Science.gov

Sample records for molecular research division

  1. Materials and Molecular Research Division annual report 1980

    SciTech Connect

    Not Available

    1981-06-01

    Progress made in the following research areas is reported: materials sciences (metallurgy and ceramics, solid state physics, materials chemistry); chemical sciences (fundamental interactions, processes and techniques); nuclear sciences; fossil energy; advanced isotope separation technology; energy storage; magnetic fusion energy; and nuclear waste management.

  2. Environmental Research Division: fundamental molecular physics and chemistry. Annual report, January-December 1983. Part I

    SciTech Connect

    Not Available

    1985-03-01

    Research progress is reported in the following areas: (1) photoionization of radicals or excited states; (2) molecular spectroscopy by resonant multiphoton ionization; (3) studies conducted with the synchrotron radiation facility at the National Bureau of Standards; (4) theoretical studies on molecular photoabsorption; (5) analysis of photoabsorption spectra of open-shell atoms; (6) the electron energy-loss spectra of molecules; and (7) cross sections and stopping powers. Items have been individually abstracted for the data base. (ACR)

  3. Radiological and Environmental Research Division annual report, October 1979-September 1980: fundamental molecular physics and chemistry

    SciTech Connect

    Inokuti, Mitio; Dehmer, P. M.; Pratt, S. T.; Poliakoff, E. D.; Dehmer, J. L.; Stockbauer, Roger; Dill, Dan; Parr, A. C.; Jackson, K. H.; Zare, R. N.; Person, J. C.; Nicole, P. P.; Fowler, D. E.; Codling, K.; West, J. B.; Ederer, D. L.; Cole, B. E.; Loomba, D.; Wallace, Scott; Swanson, J. R.; Poliakoff, E. D.; Spence, David; Chupka, W. A.; Stevens, C. M.; Shyn, W. T.; Sharp, W. E.; Kim, Y. K.; Eggarter, E.; Baer, T.; Hanson, J. D.; Shimamura, Isao; Dillon, Michael A.

    1981-09-01

    Research is reported on the physics and chemistry of atoms, ions, and molecules, especially their interactions with external agents such as photons and electrons. Individual items from the report were prepared separately for the data base. (GHT)

  4. 2008 Research Portfolio: Research & Development Division

    ERIC Educational Resources Information Center

    Educational Testing Service, 2008

    2008-01-01

    This document describes the breadth of the research being conducted in 2008 by the Research and Development Division at Educational Testing Service (ETS). The research described falls into three large categories: (1) Research supported by the ETS research allocation; (2) Research funded by testing programs at ETS; and (3) Research funded by…

  5. Pilotless Aircraft Research Division

    NASA Technical Reports Server (NTRS)

    1950-01-01

    Technician D.A. Dereng examines power plug in 1/10-scale model of Northrop Snark missile with Deacon booster at Wallops, November 1950. Joseph Shortal described the missile as follows: 'The Snark was to be the Nation's first intercontinental strategic missile and it was to serve as an interim weapon while ballistic missiles were under development. The Snark first attained its design range of 5,000 miles on October 31, 1957, and became operational in April 1959.' The NACA research program based on Northrup's 'need for rocket-model tests of the Snark....' 'Although the Snark was essentially a subsonic missile, one flight plan called for the missile to attain transonic speeds in a final dive on its target from high altitude. The Air Force requested a free-flight program by the rocket-model technique on March 23, 1950 and the NACA issued RA 1564 on April 17, 1950, to cover the investigation.' 'The purpose of the investigation was 'to determine the drag, roll, and pitch characteristics at transonic and low supersonic velocities.' From four to six 1/12-scale models, to be built by Northrop Aircraft Inc., were authorized. Actually the models were 1/10-scale and eight models were tested....' 'The first model was launched on November 15, 1950 and the last on June 4, 1954. All flights were successful and were reported.' Excerpts from Joseph Shortal's history of Wallops Station.

  6. Fundamental molecular physics and chemistry. Radiological and Environmental Research Division annual report, October 1981-December 1982. Pt. 1

    SciTech Connect

    Not Available

    1983-12-01

    This document is the twelfth Annual Report of our Fundamental Molecular Physics and Chemistry Program. Scientifically, the work of the program deals with aspects of the physics and chemistry of molecules related to their interactions with photons, electrons, and other external agents. We chose these areas of study in view of our matic goals; that is to say, we chose them so that the eventual outcome of our work meets some of the needs of the US Department of Energy (DOE) and of other government agencies that support our research. First, we endeavor to determine theoretically and experimentally cross sections for electron and photon interactions with molecules, because those cross sections are indispensable for detailed microscopic analyses of the earliest processes of radiation action on any molecular substance, including biological materials. Those analyses in turn provide a sound basis for radiology and radiation dosimetry. Second, we study the spectroscopy of certain molecules and of small clusters of molecules because this topic is fundamental to the full understanding of atmospheric-pollutant chemistry.

  7. Ecological Research Division, Marine Research Program

    SciTech Connect

    Not Available

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

  8. Environmental Research Division technical progress report: January 1986--October 1987

    SciTech Connect

    Not Available

    1988-07-01

    Technical process in the various research activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1986-1987. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Fundamental Molecular Physics and Chemistry, and Organic Geochemistry and Environmental Instrumentation Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter. Individual projects under each division are processed separately for the data bases.

  9. Research Networks Map | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention supports major scientific collaborations and research networks at more than 100 sites across the United States.  Five Major Programs' sites are shown on this map. | The Division of Cancer Prevention supports major scientific collaborations and research networks at more than 100 sites across the United States.

  10. Guide to the Division of Research Programs.

    ERIC Educational Resources Information Center

    National Endowment for the Humanities (NFAH), Washington, DC.

    This brief guide to the Research Programs Division of the National Endowment for the Humanities covers basic information, describes programs, and summarizes policies and procedures. An introductory section describes the division and its mission to encourage the development and dissemination of significant knowledge and scholarship in the…

  11. Environmental Research Division technical progress report, January 1984-December 1985

    SciTech Connect

    Not Available

    1986-05-01

    Technical progress in the various research and assessment activities of Argonne National Laboratory's Environmental Research Division is reported for the period 1984 to 1985. Textual, graphic, and tabular information is used to briefly summarize (in separate chapters) the work of the Division's Atmospheric Physics, Environmental Effects Research, Environmental Impacts, Fundamental Molecular Physics and Chemistry, and Waste Management Programs. Information on professional qualifications, awards, and outstanding professional activities of staff members, as well as lists of publications, oral presentations, special events organized, and participants in educational programs, are provided in appendices at the end of each chapter.

  12. Acoustics Division recent accomplishments and research plans

    NASA Technical Reports Server (NTRS)

    Clark, L. R.; Morgan, H. G.

    1986-01-01

    The research program currently being implemented by the Acoustics Division of NASA Langley Research Center is described. The scope, focus, and thrusts of the research are discussed and illustrated for each technical area by examples of recent technical accomplishments. Included is a list of publications for the last two calendar years. The organization, staff, and facilities are also briefly described.

  13. Energy Technology Division research summary - 1999.

    SciTech Connect

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  14. Energy Technology Division research summary -- 1994

    SciTech Connect

    Not Available

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  15. Energy Technology Division research summary 1997.

    SciTech Connect

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  16. 2010-11 Research Portfolio: Research & Development Division

    ERIC Educational Resources Information Center

    Educational Testing Service, 2010

    2010-01-01

    This document describes the breadth of the research that the ETS (Educational Testing Service) Research & Development division is conducting in 2010. This portfolio will be updated in early 2011 to reflect changes to existing projects and new projects that were added after this document was completed. The research described in this portfolio falls…

  17. Engineering Research Division publication report, calendar year 1980

    SciTech Connect

    Miller, E.K.; Livingston, P.L.; Rae, D.C.

    1980-06-01

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented.

  18. Molecular Research in Aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular research and biotechnology have long been fields of study with applications useful to aquaculture and other animal sciences. Molecular Research in Aquaculture looks to provide an understanding of molecular research and its applications to the aquaculture industry in a format that allows in...

  19. A Division of Research in an Academic Clinical Department.

    ERIC Educational Resources Information Center

    Traystman, Richard J.

    1982-01-01

    Discusses in general the importance of a research division, whether basic or clinical, in an academic setting and factors to consider in establishing one. Uses John Hopkins' newly created research division for Anesthesiology and Critical Care Medicine to specifically address funding and intra- and interdepartmental clinical research programs. (DC)

  20. High energy physics division semiannual report of research activities

    SciTech Connect

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. )

    1991-08-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1991--June 30, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  1. Division of Biological and Medical Research annual technical report 1982

    SciTech Connect

    Rosenthal, M.W.

    1983-05-01

    This report summarizes research during 1982 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Carcinogenesis address mechanisms of chemical and radiation carcinogenesis including the processes of tumor initiation and promotion. The studies employ rat liver and mouse skin models as well as human rodent cell culture systems. The use of liposomes for metal mobilization is also explored. Low Level Radiation studies include delineation of the hematopoietic and other responses of dogs to continuous low level gamma irradiation, comparison of lifetime effects in mice of low level neutron and gamma irradiation, and study of the genetic effects of high LET radiation. Molecular Biology research develops two-dimensional electrophoresis systems for diagnosis and detection of cancer and other diseases. Fundamental structural and biophysical investigations of immunoglobulins and other key proteins are included, as are studies of cell growth, and of molecular and cellular effects of solar uv light. Research in Toxicology uses cellular, physiological, whole animal, and chronobiological end points and chemical separations to elucidate mechanisms and evaluate hazards of coal conversion by-products, actinides, and toxic metals. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies.

  2. CPFP Summer Curriculum: Molecular Prevention Course | Division of Cancer Prevention

    Cancer.gov

    This Cancer Prevention Fellowship Program (CPFP) one-week course on molecular aspects of cancer prevention follows the Principles and Practice of Cancer Prevention and Control course. It provides a strong background about molecular biology and genetics of cancer, and an overview of cutting-edge research and techniques in the fields of molecular epidemiology, biomarkers, multi-omic, and translational research. The following topics will be typically presented: |

  3. Biomedical Research Division significant accomplishments for FY 1983

    NASA Technical Reports Server (NTRS)

    Martello, N. V.

    1984-01-01

    Various research and technology activities of Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, human behavior and performance, general biomedical research, and gravitational biology.

  4. Division of Biological and Medical Research annual technical report, 1981

    SciTech Connect

    Rosenthal, M.W.

    1982-06-01

    This report summarizes research during 1981 in the Division of Biological and Medical Research, Argonne National Laboratory. Studies in Low Level Radiation include comparison of lifetime effects in mice of low level neutron and gamma irradiation, delineation of the responses of dogs to continuous low level gamma irradiation, elucidation of mechanisms of radiation damage and repair in mammalian cells, and study of the genetic effects of high LET radiations. Carcinogenesis research addresses mechanisms of tumor initiation and promotion in rat liver, chemical carcinogenesis in cultured mammalian cells, and molecular and genetic mechanisms of chemical and ultraviolet mutagenesis in bacteria. Research in Toxicology uses a variety of cellular, whole animal, and chronobiological end points, chemical separations, and statistical models to evaluate the hazards and mechanisms of actions of metals, coal gasification by products, and other energy-related pollutants. Human Protein Index studies develop two-dimensional electrophoresis systems for diagnosis and detection of cancer and other disease. Biophysics research includes fundamental structural and biophysical investigations of immunoglobulins and key biological molecules using NMR, crystallographic, and x-ray and neutron small-angle scattering techniques. The final sections cover support facilities, educational activities, seminars, staff talks, staff, and funding agencies.

  5. The Space Electronics Division: Research for Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video gives an overview of work being done by the different branches of the Space Electronics Division at LeRC. The video highlights electron beam, solid state, high speed circuit design, and high frequency communication research.

  6. Engineering Research Division report on reports: calendar year 1979. [LLL

    SciTech Connect

    Gardner, C.L.; Johnston, S.J.

    1980-03-01

    A bibliography of publications of members of the Engineering Research Division of the Electronics Engineering Department is presented for 1979. Abstracts for 148 publications are included, along with author and keywork indexes. (RWR)

  7. Accelerator and Fusion Research Division 1989 summary of activities

    SciTech Connect

    Not Available

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  8. Division of Biological and Medical Research annual research summary, 1983

    SciTech Connect

    Barr, S.H.

    1984-08-01

    This research summary contains brief descriptions of research in the following areas: (1) mechanisms of hepatocarcinogenesis; (2) role of metals in cocarcinogenesis and the use of liposomes for metal mobilization; (3) control of mutagenesis and cell differentiation in cultured cells by tumor promoters; (4) radiation effects in mammalian cells; (5) radiation carcinogenesis and radioprotectors; (6) life shortening, tumor induction, and tissue dose for fission-neutron and gamma-ray irradiations; (7) mammalian genetics and biostatistics; (8) radiation toxicity studies; (9) hematopoiesis in chronic toxicity; (10) molecular biology studies; (11) chemical toxicology; (12) carcinogen identification and metabolism; (13) metal metabolism and toxicity; and (14) neurobehavioral chronobiology. (ACR)

  9. RESEARCH ACTIVITIES AT THE US EPA'S GULF ECOLOGY DIVISION

    EPA Science Inventory

    The purpose of this talk was to present an overview of research activities at the US EPA's Office of Research and Development, Gulf Ecology Division located on Pensacola Beach, Florida. The talk was organized into three major sections. The first section covered my educational b...

  10. Division of Computer Research Summary of Awards. Fiscal Year 1984.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Mathematical and Physical Sciences.

    Provided in this report are summaries of grants awarded by the National Science Foundation Division of Computer Research in fiscal year 1984. Similar areas of research are grouped (for the purposes of this report only) into these major categories: (1) computational mathematics; (2) computer systems design; (3) intelligent systems; (4) software…

  11. Research and technology activities at Ames Research Center's Biomedical Research Division

    NASA Technical Reports Server (NTRS)

    Martello, N.

    1985-01-01

    Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.

  12. Division of Biological and Medical Research research summary 1984-1985

    SciTech Connect

    Barr, S.H.

    1985-08-01

    The Division of Biological and Medical Research at Argonne National Laboratory conducts multidisciplinary research aimed at defining the biological and medical hazards to man from energy technologies and new energy options. These technically oriented studies have a strong base in fundamental research in a variety of scientific disciplines, including molecular and cellular biology, biophysics, genetics, radiobiology, pharmacology, biochemistry, chemistry, environmental toxicology, and epidemiology. This research summary is organized into six parts. The first five parts reflect the Divisional structure and contain the scientific program chapters, which summarize the activities of the individual groups during the calendar year 1984 and the first half of 1985. To provide better continuity and perspective, previous work is sometimes briefly described. Although the summaries are short, efforts have been made to indicate the range of research activities for each group.

  13. Chemical Engineering Division research highlights, 1979

    SciTech Connect

    Burris, L.; Webster, D. S.; Barney, D. L.; Cafasso, F. A.; Steindler, M. J.

    1980-06-01

    In 1979, CEN conducted research and development in the following areas: (1) high-temperature, rechargeable lithium/iron sulfide batteries for electric vehicles and electric utility load leveling; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) molten carbonate fuel cells for use by electric utilities; (4) coal technology - mainly fluidized-bed combustion of coal in the presence of SO/sub 2/ sorbent of limestone; (5) heat- and seed- recovery technology for open-cycle magnetohydrodynamic systems; (6) solar energy collectors and thermal energy storage; (7) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (8) fuel cycle technology - reprocessing of nuclear fuels, management of nuclear wastes, geologic migration studies, and proof-of-breeding studies for the Light Water Breeder Reactor; (9) magnetic fusion research - lithium processing technology and materials research; and (10) basic energy sciences - homogeneous catalysis, thermodynamics of inorganic and organic materials, environmental chemistry, electrochemistry, and physical properties of salt vapors. Separate abstracts were prepared for each of these areas.

  14. Earth Sciences Division Research Summaries 2006-2007

    SciTech Connect

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology

  15. Health and Safety Research Division progress report for the period April 1, 1990--September 30, 1991

    SciTech Connect

    Kaye, S.V.

    1992-03-01

    This is a brief progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology including Measurement Applications and Development, Pollutant Assessments, Measurement Systems Research, Dosimetry Applications Research, Metabolism and Dosimetry Research and Nuclear Medicine. Biological and Radiation Physics including Atomic, Molecular, and High Voltage Physics, Physics of Solids and Macromolecules, Liquid and Submicron Physics, Analytic Dosimetry and Surface Physics and Health Effects. Chemical Physics including Molecular Physics, Photophysics and Advanced Monitoring Development. Biomedical and Environmental Information Analysis including Human Genome and Toxicology, Chemical Hazard Evaluation and Communication, Environmental Regulations and Remediation and Information Management Technology. Risk Analysis including Hazardous Waste.

  16. Accelerator & Fusion Research Division: 1993 Summary of activities

    SciTech Connect

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  17. Accelerator and Fusion Research Division: 1993 Summary of activities

    NASA Astrophysics Data System (ADS)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  18. Environmental Sciences Division: Summaries of research in FY 1996

    SciTech Connect

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  19. AN OVERVIEW OF PATHOGEN RESEARCH IN THE MICROBIOLOGICAL AND CHEMICAL EXPOSURE ASSESSMENT RESEARCH DIVISION

    EPA Science Inventory

    The Microbiological and Chemical Exposure Assessment Research Division of the EPA Office of Research and Development's National Exposure Research Laboratory has a robust in-house research program aimed at developing better occurrence and exposure methods for waterborne pathogens....

  20. NEAR ROADWAY RESEARCH IN THE ATMOSPHERIC MODELING DIVISION

    EPA Science Inventory

    This is a presentation to the CRC Mobile Source Air Toxics Workshop in Phoenix, AZ, on 23 October 2006. The presentation provides an overview of air quality modeling research in the USEPA/ORD/NERL's Atmospheric Modeling Division, with an emphasis on near-road pollutant character...

  1. Active Early Detection Research Network Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Supportive and Palliative Care Research Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Accelerator and Fusion Research Division: Summary of activities, 1986

    SciTech Connect

    Not Available

    1987-04-15

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

  4. Activities of the Structures Division, Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The purpose of the NASA Lewis Research Center, Structures Division's 1990 Annual Report is to give a brief, but comprehensive, review of the technical accomplishments of the Division during the past calendar year. The report is organized topically to match the Center's Strategic Plan. Over the years, the Structures Division has developed the technology base necessary for improving the future of aeronautical and space propulsion systems. In the future, propulsion systems will need to be lighter, to operate at higher temperatures and to be more reliable in order to achieve higher performance. Achieving these goals is complex and challenging. Our approach has been to work cooperatively with both industry and universities to develop the technology necessary for state-of-the-art advancement in aeronautical and space propulsion systems. The Structures Division consists of four branches: Structural Mechanics, Fatigue and Fracture, Structural Dynamics, and Structural Integrity. This publication describes the work of the four branches by three topic areas of Research: (1) Basic Discipline; (2) Aeropropulsion; and (3) Space Propulsion. Each topic area is further divided into the following: (1) Materials; (2) Structural Mechanics; (3) Life Prediction; (4) Instruments, Controls, and Testing Techniques; and (5) Mechanisms. The publication covers 78 separate topics with a bibliography containing 159 citations. We hope you will find the publication interesting as well as useful.

  5. Materials and Components Technology Division research summary, 1992

    SciTech Connect

    Not Available

    1992-11-01

    The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

  6. Molecular and social regulation of worker division of labor in fire ants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Division of labor is a major achievement of social regulation in insect societies. Despite the great interest for this theme, the molecular basis for the regulation of division of labor has been investigated in detail only in honey bees, while nothing is known about the regulatory mechanisms operati...

  7. Medical and Health Sciences Division research report, 1979-1980

    SciTech Connect

    Not Available

    1980-10-01

    The Medical and Health Sciences Division conducts research programs relevant to neoplastic, pulmonary, gastrointestinal, and cardiovascular diseases. Basic biological science, nuclear medicine, and epidemiology provide an integrated approach to solving biomedical problems directly related to occupational medicine and environmental health effects. The central theme of this research is focused on both the mechanisms and risk assessments of diseases caused by accidental exposure to chemical toxicants derived from fossil and synthetic fuels or to radiation. A major reorganizational change made this past year restructured the division into two branches. The environmental and health sciences branch contains a cancer and pulmonary research section, an interdisciplinary task group section, a cardiovascular research section, and a research support section. The radiation and nuclear medicine branch consists of a radiation and nuclear medicine section and an occupational epidemiology section. In addition, special task groups have been created to provide an interdisciplinary team approach in certain research efforts. Information included in this booklet summarizes research results and related activities for the period from October 1, 1979, to September 30, 1980.

  8. Nutrition and Cancer Prevention Research Practicum | Division of Cancer Prevention

    Cancer.gov

    The Nutritional Science Research Group in the Division of Cancer Prevention at the National Cancer Institute, National Institutes of Health and the Department of Nutrition at the Clinical Center, National Institutes of Health are offering a one week educational opportunity in "Nutrition and Cancer Prevention Research" for individuals with a sustained commitment to nutrition and health promotion. This one-week intense learning session provides specialized instruction in the role of diet and bioactive food components as modifiers of cancer incidence and tumor behavior. |

  9. Accelerator and Fusion Research Division: summary of activities, 1983

    SciTech Connect

    Not Available

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation.

  10. Research and Research Training Grants; Division of Nursing.

    ERIC Educational Resources Information Center

    National Institutes of Health (DHEW), Bethesda, MD. Div. of Nursing.

    There are available nursing research project grants, special fellowships in nursing research, and nurse scientist graduate training grants. Research awards have been made to support clinical research studies in various medical specialties as well as studies of patient care systems and health care technologies, including the organizational…

  11. About the Early Detection Research Group | Division of Cancer Prevention

    Cancer.gov

    The Early Detection Research Group supports research that seeks to determine the effectiveness, operating characteristics and clinical impact (harms as well as benefits) of cancer early detection technologies and practices, such as imaging and molecular biomarker approaches.  The group ran two large-scale early detection trials for which data and biospecimens are available for additional research: |

  12. Materials and Components Technology Division research summary, 1991

    SciTech Connect

    Not Available

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  13. Barrett's Esophagus Translational Research Network (BETRNet) | Division of Cancer Prevention

    Cancer.gov

    The goal of BETRNet is to reduce the incidence, morbidity, and mortality of esophageal adenocarcinoma by answering key questions related to the progression of the disease, especially in the premalignant stage. In partnership with NCI’s Division of Cancer Biology, multidisciplinary translational research centers collaborate to better understand the biology of Barrett's esophagus and esophageal adenocarcinoma to improve risk stratification and develop prevention strategies.  | Multi-disciplinary, multi-institutional collaboration to enhance understanding of Barrett's esophagus and to prevent esophageal adenocarcinoma.

  14. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    PubMed Central

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students’ conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α = 0.80) and test–retest stability (r = 0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. PMID:25713098

  15. Energy and Environmental Systems Division 1981 research review

    SciTech Connect

    Not Available

    1982-04-01

    To effectively manage the nation's energy and natural resources, government and industry leaders need accurate information regarding the performance and economics of advanced energy systems and the costs and benefits of public-sector initiatives. The Energy and Environmental Systems Division (EES) of Argonne National Laboratory conducts applied research and development programs that provide such information through systems analysis, geophysical field research, and engineering studies. During 1981, the division: analyzed the production economics of specific energy resources, such as biomass and tight sands gas; developed and transferred to industry economically efficient techniques for addressing energy-related resource management and environmental protection problems, such as the reclamation of strip-mined land; determined the engineering performance and cost of advanced energy-supply and pollution-control systems; analyzed future markets for district heating systems and other emerging energy technologies; determined, in strategic planning studies, the availability of resources needed for new energy technologies, such as the imported metals used in advanced electric-vehicle batteries; evaluated the effectiveness of strategies for reducing scarce-fuel consumption in the transportation sector; identified the costs and benefits of measures designed to stabilize the financial condition of US electric utilities; estimated the costs of nuclear reactor shutdowns and evaluated geologic conditions at potential sites for permanent underground storage of nuclear waste; evaluated the cost-effectiveness of environmental regulations, particularly those affecting coal combustion; and identified the environmental effects of energy technologies and transportation systems.

  16. Library Theory and Research Section. Education and Research Division. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on library/information science theory and research, which were presented at the 1983 International Federation of Library Associations (IFLA) conference, include: (1) "The Role of the Library in Computer-Aided Information and Documentation Systems," in which Wolf D. Rauch (West Germany) asserts that libraries must adapt to the increasing use…

  17. Theory and Research Section. Education and Research Division. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on research in library science and the exhibition of library materials which were presented at the 1982 International Federation of Library Associations (IFLA) conference include: (1) "Terminological Problems of Networks," a discussion by Helena Kolarova Palkova of the meaning of "library networks" and "methodological work" in Socialist and…

  18. About the Nutritional Science Research Group | Division of Cancer Prevention

    Cancer.gov

    The Nutritional Science Research Group (NSRG) promotes and supports studies establishing a comprehensive understanding of the precise role of diet and food components in modulating cancer risk and tumor cell behavior. This focus includes approaches to characterize molecular targets and variability in individual responses to nutrients and dietary patterns. |

  19. Earth Sciences Division Research Summaries 2002-2003

    SciTech Connect

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental

  20. 78 FR 28630 - Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division, Formerly Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division, Formerly Known as Warner Lambert Company, Comparative Medicine Department, Including On-Site Leased From Charles River Laboratories...

  1. Summary Report of the Atmospheric Modeling and Analysis Division's Research Activities for 2010

    EPA Science Inventory

    The research presented here was performed by the Atmospheric Modeling and Analysis Division (AMAD) of the National Exposure Research Laboratory in the U.S. Environmental Protection Agency’s (EPA’s) Office of Research and Development in Research Triangle Park, NC. The Division lea...

  2. Summary Report of the Atmospheric Modeling and Analysis Division's Research Activities for 2009

    EPA Science Inventory

    The research presented here was performed by the Atmospheric Modeling and Analysis Division (AMAD) under the National Exposure Research Laboratory in the U.S. Environmental Protection Agency’s (EPA’s) Office of Research and Development in Research Triangle Park, NC. The Division ...

  3. Structural Biology and Molecular Applications Research

    Cancer.gov

    Part of NCI's Division of Cancer Biology's research portfolio, research and development in this area focuses on enabling technologies, models, and methodologies to support basic and applied cancer research.

  4. 77 FR 65582 - Pfizer Therapeutic Research, Pfizer Worldwide Reasearch & Development Division, Formerly Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... Division, Formerly Known as Warner Lambert Company, Central Nervous System Research Unit (Currently Known... & Development Division, formerly known as Warner Lambert Company, Central Nervous System Research Unit, Global.... The Department has confirmed that the Central Nervous System Research Unit was renamed...

  5. COOPERATIVE RESEARCH (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    NRMRL's Air Pollution Prevention and Control Division's Air Pollution Technology Branch (APTB) is always interested in the potential for cooperative research if overlap occurs between the research goals of external organizations and APTB's research goals.APTB has participated i...

  6. Division B Commission 14 Working Group: Molecular Data

    NASA Astrophysics Data System (ADS)

    Federman, Steven R.; Bernath, Peter F.; Müller, Holger S. P.

    2016-04-01

    The current report covers the period from the second half of 2011 to late 2014. It is divided into three areas covering rotational, vibrational, and electronic spectroscopy. A signifcant amount of experimental and theoretical work has been accomplished over the past three years, leading to the development and expansion of a number of databases whose links are provided below. Two notable publications have appeared recently: An issue of The Journal of Physical Chemistry A in 2013 honoring the many contributions of Takeshi Oka (J. Phys. Chem. A, 117, pp. 9305-10143); and IAU Symposium 297 on Diffuse Interstellar Bands (Cami & Cox 2014). A number of the relevant papers from these volumes are cited in what follows. Related research on collisions, reactions on grain surfaces, and astrochemistry are not included here.

  7. Bayesian Research at the NASA Ames Research Center,Computational Sciences Division

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.

    2003-01-01

    NASA Ames Research Center is one of NASA s oldest centers, having started out as part of the National Advisory Committee on Aeronautics, (NACA). The site, about 40 miles south of San Francisco, still houses many wind tunnels and other aviation related departments. In recent years, with the growing realization that space exploration is heavily dependent on computing and data analysis, its focus has turned more towards Information Technology. The Computational Sciences Division has expanded rapidly as a result. In this article, I will give a brief overview of some of the past and present projects with a Bayesian content. Much more than is described here goes on with the Division. The web pages at http://ic.arc. nasa.gov give more information on these, and the other Division projects.

  8. Accelerator and Fusion Research Division: 1984 summary of activities

    SciTech Connect

    Not Available

    1985-05-01

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers.

  9. Surveys of research in the Chemistry Division, Argonne National Laboratory

    SciTech Connect

    Grazis, B.M.

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  10. Surveys of research in the Chemistry Division, Argonne National Laboratory

    SciTech Connect

    Grazis, B.M.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  11. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998

    SciTech Connect

    Jubin, R.T.

    1999-03-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

  12. High Energy Physics division semiannual report of research activities, January 1, 1998--June 30, 1998.

    SciTech Connect

    Ayres, D. S.; Berger, E. L.; Blair, R.; Bodwin, G. T.; Drake, G.; Goodman, M. C.; Guarino, V.; Klasen, M.; Lagae, J.-F.; Magill, S.; May, E. N.; Nodulman, L.; Norem, J.; Petrelli, A.; Proudfoot, J.; Repond, J.; Schoessow, P. V.; Sinclair, D. K.; Spinka, H. M.; Stanek, R.; Underwood, D.; Wagner, R.; White, A. R.; Yokosawa, A.; Zachos, C.

    1999-03-09

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1998 through June 30, 1998. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

  13. High Energy Physics Division. Semiannual report of research activities, January 1, 1995--June 30, 1995

    SciTech Connect

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-12-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1995-July 31, 1995. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  14. High Energy Physics Division semiannual report of research activities, July 1, 1992--December 30, 1992

    SciTech Connect

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1993-07-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1992--December 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  15. High Energy Physics Division semiannual report of research activities, January 1, 1996--June 30, 1996

    SciTech Connect

    Norem, J.; Rezmer, R.; Wagner, R.

    1997-07-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1 - June 30, 1996. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. List of Division publications and colloquia are included.

  16. High Energy Physics Division semiannual report of research activities, January 1, 1994--June 30, 1994

    SciTech Connect

    Not Available

    1994-09-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1994-June 30, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  17. High Energy Physics Division semiannual report of research activities, January 1, 1992--June 30, 1992

    SciTech Connect

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1992-11-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1992--June 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  18. High Energy Physics Division semiannual report of research activities, July 1, 1994--December 31, 1994

    SciTech Connect

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1994--December 31, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  19. High Energy Physics Division semiannual report of research activities, January 1, 1993--June 30, 1993

    SciTech Connect

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1993-12-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1993--June 30, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  20. High Energy Physics Division semiannual report of research activities, July 1, 1993--December 31, 1993

    SciTech Connect

    Wagner, R.; Moonier, P.; Schoessow, P.; Talaga, R.

    1994-05-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1993--December 31, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  1. High Energy Physics Division semiannual report of research activities July 1, 1997 - December 31, 1997.

    SciTech Connect

    Norem, J.; Rezmer, R.; Schuur, C.; Wagner, R.

    1998-08-11

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1997--December 31, 1997. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

  2. High Energy Physics Division semiannual report of research activities, July 1, 1991--December 31, 1991

    SciTech Connect

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1992-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1991--December 31, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  3. EPA/OFFICE OF RESEARCH AND DEVELOPMENT'S NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY/HUMAN STUDIES DIVISION INTERNET SITE

    EPA Science Inventory

    The Human Studies Division conducts clinical and epidemiological research to improve the understanding of human health risks associated with environmental pollution. HSD is part of the National Health and Environmental Effects Research Laboratory within the Office of Research and...

  4. High Energy Physics Division semiannual report of research activities, July 1, 1990--December 31, 1990

    SciTech Connect

    Berger, E.; Moonier, P.; May, E.; Norem, J.

    1991-02-01

    A report is presented of research and development activities conducted in the High Energy Physics Division at Argonne National Laboratory during the six month period July 1 through December 31, 1990. Analyses of data from experiments performed by members of the Division are summarized, and the status of experiments taking data and of those being prepared is reviewed. Descriptions are included of research on theoretical and phenomenological topics in particle physics. Progress reports are provided on accelerator research and development, detector research and development, and experimental facilities research. Lists are presented of publications, of colloquia and conference talks, and of significant external community activities of members of the Division.

  5. EDC RESEARCH AT EPA ATLANTIC ECOLOGY DIVISION: DO ENVIRONMENTAL EDCS IMPACT FISH POPULATIONS

    EPA Science Inventory

    The Atlantic Ecology Division, Office of Research and Development, EP A is a marine laboratory situated on Narragansett Bay, Rhode Island. Researchers at AED are investigating the effects endocrine disrupting chemicals (EDCs) in the aquatic environment might have on reproductive ...

  6. JOB OPPORTUNITIES (SUBSURFACE PROTECTION AND REMEDIATION DIVISION, ADA, OKLAHOMA, NATIONAL RISK MANAGEMENT RESEARCH LABORATORY)

    EPA Science Inventory

    This page lists job opportunities at NRMRL's Subsurface Protection and Remediation Division (SPRD) located in Ada, Oklahoma. These include both EPA Postdoctoral Positions and National Research Council Postdoctoral Positions.SPRD's research programs include basic studies to enha...

  7. DCP's Early Detection Research Guides Future Science | Division of Cancer Prevention

    Cancer.gov

    Early detection research funded by the NCI's Division of Cancer Prevention has positively steered both public health and clinical outcomes, and set the stage for findings in the next generation of research. |

  8. Materials Division research and technology accomplishments for FY 87 and plans for FY 88

    NASA Technical Reports Server (NTRS)

    Brinkley, Kay L.

    1988-01-01

    The research program of the Materials Division is presented as FY 87 accomplishments and FY 88 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material will be useful in program coordination with other government organizations, universities, and industries in areas of mutual interest.

  9. Materials Division research and technical accomplishments for FY 1988 and plans for FY 1989

    NASA Technical Reports Server (NTRS)

    Brinkley, Kay L.

    1989-01-01

    The research program of the Materials Division is presented as FY-88 accomplishments and FY-89 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material is useful in program coordination with other government organizations, universities, and industry in areas of mutual interest.

  10. Materials Division research and technology accomplishments for FY 89 and plans for FY 90

    NASA Technical Reports Server (NTRS)

    Brinkley, Kay L.

    1990-01-01

    The research program of the Materials Division is presented as FY-89 accomplishments and FY-90 plans. The accomplishments for each Branch are highlighted and plans are outlined. Publications of the Division are included by Branch. This material will be useful in program coordination with other government organizations, universities, and industries in areas of mutual interest.

  11. High Energy Physics Division semiannual report of research activities, July 1, 1996 - December 31, 1996

    SciTech Connect

    Norem, J.; Rezmer, R.; Wagner, R.

    1997-12-01

    This report is divided into the following areas: (1) experimental research program; (2) theoretical research program; (3) accelerator research and development; (4) divisional computing activities; (5) publications; (6) colloquia and conference talks; (7) high energy physics community activities; and (7) High Energy Physics Division research personnel. Summaries are given for individual research programs for activities (1), (2) and (3).

  12. Consortium for Molecular Characterization of Screen-Detected Lesions Created: Eight Grants Awarded | Division of Cancer Prevention

    Cancer.gov

    The NCI has awarded eight grants to create the Consortium for Molecular Characterization of Screen-Detected Lesions. The consortium has seven molecular characterization laboratories (MCLs) and a coordinating center, and is supported by the Division of Cancer Prevention and the Division of Cancer Biology. | 7 laboratories and a coordinating center focused on identifying screening-detected pre-cancers and early cancers, including within the tumor microenvironment.

  13. Compartmentalization and Cell Division through Molecular Discreteness and Crowding in a Catalytic Reaction Network

    PubMed Central

    Kamimura, Atsushi; Kaneko, Kunihiko

    2014-01-01

    Explanation of the emergence of primitive cellular structures from a set of chemical reactions is necessary to unveil the origin of life and to experimentally synthesize protocells. By simulating a cellular automaton model with a two-species hypercycle, we demonstrate the reproduction of a localized cluster; that is, a protocell with a growth-division process emerges when the replication and degradation speeds of one species are respectively slower than those of the other species, because of overcrowding of molecules as a natural outcome of the replication. The protocell exhibits synchrony between its division process and replication of the minority molecule. We discuss the effects of the crowding molecule on the formation of primitive structures. The generality of this result is demonstrated through the extension of our model to a hypercycle with three molecular species, where a localized layered structure of molecules continues to divide, triggered by the replication of a minority molecule at the center. PMID:25370530

  14. Compartmentalization and Cell Division through Molecular Discreteness and Crowding in a Catalytic Reaction Network.

    PubMed

    Kamimura, Atsushi; Kaneko, Kunihiko

    2014-01-01

    Explanation of the emergence of primitive cellular structures from a set of chemical reactions is necessary to unveil the origin of life and to experimentally synthesize protocells. By simulating a cellular automaton model with a two-species hypercycle, we demonstrate the reproduction of a localized cluster; that is, a protocell with a growth-division process emerges when the replication and degradation speeds of one species are respectively slower than those of the other species, because of overcrowding of molecules as a natural outcome of the replication. The protocell exhibits synchrony between its division process and replication of the minority molecule. We discuss the effects of the crowding molecule on the formation of primitive structures. The generality of this result is demonstrated through the extension of our model to a hypercycle with three molecular species, where a localized layered structure of molecules continues to divide, triggered by the replication of a minority molecule at the center. PMID:25370530

  15. Structures and Dynamics Division research and technology plans for FY 1894 and accomplishments for FY 1982

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1984-01-01

    The Objectives, Expected Results, Approach, and Fiscal Year FY 1984 Milestones for the Structures and Dynamics Division's research programs are examined. The FY 1983 Accomplishments are presented where applicable.

  16. Structures and Dynamics Division research and technology plans, fiscal year, 1981

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1981-01-01

    The objectives, expected results, approach, and FY 81 milestones for the Structures and Dynamics Division's research program are presented. This information will be useful in program coordination with other government organizations in areas of mutual interest.

  17. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    ERIC Educational Resources Information Center

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in…

  18. About Supportive and Palliative Care Research | Division of Cancer Prevention

    Cancer.gov

    The program supports research in three areas: prevention or treatment of acute or chronic symptoms and morbidities related to cancer, its treatment and caregiving (symptom management research); effects on quality of life from cancer, its treatment and caregiving (quality of life research); and end-of-life psychosocial issues, caregiving and treatment strategies (end-of-life research). |

  19. Accelerator & Fusion Research Division 1991 summary of activities

    SciTech Connect

    Not Available

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  20. Accelerator Fusion Research Division 1991 summary of activities

    SciTech Connect

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  1. Accelerator and fusion research division. 1992 Summary of activities

    SciTech Connect

    Not Available

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  2. Materials and Molecular Research Division annual report 1982

    SciTech Connect

    Not Available

    1983-05-01

    This report is divided into: materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced isotope separation technology (AISI), energy storage, magnetic fusion energy (MFE), nuclear waste management, and work for others (WFO). Separate abstracts have been prepared for all except AIST, MFE, and WFO. (DLC)

  3. Materials and Molecular Research Division. Annual report 1981

    SciTech Connect

    Not Available

    1982-08-01

    Progress is reported in the areas of materials sciences, chemical sciences, nuclear sciences, fossil energy, advanced (laser) isotope separation technology, energy storage, superconducting magnets, and nuclear waste management. Work for others included phase equilibria for coal gasification products and ..beta..-alumina electrolytes for storage batteries. (DLC)

  4. Materials and Molecular Research Division annual report 1983

    SciTech Connect

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  5. NCI Community Oncology Research Program Approved | Division of Cancer Prevention

    Cancer.gov

    On June 24, 2013, the National Cancer Institute (NCI) Board of Scientific Advisors approved the creation of the NCI Community Oncology Research Program (NCORP). NCORP will bring state-of-the art cancer prevention, control, treatment and imaging clinical trials, cancer care delivery research, and disparities studies to individuals in their own communities. |

  6. Ecological Research Division Theoretical Ecology Program. [Contains abstracts

    SciTech Connect

    Not Available

    1990-10-01

    This report presents the goals of the Theoretical Ecology Program and abstracts of research in progress. Abstracts cover both theoretical research that began as part of the terrestrial ecology core program and new projects funded by the theoretical program begun in 1988. Projects have been clustered into four major categories: Ecosystem dynamics; landscape/scaling dynamics; population dynamics; and experiment/sample design.

  7. Applied Science Division annual report, Environmental Research Program FY 1983

    SciTech Connect

    Cairns, E.J.; Novakov, T.

    1984-05-01

    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring.

  8. Beyond division: convergences between postmodern qualitative research and family therapy.

    PubMed

    De Haene, Lucia

    2010-01-01

    Starting from examples of postmodern research and therapeutic practice, we raise the question on the role of the research-therapy dichotomy within these approaches. The article aims to show the profound convergence between postmodern ethnographic research and constructionist, collaborative therapeutic approaches on a double, epistemological and practice level. First, we point out their converging development toward narrative and constructionist epistemologies. Second, an inquiry into the core features of these disciplinary activities' goal, process, and expert role reveals their profound convergence into a dialogical practice in which the boundaries between research and therapy are radically transgressed. We conclude by questioning the implications and acceptability of this convergence for researchers' and therapists' understanding of their practices. PMID:20074120

  9. Applied Science Division annual report, Environmental Research Program FY 1984

    SciTech Connect

    Cairns, E.J.; Novakov, T.

    1985-03-01

    The objective of the Environmental Research Program is to understand the formation, transformation, transport, and effects of energy-related pollutants on the environment. The effects studied include those on global, regional, and local scales and involve the atmosphere, hydrosphere, and biosphere. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1984, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, toxicology studies of biological systems, and trace element analysis for the investigation of present and historical environmental impacts.

  10. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    SciTech Connect

    Jubin, R.T.

    1998-07-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  11. Accelerator and Fusion Research Division: 1987 summary of activities

    SciTech Connect

    Not Available

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  12. Environmental Sciences Division: Summaries of research in FY 1995

    SciTech Connect

    1996-09-01

    This report focuses on research in global change, as well as environmental remediation. Global change research investigates the following: distribution and balance of radiative heat energy; identification of the sources and sinks of greenhouse gases; and prediction of changes in the climate and concomitant ecological effects. Environmental remediation develops the basic understanding needed to remediate soils, sediments, and ground water that have undergone radioactive and chemical contamination.

  13. About the Cancer Biomarkers Research Group | Division of Cancer Prevention

    Cancer.gov

    The Cancer Biomarkers Research Group promotes research to identify, develop, and validate biological markers for early cancer detection and cancer risk assessment. Activities include development and validation of promising cancer biomarkers, collaborative databases and informatics systems, and new technologies or the refinement of existing technologies. NCI DCP News Note Consortium on Imaging and Biomarkers (CIB) Created: Eight Grants Awarded to Improve Accuracy of Cancer Screening, Detection, and Diagnosis |

  14. QA RESOURCE MATERIALS TO ASSIST IN DEVELOPING AND WRITING RESEARCH PLANS AT A USEPA OFFICE OF RESEARCH AND DEVELOPMENT DIVISION

    EPA Science Inventory

    In the process of adapting the Agency's Data Quality Objectives Workshop for presentation at an ORD Research Facility, ownership and consensus approval of the presentation by the Division's research staff was sought. Three groups of researchers, at various levels of responsibilit...

  15. Structures and Dynamics Division research and technology plans for FY 1988 and accomplishments for FY 1987

    NASA Technical Reports Server (NTRS)

    Bales, Kay S.

    1988-01-01

    Presented are the Objectives, FY 1988 Plans, Approach, and FY 1988 Milestones for the Structures and Dynamics Division (Langley Research Center) research programs. FY 1987 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  16. Water Reactor Safety Research Division quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Romano, A.J.

    1980-06-01

    The Water Reactor Safety Research Programs Quarterly Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evaluation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  17. Water Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Abuaf, N.; Levine, M.M.; Saha, P.; van Rooyen, D.

    1980-08-01

    The Water Reactor Safety Research Programs quarterly report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evlauation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  18. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  19. RESEARCH AREA -- RADON MITIGATION (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    In prior years, NRMRL's Air Pollution Prevention and Control Division's Indoor Environment Management Branch (IEMB) conducted a significant amount of research on the subject of reducing indoor radon levels in homes, schools, and other large buildings. This research is no longer a...

  20. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  1. Structures and Dynamics Division: Research and technology plans for FY 1983 and accomplishments for FY 1982

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1983-01-01

    The objectives, expected results, approach, and milestones for research projects of the IPAD Project Office and the impact dynamics, structural mechanics, and structural dynamics branches of the Structures and Dynamics Division are presented. Research facilities are described. Topics covered include computer aided design; general aviation/transport crash dynamics; aircraft ground performance; composite structures; failure analysis, space vehicle dynamics; and large space structures.

  2. Instrumentation and Controls Division Overview: Sensors Development for Harsh Environments at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Zeller, Mary V.; Lei, Jih-Fen

    2002-01-01

    The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.

  3. NCI Community Oncology Research Program (NCORP) | Division of Cancer Prevention

    Cancer.gov

    The NCI Community Oncology Research Program (NCORP) is a national network of cancer care investigators, providers, academia, and other organizations that care for diverse populations in health systems. View the list of publications from NCORP. | Clinical Trials network of cancer care professionals who care for diverse populations across the U.S.

  4. Structural mechanics division research and technology accomplishments for CY 1992 and plans for CY 1993

    NASA Technical Reports Server (NTRS)

    Malone, John B.

    1993-01-01

    The purpose of this report is to present the Structural Mechanics Division's research accomplishments for C.Y. 1992 and plans for C.Y. 1993. The technical mission and goals of the division and its constituent research branches are described. The work under each branch is described in terms of highlights of accomplishments during the past year and plans for the current year as they relate to branch long range goals. This information is useful in program coordination with other government organizations, universities, and industry in areas of mutual interest.

  5. Minority University Research and Education Division (MURED) Update

    NASA Technical Reports Server (NTRS)

    Malone, John

    2000-01-01

    Program priorities include: (1) Expand and advance NASA's scientific and technological base by building on prior year's efforts in research and academic infrastructure; (2) Increase exposure to NASA's unique mission and facilities by developing closer relationships with NASA Strategic Enterprises; (3) Increase involvement in competitive peer review and merit selection processes; (4) Contribute significantly to the Agency's strategic goals and objectives; (5) Create systemic and sustainable change through partnerships and programs that enhance research and education programs; (6) Prepare faculty and students at HBCU's for NASA-related fields and increase number of students that enter and successfully complete degrees in NASA-related fields; (7) Establish measurable program goals and objectives; and (8) Improve financial management performance.

  6. Supportive and Palliative Care Research | Division of Cancer Prevention

    Cancer.gov

    Supportive and palliative care research includes studies to prevent or treat the acute and chronic symptoms and morbidities related to cancer and its treatment, and to examine the effects of cancer and its treatment on quality of life and psychosocial issues and treatment strategies at the end of life. Active Projects can range from caregiver issues to geriatrics, physical functioning to cognitive dysfunction.  | Examining symptoms and morbidities related to cancer, its treatment, quality of life and end of life.

  7. Combustion research in the Internal Fluid Mechanics Division

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.

    1986-01-01

    The goal of this research is to bring computational fluid dynamics to a state of practical application for the aircraft engine industry. The approach is to have a strongly integrated computational and experimental program for all the disciplines associated with the gas turbine and other aeropropulsion systems by advancing the understanding of flow physics, heat transfer, and combustion processes. The computational and experimental research is integrated in the following way: the experiments that are performed provide an empirical data set so that physical models can be formulated to describe the processes that are occurring - for example, turbulence or chemical reaction. These experiments also form a data base for those who are doing code development by providing experimental data against which the codes can be verified and assesed. Models are generated as closure to some of the numerical codes, and they also provide physical insight for experiments. At the same time, codes which solve the complete Navier-Stokes equations can be used as a kind of numerical experiment from which far more extensive data can be obtained than ever could be obtained experimentally. This could provide physical insight into the complex processes that are taking place. These codes are also exercised against experimental data to assess the accuracy and applicability of models.

  8. Molecular and social regulation of worker division of labour in fire ants.

    PubMed

    Manfredini, Fabio; Lucas, Christophe; Nicolas, Michael; Keller, Laurent; Shoemaker, Dewayne; Grozinger, Christina M

    2014-02-01

    Reproductive and worker division of labour (DOL) is a hallmark of social insect societies. Despite a long-standing interest in worker DOL, the molecular mechanisms regulating this process have only been investigated in detail in honey bees, and little is known about the regulatory mechanisms operating in other social insects. In the fire ant Solenopsis invicta, one of the most studied ant species, workers are permanently sterile and the tasks performed are modulated by the worker's internal state (age and size) and the outside environment (social environment), which potentially includes the effect of the queen presence through chemical communication via pheromones. However, the molecular mechanisms underpinning these processes are unknown. Using a whole-genome microarray platform, we characterized the molecular basis for worker DOL and we explored how a drastic change in the social environment (i.e. the sudden loss of the queen) affects global gene expression patterns of worker ants. We identified numerous genes differentially expressed between foraging and nonforaging workers in queenright colonies. With a few exceptions, these genes appear to be distinct from those involved in DOL in bees and wasps. Interestingly, after the queen was removed, foraging workers were no longer distinct from nonforaging workers at the transcriptomic level. Furthermore, few expression differences were detected between queenright and queenless workers when we did not consider the task performed. Thus, the social condition of the colony (queenless vs. queenright) appears to impact the molecular pathways underlying worker task performance, providing strong evidence for social regulation of DOL in S. invicta. PMID:24329612

  9. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    SciTech Connect

    Not Available

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  10. The John Milner Nutrition and Cancer Prevention Research Practicum | Division of Cancer Prevention

    Cancer.gov

    The Nutritional Science Research Group in the Division of Cancer Prevention at the National Cancer Institute, National Institutes of Health and the Department of Nutrition at the Clinical Center, National Institutes of Health, and the U.S. Department of Agriculture’s Beltsville Human Nutrition Research Center are offering a one-week educational opportunity in Nutrition and Cancer Prevention Research for individuals with a sustained commitment to nutrition and health promotion. |

  11. The John Milner Nutrition and Cancer Prevention Research Practicum | Division of Cancer Prevention

    Cancer.gov

    The Nutritional Science Research Group in the Division of Cancer Prevention at the National Cancer Institute, National Institutes of Health and the Department of Nutrition at the Clinical Center, National Institutes of Health, and the US Department of Agriculture's Beltsville Human Nutrition Research Center are offering a one week educational opportunity in "Nutrition and Cancer Prevention Research" for individuals with a sustained commitment to nutrition and health promotion. |

  12. Loads and aeroelasticity division research and technology accomplishments for FY 1985 and plans for FY 1986

    NASA Technical Reports Server (NTRS)

    Gardner, J. E.; Dixon, S. C.

    1986-01-01

    The Langley Research Center Loads and Aeroelasticity Division's research accomplishments for FY85 and research plans for FY86 are presented. The rk under each branch (technical area) will be described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  13. Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes.

    PubMed

    Xi, Wang; Schmidt, Christine K; Sanchez, Samuel; Gracias, David H; Carazo-Salas, Rafael E; Butler, Richard; Lawrence, Nicola; Jackson, Stephen P; Schmidt, Oliver G

    2016-06-28

    In vivo, mammalian cells proliferate within 3D environments consisting of numerous microcavities and channels, which contain a variety of chemical and physical cues. External environments often differ between normal and pathological states, such as the unique spatial constraints that metastasizing cancer cells experience as they circulate the vasculature through arterioles and narrow capillaries, where they can divide and acquire elongated cylindrical shapes. While metastatic tumors cause most cancer deaths, factors impacting early cancer cell proliferation inside the vasculature and those that can promote the formation of secondary tumors remain largely unknown. Prior studies investigating confined mitosis have mainly used 2D cell culture systems. Here, we mimic aspects of metastasizing tumor cells dividing inside blood capillaries by investigating single-cell divisions of living human cancer cells, trapped inside 3D rolled-up, transparent nanomembranes. We assess the molecular effects of tubular confinement on key mitotic features, using optical high- and super-resolution microscopy. Our experiments show that tubular confinement affects the morphology and dynamics of the mitotic spindle, chromosome arrangements, and the organization of the cell cortex. Moreover, we reveal that membrane blebbing and/or associated processes act as a potential genome-safety mechanism, limiting the extent of genomic instability caused by mitosis in confined circumstances, especially in tubular 3D microenvironments. Collectively, our study demonstrates the potential of rolled-up nanomembranes for gaining molecular insights into key cellular events occurring in tubular 3D microenvironments in vivo. PMID:27267364

  14. Molecular dynamics simulations of high energy cascade in ordered alloys: Defect production and subcascade division

    NASA Astrophysics Data System (ADS)

    Crocombette, Jean-Paul; Van Brutzel, Laurent; Simeone, David; Luneville, Laurence

    2016-06-01

    Displacement cascades have been calculated in two ordered alloys (Ni3Al and UO2) in the molecular dynamics framework using the CMDC (Cell Molecular Dynamics for Cascade) code (J.-P. Crocombette and T. Jourdan, Nucl. Instrum. Meth. B 352, 9 (2015)) for energies ranking between 0.1 and 580 keV. The defect production has been compared to the prediction of the NRT (Norgett, Robinson and Torrens) standard. One observes a decrease with energy of the number of defects compared to the NRT prediction at intermediate energies but, unlike what is commonly observed in elemental solids, the number of produced defects does not always turn to a linear variation with ballistic energy at high energies. The fragmentation of the cascade into subcascades has been studied through the analysis of surviving defect pockets. It appears that the common knowledge equivalence of linearity of defect production and subcascades division does not hold in general for alloys. We calculate the average number of subcascades and average number of defects per subcascades as a function of ballistic energy. We find an unexpected variety of behaviors for these two average quantities above the threshold for subcascade formation.

  15. Molecular Insights into Division of Single Human Cancer Cells in On-Chip Transparent Microtubes

    PubMed Central

    2016-01-01

    In vivo, mammalian cells proliferate within 3D environments consisting of numerous microcavities and channels, which contain a variety of chemical and physical cues. External environments often differ between normal and pathological states, such as the unique spatial constraints that metastasizing cancer cells experience as they circulate the vasculature through arterioles and narrow capillaries, where they can divide and acquire elongated cylindrical shapes. While metastatic tumors cause most cancer deaths, factors impacting early cancer cell proliferation inside the vasculature and those that can promote the formation of secondary tumors remain largely unknown. Prior studies investigating confined mitosis have mainly used 2D cell culture systems. Here, we mimic aspects of metastasizing tumor cells dividing inside blood capillaries by investigating single-cell divisions of living human cancer cells, trapped inside 3D rolled-up, transparent nanomembranes. We assess the molecular effects of tubular confinement on key mitotic features, using optical high- and super-resolution microscopy. Our experiments show that tubular confinement affects the morphology and dynamics of the mitotic spindle, chromosome arrangements, and the organization of the cell cortex. Moreover, we reveal that membrane blebbing and/or associated processes act as a potential genome-safety mechanism, limiting the extent of genomic instability caused by mitosis in confined circumstances, especially in tubular 3D microenvironments. Collectively, our study demonstrates the potential of rolled-up nanomembranes for gaining molecular insights into key cellular events occurring in tubular 3D microenvironments in vivo. PMID:27267364

  16. Molecular dynamics simulations of high energy cascade in ordered alloys: Defect production and subcascade division

    NASA Astrophysics Data System (ADS)

    Crocombette, Jean-Paul; Van Brutzel, Laurent; Simeone, David; Luneville, Laurence

    2016-06-01

    Displacement cascades have been calculated in two ordered alloys (Ni3Al and UO2) in the molecular dynamics framework using the CMDC (Cell Molecular Dynamics for Cascade) code (J.-P. Crocombette and T. Jourdan, Nucl. Instrum. Meth. B 352, 9 (2015)) for energies ranking between 0.1 and 580 keV. The defect production has been compared to the prediction of the NRT (Norgett, Robinson and Torrens) standard. One observes a decrease with energy of the number of defects compared to the NRT prediction at intermediate energies but, unlike what is commonly observed in elemental solids, the number of produced defects does not always turn to a linear variation with ballistic energy at high energies. The fragmentation of the cascade into subcascades has been studied through the analysis of surviving defect pockets. It appears that the common knowledge equivalence of linearity of defect production and subcascades division does not hold in general for alloys. We calculate the average number of subcascades and average number of defects per subcascades as a function of ballistic energy. We find an unexpected variety of behaviors for these two average quantities above the threshold for subcascade formation.

  17. Structures and Dynamics Division research and technology plans for FY 1985 and accomplishments for FY 1984

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1985-01-01

    The objectives, FY 1985 plans, approach, and FY 1985 milestones for the Structures and Dynamics Division's research programs are presented. The FY 1984 accomplishments are presented where applicable. This information is useful in program coordination with other government organizations in areas of mutual interest.

  18. Supportive and Palliative Care Research Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Structures and Dynamics Division research and technology plans for FY 1986 and accomplishments for FY 1985

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1986-01-01

    Presented are the Objectives, FY 1986 Plans, Approach, and FY 1986 Milestones for the Structures and Dynamics Division's research programs. FY 1985 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  20. Active Supportive and Palliative Care Research Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Radiological and Environmental Research Division annual report, July 1979-June 1980. [Lead abstract

    SciTech Connect

    Rowland, R.E.; Stehney, A.F.

    1981-05-01

    Separate abstracts were prepared for 19 of the 33 papers presented by the Center for Human Radiobiology for the Radiological and Environmental Research Division Annual Report. The 14 items not included are abstracts only and deal with the mechanisms and dosimetry for induction of malignancies by radium. (KRM)

  2. Structural Mechanics Division research and technology plans for FY 1990 and accomplishments for FY 1989

    NASA Technical Reports Server (NTRS)

    Bales, Kay S.

    1990-01-01

    The Objectives, FY 1990 Plans, Approach, and FY 1990 Milestones for the Structural Mechanics Division's research programs are presented. FY 1989 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  3. Structures and Dynamics Division research and technology plans for FY 1987 and accomplishments for FY 1986

    NASA Technical Reports Server (NTRS)

    Bales, Kay S.

    1987-01-01

    This paper presents the Objectives, FY 1987 Plans, Approach, and FY 1987 Milestones for the Structures and Dynamics Division's research programs. FY 1986 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  4. Research and technology plans for FY 1989 and accomplishments for FY 1988. [Structural Mechanics Division

    NASA Technical Reports Server (NTRS)

    Bales, Kay S.

    1989-01-01

    The Objectives, FY 1989 Plans, Approach, and FY 1989 Milestones for the Structural Mechanics Division's research programs are presented. Fiscal year 1988 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.

  5. ORIMULSION(R) RESEARCH STUDY (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    In response to a 1998 Congressional request, the Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division began research as part of a study to evaluate the environmental impacts of Orimulsion(R). Orimulsion(R)is a fossil fuel composed of 70%...

  6. Completed Supportive and Palliative Care Research Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Health and Safety Research Division progress report for the period October 1, 1991--March 31, 1993

    SciTech Connect

    Berven, B.A.

    1993-09-01

    This is a progress report from the Health and Safety Research Division of Oak Ridge National Laboratory. Information is presented in the following sections: Assessment Technology, Biological and Radiation Physics, Chemical Physics, Biomedical and Environmental Information Analysis, Risk Analysis, Center for Risk Management, Associate Laboratories for Excellence in Radiation Technology (ALERT), and Contributions to National and Lead Laboratory Programs and Assignments--Environmental Restoration.

  8. NCI Community Oncology Research Program Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Active NCI Community Oncology Research Program Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. RESEARCH AREA -- CHLOROFLUOROCARBON (CFC) DESTRUCTION (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Six thermal oxidation (incineration) processes were approved by the Montreal Protocol for the disposal of CFCs and other ozone depleting substances. The Air Pollution Technology Branch of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has eva...

  11. Active Barrett's Esophagus Translational Research Network Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    SciTech Connect

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  13. Supportive and Palliative Care Research Funding Opportunities | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Structural dynamics division research and technology accomplishments for FY 1989 and plans for FY 1990

    NASA Technical Reports Server (NTRS)

    Smith, Jacqueline G.; Gardner, James E.

    1990-01-01

    The purpose is to present the Structural Dynamics Division's research accomplishments for FY 1989 and research plans for FY 1990. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  15. Structural dynamics division research and technology accomplishments for FY 1988 and plans for FY 1989

    NASA Technical Reports Server (NTRS)

    Gardner, James E.

    1989-01-01

    The purpose of this paper is to present the Structural Dynamics Division's research accomplishments for FY 1988 and research plans for FY 1989. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and plans for the current year as they relate to five-year plans for each area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  16. Structural dynamics division research and technology accomplishments for FY 1993 and plans for FY 1994

    NASA Technical Reports Server (NTRS)

    Wynne, Eleanor C.

    1994-01-01

    The purpose is to present the Structural Dynamics Division's research accomplishments for F.Y. 1993 and research plans for F.Y. 1994. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5-year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  17. Loads and Aeroelasticity Division research and technology accomplishments for FY 1986 and plans for FY 1987

    NASA Technical Reports Server (NTRS)

    Gardner, James E.; Dixon, S. C.

    1987-01-01

    The Loads and Aeroelasticity Division's research accomplishments for FY 86 and research plans for FY 87 are presented. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  18. Loads and aeroelasticity division research and technology accomplishments for FY 1987 and plans for FY 1988

    NASA Technical Reports Server (NTRS)

    Dixon, S. C.; Gardner, James E.

    1988-01-01

    The purpose of this paper is to present the Loads and Aeroelasticity Division's research accomplishments for FY87 and research plans for FY88. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  19. Research on Molecular Sieve Technology.

    ERIC Educational Resources Information Center

    Shah, Dhananjai B.; Hayhurst, David T.

    1985-01-01

    The zeolite synthesis and modification research program at Cleveland State University (Ohio) is described, including program philosophy and objectives, and research facilities. Also considers zeolite synthesis, adsorption on zeolites, kinetics of adsorption, and zeolite catalysis research. (JN)

  20. High Energy Physics Division semiannual report of research activities. Semi-annual progress report, July 1, 1995--December 31, 1995

    SciTech Connect

    Norem, J.; Bajt, D.; Rezmer, R.; Wagner, R.

    1996-10-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1995 - December 31, 1995. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  1. Health and Safety Research Division progress report, October 1, 1988--March 31, 1990

    SciTech Connect

    Not Available

    1990-09-01

    The Health and Safety Research Division (HASRD) of the Oak Ridge National Laboratory (ORNL) continues to maintain an outstanding program of basic and applied research displaying a high level of creativity and achievement as documented by awards, publications, professional service, and successful completion of variety of projects. Our focus is on human health and the scientific basis for measurement and assessment of health-related impacts of energy technologies. It is our custom to publish a division progress report every 18 months that summarizes our programmatic progress and other measures of achievement over the reporting period. Since it is not feasible to summarize in detail all of our work over the period covered by this report (October 1, 1988, to March 30, 1990), we intend this document to point the way to the expensive open literature that documents our findings. During the reporting period the Division continued to maintain strong programs in its traditional areas of R D, but also achieved noteworthy progress in other areas. Much of the Division's work on site characterization, development of new field instruments, compilation of data bases, and methodology development fits into this initiative. Other new work in tunneling microscopy in support of DOE's Human Genome Program and the comprehensive R D work related to surface-enhanced Raman spectroscopy have attained new and exciting results. These examples of our progress and numerous other activities are highlighted in this report.

  2. Highlighting ten years of physics education research in the upper division

    NASA Astrophysics Data System (ADS)

    Ambrose, Bradley

    2015-04-01

    The field of Physics Education Research (PER) has for over thirty years provided insights into student thinking and guided the development and assessment of reformed teaching strategies and practices in introductory physics courses. In the last decade or so, researchers have expanded the domain of such investigations to upper-division courses where undergraduate majors study more advanced content and begin to see themselves as future physicists. The upcoming Focused Collection on Upper Division PER brings together work from researchers active in these new frontiers of PER. In this presentation we provide an overview of the studies in this collection, which offer to the PER and greater physics education communities: new insights about the thinking, behavior, and beliefs of students in the upper division; new tools to innovate instruction, assess student learning, and evaluate teaching effectiveness; and groundbreaking studies of identity development and ``thinking like a physicist'' among physics majors. In this session we also recognize the ten-year anniversary of Physical Review Special Topics: Physics Education Research, an occasion that we will celebrate with an informal reception immediately following the conclusion of this invited session.

  3. Dr. Worta McCaskill-Stevens Named Recipient of AACR Minorities in Cancer Research Award | Division of Cancer Prevention

    Cancer.gov

    Worta McCaskill-Stevens, MD, MS, Chief of the Community Oncology and Prevention Trials Research Group, NCI Division of Cancer Prevention, was named the recipient of the 2016 American Association for Cancer Research Jane Cooke Wright Memorial Lectureship. |

  4. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    SciTech Connect

    Holland, L.M.; Stafford, C.G.

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  5. Loads and Aeroelasticity Division research and technology accomplishments for FY 1984 and plans for FY 1985

    NASA Technical Reports Server (NTRS)

    Gardner, J. E.; Dixon, S. C.

    1985-01-01

    The loads and aeroelasticity divisions research accomplishments are presented. The work under each branch or technical area, described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5 year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  6. MOLECULAR ANALYSIS OF HUMAN SPERMATOZOA: POTENTIAL FOR INFERTILITY RESEARCH AND SCREENING

    EPA Science Inventory

    Molecular Analysis of Human Spermatozoa: Potential for Infertility Research and Screening
    David Miller1, David Dix2, Robert Reid3, Susan Wykes3 and Stephen Krawetz3
    1Reproductive Biology Group, University of Leeds, UK
    2Reproductive Toxicology Division, U.S. Environmenta...

  7. A Research-Based Approach to Transforming Upper-Division Electricity & Magnetism

    NASA Astrophysics Data System (ADS)

    Pollock, Steven

    2011-03-01

    We present research on transforming an upper-division undergraduate electricity and magnetism course using principles of active engagement and learning theory. We build on a systematic investigation of student learning difficulties, with the goal of developing useful curricular materials and suggestions for effective teaching practices. We observe students in classroom, help-session, and interview settings, and analyze their written work. To assess student learning, we have developed and validated a conceptual instrument, the CUE (Colorado Upper-division Electrostatics) diagnostic. We collaborate with faculty to establish learning goals, and have constructed a bank of clicker questions, tutorials, homeworks, and classroom activities. We find that students in the transformed courses exhibit improved performance over the traditional course, as assessed by common exam questions and the CUE, but there is still much work to be done. Our work underlines the need for further research on the nature of student learning and appropriate instructional interventions at the upper division. Research supported by NSF DUE-0737118, and the Colorado Science Education Initiative.

  8. Research on Geographical Environment Unit Division Based on the Method of Natural Breaks (Jenks)

    NASA Astrophysics Data System (ADS)

    Chen, J.; Yang, S. T.; Li, H. W.; Zhang, B.; Lv, J. R.

    2013-11-01

    Zoning which is to divide the study area into different zones according to their geographical differences at the global, national or regional level, includes natural division, economic division, geographical zoning of departments, comprehensive zoning and so on. Zoning is of important practical significance, for example, knowing regional differences and characteristics, regional research and regional development planning, understanding the favorable and unfavorable conditions of the regional development etc. Geographical environment is arising from the geographical position linkages. Geographical environment unit division is also a type of zoning. The geographical environment indicators are deeply studied and summed up in the article, including the background, the associated and the potential. The background indicators are divided into four categories, such as the socio-economic, the political and military, the strategic resources and the ecological environment, which can be divided into more sub-indexes. While the sub-indexes can be integrated to comprehensive index system by weighted stacking method. The Jenks natural breaks classification method, also called the Jenks optimization method, is a data classification method designed to determine the best arrangement of values into different classes. This is done by seeking to minimize each class's average deviation from the class mean, while maximizing each class's deviation from the means of the other groups. In this paper, the experiment of Chinese surrounding geographical environment unit division has been done based on the natural breaks (jenks) method, the geographical environment index system and the weighted stacking method, taking South Asia as an example. The result indicates that natural breaks (jenks) method is of good adaptability and high accuracy on the geographical environment unit division. The geographical environment research was originated in the geopolitics and flourished in the geo

  9. Molecular imaging promotes progress in orthopedic research.

    PubMed

    Mayer-Kuckuk, Philipp; Boskey, Adele L

    2006-11-01

    Modern orthopedic research is directed towards the understanding of molecular mechanisms that determine development, maintenance and health of musculoskeletal tissues. In recent years, many genetic and proteomic discoveries have been made which necessitate investigation under physiological conditions in intact, living tissues. Molecular imaging can meet this demand and is, in fact, the only strategy currently available for noninvasive, quantitative, real-time biology studies in living subjects. In this review, techniques of molecular imaging are summarized, and applications to bone and joint biology are presented. The imaging modality most frequently used in the past was optical imaging, particularly bioluminescence and near-infrared fluorescence imaging. Alternate technologies including nuclear and magnetic resonance imaging were also employed. Orthopedic researchers have applied molecular imaging to murine models including transgenic mice to monitor gene expression, protein degradation, cell migration and cell death. Within the bone compartment, osteoblasts and their stem cells have been investigated, and the organic and mineral bone phases have been assessed. These studies addressed malignancy and injury as well as repair, including fracture healing and cell/gene therapy for skeletal defects. In the joints, molecular imaging has focused on the inflammatory and tissue destructive processes that cause arthritis. As described in this review, the feasibility of applying molecular imaging to numerous areas of orthopedic research has been demonstrated and will likely result in an increase in research dedicated to this powerful strategy. Molecular imaging holds great promise in the future for preclinical orthopedic research as well as next-generation clinical musculoskeletal diagnostics. PMID:16843078

  10. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    SciTech Connect

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to the molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age

  11. Simulation Technology Research Division assessment of the IBM RISC SYSTEM/6000 Model 530 workstation

    SciTech Connect

    Valdez, G.D. ); Halbleib, J.A.; Kensek, R.P.; Lorence, L.J. )

    1990-11-01

    A workstation manufactured by International Business Machines Corporation (IBM) was loaned to the Simulation Technology Research Division for evaluation. We have found that these new UNIX workstations from IBM have superior cost to performance ratios compared to the CRAY supercomputers and Digital's VAX machines. Our appraisal of this workstation included floating-point performance, system and environment functionality, and cost effectiveness. Our assessment was based on a suite of radiation transport codes developed at Sandia that constitute the bulk of our division's computing workload. In this report, we also discuss our experience with features that are unique to this machine such as the AIX operating system and the XLF Fortran Compiler. The interoperability of the RS/6000 workstation with Sandia's network of CRAYs and VAXs was also assessed.

  12. Structural dynamics division research and technology accomplishments for FY 1992 and plans for FY 1993

    NASA Technical Reports Server (NTRS)

    Wynne, Eleanor C.

    1993-01-01

    The purpose of this paper is to present the Structural Dynamics Division's research accomplishments for F.Y. 1992 and research plans for F.Y. 1993. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5-year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.

  13. Health and Safety Research Division progress report for the period April 1, 1987--September 30, 1988

    SciTech Connect

    Kaye, S.V.

    1989-03-01

    The mission of the Health and Safety Research Division (HASRD) is to provide a sound scientific basis for the measurement and assessment of human health impacts of radiological and chemical substances. Our approach to fulfilling this mission is to conduct a broad program of experimental, theoretical, and field research based on a strong foundation of fundamental physical studies that blend into well-established programs in life sciences. Topics include biomedical screening techniques, biological and chemical sensors, risk assessment, health hazards, dosimetry, nuclear medicine, environmental pollution monitoring, electron-molecule interactions, interphase physics, surface physics, data base management, environmental mutagens, carcinogens, and tetratogens.

  14. Accelerator and Fusion Research Division annual report, October 1981-September 1982. Fiscal year 1982

    SciTech Connect

    Johnson, R.K.; Bouret, C.

    1983-05-01

    This report covers the activities of LBL's Accelerator and Fusion Research Division (AFRD) during 1982. In nuclear physics, the Uranium Beams Improvement Project was concluded early in the year, and experimentation to exploit the new capabilities began in earnest. Technical improvement of the Bevalac during the year centered on a heavy-ion radiofrequency quadrupole (RFQ) as part of the local injector upgrade, and we collaborated in studies of high-energy heavy-ion collision facilities. The Division continued its collaboration with Fermilab to design a beam-cooling system for the Tevatron I proton-antiprotron collider and to engineer the needed cooling components for the antiproton. The high-field magnet program set yet another record for field strength in an accelerator-type dipole magnet (9.2 T at 1.8 K). The Division developed the design for the Advanced Light Source (ALS), a 1.3-GeV electron storage ring designed explicitly (with low beam emittance and 12 long straight sections) to generate high-brilliance synchrotron light from insertion devices. The Division's Magnetic Fusion Energy group continued to support major experiments at the Princeton Plasma Physics Laboratory, the Lawrence Livermore National Laboratory (LLNL), and General Atomic Co. by developing positive-ion-based neutral-beam injectors. Progress was made toward converting our major source-test facility into a long-pulse national facility, the Neutral Beam Engineering Test Facility, which was completed on schedule and within budget in 1983. Heavy Ion Fusion research focused on planning, theoretical studies, and beam-transport experiments leading toward a High Temperature Experiment - a major test of this promising backup approach to fusion energy.

  15. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997

    SciTech Connect

    Jubin, R.T.

    1999-02-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

  16. The Geosciences Division of the Council on Undergraduate Research (GeoCUR): Supporting Faculty that Mentor Undergraduate Researchers

    NASA Astrophysics Data System (ADS)

    Fox, L. K.; Guertin, L. A.; Manley, P. L.; Fortner, S. K.

    2012-12-01

    Undergraduate research is a proven effective pedagogy that has a number of benefits including: enhancing student learning through mentoring relationships with faculty; increasing retention; increasing enrollment in graduate programs; developing critical thinking, creativity, problem solving and intellectual independence; and, developing an understanding of research methodology. Undergraduate research also has been demonstrated in preparing students for careers. In addition to developing disciplinary and technical expertise, participation in undergraduate research helps students improve communication skills (written, oral, and graphical) and time management. Early involvement in undergraduate research improves retention and, for those engaged at the 2YC level, helps students successfully transfers to 4YC. The Geosciences Division of the Council on Undergraduate Research (GeoCUR) supports faculty in their development of undergraduate research programs at all levels. GeoCUR leads workshops for new and future faculty covering all aspects of undergraduate research including incorporating research into coursework, project design, mentoring students, sustaining programs, and funding sources. GeoCUR members support new faculty by providing a range of services including: peer-review of grant proposals; advice on establishing an undergraduate research program; balancing teaching and research demands; and networking with other geoscientist. GeoCUR has also developed web resources that support faculty and departments in development of undergraduate research programs (http://serc.carleton.edu/NAGTWorkshops/undergraduate_research/index.html). This presentation will describe the services provided by GeoCUR and highlight examples of programs and resources available to geoscientists in all career stages for effective undergraduate research mentoring and development.

  17. Becoming a physicist: The roles of research, mindsets, and milestones in upper-division student perceptions

    NASA Astrophysics Data System (ADS)

    Irving, Paul W.; Sayre, Eleanor C.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] As part of a longitudinal study into identity development in upper-level physics students, we used a phenomenographic research method to examine students' perceptions of what it means to be a physicist. Analysis revealed six different categories of perception of what it means to be a physicist. We found the following themes: research and its association with being a physicist, differences in mindset, and exclusivity of accomplishments. The paper highlights how these perceptions relate to two communities of practice that the students are members of, and also highlights the importance of undergraduate research for students to transition from the physics undergraduate community of practice to the community of practicing physicists.

  18. Chemical Technology Division annual technical report 1997

    SciTech Connect

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  19. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    SciTech Connect

    Petersen, G.; Bair, K.; Ross, J.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  20. Student research activities in the Technology Assessments Section of the Health and Safety Research Division, Summer 1980

    SciTech Connect

    Chester, R.O.; Roberts, D.A.

    1981-08-01

    Reports summarizing activities of students assigned to the Technology Assessments Section of the Health and Safety Research Division for the summer 1980 are presented. Unless indicated otherwise, each report was written by the student whose work is being described. For each student, the student's supervisor, the name of the program under which the student was brought to ORNL, the academic level of the student, and the name of the ORNL project to which the student was assigned are tabulated. The reports are presented in alphabetical order of the students' last names.

  1. NATIONAL RESEARCH COUNCIL RESEARCH ASSOCIATESHIP PROGRAMS (SUBSURFACE PROTECTION AND REMEDIATION DIVISION, ADA, OKLAHOMA, NRMRL)

    EPA Science Inventory

    The objectives of the Research Associateship Programs are (1) to provide postdoctoral scientists and engineers of unusual promise and ability opportunities for research on problems, largely of their own choice, that are compatible with the interests of the sponsoring laboratories...

  2. Molecular biology research in neuropsychiatry: India's contribution.

    PubMed

    Sathyanarayana Rao, T S; Ramesh, B N; Vasudevaraju, P; Rao, K S J

    2010-01-01

    Neuropsychiatric disorders represent the second largest cause of morbidity worldwide. These disorders have complex etiology and patho-physiology. The major lacunae in the biology of the psychiatric disorders include genomics, biomarkers and drug discovery, for the early detection of the disease, and have great application in the clinical management of disease. Indian psychiatrists and scientists played a significant role in filling the gaps. The present annotation provides in depth information related to research contributions on the molecular biology research in neuropsychiatric disorders in India. There is a great need for further research in this direction as to understand the genetic association of the neuropsychiatric disorders; molecular biology has a tremendous role to play. The alterations in gene expression are implicated in the pathogenesis of several neuropsychiatric disorders, including drug addiction and depression. The development of transgenic neuropsychiatric animal models is of great thrust areas. No studies from India in this direction. Biomarkers in neuropsychiatric disorders are of great help to the clinicians for the early diagnosis of the disorders. The studies related to gene-environment interactions, DNA instability, oxidative stress are less studied in neuropsychiatric disorders and making efforts in this direction will lead to pioneers in these areas of research in India. In conclusion, we provided an insight for future research direction in molecular understanding of neuropsychiatry disorders. PMID:21836667

  3. National Science Foundation Division of Ocean Sciences: new opportunities for ocean research

    NASA Astrophysics Data System (ADS)

    Yoder, J. A.; Tenney, A. B.

    2003-04-01

    The mission of the NSF Division of Ocean Sciences (OCE) is to support basic, curiosity-driven research, using a competitive process based on peer-review to guide selection of grants for financial support. OCE is the leading U.S. government source of ocean science funding for academic institutions. OCE supports research in biological, chemical and physical oceanography, and marine geology and geophysics; ocean technology development; dedicated educational activities; large shipboard equipment and shared-use instruments; the U.S. academic research fleet, submersibles, and scientific ocean drilling (ODP/IODP). In our poster, we describe OCE plans for new infrastructure projects to support research, and some of the new research and education programs being developed. Two large ocean science infrastructure projects -- a drilling vessel conversion and the ocean observatories initiative -- have already been approved for possible inclusion in a future NSF budget request. The drilling vessel will contribute to a new international scientific ocean drilling program to replace the Ocean Drilling Program (ODP), which ends in 2003. We continue to refine our plan for the Ocean Observatories Initiative (OOI), another large infrastructure program that will provide a continuous ocean presence to advance research and education. We are also working closely with the Office of Naval Research and other agency partners to implement a federal plan to renew the academic fleet. We continue to initiate new research and education programs. Two recent examples are Centers for Ocean Science Education Excellence (COSEE) and Centers for Oceans and Human Health; the latter supported jointly with the National Institute for Environmental Health Sciences. COSEE is building a nationally coordinated effort in ocean science education designed to integrate ocean science research into delivery of high-quality education programs in the ocean sciences. The Centers for Oceans and Human Health program

  4. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1999

    SciTech Connect

    Jubin, R.T.

    1999-11-01

    This reports summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January--March 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within eight major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included column loading of cesium from Melton Valley Storage Tank supematants using an engineered form of crystalline silicotitanate. A second task was to design and construct a continuously stirred tank reactor system to test the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium, and transuranics from supematant. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed, including issues such as pipeline plugging and viscosity measurements. Investigation of solution conditions required to dissolve Hanford saltcake was also continued. MSRE Remediation Studies focused on recovery of {sup 233}U and its transformation into a stable oxide and radiolysis experiments to permit remediation of MSRE fuel salt. In the area of Chemistry Research, activities included studies relative to molecular imprinting for

  5. IFLA General Conference, 1986. Education and Research Division. Round Table: Research in Reading. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations and Institutions, The Hague (Netherlands).

    Papers presented at a roundtable session at the 1986 International Federation of Library Associations (IFLA) conference consider current research in reading. They include: (1) "Bibliopsychology--The Contribution of a Study of Temperament" (R. O. Linden, Japan), which examines research on the impact of communication media on the fundamental strata…

  6. University Libraries and Other General Research Libraries Section. General Research Libraries Division. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on university and other research libraries, presented at the 1983 International Federation of Library Associations (IFLA) conference, include: (1) "The Impact of Technology on Users of Academic and Research Libraries," in which C. Lee Jones (United States) focuses on the impact of technical advances in computing and telecommunication…

  7. IFLA General Conference, 1985. Division on Education and Research. Section on Library Theory and Research. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on library theory and research presented at the 1985 International Federation of Library Associations (IFLA) conference include: (1) "Information for Self Reliance and Self Determination: The Role of Community Information Services" (Elaine Kempson, Acumen, United Kingdom); (2) "Relationships between Practice, Education and Research in the…

  8. Biology Division progress report, October 1, 1993--September 30, 1995

    SciTech Connect

    1995-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1993, through September 30, 1995. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report. Attention is focused on the following research activities: molecular, cellular, and cancer biology; mammalian genetics and development; genome mapping program; and educational activities.

  9. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-September 1999

    SciTech Connect

    Jubin, R.T.

    2001-04-16

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1999. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within ten major areas of research: Hot Cell Operations, Process Chemistry, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Physical Properties Research, Biochemical Engineering, Separations and Materials Synthesis, Fluid Structures and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of the Cell Operations involved the testing of two continuously stirred tank reactors in series to evaluate the Savannah River-developed process of small-tank tetraphenylborate precipitation to remove cesium, strontium and transuranics from supernatant. Within the area of Process Chemistry, various topics related to solids formation in process solutions from caustic treatment of Hanford sludge were addressed. Saltcake dissolution efforts continued, including the development of a predictive algorithm. New initiatives for the section included modeling activities centered on detection of hydrogen in {sup 233}U storage wells and wax formation in petroleum mixtures, as well as support for the Spallation Neutron Source (investigation of transmutation products formed during operation). Other activities involved in situ grouting and evaluation of options for use (i.e., as castable shapes) of depleted uranium. In a continuation of activities of the preceding

  10. Subsequent dental research output of South African division of the IADR Colgate Prize entrants.

    PubMed

    Porter, Michelle I; McAlpine, Alistair J; Mkhaliphi, Diana S; Grossman, Elly S

    2005-11-01

    This study recorded the research output of all participants for the IADR (South African Division; SA) Colgate Prize for 1967-2004 to establish whether, in their later careers, prize winners had a greater research output than runners-up. Using a list of all entrants, each individual was classified as winner or runner-up and by gender, race, and research field of presentation. The publication output for each individual was obtained from PubMed. A Poisson regression set at P < 0.05 compared publication numbers between winners and runners-up. There were two groups of entrants: 101 participated once, and twenty-two participated twice or thrice. Winners had significantly more publications than runners-up, more so for the multiple entrants (winners 27.5+/-22.4; runners-up 16.5+/-25.5) than single entrants (winners 16.0+/-40.8; runners-up 12.0+/-27.7). The number of individuals participating in the Colgate Prize has declined, but representivity for race and gender is improving. This is the first study to establish that SA IADR Colgate Prize participants fulfil the long-term IADR ideal of research promotion among young investigators. PMID:16275690

  11. Molecular Science Research Center 1992 annual report

    SciTech Connect

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  12. Going MAD: development of a "matrix academic division" to facilitate translating research to personalized medicine.

    PubMed

    Whitcomb, David C

    2011-11-01

    Personalized medicine integrates an individual's genetic and other information for the prevention or treatment of complex disorders, and translational research seeks to identify those data most important to disease processes based on observations at the bench and the bedside. To understand complex disorders such as chronic pancreatitis, inflammatory bowel disease, liver cirrhosis, and other idiopathic chronic inflammatory diseases, physician-scientists must systematically collect data on relevant risks, clinical status, biomarkers, and outcomes. The author describes a "matrix academic division" (MAD), a highly effective academic program created at the University of Pittsburgh School of Medicine and the University of Pittsburgh Medical Center using translational research to rapidly develop personalized medicine for digestive diseases. MAD is designed to capture patient-specific data and biologic samples for analysis of steps in a complex process (reverse engineering), reconstructing the system conceptually and mathematically (disease modeling), and deciphering disease mechanism in individual patients to predict the effects of interventions (personalized medicine). MAD draws on the expertise of the medical school's and medical center's physician-scientists to translate essential disease information between the bed and the bench and to communicate with researchers from multiple domains, including epidemiology, genetics, cell biology, immunology, regenerative medicine, neuroscience, and oncology. The author illustrates this approach by describing its successful application to the reverse engineering of chronic pancreatitis. PMID:21952059

  13. Genetic and Molecular Ecotoxicology: A Research Framework

    PubMed Central

    Anderson, Susan; Sadinski, Walter; Shugart, Lee; Brussard, Peter; Depledge, Michael; Ford, Tim; Hose, JoEllen; Stegeman, John; Suk, William; Wirgin, Isaac; Wogan, Gerald

    1994-01-01

    Participants at the Napa Conference on Genetic and Molecular Ecotoxicology assessed the status of this field in light of heightened concerns about the genetic effects of exposure to hazardous substances and recent advancements in our capabilities to measure those effects. We present here a synthesis of the ideas discussed throughout the conference, including definitions of important concepts in the field and critical research needs and opportunities. While there were many opinions expressed on these topics, there was general agreement that there are substantive new opportunities to improve the impact of genetic and molecular ecotoxicology on prediction of sublethal effects of exposure to hazardous substances. Future studies should emphasize integration of genetic ecotoxicology, ecological genetics, and molecular biology and should be directed toward improving our understanding of the ecological implications of genotoxic responses. Ecological implications may be assessed at either the population or ecosystem level; however, a population-level focus may be most pragmatic. Recent technical advancements in measuring genetic and molecular responses to toxicant exposure will spur rapid progress. These new techniques have considerable promise for increasing our understanding of both mechanisms of toxicity on genes or gene products and the relevance of detrimental effects to individual fitness. — Environ Health Perspect 102(Suppl 12):3–8 (1994) PMID:7713030

  14. Environmental effects research. Environmental Research Division annual report, January-December 1983. Part 3

    SciTech Connect

    Not Available

    1984-12-01

    The Terrestrial Ecology group continued its involvement in the National Crop Loss Assessment Network, and studies of O/sub 3/ effects on winter wheat and soybeans were completed. Experiments on O/sub 3/ x SO/sub 2/ interactions on soybeans were also performed. The Microcosms for Acid Rain Studies (MARS) project had its first full year of research and much information concerning acid rain impacts on soil-plant systems was collected. A study of the influence of temporal variations in rain acidity on soybean productivity was also initiated. The aquatic radiochemistry group continued measurements of the mobility of plutonium and americium at a disposal site at Los Alamos and initiated similar work at Hanford. Laboratory tracer experiments were carried out to study the adsorptive behavior of neptunium, the solubility limits of plutonium, and the influence of rare earth concentration on the sorption and redox behavior of plutonium. The soil-plant process group initiated several studies on the influence of mycorrhizae to host plants in disturbed and natural environments. Much of the past research has been concerned with understanding mycorrhizal fungi propagule dynamics as related to disturbances associated with energy extraction. Future research will be directed at understanding how below-ground symbiotic associations may increase the fitness of host plants. Emphasis is being placed on resource acquisition and compartmental strategies. Separate analytics have been indexed for EDB.

  15. Performance Data Report: Space Medicine Division, Human Research Program, Behavioural Health and Performance Research Element

    NASA Technical Reports Server (NTRS)

    Shea, Camille; Keeton, Kathryn E.; Schmidt, Lacey L.; Slack, Kelley J.; Patterson, Holly N.; Leveton, Lauren B.; Holland, Albert W.

    2012-01-01

    This report is the result of a collaborative effort between NASA?s Behavioral Health & Performance (BHP) Research and Operations Group to investigate and determine the availability of data pertaining to behavioral performance (and other pertinent variables) that have been collected by the laboratories at NASA?s Johnson Space Center. BHP?s Operations and Research groups collaborated to systematically identify what types of performance data are needed in relevant BHP performance domains and also to conduct structured interviews with NASA personnel to identify which data do or do not exist currently (and for instances where such data exist, to evaluate the type, quality, accessibility, and confidentiality of those data). The authors defined outcome categories of performance that encapsulate BHP performance domains, mapped BHP Research Risks and Gaps onto those performance outcome categories, and identified and prioritized indicators for each outcome category. The team identified key points of contact (subject matter experts [SMEs]) as potential interviewees, created a template for structured interview questions about sources and accessibility of performance data, and coordinated and conducted structured interviews with the SMEs. The methodology, results, and implications of this effort, as well as forward work needed, are discussed in this report.

  16. 1998 Chemical Technology Division Annual Technical Report.

    SciTech Connect

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  17. An Update on the NASA Planetary Science Division Research and Analysis Program

    NASA Astrophysics Data System (ADS)

    Bernstein, Max; Richey, Christina; Rall, Jonathan

    2015-11-01

    Introduction: NASA’s Planetary Science Division (PSD) solicits its research and analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD changed the structure of the program elements under which the majority of planetary science R&A is done. Major changes included the creation of five core research program elements aligned with PSD’s strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submission.ROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2015 submission changes: All PSD programs will continue to use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.

  18. Molecular Science Research Center, 1991 annual report

    SciTech Connect

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  19. Molecular motors: forty years of interdisciplinary research

    PubMed Central

    Spudich, James A.

    2011-01-01

    A mere forty years ago it was unclear what motor molecules exist in cells that could be responsible for the variety of nonmuscle cell movements, including the “saltatory cytoplasmic particle movements” apparent by light microscopy. One wondered whether nonmuscle cells might have a myosin-like molecule, well known to investigators of muscle. Now we know that there are more than a hundred different molecular motors in eukaryotic cells that drive numerous biological processes and organize the cell's dynamic city plan. Furthermore, in vitro motility assays, taken to the single-molecule level using techniques of physics, have allowed detailed characterization of the processes by which motor molecules transduce the chemical energy of ATP hydrolysis into mechanical movement. Molecular motor research is now at an exciting threshold of being able to enter into the realm of clinical applications. PMID:22039067

  20. A Statistical Snapshot of the Division of Community Services. Institutional Research Report #39.

    ERIC Educational Resources Information Center

    Philadelphia Community Coll., PA. Office of Institutional Research.

    The Division of Community Services (CS) is providing educational services to a growing percentage of the total student headcount enrolled at the Community College of Philadelphia (CCP). Data from fall 1986 indicated that: (1) 51.1% of the students enrolled at CCP took their courses through the CS Division; (2) while credit-free enrollments grew,…

  1. Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory

    DOE Data Explorer

    This excellent collection of visualization vignettes highlights research work done by the LBNL/NERSC Visualization Group and its collaborators from 1993 to the present. Images lead to technical explanations and project details, helping users to branch out to other related sources. Titles of the projects provide clues both to the imaging focus of the research and the scientific discipline for which the visualizations are intended. Only a few of the many titles/images/projects are listed here: 1) Hybrid Parallelism for Volume Rendering at Large Scale Analysis of Laser Wakefield Particle Acceleration Data; 2) Visualization of Microearthquake Data from Enhanced Geothermal Systems; 3) PointCloudXplore: Visualization and Analysis of 3D Gene Expression Data; 4) Visualization of Quantum Monte-Carlo simulations; 5) Global Cloud Resolving Models; 6) Visualization of large-scale GFDL/NOAA climate simulations; 7) Direct Numerical Simulation of Turbulent Flame Quenching by Fine Water Droplets; 8) Visualization of Magneto-rotational instability and turbulent angular momentum transport; 9) Sunfall: Visual Analytics for Astrophysics; 10) Fast Contour Descriptor Algorithm for Supernova Image Classification; 11) Supernova Recognition Using Support Vector Machines; 12) High Performance Visualization - Query-Driven Network Traffic Analysis; 13) Visualization of Magneto-rotational instability and turbulent angular momentum transport; 14) Life Sciences: Cell Division of Caulobacter Crescentus; 15) Electron Cloud Simulations.

  2. Physics Education Research at the Upper Division at the University of Maine

    NASA Astrophysics Data System (ADS)

    Thompson, John

    2013-04-01

    Researchers from the University of Maine Physics Education Research Laboratory are conducting several investigations of the learning and teaching of physics beyond the introductory level. Content topics include intermediate mechanics, electronics, thermodynamics and statistical mechanics. One focus of our work is the identification and addressing of specific student difficulties with topics such as damped harmonic motion, bipolar junction transistor (BJT) circuits, work, entropy, and the Boltzmann factor. Student understanding and use of the underlying mathematics has been one important emerging theme, including definite integrals, partial derivatives, and linear differential equations. Recent work in mechanics has focused on understanding the interplay of mathematical and physical reasoning when describing damped harmonic motion, including framing and representational issues. In electronics, there has been an ongoing investigation of student understanding of the behavior of basic BJT follower and amplifier circuits as well as related issues of signal and bias. In thermal physics, student understanding of state functions, heat engines and the Carnot cycle, the First and Second Laws of thermodynamics, and the macroscopic and microscopic perspectives on entropy have been investigated. The greater content sophistication in these courses has drawn attention to the specific needs, constraints, and advantages of instructional materials tailored to the upper division. Future directions include more attention to interdisciplinary topics across mathematics, physics, and engineering in particular, as well as metacognition in the laboratory.

  3. Highly Transient Molecular Interactions Underlie the Stability of Kinetochore–Microtubule Attachment During Cell Division

    PubMed Central

    Zaytsev, Anatoly V.; Ataullakhanov, Fazly I.; Grishchuk, Ekaterina L.

    2013-01-01

    Chromosome segregation during mitosis is mediated by spindle microtubules that attach to chromosomal kinetochores with strong yet labile links. The exact molecular composition of the kinetochore–microtubule interface is not known but microtubules are thought to bind to kinetochores via the specialized microtubule-binding sites, which contain multiple microtubule-binding proteins. During prometaphase the lifetime of microtubule attachments is short but in metaphase it increases 3-fold, presumably owing to dephosphorylation of the microtubule-binding proteins that increases their affinity. Here, we use mathematical modeling to examine in quantitative and systematic manner the general relationships between the molecular properties of microtubule-binding proteins and the resulting stability of microtubule attachment to the protein-containing kinetochore site. We show that when the protein connections are stochastic, the physiological rate of microtubule turnover is achieved only if these molecular interactions are very transient, each lasting fraction of a second. This “microscopic” time is almost four orders of magnitude shorter than the characteristic time of kinetochore–microtubule attachment. Cooperativity of the microtubule-binding events further increases the disparity of these time scales. Furthermore, for all values of kinetic parameters the microtubule stability is very sensitive to the minor changes in the molecular constants. Such sensitivity of the lifetime of microtubule attachment to the kinetics and cooperativity of molecular interactions at the microtubule-binding site may hinder the accurate regulation of kinetochore–microtubule stability during mitotic progression, and it necessitates detailed experimental examination of the microtubule-binding properties of kinetochore-localized proteins. PMID:24376473

  4. Highly Transient Molecular Interactions Underlie the Stability of Kinetochore-Microtubule Attachment During Cell Division.

    PubMed

    Zaytsev, Anatoly V; Ataullakhanov, Fazly I; Grishchuk, Ekaterina L

    2013-12-13

    Chromosome segregation during mitosis is mediated by spindle microtubules that attach to chromosomal kinetochores with strong yet labile links. The exact molecular composition of the kinetochore-microtubule interface is not known but microtubules are thought to bind to kinetochores via the specialized microtubule-binding sites, which contain multiple microtubule-binding proteins. During prometaphase the lifetime of microtubule attachments is short but in metaphase it increases 3-fold, presumably owing to dephosphorylation of the microtubule-binding proteins that increases their affinity. Here, we use mathematical modeling to examine in quantitative and systematic manner the general relationships between the molecular properties of microtubule-binding proteins and the resulting stability of microtubule attachment to the protein-containing kinetochore site. We show that when the protein connections are stochastic, the physiological rate of microtubule turnover is achieved only if these molecular interactions are very transient, each lasting fraction of a second. This "microscopic" time is almost four orders of magnitude shorter than the characteristic time of kinetochore-microtubule attachment. Cooperativity of the microtubule-binding events further increases the disparity of these time scales. Furthermore, for all values of kinetic parameters the microtubule stability is very sensitive to the minor changes in the molecular constants. Such sensitivity of the lifetime of microtubule attachment to the kinetics and cooperativity of molecular interactions at the microtubule-binding site may hinder the accurate regulation of kinetochore-microtubule stability during mitotic progression, and it necessitates detailed experimental examination of the microtubule-binding properties of kinetochore-localized proteins. PMID:24376473

  5. Molecular Science Research Center annual report

    SciTech Connect

    Knotek, M.L.

    1991-01-01

    The Chemical Structure and Dynamics group is studying chemical kinetics and reactions dynamics of terrestrial and atmospheric processes as well as the chemistry of complex waste forms and waste storage media. Staff are using new laser systems and surface-mapping techniques in combination with molecular clusters that mimic adsorbate/surface interactions. The Macromolecular Structure and Dynamics group is determining biomolecular structure/function relationships for processes the control the biological transformation of contaminants and the health effects of toxic substances. The Materials and Interfaces program is generating information needed to design and synthesize advanced materials for the analysis and separation of mixed chemical waste, the long-term storage of concentrated hazardous materials, and the development of chemical sensors for environmental monitoring of various organic and inorganic species. The Theory, Modeling, and Simulation group is developing detailed molecular-level descriptions of the chemical, physical, and biological processes in natural and contaminated systems. Researchers are using the full spectrum of computational techniques. The Computer and Information Sciences group is developing new approaches to handle vast amounts of data and to perform calculations for complex natural systems. The EMSL will contain a high-performance computing facility, ancillary computing laboratories, and high-speed data acquisition systems for all major research instruments.

  6. An Update on the NASA Planetary Science Division Research and Analysis Program

    NASA Astrophysics Data System (ADS)

    Richey, Christina; Bernstein, Max; Rall, Jonathan

    2015-01-01

    Introduction: NASA's Planetary Science Division (PSD) solicits its Research and Analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD will be changing the structure of the program elements under which the majority of planetary science R&A is done. Major changes include the creation of five core research program elements aligned with PSD's strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submissionROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2014 submission changes: All PSD programs will use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.Additional Information: Additional details will be provided on the Cassini Data Analysis Program, the

  7. GREENHOUSE GAS RESEARCH AREAS (ATMOSPHERIC PROTECTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The emissions programs in the Atmospheric Protection Branch (APB) of NRMRL's Air Pollution Prevention and Control Division are primarily dedicated to anthropogenic (human-influenced) sources of methane and high-global-warming refrigerants, though some work addresses carbon dioxid...

  8. RESEARCH AREA -- POLLUTION PREVENTION (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The strategy of NRMRL's Air Pollution Prevention and Control Division's Indoor Environment Management Branch (IEMB) is to apply IEMB's expertise in indoor air quality (i.e., source characterization, ventilation, filtration, modeling, biocontaminants, and sustainable buildings) to...

  9. Structural dynamics division research and technology accomplishments for fiscal year 1990 and plans for fiscal year 1991

    NASA Technical Reports Server (NTRS)

    Wynne, Eleanor C.

    1991-01-01

    The research accomplishments of the Structural Dynamics Division for F.Y. 1991 are presented. The work is discussed in terms of highlights of accomplishments during the past year and plans for the current year as they relate to 5-year plans and the objectives of each technical area. Included is research on unsteady aerodynamics, helicopter rotors, computational fluid dynamics, oscillations of leading edge flaps of a delta wing, and aircraft wing loads.

  10. Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: April-June 1998

    SciTech Connect

    Jubin, R.T.

    1999-04-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during th eperiod April-June 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  11. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    SciTech Connect

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  12. Accelerator and Fusion Research Division annual report, October 1980-September 1981. Fiscal year, 1981

    SciTech Connect

    Johnson, R.K.; Thomson, H.A.

    1982-04-01

    Major accomplishments during fiscal year 1981 are presented. During the Laboratory's 50th anniversary celebrations, AFRD and the Nuclear Science Division formally dedicated the new (third) SuperHILAC injector that adds ions as heavy as uranium to the ion repertoire at LBL's national accelerator facilities. The Bevalac's new multiparticle detectors (the Heavy Ion Spectrometer System and the GSI-LBL Plastic Ball/Plastic Wall) were completed in time to take data before the mid-year shutdown to install the new vacuum liner, which passed a milestone in-place test with flying colors in September. The Bevalac biomedical program continued patient treatment with neon beams aimed at establishing a complete data base for a dedicated biomedical accelerator, the design of which NCI funded during the year. Our program to develop alternative Isabelle superconducting dipole magnets, which DOE initiated in FY80, proved the worth of a new magnet construction technique and set a world record - 7.6 Tesla at 1.8 K - with a model magnet in our upgraded test facility. Final test results at LBL were obtained by the Magnetic Fusion Energy Group on the powerful neutral beam injectors developed for Princeton's TFTR. The devices exceeded the original design requirements, thereby completing the six-year, multi-million-dollar NBSTF effort. The group also demonstrated the feasibility of efficient negative-ion-based neutral beam plasma heating for the future by generating 1 A of negative ions at 34 kV for 7 seconds using a newly developed source. Collaborations with other research centers continued, including: (1) the design of LBL/Exxon-dedicated beam lines for the Stanford Synchrotron Radiation Laboratory; (2) beam cooling tests at Fermilab and the design of a beam cooling system for a proton-antiproton facility there; and (3) the development of a high-current betatron for possible application to a free electron laser.

  13. Occupational health, waste management, and environmental research program of the Health Division 1981. Progress report

    SciTech Connect

    Voelz, G.L.

    1983-09-01

    The primary responsibility of the Health Division at the Los Alamos National Laboratory is to provide effective programs in health, safety, waste processing, and environmental protection for the Laboratory. During 1981, evaluations of respiratory protective equipment included 3 special DOE contractor supplied-air suits or hoods and 10 commercial supplied-air devices. Preliminary results of chemical permeation tests of different protective garment materials are reported. Industrial hygiene field studies of oil shale work were conducted at the Geokinetics true in situ facility and the Rio Blanco modified in situ facility. An occupational medical survey of workers at the Geokinetics, Inc., facility was completed. Research on the generation and characterization of aerosols was continued for inhalation studies of man-made mineral fibers and oil shale aerosols. The distribution of /sup 241/Am in a whole body was determined by tissue analyses. Preliminary results of mortality in workers formerly employed at the Rocky Flats plant were reported. A simplified method for the analysis of plutonium in urine has been developed. Instrumentation development resulted in a portable computer system for field data analysis and a small, computerized, wristwatch-style radiation dosimeter. Environmental surveillance at Los Alamos during 1981 showed the highest estimated radiation dose due to Laboratory operations is about 4% of the dose due to the natural radioactivity here. A study was completed on alternative strategies for long-term management of Los Alamos transuranic wastes. A successful 10-day test burn of pentachlorophenol-contaminated wastes was conducted in the Controlled Air Incinerator. Decontamination factors for five fission products in the off-gas handling system of the incinerator were measured.

  14. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    SciTech Connect

    Eisenberg, David S.

    2008-07-15

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  15. 2010 Plant Molecular Biology Gordon Research Conference

    SciTech Connect

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  16. Biology and Medicine Division: Annual report 1986

    SciTech Connect

    Not Available

    1987-04-01

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

  17. Argonne National Laboratory, High Energy Physics Division: Semiannual report of research activities, July 1, 1986-December 31, 1986

    SciTech Connect

    Not Available

    1987-01-01

    This paper discusses the research activity of the High Energy Physics Division at the Argonne National Laboratory for the period, July 1986-December 1986. Some of the topics included in this report are: high resolution spectrometers, computational physics, spin physics, string theories, lattice gauge theory, proton decay, symmetry breaking, heavy flavor production, massive lepton pair production, collider physics, field theories, proton sources, and facility development. (LSP)

  18. IFLA General Conference, 1992. Division of General Research Libraries: Section on National Libraries; Section on Parliamentary Libraries; Section on University Libraries and Other General Research Libraries. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations and Institutions, London (England).

    Fifteen papers delivered for the Division of General Research Libraries at the 1992 International Federation of Library Associations and Institutions annual meeting are presented. These papers deal with national libraries, parliamentary (legislative) libraries, and university libraries. The papers are: (1) "Seeking Alternatives to National…

  19. That-Nominal Constructions in Traditional Rhetorical Divisions of Scientific Research Papers.

    ERIC Educational Resources Information Center

    West, Gregory K.

    1980-01-01

    Describes difficulties with nominalization and with the rhetoric of scientific papers experienced by English of Science and Technology (EST) students, relating nominalization occurrence to scientific rhetorical divisions. Finding significant differences in that-nominal construction frequency between rhetorical sections, suggests coordinating…

  20. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January--March 1997

    SciTech Connect

    Jubin, R.T.

    1998-01-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division (CTD) at Oak Ridge National Laboratory (ORNL) during the period January--March 1997. Created in March 1997 when the CTD Chemical Development and Energy Research sections were combined, the Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within seven major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Solution Thermodynamics, and Biotechnology Research. The name of a technical contact is included with each task described in the report, and readers are encouraged to contact these individuals if they need additional information.

  1. 2010 Atomic & Molecular Interactions Gordon Research Conference

    SciTech Connect

    Todd Martinez

    2010-07-23

    The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2010 conference continues these traditions. At the 2010 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Dynamics; (2) Quantum Control and Molecules in Strong Fields; (3) Photochemical Dynamics; (4) Complex Molecules and Condensed Phases; and (5) Clusters and Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed.

  2. Mars Molecular and Isotopic Analysis Research Study

    NASA Technical Reports Server (NTRS)

    Manning, Heidi L. K.

    1998-01-01

    Recently, the Martian atmosphere and surface constituents have become of great interest. The Viking in situ gas chromatograph mass spectrometer experiment contributed greatly to our knowledge of the composition of the Martian atmosphere. However, important questions remain such as the abundance of water on Mars. The Viking experiment employed solid reagents to enhance their carbon measurements. Techniques of chemical conversion using simple solid reagents have advanced considerably in the past 20 years. In this investigation we researched the advancements in techniques to reversibly adsorb and desorb water and focused on the techniques potentially useful for the temperatures and pressures on the Martian surface. During the granting period from June 15, 1998 to August 14, 1998, a literature study of the material appropriate for use in a chemical conversion device and the availability of these materials were undertaken. The focus of this investigation was searching for methods and materials potentially useful in enhancing the measurements of water. Three different methods were considered for the means to extract water from a given gas sample. These methods included adsorption in a desiccant, adsorption on a clean metal surface, and adsorption in a carbon molecular sieve or zeolite. Each method was evaluated with feasibility and reversibility in mind. By far the simplest and perhaps cheapest way to remove water from a gaseous sample is by means of a bulk desiccant. Desiccants are commercially available from many companies including those that supply chemicals. The main feature of a desiccant is its ability to rapidly bind or absorb water from the atmosphere. Calcium chloride, for example, is frequently incorporated into drying tubes by organic chemists when reactions require the absence of water. Other desiccants include sodium hydroxide, calcium hydride, and commercial products such as Drierite, available from Aldrich Chemical. The disadvantage to most desiccants is

  3. Chemical Technology Division annual technical report, 1996

    SciTech Connect

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  4. RESEARCH PROJECT -- TRANSPORT AND TRANSFORMATION OF BTEX AND MTBE AT A LEAKING UNDERGROUND STORAGE TANK SITE ON LONG ISLAND, NEW YORK (SUBSURFACE PROTECTION AND REMEDIATION DIVISION, NRMRL)

    EPA Science Inventory

    The National Risk Management Research Laboratory's Subsurface Protection and Remediation Division has been working with the State of New York Department of Environmental Conservation in analyzing data from a gasoline release that occurred at East Patchogue, Long Island, New York....

  5. Health and Safety Research Division: Progress report, October 1, 1985-March 31, 1987

    SciTech Connect

    Walsh, P.J.

    1987-09-01

    This report summarizes the progress in our programs for the period October 1, 1985, through March 31, 1987. The division's presentations and publications represented important contributions on the forefronts of many fields. Eleven invention disclosures were filed, two patent applications submitted, and one patent issued. The company's transfers new technologies to the private sector more efficiently than in the past. The division's responsibilities to DOE under the Uranium Mill Tailings Remedial Action (UMTRA) program includes inclusion recommendations for 3100 properties. The nuclear medicine program developed new radiopharmaceuticals and radionuclide generators through clinical trials with some of our medical cooperatives. Two major collaborative indoor air quality studies and a large epidemiological study of drinking water quality and human health were completed. ORNL's first scanning tunneling microscope (STM) has achieved single atom resolution and has produced some of the world's best images of single atoms on the surface of a silicon crystal. The Biological and Radiation Physics Section, designed and constructed a soft x-ray spectrometer which has exhibited a measuring efficiency that is 10,000 times higher than other equipment. 1164 refs.

  6. Applications of molecular modeling in coal research

    SciTech Connect

    Carlson, G.A.; Faulon, J.L.

    1994-01-01

    Over the past several years, molecular modeling has been applied to study various characteristics of coal molecular structures. Powerful workstations coupled with molecular force-field-based software packages have been used to study coal and coal-related molecules. Early work involved determination of the minimum-energy three-dimensional conformations of various published coal structures (Given, Wiser, Solomon and Shinn), and the dominant role of van der Waals and hydrogen bonding forces in defining the energy-minimized structures. These studies have been extended to explore various physical properties of coal structures, including density, microporosity, surface area, and fractal dimension. Other studies have related structural characteristics to cross-link density and have explored small molecule interactions with coal. Finally, recent studies using a structural elucidation (molecular builder) technique have constructed statistically diverse coal structures based on quantitative and qualitative data on coal and its decomposition products. This technique is also being applied to study coalification processes based on postulated coalification chemistry.

  7. Structures Division

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented.

  8. High Energy Physics Division: Semiannual report of research activities, July 1, 1988--December 31, 1988

    SciTech Connect

    Not Available

    1988-01-01

    This paper briefly discusses progress at Argonne National Laboratory in the following areas: Experimental Program; Theory Program; Experimental Facilities Research; Accelerator Research and Development; and SSC Detector Research and Development.

  9. Institute for Molecular Medicine Research Program

    SciTech Connect

    Phelps, Michael E

    2012-12-14

    The objectives of the project are the development of new Positron Emission Tomography (PET) imaging instrumentation, chemistry technology platforms and new molecular imaging probes to examine the transformations from normal cellular and biological processes to those of disease in pre-clinical animal models. These technology platforms and imaging probes provide the means to: 1. Study the biology of disease using pre-clinical mouse models and cells. 2. Develop molecular imaging probes for imaging assays of proteins in pre-clinical models. 3. Develop imaging assays in pre-clinical models to provide to other scientists the means to guide and improve the processes for discovering new drugs. 4. Develop imaging assays in pre-clinical models for others to use in judging the impact of drugs on the biology of disease.

  10. About the Gastrointestinal and Other Cancers Research Group | Division of Cancer Prevention

    Cancer.gov

    The Gastrointestinal and Other Cancers Research Group conducts and supports prevention and early detection research on colorectal, esophageal, liver, pancreatic, and hematolymphoid cancers, as well as new approaches to clinical prevention studies including cancer immunoprevention. |

  11. VENTILATION RESEARCH (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The ventilation research program conducts research on heating, ventilation, and air conditioning systems to determine the impact of these systems on human exposure to indoor air pollutants. The emphasis of the program is on determining emissions from ventilation systems. Inform...

  12. About the Prostate and Urologic Cancer Research Group | Division of Cancer Prevention

    Cancer.gov

    The Prostate and Urologic Cancer Research Group conducts and supports research on prostate and bladder cancers, and new approaches to clinical prevention studies including cancer immunoprevention. The group develops, implements and monitors research efforts in chemoprevention, nutrition, genetic, and immunologic interventions, screening, early detection and other prevention strategies. |

  13. High Energy Physics Division semiannual report of research activities, January 1--June 30, 1997

    SciTech Connect

    Norem, J.; Rezmer, R.; Wagner, R.

    1997-12-01

    This report is divided into: the experimental research program; theoretical physics program; accelerator research and development; and divisional computing activities. The experimental research program covers: experiments with data; experiments in planning or construction; and detector development. Work done for this period is summarized for each area.

  14. About the Community Oncology and Prevention Trials Research Group | Division of Cancer Prevention

    Cancer.gov

    The Community Oncology and Prevention Trials Research Group supports clinical oncology trials in cancer prevention and control in community settings. The group also supports investigator-initiated research projects in supportive, palliative and end-of-life care, and coordinates clinical oncology research projects with other NCI programs to be done in the community setting. |

  15. Occupational health and environment research 1983: Health, Safety, and Environment Division. Progress report

    SciTech Connect

    Voelz, G.L.

    1985-05-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the workers, the public, and the environment. Evaluation of respiratory protective equipment included the XM-30 and M17A1 military masks, use of MAG-1 spectacles in respirators, and eight self-contained units. The latter units were used in an evaluation of test procedures used for Bureau of Mines approval of breathing apparatuses. Analyses of air samples from field studies of a modified in situ oil shale retorting facility were performed for total cyclohexane extractables and selected polynuclear aromatic hydrocarbons. Aerosols generation and characterization of effluents from oil shale processing were continued as part of an inhalation toxicology study. Additional data on plutonium excretion in urine are presented and point up problems in using the Langham equation to predict plutonium deposition in the body from long-term excretion data. Environmental surveillance at Los Alamos during 1983 showed the highest estimated radiation dose from Laboratory operations to be about 26% of the natural background radiation dose. Several studies on radionuclides and their transport in the Los Alamos environment are described. The chemical quality of surface and ground water near the geothermal hot dry rock facility is described. Short- and long-term consequences to man from releases of radionuclides into the environment can be simulated by the BIOTRAN computer model, which is discussed brirfly.

  16. Radiological and Environmental Research Division: ecology. Annual report, January-December 1982

    SciTech Connect

    Not Available

    1983-09-01

    This is the annual report of the Radiological and Environmental Division of the Argonne National Laboratory for 1982. Studies of the effects of ozone on crop growth and yield have been carried out by the Terrestrial Ecology Group for winter wheat and for sorghum. The Microcosms for Acid Rain Studies (MARS) facility was completed in the early summer. Controlled investigations of plant and soil responses in acid rain were initiated with crop plants grown in two different midwestern soil types. The Transuranics Group has found that the solubility and adsorptive behavior of plutonium previously observed at fallout concentrations in natural waters (approx. 10/sup -16/ to 10/sup -18/ M) is applicable at plutonium concentrations as high as 10/sup -8/ M. The Lake Michigan eutrophication model has been adapted to operation in a Monte Carlo mode. Simulations based on yearly phosphorus loadings and winter conditions were selected at random from prescribed probability distributions and used to estimate some of the uncertainties associated with model forecasts of Lake Michigan water quality.

  17. [Advance in molecular genetic research on primary congenital glaucoma].

    PubMed

    Li, Xiulan; Liu, Haotian; Zhang, Dingding

    2016-04-01

    Primary congenital glaucoma (PCG) is one of the major diseases causing blindness in children, but its pathogenesis has remained unclear. Genetic factors play an important role in the pathogenesis of PCG. Molecular genetics of candidate genes such as CYP1B1, MYOC, LTBP2 and FOXC1 has so far been explored, but no disease-causing gene has been identified. Molecular genetic research on PCG including candidate gene screening and research strategies are reviewed here. PMID:27060330

  18. [The latest research of the molecular biomarker in prostate cancer].

    PubMed

    Ashikari, Daisaku; Takahashi, Satoru

    2016-01-01

    The incidence of prostate cancer is rapidly increasing in Japan. Currently, the biomarker of prostate cancer is widely used in clinical is serum PSA only. We need to develop novel molecular markers (biomarkers) that diagnose early prostate cancer so that we can treat appropriately. Recently, the whole genome sequencing analysis has advanced that has made finding of novel molecular markers easier. The best molecular markers identified using personalized genome information will be useful to select appropriate treatment. These therapeutic options for each patient will improve the survival rate. We give an outline about the latest molecular marker basic research with reference to the articles. PMID:26793879

  19. Energy and Environment Division, Environmental Research Program, annual report FY 1982

    SciTech Connect

    Not Available

    1983-07-01

    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1982, research was concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion research, environmental effects of oil shale processing, fresh-water ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring. Separate abstracts have been prepared for each research task for inclusion in the Energy Data Base.

  20. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division, April--June 1997

    SciTech Connect

    Jubin, R.T.

    1998-06-01

    The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  1. 11th Annual NIH Pain Consortium Symposium on Advances in Pain Research | Division of Cancer Prevention

    Cancer.gov

    The NIH Pain Consortium will convene the 11th Annual NIH Pain Consortium Symposium on Advances in Pain Research, featuring keynote speakers and expert panel sessions on Innovative Models and Methods. The first keynote address will be delivered by David J. Clark, MD, PhD, Stanford University entitled “Challenges of Translational Pain Research: What Makes a Good Model?” |

  2. Becoming a Physicist: The Roles of Research, Mindsets, and Milestones in Upper-Division Student Perceptions

    ERIC Educational Resources Information Center

    Irving, Paul W.; Sayre, Eleanor C.

    2015-01-01

    As part of a longitudinal study into identity development in upper-level physics students, we used a phenomenographic research method to examine students' perceptions of what it means to be a physicist. Analysis revealed six different categories of perception of what it means to be a physicist. We found the following themes: research and its…

  3. Health and Safety Research Division. Progress report, October 1, 1979-March 31, 1981

    SciTech Connect

    Not Available

    1981-08-01

    Research progress for the period October 1, 1979 through March 31, 1981 is reported. Research conducted by the Office of Integrated Assessments and Policy Analysis, Health Studies Section, Technology Assessments Section, Biological and Radiation Physics Section, and Chemical Physics Section is summarized. (ACR)

  4. About the Breast and Gynecologic Cancer Research Group | Division of Cancer Prevention

    Cancer.gov

    The Breast and Gynecologic Cancer Research Group conducts and fosters the development of research on the prevention and early detection of breast cancer, cervix and human papillomavirus (HPV)-related cancers, endometrial cancers, ovarian cancers, and precursor conditions related to these cancers. |

  5. Research at the U.S. EPA’s Ground Water and Ecosystems Protection Division

    EPA Science Inventory

    The U.S. EPA’s Office of Research and Development (ORD) conducts leading-edge research and fosters the sound use of science and technology to fulfill the Agency's mission to protect human health and safeguard the natural environment. The mission of the Ground Water and Ecosystem...

  6. Divisions of Labour: Activity Theory, Multi-Professional Working and Intervention Research

    ERIC Educational Resources Information Center

    Warmington, Paul

    2011-01-01

    This article draws upon, but also critiques, activity theory by combining analysis of how an activity theory derived research intervention attempted to address both everyday work practices and organisational power relationships among children's services professionals. It offers two case studies of developmental work research (DWR) interventions in…

  7. Compilation of reports from research supported by the Materials Engineering Branch, Division of Engineering: 1991--1993. Volume 2

    SciTech Connect

    Hiser, A.L.

    1994-06-01

    Since 1965, the Materials Engineering Branch, Division of Engineering, of the Nuclear Regulatory Commission`s Office of Nuclear Regulatory Research, and its predecessors dating back to the Atomic Energy Commission (AEC), has sponsored research programs concerning the integrity of the primary system pressure boundary of light water reactors. The components of concern in these research programs have included the reactor pressure vessel (RPV), steam generators, and the piping. These research programs have covered a broad range of topics, including fracture mechanics analysis and experimental work for RPV and piping applications, inspection method development and qualification, and evaluation of irradiation effects to RPV steels. This report provides as complete a listing as practical of formal technical reports submitted to the NRC by the investigators working on these research programs. This listing includes topical, final and progress reports, and is segmented by topic area. In many cases a report will cover several topics (such as in the case of progress reports of multi-faceted programs), but is listed under only one topic. Therefore, in searching for reports on a specific topic, other related topic areas should be checked also. The separate volumes of this report cover the following periods: Volume 1: 1965--1990 and Volume 2: 1991--1993.

  8. Health and Safety Research Division progress report, July 1, 1984-September 30, 1985

    SciTech Connect

    Not Available

    1986-01-01

    This report summarizes progress made for the period July 1984 through September 1985. Sections describe research in health studies, dosimetry and biophysical transport, biological and radiation physics, chemical physics, and risk analysis. (ACR)

  9. Interactive NCORP Map Details Community Research Sites | Division of Cancer Prevention

    Cancer.gov

    An interactive map of the NCI Community Oncology Research Program (NCORP) with detailed information on hundreds of community sites that take part in clinical trials is available on the NCORP website. |

  10. Accelerator and Fusion Research Division annual report, fiscal year 1980, October 1979-September 1980

    SciTech Connect

    Not Available

    1981-03-01

    Research during October 1979 to September 1980 is summarized. Areas covered include: accelerator operations; positron-electron project; stochastic beam cooling; high-field superconducting magnets; accelerator theory; neutral beam sources; and heavy ion fusion. (GHT)

  11. Puerto Rico NCI Community Oncology Research Program Minority/Underserved | Division of Cancer Prevention

    Cancer.gov

    DESCRIPTION 3 OVERALL REVIEW CRITERIA AND IMPACT 3 FUNDING OPPORTUNITY ANNOUNCEMENT (FOA) SPECIFIC CRITERIA 8 ORGANIZATION AND STRUCTURE 8 CLINCAL TRIALS RESEARCH PROGRAM 10 CANCER CARE DELIVERY RESEARCH PROGRAM 11 OPERATIONS/DATA MANAGEMENT CORE 12 ADDITIONAL REVIEW CRITERIA 14 PROTECTIONS FOR HUMAN SUBJECTS 14 INCLUSION OF WOMEN, MINORITIES, AND CHILDREN 14 BIOHAZARDS 14 RESOURCE SHARING PLAN 14 BUDGET AND PERIOD OF SUPPORT 14 SCIENTIFIC REVIEW OFFICER'S NOTES 14 SPECIAL EMPHASIS PANEL ROSTER |

  12. About the Chemopreventive Agent Development Research Group | Division of Cancer Prevention

    Cancer.gov

    The Chemopreventive Agent Development Research Group promotes and supports research on early chemopreventive agent development, from preclinical studies to phase I clinical trials. The group’s projects aim to identify and develop prevention agents with the potential to block, reverse, or delay the early stages of cancer. The overarching goal is to determine positive and negative predictive values of preclinical models for clinical development. |

  13. About the Lung and Upper Aerodigestive Cancer Research Group | Division of Cancer Prevention

    Cancer.gov

    The Lung and Upper Aerodigestive Cancer Research Group conducts and supports research on the prevention and early detection of lung and head and neck cancers, as well as new approaches to clinical prevention studies including cancer immunoprevention.Phase 0/I/II Cancer Prevention Clinical Trials ProgramThe group jointly administers the Phase 0/I/II Cancer Prevention Clinical Trials Program evaluating new agents, surrogate biomarkers, and technologies to identify premalignant lesions, and related cancers.  |

  14. MOLECULAR ANALYSIS OF HUMAN SPERMATOZOA: POTENTIAL FOR INFERTILITY RESEARCH

    EPA Science Inventory

    Gordon Research Conference: Mammalian Gametogenesis and Embryogenesis
    New London, CT, July 1-6, 2000

    Molecular Analysis of Human Spermatozoa:
    Potential for Infertility Research

    David Miller 1, David Dix2, Robert Reid 3, Stephen A Krawetz 3
    1Reproductive ...

  15. International Federation of Library Associations Annual Conference Papers. General Research Libraries Division: Parliamentary Libraries and National Libraries Sections (47th, Leipzig, East Germany, August 17-22, 1981).

    ERIC Educational Resources Information Center

    Gude, Gilbert; And Others

    This set of papers presented to the General Research Libraries Division of the International Federation of Library Associations (IFLA) during its 47th annual conference (1981) includes: "The Effect of the Introduction of Computers on Library and Research Staff," by Gilbert Gude; "Libraries as Information Service Agencies (IVS)," by Franz Georg…

  16. COMBUSTION RESEARCH Chapter from the Energy and Environment Division Annual Report 1980

    SciTech Connect

    Authors, Various

    1981-05-01

    Combustion research at the Lawrence Berkeley Laboratory focuses on the study of the chemical and physical processes which are important in combustion. Two areas of application dominate; the control of combustion processes to allow the utilization of new fuels while limiting pollutant formation and the reduction of fire hazards accompanying energy generation and utilization technologies. Principal program areas are the interaction of fluid-mechanical turbulence and combustion, the development and application of new physical and chemical diagnostic techniques for combustion research, pollutant formation and destruction processes, theoretical and computational modeling of combustion processes, combustion processes in engines, fire science, and fire safety. Work is reported in these areas: ENGINE COMBUSTION AND IGNITION STUDIES; COMBUSTION CHEMISTRY AND POLLUTANT FORMATION; COMBUSTION FLUID MECHANICS; and FIRE RESEARCH.

  17. RESEARCH AREA -- MUNICIPAL WASTE COMBUSTION (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The municipal waste combustion (MWC) program supports the development of revised rules for air pollutant emissions from the MWC source category. Basic research is performed on MWC pollutant formation and control mechanisms for acid gas, trace organic, and trace metal emissions. T...

  18. Collaborative Action Research: Teaching of Multiplication and Division in the Second Grade

    ERIC Educational Resources Information Center

    Vula, Eda; Berdynaj, Lirika

    2011-01-01

    This paper discusses the impact of action research methodology used in the teaching and learning process and professional teacher development. In this study are including 58 students of three second grade classes, 3 teachers of those classes and a university professor. Aiming at using a different approach in their teaching of multiplication and…

  19. RESEARCH AREA -- GREENHOUSE GAS MITIGATION - ATMOSPHERIC PROTECTION BRANCH (AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Atmospheric Protection Branch conducts research projects to develop and assess new potential alternatives to ozone-depleting substances, several of which have received high priority and some of which have been commercialized.In regards to waste methane, two principal issues...

  20. Health and Safety Research Division progress report, April 1, 1981-September 30, 1982

    SciTech Connect

    Not Available

    1983-02-01

    Research progress for the reporting period is briefly summarized for the following sections: (1) health studies, (2) technology assessments, (3) biological and radiation physics, (4) chemical physics, (5) Office of Risk Analysis, and (6) health and environmental risk and analysis. (ACR)

  1. Radiological and Environmental Research Division annual report, January-December 1980. Atmospheric physics

    SciTech Connect

    Not Available

    1981-08-01

    Contained are twenty-six abstracts of on-going research programs at Argonne National Laboratory concerning the modeling of environmental air pollutants concentration and transport for January-December 1980. Studies on pollutant transport modeling, fluid flow models, and atmospheric precipitations chemistry are included. (DLS)

  2. Research programs for Division of Chemical Sciences, Office of Basic Energy Sciences, Department of Energy

    SciTech Connect

    Not Available

    1988-01-01

    A chemical sciences review meeting was held in which research programs in chemistry were discussed. Major topics included: chemistry of actinides and fission products, interactions of solvents, solutes and surfaces in supercritical extraction, chemical and physical principles in multiphase separations, and chemical kinetics of enzyme catalyzed reactions. Individual projects are processed separately for the data bases. (CBS)

  3. Loads and aeroelasticity division research and technology accomplishments for FY 1983 and plans for FY 1984

    NASA Technical Reports Server (NTRS)

    Gardner, J. E.; Dixon, S. C.

    1984-01-01

    Research was done in the following areas: development and validation of solution algorithms, modeling techniques, integrated finite elements for flow-thermal-structural analysis and design, optimization of aircraft and spacecraft for the best performance, reduction of loads and increase in the dynamic structural stability of flexible airframes by the use of active control, methods for predicting steady and unsteady aerodynamic loads and aeroelastic characteristics of flight vehicles with emphasis on the transonic range, and methods for predicting and reducing helicoper vibrations.

  4. NCI Approves Funding Plan for NCI Community Oncology Research Program (NCORP) | Division of Cancer Prevention

    Cancer.gov

    On June 24, 2014, the Scientific Program Leaders (SPL) of the National Cancer Institute (NCI) approved the funding plan for the NCI Community Oncology Research Program (NCORP), a national network of investigators, cancer care providers, academic institutions, and other organizations. NCORP will conduct multi-site cancer clinical trials and studies in diverse populations in community-based healthcare systems across the United States. The program will receive $93 million a year for five years. |

  5. Accelerator and Fusion Research Division. Annual report, October 1978-September 1979

    SciTech Connect

    Not Available

    1980-03-01

    Topics covered include: Super HILAC and Bevalac operations; high intensity uranium beams line item; advanced high charge state ion source; 184-inch synchrocyclotron; VENUS project; positron-electron project; high field superconducting accelerator magnets; beam cooling; accelerator theory; induction linac drivers; RF linacs and storage rings; theory; neutral beam systems development; experimental atomic physics; neutral beam plasma research; plasma theory; and the Tormac project. (GHT)

  6. Investigators' - Site Coordinators' Opportunity for Research Excellence (I-SCORE) Workshop | Division of Cancer Prevention

    Cancer.gov

    The DCP Organ Systems Research Groups develop, support and oversee clinical cancer prevention trials and promote participation by all populations. The trials are designed to evaluate the safety and efficacy of promising new preventive agents, the utility of novel biomarkers and the value of innovative technologies to identify premalignant lesions. The Consortia for Early Phase Prevention Trials program was created to facilitate the efficient implementation of these studies by teams of multidisciplinary investigators. |

  7. Radiological and Environmental Research Division annual report, January-December 1982. Atmospheric physics. Part 4

    SciTech Connect

    Not Available

    1984-01-01

    The first article in this report, although dealing with simple terrain, summarizes an effort to obtain measures of parameters important in transport and diffusion in the lower atmosphere solely by use of a Doppler acoustic sounding system. The second article describes participation in a multiagency experiment (Shoreline Environment Atmospheric Dispersion Experiment, SEADEX) to study the fate of materials released over a surface with notable surface nonuniformities, specifically at a coastal nuclear power plant during onshore flow conditions. The third and fourth articles in this report address research on the local behavior of pollutants emitted from diesel engines in urban areas. Most effort was directed toward field studies on circulation patterns in street canyons, exchange rates with the atmosphere above rooftops, and characterization of particles in outdoor urban microclimates. The remainder of the report is quite diverse and contains multiple articles on perhaps only one or two types of research. One is numerical modeling of the behavior of atmospheric pollutants, especially gaseous and particulate substances associated with acid deposition. The modeling and theoretical capabilities have been developed in part to consider potential nonlinear relationships between anthropogenic emissions of sulfur and nitrogen compounds and the distant deposition of resulting acidifying substances. On the experimental side, field phases of research designed to compare methods of analyses of precipitation samples and to study local urban effects on precipitation chemistry were completed. Each report is indexed separately.

  8. IFLA General Conference, 1986. Education and Research Division. Section: Library History and Library Theory and Research. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations and Institutions, The Hague (Netherlands).

    Papers on library history and library theory and research presented at the 1986 International Federation of Library Associations (IFLA) conference include: (1) "The History of Western Literature Library Collections in Japan" (Yoshitomi Okazaki, Japan); (2) "Trends of Library History Research in Japan" (Hiroshi Kawai, Yukio Fujino, Atsushi Ishii,…

  9. Native Americans and the Geosciences: Problems With Societally Driven Research, Cultural and Racial Divisions

    NASA Astrophysics Data System (ADS)

    Redsteer, M. H.; James, K.

    2004-12-01

    Why are Native Americans absent from the geosciences? It doesn't seem to make sense when one view common to most traditional Native communities is earth and ecosystem stewardship, i.e. respect for Mother Earth. In addition, Native American communities could benefit from contributions made through earth science research. Land, and the natural resources that accompany it, are most tribes' greatest assets. Natural resource and land-use plans require information on geologic hazards, water quality and availability, soils, and environmentally sensitive areas: all data that are sorely lacking in Native communities. Native communities, with rapidly growing populations, desperately need geologic information for planning urban development. Even so, there are several reasons for a lack of interest in the geosciences: Mainstream science has historically served non-Native society to the detriment of Native communities, leaving few positive examples of earth science research for communities to draw from. Native North American communities have suffered greater harm from resource exploitation and have gained less from natural resource development than non-Native communities. Moreover, the earth scientist is usually the one who begins the assessing what is available for corporate exploitation, making the role of earth scientist adversarial. Racism, that begins at the elementary school level or earlier, leaves students feeling inadequate to pursue any degree, let alone those that are considered more challenging. Western science has a long history of denigrating indigenous knowledge and beliefs, producing a social stigma that Native American scientists must overcome. In addition, research tends to be narrowly focused, and based on the desire for individual academic achievement. This attitude counters cultural values of most Native groups, who seek to serve the collective group, rather than seeking self promotion.

  10. Annual report and summaries of FY 1983 activities supported by the Division of Biological Energy Research

    SciTech Connect

    Rabson, R.

    1983-10-01

    Summaries of research performed in FY 1983 are presented. Representative research areas include: (1) progress was made in modifying the Agrobacterium tumefaciens Ti plasmid as a vector in the transfer of DNA in higher plants. The plasmid was disarmed by genetically altering that information which is responsible for unwanted tumor formation in recipient plants. In addition it was demonstrated that antibiotic resistance as a representative genetic character may be transferred by the Ti plasmid to a recipient plant culture; (2) by using appropriately constituted genetic lines of maize it has been possible by following male sterility restorer function to measure for the first time the frequency and character of genetic transposition events in a higher organism; (3) the gene coding for susceptibility to the herbicide atrazine in higher plants has been identified, cloned, and sequenced. A mutant gene which is responsible for resistance to the herbicide has likewise been studied. The difference between the two is one nucleotide in the DNA sequence; and (4) amino acid sequences of a number of proteins of the smallest functional photosynthetic particle, known as the reaction center, of the photosynthetic bacterium Rhodopseudomonas capsulata have been determined by cloning and sequencing the corresponding DNA. This information has led to new insights concerning the structural and functional nature of the proteins in photosynthesis.

  11. IFLA General Conference, 1991. Division of Education and Research: Section of Education and Training; Continuing Professional Education (RT); Section of Library Theory and Research; Library History (RT); Research in Reading (RT); Editors of Library Journals (RT). Booklet 7.

    ERIC Educational Resources Information Center

    International Federation of Library Associations and Institutions, The Hague (Netherlands).

    The 12 papers in this collection were presented at 6 sections of the Division of Education and Research: (1) "Emergence of the Asian Pacific Area and Its Impact on Education and Training of Librarians" (Maxine K. Rochester, Australia); (2) "The Cultural Aspects of Colonialism: Case Study of the Relevance of the Imported Curriculum for Library and…

  12. Intelligent tutoring systems research in the training systems division: Space applications

    NASA Technical Reports Server (NTRS)

    Regian, J. Wesley

    1988-01-01

    Computer-Aided Instruction (CAI) is a mature technology used to teach students in a wide variety of domains. The introduction of Artificial Intelligence (AI) technology of the field of CAI has prompted research and development efforts in an area known as Intelligent Computer-Aided Instruction (ICAI). In some cases, ICAI has been touted as a revolutionary alternative to traditional CAI. With the advent of powerful, inexpensive school computers, ICAI is emerging as a potential rival to CAI. In contrast to this, one may conceive of Computer-Based Training (CBT) systems as lying along a continuum which runs from CAI to ICAI. Although the key difference between the two is intelligence, there is not commonly accepted definition of what constitutes an intelligent instructional system.

  13. Research results reported by OEO summer (1981) student employees of LLNL working with Earth Sciences (K) Division personnel

    SciTech Connect

    Doyle, M. C.; Griffith, P. J.; Kreevoy, E. P.; Turner, III, H. J.; Tatman, D. A.

    1982-01-01

    Significant experimental results were achieved in a number of research programs that were carried out during the summer of 1981 by students sponsored by the Office of Equal Opportunity at the Lawrence Livermore National Laboratory. These students were working with Earth Sciences (K) Division personnel. Accomplishments include the following: (1) preparation of post-burn stratigraphic sections for the Hoe Creek III experiment, Underground Coal Gasification project; (2) preparation of miscellaneous stratigraphic sections in the Climax granite near the Spent Fuel Test, Nevada Test Site, for the Waste Isolation Project; (3) confirmation of the applicability of a new theory relating to subsidence (solid matrix movement); (4) experimental confirmation that organic groundwater contaminants produced during an underground coal gasification experiment can be removed by appropriate bacterial treatment; (5) development of data supporting the extension of the Greenville Fault Zone into the Northern Diablo Range (Alameda and Santa Clara Counties, California); (6) completion of a literature review on hazardous waste (current disposal technology, regulations, research needs); (7) preparation of a map showing levels of background seismic noise in the USSR; (8) demonstration of a correlation of explosion size with the P-wave magnitude of the seismic signal produced by the explosion; and (9) reduction of data showing the extent of ground motion resulting from subsidence in the vicinity of the Hoe Creek III experiment, Underground Coal Gasification Project.

  14. Transcriptome research on spermatogenic molecular drive in mammals

    PubMed Central

    Zhu, Zi-Jue; Yang, Shi; Li, Zheng

    2015-01-01

    It is known that spermatogenic disorders are associated with genetic deficiency, although the primary mechanism is still unclear. It is difficult to demonstrate the molecular events occurring in testis, which contains germ cells at different developmental stages. However, transcriptomic methods can help us reveal the molecular drive of male gamete generation. Many transcriptomic studies have been performed on rodents by utilizing the timing of the first wave of spermatogenesis, which is not a suitable strategy for research in fertile men. With the development of separation methods for male germ cells, transcriptome research on the molecular drive of spermatogenesis in fertile men has seen great progress, and the results could be ultimately applied to improve the diagnosis and treatment for male infertility. PMID:26306849

  15. Molecular Imaging in Tumor Angiogenesis and Relevant Drug Research

    PubMed Central

    Ma, Xibo; Tian, Jie; Yang, Xin; Qin, Chenghu

    2011-01-01

    Molecular imaging, including fluorescence imaging (FMI), bioluminescence imaging (BLI), positron emission tomography (PET), single-photon emission-computed tomography (SPECT), and computed tomography (CT), has a pivotal role in the process of tumor and relevant drug research. CT, especially Micro-CT, can provide the anatomic information for a region of interest (ROI); PET and SPECT can provide functional information for the ROI. BLI and FMI can provide optical information for an ROI. Tumor angiogenesis and relevant drug development is a lengthy, high-risk, and costly process, in which a novel drug needs about 10–15 years of testing to obtain Federal Drug Association (FDA) approval. Molecular imaging can enhance the development process by understanding the tumor mechanisms and drug activity. In this paper, we focus on tumor angiogenesis, and we review the characteristics of molecular imaging modalities and their applications in tumor angiogenesis and relevant drug research. PMID:21808639

  16. Harnessing the crowd to accelerate molecular medicine research.

    PubMed

    Smith, Robert J; Merchant, Raina M

    2015-07-01

    Crowdsourcing presents a novel approach to solving complex problems within molecular medicine. By leveraging the expertise of fellow scientists across the globe, broadcasting to and engaging the public for idea generation, harnessing a scalable workforce for quick data management, and fundraising for research endeavors, crowdsourcing creates novel opportunities for accelerating scientific progress. PMID:26141797

  17. Eva Szabo, MD | Division of Cancer Prevention

    Cancer.gov

    Dr. Eva Szabo is Chief of the Lung and Upper Aerodigestive Cancer Research Group at the NCI Division of Cancer Prevention. She graduated from Yale University with a BS in Molecular Biophysics and Biochemistry, received her MD from Duke University, and completed her internal medicine residency at Bellevue-NYU Medical Center. After completing her medical oncology fellowship at the National Cancer Institute, Dr. Szabo led a laboratory effort studying lung cancer biology. |

  18. Mountain-Plains Handbook: The Design and Operation of a Residential Family Based Education Program. Appendix. Supplement I To Volume 3. Measurement and Evaluation: The Research Services Division.

    ERIC Educational Resources Information Center

    Coyle, David A.; And Others

    One of five supplements which accompany chapter 3 of "Mountain-Plains Handbook: The Design and Operation of a Residential, Family Oriented Career Education Model" (CE 014 630), this document contains specific information concerning the data monitoring procedures and forms utilized by the research services division. Included are the following…

  19. International Federation of Library Associations Annual Conference Papers. General Research Libraries Division: University Libraries Section (47th, Leipzig, East Germany, August 17-22, 1981).

    ERIC Educational Resources Information Center

    Loveday, Anthony J.; And Others

    This set of papers presented to the General Research Libraries Division, University Libraries Section, of the International Federation of Library Associations during its 47th annual conference (1981) includes: "SCONUL (Standing Conference of National and University Libraries) and British University Library Standards: Some Observations on the Role…

  20. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    1999-01-01

    The Structures and Acoustics Division of NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported are a synopsis of the work and accomplishments reported by the Division during the 1996 calendar year. A bibliography containing 42 citations is provided.

  1. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    2001-01-01

    The Structures and Acoustics Division of the NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included in this report are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported is a synopsis of the work and accomplishments completed by the Division during the 1997, 1998, and 1999 calendar years. A bibliography containing 93 citations is provided.

  2. Science Education Outreach Activities in the Fusion Energy Division of UCSD’s Center for Energy Research*

    NASA Astrophysics Data System (ADS)

    Moyer, R. A.; Stewart, P.; van Fleet, J.

    2001-10-01

    Since 1995, the Fusion Energy Division of the Center for Energy Research at UCSD has been engaged in a variety of volunteer activities in science education outreach. FED staff have developed demonstration tools on energy and plasma science which are used effectively with middle and high school students as well as teacher/student groups at: the APS DPP Plasma Expos and the San Diego Co. Educational Technology Fair. These demonstration tools have proven effective in communicating with elementary students at community science and technology exhibits at the Reuban H. Fleet Science Center (San Diego) and in elementary school classes. UCSD scientists have also participated as team members of the GA Fusion Group’s programs: "Scientist in the Classroom" , and the two Plasma Institutes for in-service science teachers. In the coming year, we plan to: 1) expand the "Scientist in the Classroom" to home-schooled children in San Diego; 2) participate in local elementary school Family Science Nights; and 3) assist in training a new group of future San Diego Unified School District ninth grade physics teachers.

  3. [Research progress on molecular genetics of forest musk deer].

    PubMed

    Jie, Hang; Zheng, Cheng-li; Wang, Jian-ming; Feng, Xiao-lan; Zeng, De-jun; Zhao, Gui-jun

    2015-11-01

    Forest musk deer is one of the large-scale farming musk deer animals with the largest population at the same time. The male musk deer can secrete valuable medicines, which has high medicinal and economic value. Due to the loss of habitat and indiscriminate hunting, the numbers of wild population specie and the distribution have been drastically reduced. Therefore, in-depth understanding of the molecular genetics progress of forest musk deer will pave a way for musk deer protection and breeding. In this review, the progress associated with the molecular marker, genetic classification, artificial breeding, musk secretion and disease in past decades were reviewed, in order to provide a theoretical basis for subsequent molecular genetic researches in forest musk deer. PMID:27097400

  4. 2004 Atomic and Molecular Interactions Gordon Research Conference

    SciTech Connect

    Dr. Paul J. Dagdigian

    2004-10-25

    The 2004 Gordon Research Conference on Atomic and Molecular Interactions was held July 11-16 at Colby-Sawyer College, New London, New Hampshire. This latest edition in a long-standing conference series featured invited talks and contributed poster papers on dynamics and intermolecular interactions in a variety of environments, ranging from the gas phase through surfaces and condensed media. A total of 90 conferees participated in the conference.

  5. IFLA General Conference, 1990. Division of General Research Libraries: Open Forum; Section of National Libraries; Section of University Libraries and Other General Research Libraries; Section of Parliamentary Libraries. Booklet 1.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    The 16 reports in this collection were presented at an open forum on research libraries and meetings of three more specialized sections: (1) "Nature and Purpose of the Division of General Research Libraries" (Ernst Kohl); (2) "Objectives and Goals of the Section of Parliamentary Libraries" (Ernst Kohl); (3) "The IFLA (International Federation of…

  6. DIVISIBILITY TESTS.

    ERIC Educational Resources Information Center

    FOLEY, JACK L.

    THIS BOOKLET, ONE OF A SERIES, HAS BEEN DEVELOPED FOR THE PROJECT, A PROGRAM FOR MATHEMATICALLY UNDERDEVELOPED PUPILS. A PROJECT TEAM, INCLUDING INSERVICE TEACHERS, IS BEING USED TO WRITE AND DEVELOP THE MATERIALS FOR THIS PROGRAM. THE MATERIALS DEVELOPED IN THIS BOOKLET INCLUDE SUCH CONCEPTS AS (1) DIVISIBILITY TESTS, (2) CHECKING THE FUNDAMENTAL…

  7. Fundamentals of quality assessment of molecular amplification methods in clinical diagnostics. International Federation of Clinical Chemistry Scientific Division Committee on Molecular Biology Techniques.

    PubMed

    Neumaier, M; Braun, A; Wagener, C

    1998-01-01

    The increasing interest in molecular biology diagnostics is a result of the tremendous gain of scientific knowledge in genetics, made possible especially since the introduction of amplification techniques. High expectations have been placed on genetic testing, and the number of laboratories now using the relevant technology is rapidly increasing--resulting in an obvious need for standardization and definition of laboratory organization. This communication is an effort towards that end. We address aspects that should be considered when structuring a new molecular diagnostic laboratory, and we discuss individual preanalytical and analytical procedures, from sampling to evaluation of assay results. In addition, different means of controlling contamination are discussed. Because the methodology is in constant change, no general standards can be defined. Accordingly, this publication is intended to serve as a recommendation for good laboratory practice and internal quality control and as a guide to troubleshooting, primarily in amplification techniques. PMID:9550553

  8. Molecular design concept for x-ray laser research

    SciTech Connect

    Rhodes, C.K.; Luk, T.S.; McPherson, A.; Boyer, K.

    1992-12-10

    The goal of this program is the construction of an x-ray laser in the kilovolt regime. Recent experimental results indicate that a new technique for the generation of strong amplification of x-ray wavelengths is feasible. It involves the combination of (1) a new ultrahigh brightness subpicosecond laser technology and (2) a recently discovered unique mode of strong-field interaction, particularly applicable to molecules. A concept of molecular x-ray design emerges from the considerations which matches the mode of excitation to the structure of the molecular system. The molecular approach enables the combination of very highly electronically excited conditions with an environment characteristic of dense cold matter, a general situation exceptionally conducive to x-ray amplification. Both high efficiency and wavelength tunability are intrinsic features of this method. Recent results discussed in this report are revealing important characteristics of the molecular strong-field coupling pertinent to this goal. A continued program of research is proposed to evaluate this method for the production of x-ray amplification in the kilovolt region.

  9. Physics Division annual report, April 1, 1993--March 31, 1994

    SciTech Connect

    Thayer, K.J.; Henning, W.F.

    1994-08-01

    This is the Argonne National Laboratory Physics Division Annual Report for the period April 1, 1993 to March 31, 1994. It summarizes work done in a number of different fields, both on site, and at other facilities. Chapters describe heavy ion nuclear physics research, operation and development of the ATLAS accelerator, medium-energy nuclear physics research, theoretical physics, and atomic and molecular physics research.

  10. How have developments in molecular imaging techniques furthered schizophrenia research?

    PubMed Central

    Thompson, Judy L; Urban, Nina; Abi-Dargham, Anissa

    2010-01-01

    Molecular imaging techniques have led to significant advances in understanding the pathophysiology of schizophrenia and contributed to knowledge regarding potential mechanisms of action of the drugs used to treat this illness. The aim of this article is to provide a review of the major findings related to the application of molecular imaging techniques that have furthered schizophrenia research. This article focuses specifically on neuroreceptor imaging studies with PET and SPECT. After providing a brief overview of neuroreceptor imaging methodology, we consider relevant findings from studies of receptor availability, and dopamine synthesis and release. Results are discussed in the context of current hypotheses regarding neurochemical alterations in the illness. We then selectively review pharmacological occupancy studies and the role of neuroreceptor imaging in drug development for schizophrenia. PMID:21243081

  11. PAST AND PRESENT: 50 YEARS OF AIR QUALITY MODELING RESEARCH AND ITS APPLICATIONS BY THE NOAA ATMOSPHERIC SCIENCES MODELING DIVISION

    EPA Science Inventory

    The NOAA Atmospheric Sciences Modeling Division (ASMD) celebrated its Golden Jubilee in September 2005. The partnership between NOAA and EPA began when the Air Pollution Unit of the Public Health Service, which later became part of the EPA, requested the Weather Bureau provide ...

  12. Hemoglobin research and the origins of molecular medicine

    PubMed Central

    2008-01-01

    Much of our understanding of human physiology, and of many aspects of pathology, has its antecedents in laboratory and clinical studies of hemoglobin. Over the last century, knowledge of the genetics, functions, and diseases of the hemoglobin proteins has been refined to the molecular level by analyses of their crystallographic structures and by cloning and sequencing of their genes and surrounding DNA. In the last few decades, research has opened up new paradigms for hemoglobin related to processes such as its role in the transport of nitric oxide and the complex developmental control of the α-like and β-like globin gene clusters. It is noteworthy that this recent work has had implications for understanding and treating the prevalent diseases of hemoglobin, especially the use of hydroxyurea to elevate fetal hemoglobin in sickle cell disease. It is likely that current research will also have significant clinical implications, as well as lessons for other aspects of molecular medicine, the origin of which can be largely traced to this research tradition. PMID:18988877

  13. Investigative Cases and Student Outcomes in an Upper-Division Cell and Molecular Biology Laboratory Course at a Minority-serving Institution

    PubMed Central

    Fulop, Rebecca M.; Márquez-Magaña, Leticia; Tanner, Kimberly D.

    2008-01-01

    Active-learning strategies are increasingly being integrated into college-level science courses to make material more accessible to all students and to improve learning outcomes. One active-learning pedagogy, case-based learning (CBL), was developed as a way to both enhance engagement in the material and to accommodate diverse learning styles. Yet, adoption of CBL approaches in undergraduate biology courses has been piecemeal, in part because of the perceived investment of time required. Furthermore, few CBL lesson plans have been developed specifically for upper-division laboratory courses. Here, we describe four cases that we developed and implemented for a senior cell and molecular biology laboratory course at San Francisco State University, a minority-serving institution. To evaluate the effectiveness of these modules, we used both written and verbal assessments to gauge learning outcomes and attitudinal responses of students over two semesters. Students responded positively to the new approach and seemed to meet the learning goals for the course. Most said they would take a course using CBL again. These case modules are readily adaptable to a variety of classroom settings. PMID:19047425

  14. Investigative cases and student outcomes in an upper-division cell and molecular biology laboratory course at a minority-serving institution.

    PubMed

    Knight, Jonathan D; Fulop, Rebecca M; Márquez-Magaña, Leticia; Tanner, Kimberly D

    2008-01-01

    Active-learning strategies are increasingly being integrated into college-level science courses to make material more accessible to all students and to improve learning outcomes. One active-learning pedagogy, case-based learning (CBL), was developed as a way to both enhance engagement in the material and to accommodate diverse learning styles. Yet, adoption of CBL approaches in undergraduate biology courses has been piecemeal, in part because of the perceived investment of time required. Furthermore, few CBL lesson plans have been developed specifically for upper-division laboratory courses. Here, we describe four cases that we developed and implemented for a senior cell and molecular biology laboratory course at San Francisco State University, a minority-serving institution. To evaluate the effectiveness of these modules, we used both written and verbal assessments to gauge learning outcomes and attitudinal responses of students over two semesters. Students responded positively to the new approach and seemed to meet the learning goals for the course. Most said they would take a course using CBL again. These case modules are readily adaptable to a variety of classroom settings. PMID:19047425

  15. Chemical Technology Division annual technical report, 1994

    SciTech Connect

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  16. Using a Research-based Approach to Transform Upper-division Courses in Classical and Quantum Mechanics and E&M

    NASA Astrophysics Data System (ADS)

    Pollock, Steven

    2013-04-01

    At most universities, including the University of Colorado, upper-division physics courses are taught using a traditional lecture approach that does not make use of many of the instructional techniques that have been found to improve student learning at the introductory level. We are transforming several upper-division courses using principles of active engagement and learning theory, guided by the results of observations, interviews, and analysis of student work at CU and elsewhere. In this talk I outline these transformations, including the development of faculty consensus learning goals, clicker questions, tutorials, modified homeworks, and more. We present evidence of the effectiveness of these transformations relative to traditional courses, based on student grades, interviews, and through research-based assessments of student conceptual mastery and student attitudes. Our results suggest that many of the tools that have been effective in introductory courses are effective for our majors, and that further research is warranted in the upper-division environment. (See www.colorado.edu/sei/departments/physics.htm for materials)

  17. | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Research Applications of Proteolytic Enzymes in Molecular Biology

    PubMed Central

    Mótyán, János András; Tóth, Ferenc; Tőzsér, József

    2013-01-01

    Proteolytic enzymes (also termed peptidases, proteases and proteinases) are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences. PMID:24970197

  20. The latest progress in sugarcane molecular genetics research at the USDA-ARS, Sugarcane Research Laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2005, two sugar molecular genetics tools were developed in the USDA-ARS, Southeast Area, Sugarcane Research Laboratory at Houma, LA. One is the high throughput fluorescence- and capillary electrophoregrams (CE)-based SSR genotyping tool and the other is single pollen collection and SSR genotyping...

  1. Structural dynamics division research and technology accomplishments for F.Y. 1991 and plans for F.Y. 1992

    NASA Technical Reports Server (NTRS)

    Wynne, Eleanor C.

    1992-01-01

    The work under each technical area is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5 year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest. The structural dynamics division consist of the following branches: configuration aeroelasticity; unsteady aerodynamics; aeroservoelasticity; landing and impact dynamics; and spacecraft dynamics.

  2. Lightning Talks 2015: Theoretical Division

    SciTech Connect

    Shlachter, Jack S.

    2015-11-25

    This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.

  3. Mitochondrial division in Caenorhabditis elegans.

    PubMed

    Gandre, Shilpa; van der Bliek, Alexander M

    2007-01-01

    The study of mitochondrial division proteins has largely focused on yeast and mammalian cells. We describe methods to use Caenorhabditis elegans as an alternative model for studying mitochondrial division, taking advantage of the many wonderful resources provided by the C. elegans community. Our methods are largely based on manipulation of gene expression using classic and molecular genetic techniques combined with fluorescence microscopy. Some biochemical methods are also included. As antibodies become available, these biochemical methods are likely to become more sophisticated. PMID:18314747

  4. UCSC genome browser: deep support for molecular biomedical research.

    PubMed

    Mangan, Mary E; Williams, Jennifer M; Lathe, Scott M; Karolchik, Donna; Lathe, Warren C

    2008-01-01

    The volume and complexity of genomic sequence data, and the additional experimental data required for annotation of the genomic context, pose a major challenge for display and access for biomedical researchers. Genome browsers organize this data and make it available in various ways to extract useful information to advance research projects. The UCSC Genome Browser is one of these resources. The official sequence data for a given species forms the framework to display many other types of data such as expression, variation, cross-species comparisons, and more. Visual representations of the data are available for exploration. Data can be queried with sequences. Complex database queries are also easily achieved with the Table Browser interface. Associated tools permit additional query types or access to additional data sources such as images of in situ localizations. Support for solving researcher's issues is provided with active discussion mailing lists and by providing updated training materials. The UCSC Genome Browser provides a source of deep support for a wide range of biomedical molecular research (http://genome.ucsc.edu). PMID:18606360

  5. Classical and Molecular Genetic Research on General Cognitive Ability.

    PubMed

    McGue, Matt; Gottesman, Irving I

    2015-01-01

    Arguably, no psychological variable has received more attention from behavioral geneticists than what has been called "general cognitive ability" (as well as "general intelligence" or "g"), and for good reason. GCA has a rich correlational network, implying that it may play an important role in multiple domains of functioning. GCA is highly correlated with various indicators of educational attainment, yet its predictive utility is not limited to academic achievement. It is also correlated with work performance, navigating the complexities of everyday life, the absence of various social pathologies (such as criminal convictions), and even health and mortality. Although the causal basis for these associations is not always known, it is nonetheless the case that research on GCA has the potential to provide insights into the origins of a wide range of important social outcomes. In this essay, our discussion of why GCA is considered a fundamentally important dimension of behavior on which humans differ is followed by a look at behavioral genetics research on CGA. We summarize behavioral genetics research that has sought to identify and quantify the total contributions of genetic and environmental factors to individual differences in GCA as well as molecular genetic research that has sought to identify genetic variants that underlie inherited effects. PMID:26413945

  6. Children's Inventions for Multidigit Multiplication and Division.

    ERIC Educational Resources Information Center

    Caliandro, Christine Koller

    2000-01-01

    Describes an informal research activity in which third grade students invent their own algorithms for multidigit multiplication and division. Discusses teaching implications and action research ideas. (ASK)

  7. Physics division annual report 2006.

    SciTech Connect

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  8. Forty years of the Institute for Nuclear Research (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 22 December 2010)

    NASA Astrophysics Data System (ADS)

    2011-09-01

    On 22 December 2010, the scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), devoted to the 40th anniversary of the Institute for Nuclear Research, RAS, was held at the Institute for Nuclear Research, RAS in Troitsk. The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Matveev V A (Institute for Nuclear Research, RAS, Moscow) "Introductory word"; (2) Gavrin V N (Institute for Nuclear Research, RAS, Moscow) "Contribution of the SAGE results to the understanding of solar physics and neutrino physics"; (3) Domogatsky G V (Institute for Nuclear Research, RAS, Moscow) "Baikal neutrino experiment"; (4) Tkachev I I (Institute for Nuclear Research, RAS, Moscow) "Observation of the Greisen - Zatsepin - Kuz'min effect at the Telescope Array Observatory"; (5) Kudenko Yu G (Institute for Nuclear Research, RAS, Moscow) "Neutrino T2K experiment: the first results"; (6) Sadykov R A (Institute for Nuclear Research, RAS, Moscow) "Fields of study of condensed media at the neutron facility at the INR, RAS"; (7) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) "Production of isotopes at the INR, RAS: reality and prospects".The papers written on the base of reports 1-5 and 7 are published below. In addition, the paper "High-power diode-pumped alkali lasers" by A M Shalagin is published. The paper is based on the report presented at the scientific session of the General Assembly of the Physical Sciences Division, RAS (13 December 2010) devoted to the 50th anniversary of the laser, the main materials of the session having been published in Usp. Fiz. Nauk 181 (8) 867 (2011) [Phys. Usp. 54 837 (2011)]. • Institute for Nuclear Research of the Russian Academy of Sciences turns 40, V A Matveev Physics-Uspekhi, 2011, Volume 54, Number 9, Pages 939-940 • The Russian-American gallium experiment SAGE, V N Gavrin Physics-Uspekhi, 2011, Volume 54, Number 9

  9. Chemical and Laser Sciences Division annual report 1989

    SciTech Connect

    Haines, N.

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

  10. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    SciTech Connect

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  11. Argonne National Laboratory, High Energy Physics Division, semiannual report of research activities, July 1, 1989--December 31, 1989

    SciTech Connect

    Not Available

    1989-01-01

    This report discusses research being conducted at the Argonne National Laboratory in the following areas: Experimental High Energy Physics; Theoretical High Energy Physics; Experimental Facilities Research; Accelerator Research and Development; and SSC Detector Research and Development.

  12. Fluorescence Molecular Tomography: Principles and Potential for Pharmaceutical Research

    PubMed Central

    Stuker, Florian; Ripoll, Jorge; Rudin, Markus

    2011-01-01

    Fluorescence microscopic imaging is widely used in biomedical research to study molecular and cellular processes in cell culture or tissue samples. This is motivated by the high inherent sensitivity of fluorescence techniques, the spatial resolution that compares favorably with cellular dimensions, the stability of the fluorescent labels used and the sophisticated labeling strategies that have been developed for selectively labeling target molecules. More recently, two and three-dimensional optical imaging methods have also been applied to monitor biological processes in intact biological organisms such as animals or even humans. These whole body optical imaging approaches have to cope with the fact that biological tissue is a highly scattering and absorbing medium. As a consequence, light propagation in tissue is well described by a diffusion approximation and accurate reconstruction of spatial information is demanding. While in vivo optical imaging is a highly sensitive method, the signal is strongly surface weighted, i.e., the signal detected from the same light source will become weaker the deeper it is embedded in tissue, and strongly depends on the optical properties of the surrounding tissue. Derivation of quantitative information, therefore, requires tomographic techniques such as fluorescence molecular tomography (FMT), which maps the three-dimensional distribution of a fluorescent probe or protein concentration. The combination of FMT with a structural imaging method such as X-ray computed tomography (CT) or Magnetic Resonance Imaging (MRI) will allow mapping molecular information on a high definition anatomical reference and enable the use of prior information on tissue's optical properties to enhance both resolution and sensitivity. Today many of the fluorescent assays originally developed for studies in cellular systems have been successfully translated for experimental studies in animals. The opportunity of monitoring molecular processes non

  13. Insulated Masonry Cavity Walls. Proceedings of the Research Correlation Conference by the Building Research Institute, Division of Engineering and Industrial Research. (April 1960).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    Publication of conference paper texts include --(1) history and development of masonry cavity walls, (2) recent research related to determination of thermal and moisture resistance, (3) wall design and detailing, (4) design for crack prevention, (5) mortar specification characteristics, (6) performance experience with low-rise buildings, (7)…

  14. Argonne National Laboratory High Energy Physics Division semiannual report of research activities, January 1, 1989--June 30, 1989

    SciTech Connect

    Not Available

    1989-01-01

    This paper discuss the following areas on High Energy Physics at Argonne National Laboratory: experimental program; theory program; experimental facilities research; accelerator research and development; and SSC detector research and development.

  15. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  16. "INSIDE IAQ" -- EPA'S INDOOR AIR QUALITY RESEARCH UPDATE (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL).

    EPA Science Inventory

    "Inside IAQ" is published twice a year and highlights indoor air quality (IAQ) research conducted by EPA's National Risk Management Research Laboratory's Indoor Environment Management Branch and other parts of EPA's Office of Research and Development.To view previous issues of ...

  17. [Application of molecular pharmacognosy in research of Mongolian medicine].

    PubMed

    Li, Qianquan; Zhou, Lishe; Guo, Lanping; Li, Minhui; Zhang, Na; Yuan, Qingjun; Yuan, Yuan

    2011-10-01

    Molecular pharmacognosy has developed as a new borderline discipline. Using the method and technology of molecular pharmacognosy, a wide range of challenging problems were resolved, such as the identification of Mongolian medicinal raw materials, etiology of endangerment and protection of endangered Mongolian medicinal plants and animals, biosynthesis and bioregulation of active components in Mongolian medicinal plants, and characteristics and the molecular bases of Dao-di Herbs. So molecular pharmacognosy will provide the new methods and insights for modernization of Mongolian medicine. PMID:22242416

  18. Young Kim, PhD | Division of Cancer Prevention

    Cancer.gov

    Young S Kim, PhD, joined the Division of Cancer Prevention at the National Cancer Institute in 1998 as a Program Director who oversees and monitors NCI grants in the area of Nutrition and Cancer. She serves as an expert in nutrition, molecular biology, and genomics as they relate to cancer prevention. Dr. Kim assists with research initiatives that will advance nutritional science and lead to human health benefits. |

  19. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  20. Teaching Molecular Biological Techniques in a Research Content

    ERIC Educational Resources Information Center

    Stiller, John W.; Coggins, T. Chad

    2006-01-01

    Molecular biological methods, such as the polymerase chain reaction (PCR) and gel electrophoresis, are now commonly taught to students in introductory biology courses at the college and even high school levels. This often includes hands-on experience with one or more molecular techniques as part of a general biology laboratory. To assure that most…

  1. Psychological Sciences Division: 1985 Programs.

    ERIC Educational Resources Information Center

    Office of Naval Research, Washington, DC. Psychological Sciences Div.

    This booklet describes research carried out under sponsorship of the Psychological Sciences Division of the U.S. Office of Naval Research during Fiscal Year 1985. The booklet is divided into three programmatic research areas: (1) Engineering Psychology; (2) Personnel and Training; and (3) Group Psychology. Each program is described by an overview…

  2. Major Programs | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention supports major scientific collaborations, research networks, investigator-initiated grants, postdoctoral training, and specialized resources across the United States. |

  3. Chemical Technology Division annual technical report, 1993

    SciTech Connect

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  4. E-Division activities report

    SciTech Connect

    Barschall, H.H.

    1981-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-Division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics and in material science. In addition this report describes work on accelerators, microwaves, plasma diagnostics, determination of atmospheric oxygen and of nitrogen in tissue.

  5. E-Division activities report

    SciTech Connect

    Barschall, H.H.

    1983-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics and in materials science. In addition, this report describes development work on accelerators and on instrumentation for plasma diagnostics, nitrogen exchange rates in tissue, and breakdown in gases by microwave pulses.

  6. Cognitive and Neural Sciences Division 1990 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Jr., Ed.

    Research and development efforts carried out under sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research during fiscal year 1990 are described in this compilation of project description summaries. The Division's research is organized in three types of programs: (1) Cognitive Science (the human learner--cognitive…

  7. Scientific Scope | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention conducts and supports research to determine a person's risk of developing cancer and to find ways to reduce that risk. Through laboratory, clinical, and epidemiologic research, scientists have shown that the diseases of cancer occur not as single, catastrophic events, but rather as the result of a complex and long-evolving molecular process that can take decades. This long-term process of carcinogenesis provides time and opportunities to slow down, stop, or reverse the cellular changes that can become cancer. | DCP research spans the initiation of cancer and the occurrence of invasive disease in major organ sites. The overall goal is to detect changes and intervene early to prevent symptomatic disease and death.

  8. Progress in nucleic acid research and molecular biology

    SciTech Connect

    Cohn, W.E. ); Moldave, K. )

    1989-01-01

    This book is organized under the following headings: Transposable elements in Drosophilia; Regulation of gene expression; Structure and function of repetitive and unusual sequences; Retroviruses; Molecular analysis of chromosomal translocation and gene insertion.

  9. CONTAINMENT RESEARCH--OVERVIEW AND BACKGROUND (REMEDIATION AND CONTAINMENT BRANCH, LAND REMEDIATION AND POLLUTION CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Containment research examines hydraulic barriers associated with waste fills and contaminated soil or sediment. For waste facilities, containment can manifest itself in several ways: (1) bottom containment, (2) caps and covers, and (3) perimeter containment/treatment walls.EPA ...

  10. Exploration: Past and Future Contributions of the Vertical Lift Community and the Flight Vehicle Research and Technology Division

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Aiken, Edwin W.

    2005-01-01

    Fulfillment of the exploration vision will require new cross-mission directorate and multi-technical discipline synergies in order to achieve the necessary long-term sustainability. In part, lessons from the Apollo-era, as well as more recent research efforts, suggest that the aeronautics and specifically the vertical lift research community can and will make significant contributions to the exploration effort. A number of notional concepts and associated technologies for such contributions are outlined.

  11. Expansion of Genetic Testing in the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University from 2000 to 2013

    PubMed Central

    Adachi, Kaori

    2014-01-01

    Background At the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, we have been making an effort to establish a genetic testing facility that can provide the same screening procedures conducted worldwide. Methods Direct Sequencing of PCR products is the main method to detect point mutations, small deletions and insertions. Multiplex Ligation-dependent Probe Amplification (MLPA) was used to detect large deletions or insertions. Expansion of the repeat was analyzed for triplet repeat diseases. Original primers were constructed for 41 diseases when the reported primers failed to amplify the gene. Prediction of functional effects of human nsSNPs (PolyPhen) was used for evaluation of novel mutations. Results From January 2000 to September 2013, a total of 1,006 DNA samples were subjected to genetic testing in the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University. The hospitals that requested genetic testing were located in 43 prefectures in Japan and in 11 foreign countries. The genetic testing covered 62 diseases, and mutations were detected in 287 out of 1,006 with an average mutation detection rate of 24.7%. There were 77 samples for prenatal diagnosis. The number of samples has rapidly increased since 2010. Conclusion In 2013, the next-generation sequencers were introduced in our facility and are expected to provide more comprehensive genetic testing in the near future. Nowadays, genetic testing is a popular and powerful tool for diagnosis of many genetic diseases. Our genetic testing should be further expanded in the future. PMID:25067876

  12. Review and Assessment of the Impact on Occupational Education Resulting from the Research and Development Activities Supported by the Division of Vocational and Technical Education of Illinois, Project RDC-A2-078.

    ERIC Educational Resources Information Center

    Carvell, Fred; Draheim, Kirk

    A 4-phase study was conducted to provide an objective third-party assessment of the effectiveness of research and development (R. & D.) projects supported by the Research and Development Unit (RDU) of the Illinois Division of Vocational and Technical Education. Activities during the four phases consisted of: (1) a preliminary review to obtain…

  13. The Council On Undergraduate Research Division of Physics and Astronomy Distributed REU Program: Outcomes from the First Year of the Pilot Program

    NASA Astrophysics Data System (ADS)

    Armstrong, John C.; Jackson, Michael; Mateja, John

    2015-01-01

    Virtual collaborations are a feature of modern research groups. As such, the Council on Undergraduate Research Division of Physics and Astronomy developed a distributed REU pilot program. Projects in physics and astronomy spanned theoretical, experimental, and computational areas. Funding for the REU brought students from across the country to work with research groups at partner institutions. Students were selected from institutions with fewer opportunities for research, with a focus on students from smaller universities or community colleges. Faculty and students at the host institutions collaborated virtually during the summer, attending seminars and discussions via web conferencing. Interactions among the students in the six-campus REU cohort took place on-line with the experience culminating in an in-person meeting at Central Washington University that included presentations on the students' work. We present the outcome of the first year of this NSF-funded work, seeking to leverage the collective experience of faculty mentors across a spectrum of physics and astronomy projects. We will review some of the assessment data from the first year of the project, and present the benefits and challenges to such virtual collaborations.

  14. Deepening Students' Understanding of Multiplication and Division by Exploring Divisibility by Nine

    ERIC Educational Resources Information Center

    Young-Loveridge, Jenny; Mills, Judith

    2012-01-01

    This article explores how a focus on understanding divisibility rules can be used to help deepen students' understanding of multiplication and division with whole numbers. It is based on research with seven Year 7-8 teachers who were observed teaching a group of students a rule for divisibility by nine. As part of the lesson, students were shown a…

  15. E-Division activities report

    SciTech Connect

    Barschall, H.H.

    1984-07-01

    E (Experimental Physics) Division carries out basic and applied research in atomic and nuclear physics, in materials science, and in other areas related to the missions of the Laboratory. Some of the activities are cooperative efforts with other divisions of the Laboratory, and, in a few cases, with other laboratories. Many of the experiments are directly applicable to problems in weapons and energy, some have only potential applied uses, and others are in pure physics. This report presents abstracts of papers published by E (Experimental Physics) Division staff members between July 1983 and June 1984. In addition, it lists the members of the scientific staff of the division, including visitors and students, and some of the assignments of staff members on scientific committees. A brief summary of the budget is included.

  16. NCI Awards 18 Grants to Continue the Early Detection Research Network (EDRN) Biomarkers Effort | Division of Cancer Prevention

    Cancer.gov

    The NCI has awarded 18 grants to continue the Early Detection Research Network (EDRN), a national infrastructure that supports the integrated development, validation, and clinical application of biomarkers for the early detection of cancer. The awards fund 7 Biomarker Developmental Laboratories, 8 Clinical Validation Centers, 2 Biomarker Reference Laboratories, and a Data Management and Coordinating Center (DMCC). |

  17. Shaping the Politics of Education Association and Division L of the American Educational Research Association: Another William Lowe Boyd Legacy

    ERIC Educational Resources Information Center

    Cooper, Bruce S.; Layton, Donald H.

    2011-01-01

    William Lowe Boyd was there, making a difference in the study of politics of education, both intellectually and organizationally, at key moments in the development of the field. In fact, the field and study of the subject itself were linked politically, as scholars interested in research on the political science of how schools operate were…

  18. Mining the Geophysical Research Abstracts Corpus: Mapping the impact of Free and Open Source Software on the EGU Divisions

    NASA Astrophysics Data System (ADS)

    Löwe, Peter; Klump, Jens; Robertson, Jesse

    2015-04-01

    Text mining is commonly employed as a tool in data science to investigate and chart emergent information from corpora of research abstracts, such as the Geophysical Research Abstracts (GRA) published by Copernicus. In this context current standards, such as persistent identifiers like DOI and ORCID, allow us to trace, cite and map links between journal publications, the underlying research data and scientific software. This network can be expressed as a directed graph which enables us to chart networks of cooperation and innovation, thematic foci and the locations of research communities in time and space. However, this approach of data science, focusing on the research process in a self-referential manner, rather than the topical work, is still in a developing stage. Scientific work presented at the EGU General Assembly is often the first step towards new approaches and innovative ideas to the geospatial community. It represents a rich, deep and heterogeneous source of geoscientific thought. This corpus is a significant data source for data science, which has not been analysed on this scale previously. In this work, the corpus of the Geophysical Research Abstracts is used for the first time as a data base for analyses of topical text mining. For this, we used a sturdy and customizable software framework, based on the work of Schmitt et al. [1]. For the analysis we used the High Performance Computing infrastructure of the German Research Centre for Geosciences GFZ in Potsdam, Germany. Here, we report on the first results from the analysis of the continuous spreading the of use of Free and Open Source Software Tools (FOSS) within the EGU communities, mapping the general increase of FOSS-themed GRA articles in the last decade and the developing spatial patterns of involved parties and FOSS topics. References: [1] Schmitt, L. M., Christianson, K.T, Gupta R..: Linguistic Computing with UNIX Tools, in Kao, A., Poteet S.R. (Eds.): Natural Language processing and Text

  19. Home | Division of Cancer Prevention

    Cancer.gov

    Our Research The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into cancer. |

  20. 75 FR 70031 - Antitrust Division

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Open... National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), Open Axis... branding program based upon distinctive trademarks to create high customer awareness of, demand for,...

  1. Biological and Environmental Research: Climate and Environmental Sciences Division: U.S./European Workshop on Climate Change Challenges and Observations

    SciTech Connect

    Mather, James; McCord, Raymond; Sisterson, Doug; Voyles, Jimmy

    2012-11-08

    The workshop aimed to identify outstanding climate change science questions and the observational strategies for addressing them. The scientific focus was clouds, aerosols, and precipitation, and the required ground- and aerial-based observations. The workshop findings will be useful input for setting priorities within the Department of Energy (DOE) and the participating European centers. This joint workshop was envisioned as the first step in enhancing the collaboration among these climate research activities needed to better serve the science community.

  2. Description of the programs and facilities of the Physics Division

    SciTech Connect

    Not Available

    1992-10-01

    The major emphasis of our experimental nuclear physics research is in Heavy-Ion Physics, centered at the recently completed ATLAS facility. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. In addition, the Division has strong programs in Medium-Energy Physics and in Weak-Interaction Physics as well as in accelerator development. Our nuclear theory research spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national scale. The Atomic Physics program, the largest of which is accelerator-based, primarily uses ATLAS, a 5-MV Dynamitron accelerator and a highly stable 150-kV accelerator. A synchrotron-based atomic physics program has recently been initiated with current research with the National Synchrotron Light Source in preparation for a program at the Advanced Photon Source, at Argonne. The principal interests of the Atomic Physics program are in the interactions of fast atomic and molecular ions with solids and gases and in the laser spectroscopy of exotic species. The program is currently being expanded to take advantage of the unique research opportunities in synchrotron-based research that will present themselves when the Advanced Photon Source comes on line at Argonne. These topics are discussed briefly in this report.

  3. Friday's Agenda | Division of Cancer Prevention

    Cancer.gov

    TimeAgenda8:00 am - 8:10 amWelcome and Opening RemarksLeslie Ford, MDAssociate Director for Clinical ResearchDivision of Cancer Prevention, NCIEva Szabo, MD Chief, Lung and Upper Aerodigestive Cancer Research GroupDivision of Cancer Prevention, NCI8:10 am - 8:40 amClinical Trials Statistical Concepts for Non-Statisticians |

  4. Materials Sciences Division 1990 annual report

    SciTech Connect

    Not Available

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  5. New Study Designs | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention is expanding clinical research beyond standard trial designs to find interventions that may play a role in more than one prevalent disease. | The Division of Cancer Prevention is expanding clinical research beyond standard trial designs to find interventions that may play a role in more than one prevalent disease.

  6. Cognitive and Neural Sciences Division, 1991 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…

  7. Native Americans and the Geosciences: Problems With Societally Driven Research, Cultural and Racial Divisions

    NASA Astrophysics Data System (ADS)

    Redsteer, M. H.; James, K.

    2004-12-01

    Why are Native Americans absent from the geosciences? It doesn't seem to make sense when one view common to most traditional Native communities is earth and ecosystem stewardship, i.e. respect for Mother Earth. In addition, Native American communities could benefit from contributions made through earth science research. Land, and the natural resources that accompany it, are most tribes' greatest assets. Natural resource and land-use plans require information on geologic hazards, water quality and availability, soils, and environmentally sensitive areas: all data that are sorely lacking in Native communities. Native communities, with rapidly growing populations, desperately need geologic information for planning urban development. Even so, there are several reasons for a lack of interest in the geosciences: Mainstream science has historically served non-Native society to the detriment of Native communities, leaving few positive examples of earth science research for communities to draw from. Native North American communities have suffered greater harm from resource exploitation and have gained less from natural resource development than non-Native communities. Moreover, the earth scientist is usually the one who begins the assessing what is available for corporate exploitation, making the role of earth scientist adversarial. Racism, that begins at the elementary school level or earlier, leaves students feeling inadequate to pursue any degree, let alone those that are considered more challenging. Western science has a long history of denigrating indigenous knowledge and beliefs, producing a social stigma that Native American scientists must overcome. In addition, research tends to be narrowly focused, and based on the desire for individual academic achievement. This attitude counters cultural values of most Native groups, who seek to serve the collective group, rather than seeking self promotion.

  8. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    SciTech Connect

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  9. A New Paradigm for Mentored Undergraduate Research in Molecular Microbiology

    ERIC Educational Resources Information Center

    Carson, Susan

    2007-01-01

    Science educators agree that an undergraduate research experience is critical for students who are considering graduate school or research careers. The process of researching a topic in the primary literature, designing experiments, implementing those experiments, and analyzing the results is essential in developing the analytical skills necessary…

  10. Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)

    SciTech Connect

    Eipeldauer, Mary D; Shelander Jr, Bruce R

    2012-01-01

    The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) was established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.

  11. Grete Kellenberger-Gujer: Molecular biology research pioneer

    PubMed Central

    Citi, Sandra; Berg, Douglas E.

    2016-01-01

    ABSTRACT Grete Kellenberger-Gujer was a Swiss molecular biologist who pioneered fundamental studies of bacteriophage in the mid-20th century at the University of Geneva. Her life and career stories are reviewed here, focusing on her fundamental contributions to our early understanding of phage biology via her insightful analyses of phenomena such as the lysogenic state of a temperate phage (λ), genetic recombination, radiation's in vivo consequences, and DNA restriction-modification; on her creative personality and interactions with peers; and how her academic advancement was affected by gender, societal conditions and cultural attitudes of the time. Her story is important scientifically, putting into perspective features of the scientific community from just before the molecular biology era started through its early years, and also sociologically, in illustrating the numerous “glass ceilings” that, especially then, often hampered the advancement of creative women. PMID:27607140

  12. Grete Kellenberger-Gujer: Molecular biology research pioneer.

    PubMed

    Citi, Sandra; Berg, Douglas E

    2016-01-01

    Grete Kellenberger-Gujer was a Swiss molecular biologist who pioneered fundamental studies of bacteriophage in the mid-20(th) century at the University of Geneva. Her life and career stories are reviewed here, focusing on her fundamental contributions to our early understanding of phage biology via her insightful analyses of phenomena such as the lysogenic state of a temperate phage (λ), genetic recombination, radiation's in vivo consequences, and DNA restriction-modification; on her creative personality and interactions with peers; and how her academic advancement was affected by gender, societal conditions and cultural attitudes of the time. Her story is important scientifically, putting into perspective features of the scientific community from just before the molecular biology era started through its early years, and also sociologically, in illustrating the numerous "glass ceilings" that, especially then, often hampered the advancement of creative women. PMID:27607140

  13. Research by ESS Division for the Nevada Nuclear Waste Storage Investigations: Progress report, January-June 1985

    SciTech Connect

    Vaniman, D.

    1987-10-01

    Petrographic research for the Nevada Nuclear Waste Storage Investigations focused on xenolithic variability in the Topopah Spring Member and on variations of clinoptilolite composition at Yucca Mountain. Zeolite and smectite occurrences were considered in terms of their relation to a disturbed zone beneath the potential repository, and mineral stability experiments have produced a new clinoptilolite structure as a result of prolonged heating at low temperature. Limitations were defined on the abundance of erionite and of sulfur. X-ray diffraction studies lead to improved analytical methods. Progress was made in the comparative study of mineralogy in sand ramps and in faults. Geological modeling considered the differences of the diffusion of nonsorbing tracers in vertically and in horizontally fractured rock. Modeling also treated the diffusion of a nonsorbing tracer in devitrified and in zeolitized rock. The results of these experiments in all cases show relatively symmetrical two-dimensional diffusion patterns. Preliminary calculations compare the dispersion/diffusion of nonsorbing Tc with the dispersion/diffusion/sorption of U. 27 refs., 20 figs., 5 tabs.

  14. Biology Division progress report, October 1, 1991--September 30, 1993

    SciTech Connect

    Hartman, F.C.; Cook, J.S.

    1993-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1991, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report.

  15. The Materials Division: A case study

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.; Lowell, Carl E.

    1989-01-01

    The Materials Division at NASA's Lewis Research Center has been engaged in a program to improve the quality of its output. The division, its work, and its customers are described as well as the methodologies developed to assess and improve the quality of the Division's staff and output. Examples of these methodologies are presented and evaluated. An assessment of current progress is also presented along with a summary of future plans.

  16. Climate for Women in Industry: the Xerox Approach - An Example from the Division of Xerox Research and Technology

    NASA Astrophysics Data System (ADS)

    Chang, Shu

    2000-03-01

    Xerox has a very favorable reputation as an employer for women. In 1998, Xerox was cited three times as a top company for working women. "Working Mother" magazine, for the 13th consecutive year, chose Xerox as one of the 100 best companies for working mothers. "Working Women" magazine included Xerox as one of the top 25 public companies in the United States for executive women. "Latina Style" named Xerox as one of the 50 companies that offer the best professional opportunities for Hispanic women. However, Xerox is striving to be the employer of choice for women. Xerox views diversity as a business necessity and is beyond numbers and targets. To Xerox, diversity brings ideas, perspectives, and creativity that lead to more innovative solutions. To become the employer of choice for women, the approach from the Xerox Research and Technology organization (XR&T) is to improve the recruitment, retention, and advancement of women. The measurement of the improvement is an increasing representation of women at all levels. Championed by Dr. Mark B. Myers, Senior Vice President and head of XR&T, a dual effort has been implemented. At the request of Dr. Myers, an XR&T Women’s Council was formed in 1991. The mission of the Council has been to identify and promote opportunities for improving the work environment to support diversity and to advise XR&T management how to achieve this goal. Along with the Council, the mission of the XR&T management has been to follow through with Dr. Myers’ directions, Xerox policies, and the Council’s recommendations. By persistency, this dual effort is now paying off. Since 1991, the number of women among new hires and promotions has been steadily increasing. As for retention, XR&T is continuously creating, improving, and communicating policies and practices on career development programs, BWF tracking, diversity training, etc. Due to these proactive actions, a more supportive climate for women is emerging in XR&T. In our talk, we will

  17. High Pressure Materials Research: Novel Extended Phases of Molecular Triatomics

    SciTech Connect

    Yoo, C

    2004-05-26

    Application of high pressure significantly alters the interatomic distance and thus the nature of intermolecular interaction, chemical bonding, molecular configuration, crystal structure, and stability of solid [1]. With modern advances in high-pressure technologies [2], it is feasible to achieve a large (often up to a several-fold) compression of lattice, at which condition material can be easily forced into a new physical and chemical configuration [3]. The high-pressure thus offers enhanced opportunities to discover new phases, both stable and metastable ones, and to tune exotic properties in a wide-range of atomistic length scale, substantially greater than (often being several orders of) those achieved by other thermal (varying temperatures) and chemical (varying composition or making alloys) means. Simple molecular solids like H{sub 2}, C, CO{sub 2}, N{sub 2}, O{sub 2}, H{sub 2}O, CO, NH{sub 3}, and CH{sub 4} are bounded by strong covalent intramolecular bonds, yet relatively weak intermolecular bonds of van der Waals and/or hydrogen bonds. The weak intermolecular bonds make these solids highly compressible (i.e., low bulk moduli typically less than 10 GPa), while the strong covalent bonds make them chemically inert at least initially at low pressures. Carbon-carbon single bonds, carbon-oxygen double bonds and nitrogen-nitrogen triple bonds, for example, are among the strongest. These molecular forms are, thus, often considered to remain stable in an extended region of high pressures and high temperatures. High stabilities of these covalent molecules are also the basis of which their mixtures are often presumed to be the major detonation products of energetic materials as well as the major constituents of giant planets. However, their physical/chemical stabilities are not truly understood at those extreme pressure-temperature conditions. In fact, an increasing amount of experimental evidences contradict the assumed stability of these materials at high

  18. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  19. About DCP | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) is the primary unit of the National Cancer Institute devoted to cancer prevention research. DCP provides funding and administrative support to clinical and laboratory researchers, community and multidisciplinary teams, and collaborative scientific networks. |

  20. Divisibility--Another Route.

    ERIC Educational Resources Information Center

    Gardella, Francis J.

    1984-01-01

    Given is an alternative to individual divisibility rules by generating a general process that can be applied to establish divisibility by any number. The process relies on modular arithmetic and the concept of congruence. (MNS)

  1. Physics division annual report 2000.

    SciTech Connect

    Thayer, K., ed.

    2001-10-04

    This report summarizes the research performed in 2000 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory and medium energy physics research, and accelerator research and development. As the Nuclear Science Advisory Committee and the nuclear science community create a new long range plan for the field in 2001, it is clear that the research of the Division is closely aligned with and continues to help define the national goals of our field. The NSAC 2001 Long Range Plan recommends as the highest priority for major new construction the Rare Isotope Accelerator (RIA), a bold step forward for nuclear structure and nuclear astrophysics. The accelerator R&D in the Physics Division has made major contributions to almost all aspects of the RIA design concept and the community was convinced that this project is ready to move forward. 2000 saw the end of the first Gammasphere epoch at ATLAS, One hundred Gammasphere experiments were completed between January 1998 and March 2000, 60% of which used the Fragment Mass Analyzer to provide mass identification in the reaction. The experimental program at ATLAS then shifted to other important research avenues including proton radioactivity, mass measurements with the Canadian Penning Trap and measurements of high energy gamma-rays in nuclear reactions with the MSU/ORNL/Texas A&M BaF{sub 2} array. ATLAS provided 5460 beam-research hours for user experiments and maintained an operational reliability of 95%. Radioactive beams accounted for 7% of the beam time. ATLAS also provided a crucial test of a key RIA concept, the ability to accelerate multiple charge states in a superconducting heavy-ion linac. This new capability was immediately used to increase the performance for a scheduled experiment. The medium energy program continued to make strides in examining how the quark-gluon structure of matter

  2. Molecular Genetic Tools and Techniques for Marchantia polymorpha Research.

    PubMed

    Ishizaki, Kimitsune; Nishihama, Ryuichi; Yamato, Katsuyuki T; Kohchi, Takayuki

    2016-02-01

    Liverworts occupy a basal position in the evolution of land plants, and are a key group to address a wide variety of questions in plant biology. Marchantia polymorpha is a common, easily cultivated, dioecious liverwort species, and is emerging as an experimental model organism. The haploid gametophytic generation dominates the diploid sporophytic generation in its life cycle. Genetically homogeneous lines in the gametophyte generation can be established easily and propagated through asexual reproduction, which aids genetic and biochemical experiments. Owing to its dioecy, male and female sexual organs are formed in separate individuals, which enables crossing in a fully controlled manner. Reproductive growth can be induced at the desired times under laboratory conditions, which helps genetic analysis. The developmental process from a single-celled spore to a multicellular body can be observed directly in detail. As a model organism, molecular techniques for M. polymorpha are well developed; for example, simple and efficient protocols of Agrobacterium-mediated transformation have been established. Based on them, various strategies for molecular genetics, such as introduction of reporter constructs, overexpression, gene silencing and targeted gene modification, are available. Herein, we describe the technologies and resources for reverse and forward genetics in M. polymorpha, which offer an excellent experimental platform to study the evolution and diversity of regulatory systems in land plants. PMID:26116421

  3. International Federation of Library Associations Annual Conference Papers. Education and Research Division: Library Theory and Research Section (47th, Leipzig, East Germany, August 17-22, 1981).

    ERIC Educational Resources Information Center

    Kolodziejska, Jadwiga; And Others

    Seven of these ten papers are concerned with library research in specific countries; the remaining three deal with library planning and ethics in research. Titles are "The Library as a Cultural Institution," by Jadwiga Kolodziejska, Poland; "The International Seminar 'Book and Library in Society' of the Polish Book and Readers Institute and the…

  4. Development Problems With Component Construction. Proceedings of Conference of the Building Research Institute, Division of Engineering and Industrial Research (Fall 1959).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    Publication of conference papers includes--(1) an overview of the ceiling system complex by a lighting manufacturer, (2) review of problems influencing the development of roofing systems, (3) description of cooperative research within the cement industry, and (4) description of joint research development of structural ceramic panels. Included…

  5. Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory, 1970-1992: The JANUS Program Survival and Pathology Data

    SciTech Connect

    Grahn, D.; Wright, B.J.; Carnes, B.A.; Williamson, F.S.; Fox, C.

    1995-02-01

    A research reactor for exclusive use in experimental radiobiology was designed and built at Argonne National Laboratory in the 1960`s. It was located in a special addition to Building 202, which housed the Division of Biological and Medical Research. Its location assured easy access for all users to the animal facilities, and it was also near the existing gamma-irradiation facilities. The water-cooled, heterogeneous 200-kW(th) reactor, named JANUS, became the focal point for a range of radiobiological studies gathered under the rubic of {open_quotes}the JANUS program{close_quotes}. The program ran from about 1969 to 1992 and included research at all levels of biological organization, from subcellular to organism. More than a dozen moderate- to large-scale studies with the B6CF{sub 1} mouse were carried out; these focused on the late effects of whole-body exposure to gamma rays or fission neutrons, in matching exposure regimes. In broad terms, these studies collected data on survival and on the pathology observed at death. A deliberate effort was made to establish the cause of death. This archieve describes these late-effects studies and their general findings. The database includes exposure parameters, time of death, and the gross pathology and histopathology in codified form. A series of appendices describes all pathology procedures and codes, treatment or irradiation codes, and the manner in which the data can be accessed in the ORACLE database management system. A series of tables also presents summaries of the individual experiments in terms of radiation quality, sample sizes at entry, mean survival times by sex, and number of gross pathology and histopathology records.

  6. Cancer Research from Molecular Discovery to Global Health

    Cancer.gov

    A science writers' seminar to discuss the latest research in cancer genetics and global health efforts, including talks from leaders of NCI’s new centers of cancer genomics and global health will be held Dec. 13, 2011, at NCI.

  7. Overview of the Applied Aerodynamics Division

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A major reorganization of the Aeronautics Directorate of the Langley Research Center occurred in early 1989. As a result of this reorganization, the scope of research in the Applied Aeronautics Division is now quite different than that in the past. An overview of the current organization, mission, and facilities of this division is presented. A summary of current research programs and sample highlights of recent research are also presented. This is intended to provide a general view of the scope and capabilities of the division.

  8. Environmental Transport Division: 1979 report

    SciTech Connect

    Murphy, C.E. Jr.; Schubert, J.F.; Bowman, W.W.; Adams, S.E.

    1980-03-01

    During 1979, the Environmental Transport Division (ETD) of the Savannah River Laboratory conducted atmospheric, terrestrial, aquatic, and marine studies, which are described in a series of articles. Separate abstracts were prepared for each. Publications written about the 1979 research are listed at the end of the report.

  9. 2012 ATOMIC AND MOLECULAR INTERACTIONS GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, JULY 15-20, 2012

    SciTech Connect

    Zwier, Timothy

    2012-07-20

    At the 2012 Atomic and Molecular Interactions Gordon Conference, there will be talks in several broadly defined and partially overlapping areas:  Intramolecular and single-collision reaction dynamics;  Photophysics and photochemistry of excited states;  Clusters, aerosols and solvation;  Interactions at interfaces;  Conformations and folding of large molecules;  Interactions under extreme conditions of temperature and pressure. The theme of the Gordon Research Seminar on Atomic & Molecular Interactions, in keeping with the tradition of the Atomic and Molecular Interactions Gordon Research Conference, is far-reaching and involves fundamental research in the gas and condensed phases along with application of these ideas to practical chemical fields. The oral presentations, which will contain a combination of both experiment and theory, will focus on four broad categories:  Ultrafast Phenomena;  Excited States, Photoelectrons, and Photoions;  Chemical Reaction Dynamics;  Biomolecules and Clusters.

  10. Research in China on the molecular genetics of schizophrenia

    PubMed Central

    Cui, Donghong; Jiang, Kaida

    2012-01-01

    Summary Schizophrenia is a complex disease caused by genetic and environmental factors with a global heritability of more than 80%. By the end of the 1970s, Chinese scientists reported a heritability of schizophrenia of 82.9% in the Chinese Han population. Continuous improvements in research techniques and the recruitment of larger samples have made it possible for Chinese scientists to identify a number of candidate susceptibility genes for schizophrenia. This article reviews the results in genetic research of schizophrenia by Chinese scientists over the last five decades PMID:25324626

  11. New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology

    PubMed Central

    Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging. PMID:24696850

  12. Teaching Cell Division: Basics and Recommendations.

    ERIC Educational Resources Information Center

    Smith, Mike U.; Kindfield, Ann C. H.

    1999-01-01

    Presents a concise overview of cell division that includes only the essential concepts necessary for understanding genetics and evolution. Makes recommendations based on published research and teaching experiences that can be used to judge the merits of potential activities and materials for teaching cell division. Makes suggestions regarding the…

  13. Building an academic colorectal division.

    PubMed

    Koltun, Walter A

    2014-06-01

    Colon and rectal surgery is fully justified as a valid subspecialty within academic university health centers, but such formal recognition at the organizational level is not the norm. Creating a colon and rectal division within a greater department of surgery requires an unfailing commitment to academic concepts while promulgating the improvements that come in patient care, research, and teaching from a specialty service perspective. The creation of divisional identity then opens the door for a strategic process that will grow the division even more as well as provide benefits to the institution within which it resides. The fundamentals of core values, academic commitment, and shared success reinforced by receptive leadership are critical. Attention to culture, commitment, collaboration, control, cost, and compensation leads to a successful academic division of colon and rectal surgery. PMID:25067922

  14. Building an Academic Colorectal Division

    PubMed Central

    Koltun, Walter A.

    2014-01-01

    Colon and rectal surgery is fully justified as a valid subspecialty within academic university health centers, but such formal recognition at the organizational level is not the norm. Creating a colon and rectal division within a greater department of surgery requires an unfailing commitment to academic concepts while promulgating the improvements that come in patient care, research, and teaching from a specialty service perspective. The creation of divisional identity then opens the door for a strategic process that will grow the division even more as well as provide benefits to the institution within which it resides. The fundamentals of core values, academic commitment, and shared success reinforced by receptive leadership are critical. Attention to culture, commitment, collaboration, control, cost, and compensation leads to a successful academic division of colon and rectal surgery. PMID:25067922

  15. IFLA General Conference, 1987. Division of Education and Research. Theory and Research Section. Round Table on Library History. Round Table of Editors of Library Journals. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Four of the 10 papers in this collection are presented in the original language, i.e., either French or German, and English translations are provided for two of them. The papers are: (1) "UAP (Universal Availability of Publications) and Its Relation to Research and Education" (Maurice B. Line); (2) "Zehn Jahre IFLA-Abteilung Ausbildung und…

  16. IFLA General Conference, 1990. Division of Education and Research: Section of Education and Training; Section of Library Theory and Research; Library History, Round Table; Research in Reading, Round Table; Editors of Library Journals, Round Table; and Continuing Professional Education, Round Table; Joint Workshop Papers. Booklet 7.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    The 21 papers in this collection were presented at the meetings of two sections and three round tables of the Division of Education and Research: (1) "Library and Information Services in Culturally Diverse Communities" (Cheryl Metoyer-Duran); (2) "Library Education in a Pluralistic Society" (Shmuel Sever); (3) "Each One an Individual:…

  17. IFLA General Conference, 1992. Division of Education and Research: Editors of Library Journals (RT); Section on Research in Reading; Section on Women's Interest in Librarianship; Section on Education and Training; Continuing Professional Education (RT); Section on Library Theory and Research. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations and Institutions, London (England).

    The following 19 papers were delivered at the 1992 annual meeting of the International Federation of Library Associations and Institutions for the Division of Education and Research: (1) "Across the Frontiers: Impact of Foreign Journals in Library Science in India: A Citation Analysis" (M. A. Gopinath); (2) "Children and Reading in Israel" (I.…

  18. The Need for Novel Informatics Tools for Integrating and Planning Research in Molecular and Cellular Cognition

    ERIC Educational Resources Information Center

    Silva, Alcino J.; Müller, Klaus-Robert

    2015-01-01

    The sheer volume and complexity of publications in the biological sciences are straining traditional approaches to research planning. Nowhere is this problem more serious than in molecular and cellular cognition, since in this neuroscience field, researchers routinely use approaches and information from a variety of areas in neuroscience and other…

  19. New technologies in molecular genetics: the impact on epilepsy research.

    PubMed

    Helbig, Ingo

    2014-01-01

    Technical advances in the last decade have finally enabled researchers to identify epilepsy-associated genetic variants by querying virtually the entire genome. In the first decade of the twenty-first century, this technical revolution began with the advent of array comparative genomic hybridization and single nucleotide polymorphism arrays. These technologies made it possible for the first time to screen for common genetic variants and rare small deletions and duplications, referred to as microdeletions and microduplications. More recently, the repertoire of technologies has expanded to exome-wide and genome-wide sequencing approaches. These technologies led to a virtual explosion of gene identifications both in familial cases and in rare severe epilepsies, referred to as epileptic encephalopathies. This chapter aims to provide an overview of the achievements of these new technologies and the challenges that the field is currently facing. PMID:25194493

  20. [Characteristics of molecular genetics and research progress on mitochondrial diseases].

    PubMed

    Zhang, Meng; Si, Yanmei; Zhao, Juan

    2016-10-01

    Mitochondrial diseases is a group of metabolic disorders caused by abnormal structure and dysfunction of mitochondrial DNA (mtDNA). Abnormalities of mtDNA include point mutations, deletions, and rearrangements and depletion of mtDNA. These may affect the ability of mitochondria to generate energy in cells of various tissues and organs. As many factors are involved in the regulation of mtDNA mutations, most mitochondrial diseases may manifest great genetic heterogeneity and a wide spectrum of clinical manifestations. On the other hand, for the low prevalence of single disease, these disorders may be easily missed or with delayed diagnosis. This review focuses on the pathological mutations and benign variations of mtDNA, and research progress on such disorders. PMID:27577231

  1. Physics Division activities report, 1986--1987

    SciTech Connect

    Not Available

    1987-01-01

    This report summarizes the research activities of the Physics Division for the years 1986 and 1987. Areas of research discussed in this paper are: research on e/sup +/e/sup /minus// interactions; research on p/bar p/ interactions; experiment at TRIUMF; double beta decay; high energy astrophysics; interdisciplinary research; and advanced technology development and the SSC.

  2. Cheminformatics Research at the Unilever Centre for Molecular Science Informatics Cambridge

    PubMed Central

    Fuchs, Julian E; Bender, Andreas; Glen, Robert C

    2015-01-01

    The Centre for Molecular Informatics, formerly Unilever Centre for Molecular Science Informatics (UCMSI), at the University of Cambridge is a world-leading driving force in the field of cheminformatics. Since its opening in 2000 more than 300 scientific articles have fundamentally changed the field of molecular informatics. The Centre has been a key player in promoting open chemical data and semantic access. Though mainly focussing on basic research, close collaborations with industrial partners ensured real world feedback and access to high quality molecular data. A variety of tools and standard protocols have been developed and are ubiquitous in the daily practice of cheminformatics. Here, we present a retrospective of cheminformatics research performed at the UCMSI, thereby highlighting historical and recent trends in the field as well as indicating future directions. PMID:26435758

  3. Applying the results of education research to help students learn more: peer instruction and clicker questions in upper-division courses

    NASA Astrophysics Data System (ADS)

    Pepper, Rachel E.; Chasteen, Stephanie V.; Pollock, Steven J.; Perkins, Katherine K.

    2014-11-01

    The physics faculty at the University of Colorado have transformed four upper-division courses: Classical Mechanics/Math Methods, Electricity and Magnetism (E&M) I and II, and Quantum Mechanics. We discuss these transformations as a model for other upper-division courses, such as fluid mechanics, focusing on one of the changes made in the transformation effort: the addition of peer instruction (``clicker questions'') to lecture. The goals of our course transformation were to improve student learning and to develop materials and approaches that other faculty could easily adopt or adapt. In this talk, we review the evidence for effectiveness of peer instruction, discuss our implementation, and present evidence of improved student learning in our transformed upper division courses. Tips for effective use of peer instruction and banks of clicker questions available for fluid mechanics will also be discussed. Our curriculum materials are free and available at http://per.colorado.edu/sei.

  4. Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network

    PubMed Central

    Escalante, Ananias A.; Ferreira, Marcelo U.; Vinetz, Joseph M.; Volkman, Sarah K.; Cui, Liwang; Gamboa, Dionicia; Krogstad, Donald J.; Barry, Alyssa E.; Carlton, Jane M.; van Eijk, Anna Maria; Pradhan, Khageswar; Mueller, Ivo; Greenhouse, Bryan; Andreina Pacheco, M.; Vallejo, Andres F.; Herrera, Socrates; Felger, Ingrid

    2015-01-01

    Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular epidemiological tools and methods toward malaria control and elimination efforts. PMID:26259945

  5. Villain of Molecular Biology: Why are we not reproducible in research?

    PubMed Central

    Bhardwaj, Vikash

    2015-01-01

    Worldwide, there is an issue of  irreproducibility in life science research. In the USA alone $28 billion per year spent on preclinical research is not reproducible. Within this opinion article, I provide a brief historical account of the discovery of the Watson-Crick DNA model and introduce another neglected model of DNA. This negligence may be one of the fundamental reasons behind irreproducibility in molecular biology research. PMID:26339478

  6. Chemical Technology Division annual technical report, 1992

    SciTech Connect

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  7. 2012 CELLULAR & MOLECULAR FUNGAL BIOLOGY GORDON RESEARCH CONFERENCE, JUNE 17 - 22, 2012

    SciTech Connect

    Judith Berman

    2012-06-22

    The Gordon Research Conference on CELLULAR & MOLECULAR FUNGAL BIOLOGY was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genome organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.

  8. Chemical Sciences Division: Annual report 1992

    SciTech Connect

    Not Available

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

  9. Physics Division annual review, April 1, 1992--March 31, 1993

    SciTech Connect

    Thayer, K.J.

    1993-08-01

    This document is the annual review of the Argonne National Laboratory Physics Division for the period April 1, 1992--March 31, 1993. Work on the ATLAS device is covered, as well as work on a number of others in lab, as well as collaborative projects. Heavy ion nuclear physics research looked at quasi-elastic, and deep-inelastic reactions, cluster states, superdeformed nuclei, and nuclear shape effects. There were programs on accelerator mass spectroscopy, and accelerator and linac development. There were efforts in medium energy nuclear physics, weak interactions, theoretical nuclear and atomic physics, and experimental atomic and molecular physics based on accelerators and synchrotron radiation.

  10. Chemical Sciences Division annual report 1994

    SciTech Connect

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  11. Division: The Sleeping Dragon

    ERIC Educational Resources Information Center

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  12. Physics division. Progress report, January 1, 1995--December 31, 1996

    SciTech Connect

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.

  13. Web Service Access and Display of USGS Oceanographic Time-Series Data Using the NOAA Earth Research Division's Data Access Program (ERDDAP)

    NASA Astrophysics Data System (ADS)

    Montgomery, E. T.

    2008-12-01

    The sediment transport group of the U.S. Geologic Survey Coastal Marine Geology Program (USGS CMGP) maintains an archive of more than 4400 NetCDF files collected over the last 30 years (Montgomery et al, 2007). The conventions used in these NetCDF files were determined long before the emerging standard Climate and Forecast (CF) conventions for NetCDF, and web access has been traditionally been limited to simple downloading of the NetCDF files. To take advantage of a growing suite of software that works with CF-compliant data, A combination of NcML and the THREDDS Data Server were used to allow web services access of CF compliant data via the OGC WCS service and OPeNDAP. The primary users of these coastal oceanographic measurements are modelers who are facile with netCDF files and URL references. Other users, however, may prefer to obtain the data in another format or perhaps just plot a variable. To assist both groups of users, we have evaluated NOAA's Earth Research Division's Data Access Program (ERDDAP) as a potential method of providing a more flexible and powerful interface to the data. This versatile program is able to access data from a variety of web services, including OPeNDAP, and then deliver the data using web services in a very wide variety of formats, from common image formats such as PNG and JPG (pictures of plots), to NetCDF, Matlab, text and spreadsheet formats. Installation and configuration of ERDDAP was straightforward. The software written in Java, and delivered as a War file that runs on a standard Tomcat server. Configuration of the user interface and the dataset list is controlled by XML files. The documentation is well written and much of the XML generation is handled by the supplied autogen function that reads a netCDF file and generates XML based on the file attributes. We are working on a Matlab program that will completely automate the process by interrogating our data holdings and producing the completely formed XML. Our initial

  14. Health, Safety, and Environment Division

    SciTech Connect

    Wade, C

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  15. Advances in Dendrobium molecular research: Applications in genetic variation, identification and breeding.

    PubMed

    Teixeira da Silva, Jaime A; Jin, Xiaohua; Dobránszki, Judit; Lu, Jiangjie; Wang, Huizhong; Zotz, Gerhard; Cardoso, Jean Carlos; Zeng, Songjun

    2016-02-01

    Orchids of the genus Dendrobium are of great economic importance in global horticultural trade and in Asian traditional medicine. For both areas, research yielding solid information on taxonomy, phylogeny, and breeding of this genus are essential. Traditional morphological and cytological characterization are used in combination with molecular results in classification and identification. Markers may be useful when used alone but are not always reliable in identification. The number of species studied and identified by molecular markers is small at present. Conventional breeding methods are time-consuming and laborious. In the past two decades, promising advances have been made in taxonomy, phylogeny and breeding of Dendrobium species due to the intensive use of molecular markers. In this review, we focus on the main molecular techniques used in 121 published studies and discuss their importance and possibilities in speeding up the breeding of new cultivars and hybrids. PMID:26493228

  16. 2012 PLANT MOLECULAR BIOLOGY GORDON RESEARCH CONFERENCE, JULY 15-20, 2012

    SciTech Connect

    Sussman, Michael

    2013-07-20

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologies for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?

  17. RAMP: a bioinformatics framework for researching imaging agents through molecular pathways.

    PubMed

    Khokhlovich, Edward; Wahl, Daniel; Masiello, Anthony; Parisot, Pierre; El-Ghatta, Stefan; Szustakowski, Joseph D; Nirmala, Nanguneri; Tuch, David S

    2013-01-01

    Signaling pathways are the fundamental grammar of cellular communication, yet few frameworks are available to analyze molecular imaging probes in the context of signaling pathways. Such a framework would aid in the design and selection of imaging probes for measuring specific signaling pathways and, vice versa, help illuminate which pathways are being assayed by a given probe. RAMP (Researching imaging Agents through Molecular Pathways) is a bioinformatics framework for connecting signaling pathways and imaging probes using a controlled vocabulary of the imaging targets. RAMP contains signaling pathway data from MetaCore, the Kyoto Encyclopedia of Genes and Genomes, and the Gene Ontology project; imaging probe data from the Molecular Imaging and Contrast Agent Database (MICAD); and tissue protein expression data from The Human Protein Atlas. The RAMP search tool is available at . Examples are presented to demonstrate the utility of RAMP for pathway-based searches of molecular imaging probes. PMID:23348786

  18. The Arabidopsis Cell Division Cycle

    PubMed Central

    Gutierrez, Crisanto

    2009-01-01

    Plant cells have evolved a complex circuitry to regulate cell division. In many aspects, the plant cell cycle follows a basic strategy similar to other eukaryotes. However, several key issues are unique to plant cells. In this chapter, both the conserved and unique cellular and molecular properties of the plant cell cycle are reviewed. In addition to division of individual cells, the specific characteristic of plant organogenesis and development make that cell proliferation control is of primary importance during development. Therefore, special attention should be given to consider plant cell division control in a developmental context. Proper organogenesis depends on the formation of different cell types. In plants, many of the processes leading to cell differentiation rely on the occurrence of a different cycle, termed the endoreplication cycle, whereby cells undergo repeated full genome duplication events in the absence of mitosis and increase their ploidy. Recent findings are focusing on the relevance of changes in chromatin organization for a correct cell cycle progression and, conversely, in the relevance of a correct functioning of chromatin remodelling complexes to prevent alterations in both the cell cycle and the endocycle. PMID:22303246

  19. History of Molecular Beam Research: Personal Reminiscences of the Important Evolutionary Period 1919-1933

    ERIC Educational Resources Information Center

    Estermann, Immanuel

    1975-01-01

    Describes the early historical period of the molecular beam method, including the Stern-Gerlach experiment, the work of Davisson and Germer, and the magnetic moment determinations for the proton, neutron, and deuteron. Contains some amusing historical sidelights on the research personalities that dominated that period. (MLH)

  20. Infusing Bioinformatics and Research-Like Experience into a Molecular Biology Laboratory Course

    ERIC Educational Resources Information Center

    Nogaj, Luiza A.

    2014-01-01

    A nine-week laboratory project designed for a sophomore level molecular biology course is described. Small groups of students (3-4 per group) choose a tumor suppressor gene (TSG) or an oncogene for this project. Each group researches the role of their TSG/oncogene from primary literature articles and uses bioinformatics engines to find the gene…

  1. Summaries of research projects for fiscal years 1996 and 1997, medical applications and biophysical research

    SciTech Connect

    1998-02-01

    The Medical Applications and Biophysical Research Division of the Office of Biological and Environmental Research supports and manages research in several distinct areas of science and technology. The projects described in this book are grouped by the main budgetary areas: General Life Sciences (structural molecular biology), Medical Applications (primarily nuclear medicine) and Measurement Science (analytical chemistry instrumentation), Environmental Management Science Program, and the Small Business Innovation Research Program. The research funded by this division complements that of the other two divisions in the Office of Biological and Environmental Research (OBER): Health Effects and Life Sciences Research, and Environmental Sciences. Most of the OBER programs are planned and administered jointly by the staff of two or all three of the divisions. This summary book provides information on research supported in these program areas during Fiscal Years 1996 and 1997.

  2. Physics Division annual report - 1998

    SciTech Connect

    1999-09-07

    Summaries are given of progress accomplished for the year in the following areas: (1) Heavy-Ion Nuclear Physics Research; (2) Operation and Development of Atlas; (3) Medium-Energy Nuclear Physics Research; (4) Theoretical Physics Research; and (5) Atomic and Molecular Physics Research.

  3. Using a Molecular-Genetic Approach to Investigate Bacterial Physiology in a Continuous, Research-Based, Semester-Long Laboratory for Undergraduates †

    PubMed Central

    Ault, Jeremiah Foster; Renfro, Betsey Marie; White, Andrea Kirsten

    2011-01-01

    Designing investigative laboratory exercises that encourage critical thinking, problem solving, and independent thought for upper-division biology courses is a difficult but worthwhile task. In an effort to do so, we developed a semester-long, continuous, research-based investigative laboratory that integrates numerous genetic and molecular biology methods into the investigation of a bacterial physiological process. In this lab, students use random Tn5 transposon mutagenesis to create prodigiosin pigment mutants in the bacterium, Serratia marcescens. This is followed by phenotypic characterization, cloning, and sequencing the Tn insertion site to identify genes involved in pigment biosynthesis. During this lab, students gain ample experience performing basic lab techniques while learning about — and applying — methods for elucidating gene function. The approach to the laboratory and the outcomes are intimately integrated into the teaching of many fundamental physiological processes underlying prodigiosin production in bacteria. The result is a cohesive course that integrates the theory and application of molecular genetic techniques with the study of bacterial physiology. Assessments of student learning objectives demonstrated that students greatly improved their understanding of both physiological processes and the genetic techniques used to investigate them. In addition, students felt that this semester-long exercise provided the necessary laboratory experience they needed and desired in preparation for careers in molecular biology, microbiology, and biochemistry. PMID:23653763

  4. Using a molecular-genetic approach to investigate bacterial physiology in a continuous, research-based, semester-long laboratory for undergraduates.

    PubMed

    Ault, Jeremiah Foster; Renfro, Betsey Marie; White, Andrea Kirsten

    2011-01-01

    Designing investigative laboratory exercises that encourage critical thinking, problem solving, and independent thought for upper-division biology courses is a difficult but worthwhile task. In an effort to do so, we developed a semester-long, continuous, research-based investigative laboratory that integrates numerous genetic and molecular biology methods into the investigation of a bacterial physiological process. In this lab, students use random Tn5 transposon mutagenesis to create prodigiosin pigment mutants in the bacterium, Serratia marcescens. This is followed by phenotypic characterization, cloning, and sequencing the Tn insertion site to identify genes involved in pigment biosynthesis. During this lab, students gain ample experience performing basic lab techniques while learning about - and applying - methods for elucidating gene function. The approach to the laboratory and the outcomes are intimately integrated into the teaching of many fundamental physiological processes underlying prodigiosin production in bacteria. The result is a cohesive course that integrates the theory and application of molecular genetic techniques with the study of bacterial physiology. Assessments of student learning objectives demonstrated that students greatly improved their understanding of both physiological processes and the genetic techniques used to investigate them. In addition, students felt that this semester-long exercise provided the necessary laboratory experience they needed and desired in preparation for careers in molecular biology, microbiology, and biochemistry. PMID:23653763

  5. The need for novel informatics tools for integrating and planning research in molecular and cellular cognition.

    PubMed

    Silva, Alcino J; Müller, Klaus-Robert

    2015-09-01

    The sheer volume and complexity of publications in the biological sciences are straining traditional approaches to research planning. Nowhere is this problem more serious than in molecular and cellular cognition, since in this neuroscience field, researchers routinely use approaches and information from a variety of areas in neuroscience and other biology fields. Additionally, the multilevel integration process characteristic of this field involves the establishment of experimental connections between molecular, electrophysiological, behavioral, and even cognitive data. This multidisciplinary integration process requires strategies and approaches that originate in several different fields, which greatly increases the complexity and demands of this process. Although causal assertions, where phenomenon A is thought to contribute or relate to B, are at the center of this integration process and key to research in biology, there are currently no tools to help scientists keep track of the increasingly more complex network of causal connections they use when making research decisions. Here, we propose the development of semiautomated graphical and interactive tools to help neuroscientists and other biologists, including those working in molecular and cellular cognition, to track, map, and weight causal evidence in research papers. There is a great need for a concerted effort by biologists, computer scientists, and funding institutions to develop maps of causal information that would aid in integration of research findings and in experiment planning. PMID:26286658

  6. 2012 MOLECULAR AND IONIC CLUSTERS GORDON RESEARCH CONFERENCE, JANUARY 29 - FEBRUARY 3, 2012

    SciTech Connect

    Anne McCoy

    2012-02-03

    The Gordon Research Conference on 'Molecular and Ionic Clusters' focuses on clusters, which are the initial molecular species found in gases when condensation begins to occur. Condensation can take place solely from molecules interacting with each other, mostly at low temperatures, or when molecules condense around charged particles (electrons, protons, metal cations, molecular ions), producing ion molecule clusters. These clusters provide models for solvation, allow a pristine look at geometric as well as electronic structures of molecular complexes or matter in general, their interaction with radiation, their reactivity, their thermodynamic properties and, in particular, the related dynamics. This conference focuses on new ways to make clusters composed of different kinds of molecules, new experimental techniques to investigate the properties of the clusters and new theoretical methods with which to calculate the structures, dynamical motions and energetics of the clusters. Some of the main experimental methods employed include molecular beams, mass spectrometry, laser spectroscopy (from infrared to XUV; in the frequency as well as the time domain) and photoelectron spectroscopy. Techniques include laser absorption spectroscopy, laser induced fluorescence, resonance enhanced photoionization, mass-selected photodissociation, photofragment imaging, ZEKE photoelectron spectroscopy, etc. From the theoretical side, this conference highlights work on potential surfaces and measurable properties of the clusters. The close ties between experiment, theory and computation have been a hallmark of the Gordon Research Conference on Molecular and Ionic Clusters. In the 2012 meeting, we plan to have sessions that will focus on topics including: (1) The use of cluster studies to probe fundamental phenomena; (2) Finite size effects on structure and thermodynamics; (3) Intermolecular forces and cooperative effects; (4) Molecular clusters as models for solvation; and (5) Studies of

  7. Earth Sciences Division collected abstracts: 1979

    SciTech Connect

    Henry, A.L.; Schwartz, L.L.

    1980-04-30

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  8. Current dichotomy between traditional molecular biological and omic research in cancer biology and pharmacology.

    PubMed

    Reinhold, William C

    2015-12-10

    There is currently a split within the cancer research community between traditional molecular biological hypothesis-driven and the more recent "omic" forms or research. While the molecular biological approach employs the tried and true single alteration-single response formulations of experimentation, the omic employs broad-based assay or sample collection approaches that generate large volumes of data. How to integrate the benefits of these two approaches in an efficient and productive fashion remains an outstanding issue. Ideally, one would merge the understandability, exactness, simplicity, and testability of the molecular biological approach, with the larger amounts of data, simultaneous consideration of multiple alterations, consideration of genes both of known interest along with the novel, cross-sample comparisons among cell lines and patient samples, and consideration of directed questions while simultaneously gaining exposure to the novel provided by the omic approach. While at the current time integration of the two disciplines remains problematic, attempts to do so are ongoing, and will be necessary for the understanding of the large cell line screens including the Developmental Therapeutics Program's NCI-60, the Broad Institute's Cancer Cell Line Encyclopedia, and the Wellcome Trust Sanger Institute's Cancer Genome Project, as well as the the Cancer Genome Atlas clinical samples project. Going forward there is significant benefit to be had from the integration of the molecular biological and the omic forms or research, with the desired goal being improved translational understanding and application. PMID:26677427

  9. The Development of New User Research Capabilities in Environmental Molecular Science: Workshop Report

    SciTech Connect

    Felmy, Andrew R.; Baer, Donald R.; Fredrickson, Jim K.; Gephart, Roy E.; Rosso, Kevin M.

    2006-10-31

    On August 1, and 2, 2006, 104 scientists representing 40 institutions including 24 Universities and 5 National Laboratories gathered at the W.R. Wiley Environmental Molecular Sciences Laboratory, a National scientific user facility, to outline important science challenges for the next decade and identify major capabilities needed to pursue advanced research in the environmental molecular sciences. EMSL’s four science themes served as the framework for the workshop. The four science themes are 1) Biological Interactions and Interfaces, 2) Geochemistry/Biogeochemistry and Surface Science, 3) Atmospheric Aerosol Chemistry, and 4) Science of Interfacial Phenomena.

  10. Chemical Engineering Division Activities

    ERIC Educational Resources Information Center

    Chemical Engineering Education, 1978

    1978-01-01

    The 1978 ASEE Chemical Engineering Division Lecturer was Theodore Vermeulen of the University of California at Berkeley. Other chemical engineers who received awards or special recognition at a recent ASEE annual conference are mentioned. (BB)

  11. Bring Back Short Division.

    ERIC Educational Resources Information Center

    Thornton, Chich

    1985-01-01

    Some benefits of helping learners think in prime numbers are detailed. Reasons for the decay of this ability are described, with short division presented as one activity which should be reintroduced in schools. (MNS)

  12. Website for the Space Science Division

    NASA Astrophysics Data System (ADS)

    Schilling, James

    2002-01-01

    The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.

  13. Earth Sciences Division annual report 1989

    SciTech Connect

    Not Available

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  14. Weapons Experiments Division Explosives Operations Overview

    SciTech Connect

    Laintz, Kenneth E.

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  15. Medical Sciences Division report for 1993

    SciTech Connect

    Not Available

    1993-12-31

    This year`s Medical Sciences Division (MSD) Report is organized to show how programs in our division contribute to the core competencies of Oak Ridge Institute for Science and Education (ORISE). ORISE`s core competencies in education and training, environmental and safety evaluation and analysis, occupational and environmental health, and enabling research support the overall mission of the US Department of Energy (DOE).

  16. [Molecular imaging-based early-phase and exploratory clinical research].

    PubMed

    Watanabe, Yasuyoshi

    2013-01-01

    In vivo molecular imaging became a key technology for innovative drug development. Especially, positron emission tomography (PET) has been applied to patho-physiological science, pharmacodynamics/pharmacokinetics (PD/PK) studies, and drug delivery system (DDS) studies, and accelerated the paradigm shift not only from experimental animals to human subjects, but also from PK in blood circulation to PK in target tissues, even in human. Our RIKEN Centre for Molecular Imaging Science has been established to promote such innovative drug developmental studies with PET molecular imaging, as a center of excellence for development of molecular probes. The center is creating novel labeling methods on drug candidate molecules with positron-emitting radionuclides, and is providing the molecular probes suitable for targeting bio-functional molecules and cellular functions, which are useful for evaluation of drug efficacy and pharmacokinetics in human subjects. Animal PET studies with mice, rats, rabbits, marmosets, and macaque monkeys have also been promoted both under anesthetic condition and consciousness, which was a really difficult task but important for comparison with human PET studies. In this sense, mutual collaboration between the research consortia in basic PET field and in clinical PET molecular imaging such as Osaka City University Hospital would be of great value. Here, the concept, outline of our activities, and PK/PD studies with efficient application of molecular imaging is presented. In addition, the results of the first cassette-dose and micro-dose clinical trials approved by Pharmaceuticals and Medical Devices Agency (PMDA) (New Energy and Industrial Technology Development Organization (NEDO) project represented by Prof. Yuichi Sugiyama) are described. PMID:23370512

  17. [Molecular MR imaging. State of the research with examples describing individual results] .

    PubMed

    Fleige, G; Hamm, B; Zimmer, C

    2000-11-01

    Basic medicobiological research in recent years has made rapid advances in the functional understanding of normal and pathological processes down to the molecular level. At the same time, various imaging modalities have developed from the depiction of organs to approaching the depiction of the cellular level and are about to make the visualization of molecular processes an established procedure. Besides other modalities like PET and near-infrared fluorescence, MR imaging offers some promising options for molecular imaging as well as some applications that have already been tested such as the visualization of enzyme activity, the depiction of the expression of certain genes, the visualization of surface receptors, or the specific demonstration of cells involved in the body's immune response. A major advantage of molecular magnetic resonance imaging (mMRI) over other more sensitive modalities is its high spatial resolution. However, the establishment of mMRI crucially relies on further improvements in resolution and the development of molecular markers for improving its sensitivity and specificity. The state of the art of mMRI is presented by giving a survey of the literature on experimental studies and reporting the results our study group obtained during investigation on gliomas. PMID:11142117

  18. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species

    PubMed Central

    Sawana, Amandeep; Adeolu, Mobolaji; Gupta, Radhey S.

    2014-01-01

    The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for

  19. Preserving and vouchering butterflies and moths for large-scale museum-based molecular research.

    PubMed

    Cho, Soowon; Epstein, Samantha W; Mitter, Kim; Hamilton, Chris A; Plotkin, David; Mitter, Charles; Kawahara, Akito Y

    2016-01-01

    Butterflies and moths (Lepidoptera) comprise significant portions of the world's natural history collections, but a standardized tissue preservation protocol for molecular research is largely lacking. Lepidoptera have traditionally been spread on mounting boards to display wing patterns and colors, which are often important for species identification. Many molecular phylogenetic studies have used legs from pinned specimens as the primary source for DNA in order to preserve a morphological voucher, but the amount of available tissue is often limited. Preserving an entire specimen in a cryogenic freezer is ideal for DNA preservation, but without an easily accessible voucher it can make specimen identification, verification, and morphological work difficult. Here we present a procedure that creates accessible and easily visualized "wing vouchers" of individual Lepidoptera specimens, and preserves the remainder of the insect in a cryogenic freezer for molecular research. Wings are preserved in protective holders so that both dorsal and ventral patterns and colors can be easily viewed without further damage. Our wing vouchering system has been implemented at the University of Maryland (AToL Lep Collection) and the University of Florida (Florida Museum of Natural History, McGuire Center of Lepidoptera and Biodiversity), which are among two of the largest Lepidoptera molecular collections in the world. PMID:27366654

  20. Preserving and vouchering butterflies and moths for large-scale museum-based molecular research

    PubMed Central

    Epstein, Samantha W.; Mitter, Kim; Hamilton, Chris A.; Plotkin, David; Mitter, Charles

    2016-01-01

    Butterflies and moths (Lepidoptera) comprise significant portions of the world’s natural history collections, but a standardized tissue preservation protocol for molecular research is largely lacking. Lepidoptera have traditionally been spread on mounting boards to display wing patterns and colors, which are often important for species identification. Many molecular phylogenetic studies have used legs from pinned specimens as the primary source for DNA in order to preserve a morphological voucher, but the amount of available tissue is often limited. Preserving an entire specimen in a cryogenic freezer is ideal for DNA preservation, but without an easily accessible voucher it can make specimen identification, verification, and morphological work difficult. Here we present a procedure that creates accessible and easily visualized “wing vouchers” of individual Lepidoptera specimens, and preserves the remainder of the insect in a cryogenic freezer for molecular research. Wings are preserved in protective holders so that both dorsal and ventral patterns and colors can be easily viewed without further damage. Our wing vouchering system has been implemented at the University of Maryland (AToL Lep Collection) and the University of Florida (Florida Museum of Natural History, McGuire Center of Lepidoptera and Biodiversity), which are among two of the largest Lepidoptera molecular collections in the world. PMID:27366654

  1. A perspective on 15 years of proof-of-concept aircraft development and flight research at Ames-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 1970-1985

    NASA Technical Reports Server (NTRS)

    Few, David D.

    1987-01-01

    A proof-of-concept (POC) aircraft is defined and the concept of interest described for each of the six aircraft developed by the Ames-Moffet Rotorcraft and Powered-Lift Flight Projects Division from 1970 through 1985; namely, the OV-10, the C-8A Augmentor Wing, the Quiet Short-Haul Research Aircraft (QSRA), the XV-15 Tilt Rotor Research Aircraft (TRRA), the Rotor Systems Research Aircraft (RSRA)-compound, and the yet-to-fly RSRA/X-Wing Aircraft. The program/project chronology and most noteworthy features of the concepts are reviewed. The paper discusses the significance of each concept and the project demonstrating it; it briefly looks at what concepts are on the horizon as potential POC research aircraft and emphasizes that no significant advanced concept in aviation technology has ever been accepted by civilian or military users without first completing a demonstration through flight testing.

  2. A Health Services Research Agenda for Cellular, Molecular and Genomic Technologies in Cancer Care

    PubMed Central

    Wideroff, Louise; Phillips, Kathryn A.; Randhawa, Gurvaneet; Ambs, Anita; Armstrong, Katrina; Bennett, Charles L.; Brown, Martin L.; Donaldson, Molla S.; Follen, Michele; Goldie, Sue J.; Hiatt, Robert A.; Khoury, Muin J.; Lewis, Graham; McLeod, Howard L.; Piper, Margaret; Powell, Isaac; Schrag, Deborah; Schulman, Kevin A.; Scott, Joan

    2009-01-01

    Background In recent decades, extensive resources have been invested to develop cellular, molecular and genomic technologies with clinical applications that span the continuum of cancer care. Methods In December 2006, the National Cancer Institute sponsored the first workshop to uniquely examine the state of health services research on cancer-related cellular, molecular and genomic technologies and identify challenges and priorities for expanding the evidence base on their effectiveness in routine care. Results This article summarizes the workshop outcomes, which included development of a comprehensive research agenda that incorporates health and safety endpoints, utilization patterns, patient and provider preferences, quality of care and access, disparities, economics and decision modeling, trends in cancer outcomes, and health-related quality of life among target populations. Conclusions Ultimately, the successful adoption of useful technologies will depend on understanding and influencing the patient, provider, health care system and societal factors that contribute to their uptake and effectiveness in ‘real-world’ settings. PMID:19367091

  3. AIR POLLUTION PREVENTION AND CONTROL DIVISION - HOME PAGE

    EPA Science Inventory

    The Air Pollution Prevention and Control Division (APPCD), located in Research Triangle Park, NC, is part of the National Risk Management Research Laboratory (NRMRL), which is headquartered in Cincinnati, OH. APPCD researches, develops, anddemonstrates air pollution prevention a...

  4. Human molecular genetics research at the International Centre for Genetic Engineering and Biotechnology.

    PubMed

    Falaschi, P A

    1997-01-01

    The ICGEB started its activity in 1987 as a special project of UNIDO (United Nations Industrial Development Organization) and operates now as a fully autonomous International Organization, of which 40 countries are members at present. The mandate of ICGEB is to become a Centre of excellence for research and training in modern biology addressed to the needs of the developing world. The ICGEB consists of two main laboratories, one in Trieste (where the direction of the Centre is also located) and one in New Delhi, plus a network of 30 Affiliated Centres. The Centre operates through: 1) specific research programs of hish scientific content at the Trieste and New Delhi laboratories; 2) long term training through post-doctoral and pre-doctoral fellowships; 3) short term training; 4) collaborative research program, through which the Centre finances research projects of major impact to the need of the Member States; 5) scientific services, namely consultation for scientific programs, distribution of reagents and a bioinformatics network particularly geared to the human genome research. The research on human molecular genetics in particularly active in the Trieste Component and concerns the study at the molecular level of several genes important for human health: control of DNA replication, response to infectious diseases, cardiocirculatory diseases, cystic fibrosis and cancer. The methodologies for developing new diagnostic methods and for developing gene therapy protocols are actively pursued. Through these programs, the member countries have access to state-of-the-art technologies anf know-how essential for the development of the molecular approaches to medicine brought forward by the study of the human genome. PMID:9561632

  5. [What Hansen's disease research learned from tuberculosis research: from molecular biological aspect].

    PubMed

    Suzuki, Yasuhiko; Yamaguchi, Tomoyuki; Kim, Hyun; Yokoyama, Kazumasa; Nakajima, Chie

    2014-12-01

    As for the Mycobacterium leprae which is a causative agent of Hansen's disease, many studies had been done since it was identified in 1873. However, those studies, at the same time, experienced many struggles because of the difficulty of culture of M. leprae on the artificial growth media. Hence, the study of Hansen's disease progressed by taking the knowledge from the study of tuberculosis caused by the bacteria belonging to the same genus, genus Mycobacterium. For instance, the knowledge of mutations in specific genes responsible for rifampicin- and quinolone-resistance in M. tuberculosis led the elucidation of drug-resistant acquisition mechanism of M. leprae. Similarly, it is necessary for the researcher of Hansen's disease to get important information from the latest topic of the tuberculosis study and utilize them to the study of the disease. PMID:25826852

  6. BIO2010 and beyond: What undergraduate physics does the next generation of molecular biology researchers need?

    NASA Astrophysics Data System (ADS)

    Howard, Jonathon

    2004-03-01

    What fundamental skills in mathematics, chemistry, physics, computer science and engineering are required at the undergraduate level to prepare the next generation of biology majors who will become research scientists? To address this question, Bruce Alberts, President of the National Academy of Sciences, established BIO2010, a committee of the National Research Council (USA), chaired by Lubert Stryer. The report of the committee was published in 2003 as BIO2010: Transforming Undergraduate Education for Future Research Biologists (National Academies Press, Washington DC, www.national-academies.com). I will summarize the recommendations of the Physics and Engineering Panel that was chaired by John Hopfield and give my own views of what physics is essential for researchers in cell and molecular biology.

  7. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 7 - Pathogenesis and Molecular Biology.

    PubMed

    Robinson, L; Knight-Jones, T J D; Charleston, B; Rodriguez, L L; Gay, C G; Sumption, K J; Vosloo, W

    2016-06-01

    We assessed research knowledge gaps in the fields of FMDV (foot-and-mouth disease virus) pathogenesis and molecular biology by performing a literature review (2011-15) and collecting research updates (2014) from 33 institutes from across the world. Findings were used to identify priority areas for future research. There have been important advances in FMDV pathogenesis; FMDV remains in lymph nodes of many recovered animals that otherwise do not appear persistently infected, even in species previously not associated with the carrier state. Whether virus retention helps maintain host immunity and/or virus survival is not known. Studies of FMDV pathogenesis in wildlife have provided insights into disease epidemiology, in endemic and epidemic settings. Many aspects of FMDV infection and virus entry remain unknown; however, at the cellular level, we know that expression level and availability of integrins (that permit viral entry), rate of clearance of infected cells and strength of anti-viral type I IFN (interferon) response are key determinants of tissue tropism. Extending findings to improved understanding of transmission requires a standardized approach and adoption of natural routes of infection during experimental study. There has been recognition of the importance of autophagosomes for FMDV entry into the cytoplasm following cell surface receptor binding, and that distinct internal cellular membranes are exploited for viral replication and immune evasion. New roles for viral proteins in blocking type I IFN production and downstream signalling have been identified facilitating research in anti-viral therapeutics. We know more about how infection affects cell protein expression, and research into molecular determinants of capsid stability has aided the development of stable vaccines. We have an expanding knowledge of viral and host molecular determinates of virulence and infectiousness, and of how phylogenetics may be used to estimate vaccine match and strain

  8. 2002 Chemical Engineering Division annual report.

    SciTech Connect

    Lewis, D.; Graziano, D.; Miller, J. F.

    2003-05-22

    The Chemical Engineering Division is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory; Environment, Safety, and Health Analytical Chemistry services; and Dosimetry and Radioprotection services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. Our wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by

  9. The History of Metals and Ceramics Division

    SciTech Connect

    Craig, D.F.

    1999-01-01

    The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most of what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.

  10. Thursday's Agenda | Division of Cancer Prevention

    Cancer.gov

    TimeAgenda8:30 am - 8:50 amRegistration - Networking8:50 am - 8:55 amWelcome and Opening RemarksLeslie Ford, MDAssociate Director for Clinical ResearchDivision of Cancer Prevention, NCIEva Szabo, MD Chief, Lung and Upper Aerodigestive Cancer Research Group |

  11. Materials Sciences Division 1990 annual report

    SciTech Connect

    Not Available

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  12. Clinical Trials Management | Division of Cancer Prevention

    Cancer.gov

    Information for researchers about developing, reporting, and managing NCI-funded cancer prevention clinical trials. Protocol Information Office The central clearinghouse for clinical trials management within the Division of Cancer Prevention.Read more about the Protocol Information Office. | Information for researchers about developing, reporting, and managing NCI-funded cancer prevention clinical trials.

  13. Chemical Biodynamics Division. Annual report 1979

    SciTech Connect

    Not Available

    1980-08-01

    The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

  14. Cognitive and Neural Sciences Division, 1988 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    The research and development efforts performed by principal investigators under sponsorship of the Office of Naval Research Cognitive and Neural Sciences Division during 1988 are documented. The title, name and affiliation of the principal investigator, project code, contract number, current end date, technical objective, approach, and progress of…

  15. Cognitive and Neural Sciences Division, 1989 Programs.

    ERIC Educational Resources Information Center

    Vaughan, Willard S., Ed.

    This report documents research and development performed by principal investigators under the sponsorship of the Office of Naval Research Cognitive and Neural Sciences Division during fiscal year 1989. Programs are conducted under contracts and grants awarded on the basis of proposals received in response to a Broad Agency Announcement in the…

  16. Selected Publications of the Division of Nursing.

    ERIC Educational Resources Information Center

    Public Health Service (DHEW), Arlington, VA. Div. of Nursing.

    Publications are organized under the following topics: (1) Division of Nursing Program, (2) Nurse Training Act of 1964, (3) Nursing (general interest), (4) Nursing Manpower, (5) Nursing Services in Hospitals, (6) Public Health Nursing, (7) Nursing Education, (8) Nursing Research and Research Training, and (9) Nurse Training Manuals. Single copies…

  17. Ultrasound Biomicroscopy in Small Animal Research: Applications in Molecular and Preclinical Imaging

    PubMed Central

    Greco, A.; Mancini, M.; Gargiulo, S.; Gramanzini, M.; Claudio, P. P.; Brunetti, A.; Salvatore, M.

    2012-01-01

    Ultrasound biomicroscopy (UBM) is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research. PMID:22163379

  18. Ultrasound biomicroscopy in small animal research: applications in molecular and preclinical imaging.

    PubMed

    Greco, A; Mancini, M; Gargiulo, S; Gramanzini, M; Claudio, P P; Brunetti, A; Salvatore, M

    2012-01-01

    Ultrasound biomicroscopy (UBM) is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research. PMID:22163379

  19. Molecular design concept for x-ray laser research. Progress report, 15 December--30 September 1992

    SciTech Connect

    Rhodes, C.K.; Luk, T.S.; McPherson, A.; Boyer, K.

    1992-12-10

    The goal of this program is the construction of an x-ray laser in the kilovolt regime. Recent experimental results indicate that a new technique for the generation of strong amplification of x-ray wavelengths is feasible. It involves the combination of (1) a new ultrahigh brightness subpicosecond laser technology and (2) a recently discovered unique mode of strong-field interaction, particularly applicable to molecules. A concept of molecular x-ray design emerges from the considerations which matches the mode of excitation to the structure of the molecular system. The molecular approach enables the combination of very highly electronically excited conditions with an environment characteristic of dense cold matter, a general situation exceptionally conducive to x-ray amplification. Both high efficiency and wavelength tunability are intrinsic features of this method. Recent results discussed in this report are revealing important characteristics of the molecular strong-field coupling pertinent to this goal. A continued program of research is proposed to evaluate this method for the production of x-ray amplification in the kilovolt region.

  20. Solid State Division

    SciTech Connect

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  1. The Problem with Division

    ERIC Educational Resources Information Center

    Pope, Sue

    2012-01-01

    Of the "big four", division is likely to regarded by many learners as "the odd one out", "the difficult one", "the one that is complicated", or "the scary one". It seems to have been that way "for ever", in the perception of many who have trodden the learning pathways through the world of number. But, does it have to be like this? Clearly the…

  2. Anticrossproducts and cross divisions.

    PubMed

    de Leva, Paolo

    2008-01-01

    This paper defines, in the context of conventional vector algebra, the concept of anticrossproduct and a family of simple operations called cross or vector divisions. It is impossible to solve for a or b the equation axb=c, where a and b are three-dimensional space vectors, and axb is their cross product. However, the problem becomes solvable if some "knowledge about the unknown" (a or b) is available, consisting of one of its components, or the angle it forms with the other operand of the cross product. Independently of the selected reference frame orientation, the known component of a may be parallel to b, or vice versa. The cross divisions provide a compact and insightful symbolic representation of a family of algorithms specifically designed to solve problems of such kind. A generalized algorithm was also defined, incorporating the rules for selecting the appropriate kind of cross division, based on the type of input data. Four examples of practical application were provided, including the computation of the point of application of a force and the angular velocity of a rigid body. The definition and geometrical interpretation of the cross divisions stemmed from the concept of anticrossproduct. The "anticrossproducts of axb" were defined as the infinitely many vectors x(i) such that x(i)xb=axb. PMID:18423647

  3. Division XII Business Meetings

    NASA Astrophysics Data System (ADS)

    Smith, Malcolm G.; Genova, Francoise; Anderson, Johannes; Federman, Steven R.; Gilmore, Alan C.; Nha, Il-Seong; Norris, Raymond P.; Robson, Ian E.; Stavinschi, Magda G.; Trimble, Virginia L.; Wainscoat, Richard J.

    2010-05-01

    Brief meetings were held to confirm the elections of the incoming Division President, Francoise Genova and Vice President, Ray Norris along with the Organizing Committee which will consist of the incoming Presidents of the 7 Commissions (5,6,14,41,46,50 and 55) plus additional nominated members. The incoming Organizing Committee will thus consist of:

  4. Photosynthesis research in India: transition from yield physiology into molecular biology.

    PubMed

    Raghavendra, Agepati S; Vishnu Sane, Prafullachandra; Mohanty, Prasanna

    2003-01-01

    Photosynthesis research in India can be traced back several thousand years, with the mention of the Sun energizing the plants, which form food for all living creatures on the earth (from the Mahabharata, the great epic, ca. 2600 B.C.) and the report of Sage Parasara (ca. 100 B.C.) on the ability of plants to make their own food, due to their pigments. With the pioneering studies by Sir Jagdish Chandra Bose, work on photosynthesis proceeded steadily during the first half of the 20th century. Some of the classic reports during this period are: malate metabolism in Hydrilla, spectrophotometric estimation of chlorophylls, importance of spectral quality for photosynthesis - an indication of two photosystems, photoinactivation of photosynthesis, and importance of flag leaf photosynthesis to grain yield. After the 1960s, there was a burst of research in the areas of physiology and biochemistry of carbon assimilation and photochemistry. A significant transition occurred, before the beginning of new millennium, into the area of molecular biology of chloroplasts, regulation of photosynthesis and stress tolerance. Future research work in India is geared to focus on the following aspects of photosynthesis: elucidation/analysis of genes, molecular biology/evolution of enzymes, development/use of transgenics and modeling. PMID:16228599

  5. Structures Division 1994 Annual Report

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1994 are presented.

  6. Physics division annual report 2005.

    SciTech Connect

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were

  7. The Advanced Light Source: A new tool for research in atomic and molecular physics

    SciTech Connect

    Schlachter, F.; Robinson, A.

    1991-04-01

    The Advanced Light Source at the Lawrence Berkeley Laboratory will be the world's brightest synchrotron radiation source in the extreme ultraviolet and soft x-ray regions of the spectrum when it begins operation in 1993. It will be available as a national user facility to researchers in a broad range of disciplines, including materials science, atomic and molecular physics, chemistry, biology, imaging, and technology. The high brightness of the ALS will be particularly well suited to high-resolution studies of tenuous targets, such as excited atoms, ions, and clusters. 13 figs., 4 tabs.

  8. Cancer stem cell hypotheses: impact on modern molecular physiology and pharmacology research.

    PubMed

    Pantic, Igor

    2011-12-01

    Although questioned on several occasions, the existence of cancer stem cells (CSCs) has been confirmed by a number of studies on experimental animal models. Nevertheless, it was shown that CSC hypotheses have several limitations and inconsistencies regarding the explanation of CSC origin, CSC identification and isolation, possible heterogeneity within CSC population, as well as methodology issues in some studies that were carried out in order to prove CSC existence. The aim of this article is to give a short and comprehensive review of recent advances concerning CSC hypothesis and to describe its impact on modern molecular physiology and pharmacology research. PMID:22116294

  9. Kelly Yu, PhD, MPH | Division of Cancer Prevention

    Cancer.gov

    Dr. Kelly J Yu is an Epidemiologist with the Early Detection Research Group for the Division of Cancer Prevention. Her research has primarily been focused on screening as a mode of cancer prevention. |

  10. 25 years of African trypanosome research: From description to molecular dissection and new drug discovery☆☆☆

    PubMed Central

    Matthews, Keith R.

    2015-01-01

    The Molecular Parasitology conference was first held at the Marine Biological laboratory, Woods Hole, USA 25 years ago. Since that first meeting, the conference has evolved and expanded but has remained the showcase for the latest research developments in molecular parasitology. In this perspective, I reflect on the scientific discoveries focussed on African trypanosomes (Trypanosoma brucei spp.) that have occurred since the inaugural MPM meeting and discuss the current and future status of research on these parasites. PMID:25736427

  11. Nuclear Chemistry Division annual report FY83

    SciTech Connect

    Struble, G.

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

  12. SUSTAINABLE TECHNOLOGY DIVISION - HOME PAGE

    EPA Science Inventory

    The mission of the Sustainable Technology Division is to advance the scientific understanding, development and application of technologies and methods for prevention, removal and control of environmental risks to human health and ecology. The Division is organized into four bra...

  13. A virtualized infrastructure for molecular imaging research using a data grid model

    NASA Astrophysics Data System (ADS)

    Lee, Jasper; Dagliyan, Grant; Liu, Brent

    2009-02-01

    The animal-to-researcher workflow in many of today's small animal imaging center is burdened with proprietary data limitations, inaccessible back-up methods, and imaging results that are not easily viewable across campus. Such challenges decrease the amount of scans performed per day at the center and requires researchers to wait longer for their images and quantified results. Furthermore, data mining at the small animal imaging center is often limited to researcher names and date-labelled archiving hard-drives. To gain efficiency and reliable access to small animal imaging data, such a center needs to move towards an integrated workflow with file format normalization services, metadata databases, expandable archiving infrastructure, and comprehensive user interfaces for query / retrieval tools - achieving all in a cost-effective manner. This poster presentation demonstrates how grid technology can support such a molecular imaging and small animal imaging research community to bridge the needs between imaging modalities and clinical researchers. Existing projects have utilized the Data Grid in PACS tier 2 backup solutions, where fault-tolerance is a high priority, as well as imagingbased clinical trials where data security and auditing are primary concerns. Issues to be addressed include, but are not limited to, novel database designs, file format standards, virtual archiving and distribution workflows, and potential grid computing for 3-D reconstructions, co-registration, and post-processing analysis.

  14. Different methods and metaphysics in early molecular genetics--a case of disparity of research?

    PubMed

    Deichmann, Ute

    2008-01-01

    The encounter between two fundamentally different approaches in seminal research in molecular biology--the problems, aims, methods and metaphysics--is delineated and analyzed. They are exemplified by the microbiologist Oswald T. Avery who, in line with the reductionist mechanistic metaphysics of Jacques Loeb, attempted to explain basic life phenomena through chemistry; and the theoretical physicist Max Delbrück who, influenced by Bohr's antimechanistic views, preferred to explain these phenomena without chemistry. Avery's and Delbrück's most important studies took place concurrently. Thus analysis of their contrasting approaches lends itself to examination of the Weltanschauungen view concerning the role of fundamental (metaphysical) assumptions in scientific change, that is, the view that empirical research cannot be neutral in regard to the worldviews of the researchers. This study shows that the initial ostensible disparity (non-integratibility) of the two approaches lasted for just a short time. Ironically it was a student of Delbrück's school, James Watson, who (with Crick) proposed a chemical model, the DNA double helix, as a solution to Delbrück's problem. The structure of DNA has not been seriously challenged over the past half century Moreover, Watson's and Crick's work did not call into question the validity of Delbrück's research, but opened it up to entirely new approaches. The case of Avery and Delbrück demonstrates that after initial obstacles were overcome the different fundamental attitudes and the resulting research practices were capable of integration. PMID:19203011

  15. Division X: Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Nan, Ren-Dong; Taylor, Russ; Rodriguez, Luis F.; Chapman, Jessica; Dubner, Gloria; Garrett, Michael; Goss, W. Miller; Torrelles, Jose M.; Hirabayashi, Hisashi; Carilli, Chris; Hills, Richard; Shastri, Prajval

    2010-05-01

    The business meeting of Division X in the IAU 2009GA took place in three sessions during the day of August 6, 2009. The meeting, being well attended, started with the approval for the meeting agenda. Then the triennium reports were made in the first session by the president of Division X, Ren-Dong Nan, and by the chairs of three working groups: “Historic Radio Astronomy WG” by Wayne Orchiston, “Astrophysically Important Lines WG” by Masatoshi Ohishi, and “Global VLBI WG” by Tasso Tzioumis (proxy chair appointed by Steven Tingay). Afterwards, a dozen reports from observatories and worldwide significant projects have been presented in the second session. Business meeting of “Interference Mitigation WG” was located in the third session.

  16. Sarah Temkin, MD | Division of Cancer Prevention

    Cancer.gov

    Dr. Sarah Temkin is a program director in the Community Oncology and Prevention Trials Research Group of NCI's Division of Cancer Prevention. She works with the NCI Community Oncology Research Program, which conducts multi-site cancer clinical trials and cancer care delivery research studies in communities across the U.S. Dr. Temkin also serves as an adjunct associate professor in the Johns Hopkins Medicine Department of Gynecology and Obstetrics. |

  17. Community Clinical Oncology Program (CCOP), Minority-Based Community Clinical Oncology Program (MBCCOP), and Research Base Meeting | Division of Cancer Prevention

    Cancer.gov

    Meeting ObjectivesPresent CCOP Programmatic updatesKeynote speakers will present on "Clinical Trials in the next Decade" and Health Disparities and Clinical ResearchCreate a forum for dialogue among CCOP and MBCCOP investigators with Research Base representatives and DCP/NCI staffProvide information updates on relevant NCI/NIH initiativesExchange information/tools for benchmarking your research programProvide the opportunity to network and share ideasParticipantsPrincipal Investigators, Administrators, and othe |

  18. Molecular environmental science : an assessment of research accomplishments, available synchrotron radiation facilities, and needs.

    SciTech Connect

    Brown, G. E., Jr.; Sutton, S. R.; Bargar, J. R.; Shuh, D. K.; Fenter, P. A.; Kemner, K. M.

    2004-10-20

    Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutants at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and their reactions with

  19. Molecular Environmental Science: An Assessment of Research Accomplishments, Available Synchrotron Radiation Facilities, and Needs

    SciTech Connect

    Brown, G

    2004-02-05

    Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutants at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and their reactions with

  20. Energy Systems Divisions

    NASA Technical Reports Server (NTRS)

    Applewhite, John

    2011-01-01

    This slide presentation reviews the JSC Energy Systems Divisions work in propulsion. Specific work in LO2/CH4 propulsion, cryogenic propulsion, low thrust propulsion for Free Flyer, robotic and Extra Vehicular Activities, and work on the Morpheus terrestrial free flyer test bed is reviewed. The back-up slides contain a chart with comparisons of LO2/LCH4 with other propellants, and reviewing the advantages especially for spacecraft propulsion.

  1. The 2012 Nucleic Acids Research Database Issue and the online Molecular Biology Database Collection.

    PubMed

    Galperin, Michael Y; Fernández-Suárez, Xosé M

    2012-01-01

    The 19th annual Database Issue of Nucleic Acids Research features descriptions of 92 new online databases covering various areas of molecular biology and 100 papers describing recent updates to the databases previously described in NAR and other journals. The highlights of this issue include, among others, a description of neXtProt, a knowledgebase on human proteins; a detailed explanation of the principles behind the NCBI Taxonomy Database; NCBI and EBI papers on the recently launched BioSample databases that store sample information for a variety of database resources; descriptions of the recent developments in the Gene Ontology and UniProt Gene Ontology Annotation projects; updates on Pfam, SMART and InterPro domain databases; update papers on KEGG and TAIR, two universally acclaimed databases that face an uncertain future; and a separate section with 10 wiki-based databases, introduced in an accompanying editorial. The NAR online Molecular Biology Database Collection, available at http://www.oxfordjournals.org/nar/database/a/, has been updated and now lists 1380 databases. Brief machine-readable descriptions of the databases featured in this issue, according to the BioDBcore standards, will be provided at the http://biosharing.org/biodbcore web site. The full content of the Database Issue is freely available online on the Nucleic Acids Research web site (http://nar.oxfordjournals.org/). PMID:22144685

  2. Using Domestic and Free-Ranging Arctic Canid Models for Environmental Molecular Toxicology Research.

    PubMed

    Harley, John R; Bammler, Theo K; Farin, Federico M; Beyer, Richard P; Kavanagh, Terrance J; Dunlap, Kriya L; Knott, Katrina K; Ylitalo, Gina M; O'Hara, Todd M

    2016-02-16

    The use of sentinel species for population and ecosystem health assessments has been advocated as part of a One Health perspective. The Arctic is experiencing rapid change, including climate and environmental shifts, as well as increased resource development, which will alter exposure of biota to environmental agents of disease. Arctic canid species have wide geographic ranges and feeding ecologies and are often exposed to high concentrations of both terrestrial and marine-based contaminants. The domestic dog (Canis lupus familiaris) has been used in biomedical research for a number of years and has been advocated as a sentinel for human health due to its proximity to humans and, in some instances, similar diet. Exploiting the potential of molecular tools for describing the toxicogenomics of Arctic canids is critical for their development as biomedical models as well as environmental sentinels. Here, we present three approaches analyzing toxicogenomics of Arctic contaminants in both domestic and free-ranging canids (Arctic fox, Vulpes lagopus). We describe a number of confounding variables that must be addressed when conducting toxicogenomics studies in canid and other mammalian models. The ability for canids to act as models for Arctic molecular toxicology research is unique and significant for advancing our understanding and expanding the tool box for assessing the changing landscape of environmental agents of disease in the Arctic. PMID:26730740

  3. The 2013 Nucleic Acids Research Database Issue and the online Molecular Biology Database Collection

    PubMed Central

    Fernández-Suárez, Xosé M.; Galperin, Michael Y.

    2013-01-01

    The 20th annual Database Issue of Nucleic Acids Research includes 176 articles, half of which describe new online molecular biology databases and the other half provide updates on the databases previously featured in NAR and other journals. This year’s highlights include two databases of DNA repeat elements; several databases of transcriptional factors and transcriptional factor-binding sites; databases on various aspects of protein structure and protein–protein interactions; databases for metagenomic and rRNA sequence analysis; and four databases specifically dedicated to Escherichia coli. The increased emphasis on using the genome data to improve human health is reflected in the development of the databases of genomic structural variation (NCBI’s dbVar and EBI’s DGVa), the NIH Genetic Testing Registry and several other databases centered on the genetic basis of human disease, potential drugs, their targets and the mechanisms of protein–ligand binding. Two new databases present genomic and RNAseq data for monkeys, providing wealth of data on our closest relatives for comparative genomics purposes. The NAR online Molecular Biology Database Collection, available at http://www.oxfordjournals.org/nar/database/a/, has been updated and currently lists 1512 online databases. The full content of the Database Issue is freely available online on the Nucleic Acids Research website (http://nar.oxfordjournals.org/). PMID:23203983

  4. 08-ERD-071 Final Report: New Molecular Probes and Catalysts for Bioenergy Research

    SciTech Connect

    Thelen, M P; Rowe, A A; Siebers, A K; Jiao, Y

    2011-03-07

    A major thrust in bioenergy research is to develop innovative methods for deconstructing plant cell wall polymers, such as cellulose and lignin, into simple monomers that can be biologically converted to ethanol and other fuels. Current techniques for monitoring a broad array of cell wall materials and specific degradation products are expensive and time consuming. To monitor various polymers and assay their breakdown products, molecular probes for detecting specific carbohydrates and lignins are urgently needed. These new probes would extend the limited biochemical techniques available, and enable realtime imaging of ultrastructural changes in plant cells. Furthermore, degradation of plant biomass could be greatly accelerated by the development of catalysts that can hydrolyze key cell wall polysaccharides and lignin. The objective of this project was to develop cheap and efficient DNA reagents (aptamers) used to detect and quantify polysaccharides, lignin, and relevant products of their breakdown. A practical goal of the research was to develop electrochemical aptamer biosensors, which could be integrated into microfluidic devices and used for high-throughput screening of enzymes or biological systems that degrade biomass. Several important model plant cell wall polymers and compounds were targeted for specific binding and purification of aptamers, which were then tested by microscopic imaging, circular dichroism, surface plasmon resonance, fluorescence anisotropy, and electrochemical biosensors. Using this approach, it was anticiated that we could provide a basis for more efficient and economically viable biofuels, and the technologies established could be used to design molecular tools that recognize targets sought in medicine or chemical and biological defense projects.

  5. Biorepositories | Division of Cancer Prevention

    Cancer.gov

    Carefully collected and controlled high-quality human biospecimens, annotated with clinical data and properly consented for investigational use, are available through the Division of Cancer Prevention Biorepositories listed in the charts below. Biorepositories Managed by the Division of Cancer Prevention Biorepositories Supported by the Division of Cancer Prevention Related Biorepositories | Information about accessing biospecimens collected from DCP-supported clinical trials and projects.

  6. Division Quilts: A Measurement Model

    ERIC Educational Resources Information Center

    Pratt, Sarah S.; Lupton, Tina M.; Richardson, Kerri

    2015-01-01

    As teachers seek activities to assist students in understanding division as more than just the algorithm, they find many examples of division as fair sharing. However, teachers have few activities to engage students in a quotative (measurement) model of division. Efraim Fischbein and his colleagues (1985) defined two types of whole-number…

  7. USACE DIVISION AND DISTRICT BOUNDARIES

    EPA Science Inventory

    The USACE Division and District Boundary data contains the delination of Corps Division and District boundaries. District and Division Boundaries are based on the US political and watershed boundaries. In the mid 1990's, WES created the file by digitizing the 1984 Civil Wor...

  8. Meetings and Events | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Trial NCT01382082 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Trial NCT02237183 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Trial NCT01950403 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Trial NCT01849250 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Trial NCT01968798 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Trial NCT02116530 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Trial NCT01824836 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. Trial NCT01141231 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  17. Trial NCT02273362 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Cancer Biomarkers Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Mark Sherman, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Trial NCT01169259 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Trial NCT01661764 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  2. Trial NCT01238172 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  3. Trial NCT02314156 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  4. Trial NCT01935960 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Trial NCT02155777 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Trial NCT01728571 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Trial NCT02112188 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. Administrative Resource Center | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  9. Nutritional Science Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  10. Funded Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Trial NCT02095145 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  12. Active Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Eva Szabo, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  14. Sarah Temkin, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  15. Trial NCT01550783 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  16. OVERVIEW -- SUBSURFACE PROTECTION AND REMEDIATION DIVISION

    EPA Science Inventory

    NRMRL's Subsurface Protection and Remediation Division located in Ada, Oklahoma, conducts EPA-investigator led laboratory and field research to provide the scientific basis to support the development of strategies and technologies to protect and restore ground and surface water q...

  17. Leslie Ford, MD | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Trial NCT02123849 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Trial NCT02169271 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Trial NCT00983580 | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.