, we found that ISCs failed to properly halt division at the termination stage in Sulf1 mutants, showing that Sulf1 is required for terminating ISC division at the end of regeneration. We propose that post-transcriptional regulation of mitogen signaling by heparan sulfate structural modifications provides a new regulatory step for precise temporal control of stem cell activity during regeneration. © 2017. Published by The Company of Biologists Ltd.

  2. Drosophila Sulf1 is required for the termination of intestinal stem cell division during regeneration

    PubMed Central

    2017-01-01

    ABSTRACT Stem cell division is activated to trigger regeneration in response to tissue damage. The molecular mechanisms by which this stem cell mitotic activity is properly repressed at the end of regeneration are poorly understood. Here, we show that a specific modification of heparan sulfate is crucial for regulating Drosophila intestinal stem cell (ISC) division during normal midgut homeostasis and regeneration. Loss of the extracellular heparan sulfate endosulfatase Sulf1 resulted in increased ISC division during normal homeostasis, which was caused by upregulation of mitogenic signaling including the JAK-STAT, EGFR and Hedgehog pathways. Using a regeneration model, we found that ISCs failed to properly halt division at the termination stage in Sulf1 mutants, showing that Sulf1 is required for terminating ISC division at the end of regeneration. We propose that post-transcriptional regulation of mitogen signaling by heparan sulfate structural modifications provides a new regulatory step for precise temporal control of stem cell activity during regeneration. PMID:27888216

  3. Assessing Student Reasoning in Upper-Division Electricity and Magnetism at Oregon State University

    ERIC Educational Resources Information Center

    Zwolak, Justyna P.; Manogue, Corinne A.

    2015-01-01

    Standardized assessment tests that allow researchers to compare the performance of students under various curricula are highly desirable. There are several research-based conceptual tests that serve as instruments to assess and identify students' difficulties in lower-division courses. At the upper-division level assessing students' difficulties…

  4. Cognitive and Neural Sciences Division, 1988 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    The research and development efforts performed by principal investigators under sponsorship of the Office of Naval Research Cognitive and Neural Sciences Division during 1988 are documented. The title, name and affiliation of the principal investigator, project code, contract number, current end date, technical objective, approach, and progress of…

  5. Solid State Division progress report for period ending September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Hinton, L.W.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasismore » on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.« less

  6. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and

  7. Materials and Molecular Research Division annual report 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  8. OVERVIEW -- SUBSURFACE PROTECTION AND REMEDIATION DIVISION

    EPA Science Inventory

    NRMRL's Subsurface Protection and Remediation Division located in Ada, Oklahoma, conducts EPA-investigator led laboratory and field research to provide the scientific basis to support the development of strategies and technologies to protect and restore ground and surface water q...

  9. Energy and Environment Division annual report, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camp, J.A.

    1978-01-01

    Research activities of this Division are reported under nine separate programs, namely: Energy Analysis; Solar Energy; Energy-Efficient Buildings; Chemical Process Research and Development; Environmental Research; Atmospheric Aerosol Research; Oil Shale Research; Instrumentation Development; and Combustion Research. A separate abstract was prepared for each of the nine programs, each of which contained several individual research summaries, with responsible researchers listed. All of the abstracts will appear in Energy Research Abstracts (ERA), and five will appear in Energy Abstracts for Policy Analysis (EAPA).

  10. New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology

    PubMed Central

    Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging. PMID:24696850

  11. Cognitive and Neural Sciences Division, 1989 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed by principal investigators under the sponsorship of the Office of Naval Research Cognitive and Neural Sciences Division during fiscal year 1989. Programs are conducted under contracts and grants awarded on the basis of proposals received in response to a Broad Agency Announcement in the…

  12. newsletter | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. A Description and Comparison of the Perceptions of NCAA Division II and Division III College Presidents Regarding the Impacts of Intercollegiate Athletics at Their Institutions

    ERIC Educational Resources Information Center

    Huffman, Aaron C.

    2013-01-01

    The purpose of this study was to describe and compare the perceptions of NCAA Division II and NCAA Division III college and university presidents regarding the impacts of intercollegiate athletics at their institutions. The data were collected with an anonymous online survey instrument developed by the researcher and sent via email using…

  14. MONTHLY HIGHLIGHTS (SUBSURFACE PROTECTION AND REMEDIATION DIVISION)

    EPA Science Inventory

    The Subsurface Protection and Remediation Division (SPRD) produces monthly highlights describing research accomplishments, involvement in current technical assistance activities, and staff participation in scientific meetings and conferences. Announcements of the release and avai...

  15. MIDG-Emerging grid technologies for multi-site preclinical molecular imaging research communities.

    PubMed

    Lee, Jasper; Documet, Jorge; Liu, Brent; Park, Ryan; Tank, Archana; Huang, H K

    2011-03-01

    Molecular imaging is the visualization and identification of specific molecules in anatomy for insight into metabolic pathways, tissue consistency, and tracing of solute transport mechanisms. This paper presents the Molecular Imaging Data Grid (MIDG) which utilizes emerging grid technologies in preclinical molecular imaging to facilitate data sharing and discovery between preclinical molecular imaging facilities and their collaborating investigator institutions to expedite translational sciences research. Grid-enabled archiving, management, and distribution of animal-model imaging datasets help preclinical investigators to monitor, access and share their imaging data remotely, and promote preclinical imaging facilities to share published imaging datasets as resources for new investigators. The system architecture of the Molecular Imaging Data Grid is described in a four layer diagram. A data model for preclinical molecular imaging datasets is also presented based on imaging modalities currently used in a molecular imaging center. The MIDG system components and connectivity are presented. And finally, the workflow steps for grid-based archiving, management, and retrieval of preclincial molecular imaging data are described. Initial performance tests of the Molecular Imaging Data Grid system have been conducted at the USC IPILab using dedicated VMware servers. System connectivity, evaluated datasets, and preliminary results are presented. The results show the system's feasibility, limitations, direction of future research. Translational and interdisciplinary research in medicine is increasingly interested in cellular and molecular biology activity at the preclinical levels, utilizing molecular imaging methods on animal models. The task of integrated archiving, management, and distribution of these preclinical molecular imaging datasets at preclinical molecular imaging facilities is challenging due to disparate imaging systems and multiple off-site investigators. A

  16. Keeping Children Safe: OJJDP's Child Protection Division.

    ERIC Educational Resources Information Center

    Cullen, Thomas

    More than two decades of research have pointed to the connection between childhood maltreatment and delinquency. In addition, recent research confirms that harm is inflicted on children who are subjected to family and community violence. The Child Protection Division was created in an effort to bring child protection to the forefront and to…

  17. Lead from the center. How to manage divisions dynamically.

    PubMed

    Raynor, M E; Bower, J L

    2001-05-01

    Conventional wisdom holds that a company's divisions should be given almost total autonomy--especially under conditions of uncertainty--because they are closer to emerging technologies, customers, and competitors than corporate headquarters could ever be. But research from Michael Raynor and Joseph Bower suggests that the corporate office should be more, not less, directive in turbulent markets. Rapid changes in an industry make it difficult to predict where and when synergies among divisions might emerge. With so many possibilities and such uncertainty, companies can't afford to sacrifice their ability to flexibly execute business strategy. Corporate headquarters must play an active role in defining the scope of division-level strategy, the authors say, so that divisions do not act in ways that undermine opportunities to collaborate in the future. But neither can companies afford to sacrifice the competitiveness of their divisions as stand-alone businesses. In creating corporate-level strategic flexibility, a corporate office must balance the need for divisional autonomy now with the potential need for cooperation in the future. Through an examination of four corporations--Sprint, WPP, Teradyne, and Viacom--the authors challenge traditional approaches to diversification in which a company's divisions are either related (they share resources and collaborate) or unrelated (they compete for resources and operate as stand-alone businesses). They argue that companies should adopt a dynamic approach to cooperation among divisions, enabling varying degrees of relatedness between divisions depending on strategic circumstances. The authors offer four tactics to help executives manage divisions dynamically.

  18. The Astrophysics Science Division Annual Report 2008

    NASA Technical Reports Server (NTRS)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  19. Energy Division annual progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report covers work done during FY 1983 by the staff of the Energy Division and its subcontractors and by colleagues in other Oak Ridge National Laboratory divisions working on Energy Division projects. The work can be divided into four areas: (1) analysis and assessment, (2) models and data systems, (3) research to improve the efficiency of energy use and to improve electric power transmission and distribution, and (4) research utilization. Support came principally from the US Department of Energy (DOE), the US Nuclear Regulatory Commission, and the US Department of Defense, but also from a number of other agenciesmore » and organizations. Analysis and assessment included work on (a) environmental issues, including those deriving from the preparation of environmental impact statements; (b) energy and resource analysis; and (c) emergency preparedness. The models and data systems area involved research on evaluating and developing energy, environment, and engineering simulation models and on devising large data management systems, evaluating user data requirements, and compiling data bases. Research on improving the efficiency of energy use was focused primarily on the buildings and electricity sectors. A major effort on heat pump technology, which includes both heat-activated and electrically driven systems, continues. An important aspect of all the work was research utilization. Since the Energy Division is doing applied research, results are, by definition, intended to solve problems or answer questions of DOE and other sponsors. However, there are other users, and research utilization activities include technology transfer, commercialization efforts, outreach to state and regional organizations, and, of course, information dissemination.« less

  20. 75 FR 16843 - Core Manufacturing, Multi-Plastics, Inc., Division, Sipco, Inc., Division, Including Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Manufacturing, Multi-Plastics, Inc., Division, Sipco, Inc., Division, Including Leased Workers of M-Ploy... Manufacturing, Multi-Plastics, Inc., Division and Sipco, Inc., Division, including leased workers of M-Ploy... applicable to TA-W-70,457 is hereby issued as follows: ``All workers of Core Manufacturing, Multi-Plastics...

  1. An Update on the NASA Planetary Science Division Research and Analysis Program

    NASA Astrophysics Data System (ADS)

    Bernstein, Max; Richey, Christina; Rall, Jonathan

    2015-11-01

    Introduction: NASA’s Planetary Science Division (PSD) solicits its research and analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD changed the structure of the program elements under which the majority of planetary science R&A is done. Major changes included the creation of five core research program elements aligned with PSD’s strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submission.ROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2015 submission changes: All PSD programs will continue to use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.

  2. MOLECULAR ANALYSIS OF HUMAN SPERMATOZOA: POTENTIAL FOR INFERTILITY RESEARCH

    EPA Science Inventory

    Gordon Research Conference: Mammalian Gametogenesis and Embryogenesis
    New London, CT, July 1-6, 2000

    Molecular Analysis of Human Spermatozoa:
    Potential for Infertility Research

    David Miller 1, David Dix2, Robert Reid 3, Stephen A Krawetz 3
    1Reproductive ...

  3. Metals and Ceramics Division progress report for period ending December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  4. TDM1 Regulation Determines the Number of Meiotic Divisions

    PubMed Central

    Cifuentes, Marta; Jolivet, Sylvie; Cromer, Laurence; Harashima, Hirofumi; Bulankova, Petra; Renne, Charlotte; Crismani, Wayne; Nomura, Yuko; Nakagami, Hirofumi; Sugimoto, Keiko; Schnittger, Arp; Riha, Karel; Mercier, Raphael

    2016-01-01

    Cell cycle control must be modified at meiosis to allow two divisions to follow a single round of DNA replication, resulting in ploidy reduction. The mechanisms that ensure meiosis termination at the end of the second and not at the end of first division are poorly understood. We show here that Arabidopsis thaliana TDM1, which has been previously shown to be essential for meiotic termination, interacts directly with the Anaphase-Promoting Complex. Further, mutations in TDM1 in a conserved putative Cyclin-Dependant Kinase (CDK) phosphorylation site (T16-P17) dominantly provoked premature meiosis termination after the first division, and the production of diploid spores and gametes. The CDKA;1-CYCA1.2/TAM complex, which is required to prevent premature meiotic exit, phosphorylated TDM1 at T16 in vitro. Finally, while CYCA1;2/TAM was previously shown to be expressed only at meiosis I, TDM1 is present throughout meiosis. These data, together with epistasis analysis, lead us to propose that TDM1 is an APC/C component whose function is to ensure meiosis termination at the end of meiosis II, and whose activity is inhibited at meiosis I by CDKA;1-TAM-mediated phosphorylation to prevent premature meiotic exit. This provides a molecular mechanism for the differential decision of performing an additional round of division, or not, at the end of meiosis I and II, respectively. PMID:26871453

  5. National Research Program of the Water Resources Division, U.S. Geological Survey: Fiscal Year 1988

    USGS Publications Warehouse

    Friedman, Linda C.; Donato, Christine N.

    1989-01-01

    The National Research Program (NRP) of the US Geological Survey 's Water Resources Division (WRD) had its beginnings in the late 1950 's when ' core research ' was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, ecology, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation 's water resources. The NRP is located principally in Reston, VA, Denver, CO, and Menlo Park , CA. The NRP is subdivided into six disciplines as follows: (1) Ecology; (2) Geomorphology and Sediment Transport; (3) Groundwater Chemistry; (4) Groundwater Hydrology; (5) Surface Water Chemistry; and (6) Surface Water Hydrology. The report provides current information about the NRP on an annual basis. Organized by the six research disciplines, the volume contains a summary of the problem, objective, approach, and progress for each project that was active during fiscal year 1988.

  6. R and E: Communications and Intelligent Systems Division (LC)

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn C.; Miranda, Felix A.

    2015-01-01

    This presentation is intended for the Ohio Federal Research Network's Centers of Excellence. The presentation provides an overview of the Communications and Intelligent Systems Division including current research and engineering work as well as future technology needs.

  7. Coordinated Research Projects of the IAEA Atomic and Molecular Data Unit

    NASA Astrophysics Data System (ADS)

    Braams, B. J.; Chung, H.-K.

    2011-05-01

    The IAEA Atomic and Molecular Data Unit is dedicated to the provision of databases for atomic, molecular and plasma-material interaction (AM/PMI) data that are relevant for nuclear fusion research. IAEA Coordinated Research Projects (CRPs) are the principal mechanism by which the Unit encourages data evaluation and the production of new data. Ongoing and planned CRPs on AM/PMI data are briefly described here.

  8. Physics division annual report 2005.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments ismore » the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium

  9. Cheminformatics Research at the Unilever Centre for Molecular Science Informatics Cambridge.

    PubMed

    Fuchs, Julian E; Bender, Andreas; Glen, Robert C

    2015-09-01

    The Centre for Molecular Informatics, formerly Unilever Centre for Molecular Science Informatics (UCMSI), at the University of Cambridge is a world-leading driving force in the field of cheminformatics. Since its opening in 2000 more than 300 scientific articles have fundamentally changed the field of molecular informatics. The Centre has been a key player in promoting open chemical data and semantic access. Though mainly focussing on basic research, close collaborations with industrial partners ensured real world feedback and access to high quality molecular data. A variety of tools and standard protocols have been developed and are ubiquitous in the daily practice of cheminformatics. Here, we present a retrospective of cheminformatics research performed at the UCMSI, thereby highlighting historical and recent trends in the field as well as indicating future directions.

  10. Cheminformatics Research at the Unilever Centre for Molecular Science Informatics Cambridge

    PubMed Central

    Fuchs, Julian E; Bender, Andreas; Glen, Robert C

    2015-01-01

    The Centre for Molecular Informatics, formerly Unilever Centre for Molecular Science Informatics (UCMSI), at the University of Cambridge is a world-leading driving force in the field of cheminformatics. Since its opening in 2000 more than 300 scientific articles have fundamentally changed the field of molecular informatics. The Centre has been a key player in promoting open chemical data and semantic access. Though mainly focussing on basic research, close collaborations with industrial partners ensured real world feedback and access to high quality molecular data. A variety of tools and standard protocols have been developed and are ubiquitous in the daily practice of cheminformatics. Here, we present a retrospective of cheminformatics research performed at the UCMSI, thereby highlighting historical and recent trends in the field as well as indicating future directions. PMID:26435758

  11. The distinctive cell division interactome of Neisseria gonorrhoeae.

    PubMed

    Zou, Yinan; Li, Yan; Dillon, Jo-Anne R

    2017-12-12

    Bacterial cell division is an essential process driven by the formation of a Z-ring structure, as a cytoskeletal scaffold at the mid-cell, followed by the recruitment of various proteins which form the divisome. The cell division interactome reflects the complement of different interactions between all divisome proteins. To date, only two cell division interactomes have been characterized, in Escherichia coli and in Streptococcus pneumoniae. The cell divison proteins encoded by Neisseria gonorrhoeae include FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsI, FtsW, and FtsN. The purpose of the present study was to characterize the cell division interactome of N. gonorrhoeae using several different methods to identify protein-protein interactions. We also characterized the specific subdomains of FtsA implicated in interactions with FtsZ, FtsQ, FtsN and FtsW. Using a combination of bacterial two-hybrid (B2H), glutathione S-transferase (GST) pull-down assays, and surface plasmon resonance (SPR), nine interactions were observed among the eight gonococcal cell division proteins tested. ZipA did not interact with any other cell division proteins. Comparisons of the N. gonorrhoeae cell division interactome with the published interactomes from E. coli and S. pneumoniae indicated that FtsA-FtsZ and FtsZ-FtsK interactions were common to all three species. FtsA-FtsW and FtsK-FtsN interactions were only present in N. gonorrhoeae. The 2A and 2B subdomains of FtsA Ng were involved in interactions with FtsQ, FtsZ, and FtsN, and the 2A subdomain was involved in interaction with FtsW. Results from this research indicate that N. gonorrhoeae has a distinctive cell division interactome as compared with other microorganisms.

  12. Cell Division Synchronization

    DTIC Science & Technology

    The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.

  13. The Armored and Mechanized Division Armored Cavalry Squadron

    DTIC Science & Technology

    1977-06-10

    not. You might think some of the historians were speaking today. This review will also attempt to provide a base for further research. HISTORY It is... historians believe the Chinese first used horse mounted soldiers as early as 2b00 B,C, The fighting at the siege of Troy had warrior chiefs called...34 moto -mechanized" divisions, "mobile" divisions, the "Panzer Corps," etc. It seems to be the fashio- of the times to apply a mechanical name to

  14. Mentorship programs for faculty development in academic general pediatric divisions.

    PubMed

    Takagishi, Jennifer; Dabrow, Sharon

    2011-01-01

    Introduction. Mentoring relationships have been shown to support academicians in areas of research, work/life balance, and promotion. Methods. General pediatric division chiefs accessed an electronic survey asking about mentorship relationships, their ability to create a mentorship program, and resources needed. Results. Dyadic mentorship programs were available at 53% of divisions. Peer mentorship programs were available at 27% of divisions. Overall, 84% of chiefs believed that dyadic mentorship would benefit their faculty. 91% of chiefs believed that peer mentorship would benefit their faculty. Chiefs were interested in starting peer (57%) or dyadic (55%) mentorship programs. Few divisions had a peer mentorship program available, whereas 24% already had a dyadic program. 43% of chiefs felt that they had the tools to start a program. Many tools are needed to create a program. Discussion. General pediatric division chiefs acknowledge the benefits of mentoring relationships, and some have programs in place. Many need tools to create them. Pediatric societies could facilitate this critical area of professional development.

  15. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, andmore » Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.« less

  16. RanGAP1 is a continuous marker of the Arabidopsis cell division plane

    PubMed Central

    Xu, Xianfeng Morgan; Zhao, Qiao; Rodrigo-Peiris, Thushani; Brkljacic, Jelena; He, Chao Sylvia; Müller, Sabine; Meier, Iris

    2008-01-01

    In higher plants, the plane of cell division is faithfully predicted by the preprophase band (PPB). The PPB, a cortical ring of microtubules and F-actin, disassembles upon nuclear-envelope breakdown. During cytokinesis, the expanding cell plate fuses with the plasma membrane at the cortical division site, the site of the former PPB. The nature of the “molecular memory” that is left behind by the PPB and is proposed to guide the cell plate to the cortical division site is unknown. RanGAP is the GTPase activating protein of the small GTPase Ran, which provides spatial information for nucleocytoplasmic transport and various mitotic processes in animals. Here, we show that, in dividing root cells, Arabidopsis RanGAP1 concentrates at the PPB and remains associated with the cortical division site during mitosis and cytokinesis, requiring its N-terminal targeting domain. In a fass/ton2 mutant, which affects PPB formation, RanGAP1 recruitment to the PPB site is lost, while its PPB retention is microtubule-independent. RanGAP1 persistence at the cortical division site, but not its initial accumulation at the PPB requires the 2 cytokinesis-regulating kinesins POK1 and POK2. Depletion of RanGAP by inducible RNAi leads to oblique cell walls and cell-wall stubs in root cell files, consistent with cytokinesis defects. We propose that Arabidopsis RanGAP, a continuous positive protein marker of the plant division plane, has a role in spatial signaling during plant cell division. PMID:19011093

  17. Mechanoregulation of molecular motors in flagella

    NASA Astrophysics Data System (ADS)

    Gadelha, Hermes

    2014-11-01

    Molecular motors are nano-biological machines responsible for exerting forces that drive movement in living organisms, from cargo transport to cell division and motility. Interestingly, despite the inherent complexity of many interacting motors, order and structure may arise naturally, as exemplified by the harmonic, self-organized undulatory motion of the flagellum. The real mechanisms behind this collective spontaneous oscillation are still unknown, and it is challenging task to measure experimentally the molecular motor dynamics within the flagellar structure in real time. In this talk we will explore different competing hypotheses that are capable of generating flagellar bending waves that ``resemble'' in-vitro observations, emphasizing the need for further mathematical analysis and model validation. It also highlight that this is a fertile and challenging area of inter-disciplinary research for applied mathematicians and demonstrates the importance of future observational and theoretical studies in understanding the underlying mechanics of these motile cell appendages.

  18. Biology Division. Progress report, August 1, 1982-September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-01-01

    The Biology Division is the component of the Oak Ridge National Laboratory that investigates the potential adverse health effects of energy-related substances. The body of this report provides summaries of the aims, scope and progress of the research of groups of investigators in the Division during the period of August 1, 1982, through September 30, 1983. At the end of each summary is a list of publications covering the same period (published or accepted for publication). For convenience, the summaries are assembled under Sections in accordance with the current organizational structure of the Biology Division; each Section begins with anmore » overview. It will be apparent, however, that currents run throughout the Division and that the various programs support and interact with each other.« less

  19. The complexity of divisibility.

    PubMed

    Bausch, Johannes; Cubitt, Toby

    2016-09-01

    We address two sets of long-standing open questions in linear algebra and probability theory, from a computational complexity perspective: stochastic matrix divisibility, and divisibility and decomposability of probability distributions. We prove that finite divisibility of stochastic matrices is an NP-complete problem, and extend this result to nonnegative matrices, and completely-positive trace-preserving maps, i.e. the quantum analogue of stochastic matrices. We further prove a complexity hierarchy for the divisibility and decomposability of probability distributions, showing that finite distribution divisibility is in P, but decomposability is NP-hard. For the former, we give an explicit polynomial-time algorithm. All results on distributions extend to weak-membership formulations, proving that the complexity of these problems is robust to perturbations.

  20. Research and technology, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These accomplishments exemplify the Center's varied and highly productive research efforts for 1990. The activities addressed are under the directories of: (1) aerospace systems which contains aircraft technology, full-scale aerodynamics research, information sciences, aerospace human factors research, and flight systems and simulation research divisions; (2) Dryden flight research facility which contains research engineering division; (3) aerophysics which contains aerodynamics, fluid dynamics, and thermosciences divisions; and (4) space research which contains advanced life support, space projects, earth system science, life science, and space science divisions, and search for extraterrestrial intelligence and space life sciences payloads offices.

  1. Shizuko Sei, MD | Division of Cancer Prevention

    Cancer.gov

    Dr. Shizuko Sei (formerly Shizuko Aoki) is a medical officer with over 27 years of translational and clinical research experience in the field of cancer and AIDS. After completing her pediatric oncology fellowship at NCI Center for Cancer Research (CCR), she held various positions in the CCR and Division of Cancer Treatment and Diagnosis (DCTD) before joining the DCP in July

  2. Deconstructing Calculation Methods, Part 4: Division

    ERIC Educational Resources Information Center

    Thompson, Ian

    2008-01-01

    In the final article of a series of four, the author deconstructs the primary national strategy's approach to written division. The approach to division is divided into five stages: (1) mental division using partition; (2) short division of TU / U; (3) "expanded" method for HTU / U; (4) short division of HTU / U; and (5) long division.…

  3. An Update on the NASA Planetary Science Division Research and Analysis Program

    NASA Astrophysics Data System (ADS)

    Richey, Christina; Bernstein, Max; Rall, Jonathan

    2015-01-01

    Introduction: NASA's Planetary Science Division (PSD) solicits its Research and Analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD will be changing the structure of the program elements under which the majority of planetary science R&A is done. Major changes include the creation of five core research program elements aligned with PSD's strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submissionROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2014 submission changes: All PSD programs will use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.Additional Information: Additional details will be provided on the Cassini Data Analysis Program, the

  4. Physics Education Research at the Upper Division at the University of Maine

    NASA Astrophysics Data System (ADS)

    Thompson, John

    2013-04-01

    Researchers from the University of Maine Physics Education Research Laboratory are conducting several investigations of the learning and teaching of physics beyond the introductory level. Content topics include intermediate mechanics, electronics, thermodynamics and statistical mechanics. One focus of our work is the identification and addressing of specific student difficulties with topics such as damped harmonic motion, bipolar junction transistor (BJT) circuits, work, entropy, and the Boltzmann factor. Student understanding and use of the underlying mathematics has been one important emerging theme, including definite integrals, partial derivatives, and linear differential equations. Recent work in mechanics has focused on understanding the interplay of mathematical and physical reasoning when describing damped harmonic motion, including framing and representational issues. In electronics, there has been an ongoing investigation of student understanding of the behavior of basic BJT follower and amplifier circuits as well as related issues of signal and bias. In thermal physics, student understanding of state functions, heat engines and the Carnot cycle, the First and Second Laws of thermodynamics, and the macroscopic and microscopic perspectives on entropy have been investigated. The greater content sophistication in these courses has drawn attention to the specific needs, constraints, and advantages of instructional materials tailored to the upper division. Future directions include more attention to interdisciplinary topics across mathematics, physics, and engineering in particular, as well as metacognition in the laboratory.

  5. Bibliometric analysis of original molecular biology research in anaesthesia.

    PubMed

    Schreiber, K; Girard, T; Kindler, C H

    2004-10-01

    Molecular biology has expanded the horizons of anaesthesia during the last 20 years and has led to an increase of basic science articles that are published in the specialised anaesthetic journals or originate in anaesthetic institutions. We searched for and analysed the specific features, such as year of publication, publishing journal, and country of origin, of all such molecular biology articles stored in the MEDLINE database during the period 1986-2002. We identified 1265 original articles that used molecular biology techniques; 223 (18%) of these articles were published in anaesthetic journals and 1042 (82%) articles in 556 other biomedical journals. While in the late 1980s only a few molecular biology articles were published each year by anaesthetic institutions, worldwide this number reached approximately 200 basic science articles by the end of 2002. The USA clearly dominates the field of anaesthesia with respect to molecular biology research with 839 (66%) such articles.

  6. Structures Division 1994 Annual Report

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1994 are presented.

  7. Structure formation in binary mixtures of lipids and detergents: self-assembly and vesicle division.

    PubMed

    Noguchi, Hiroshi

    2013-01-14

    Self-assembly dynamics in binary surfactant mixtures and structure changes of lipid vesicles induced by detergent solution are studied using coarse-grained molecular simulations. Disk-shaped micelles, the bicelles, are stabilized by detergents surrounding the rim of a bilayer disk of lipids. The self-assembled bicelles are considerably smaller than bicelles formed from vesicle rupture, and their size is determined by the concentrations of lipids and detergents and the interactions between the two species. The detergent-adsorption induces spontaneous curvature of the vesicle bilayer and results in vesicle division into two vesicles or vesicle rupture into worm-like micelles. The division occurs mainly via the inverse pathway of the modified stalk model. For large spontaneous curvature of the monolayers of the detergents, a pore is often opened, thereby leading to vesicle division or worm-like micelle formation.

  8. major_program | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Active Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Staff Directory | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Biometry Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. clinical_trial | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Funded Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. The Arf GAP CNT-2 regulates the apoptotic fate in C. elegans asymmetric neuroblast divisions.

    PubMed

    Singhvi, Aakanksha; Teuliere, Jerome; Talavera, Karla; Cordes, Shaun; Ou, Guangshuo; Vale, Ronald D; Prasad, Brinda C; Clark, Scott G; Garriga, Gian

    2011-06-07

    During development, all cells make the decision to live or die. Although the molecular mechanisms that execute the apoptotic program are well defined, less is known about how cells decide whether to live or die. In C. elegans, this decision is linked to how cells divide asymmetrically [1, 2]. Several classes of molecules are known to regulate asymmetric cell divisions in metazoans, yet these molecules do not appear to control C. elegans divisions that produce apoptotic cells [3]. We identified CNT-2, an Arf GTPase-activating protein (GAP) of the AGAP family, as a novel regulator of this type of neuroblast division. Loss of CNT-2 alters daughter cell size and causes the apoptotic cell to adopt the fate of its sister cell, resulting in extra neurons. CNT-2's Arf GAP activity is essential for its function in these divisions. The N terminus of CNT-2, which contains a GTPase-like domain that defines the AGAP class of Arf GAPs, negatively regulates CNT-2's function. We provide evidence that CNT-2 regulates receptor-mediated endocytosis and consider the implications of its role in asymmetric cell divisions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Claire Zhu, PhD | Division of Cancer Prevention

    Cancer.gov

    Dr. Claire Zhu is a program director in the Early Detection Research Group of the Division of Cancer Prevention at the NCI, where she coordinates the Etiologic and Early Marker Studies Program (EEMS) in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO), as well as manages a grant portfolio in early detection research. |

  17. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves.

    PubMed

    Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S

    2014-12-01

    Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved. © The Author 2014. Published by Oxford University Press on behalf of the Society for

  18. The Division of Labor in Lesbian, Gay, and Heterosexual New Adoptive Parents

    ERIC Educational Resources Information Center

    Goldberg, Abbie E.; Smith, JuliAnna Z.; Perry-Jenkins, Maureen

    2012-01-01

    Little research has investigated the division of child care and housework in adoptive or lesbian/gay parent families, yet these contexts "control for" family characteristics such as biological relatedness and parental gender differences known to be linked to family work. This study examined predictors (measured preadoption) of the division of…

  19. Division of Biological and Medical Research annual report, 1979. [Lead abstract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, M.W.

    1979-01-01

    Separate abstracts were prepared for 14 of the 20 sections included in this progress report. The other 6 sections include: introductory statements by the division director; descriptions of the animal, computer, electron microscope, and radiation support facilities; a listing of the educational activities, divisional seminars, and oral presentations by staff members; and divisional staff publications. An author index to the report is included. (ERB)

  20. Japanese Sex Differences in Preferred & Observed Divisions of Labor in the Home.

    ERIC Educational Resources Information Center

    Engel, John W.

    This research describes sex roles and divisions of labor observed in families of origin by contemporary Japanese (n=1,000) and contemporary preferences for division or sharing of family tasks. It then compares these preferences to determine whether significant differences exist between men and women in contemporary Japan. For their present and…

  1. Bulletin of the Division of Electrical Engineering, 1987-1988, volume 3, number 2

    NASA Astrophysics Data System (ADS)

    1988-05-01

    A report is provided on the activities of the Division of Electrical Engineering of the National Research Council of Canada. The Division engages in the development of standards and test procedures, and undertakes applied research in support of Canadian industry, government departments, and universities. Technology transfer and collaborative research continue to grow in importance as focuses of Division activities. The Division is comprised of three sections: the Laboratory for Biomedical Engineering, the Laboratory for Electromagnetic and Power Engineering, and the Laboratory for Intelligent Systems. An agreement has been reached to commercially exploit the realtime multiprocessor operating system Harmony. The dielectrics group has made contract research agreements with industry from both Canada and the United States. The possibility of employing a new advanced laser vision camera, which can be mounted on a robot arm in a variety of industrial applications is being explored. Potential short-term spinoffs related to intelligent wheelchairs are being sought as part of the new interlaboratory program which has as its long-term objective the development of a mobile robot for health care applications. A program in applied artificial intelligence has been established. Initiatives in collaboration with outside groups include proposals for major institutes in areas ranging from police and security research to rehabilitation research, programs to enhance Canadian industrial competence working with the Canadian Manufacturers' Association and other government departments, and approaches to the utilization of existing facilities which will make them more valuable without significant financial expenditures.

  2. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  3. Environmental Chemistry Division annual report, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, L.

    1990-01-01

    The research activities making up the programs in the Environmental Chemistry Division of the Department of Applied Science are presented. Some of the more significant accomplishments during 1989 are described and plans for 1990 are discussed briefly. Publications for the period are listed and abstracts are provided. Research objectives and principal investigators are given for each of the active programs. A list of personnel and collaborators during the past year is presented. The support distribution of FY 1989 is approximately 85% from the Department of Energy (65% Office of Health and Environmental Research), and 15% other agencies (principally from themore » Electric Power Research Institute).« less

  4. International Federation of Library Associations Annual Conference Papers. General Research Libraries Division: Parliamentary Libraries and National Libraries Sections (47th, Leipzig, East Germany, August 17-22, 1981).

    ERIC Educational Resources Information Center

    Gude, Gilbert; And Others

    This set of papers presented to the General Research Libraries Division of the International Federation of Library Associations (IFLA) during its 47th annual conference (1981) includes: "The Effect of the Introduction of Computers on Library and Research Staff," by Gilbert Gude; "Libraries as Information Service Agencies…

  5. IFLA General Conference, 1989. Division of Education and Research. Section on Education and Training; Round Table on Library History; Round Table on Research in Reading; Round Table on Continuing Professional Education. Booklet 70.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    There are 10 papers in this collection from the Division of Education and Research: (1) "The Importance of Basic Training in Marketing for Librarians and Information Professionals" (French and English versions; Rejean Savard); (2) "Information Management Education: Some Interdisciplinary Approaches" (Marianne Broadbent); (3) "Educational…

  6. The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics.

    PubMed

    Yu, Xing-Jiang; Yi, Zhaohong; Gao, Zheng; Qin, Dandan; Zhai, Yanhua; Chen, Xue; Ou-Yang, Yingchun; Wang, Zhen-Bo; Zheng, Ping; Zhu, Min-Sheng; Wang, Haibin; Sun, Qing-Yuan; Dean, Jurrien; Li, Lei

    2014-09-11

    Maternal effect genes play critical roles in early embryogenesis of model organisms where they have been intensively investigated. However, their molecular function in mammals remains largely unknown. Recently, we identified a subcortical maternal complex (SCMC) that contains four proteins encoded by maternal effect genes (Mater, Filia, Floped and Tle6). Here we report that TLE6, similar to FLOPED and MATER, stabilizes the SCMC and is necessary for cleavage beyond the two-cell stage of development. We document that the SCMC is required for formation of the cytoplasmic F-actin meshwork that controls the central position of the spindle and ensures symmetric division of mouse zygotes. We further demonstrate that the SCMC controls formation of the actin cytoskeleton specifically via Cofilin, a key regulator of F-actin assembly. Our results provide molecular insight into the physiological function of TLE6, its interaction with the SCMC and their roles in the symmetric division of the zygote in early mouse development.

  7. IFLA General Conference, 1991. Division of Education and Research: Section of Education and Training; Continuing Professional Education (RT); Section of Library Theory and Research; Library History (RT); Research in Reading (RT); Editors of Library Journals (RT). Booklet 7.

    ERIC Educational Resources Information Center

    International Federation of Library Associations and Institutions, The Hague (Netherlands).

    The 12 papers in this collection were presented at 6 sections of the Division of Education and Research: (1) "Emergence of the Asian Pacific Area and Its Impact on Education and Training of Librarians" (Maxine K. Rochester, Australia); (2) "The Cultural Aspects of Colonialism: Case Study of the Relevance of the Imported Curriculum…

  8. [Research progress on molecular genetics of forest musk deer].

    PubMed

    Jie, Hang; Zheng, Cheng-li; Wang, Jian-ming; Feng, Xiao-lan; Zeng, De-jun; Zhao, Gui-jun

    2015-11-01

    Forest musk deer is one of the large-scale farming musk deer animals with the largest population at the same time. The male musk deer can secrete valuable medicines, which has high medicinal and economic value. Due to the loss of habitat and indiscriminate hunting, the numbers of wild population specie and the distribution have been drastically reduced. Therefore, in-depth understanding of the molecular genetics progress of forest musk deer will pave a way for musk deer protection and breeding. In this review, the progress associated with the molecular marker, genetic classification, artificial breeding, musk secretion and disease in past decades were reviewed, in order to provide a theoretical basis for subsequent molecular genetic researches in forest musk deer.

  9. A Design Study to Develop Young Children's Understanding of Multiplication and Division

    ERIC Educational Resources Information Center

    Bicknell, Brenda; Young-Loveridge, Jenny; Nguyen, Nhung

    2016-01-01

    This design study investigated the use of multiplication and division problems to help 5-year-old children develop an early understanding of multiplication and division. One teacher and her class of 15 5-year-old children were involved in a collaborative partnership with the researchers. The design study was conducted over two 4-week periods in…

  10. Nutrition Frontiers E-Newsletter | Division of Cancer Prevention

    Cancer.gov

    The Nutritional Science Research Group, Division of Cancer Prevention at NCI issues a quarterly electronic newsletter, Nutrition Frontiers, that highlights emerging evidence linking diet to cancer prevention and showcases recent findings about who will likely benefit most from dietary change. |

  11. Division I Men's Basketball Scholarship: The Challenges of Being a Black Male Athlete

    ERIC Educational Resources Information Center

    Wright, Lonnie

    2015-01-01

    The Qualitative research will explore issues that interface particularly with Black student- athletes on Division 1 basketball scholarships regarding academic readiness, academic support, family support and how the experience of a Division 1 scholarship impacted their lives. The population of Black student-athletes that the focus of the research…

  12. Investigative cases and student outcomes in an upper-division cell and molecular biology laboratory course at a minority-serving institution.

    PubMed

    Knight, Jonathan D; Fulop, Rebecca M; Márquez-Magaña, Leticia; Tanner, Kimberly D

    2008-01-01

    Active-learning strategies are increasingly being integrated into college-level science courses to make material more accessible to all students and to improve learning outcomes. One active-learning pedagogy, case-based learning (CBL), was developed as a way to both enhance engagement in the material and to accommodate diverse learning styles. Yet, adoption of CBL approaches in undergraduate biology courses has been piecemeal, in part because of the perceived investment of time required. Furthermore, few CBL lesson plans have been developed specifically for upper-division laboratory courses. Here, we describe four cases that we developed and implemented for a senior cell and molecular biology laboratory course at San Francisco State University, a minority-serving institution. To evaluate the effectiveness of these modules, we used both written and verbal assessments to gauge learning outcomes and attitudinal responses of students over two semesters. Students responded positively to the new approach and seemed to meet the learning goals for the course. Most said they would take a course using CBL again. These case modules are readily adaptable to a variety of classroom settings.

  13. Investigative Cases and Student Outcomes in an Upper-Division Cell and Molecular Biology Laboratory Course at a Minority-serving Institution

    PubMed Central

    Fulop, Rebecca M.; Márquez-Magaña, Leticia; Tanner, Kimberly D.

    2008-01-01

    Active-learning strategies are increasingly being integrated into college-level science courses to make material more accessible to all students and to improve learning outcomes. One active-learning pedagogy, case-based learning (CBL), was developed as a way to both enhance engagement in the material and to accommodate diverse learning styles. Yet, adoption of CBL approaches in undergraduate biology courses has been piecemeal, in part because of the perceived investment of time required. Furthermore, few CBL lesson plans have been developed specifically for upper-division laboratory courses. Here, we describe four cases that we developed and implemented for a senior cell and molecular biology laboratory course at San Francisco State University, a minority-serving institution. To evaluate the effectiveness of these modules, we used both written and verbal assessments to gauge learning outcomes and attitudinal responses of students over two semesters. Students responded positively to the new approach and seemed to meet the learning goals for the course. Most said they would take a course using CBL again. These case modules are readily adaptable to a variety of classroom settings. PMID:19047425

  14. Asymmetric cell division requires specific mechanisms for adjusting global transcription.

    PubMed

    Mena, Adriana; Medina, Daniel A; García-Martínez, José; Begley, Victoria; Singh, Abhyudai; Chávez, Sebastián; Muñoz-Centeno, Mari C; Pérez-Ortín, José E

    2017-12-01

    Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Metals and Ceramics Division progress report for period ending June 30, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brogden, I.

    1984-09-01

    This progress report covers the research and development activities of the Metals and Ceramics Division from January 1, 1983, through June 30, 1984. The format of the report follows the organizational structure of the division. Short summaries of technical work in progress in the various experimental groups are presented in six parts. Chapter 1 deals with the research and development activities of the Engineering Materials Section, Chapter 2 with the Processing Science and Technology Section, Chapter 3 with the Materials Science Section, Chapter 4 with Project Activities, Chapter 5 with Specialized Research Facilities and Equipment, and Chapter 6 with Miscellaneousmore » Activities.« less

  16. Environmental Sciences Division annual progress report for period ending September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1994, which extended from October 1, 1993, through September 30, 1994. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to covey the scope of the work in the division. An organizational chart of staff and long-term guests who wee in ESD atmore » the end of FY 1994 is located in the final section of the report.« less

  17. Supercharger Research at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-01-21

    A researcher in the Supercharger Research Division at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory measures the blade thickness on a supercharger. Superchargers were developed at General Electric used to supply additional air to reciprocating engines. The extra air resulted in increased the engine’s performance, particularly at higher altitudes. The Aircraft Engine Research Laboratory had an entire division dedicated to superchargers during World War II. General Electric developed the supercharger in response to a 1917 request from the NACA to develop a device to enhance high-altitude flying. The supercharger pushed larger volumes of air into the engine manifold. The extra oxygen allowed the engine to operate at its optimal sea-level rating even when at high altitudes. Thus, the aircraft could maintain its climb rate, maneuverability and speed as it rose higher into the sky. NACA work on the supercharger ceased after World War II due to the arrival of the turbojet engine. The Supercharger Research Division was disbanded in October 1945 and reconstituted as the Compressor and Turbine Division.

  18. Structure-function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ

    NASA Astrophysics Data System (ADS)

    Manuse, Sylvie; Jean, Nicolas L.; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M.; Vannieuwenhze, Michael S.; Grangeasse, Christophe; Simorre, Jean-Pierre

    2016-06-01

    Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure-function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division.

  19. Biorepositories | Division of Cancer Prevention

    Cancer.gov

    Carefully collected and controlled high-quality human biospecimens, annotated with clinical data and properly consented for investigational use, are available through the Division of Cancer Prevention Biorepositories listed in the charts below. Biorepositories Managed by the Division of Cancer Prevention Biorepositories Supported by the Division of Cancer Prevention Related

  20. Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division.

    PubMed

    Ouellette, Scot P; Karimova, Gouzel; Subtil, Agathe; Ladant, Daniel

    2012-07-01

    Chlamydiae are obligate intracellular bacterial pathogens that have extensively reduced their genome in adapting to the intracellular environment. The chlamydial genome contains only three annotated cell division genes and lacks ftsZ. How this obligate intracellular pathogen divides is uncharacterized. Chlamydiae contain two high-molecular-weight (HMW) penicillin binding proteins (Pbp) implicated in peptidoglycan synthesis, Pbp2 and Pbp3/FtsI. We show here, using HMW Pbp-specific penicillin derivatives, that both Pbp2 and Pbp3 are essential for chlamydial cell division. Ultrastructural analyses of antibiotic-treated cultures revealed distinct phenotypes: Pbp2 inhibition induced internal cell bodies within a single outer membrane whereas Pbp3 inhibition induced elongated phenotypes with little internal division. Each HMW Pbp interacts with the Chlamydia cell division protein FtsK. Chlamydiae are coccoid yet contain MreB, a rod shape-determining protein linked to Pbp2 in bacilli. Using MreB-specific antibiotics, we show that MreB is essential for chlamydial growth and division. Importantly, co-treatment with MreB-specific and Pbp-specific antibiotics resulted in the MreB-inhibited phenotype, placing MreB upstream of Pbp function in chlamydial cell division. Finally, we showed that MreB also interacts with FtsK. We propose that, in Chlamydia, MreB acts as a central co-ordinator at the division site to substitute for the lack of FtsZ in this bacterium. © 2012 Blackwell Publishing Ltd.

  1. Health, Safety, and Environment Division annual report 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, C.

    1992-01-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting the responsibilities involves many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in the HSE Division often stem from these appliedmore » needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The result of these programs is to help develop better practices in occupational health and safety, radiation protection, and environmental sciences.« less

  2. Trial NCT00690924 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Trial NCT02581137 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Trial NCT01382082 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Leslie Ford, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Trial NCT01391689 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Administrative Resource Center | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Trial NCT02052908 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Trial NCT02116530 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Trial NCT01503632 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Trial NCT01793233 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Trial NCT01406769 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. 2016 News Articles | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. 2017 News Articles | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. 2015 News Articles | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. 2014 News Articles | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. 2013 News Articles | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Trial NCT01728571 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. 2018 News Articles | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Howard Parnes, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Trial NCT02782949 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Trial NCT02095145 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Trial NCT02326805 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Trial NCT01594502 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Trial NCT01238172 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Trial NCT01169259 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Trial NCT01346267 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Trial NCT01141231 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Trial NCT02112188 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Eva Szabo, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Trial NCT02002533 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Trial NCT02933489 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Trial NCT00153816 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Trial NCT00983580 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Trial NCT02743364 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Trial NCT01606124 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Trial NCT00392561 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Trial NCT01968798 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Early Detection Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Trial NCT00641147 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Cancer Biomarkers Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Nutritional Science Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Trial NCT00917735 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Trial NCT02063698 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Trial NCT01950403 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Trial NCT01781468 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Trial NCT02134925 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Trial NCT02568566 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Trial NCT02382419 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Trial NCT02273362 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Trial NCT02314156 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Trial NCT02155777 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Trial NCT02636582 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Trial NCT02780401 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Trial NCT01550783 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Trial NCT01935960 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Trial NCT02028221 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Meetings and Events | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Trial NCT02772003 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Trial NCT02598557 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Trial NCT02965703 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Trial NCT02917629 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Trial NCT01849250 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Sarah Temkin, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Shizuko Sei, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. news_and_event | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Trial NCT03063619 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Mark Sherman, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Trial NCT02123849 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Trial NCT01556243 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Trial NCT02348203 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Trial NCT02237183 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Trial NCT01824836 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Trial NCT02365480 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Clinical Trials Node | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Trial NCT02169284 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Trial NCT02521285 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Trial NCT01661764 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Trial NCT02169271 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. A research project-based and self-determined teaching system of molecular biology techniques for undergraduates.

    PubMed

    Zhang, Shuping

    2008-05-01

    Molecular biology techniques play a very important role in understanding the biological activity. Students who major in biology should know not only how to perform experiments, but also the reasons for performing them. Having the concept of conducting research by integrating various techniques is especially important. This paper introduces a research project-based and self-determined teaching system of molecular biology techniques for undergraduates. Its aim is to create an environment mimicking real research programs and to help students build up confidence in their research skills. The students are allowed to explore a set of commonly used molecular biology techniques to solve some fundamental problems about genes on their own. They find a gene of interest, write a mini-proposal, and give an oral presentation. This course provides students a foundation before entering the research laboratory and allows them to adapt easily to real research programs. Copyright © 2008 International Union of Biochemistry and Molecular Biology, Inc.

  1. 49 CFR 175.630 - Special requirements for Division 6.1 (poisonous) material and Division 6.2 (infectious...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special requirements for Division 6.1 (poisonous) material and Division 6.2 (infectious substances) materials. 175.630 Section 175.630 Transportation Other... Classification of Material § 175.630 Special requirements for Division 6.1 (poisonous) material and Division 6.2...

  2. Division Quilts: A Measurement Model

    ERIC Educational Resources Information Center

    Pratt, Sarah S.; Lupton, Tina M.; Richardson, Kerri

    2015-01-01

    As teachers seek activities to assist students in understanding division as more than just the algorithm, they find many examples of division as fair sharing. However, teachers have few activities to engage students in a quotative (measurement) model of division. Efraim Fischbein and his colleagues (1985) defined two types of whole-number…

  3. IFLA General Conference, 1992. Division of Education and Research: Editors of Library Journals (RT); Section on Research in Reading; Section on Women's Interest in Librarianship; Section on Education and Training; Continuing Professional Education (RT); Section on Library Theory and Research. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations and Institutions, London (England).

    The following 19 papers were delivered at the 1992 annual meeting of the International Federation of Library Associations and Institutions for the Division of Education and Research: (1) "Across the Frontiers: Impact of Foreign Journals in Library Science in India: A Citation Analysis" (M. A. Gopinath); (2) "Children and Reading in…

  4. Laboratory directed research and development program FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  5. Physics Division annual report 2004.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in researchmore » at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne

  6. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division.

    PubMed

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-08-25

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division.

  7. Comparative study of charge division in substituted benzene cations

    NASA Astrophysics Data System (ADS)

    Lee, Kang Taek; Sung, Jiha; Lee, Kwang Jun; Kim, Hyung Min; Han, Kyu Young; Park, Young Dong; Kim, Seong Keun

    2007-06-01

    A recently proposed phenomenon of charge division in a molecular cation [K. T. Lee et al., J. Am. Chem. Soc. 129, 2588 (2007)] was examined in a number of molecules by experiment and theory. We investigated the spatial distribution of electrostatic charge in the cation of the following benzene derivatives: n-propylbenzene (PB), 3-phenylpropionic acid (PPA), 2-phenylethyl alcohol (PEAL), and 2-phenylethylamine (PEA). A density functional theory calculation indicated that the positive charge was divided into two cationic charge cores in both conformers of PEA+, while it is localized mainly on the phenyl group in PB+, PPA+, and PEAL+. This finding was experimentally verified by the characteristic range of electronic transition of these species reflected in the fragmentation pattern of the mass spectra. The degree of charge division in PEA+ was slightly less than in the cationic conformers of L-phenylalanine in its subgroup II. The charge distribution in a phenyl-containing cation is suggested to depend on whether there exists a functional group that can act as a competing charge core against the phenyl ring.

  8. On the interrelation of multiplication and division in secondary school children

    PubMed Central

    Huber, Stefan; Fischer, Ursula; Moeller, Korbinian; Nuerk, Hans-Christoph

    2013-01-01

    Multiplication and division are conceptually inversely related: Each division problem can be transformed into as a multiplication problem and vice versa. Recent research has indicated strong developmental parallels between multiplication and division in primary school children. In this study, we were interested in (i) whether these developmental parallels persist into secondary school, (ii) whether similar developmental parallels can be observed for simple and complex problems, (iii) whether skill level modulates this relationship, and (iv) whether the correlations are specific and not driven by general cognitive or arithmetic abilities. Therefore, we assessed performance of 5th and 6th graders attending two secondary school types of the German educational system in simple and complex multiplication as well as division while controlling for non-verbal intelligence, short-term memory, and other arithmetic abilities. Accordingly, we collected data from students differing in skills levels due to either age (5th < 6th grade) or school type (general < intermediate secondary school). We observed moderate to strong bivariate and partial correlations between multiplication and division with correlations being higher for simple tasks but nevertheless reliable for complex tasks. Moreover, the association between simple multiplication and division depended on students' skill levels as reflected by school types, but not by age. Partial correlations were higher for intermediate than for general secondary school children. In sum, these findings emphasize the importance of the inverse relationship between multiplication and division which persists into later developmental stages. However, evidence for skill-related differences in the relationship between multiplication and division was restricted to the differences for school types. PMID:24133476

  9. Comparison of Concussion Rates Between NCAA Division I and Division III Men's and Women's Ice Hockey Players.

    PubMed

    Rosene, John M; Raksnis, Bryan; Silva, Brie; Woefel, Tyler; Visich, Paul S; Dompier, Thomas P; Kerr, Zachary Y

    2017-09-01

    Examinations related to divisional differences in the incidence of sports-related concussions (SRC) in collegiate ice hockey are limited. To compare the epidemiologic patterns of concussion in National Collegiate Athletic Association (NCAA) ice hockey by sex and division. Descriptive epidemiology study. A convenience sample of men's and women's ice hockey teams in Divisions I and III provided SRC data via the NCAA Injury Surveillance Program during the 2009-2010 to 2014-2015 academic years. Concussion counts, rates, and distributions were examined by factors including injury activity and position. Injury rate ratios (IRRs) and injury proportion ratios (IPRs) with 95% confidence intervals (CIs) were used to compare concussion rates and distributions, respectively. Overall, 415 concussions were reported for men's and women's ice hockey combined. The highest concussion rate was found in Division I men (0.83 per 1000 athlete-exposures [AEs]), followed by Division III women (0.78/1000 AEs), Division I women (0.65/1000 AEs), and Division III men (0.64/1000 AEs). However, the only significant IRR was that the concussion rate was higher in Division I men than Division III men (IRR = 1.29; 95% CI, 1.02-1.65). The proportion of concussions from checking was higher in men than women (28.5% vs 9.4%; IPR = 3.02; 95% CI, 1.63-5.59); however, this proportion was higher in Division I women than Division III women (18.4% vs 1.8%; IPR = 10.47; 95% CI, 1.37-79.75). The proportion of concussions sustained by goalkeepers was higher in women than men (14.2% vs 2.9%; IPR = 4.86; 95% CI, 2.19-10.77), with findings consistent within each division. Concussion rates did not vary by sex but differed by division among men. Checking-related concussions were less common in women than men overall but more common in Division I women than Division III women. Findings highlight the need to better understand the reasons underlying divisional differences within men's and women's ice hockey and the

  10. Website for the Astrochemistry Laboratory, Astrophysics Branch, Space Sciences Division

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The Astrochemistry Laboratory in the Astrophysics Branch (SSA) of the Space Sciences Division at NASA's Ames Research Center specializes in the study of extraterrestrial materials and their analogs. The staff has pioneered laboratory studies of space environments including interstellar, cometary, and planetary ices, simulations of the so-called 'Unidentified' Infrared Emission Bands and Diffuse Interstellar Bands using PAHs (Polycyclic Aromatic Hydrocarbons) and PAH-related materials, and has extensive experience with low-temperature spectroscopy and astronomical observation. Important discoveries made by the Astrochemistry Group include: (1) The recognition that polycyclic aromatic hydrocarbons and their ions are common in space; (2) The identification of a major fraction of the known molecular species frozen in interstellar/pre-cometary ices; (3) The recognition that a significant fraction of the carbon in the interstellar medium is carried by both microdiamonds and organic materials; (4) The expansion of the types of molecules expected to be synthesized in interstellar/pre-cometary ices. These could be delivered to the early Earth (or other body) and influence the origin or early evolution of life.

  11. Goddard's Astrophysics Science Division Annual Report 2013

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  12. OVERVIEW OF USEPA'S WATER SUPPLY & WATER RESOURCES DIVISION PROGRAM

    EPA Science Inventory

    The United States Environmental Protection Agency's (USEPA) Water Supply and Water Resources Division (WSWRD) conducts a wide range of research on regulated and unregulated contaminants in drinking water, water distribution systems, homeland security, source water protection, and...

  13. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to themore » molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam

  14. 2012 Gordon Research Conference on Cellular and Molecular Fungal Biology, Final Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Judith

    The Gordon Research Conference on Cellular and Molecular Fungal Biology was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genomemore » organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.« less

  15. Harnessing the crowd to accelerate molecular medicine research.

    PubMed

    Smith, Robert J; Merchant, Raina M

    2015-07-01

    Crowdsourcing presents a novel approach to solving complex problems within molecular medicine. By leveraging the expertise of fellow scientists across the globe, broadcasting to and engaging the public for idea generation, harnessing a scalable workforce for quick data management, and fundraising for research endeavors, crowdsourcing creates novel opportunities for accelerating scientific progress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The impact of computer science in molecular medicine: enabling high-throughput research.

    PubMed

    de la Iglesia, Diana; García-Remesal, Miguel; de la Calle, Guillermo; Kulikowski, Casimir; Sanz, Ferran; Maojo, Víctor

    2013-01-01

    The Human Genome Project and the explosion of high-throughput data have transformed the areas of molecular and personalized medicine, which are producing a wide range of studies and experimental results and providing new insights for developing medical applications. Research in many interdisciplinary fields is resulting in data repositories and computational tools that support a wide diversity of tasks: genome sequencing, genome-wide association studies, analysis of genotype-phenotype interactions, drug toxicity and side effects assessment, prediction of protein interactions and diseases, development of computational models, biomarker discovery, and many others. The authors of the present paper have developed several inventories covering tools, initiatives and studies in different computational fields related to molecular medicine: medical informatics, bioinformatics, clinical informatics and nanoinformatics. With these inventories, created by mining the scientific literature, we have carried out several reviews of these fields, providing researchers with a useful framework to locate, discover, search and integrate resources. In this paper we present an analysis of the state-of-the-art as it relates to computational resources for molecular medicine, based on results compiled in our inventories, as well as results extracted from a systematic review of the literature and other scientific media. The present review is based on the impact of their related publications and the available data and software resources for molecular medicine. It aims to provide information that can be useful to support ongoing research and work to improve diagnostics and therapeutics based on molecular-level insights.

  17. Marge Good, RN, MPH, OCN | Division of Cancer Prevention

    Cancer.gov

    Marge Good is a nurse consultant in the Division of Cancer Prevention where she provided support to the Community Clinical Oncology Programs (CCOP) and Minority-Based CCOPs, and now provides support to the NCI Community Oncology Research Program (NCORP). |

  18. Polarized Cell Division of Chlamydia trachomatis

    PubMed Central

    Abdelrahman, Yasser; Ouellette, Scot P.; Belland, Robert J.; Cox, John V.

    2016-01-01

    Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments. PMID:27505160

  19. Modeling Human Serum Albumin Tertiary Structure to Teach Upper-Division Chemistry Students Bioinformatics and Homology Modeling Basics

    ERIC Educational Resources Information Center

    Petrovic, Dus?an; Zlatovic´, Mario

    2015-01-01

    A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…

  20. Mentoring for population health in general practice divisions.

    PubMed

    Moss, John R; Mickan, Sharon M; Fuller, Jeffrey D; Procter, Nicholas G; Waters, Barb A; O'Rourke, Peter K

    2006-02-01

    This paper describes the implementation and evaluation of a three-way model of service development mentoring. This population health mentoring program was funded by the Commonwealth Department of Health and Ageing to enable staff from eight Divisions of General Practice in South Australia to gain a sound understanding of population health concepts relevant to their workplace. The distinguishing features of service development mentoring were that the learning was grounded within an individual's work setting and experience; there was an identified population health problem or issue confronting the Division of General Practice; and there was an expectation of enhanced organisational performance. A formal evaluation found a consensus among all learners that mentoring was a positive and worthwhile experience, where they had achieved what they had set out to do. Mentors found the model of learning agreeable and effective. Division executive officers recognised enhanced skills among their "learner" colleagues, and commented positively on the benefits to their organisations through the development of well researched and relevant projects, with the potential to improve the efficiency of their population health activities.

  1. PUBLICATIONS (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division produces and publishes highly specialized technical and scientific documents related to APTB's research. Areas of research covered include artificial intelligence, CFC destruction,...

  2. Novel division level bacterial diversity in a Yellowstone hot spring.

    PubMed

    Hugenholtz, P; Pitulle, C; Hershberger, K L; Pace, N R

    1998-01-01

    A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609-1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among > 300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (> or = 98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing delta-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These

  3. Division of Environmental Health

    Science.gov Websites

    Environmental Conservation Alaska Department of Environmental Conservation Division of Environmental Health Pesticides Applicator Certification & Training Product Registration Pesticide-Use Permits Factsheets & You are here: DEC / Division of Environmental Health All DEC offices will be closed to the public on

  4. Structural insights of Staphylococcus aureus FtsZ inhibitors through molecular docking, 3D-QSAR and molecular dynamics simulations.

    PubMed

    Ballu, Srilata; Itteboina, Ramesh; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    Filamentous temperature-sensitive protein Z (FtsZ) is a protein encoded by the FtsZ gene that assembles into a Z-ring at the future site of the septum of bacterial cell division. Structurally, FtsZ is a homolog of eukaryotic tubulin but has low sequence similarity; this makes it possible to obtain FtsZ inhibitors without affecting the eukaryotic cell division. Computational studies were performed on a series of substituted 3-arylalkoxybenzamide derivatives reported as inhibitors of FtsZ activity in Staphylococcus aureus. Quantitative structure-activity relationship models (QSAR) models generated showed good statistical reliability, which is evident from r 2 ncv and r 2 loo values. The predictive ability of these models was determined and an acceptable predictive correlation (r 2 Pred ) values were obtained. Finally, we performed molecular dynamics simulations in order to examine the stability of protein-ligand interactions. This facilitated us to compare free binding energies of cocrystal ligand and newly designed molecule B1. The good concordance between the docking results and comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) contour maps afforded obliging clues for the rational modification of molecules to design more potent FtsZ inhibitors.

  5. Fox Chase Cancer Center's Genitourinary Division: a national resource for research, innovation and patient care.

    PubMed

    Uzzo, Robert G; Horwitz, Eric M; Plimack, Elizabeth R

    2016-04-01

    Founded in 1904, Fox Chase Cancer Center remains committed to its mission. It is one of 41 centers in the country designated as a Comprehensive Cancer Center by the National Cancer Institute, is a founding member of the National Comprehensive Cancer Network, holds the magnet designation for nursing excellence, is one of the first to establish a family cancer risk assessment program, and has achieved national distinction because of the scientific discoveries made there that have advanced clinical care. Two of its researchers have won Nobel prizes. The Genitourinary Division is nationally recognized and viewed as one of the top driving forces behind the growth of Fox Chase due to its commitment to initiating and participating in clinical trials, its prolific contributions to peer-reviewed publications and presentations at scientific meetings, its innovations in therapies and treatment strategies, and its commitment to bringing cutting-edge therapies to patients.

  6. Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klobe, L.E.

    1988-12-01

    The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNLmore » by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.« less

  7. The Office of the Materials Division

    NASA Technical Reports Server (NTRS)

    Ramsey, amanda J.

    2004-01-01

    I was assigned to the Materials Division, which consists of the following branches; the Advanced Metallics Branch/5120-RMM, Ceramics Branch/5130-RMC, Polymers Branch/5150-RMP, and the Durability and Protective Coatings Branch/5160-RMD. Mrs. Pamela Spinosi is my assigned mentor. She was assisted by Ms.Raysa Rodriguez/5100-RM and Mrs.Denise Prestien/5100-RM, who are both employed by InDyne, Inc. My primary assignment this past summer was working directly with Ms. Rodriguez, assisting her with setting up the Integrated Financial Management Program (IFMP) 5130-RMC/Branch procedures and logs. These duties consisted of creating various spreadsheets for each individual branch member, which were updated daily. It was not hard to familiarize myself with these duties since this is my second summer working with Ms Rodriguez at NASA Glenn Research Center. RMC ordering laboratory, supplies and equipment for the Basic Materials Laboratory (Building 106) using the IF'MP/Purchase Card (P-card), a NASA-wide software program. I entered into the IFMP/Travel and Requisitions System, new Travel Authorizations for the 5130-RMC Civil Servant Branch Members. I also entered and completed Travel Vouchers for the 5130-RMC Ceramics Branch. I assisted in the Division Office creating new Emergency Contact list for the Materials Division. I worked with Dr. Hugh Gray, the Division Chief, and Dr. Ajay Misra, the 5130-RMC Branch Chief, on priority action items, with a close deadline, for a large NASA Proposal. Another project was working closely with Ms. Rodriguez in organizing and preparing for Dr. Ajay K. Misra's SESCDP (two year detail). This consisted of organizing files, file folders, personal information, and recording all data material onto CD's and printing all presentations for display in binders. I attended numerous Branch meetings, and observed many changes in the Branch Management organization.

  8. Environmental Toxicology and Chemistry at EPA's Western Ecology Division

    EPA Science Inventory

    The facility for the US Environmental Protection Agency’s Western Ecology Division (WED) has been involved in environmental toxicology and chemistry research since its inception in 1961 when it was the Pacific Northwest Water Laboratory. Currently, WED is one of four ecolog...

  9. New tools for investigating student learning in upper-division electrostatics

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.

    Student learning in upper-division physics courses is a growing area of research in the field of Physics Education. Developing effective new curricular materials and pedagogical techniques to improve student learning in upper-division courses requires knowledge of both what material students struggle with and what curricular approaches help to overcome these struggles. To facilitate the course transformation process for one specific content area --- upper-division electrostatics --- this thesis presents two new methodological tools: (1) an analytical framework designed to investigate students' struggles with the advanced physics content and mathematically sophisticated tools/techniques required at the junior and senior level, and (2) a new multiple-response conceptual assessment designed to measure student learning and assess the effectiveness of different curricular approaches. We first describe the development and theoretical grounding of a new analytical framework designed to characterize how students use mathematical tools and techniques during physics problem solving. We apply this framework to investigate student difficulties with three specific mathematical tools used in upper-division electrostatics: multivariable integration in the context of Coulomb's law, the Dirac delta function in the context of expressing volume charge densities, and separation of variables as a technique to solve Laplace's equation. We find a number of common themes in students' difficulties around these mathematical tools including: recognizing when a particular mathematical tool is appropriate for a given physics problem, mapping between the specific physical context and the formal mathematical structures, and reflecting spontaneously on the solution to a physics problem to gain physical insight or ensure consistency with expected results. We then describe the development of a novel, multiple-response version of an existing conceptual assessment in upper-division electrostatics

  10. On the interrelation of multiplication and division in secondary school children.

    PubMed

    Huber, Stefan; Fischer, Ursula; Moeller, Korbinian; Nuerk, Hans-Christoph

    2013-01-01

    Each division problem can be transformed into as a multiplication problem and vice versa. Recent research has indicated strong developmental parallels between multiplication and division in primary school children. In this study, we were interested in (i) whether these developmental parallels persist into secondary school, (ii) whether similar developmental parallels can be observed for simple and complex problems, (iii) whether skill level modulates this relationship, and (iv) whether the correlations are specific and not driven by general cognitive or arithmetic abilities. Therefore, we assessed performance of 5th and 6th graders attending two secondary school types of the German educational system in simple and complex multiplication as well as division while controlling for non-verbal intelligence, short-term memory, and other arithmetic abilities. Accordingly, we collected data from students differing in skills levels due to either age (5th < 6th grade) or school type (general < intermediate secondary school). We observed moderate to strong bivariate and partial correlations between multiplication and division with correlations being higher for simple tasks but nevertheless reliable for complex tasks. Moreover, the association between simple multiplication and division depended on students' skill levels as reflected by school types, but not by age. Partial correlations were higher for intermediate than for general secondary school children. In sum, these findings emphasize the importance of the inverse relationship between multiplication and division which persists into later developmental stages. However, evidence for skill-related differences in the relationship between multiplication and division was restricted to the differences for school types.

  11. Division of Forestry Information

    Science.gov Websites

    Natural Resources / Division of Forestry Division of Forestry Information Fire Information Links Menu Fire Home Fire Overview Burn Permits Current Fire Information Become an Alaskan Firewise Community Fire Department of Natural Resources - Public Information Center DNR Media Releases Public Information Center

  12. Whatever Works: A Test of the "Division of Labor" Component of Uses and Gratifications Theory.

    ERIC Educational Resources Information Center

    Carvalho, John

    The 1974 book, "The Uses of Mass Communication: Current Perspectives on Gratifications Research" introduced the concept of a "division of labor"--that certain media work better than others in meeting audience gratifications. Since the division of labor concept has not been subjected to empirical testing, a study elaborated an…

  13. Karl Krueger, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Cancer Biomarkers Funding Opportunities | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Cancer Prevention Fellowship Program | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Barry Kramer, MD, MPH | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Nadarajen Vydelingum, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Grant Izmirlian, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Lynn Sorbara, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Chemopreventive Agent Development Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Victor Kipnis, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Active Early Detection Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Paul Pinsky, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Richard Mazurchuk, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Office of the Director | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. David Nelson, MD, MPH | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Vance Berger, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Active Nutritional Science Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Nutritional Science Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Nutritional Science Funding Opportunities | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Young Kim, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Harold Seifried, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Christos Patriotis, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Active Cancer Biomarkers Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Claire Zhu, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Biometry Meetings and Events | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Mark Miller, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Elaine Trujillo, MS, RD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Altaf Mohammed, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Robert Shoemaker, PhD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Eileen Dimond, RN, MS | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Lori Minasian, MD, FACP | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. 49 CFR 173.244 - Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards...), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards (Division 6.1...

  4. 49 CFR 173.244 - Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards...), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards (Division 6.1...

  5. 49 CFR 173.244 - Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards...), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards (Division 6.1...

  6. 49 CFR 173.244 - Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards...), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards (Division 6.1...

  7. 49 CFR 173.244 - Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packaging for certain pyrophoric liquids (Division 4.2), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards...), dangerous when wet (Division 4.3) materials, and poisonous liquids with inhalation hazards (Division 6.1...

  8. Specific interactions between mycobacterial FtsZ protein and curcumin derivatives: Molecular docking and ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Fujimori, Mitsuki; Sogawa, Haruki; Ota, Shintaro; Karpov, Pavel; Shulga, Sergey; Blume, Yaroslav; Kurita, Noriyuki

    2018-01-01

    Filamentous temperature-sensitive Z (FtsZ) protein plays essential role in bacteria cell division, and its inhibition prevents Mycobacteria reproduction. Here we adopted curcumin derivatives as candidates of novel inhibitors and investigated their specific interactions with FtsZ, using ab initio molecular simulations based on protein-ligand docking, classical molecular mechanics and ab initio fragment molecular orbital (FMO) calculations. Based on FMO calculations, we specified the most preferable site of curcumin binding to FtsZ and highlighted the key amino acid residues for curcumin binding at an electronic level. The result will be useful for proposing novel inhibitors against FtsZ based on curcumin derivatives.

  9. Publications - GMC 53C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska Paleozoic through Tertiary sandstones, North Slope, Alaska Authors: Alaska Research Associates Publication through Tertiary sandstones, North Slope, Alaska: Alaska Division of Geological & Geophysical Surveys

  10. Goddard's Astrophysics Science Division Annual Report 2011

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  11. The Astrophysics Science Division Annual Report 2009

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  12. The latest progress in sugarcane molecular genetics research at the USDA-ARS, Sugarcane Research Laboratory

    USDA-ARS?s Scientific Manuscript database

    In 2005, two sugar molecular genetics tools were developed in the USDA-ARS, Southeast Area, Sugarcane Research Laboratory at Houma, LA. One is the high throughput fluorescence- and capillary electrophoregrams (CE)-based SSR genotyping tool and the other is single pollen collection and SSR genotyping...

  13. 49 CFR 1242.03 - Made by accounting divisions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Made by accounting divisions. 1242.03 Section 1242... accounting divisions. The separation shall be made by accounting divisions, where such divisions are maintained, and the aggregate of the accounting divisions reported for the quarter and for the year. ...

  14. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division

    PubMed Central

    Manor, Uri; Bartholomew, Sadie; Golani, Gonen; Christenson, Eric; Kozlov, Michael; Higgs, Henry; Spudich, James; Lippincott-Schwartz, Jennifer

    2015-01-01

    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model's feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division. DOI: http://dx.doi.org/10.7554/eLife.08828.001 PMID:26305500

  15. Purposing Division Strategy for Pharmaceutical Producer Dexa Medica in the Demanding Market

    ERIC Educational Resources Information Center

    Setiawati, Cut Irna; Wahyono, Agatha Christy

    2017-01-01

    This research aims to purpose the division strategy for a pharmaceutical producer in Kalimantan area, named Dexa Medica Samarinda. Currently, this firm is facing a competitive market condition and evolving a decline position in the market. This research uses qualitative research method by organising intensive interview to important informants so…

  16. Computational Nanotechnology at NASA Ames Research Center, 1996

    NASA Technical Reports Server (NTRS)

    Globus, Al; Bailey, David; Langhoff, Steve; Pohorille, Andrew; Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Some forms of nanotechnology appear to have enormous potential to improve aerospace and computer systems; computational nanotechnology, the design and simulation of programmable molecular machines, is crucial to progress. NASA Ames Research Center has begun a computational nanotechnology program including in-house work, external research grants, and grants of supercomputer time. Four goals have been established: (1) Simulate a hypothetical programmable molecular machine replicating itself and building other products. (2) Develop molecular manufacturing CAD (computer aided design) software and use it to design molecular manufacturing systems and products of aerospace interest, including computer components. (3) Characterize nanotechnologically accessible materials of aerospace interest. Such materials may have excellent strength and thermal properties. (4) Collaborate with experimentalists. Current in-house activities include: (1) Development of NanoDesign, software to design and simulate a nanotechnology based on functionalized fullerenes. Early work focuses on gears. (2) A design for high density atomically precise memory. (3) Design of nanotechnology systems based on biology. (4) Characterization of diamonoid mechanosynthetic pathways. (5) Studies of the laplacian of the electronic charge density to understand molecular structure and reactivity. (6) Studies of entropic effects during self-assembly. Characterization of properties of matter for clusters up to sizes exhibiting bulk properties. In addition, the NAS (NASA Advanced Supercomputing) supercomputer division sponsored a workshop on computational molecular nanotechnology on March 4-5, 1996 held at NASA Ames Research Center. Finally, collaborations with Bill Goddard at CalTech, Ralph Merkle at Xerox Parc, Don Brenner at NCSU (North Carolina State University), Tom McKendree at Hughes, and Todd Wipke at UCSC are underway.

  17. Course-based undergraduate research experiences in molecular biosciences-patterns, trends, and faculty support.

    PubMed

    Wang, Jack T H

    2017-08-15

    Inquiry-driven learning, research internships and course-based undergraduate research experiences all represent mechanisms through which educators can engage undergraduate students in scientific research. In life sciences education, the benefits of undergraduate research have been thoroughly evaluated, but limitations in infrastructure and training can prevent widespread uptake of these practices. It is not clear how faculty members can integrate complex laboratory techniques and equipment into their unique context, while finding the time and resources to implement undergraduate research according to best practice guidelines. This review will go through the trends and patterns in inquiry-based undergraduate life science projects with particular emphasis on molecular biosciences-the research-aligned disciplines of biochemistry, molecular cell biology, microbiology, and genomics and bioinformatics. This will provide instructors with an overview of the model organisms, laboratory techniques and research questions that are adaptable for semester-long projects, and serve as starting guidelines for course-based undergraduate research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Molecular markers in bladder cancer: Novel research frontiers.

    PubMed

    Sanguedolce, Francesca; Cormio, Antonella; Bufo, Pantaleo; Carrieri, Giuseppe; Cormio, Luigi

    2015-01-01

    Bladder cancer (BC) is a heterogeneous disease encompassing distinct biologic features that lead to extremely different clinical behaviors. In the last 20 years, great efforts have been made to predict disease outcome and response to treatment by developing risk assessment calculators based on multiple standard clinical-pathological factors, as well as by testing several molecular markers. Unfortunately, risk assessment calculators alone fail to accurately assess a single patient's prognosis and response to different treatment options. Several molecular markers easily assessable by routine immunohistochemical techniques hold promise for becoming widely available and cost-effective tools for a more reliable risk assessment, but none have yet entered routine clinical practice. Current research is therefore moving towards (i) identifying novel molecular markers; (ii) testing old and new markers in homogeneous patients' populations receiving homogeneous treatments; (iii) generating a multimarker panel that could be easily, and thus routinely, used in clinical practice; (iv) developing novel risk assessment tools, possibly combining standard clinical-pathological factors with molecular markers. This review analyses the emerging body of literature concerning novel biomarkers, ranging from genetic changes to altered expression of a huge variety of molecules, potentially involved in BC outcome and response to treatment. Findings suggest that some of these indicators, such as serum circulating tumor cells and tissue mitochondrial DNA, seem to be easily assessable and provide reliable information. Other markers, such as the phosphoinositide-3-kinase (PI3K)/AKT (serine-threonine kinase)/mTOR (mammalian target of rapamycin) pathway and epigenetic changes in DNA methylation seem to not only have prognostic/predictive value but also, most importantly, represent valuable therapeutic targets. Finally, there is increasing evidence that the development of novel risk assessment tools

  19. 2017 T Division Lightning Talks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, Marilyn Leann; Abeywardhana, Jayalath AMM; Adams, Colin Mackenzie

    All members of the T Division Community, students, staff members, group leaders, division management, and other interested individuals are invited to come and support the following student(s) as they present their Lightning Talks.

  20. Division: The Sleeping Dragon

    ERIC Educational Resources Information Center

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  1. Molecular ecology studies of species radiations: current research gaps, opportunities and challenges.

    PubMed

    de la Harpe, Marylaure; Paris, Margot; Karger, Dirk N; Rolland, Jonathan; Kessler, Michael; Salamin, Nicolas; Lexer, Christian

    2017-05-01

    Understanding the drivers and limits of species radiations is a crucial goal of evolutionary genetics and molecular ecology, yet research on this topic has been hampered by the notorious difficulty of connecting micro- and macroevolutionary approaches to studying the drivers of diversification. To chart the current research gaps, opportunities and challenges of molecular ecology approaches to studying radiations, we examine the literature in the journal Molecular Ecology and revisit recent high-profile examples of evolutionary genomic research on radiations. We find that available studies of radiations are highly unevenly distributed among taxa, with many ecologically important and species-rich organismal groups remaining severely understudied, including arthropods, plants and fungi. Most studies employed molecular methods suitable over either short or long evolutionary time scales, such as microsatellites or restriction site-associated DNA sequencing (RAD-seq) in the former case and conventional amplicon sequencing of organellar DNA in the latter. The potential of molecular ecology studies to address and resolve patterns and processes around the species level in radiating groups of taxa is currently limited primarily by sample size and a dearth of information on radiating nuclear genomes as opposed to organellar ones. Based on our literature survey and personal experience, we suggest possible ways forward in the coming years. We touch on the potential and current limitations of whole-genome sequencing (WGS) in studies of radiations. We suggest that WGS and targeted ('capture') resequencing emerge as the methods of choice for scaling up the sampling of populations, species and genomes, including currently understudied organismal groups and the genes or regulatory elements expected to matter most to species radiations. © 2017 John Wiley & Sons Ltd.

  2. Molecular nutrition research: the modern way of performing nutritional science.

    PubMed

    Norheim, Frode; Gjelstad, Ingrid Merethe Fange; Hjorth, Marit; Vinknes, Kathrine J; Langleite, Torgrim M; Holen, Torgeir; Jensen, Jørgen; Dalen, Knut Tomas; Karlsen, Anette S; Kielland, Anders; Rustan, Arild C; Drevon, Christian A

    2012-12-03

    In spite of amazing progress in food supply and nutritional science, and a striking increase in life expectancy of approximately 2.5 months per year in many countries during the previous 150 years, modern nutritional research has a great potential of still contributing to improved health for future generations, granted that the revolutions in molecular and systems technologies are applied to nutritional questions. Descriptive and mechanistic studies using state of the art epidemiology, food intake registration, genomics with single nucleotide polymorphisms (SNPs) and epigenomics, transcriptomics, proteomics, metabolomics, advanced biostatistics, imaging, calorimetry, cell biology, challenge tests (meals, exercise, etc.), and integration of all data by systems biology, will provide insight on a much higher level than today in a field we may name molecular nutrition research. To take advantage of all the new technologies scientists should develop international collaboration and gather data in large open access databases like the suggested Nutritional Phenotype database (dbNP). This collaboration will promote standardization of procedures (SOP), and provide a possibility to use collected data in future research projects. The ultimate goals of future nutritional research are to understand the detailed mechanisms of action for how nutrients/foods interact with the body and thereby enhance health and treat diet-related diseases.

  3. Fostering Remainder Understanding in Fraction Division

    ERIC Educational Resources Information Center

    Zembat, Ismail O.

    2017-01-01

    Most students can follow this simple procedure for division of fractions: "Ours is not to reason why, just invert and multiply." But how many really understand what division of fractions means--especially fraction division with respect to the meaning of the remainder. The purpose of this article is to provide an instructional method as a…

  4. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less

  5. Teaching Cell Division to Secondary School Students: An Investigation of Difficulties Experienced by Turkish Teachers

    ERIC Educational Resources Information Center

    Oztap, Haydar; Ozay, Esra; Oztap, Fulya

    2003-01-01

    This study examines the difficulties biology teachers face when teaching cell division in the secondary schools of the central part of the Erzurum province in Turkey. During this research, a questionnaire was distributed to a total of 36 secondary school biology teachers. Findings of the study indicate biology teachers perceive cell division as…

  6. Podcast: The Electronic Crimes Division

    EPA Pesticide Factsheets

    Sept 26, 2016. Chris Lukas, the Special Agent in Charge of the Electronic Crimes Division within the OIG's Office of Investigations talks about computer forensics, cybercrime in the EPA and his division's role in criminal investigations.

  7. A design study to develop young children's understanding of multiplication and division

    NASA Astrophysics Data System (ADS)

    Bicknell, Brenda; Young-Loveridge, Jenny; Nguyen, Nhung

    2016-12-01

    This design study investigated the use of multiplication and division problems to help 5-year-old children develop an early understanding of multiplication and division. One teacher and her class of 15 5-year-old children were involved in a collaborative partnership with the researchers. The design study was conducted over two 4-week periods in May-June and October-November. The focus in this article is on three key aspects of classroom teaching: instructional tasks, the use of representations, and discourse, including the mathematics register. Results from selected pre- and post-assessment tasks within a diagnostic interview showed that there were improvements in addition and subtraction as well as multiplication and division, even though the teaching had used multiplication and division problems. Students made progress on all four operational domains, with effect sizes ranging from approximately two thirds of a standard deviation to 2 standard deviations. Most of the improvement in students' number strategies was in moving from `counting all' to `counting on' and `skip counting'. The findings challenge the idea that learning experiences in addition and subtraction should precede those in multiplication and division as suggested in some curriculum documents.

  8. Capturing Children's Multiplication and Division Stories

    ERIC Educational Resources Information Center

    McCormick, Kelly K.; Essex, N. Kathryn

    2017-01-01

    This article reports on a study in which researchers asked children to "make up as story and a picture about marbles for this number sentence: 3 x 5 = 15." Students in this study came from pre - dominantly low- to average-income families living in three distinct geographical areas within the United States. A similar division task was…

  9. Altaf Mohammed, PhD | Division of Cancer Prevention

    Cancer.gov

    Dr. Altaf Mohammed serves as a Program Director and COR for the Chemopreventive Agent Development Research Group (CADRG), Division of Cancer Prevention (DCP), National Cancer Institute (NCI). Dr. Mohammed obtained his Ph.D. in Microbiology from India before moving to the Department of Medicine at University of Oklahoma Health Sciences Center (OUHSC) in Oklahoma City for a

  10. Health and Safety Research Division: Progress report, October 1, 1985-March 31, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, P.J.

    1987-09-01

    This report summarizes the progress in our programs for the period October 1, 1985, through March 31, 1987. The division's presentations and publications represented important contributions on the forefronts of many fields. Eleven invention disclosures were filed, two patent applications submitted, and one patent issued. The company's transfers new technologies to the private sector more efficiently than in the past. The division's responsibilities to DOE under the Uranium Mill Tailings Remedial Action (UMTRA) program includes inclusion recommendations for 3100 properties. The nuclear medicine program developed new radiopharmaceuticals and radionuclide generators through clinical trials with some of our medical cooperatives. Twomore » major collaborative indoor air quality studies and a large epidemiological study of drinking water quality and human health were completed. ORNL's first scanning tunneling microscope (STM) has achieved single atom resolution and has produced some of the world's best images of single atoms on the surface of a silicon crystal. The Biological and Radiation Physics Section, designed and constructed a soft x-ray spectrometer which has exhibited a measuring efficiency that is 10,000 times higher than other equipment. 1164 refs.« less

  11. Sustainable production of wood and non-wood forest products: Proceedings of IUFRO Division 5 Research Groups 5.11 and 5.12, Rotorua, New Zealand, March 11–15, 2003.

    Treesearch

    E.M. Donoghue; G.L. Benson; J.L. Chamberlain

    2004-01-01

    This proceedings is a collection of 18 papers and extended abstracts based on talks presented at the International Union of Forest Research Organizations (IUFRO) All Division 5 Conference, held in Rotorua, New Zealand, March 11–15, 2003. This conference emphasized the many ways that forest products research can contribute to sustainable choices in forest management....

  12. Physics Division progress report, January 1, 1984-September 30, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, W.E.

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear andmore » particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.« less

  13. Recent activities of the Seismology Division Early Career Representative(s)

    NASA Astrophysics Data System (ADS)

    Agius, Matthew; Van Noten, Koen; Ermert, Laura; Mai, P. Martin; Krawczyk, CharLotte

    2016-04-01

    The European Geosciences Union is a bottom-up-organisation, in which its members are represented by their respective scientific divisions, committees and council. In recent years, EGU has embarked on a mission to reach out for its numerous 'younger' members by giving awards to outstanding young scientists and the setting up of Early Career Scientists (ECS) representatives. The division representative's role is to engage in discussions that concern students and early career scientists. Several meetings between all the division representatives are held throughout the year to discuss ideas and Union-wide issues. One important impact ECS representatives have had on EGU is the increased number of short courses and workshops run by ECS during the annual General Assembly. Another important contribution of ECS representatives was redefining 'Young Scientist' to 'Early Career Scientist', which avoids discrimination due to age. Since 2014, the Seismology Division has its own ECS representative. In an effort to more effectively reach out for young seismologists, a blog and a social media page dedicated to seismology have been set up online. With this dedicated blog, we'd like to give more depth to the average browsing experience by enabling young researchers to explore various seismology topics in one place while making the field more exciting and accessible to the broader community. These pages are used to promote the latest research especially of young seismologists and to share interesting seismo-news. Over the months the pages proved to be popular, with hundreds of views every week and an increased number of followers. An online survey was conducted to learn more about the activities and needs of early career seismologists. We present the results from this survey, and the work that has been carried out over the last two years, including detail of what has been achieved so far, and what we would like the ECS representation for Seismology to achieve. Young seismologists are

  14. 2016 T Division Lightning Talks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, Marilyn Leann; Adams, Luke Clyde; Ferre, Gregoire Robing

    These are the slides for all of the 2016 T Division lightning talks. There are 350 pages worth of slides from different presentations, all of which cover different topics within the theoretical division at Los Alamos National Laboratory (LANL).

  15. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    PubMed

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  16. Educational challenges of molecular life science: Characteristics and implications for education and research.

    PubMed

    Tibell, Lena A E; Rundgren, Carl-Johan

    2010-01-01

    Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life-often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from "pure sciences," such as math, chemistry, and physics, through "applied sciences," such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow's teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences.

  17. Physics division. Progress report for period ending September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, S.J.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Divisionmore » have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, {sup 69}As and {sup 70}As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as {sup 17,18}F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research.« less

  18. Challenges and opportunities in international molecular cancer prevention research: An ASPO Molecular Epidemiology and the Environment and International Cancer Prevention Interest Groups Report.

    PubMed

    Epplein, Meira; Bostick, Roberd M; Mu, Lina; Ogino, Shuji; Braithwaite, Dejana; Kanetsky, Peter A

    2014-11-01

    The International Agency for Research on Cancer estimates that over half of the new cancer cases and almost two-thirds of the cancer deaths in 2012 occurred in low and middle income countries. To discuss the challenges and opportunities to reducing the burden of cancer worldwide, the Molecular Epidemiology and the Environment and the International Issues in Cancer Special Interest Groups joined forces to hold a session during the 38th Annual Meeting of the American Society of Preventive Oncology (March 2014, Arlington, Virginia). The session highlighted three topics of particular interest to molecular cancer prevention researchers working internationally, specifically: 1) biomarkers in cancer research; 2) environmental exposures and cancer; and 3) molecular pathological epidemiology. A major factor for successful collaboration illuminated during the discussion was the need for strong, committed, and reliable international partners. A key element of establishing such relationships is to thoroughly involve individual international collaborators in the development of the research question; engaged international collaborators are particularly motivated to champion and shepherd the project through all necessary steps, including issues relating to institutional review boards, political sensitivity, laboratory-based assays, and tumor subtyping. Also essential is allotting time for the building, maintaining, and investing in such relationships so that successful international collaborations may take root and bloom. While there are many challenges inherent to international molecular cancer research, the opportunities for furthering the science and prevention of cancer worldwide are great, particularly at this time of increasing cancer incidence and prevalence in low and middle income countries. ©2014 American Association for Cancer Research.

  19. A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division.

    PubMed

    Nelissen, Hilde; Rymen, Bart; Jikumaru, Yusuke; Demuynck, Kirin; Van Lijsebettens, Mieke; Kamiya, Yuji; Inzé, Dirk; Beemster, Gerrit T S

    2012-07-10

    Plant growth rate is largely determined by the transition between the successive phases of cell division and expansion. A key role for hormone signaling in determining this transition was inferred from genetic approaches and transcriptome analysis in the Arabidopsis root tip. We used the developmental gradient at the maize leaf base as a model to study this transition, because it allows a direct comparison between endogenous hormone concentrations and the transitions between dividing, expanding, and mature tissue. Concentrations of auxin and cytokinins are highest in dividing tissues, whereas bioactive gibberellins (GAs) show a peak at the transition zone between the division and expansion zone. Combined metabolic and transcriptomic profiling revealed that this GA maximum is established by GA biosynthesis in the division zone (DZ) and active GA catabolism at the onset of the expansion zone. Mutants defective in GA synthesis and signaling, and transgenic plants overproducing GAs, demonstrate that altering GA levels specifically affects the size of the DZ, resulting in proportional changes in organ growth rates. This work thereby provides a novel molecular mechanism for the regulation of the transition from cell division to expansion that controls organ growth and size. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division, April--June 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  1. The NIAID Division of AIDS enterprise information system: integrated decision support for global clinical research programs

    PubMed Central

    Gupta, Nitin; Varghese, Suresh; Virkar, Hemant

    2011-01-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Division of AIDS (DAIDS) Enterprise Information System (DAIDS-ES) is a web-based system that supports NIAID in the scientific, strategic, and tactical management of its global clinical research programs for HIV/AIDS vaccines, prevention, and therapeutics. Different from most commercial clinical trials information systems, which are typically protocol-driven, the DAIDS-ES was built to exchange information with those types of systems and integrate it in ways that help scientific program directors lead the research effort and keep pace with the complex and ever-changing global HIV/AIDS pandemic. Whereas commercially available clinical trials support systems are not usually disease-focused, DAIDS-ES was specifically designed to capture and incorporate unique scientific, demographic, and logistical aspects of HIV/AIDS treatment, prevention, and vaccine research in order to provide a rich source of information to guide informed decision-making. Sharing data across its internal components and with external systems, using defined vocabularies, open standards and flexible interfaces, the DAIDS-ES enables NIAID, its global collaborators and stakeholders, access to timely, quality information about NIAID-supported clinical trials which is utilized to: (1) analyze the research portfolio, assess capacity, identify opportunities, and avoid redundancies; (2) help support study safety, quality, ethics, and regulatory compliance; (3) conduct evidence-based policy analysis and business process re-engineering for improved efficiency. This report summarizes how the DAIDS-ES was conceptualized, how it differs from typical clinical trial support systems, the rationale for key design choices, and examples of how it is being used to advance the efficiency and effectiveness of NIAID's HIV/AIDS clinical research programs. PMID:21816958

  2. The NIAID Division of AIDS enterprise information system: integrated decision support for global clinical research programs.

    PubMed

    Kagan, Jonathan M; Gupta, Nitin; Varghese, Suresh; Virkar, Hemant

    2011-12-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Division of AIDS (DAIDS) Enterprise Information System (DAIDS-ES) is a web-based system that supports NIAID in the scientific, strategic, and tactical management of its global clinical research programs for HIV/AIDS vaccines, prevention, and therapeutics. Different from most commercial clinical trials information systems, which are typically protocol-driven, the DAIDS-ES was built to exchange information with those types of systems and integrate it in ways that help scientific program directors lead the research effort and keep pace with the complex and ever-changing global HIV/AIDS pandemic. Whereas commercially available clinical trials support systems are not usually disease-focused, DAIDS-ES was specifically designed to capture and incorporate unique scientific, demographic, and logistical aspects of HIV/AIDS treatment, prevention, and vaccine research in order to provide a rich source of information to guide informed decision-making. Sharing data across its internal components and with external systems, using defined vocabularies, open standards and flexible interfaces, the DAIDS-ES enables NIAID, its global collaborators and stakeholders, access to timely, quality information about NIAID-supported clinical trials which is utilized to: (1) analyze the research portfolio, assess capacity, identify opportunities, and avoid redundancies; (2) help support study safety, quality, ethics, and regulatory compliance; (3) conduct evidence-based policy analysis and business process re-engineering for improved efficiency. This report summarizes how the DAIDS-ES was conceptualized, how it differs from typical clinical trial support systems, the rationale for key design choices, and examples of how it is being used to advance the efficiency and effectiveness of NIAID's HIV/AIDS clinical research programs.

  3. Grant R01CA124481 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Grant U01CA200462 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Grant R21CA182941 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Grant R01AT005295 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Grant R01CA205608 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Grant R01AI093723 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grant R03CA186218 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Grant R01CA164782 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Grant R03CA195143 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Grant U01AG029824 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Grant UG1CA189873 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Grant P50AT002776 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Grant R21CA186853 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Grant R01CA204378 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Grant R01CA163683 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Grant U54CA163059 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Grant U01CA163056 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Grant R21CA191761 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Grant R21CA190021 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Grant R21CA174594 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Grant U01CA200495 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Grant U01CA213330 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Grant R21CA182861 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Grant R03CA180539 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Grant R01CA154489 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Grant R01CA155297 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Grant R21CA185460 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Grant R21CA184788 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Grant R01CA140605 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Grant R03CA176799 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Grant R03CA171661 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Grant R21CA174541 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Grant R01CA080946 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Grant R01CA204345 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Grant R01CA166557 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Grant U01CA200468 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Grant R01CA190092 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Grant R21CA196954 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.