Sample records for molecular sieves oms-2

  1. Nanoscale octahedral molecular sieves: Syntheses, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Liu, Jia

    The major part of this research consists of studies on novel synthesis methods, characterization, and catalytic applications of nanoscale manganese oxide octahedral molecular sieves. The second part involves studies of new applications of bulk porous molecular sieve and layered materials (MSLM), zeolites, and inorganic powder materials for diminishing wound bleeding. Manganese oxide octahedral molecular sieves (OMS) are very important microporous materials. They have been used widely as bulk materials in catalysis, separations, chemical sensors, and batteries, due to their unique tunnel structures and useful properties. Novel methods have been developed to synthesize novel nanoscale octahedral molecular sieve manganese oxides (OMS) and metal-substituted OMS materials in order to modify their physical and chemical properties and to improve their catalytic applications. Different synthetic routes were investigated to find better, faster, and cheaper pathways to produce nanoscale or metal-substituted OMS materials. In the synthetic study of nanosize OMS materials, a combination of sol-gel synthesis and hydrothermal reaction was used to prepare pure crystalline nanofibrous todorokite-type (OMS-1) and cryptomelane-typed (OMS-2) manganese oxides using four alkali cations (Li+, K+, Na +, Rb+) and NH4+ cations. In the synthesis study of nanoscale and metal-substituted OMS materials, a combination of sol-gel synthesis and solid-state reaction was used to prepare transition metal-substituted OMS-2 nanorods, nanoneedles, and nanowires. Preparative parameters of syntheses, such as cation templates, heating temperature and time, were investigated in these syntheses of OMS-1 and OMS-2 materials. The catalytic activities of the novel synthetic nanoscale OMS materials has been evaluated on green oxidation of alcohols and toluene and were found to be much higher than their correspondent bulk materials. New applications of bulk manganese oxide molecular sieve and layered materials

  2. Enhanced Molecular Sieve CO2 Removal Evaluation

    NASA Technical Reports Server (NTRS)

    Rose, Susan; ElSherif, Dina; MacKnight, Allen

    1996-01-01

    The objective of this research is to quantitatively characterize the performance of two major types of molecular sieves for two-bed regenerative carbon dioxide removal at the conditions compatible with both a spacesuit and station application. One sorbent is a zeolite-based molecular sieve that has been substantially improved over the materials used in Skylab. The second sorbent is a recently developed carbon-based molecular sieve. Both molecular sieves offer the potential of high payoff for future manned missions by reducing system complexity, weight (including consumables), and power consumption in comparison with competing concepts. The research reported here provides the technical data required to improve CO2 removal systems for regenerative life support systems for future IVA and EVA missions.

  3. Enantiomerically enriched, polycrystalline molecular sieves

    DOE PAGES

    Brand, Stephen K.; Schmidt, Joel E.; Deem, Michael W.; ...

    2017-05-01

    Zeolite and zeolite-like molecular sieves are being used in a large number of applications such as adsorption and catalysis. Achievement of the long-standing goal of creating a chiral, polycrystalline molecular sieve with bulk enantioenrichment would enable these materials to perform enantioselective functions. Here, we report the synthesis of enantiomerically enriched samples of a molecular sieve. For this study, enantiopure organic structure directing agents are designed with the assistance of computational methods and used to synthesize enantioenriched, polycrystalline molecular sieve samples of either enantiomer. Computational results correctly predicted which enantiomer is obtained, and enantiomeric enrichment is proven by high-resolution transmission electronmore » microscopy. The enantioenriched and racemic samples of the molecular sieves are tested as adsorbents and heterogeneous catalysts. The enantioenriched molecular sieves show enantioselectivity for the ring opening reaction of epoxides and enantioselective adsorption of 2-butanol (the R enantiomer of the molecular sieve shows opposite and approximately equal enantioselectivity compared with the S enantiomer of the molecular sieve, whereas the racemic sample of the molecular sieve shows no enantioselectivity).« less

  4. Enantiomerically enriched, polycrystalline molecular sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, Stephen K.; Schmidt, Joel E.; Deem, Michael W.

    Zeolite and zeolite-like molecular sieves are being used in a large number of applications such as adsorption and catalysis. Achievement of the long-standing goal of creating a chiral, polycrystalline molecular sieve with bulk enantioenrichment would enable these materials to perform enantioselective functions. Here, we report the synthesis of enantiomerically enriched samples of a molecular sieve. For this study, enantiopure organic structure directing agents are designed with the assistance of computational methods and used to synthesize enantioenriched, polycrystalline molecular sieve samples of either enantiomer. Computational results correctly predicted which enantiomer is obtained, and enantiomeric enrichment is proven by high-resolution transmission electronmore » microscopy. The enantioenriched and racemic samples of the molecular sieves are tested as adsorbents and heterogeneous catalysts. The enantioenriched molecular sieves show enantioselectivity for the ring opening reaction of epoxides and enantioselective adsorption of 2-butanol (the R enantiomer of the molecular sieve shows opposite and approximately equal enantioselectivity compared with the S enantiomer of the molecular sieve, whereas the racemic sample of the molecular sieve shows no enantioselectivity).« less

  5. Time-Dependent CO[subscript 2] Sorption Hysteresis in a One-Dimensional Microporous Octahedral Molecular Sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinal, Laura; Wong-Ng, Winnie; Kaduk, James A.

    2014-09-24

    The development of sorbents for next-generation CO{sub 2} mitigation technologies will require better understanding of CO{sub 2}/sorbent interactions. Among the sorbents under consideration are shape-selective microporous molecular sieves with hierarchical pore morphologies of reduced dimensionality. We have characterized the non-equilibrium CO{sub 2} sorption of OMS-2, a well-known one-dimensional microporous octahedral molecular sieve with manganese oxide framework. Remarkably, we find that the degree of CO{sub 2} sorption hysteresis increases when the gas/sorbent system is allowed to equilibrate for longer times at each pressure step. Density functional theory calculations indicate a 'gate-keeping' role of the cation in the tunnel, only allowing CO{submore » 2} molecules to enter fully into the tunnel via a highly unstable transient state when CO{sub 2} loadings exceed 0.75 mmol/g. The energy barrier associated with the gate-keeping effect suggests an adsorption mechanism in which kinetic trapping of CO{sub 2} is responsible for the observed hysteretic behavior.« less

  6. Space station molecular sieve development

    NASA Technical Reports Server (NTRS)

    Chang, C.; Rousseau, J.

    1986-01-01

    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

  7. Natural gas treating with molecular sieves. Pt. 2. Regeneration, economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, T.B.

    1972-08-01

    Regeneration considerations are often the key to successful and economical application of molecular sieves for natural gas sweetening. In effect, molecular sieves remove the sulfur compounds from the feed stream and concentrate them into a smaller regeneration gas stream. Because a molecular sieve natural gas sweetener concentrates the hydrogen sulfide from the feed stream in a smaller regeneration gas stream, the sulfur-rich gas must be subsequently treated or disposed of. Molecular sieve sweeteners afford a high degree of flexibility in operating rates. They have a very high turndown ratio limited only by the use of product gas for regeneration, whichmore » can be utilized to full advantage with a control system that provides variable cycle times. Tabular data provide a range of designed conditions for existing molecular sieve natural gas sweeteners. Actual operating experience has shown that, in most cases, the following economical advantages can be realized: (1) investment cost is competitive to alternate forms of gas treating; (2) operating cost of molecular sieve units are generally lower (3) the value of carbon dioxide left in natural gas can lead to a considerable operating credit; and (4) the incremental costs of expansion to an existing plant are normally much less. (24 refs.)« less

  8. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2006-10-17

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  9. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2003-07-22

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  10. Production of carbon molecular sieves from illinois coals. An assessment

    USGS Publications Warehouse

    Lizzio, Anthony A.; Rostam-Abadi, Massoud

    1991-01-01

    Chars were produced from an Illinois No. 2 bituminous coal under various pyrolysis and activation conditions and tested for their molecular sieve properties. The amount of N2 compared to the amount of CO2 adsorbed by each char was used as a preliminary indicator of its molecular sieve properties. This relatively simple, but apparently useful test was confirmed by successfully characterizing the well-known molecular sieve properties of a commercial zeolite and molecular sieve carbon. In addition, coal chars having relatively high surface areas (800-1800 m2/g) were produced and tested for their molecular sieving capabilities. These carbon materials, which have high adsorption capacities and relatively narrow pore size distributions, should be ideal candidates for the commercial production of CMS.

  11. Direct monolithic integration of vertical single crystalline octahedral molecular sieve nanowires on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carretero-Genevrier, Adrian; Oro-Sole, Judith; Gazquez, Jaume

    2013-12-13

    We developed an original strategy to produce vertical epitaxial single crystalline manganese oxide octahedral molecular sieve (OMS) nanowires with tunable pore sizes and compositions on silicon substrates by using a chemical solution deposition approach. The nanowire growth mechanism involves the use of track-etched nanoporous polymer templates combined with the controlled growth of quartz thin films at the silicon surface, which allowed OMS nanowires to stabilize and crystallize. α-quartz thin films were obtained after thermal activated crystallization of the native amorphous silica surface layer assisted by Sr 2+- or Ba 2+-mediated heterogeneous catalysis in the air at 800 °C. These α-quartzmore » thin films work as a selective template for the epitaxial growth of randomly oriented vertical OMS nanowires. Furthermore, the combination of soft chemistry and epitaxial growth opens new opportunities for the effective integration of novel technological functional tunneled complex oxides nanomaterials on Si substrates.« less

  12. Update on N2O4 Molecular Sieving with 3A Material at NASA/KSC

    NASA Technical Reports Server (NTRS)

    Davis, Chuck; Dorn, Claudia

    2000-01-01

    During its operational life, the Shuttle Program has experienced numerous failures in the Nitrogen Tetroxide (N2O4) portion of Reaction Control System (RCS), many of which were attributed to iron-nitrate contamination. Since the mid-1980's, N2O4 has been processed through a molecular sieve at the N2O4 manufacturer's facility which results in an iron content typically less than 0.5 parts-per-million-by-weight (ppmw). In February 1995, a Tiger Team was formed to attempt to resolve the iron nitrate problem. Eighteen specific actions were recommended as possibly reducing system failures. Those recommended actions include additional N2O4 molecular sieving at the Shuttle launch site. Testing at NASA White Sands Test Facility (WSTF) determined an alternative molecular sieve material could also reduce the water-equivalent content (free water and HNO3) and thereby further reduce the natural production of iron nitrate in N2O4 while stored in iron-alloy storage tanks. Since April '96, NASA Kennedy Space Center (KSC) has been processing N2O4 through the alternative molecular sieve material prior to delivery to Shuttle launch pad N2O4 storage tanks. A new, much larger capacity molecular sieve unit has also been used. This paper will evaluate the effectiveness of N2O4 molecular sieving on a large-scale basis and attempt to determine if the resultant lower-iron and lower-water content N2O4 maintains this new purity level in pad storage tanks and shuttle flight systems.

  13. Molecular Sieve Induced Solution Growth of Li2O2 in the Li-O2 Battery with Largely Enhanced Discharge Capacity.

    PubMed

    Yu, Wei; Wang, Huwei; Hu, Jing; Yang, Wei; Qin, Lei; Liu, Ruliang; Li, Baohua; Zhai, Dengyun; Kang, Feiyu

    2018-03-07

    The formation of the insulated film-like discharge products (Li 2 O 2 ) on the surface of the carbon cathode gradually hinders the oxygen reduction reaction (ORR) process, which usually leads to the premature death of the Li-O 2 battery. In this work, by introducing the molecular sieve powder into the ether electrolyte, the Li-O 2 battery exhibits a largely improved discharge capacity (63 times) compared with the one in the absence of this inorganic oxide additive. Meanwhile, XRD and SEM results qualitatively demonstrate the generation of the toroid Li 2 O 2 as the dominated discharge products, and the chemical titration quantifies a higher yield of the Li 2 O 2 with the presence of the molecular sieve additive. The addition of the molecular sieve controls the amount of the free water in the electrolyte, which distinguishes the effect of the molecular sieve and the free water on the discharge process. Hence, a possible mechanism has been proposed that the adsorption of the molecular sieves toward the soluble lithium superoxides improves the disproportionation of the lithium superoxides and consequently enhances the solution-growth of the lithium peroxides in the low donor number ether electrolyte. In general, the application of the molecular sieve triggers further studies concerning the improvement of the discharge performance in the Li-O 2 battery by adding the inorganic additives.

  14. The effects of moisture on molecular sieve oxygen concentrators.

    PubMed

    Ikels, K G; Theis, C F

    1985-01-01

    Molecular sieve oxygen generating systems are receiving extensive laboratory and flight evaluation. Assessment of the molecular system has generally been conducted in the laboratory using clean dry air. In aircraft, however, the molecular sieve generator is supplied with engine bleed air which may not always be totally free of contaminants and water. Recent studies using bed washout technics have shown that the molecular sieve units, with 50% of the beds deactivated with water, still function normally with respect to product gas flow and O2 concentration. By utilizing the technics described in this paper, the moisture content or state of hydration of the molecular sieve can readily be determined.

  15. Manganese oxide octahedral molecular sieves: Synthesis, self-assembly, control over morphologies and tunnel structure

    NASA Astrophysics Data System (ADS)

    Yuan, Jikang

    Direct architecture of complex nanostructures is desirable and still remains a challenge in areas of materials science. Due to their size-, shape-dependent electronic and optical properties, much effort has been made to control morphologies of transition metal oxide nanoparticles and to organize them into complicated 3D structures using templates. In particular, manganese oxides have attracted much attention because they have extensive applications in many chemical processes due to their porous structures, acidity, ionexchange, separation, catalysis, and energy storage in secondary batteries. Using organic templates such as trimethylamine (TMA), manganese oxides have been successfully organized into macroscopic rings and helices via sol-gel processes. However, the methods mentioned above all need further purification, so impurities will be avoided. Subsequent procedures are needed to obtain pure products. Thus facile and template-free methods are highly desired for synthesis of manganese oxide nanaoparticles with complex 3D structures. Manganese oxide octahedral molecular sieves (OMS) are a class of microporous transition metallic oxides with various kinds of tunnel structures that can be synthesized via controlling synthetic conditions such as temperature, concentration, pH, and cations. Manganese oxide molecular sieves are semiconducting mixed-valence catalysts that utilize electron transport to catalyze reactions such as selective oxidation of alcohols. OMS has distinct advantages over aluminosilicate molecular sieve materials for applications in catalysis due to the mixed valence character. The synthesis of manganese oxide OMS materials will be much more complicated than those of main group metallic oxides because of different coordination numbers and oxidation states. OMS-type materials with desirable morphologies formed under mild synthetic conditions are highly desirable. Herein, we report a template-free, low temperature preparation of porous cryptomelane

  16. Development of design information for molecular-sieve type regenerative CO2-removal systems

    NASA Technical Reports Server (NTRS)

    Wright, R. M.; Ruder, J. M.; Dunn, V. B.; Hwang, K. C.

    1973-01-01

    Experimental and analytic studies were conducted with molecular sieve sorbents to provide basic design information, and to develop a system design technique for regenerable CO2-removal systems for manned spacecraft. Single sorbate equilibrium data were obtained over a wide range of conditions for CO2, water, nitrogen, and oxygen on several molecular sieve and silica gel sorbents. The coadsorption of CO2 with water preloads, and with oxygen and nitrogen was experimentally evaluated. Mass-transfer, and some limited heat-transfer performance evaluations were accomplished under representative operating conditions, including the coadsorption of CO2 and water. CO2-removal system performance prediction capability was derived.

  17. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    PubMed

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A 99 percent purity molecular sieve oxygen generator

    NASA Technical Reports Server (NTRS)

    Miller, G. W.

    1991-01-01

    Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.

  19. Copper modified carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1992-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  20. Production of carbon molecular sieves from Illinois coal

    USGS Publications Warehouse

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-01-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for application in the separation of gas molecules that vary in size and shape. A study is in progress at the Illinois State Geological Survey to determine whether Illinois basin coals are suitable feedstocks for the production of CMS and to evaluate their potential application in gas separation processes of commercial importance. Chars were prepared from Illinois coal in a fixed-bed reactor under a wide range of heat treatment and activation conditions. The effects of various coal/char pretreatments, including coal demineralization, preoxidation, char activation, and carbon deposition, on the molecular sieve properties of the chars were also investigated. Chars with commercially significant BET surface areas of 1500 m2/g were produced by chemical activation using potassium hydroxide as the activant. These high-surface-area (HSA) chars had more than twice the adsorption capacity of commercial carbon and zeolite molecular sieves. The kinetics of adsorption of various gases, e.g., N2, O2, CO2, CH4, CO and H2, on these chars at 25??C was measured. The O2/N2 molecular sieve properties of one char prepared without chemical activation were similar to those of a commercial CMS. On the other hand, the O2/N2 selectivity of the HSA char was comparable to that of a commercial activated carbon, i.e., essentially unity. Carbon deposition, using methane as the cracking gas, increased the O2/N2 selectivity of the HSA char, but significantly decreased its adsorption capacity. Several chars showed good potential for efficient CO2/CH4 separation; both a relatively high CO2 adsorption capacity and CO2/CH4 selectivity were achieved. The micropore size distribution of selected chars was estimated by equilibrium adsorption of carbon dioxide, n-butane and iso-butane at O??C. The extent of adsorption of each gas corresponded to the effective surface area contained in pores with diameters greater than 3

  1. An exceptional kinetic quantum sieving separation effect of hydrogen isotopes on commercially available carbon molecular sieves.

    PubMed

    Xing, Yanlong; Cai, Jinjun; Li, Liangjun; Yang, Menglong; Zhao, Xuebo

    2014-08-14

    The quantum sieving effect of H2/D2 at 77 K on commercially available carbon molecular sieves (1.5GN-H and 3KT-172) was studied. An exceptional reverse kinetic quantum effect is observed on 1.5GN-H where D2 diffuses much faster than H2 with a ratio of up to 5.83 at low pressure, and the difference is still very evident even as the pressure increases up to 1 bar. D2 also diffuses faster than H2 on 3KT-172 with a ratio of up to 1.86. However, the reverse kinetic sieving disappears in a polymer-based carbon (PC). The present kinetic quantum sieving effect of H2 and D2 at 77 K on 1.5GN-H is the highest to date.

  2. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... water regain), and a particle size of 10 to 300 microns. (b) The molecular sieve resins are thoroughly washed with potable water prior to their first use in contact with food. (c) Molecular sieve resins are used as the gel filtration media in the final purification of partially delactosed whey. The gel bed...

  3. Copper crystallite in carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1993-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfurfuryl alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  4. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization

    PubMed Central

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-lin; Pei, Ming-Yuan

    2016-01-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves. PMID:27029526

  5. The effects of manganese oxide octahedral molecular sieve chitosan microspheres on sludge bacterial community structures during sewage biological treatment

    PubMed Central

    Pan, Fei; Liu, Wen; Yu, Yang; Yin, Xianze; Wang, Qingrong; Zheng, Ziyan; Wu, Min; Zhao, Dongye; Zhang, Qiu; Lei, Xiaoman; Xia, Dongsheng

    2016-01-01

    This study examines the effects of manganese oxide octahedral molecular sieve chitosan microspheres (Fe3O4@OMS-2@CTS) on anaerobic and aerobic microbial communities during sewage biological treatment. The addition of Fe3O4@OMS-2@CTS (0.25 g/L) resulted in enhanced levels of operational performance for decolourization dye X-3B. However, degradation dye X-3B inhibition in the presence of Fe3O4@OMS-2@CTS was recorded as greater than or equal to 1.00 g/L. Illumina MiSeq high throughput sequencing of the 16 S rRNA gene showed that 108 genera were observed during the anaerobic process, while only 71 genera were observed during the aerobic process. The largest genera (Aequorivita) decreased from 21.14% to 12.65% and the Pseudomonas genera increased from 10.57% to 12.96% according to the abundance in the presence of 0.25 g/L Fe3O4@OMS-2@CTS during the anaerobic process. The largest Gemmatimonas genera decreased from 21.46% to 11.68% and the Isosphaerae genera increased from 5.8% to 11.98% according to the abundance in the presence of 0.25 g/L Fe3O4@OMS-2@CTS during the aerobic process. Moreover, the X-ray photoelectron spectroscopy results show that the valence states of Mn and Fe in Fe3O4@OMS-2@CTS changed during sewage biological treatment. PMID:27869226

  6. The effects of manganese oxide octahedral molecular sieve chitosan microspheres on sludge bacterial community structures during sewage biological treatment.

    PubMed

    Pan, Fei; Liu, Wen; Yu, Yang; Yin, Xianze; Wang, Qingrong; Zheng, Ziyan; Wu, Min; Zhao, Dongye; Zhang, Qiu; Lei, Xiaoman; Xia, Dongsheng

    2016-11-21

    This study examines the effects of manganese oxide octahedral molecular sieve chitosan microspheres (Fe 3 O 4 @OMS-2@CTS) on anaerobic and aerobic microbial communities during sewage biological treatment. The addition of Fe 3 O 4 @OMS-2@CTS (0.25 g/L) resulted in enhanced levels of operational performance for decolourization dye X-3B. However, degradation dye X-3B inhibition in the presence of Fe 3 O 4 @OMS-2@CTS was recorded as greater than or equal to 1.00 g/L. Illumina MiSeq high throughput sequencing of the 16 S rRNA gene showed that 108 genera were observed during the anaerobic process, while only 71 genera were observed during the aerobic process. The largest genera (Aequorivita) decreased from 21.14% to 12.65% and the Pseudomonas genera increased from 10.57% to 12.96% according to the abundance in the presence of 0.25 g/L Fe 3 O 4 @OMS-2@CTS during the anaerobic process. The largest Gemmatimonas genera decreased from 21.46% to 11.68% and the Isosphaerae genera increased from 5.8% to 11.98% according to the abundance in the presence of 0.25 g/L Fe 3 O 4 @OMS-2@CTS during the aerobic process. Moreover, the X-ray photoelectron spectroscopy results show that the valence states of Mn and Fe in Fe 3 O 4 @OMS-2@CTS changed during sewage biological treatment.

  7. OMS-2-Supported Cu Hydroxide-Catalyzed Benzoxazoles Synthesis from Catechols and Amines via Domino Oxidation Process at Room Temperature.

    PubMed

    Meng, Xu; Wang, Yanmin; Wang, Yuanguang; Chen, Baohua; Jing, Zhenqiang; Chen, Gexin; Zhao, Peiqing

    2017-07-07

    In the presence of manganese oxide octahedral molecular sieve (OMS-2) supported copper hydroxide Cu(OH) x /OMS-2, aerobic synthesis of benzoxazoles from catechols and amines via domino oxidation/cyclization at room temperature is achieved. This heterogeneous benzoxazoles synthesis initiated by the efficient oxidation of catechols over Cu(OH) x /OMS-2 tolerates a variety of substrates, especially amines containing sensitive groups (hydroxyl, cyano, amino, vinyl, ethynyl, ester, and even acetyl groups) and heterocycles, which affords functionalized benzoxazoles in good to excellent yields by employing low catalyst loading (2 mol % Cu). The characterization and plausible catalytic mechanism of Cu(OH) x /OMS-2 are described. The notable features of our catalytic protocol such as the use of air as the benign oxidant and EtOH as the solvent, mild conditions, ease of product separation, being scalable up to the gram level, and superior reusability of catalyst (up to 10 cycles) make it more practical and environmentally friendly for organic synthesis.

  8. A new beaded carbon molecular sieve sorbent for {sup 222}Rn monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpitta, S.C.

    1996-05-01

    A new commercially available beaded carbon molecular sieve sorbent, Carboxen-564 (20/45 mesh), was tested and compared to Calgon-PCB (40/80) activated carbon for its adsorptive and desorptive characteristics under controlled conditions of temperature (25{degrees})C and relative humidity (RH). The amount of water vapor adsorbed by the beaded carbon molecular sieve material was typically a factor of 4 lower than the activated carbon, with a concomitant fourfold increase in the {sup 222}Rn adsorption coefficient, K{sub Rn}. The maximum K{sub Rn} value for a thin layer of Carboxen-564, following a 2-d exposure at 40% RH, was 7.2 Bq kg{sup {minus}1} per Bq m{supmore » {minus}3}. The K{sub Rn} for a 1-cm bed, following a 2-d exposure was 5.5 Bq m{sup {minus}3}, a 25% reduction. under dynamic sampling conditions, where 0.4 g of the beaded carbon molecular sieve was contained in a 6 cm x 0.4 cm diameter tube, the maximum K{sub Rn} value was 6.5 Bq m{sup {minus}3} after 2.5 h of sampling at 29% RH when the input flow rate was 4.2 x 10{sup {minus}3} m{sup 3} h{sup {minus}1}. Kinetic studies were also conducted under passive sampling conditions. The data show that the {sup 222}Rn buildup time-constant for a thin layer of the beaded carbon molecular sieve material was 1.3 h, whereas that of a 1 cm bed was 13 h. The {sup 222}Rn desorption time-constants, from gram amounts of the beaded carbon molecular sieve material was 1.3 h, whereas that of a 1 cm bed was 13 h. The {sup 222}Rn desorption time-constants, from gram amounts of the beaded carbon molecular sieve material into air and into a commercially available toluene based liquid scintillation cocktail, were 2 h and 3 h, respectively. Carboxen`s high {sup 222}Rn adsorbing capacity, rapid kinetics, hydrophobicity and physical properties makes it an attractive alternative to other commercially available activated carbon used in passive and dynamic sampling devices. 18 refs., 7 figs.« less

  9. A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements

    NASA Astrophysics Data System (ADS)

    Palonen, V.

    2015-12-01

    We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.

  10. A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements.

    PubMed

    Palonen, V

    2015-12-01

    We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.

  11. Tritiated Water on Molecular Sieve without Hydrogen Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, R.T.

    2001-09-10

    Several molecular sieve beds loaded with tritiated water failed to generate hydrogen gas from tritium self-radiolysis at the expected rate. Preliminary gamma-ray irradiation experiments of 4A molecular sieve with varying amounts of oxygen in the over-gas evoke a quenching mechanism. The data suggest that the gas phase rate constant for the production of hydrogen gas is several orders of magnitude smaller than the third order rate constant for scavenging of radical fragments by oxygen.

  12. Enhanced oxidation of arsenite to arsenate using tunable K+ concentration in the OMS-2 tunnel.

    PubMed

    Hou, Jingtao; Sha, Zhenjie; Hartley, William; Tan, Wenfeng; Wang, Mingxia; Xiong, Juan; Li, Yuanzhi; Ke, Yujie; Long, Yi; Xue, Shengguo

    2018-07-01

    Cryptomelane-type octahedral molecular sieve manganese oxide (OMS-2) possesses high redox potential and has attracted much interest in its application for oxidation arsenite (As(III)) species of arsenic to arsenate (As(V)) to decrease arsenic toxicity and promote total arsenic removal. However, coexisting ions such as As(V) and phosphate are ubiquitous and readily bond to manganese oxide surface, consequently passivating surface active sites of manganese oxide and reducing As(III) oxidation. In this study, we present a novel strategy to significantly promote As(III) oxidation activity of OMS-2 by tuning K + concentration in the tunnel. Batch experimental results reveal that increasing K + concentration in the tunnel of OMS-2 not only considerably improved As(III) oxidation kinetics rate from 0.027 to 0.102 min -1 , but also reduced adverse effect of competitive ion on As(III) oxidation. The origin of K + concentration effect on As(III) oxidation was investigated through As(V) and phosphate adsorption kinetics, detection of Mn 2+ release in solution, surface charge characteristics, and density functional theory (DFT) calculations. Experimental results and theoretical calculations confirm that by increasing K + concentration in the OMS-2 tunnel not only does it improve arsenic adsorption on K + doped OMS-2, but also accelerates two electrons transfers from As(III) to each bonded Mn atom on OMS-2 surface, thus considerably improving As(III) oxidation kinetics rate, which is responsible for counteracting the adverse adsorption effects by coexisting ions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations

    NASA Astrophysics Data System (ADS)

    Liu, Gongping; Chernikova, Valeriya; Liu, Yang; Zhang, Kuang; Belmabkhout, Youssef; Shekhah, Osama; Zhang, Chen; Yi, Shouliang; Eddaoudi, Mohamed; Koros, William J.

    2018-03-01

    Membrane-based separations can improve energy efficiency and reduce the environmental impacts associated with traditional approaches. Nevertheless, many challenges must be overcome to design membranes that can replace conventional gas separation processes. Here, we report on the incorporation of engineered submicrometre-sized metal-organic framework (MOF) crystals into polymers to form hybrid materials that successfully translate the excellent molecular sieving properties of face-centred cubic (fcu)-MOFs into the resultant membranes. We demonstrate, simultaneously, exceptionally enhanced separation performance in hybrid membranes for two challenging and economically important applications: the removal of CO2 and H2S from natural gas and the separation of butane isomers. Notably, the membrane molecular sieving properties demonstrate that the deliberately regulated and contracted MOF pore-aperture size can discriminate between molecular pairs. The improved performance results from precise control of the linkers delimiting the triangular window, which is the sole entrance to the fcu-MOF pore. This rational-design hybrid approach provides a general toolbox for enhancing the transport properties of advanced membranes bearing molecular sieve fillers with sub-nanometre-sized pore-apertures.

  14. A portable molecular-sieve-based CO{sub 2} sampling system for radiocarbon measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palonen, V., E-mail: vesa.palonen@helsinki.fi

    We have developed a field-capable sampling system for the collection of CO{sub 2} samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO{sub 2} concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO{sub 2} selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO{sub 2} from chambers prior to the CO{submore » 2} build-up phase and sampling. In addition, both the CO{sub 2} and H{sub 2}O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO{sub 2} and the determination of CO{sub 2} flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.« less

  15. Tritiated Water on Molecular Sieve: Water Dynamics and Pressure Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, R.T.

    1999-04-23

    The production of fusion energy in a Tokamak using deuterium and tritium requires the safe handling and processing of exhaust gases that contain various amounts of tritium. Initial operation of the Tokamak Fusion Test Reactor (TFTR), Princeton Plasma Physics Laboratory, oxidized exhaust gases for tritium recovery or long-term storage. One of the most efficient and safest ways to contain tritiated water is to sorb it onto a pelletized 4A molecular sieve. A Disposable Molecular Sieve Bed (DMSB) was designed as a pressure vessel because of the possibility of pressure generation from the radiolysis of tritiated water on molecular sieve. Hydrogenmore » production contributes to the complexity of the containers used to transport and store tritiated water, and increases the fabrication costs. Two months after removing a DMSB from the process at TFTR, a pressure in excess of that predicted from self-radiolysis was observed. Interestingly, pressure measurements at longer times (up to 2.5 years) showed less pressure than expected. Pressure was not being generated in the DMSBs at the predicted rate. This was unexpected and prompted an investigation into the mechanism responsible for the anomalous pressure measurements.« less

  16. Application of 3A molecular sieve layer in dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yuan; Wang, Jinzhong, E-mail: jinzhong-wang@hit.edu.cn, E-mail: qingjiang.yu@hit.edu.cn; Yu, Qingjiang, E-mail: jinzhong-wang@hit.edu.cn, E-mail: qingjiang.yu@hit.edu.cn

    2014-08-25

    3A molecular sieve layer was used as dehydration and electronic-insulation layer on the TiO{sub 2} electrode of dye-sensitized solar cells. This layer diminished the effect of water in electrolyte efficiently and enhanced the performance of cells. The conversion efficiency increased from 9.58% to 10.2%. The good moisture resistance of cells was attributed to the three-dimensional interconnecting structure of 3A molecular sieve with strong adsorption of water molecule. While the performance enhancement benefited from the suppression of the charge recombination of electronic-insulation layer and scattering effect of large particles.

  17. Effect of lipase immobilization on resolution of (R, S)-2-octanol in nonaqueous media using modified ultrastable-Y molecular sieve as support.

    PubMed

    Dai, Dazhang; Xia, Liming

    2006-07-01

    The lipase from Penicillium expansum PED-03 (PEL) was immobilized onto modified ultrastable-Y (USY) molecular sieve and the resolution of (R, S)- 2-octanol was carried out in a bioreactor in nonaqueous media by the immobilized lipase. It was found that the conversion rate, enantiomeric excess (ee) value, and enantioselectivity (E) value of the resolution catalyzed by PEL immobilized on modified USY molecular sieve were much higher than those of the reaction catalyzed by free PEL and PEL immobilized on other supports. Immobilized on modified USY molecular sieve, the PEL exhibited obvious activity within a wider pH range and at a much higher temperature and showed a markedly enhanced stability against thermal inactivation, by which the suitable pH of the buffer used for immobilization could be "memorized." The conversion rate of the reaction catalyzed by PEL immobilized on modified USY molecular sieve reached 48.84%, with excellent enantioselectivity (average E value of eight batches >460) in nonaqueous media at "memorial" pH 9.5, 50 degrees C for 24 h, demonstrating a good application potential in the production of optically pure (R, S)-2-octanol.

  18. Oxygen isotopic fractionation of O₂ during adsorption and desorption processes using molecular sieve at low temperatures.

    PubMed

    Ahn, Insu; Kusakabe, Minoru; Lee, Jong Ik

    2014-06-15

    Cryogenic trapping using molecular sieves is commonly used to collect O2 extracted from silicates for (17)O/(16)O and (18)O/(16)O analyses. However, gases which interfere with (17)O/(16)O analysis, notably NF3, are also trapped and their removal is essential for accurate direct measurement of the (17)O/(16)O ratio. It is also necessary to identify and quantify any isotopic fractionation associated with the use of cryogenic trapping using molecular sieves. The oxygen isotopic compositions of O2 before and after desorption from, and adsorption onto, 13X and 5A molecular sieves (MS13X and MS5A) at 0°C, -78°C, -114°C, and -130°C were measured in order to determine the oxygen isotopic fractionation at these temperatures. We also investigated whether isotopic fractionation occurred when O2 gas was transferred sequentially into a second cold finger, also containing molecular sieve. It was confirmed that significant oxygen isotopic fractionation occurs between the gaseous O2 and that adsorbed onto molecular sieve, if desorption and adsorption are incomplete. As the fraction of released or untrapped O2 becomes smaller with decreasing trapping temperature (from 0 to -130°C), the isotopic fractionation becomes larger. Approximately half of the total adsorbed O2 is released from the molecular sieve during desorption at -114°C, which is the temperature recommended for separation from NF3 (retained on the molecular sieve), and this will interfere with (17)O/(16)O measurements. The use of a single cold finger should be avoided, because partial desorption is accompanied by oxygen isotopic fractionation, thereby resulting in inaccurate isotopic data. The use of a dual cold finger arrangement is recommended because, as we have confirmed, the transfer of O2 from the first trap to the second is almost 100%. However, even under these conditions, a small isotopic fractionation (0.18 ± 0.05‰ in δ(17)O values and 0.26 ± 0.06‰ in δ(18)O values) occurred, with O2 in

  19. Chemical synthesis of oriented ferromagnetic LaSr-2 × 4 manganese oxide molecular sieve nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carretero-Genevrier, Adrián; Gazquez, Jaume; Magen, Cesar

    2012-04-25

    Here we report a chemical solution based method using nanoporous track-etched polymer templates for producing long and oriented LaSr-2 × 4 manganese oxide molecular sieve nanowires. Scanning transmission electron microscopy and electron energy loss spectroscopy analyses show that the nanowires are ferromagnetic at room temperature, single crystalline, epitaxially grown and self-aligned.

  20. Oriented molecular sieve membranes by heteroepitaxial growth.

    PubMed

    Jeong, Hae-Kwon; Krohn, John; Sujaoti, Khristina; Tsapatsis, Michael

    2002-11-06

    Heteroepitaxial growth of titanosilicates (ETS-10 and ETS-4) is reported. Using this heteroepitaxial growth, oriented ETS-10/-4 membranes have been fabricated, demonstrating a novel way to achieve preferred orientation of molecular sieve films.

  1. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  2. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  3. CTR Fuel recovery system using regeneration of a molecular sieve drying bed

    DOEpatents

    Folkers, Charles L.

    1981-01-01

    A primary molecular sieve drying bed is regenerated by circulating a hot inert gas through the heated primary bed to desorb water held on the bed. The inert gas plus water vapor is then cooled and passed through an auxiliary molecular sieve bed which adsorbs the water originally desorbed from the primary bed. The main advantage of the regeneration technique is that the partial pressure of water can be reduced to the 10.sup.-9 atm. range. This is significant in certain CTR applications where tritiated water (T.sub.2 O, HTO) must be collected and kept at very low partial pressure.

  4. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    DOE PAGES

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; ...

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K +/Na + molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showedmore » that the GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K +/Na + molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K +/Na + molar ratio increases.« less

  5. 14CO2 processing using an improved and robust molecular sieve cartridge

    NASA Astrophysics Data System (ADS)

    Wotte, Anja; Wordell-Dietrich, Patrick; Wacker, Lukas; Don, Axel; Rethemeyer, Janet

    2017-06-01

    Radiocarbon (14C) analysis on CO2 can provide valuable information on the carbon cycle as different carbon pools differ in their 14C signature. While fresh, biogenic carbon shows atmospheric 14C concentrations, fossil carbon is 14C free. As shown in previous studies, CO2 can be collected for 14C analysis using molecular sieve cartridges (MSC). These devices have previously been made of plastic and glass, which can easily be damaged during transport. We thus constructed a robust MSC suitable for field application under tough conditions or in remote areas, which is entirely made of stainless steel. The new MSC should also be tight over several months to allow long sampling campaigns and transport times, which was proven by a one year storage test. The reliability of the 14CO2 results obtained with the MSC was evaluated by detailed tests of different procedures to clean the molecular sieve (zeolite type 13X) and for the adsorption and desorption of CO2 from the zeolite using a vacuum rig. We show that the 14CO2 results are not affected by any contamination of modern or fossil origin, cross contamination from previous samples, and by carbon isotopic fractionation. In addition, we evaluated the direct CO2 transfer from the MSC into the automatic graphitization equipment AGE with the subsequent 14C AMS analysis as graphite. This semi-automatic approach can be fully automated in the future, which would allow a high sample throughput. We obtained very promising, low blank values between 0.0018 and 0.0028 F14C (equivalent to 50,800 and 47,200 yrs BP), which are within the analytical background and lower than results obtained in previous studies.

  6. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes.

    PubMed

    Peng, Yuan; Li, Yanshuo; Ban, Yujie; Jin, Hua; Jiao, Wenmei; Liu, Xinlei; Yang, Weishen

    2014-12-12

    Layered metal-organic frameworks would be a diverse source of crystalline sheets with nanometer thickness for molecular sieving if they could be exfoliated, but there is a challenge in retaining the morphological and structural integrity. We report the preparation of 1-nanometer-thick sheets with large lateral area and high crystallinity from layered MOFs. They are used as building blocks for ultrathin molecular sieve membranes, which achieve hydrogen gas (H2) permeance of up to several thousand gas permeation units (GPUs) with H2/CO2 selectivity greater than 200. We found an unusual proportional relationship between H2 permeance and H2 selectivity for the membranes, and achieved a simultaneous increase in both permeance and selectivity by suppressing lamellar stacking of the nanosheets. Copyright © 2014, American Association for the Advancement of Science.

  7. Hydrogen isotope separation using molecular sieve of synthetic zeolite 3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotoh, K.; Kimura, K.; Nakamura, Y.

    2008-07-15

    It is known that hydrogen isotope molecules can be adsorbed easily onto synthetic zeolite 4A, 5A, and 13X at the liquid-nitrogen temperature of 77.4 K. We show here that hydrogen and deuterium are not adsorptive onto zeolite 3A at the same temperature. This phenomenon is explained by assuming the molecular sieve function in zeolite-3A-crystalline lattice structure. From a series of pseudo-isobaric experiments, it is also shown that the sieving phenomenon appears in a range above 77.4 K. This behavior is interpreted as resulting on the dependence of sieve's mesh size on temperature, where the sieving effect is considered to appearmore » at a certain temperature. In this interpretation, an isotopic difference between hydrogen and deuterium is suggested to exist in the sieving effect appearance temperatures. This is endorsed in the result of pseudo-isobaric experiments. This temperature deference is very significant because that indicates the possibility of an effective method of hydrogen isotope separation. This possibility is verified through an experimental series of adsorption-desorption with a mixture of H{sub 2} and D{sub 2}, where the gas samples adsorbed through the sieve operated at intentionally selected temperatures are isolated and then analyzed. The result demonstrates remarkable values of isotope separation factor. (authors)« less

  8. Silicotitanate molecular sieve and condensed phases

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2002-01-01

    A new microporous crystalline molecular sieve material having the formula Cs.sub.3 TiSi.sub.3 O.sub.95.cndot.3H.sub.2 O and its hydrothermally condensed phase, Cs.sub.2 TiSi.sub.6 O.sub.15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.

  9. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, Narayan K.; Brinker, Charles Jeffrey

    1998-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  10. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, Narayan K.; Brinker, Charles Jeffrey

    1999-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  11. Modification of 13X Molecular Sieve by Chitosan for Adsorptive Removal of Cadmium from Simulated Wastewater.

    PubMed

    Shi, Yan; Sun, Ken; Huo, Lixin; Li, Xiuxiu; Qi, Xuebin; Li, Zhaohui

    2017-09-19

    Chitosan was used to modify a 13X molecular sieve to improve its cadmium removal capability. After being modified with 2% chitosan-acetate for 2 h at 30 °C, significant uptake of Cd 2+ could be achieved. The uptake of Cd 2+ on the modified 13X molecular sieve followed the Langmuir isotherms with a capacity of 1 mg/g. The kinetics of Cd 2+ removal by modified 13X molecular sieve followed a pseudo second-order reaction, suggesting chemisorption or surface complexation. The Cd 2+ removal with a sorbent dose of 2 g/L from an initial concentration of 100 μg/L reached more than 95% in 90 min. The equilibrium Cd 2+ concentration was <5 μg/L, which meets the requirements of "Standards for Irrigation Water Quality" (GB5084-2005) (10 μg/L) and MCL and MCLG for groundwater and drinking water (5 μg/L) set by United States Environmental Protection Agency.

  12. POROUS ALUMINOPHOSPHATES :From Molecular Sieves to Designed Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Pastore, H. O.; Coluccia, S.; Marchese, L.

    2005-08-01

    This review covers the synthesis, characterization, and physico-chemical properties of microporous and mesoporous aluminophosphates and silicoaluminophosphates molecular sieves. Particular emphasis is given to the materials that have found applications as acid catalysts. We consider the evolution of the synthesis procedures from the first discoveries to the current methodologies and give perspectives for new possible synthesis strategies. Emphasis is given to the use of specially prepared precursors/reactants designed for the use as molecular sieves. Experimental (especially MAS-NMR and FTIR spectroscopy) and theoretical approaches to the description of the Si insertion into the ALPO framework and to the acidic properties of SAPOs and MeAPSOs materials are discussed.

  13. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, N.K.; Brinker, C.J.

    1999-08-10

    A process is described for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film. 11 figs.

  14. Drying R-407C and R-410A refrigerant blends with molecular sieve desiccants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.P.; Tucker, D.M.

    1998-10-01

    The hydrofluorocarbon (HFC) R-32 (CF{sub 2}H{sub 2}) is a component of refrigerant blends in the 407 and 410 series being tested and commercialized for use as replacements for R-502 and the hydrochlorofluorocarbon (HCFC) R-22. The molecular sieve desiccants used with chlorofluorocarbon (CFC) and HCFC mineral oil systems in the past have achieved high water capacity by excluding the refrigerant and adsorbing only the water. Unfortunately, R-32 is adsorbed on commercial type 3A molecular sieve desiccant products. The result of this adsorption is a loss of water capacity when drying R-32 compared to drying R-22 or R-502 and a reduced levelmore » of chemical compatibility of the desiccant with the refrigerant. Some compressor manufacturers are seeking a water concentration as low as 10 mg/kg (ppm[wt]) in the circulating refrigerant of polyolester-lubricated refrigerating equipment using these HFC blends. This paper compares unmodified commercial type 3A molecular sieve desiccants with a recently developed, modified 3A molecular sieve that excludes R-32. The modified 3A has better chemical compatibility with R-32 and high water capacity in liquid R-407C and R-410A. The drying rates of the two desiccants in R-407C and R-410A are similar. Data and test methods are reported on refrigerant adsorption, water capacity, drying rate, and chemical compatibility.« less

  15. Synthesis and characterization of a new microporous cesium silicotitanate (SNL-B) molecular sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NYMAN,MAY D.; GU,B.X.; WANG,L.M.

    2000-03-20

    Ongoing hydrothermal Cs-Ti-Si-O-H{sub 2}O phase investigations has produced several new ternary phases including a novel microporous Cs-silicotitanate molecular sieve, SNL-B with the approximate formula of Cs{sub 3}TiSi{sub 3}O{sub 9.5}{center_dot}3H{sub 2}O. SNL-B is only the second molecular sieve Cs-silicotitanate phase reported to have been synthesized by hydrothermal methods. Crystallites are very small (0.1 x 2 microns) with a blade-like morphology. SNL-B is confirmed to be a 3-dimensional molecular sieve by a variety of characterization techniques (N{sub 2} adsorption, ion exchange, water adsorption/desorption, solid state CP-MAS NMR). SNL-B is able to desorb and adsorb water from its pores while retaining its crystalmore » structure and exchanges Cs cations readily. Additional techniques were used to describe fundamental properties (powder X-ray diffraction, FTIR, {sup 29}Si and {sup 133}/Cs MAS NMR, DTA, SEM/EDS, ion selectivity, and radiation stability). The phase relationships of metastable SNL-B to other hydrothermally synthesized Cs-Ti-Si-O-H{sub 2}O phases are discussed, particularly its relationship to a Cs-silicotitanate analogue of pharmacosiderite, and a novel condensed phase, a polymorph of Cs{sub 2}TiSi{sub 6}O{sub 15}(SNL-A).« less

  16. [Removal Characteristics of Elemental Mercury by Mn-Ce/molecular Sieve].

    PubMed

    Tan, Zeng-qiang; Niu, Guo-ping; Chen, Xiao-wen; An, Zhen

    2015-06-01

    The impregnation method was used to support molecular sieve with active manganese and cerium components to obtain a composite molecular sieve catalyst. The mercury removal performance of the catalyst was studied with a bench-scale setup. XPS analysis was used to characterize the sample before and after the modification in order to study the changes in the active components of the catalyst prepared. The results showed that the catalyst carrying manganese and cerium components had higher oxidation ability of elemental mercury in the temperature range of 300 degrees C - 450 degrees C, especially at 450 degrees C, the oxidation efficiency of elemental mercury was kept above 80%. The catalyst had more functional groups that were conducive to the oxidation of elemental mercury, and the mercury removal mainly depended on the chemical adsorption. The SO2 and NO in flue gas could inhibit the oxidation of elemental mercury to certain extent.

  17. Synthesis of core-shell structured FAU/SBA-15 composite molecular sieves and their performance in catalytic cracking of polystyrene

    NASA Astrophysics Data System (ADS)

    Du, Jinlong; Shi, Chunwei; Wu, Wenyuan; Bian, Xue; Chen, Ping; Cui, Qingzhu; Cui, Zhixuan

    2017-12-01

    Composite molecular sieves, FAU/SBA-15, having core-shell structure were synthesized. The synthesized composite sieves were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), pyrolysis fourier transform infrared (Py-FTIR) spectroscopy, temperature programmed desorption spectra (NH3-TPD), UV Raman spectroscopy, nuclear magnetic resonance (NMR) and other techniques. XRD, SEM, TEM, N2 adsorption-desorption, mass spectrometry, NMR and EDS results showed that the composite molecular sieve contained two pore channels. Py-FTIR results showed that the addition of HY molecular sieves improved the acidity of the composite zeolite. The crystallization mechanism during the growth of FAU/SBA-15 shell was deduced from the influence of crystallization time on the synthesis of FAU/SBA-15 core-shell structured composite molecular sieve. HY dissociated partially in H2SO4 solution, and consisted of secondary structural units. This framework structure was more stable than its presence in the isolated form on the same ring or in the absence of Al. Thus it played a guiding role and connected with SBA-15 closely through the Si-O bond. This resulted in the gradual covering of the exterior surface of FAU phase by SBA-15 molecular sieves. The presence of SBA-15 restricted the formation of the other high mass components and increased the selectivity towards ethylbenzene.

  18. Synthesis of core–shell structured FAU/SBA-15 composite molecular sieves and their performance in catalytic cracking of polystyrene

    PubMed Central

    Du, Jinlong; Shi, Chunwei; Wu, Wenyuan; Bian, Xue; Chen, Ping; Cui, Qingzhu; Cui, Zhixuan

    2017-01-01

    Abstract Composite molecular sieves, FAU/SBA-15, having core-shell structure were synthesized. The synthesized composite sieves were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), pyrolysis fourier transform infrared (Py-FTIR) spectroscopy, temperature programmed desorption spectra (NH3-TPD), UV Raman spectroscopy, nuclear magnetic resonance (NMR) and other techniques. XRD, SEM, TEM, N2 adsorption-desorption, mass spectrometry, NMR and EDS results showed that the composite molecular sieve contained two pore channels. Py-FTIR results showed that the addition of HY molecular sieves improved the acidity of the composite zeolite. The crystallization mechanism during the growth of FAU/SBA-15 shell was deduced from the influence of crystallization time on the synthesis of FAU/SBA-15 core-shell structured composite molecular sieve. HY dissociated partially in H2SO4 solution, and consisted of secondary structural units. This framework structure was more stable than its presence in the isolated form on the same ring or in the absence of Al. Thus it played a guiding role and connected with SBA-15 closely through the Si-O bond. This resulted in the gradual covering of the exterior surface of FAU phase by SBA-15 molecular sieves. The presence of SBA-15 restricted the formation of the other high mass components and increased the selectivity towards ethylbenzene. PMID:29383044

  19. Reemission of Tritium from Tritium-Sorbed Molecular Sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao Xiaohua; Cheng Guijun

    2005-07-15

    In handling of tritium-containing waste gas, tritium is oxidized to tritiated water and immobilized in a molecular sieve (MS), which is then disposed of as solid radioactive waste. So reemission of tritium from tritium-sorbed molecular sieve is concerned for tritium waste disposal. 4A, 5A and 10X MS were chosen for the tritium reemission test. The tritium-containing MS samples with specific activity of 3 GBq/g were prepared and the reemission coefficients of tritium from the three types of MS were determined. The effects of storage conditions of the MS on the reemission of tritium were examined. The results show that duringmore » two months of storage period, the reemission coefficients of 4A, 5A and 10X MS are (1.9{approx}5.5) x 10{sup -6} d{sup -1}.g{sup -1}. Among them, 5A MS has the largest reemission coefficient and 4A MS the smallest. The tritium released from tritium-sorbed MS is mostly in the form of HTO, only less than 1.2% of the tritium is in the form of HT. The atmosphere for storing tritium-sorbed MS has rather effect on reemission of tritium. The reemission coefficient in argon is lower than that in Ar+2%H{sub 2}.« less

  20. Molecular mobility of nematic E7 confined to molecular sieves with a low filling degree.

    PubMed

    Brás, A R; Frunza, S; Guerreiro, L; Fonseca, I M; Corma, A; Frunza, L; Dionísio, M; Schönhals, A

    2010-06-14

    The nematic liquid crystalline mixture E7 was confined with similar filling degrees to molecular sieves with constant composition but different pore diameters (from 2.8 to 6.8 nm). Fourier transform infrared analysis proved that the E7 molecules interact via the cyanogroup with the pore walls of the molecular sieves. The molecular dynamics of the system was investigated by broadband dielectric spectroscopy (10(-2)-10(9) Hz) covering a wide temperature range of approximately 200 K from temperatures well above the isotropic-nematic transition down to the glass transition of bulk E7. A variety of relaxation processes is observed including two modes that are located close to the bulk behavior in its temperature dependence. For all confined samples, two relaxation processes, at frequencies lower than the processes observed for the bulk, were detected. At lower temperatures, their relaxation rates have different temperature dependencies whereas at higher temperatures, they seem to collapse into one chart. The temperature dependence of the slowest process (S-process) obeys the Vogel-Fulcher-Tammann law indicating a glassy dynamics of the E7 molecules anchored to the pore surface. The pore size dependence of both the Vogel temperature and fragility revealed a steplike transition around 4 nm pore size, which indicates a transition from a strong to a fragile behavior. The process with a relaxation rate in between the bulklike and the S-process (I-process) shows no dependence on the pore size. The agreement of the I-process with the behavior of a 5CB surface layer adsorbed on nonporous silica leads to the assignment of E7 molecules anchored at the outer surface of the microcrystals of the molecular sieves.

  1. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... gram of dry resin (expressed in terms of water regain), and a particle size of 10 to 300 microns. (b) The molecular sieve resins are thoroughly washed with potable water prior to their first use in... purification of partially delactosed whey. The gel bed shall be maintained in a sanitary manner in accordance...

  2. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... gram of dry resin (expressed in terms of water regain), and a particle size of 10 to 300 microns. (b) The molecular sieve resins are thoroughly washed with potable water prior to their first use in... purification of partially delactosed whey. The gel bed shall be maintained in a sanitary manner in accordance...

  3. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... gram of dry resin (expressed in terms of water regain), and a particle size of 10 to 300 microns. (b) The molecular sieve resins are thoroughly washed with potable water prior to their first use in... purification of partially delactosed whey. The gel bed shall be maintained in a sanitary manner in accordance...

  4. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... gram of dry resin (expressed in terms of water regain), and a particle size of 10 to 300 microns. (b) The molecular sieve resins are thoroughly washed with potable water prior to their first use in... purification of partially delactosed whey. The gel bed shall be maintained in a sanitary manner in accordance...

  5. Synthesis of mesoporous SAPO-34 molecular sieves and their applications in dehydration of butanols and ethanol.

    PubMed

    Jun, Jong Won; Jeon, Jaewoo; Kim, Chul-Ung; Jeong, Kwang-Eun; Jeong, Soon-Yong; Jhung, Sung Hwa

    2013-04-01

    Microporous SAPO-34 molecular sieves were hydrothermally synthesized with microwave irradiation in the presence of tetraethylammonium hydroxide (TEAOH) as a template. SAPO-34 molecular sieves with mesoporosity were also prepared in the presence of carbon black as a hard template. By increasing the content of the carbon black template in the synthesis, the mesopore volume increased. Dehydration of alcohols (butanols and ethanol) was carried out with the synthesized SAPO-34 molecular sieves, and the lifetime of the catalysts for the dehydration reaction increased as the mesoporosity increased. Moreover, the performance of the microporous catalyst synthesized with microwave was better than that of the catalyst obtained with conventional electric heating. The relative performance of the catalytic dehydration may be explained by the mesoporosity and the crystal size. Therefore, it may be concluded that small-sized SAPO-34 molecular sieves with high mesoporosity can be produced efficiently with microwave irradiation in the presence of carbon black template, and the molecular sieves are effective in the stable dehydration of alcohols.

  6. Effect of soil sieving on respiration induced by low-molecular-weight substrates

    NASA Astrophysics Data System (ADS)

    Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel

    2014-03-01

    The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.

  7. Molecular sieves control contamination and and insulate in thermal regenerators - A concept

    NASA Technical Reports Server (NTRS)

    Gasser, M. G.

    1970-01-01

    Zeolitic molecular sieves prolong the lives of cryogenic engines by preventing contamination of the thermal regenerators on the cold ends of closed-cycle engines. Sieves also serve as thermal insulators by preventing conduction of heat along regenerators through contiguous disks of mesh.

  8. Design Through Simulation of a Molecular Sieve Column for Treatment of MON-3

    NASA Technical Reports Server (NTRS)

    Swartz, A. Ben; Wilson, D. B.

    1999-01-01

    The presence of water in propellant-grade MON-3 is a concern in the Aerospace Industry. NASA Johnson Space Center (JSC), White Sands Test Facility (WSTF) Propulsion Department has evaluated many types of molecular sieves for control of iron, the corrosion product of water in Mixed Oxides of Nitrogen (MON-3). In 1995, WSTF initiated laboratory and pilot-scale testing of molecular sieve type 3A for removal of water and iron. These tests showed sufficient promise that a series of continuous recycle tests were conducted at WSTF. Periodic samples of the circulating MON-3 solution were analyzed for water (wt %) and iron (ppm, wt). This test column was modeled as a series of transfer units; i. e., each unit represented the height equivalent of a theoretical plate. Such a model assumes there is equilibrium between the adsorbent material and the effluent stream from the unit. Operational and design parameters were derived based on the simulation results. These parameters were used to predict the design characteristics of a proposed molecular sieve column for removal of water and iron from MON-3 at the NASA Kennedy Space Center (KSC). In addition, these parameters were used to simulate a small, single-pass operation column at KSC currently used for treating MON-3. The results of this work indicated that molecular sieve type 3A in 1/16 in. diameter pellets, in a column 2.5 ft. in diameter, 18 ft. in height, and operated at 25 gpm is adequate for the required removal of water and iron from MON-3.

  9. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    PubMed

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  10. Reactivity of some halogenated alkanes of 13X molecular sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fevrier, D.; Vernet, J.L.; Mignon, P.

    1977-12-01

    The decomposition and transhalogenation products of trichlorofluoromethane (F 11), dichlorodifluoromethane (F-12), dichlorofluoromethane (F-21), chlorodifluoromethane (F-22), trichlorotrifluoroethane (F-113), and bromotrifluoromethane (F-13B1) in air on 13X molecular sieve at 150/sup o/ and 320/sup o/C were analyzed. All compounds decomposed to some extent except F-13B1 and F-113 at 150/sup o/C. The decomposition product was carbon dioxide except from F-21 and F-22, which decomposed more readily than the other Freons because of their hydrogen atoms and which yielded carbon monoxide. The sieves were not regenerated by sweeping with water in nitrogen, although adsorbed halogens were displaced and formed strong acids. Halogenated hydracids formed alongmore » with carbon dioxide by reaction with constitutional water of the sieves are probably responsible for the destruction of the sieve. Diagram, graphs, tables, and 17 references.« less

  11. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation.

    PubMed

    Wang, Jing; Zhu, Junyong; Zhang, Yatao; Liu, Jindun; Van der Bruggen, Bart

    2017-03-02

    The precise and rapid separation of different molecules from aqueous, organic solutions and gas mixtures is critical to many technologies in the context of resource-saving and sustainable development. The strength of membrane-based technologies is well recognized and they are extensively applied as cost-effective, highly efficient separation techniques. Currently, empirical-based approaches, lacking an accurate nanoscale control, are used to prepare the most advanced membranes. In contrast, nanoscale control renders the membrane molecular specificity (sub-2 nm) necessary for efficient and rapid molecular separation. Therefore, as a growing trend in membrane technology, the field of nanoscale tailor-made membranes is highlighted in this review. An in-depth analysis of the latest advances in tailor-made membranes for precise and rapid molecule sieving is given, along with an outlook to future perspectives of such membranes. Special attention is paid to the established processing strategies, as well as the application of molecular dynamics (MD) simulation in nanoporous membrane design. This review will provide useful guidelines for future research in the development of nanoscale tailor-made membranes with a precise and rapid molecular sieve separation property.

  12. An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity.

    PubMed

    Li, Bin; Cui, Xili; O'Nolan, Daniel; Wen, Hui-Min; Jiang, Mengdie; Krishna, Rajamani; Wu, Hui; Lin, Rui-Biao; Chen, Yu-Sheng; Yuan, Daqiang; Xing, Huabin; Zhou, Wei; Ren, Qilong; Qian, Guodong; Zaworotko, Michael J; Chen, Banglin

    2017-12-01

    Realization of ideal molecular sieves, in which the larger gas molecules are completely blocked without sacrificing high adsorption capacities of the preferred smaller gas molecules, can significantly reduce energy costs for gas separation and purification and thus facilitate a possible technological transformation from the traditional energy-intensive cryogenic distillation to the energy-efficient, adsorbent-based separation and purification in the future. Although extensive research endeavors are pursued to target ideal molecular sieves among diverse porous materials, over the past several decades, ideal molecular sieves for the separation and purification of light hydrocarbons are rarely realized. Herein, an ideal porous material, SIFSIX-14-Cu-i (also termed as UTSA-200), is reported with ultrafine tuning of pore size (3.4 Å) to effectively block ethylene (C 2 H 4 ) molecules but to take up a record-high amount of acetylene (C 2 H 2 , 58 cm 3 cm -3 under 0.01 bar and 298 K). The material therefore sets up new benchmarks for both the adsorption capacity and selectivity, and thus provides a record purification capacity for the removal of trace C 2 H 2 from C 2 H 4 with 1.18 mmol g -1 C 2 H 2 uptake capacity from a 1/99 C 2 H 2 /C 2 H 4 mixture to produce 99.9999% pure C 2 H 4 (much higher than the acceptable purity of 99.996% for polymer-grade C 2 H 4 ), as demonstrated by experimental breakthrough curves. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Virtual Design of a Four-Bed Molecular Sieve for Exploration

    NASA Technical Reports Server (NTRS)

    Giesy, T. J.; Coker, R. F.; O'Connor, B. F.; Knox, J. C.

    2017-01-01

    Aboard the International Space Station, CO2 is removed from the cabin atmosphere by a four-bed molecular sieve (4BMS) process called the Carbon Dioxide Removal Assembly (CDRA).1 This 4BMS process operates by passing the CO2-laden air through a desiccant bed to remove any humidity and then passing the dried air through a sorbent bed to remove the CO2. While one pair of beds is in use, the other pair is thermally regenerated to allow for continuous CO2 removal.

  14. Octahedral molecular sieve sorbents and catalysts

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2010-04-20

    Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

  15. A Pervaporation Study of Ammonia Solutions Using Molecular Sieve Silica Membranes

    PubMed Central

    Yang, Xing; Fraser, Thomas; Myat, Darli; Smart, Simon; Zhang, Jianhua; Diniz da Costa, João C.; Liubinas, Audra; Duke, Mikel

    2014-01-01

    An innovative concept is proposed to recover ammonia from industrial wastewater using a molecular sieve silica membrane in pervaporation (PV), benchmarked against vacuum membrane distillation (VMD). Cobalt and iron doped molecular sieve silica-based ceramic membranes were evaluated based on the ammonia concentration factor downstream and long-term performance. A modified low-temperature membrane evaluation system was utilized, featuring the ability to capture and measure ammonia in the permeate. It was found that the silica membrane with confirmed molecular sieving features had higher water selectivity over ammonia. This was due to a size selectivity mechanism that favoured water, but blocked ammonia. However, a cobalt doped silica membrane previously treated with high temperature water solutions demonstrated extraordinary preference towards ammonia by achieving up to a 50,000 mg/L ammonia concentration (a reusable concentration level) measured in the permeate when fed with 800 mg/L of ammonia solution. This exceeded the concentration factor expected by the benchmark VMD process by four-fold, suspected to be due to the competitive adsorption of ammonia over water into the silica structure with pores now large enough to accommodate ammonia. However, this membrane showed a gradual decline in selectivity, suspected to be due to the degradation of the silica material/pore structure after several hours of operation. PMID:24957120

  16. Standard Isotherm Fit Information for Dry CO2 on Sorbents for 4-Bed Molecular Sieve

    NASA Technical Reports Server (NTRS)

    Cmarik, G. E.; Son, K. N.; Knox, J. C.

    2017-01-01

    Onboard the ISS, one of the systems tasked with removal of metabolic carbon dioxide (CO2) is a 4-bed molecular sieve (4BMS) system. In order to enable a 4-person mission to succeed, systems for removal of metabolic CO2 must reliably operate for several years while minimizing power, mass, and volume requirements. This minimization can be achieved through system redesign and/or changes to the separation material(s). A material screening process has identified the most reliable sorbent materials for the next 4BMS. Sorbent characterization will provide the information necessary to guide system design by providing inputs for computer simulations.

  17. Molecular sieve catalysts for the regioselective and shape- selective oxyfunctionalization of alkanes in air.

    PubMed

    Thomas, J M; Raja, R; Sankar, G; Bell, R G

    2001-03-01

    Framework-substituted, molecular-sieve, aluminophosphate, microporous solids are the centerpieces of a new approach to the aerobic oxyfunctionalization of saturated hydrocarbons. The sieves, and the few percent of the Al(III) sites within them that are replaced by catalytically active, transition-metal ions in high oxidation states (Co(III), Mn(III), Fe(III)), are designed so as to allow free access of oxygen in to and out of the interior of these high-area solids. Certain metal-substituted, molecular sieves permit only end-on approach of linear alkanes to the active centers, thereby favoring enhanced reactivity of the terminal methyl groups. By optimizing cage dimension, with respect to that of the hydrocarbon reactant, as well as adjusting the average separation of active centers within a cage, and by choosing the sieve with the appropriate pore aperture, highly selective conversions such as n-hexane to hexanoic acid or adipic acid, and cyclohexane to cyclohexanol, cyclohexanone, or adipic acid, may be effected at low temperature, heterogeneously in air.

  18. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    NASA Astrophysics Data System (ADS)

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  19. In-situ preparation of functionalized molecular sieve material and a methodology to remove template.

    PubMed

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-10

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, (13)C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  20. In Situ Electrochemical Synthesis of Oriented and Defect-Free AEL Molecular-Sieve Films Using Ionic Liquids.

    PubMed

    Yu, Tongwen; Chu, Wenling; Cai, Rui; Liu, Yanchun; Yang, Weishen

    2015-10-26

    Simply preparing oriented and defect-free molecular-sieve films have been a long-standing challenge both in academia and industry. Most of the early works focus on the careful and multiple controls of the seeds layer or synthesis conditions. Herein, we report a one-step in situ electrochemical ionothermal method that combines a controllable electric field with ionic liquids. We demonstrate that an in-plane oriented and defect-free AEL (one molecular-sieve framework type) molecular-sieve film was obtained using an Al electrode as the Al source. The excellent corrosion-resistant performance of the film makes this technology promising in multiple applications, such as anti-corrosion coatings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    NASA Astrophysics Data System (ADS)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2015-03-01

    In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption-desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Qmax) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Qmax of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation.

  2. Selective molecular sieving through porous graphene.

    PubMed

    Koenig, Steven P; Wang, Luda; Pellegrino, John; Bunch, J Scott

    2012-11-01

    Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size-selective membranes because of its atomic thickness, high mechanical strength, relative inertness and impermeability to all standard gases. However, pores that can exclude larger molecules but allow smaller molecules to pass through would have to be introduced into the material. Here, we show that ultraviolet-induced oxidative etching can create pores in micrometre-sized graphene membranes, and the resulting membranes can be used as molecular sieves. A pressurized blister test and mechanical resonance are used to measure the transport of a range of gases (H(2), CO(2), Ar, N(2), CH(4) and SF(6)) through the pores. The experimentally measured leak rate, separation factors and Raman spectrum agree well with models based on effusion through a small number of ångstrom-sized pores.

  3. Spectroscopic studies of Fe(III) ion-exchanged ETS-10 and ETAS-10 molecular sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommerfeld, D.A.; Ellis, W.R. Jr.; Eyring, E.M.

    1992-11-26

    Two new titanium silicate molecular sieves, designated ETS-10 and ETAS-10, have been ion-exchanged with Fe(III). Both products exhibit prominent EPR signals, at g = 6.0 and 4.3, that are assigned to populations of ferric iron on the surface and in the interior cavities, respectively, of the molecular sieve microcrystals. Corollary XPS measurements on these samples indicate that a substantial fraction of the surface iron is present as Fe(II). Chemical modification procedures have been explored in an effort to produce ion-exchanged materials containing no exterior iron. Acid treatment (pH 1.0) proved to be an effective means of achieving this goal inmore » the case of ETS-10-based materials. ETAS-10-based samples do not retain their crystallinity under these conditions. 35 refs., 4 figs., 2 tabs.« less

  4. A systematic investigation of the preparation and properties of composite carbon molecular sieves containing inorganic oxides

    NASA Technical Reports Server (NTRS)

    Foley, Henry C.

    1990-01-01

    The objective of this research is to define the methodology for the preparation and characterization of new carbon-based molecular sieves with composite structures. Carbon molecular sieves have found increasing application in the field of separation and purification of gases. These materials are relatively easy to prepare and their surfaces can be modified to some extent. It is expected that by combining inorganic oxides with the carbonaceous structure one can begin to design composite materials with a wider range of possible chemical and physical properties. In this way, the IOM-CMS materials may confer distinct advantages over pure carbon molecular sieves, not just for separation, but also for catalysis. The most recent results in the design and characterization of these IOM-CMS materials are reviewed and summarized. Directions for further research are also presented.

  5. Infrared study of CO{sub 2} sorption over 'molecular basket' sorbent consisting of polyethylenimine-modified mesoporous molecular sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.X.; Schwartz, V.; Clark, J.C.

    2009-04-15

    An infrared study has been conducted on CO{sub 2} sorption into nanoporous CO{sub 2} 'molecular basket' sorbents prepared by loading polyethylenimine (PEI) into mesoporous molecular sieve SBA-15. IR results from DRIFTS showed that a part of loaded PEI is anchored on the surface of SBA-15 through the interaction between amine groups and isolated surface silanol groups. Raising the temperature from 25 to 75{sup o}C increased the molecular flexibility of PEI loaded in the mesopore channels, which may partly contribute to the increase of CO{sub 2} sorption capacity at higher temperatures. CO{sub 2} sorption/desorption behavior studied by in situ transmission FTIRmore » showed that CO{sub 2} is sorbed on amine sites through the formation of alkylammonium carbamates and absorbed into the multiple layers of PEI located in mesopores of SBA-15. A new observation by in situ IR is that two broad IR bands emerged at 2450 and 2160 cm{sup -1} with CO{sub 2} flowing over PEI(50)/SBA-15, which could be attributed to chemically sorbed CO{sub 2} species on PEI molecules inside the mesopores of SBA-15. The intensities of these two bands also increased with increasing CO{sub 2} exposure time and with raising CO{sub 2} sorption temperature. By comparison of the CO{sub 2} sorption rate at 25 and 75{sup o}C in terms of differential IR intensities, it was found that CO{sub 2} sorption over molecular basket sorbent includes two rate regimes which suggest two distinct steps: rapid sorption on exposed outer surface layers of PEI (controlled by sorption affinity or thermodynamics) and the diffusion and sorption inside the bulk of multiple layers of PEI (controlled by diffusion). The sorption of CO{sub 2} is reversible at 75{sup o}C.« less

  6. Infrared Study of CO2 Sorption over ?Molecular Basket? Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overbury, Steven; Wang, Xiaoxing; Clark, Jason

    2009-01-01

    An infrared study has been conducted on CO{sub 2} sorption into nanoporous CO{sub 2} 'molecular basket' sorbents prepared by loading polyethylenimine (PEI) into mesoporous molecular sieve SBA-15. IR results from DRIFTS showed that a part of loaded PEI is anchored on the surface of SBA-15 through the interaction between amine groups and isolated surface silanol groups. Raising the temperature from 25 to 75 C increased the molecular flexibility of PEI loaded in the mesopore channels, which may partly contribute to the increase of CO{sub 2} sorption capacity at higher temperatures. CO{sub 2} sorption/desorption behavior studied by in situ transmission FTIRmore » showed that CO{sub 2} is sorbed on amine sites through the formation of alkylammonium carbamates and absorbed into the multiple layers of PEI located in mesopores of SBA-15. A new observation by in situ IR is that two broad IR bands emerged at 2450 and 2160 cm{sup -1} with CO{sub 2} flowing over PEI(50)/SBA-15, which could be attributed to chemically sorbed CO{sub 2} species on PEI molecules inside the mesopores of SBA-15. The intensities of these two bands also increased with increasing CO{sub 2} exposure time and with raising CO{sub 2} sorption temperature. By comparison of the CO{sub 2} sorption rate at 25 and 75 C in terms of differential IR intensities, it was found that CO{sub 2} sorption over molecular basket sorbent includes two rate regimes which suggest two distinct steps: rapid sorption on exposed outer surface layers of PEI (controlled by sorption affinity or thermodynamics) and the diffusion and sorption inside the bulk of multiple layers of PEI (controlled by diffusion). The sorption of CO{sub 2} is reversible at 75 C. Comparative IR examination of the CO{sub 2} sorption/desorption spectra on dry and prewetted PEI/SBA-15 sorbent revealed that presorbed water does not significantly affect the CO{sub 2}-amine interaction patterns.« less

  7. Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite.

    PubMed

    Liu, Xinpeng; Wang, Rui

    2017-03-15

    In this work, 4A molecular sieve zeolite was synthesized from attapulgite (ATP) in different conditions and was applied initially for H 2 S removal. The sorbent was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra and N 2 adsorption/desorption. The effects of the synthesis condition and adsorption temperature were studied by dynamic adsorption experiment. The optimal adsorption temperature is 50°C. The H 2 S adsorption results have showed that the optimal synthesis conditions are as follows: the ratio of silicon to aluminum and ratio of sodium to silicon are both 1.5, the ratio of water to sodium is 30, crystallization temperature and crystallization time is 90°C, 4h, respectively. The breakthrough and saturation sulfur sorption capacities of zeolite synthesized under optimum conditions are up to nearly 10 and 15mg/g-sorbent, respectively, and the H 2 S removal rate is nearly 100%. The adsorption kinetics nonlinear fitting results show that the adsorption system follows Bingham model. These results indicate that 4A molecular sieve zeolite synthesized from attapulgite can be used for H 2 S removal promisingly. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Molecular sieving using nanofilters: past, present and future.

    PubMed

    Han, Jongyoon; Fu, Jianping; Schoch, Reto B

    2008-01-01

    Filtration of molecules by nanometer-sized structures is ubiquitous in our everyday life, but our understanding of such molecular filtration processes is far less than desired. Until recently, one of the main reasons was the lack of experimental methods that can help provide detailed, microscopic pictures of molecule-nanostructure interactions. Several innovations in experimental methods, such as nuclear track-etched membranes developed in the 70s, and more recent development of nanofluidic molecular filters, played pivotal roles in advancing our understanding. With the ability to make truly molecular-scale filters and pores with well-defined sizes, shapes, and surface properties, now we are well positioned to engineer better functionality in molecular sieving, separation and other membrane applications. Reviewing past theoretical developments (often scattered across different fields) and connecting them to the most recent advances in the field would be essential to get a full, unified view on this important engineering question.

  9. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A.

    PubMed

    Aguado, Sonia; Bergeret, Gérard; Daniel, Cecile; Farrusseng, David

    2012-09-12

    Absolute ethylene/ethane separation is achieved by ethane exclusion on silver-exchanged zeolite A adsorbent. This molecular sieving type separation is attributed to the pore size of the adsorbent, which falls between ethylene and ethane kinetic diameters.

  10. A controllable molecular sieve for Na+ and K+ ions.

    PubMed

    Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui

    2010-02-17

    The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems. Molecular sieves for ions can be achieved by steric and electrical effects. However, the radii of Na(+) and K(+) are quite similar; they both carry a positive charge, making them difficult to separate. Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K(+) or Na(+) across the cell membrane. However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e.g., KcsA). Our molecular dynamics simulations show that the remarkable selectivity is attributed to the hydration structure of Na(+) or K(+) confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms. The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water.

  11. Joint adsorption of light hydrogen by CuO and 5A molecular sieves

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhan, Y.; Wang, W.; Wang, R. S.

    2018-03-01

    H2 is the primary cause of the deteriorating vacuum degree of high-vacuum multilayer insulation tank (HVMLIT). At present, the precious metal PdO is used to adsorb H2 and maintain the high vacuum of HVMLIT. In this study, CA, a compound hydrogen adsorbent integrated with the cheap metal CuO and 5A molecular sieves, is adopted to jointly adsorb light hydrogen in HVMLIT. This work also investigates the adsorption characteristics and mechanisms of CA.

  12. Formation of hydroxyl-functionalized stilbenoid molecular sieves at the liquid/solid interface on top of a 1-decanol monolayer.

    PubMed

    Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice

    2014-10-31

    Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.

  13. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.

    1998-01-01

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.

  14. Study on the pyrolysis of cellulose for bio-oil with mesoporous molecular sieve catalysts.

    PubMed

    Yu, Feng-wen; Ji, Deng-xiang; Nie, Yong; Luo, Yao; Huang, Cheng-jie; Ji, Jian-bing

    2012-09-01

    Mesoporous materials possess a hexagonal array of uniform mesopores, high surface areas, and moderate acidity. They are one of the important catalysts in the field of catalytic pyrolysis. In this paper, mesoporous materials of Al-MCM-41, La-Al-MCM-41, and Ce-Al-MCM-41 were synthesized, characterized, and tested as catalysts in the cellulose catalytic pyrolysis process using a fixed bed pyrolysis reactor. The results showed that mesoporous materials exhibited a strong influence on the pyrolytic behavior of cellulose. The presence of these mesoporous molecular sieve catalysts could vary the yield of products, which was that they could decrease the yield of liquid and char and increase the yield of gas product, and could promote high-carbon chain compounds to break into low-carbon chain compounds. Mesoporous molecular sieve catalysts were benefit to the reaction of dehydrogenation and deoxidation and the breakdown of carbon chain. Further, La-Al-MCM-41 and Ce-Al-MCM-41 catalysts can produce more toluene and 2-methoxy-phenol, as compared to the non-catalytic runs.

  15. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    PubMed

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out. © The Author(s) 2015.

  16. Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation.

    PubMed

    Song, Zhuonan; Qiu, Fen; Zaia, Edmond W; Wang, Zhongying; Kunz, Martin; Guo, Jinghua; Brady, Michael; Mi, Baoxia; Urban, Jeffrey J

    2017-11-08

    A novel core/shell porous crystalline structure was prepared using a large pore metal organic framework (MOF, UiO-66-NH 2 , pore size, ∼ 0.6 nm) as core surrounded by a small pore zeolitic imidazolate framework (ZIF, ZIF-8, pore size, ∼ 0.4 nm) through a layer-by-layer deposition method and subsequently used as an engineered filler to construct hybrid polysulfone (PSF) membranes for CO 2 capture. Compared to traditional fillers utilizing only one type of porous material with rigid channels (either large or small), our custom designed core/shell fillers possess clear advantages via pore engineering: the large internal channels of the UiO-66-NH 2 MOFs create molecular highways to accelerate molecular transport through the membrane, while the thin shells with small pores (ZIF-8) or even smaller pores generated at the interface by the imperfect registry between the overlapping pores of ZIF and MOF enhance molecular sieving thus serving to distinguish slightly larger N 2 molecules (kinetic diameter, 0.364 nm) from smaller CO 2 molecules (kinetic diameter, 0.33 nm). The resultant core/shell ZIF@MOF and as-prepared hybrid PSF membranes were characterized by transmission electron microscopy, X-ray diffraction, wide-angle X-ray scattering, scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, and contact angle tests. The dependence of the separation performance of the membranes on the MOF/ZIF ratio was also studied by varying the number of layers of ZIF coatings. The integrated PSF-ZIF@MOF hybrid membrane (40 wt % loading) with optimized ZIF coating cycles showed improved hydrophobicity and excellent CO 2 separation performance by simultaneously increasing CO 2 permeability (CO 2 permeability of 45.2 barrer, 710% higher than PSF membrane) and CO 2 /N 2 selectivity (CO 2 /N 2 selectivity of 39, 50% higher than PSF membrane), which is superior to most reported hybrid PSF membranes. The strategy of using

  17. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, K.A.; Burchell, T.D.; Judkins, R.R.

    1998-10-27

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.

  18. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes

    NASA Astrophysics Data System (ADS)

    Song, Yingjun; Wang, David K.; Birkett, Greg; Martens, Wayde; Duke, Mikel C.; Smart, Simon; Diniz da Costa, João C.

    2016-07-01

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m-2 h-1 for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93-99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%.

  19. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes.

    PubMed

    Song, Yingjun; Wang, David K; Birkett, Greg; Martens, Wayde; Duke, Mikel C; Smart, Simon; Diniz da Costa, João C

    2016-07-29

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m(-2) h(-1) for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93-99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%.

  20. Enhanced molecular recognition for imprinted monolithic column containing polyhedral oligomeric silsesquioxanes by dendritic effect of mesoporous molecular sieve scaffolds.

    PubMed

    Yang, Fang-Fang; Li, Zai-Xuan; Xu, Yu-Jing; Huang, Yan-Ping; Liu, Zhao-Sheng

    2018-06-07

    The dendritic effect of nano mesoporous molecular sieve was first used to enhance molecular recognition of molecularly imprinted polymers (MIPs)-based polyhedral oligomeric silsesquioxanes (POSS). In this study, the MIPs were made using S-naproxen (S-NAP) as template molecule, 4-vinylpyridine (4-VP) as functional monomer, ethylene glycol dimethacrylate as cross-linker, 1-butyl-3-methylimidazoliumtetrafluoroborate ([BMIM]BF 4 )/DMSO as binary porogens, 1-propylmethacrylate-heptaisobutyl substituted as POSS monomer, and mesoporous molecular sieve (Mobil composition of matter No. 41, MCM-41) as dendritic scaffold. The influence of synthesis parameters on the imprinting effect, including the content of POSS monomer and derivatized MCM-41-MPS, the ratio of template to monomer, and the ratio of binary porogens were also investigated, respectively. The morphology of the polymers was characterized by scanning electron microscopy, nitrogen adsorption, and X-ray powder diffraction. The results showed that POSS&MCM-41-MPS MIP had a stronger imprinting effect with an imprinting factor 6.86, which is approximately 2.4, 2.3, and 3 times than that of POSS MIP, MCM-41-MPS MIP, and conventional MIP, respectively. The increase of affinity might be attributed to impediment of the chain motion of polymer due to improved POSS aggregation and the dipole interaction between the POSS units by introduce of MCM-41-MPS as scaffolds. The resulting POSS&MCM-41-MPS MIP was used as adsorbent for the enrichment of S-NAP in solid-phase extraction with a high recovery of 97.65% and the value of RSD was 0.94%.

  1. Virtual Design of a 4-Bed Molecular Sieve for Exploration

    NASA Technical Reports Server (NTRS)

    Giesy, Timothy J.; Coker, Robert F.; O'Connor, Brian F.; Knox, James C.

    2017-01-01

    Simulations of six new 4-Bed Molecular Sieve configurations have been performed using a COMSOL model. The preliminary results show that reductions in desiccant bed size and sorbent bed size when compared to the International Space Station configuration are feasible while still yielding a process that handles at least 4.0 kg/day CO2. The results also show that changes to the CO2 sorbent are likewise feasible. Decreasing the bed sizes was found to have very little negative effect on the adsorption process; breakthrough of CO2 in the sorbent bed was observed for two of the configurations, but water breakthrough in the desiccant beds was not observed. Nevertheless, both configurations for which CO2 breakthrough was observed still yield relatively high CO2 efficiency, and future investigations will focus on bed size in order to find the optimum configuration.

  2. Transformation of metal-organic frameworks for molecular sieving membranes

    PubMed Central

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-01-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively. PMID:27090597

  3. Study on molecular sieve absorption of ground state HF molecules in a non-chain pulsed HF Laser

    NASA Astrophysics Data System (ADS)

    Ma, Lianying; Zhou, Songqing; Chao, Huang; Huang, Ke; Zhu, Feng; Luan, Kunpeng; Chen, Hongwei

    2017-05-01

    This paper describes the principle of non-chain pulsed HF laser, and analyzes the reason why the laser energy dropped severely with the accumulation of shots when the HF laser was in repetitive operation. In order to solve this problem, a molecular sieve absorption device was designed and mounted in the recirculation loop of the HF laser. Measurements of flow velocity indicated that the absorption device would just introduce a small decrease of flow velocity which would not influence the laser operation. Several types of molecular sieve (3A,4A,5A,13X) were used in absorbing experiments and the experiment results inferred that 3A molecular sieve was the most effective sorbent. All the experiments showed that the average drop of the output energy was not more than 5% after 1000 shots at 50Hz/20s. Compared to the energy drop of about 40% without the device, the absorption device could significantly improve the stability of the HF laser output energy and prolong the lifespan of laser medium gases.

  4. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity.

    PubMed

    Bhaumik, A; Inagaki, S

    2001-01-31

    Novel open framework molecular sieves, titanium(IV) phosphates named, i.e., TCM-7 and -8 (Toyota Composite Materials, numbers 7 and 8), with new mesoporous cationic framework topologies obtained by using both cationic and anionic surfactants are reported. The (31)P MAS NMR, UV-visible absorption, and XANES data suggest the tetrahedral state of P and Ti, and stabilization of the tetrahedral state of Ti in TCM-7/8 is due to the incorporation of phosphorus (at Ti/P = 1:1) vis-à-vis the most stable octahedral state of Ti in the pure mesoporous TiO(2). Mesoporous TCM-7 and -8 show anion exchange capacity due to the framework phosphonium cation and cation exchange capacity due to defective P-OH groups. The high catalytic activity in the liquid-phase partial oxidation of cyclohexene with a dilute H(2)O(2) oxidant supports the tetrahedral coordination of Ti in these materials.

  5. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, H.R.; Fanslow, G.E.

    1983-12-20

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.

  6. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, Harvey R.; Fanslow, Glenn E.

    1983-01-01

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  7. Evaluation of RTV as a Moldable Matrix When Combined With Molecular Sieve and Organic Hydrogen Getter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, J. A.

    2011-12-01

    This work was undertaken in an effort to develop a combined RTV 615/3Å molecular sieve/DEB molded component. A molded RTV 615/3Å molecular sieve component is currently in production, and an RTV 615/DEB component was produced in the past. However, all three materials have never before been combined in a single production part, and this is an opportunity to create a new component capable of being molded to shape, performing desiccation, and hydrogen gettering. This analysis looked at weapons system parameters and how they might influence part design. It also looked at material processing and how it related to mixing, activatingmore » a dessicant, and hydrogen uptake testing.« less

  8. Degradation of antibiotic amoxicillin using 1 x 1 molecular sieve-structured manganese oxide.

    PubMed

    Kuan, Wen-Hui; Hu, Ching-Yao; Liu, Bin-Sheng; Tzou, Yu-Min

    2013-01-01

    The kinetics and mechanism ofamoxicillin (AMO) degradation using a 1 x 1 molecular sieve-structured manganese oxide (MnO2) was studied. The presence of the buffer solution (i.e., NaHCO3, NaH2PO4 and KH2PO4) diminished AMO binding to MnO2, thus reducing AMO degradation in the pretest; therefore, all other experiments in this study were conducted without the addition of a buffer. Third-order rate constants, second-order on AMO and first-order on MnO2 increased with elevating pH level (2.81-7.23) from 0.54 to 9.17 M(-2) s(-1), and it decreased to 4.27 M(-2) s(-1) at pH 8.53 beyond the pk(a2) of AMO (7.3). The dissolution of the MnO2 suspension with and without AMO exhibited a similar trend; that is, Mn2+ concentration increased with decreasing pH. However, the dissolution of MnO2 with AMO was greater than that without AMO, except for the reaction occurring at pH 8.53, partially indicating that MnO2 acts as an oxidant in AMO degradation. The preliminary chromatogram data display different products with varying pH reaction s, implying that AMO elimination using this 1 x 1 molecular sieve-structured MnO2 is by adsorption as well as oxidative degradation. A complementary experiment indicates that the amount of oxidatively degraded AMO increases substantially from 65.5% at 4 h to 95% at 48 h, whereas the AMO adsorbed onto MnO2 decreases slightly from 4.5% at4 h to 2.4% at 48 h. The oxidative degradation accounted for more AMO removal than adsorption over the whole reaction course, indicating that the oxidative reaction of AMO on MnO2 dominated the AMO removal.

  9. Dermally adhered soil: 2. Reconstruction of dry-sieve particle-size distributions from wet-sieve data.

    PubMed

    Choate, LaDonna M; Ranville, James F; Bunge, Annette L; Macalady, Donald L

    2006-10-01

    In the evaluation of soil particle-size effects on environmental processes, particle-size distributions are measured by either wet or dry sieving. Commonly, size distributions determined by wet and dry sieving differ because some particles disaggregate in water. Whereas the dry-sieve distributions are most relevant to the study of soil adherence to skin, soil can be recovered from skin only by washing with the potential for disaggregation whether or not it is subsequently wet or dry sieved. Thus, the possibility exists that wet-sieving measurements of the particle sizes that adhered to the skin could be skewed toward the smaller fractions. This paper provides a method by which dry-sieve particle-size distributions can be reconstructed from wet-sieve particle-size distributions for the same soil. The approach combines mass balances with a series of experiments in which wet sieving was applied to dry-sieve fractions from the original soil. Unless the soil moisture content is high (i.e., greater than or equal to the water content after equilibration with water-saturated air), only the soil particles of diameters less than about 63 microm adhere to the skin. Because of this, the adhering particle-size distribution calculated using the reconstruction method was not significantly different from the wet-sieving determinations.

  10. Synthesis and Structural Characterization of a CHA-type AlPO4 Molecular Sieve with Penta-Coordinated Framework Aluminum Atoms.

    PubMed

    Park, Gi Tae; Jo, Donghui; Ahn, Nak Ho; Cho, Jung; Hong, Suk Bong

    2017-07-17

    The structure-directing effects of a series of polymethylimidazolium cations with different numbers of methyl groups as organic structure-directing agents (OSDAs) in the synthesis of aluminophosphate (AlPO 4 )-based molecular sieves in both fluoride and hydroxide media are investigated. On the one hand, among the OSDAs studied here, the smallest 1,3-dimethylimidazolium and the largest 1,2,3,4,5-pentamethylimidazolium cations were found to direct the synthesis of a new variant of the triclinic chabazite (CHA)-type AlPO 4 material, designated AlPO 4 -34(t) V , and the one-dimensional small-pore silicoaluminophosphate (SAPO) molecular sieve STA-6 in hydroxide media, respectively. On the other hand, the intermediate-sized 1,2,3,4-tetramethylimidazolium cation gave SSZ-51, a two-dimensional large-pore SAPO material, in fluoride media. Synchrotron powder X-ray diffraction and Rietveld analyses reveal that as-made AlPO 4 -34(t) V contains penta-coordinated framework Al species connected by hydroxyl groups, as well as tetrahedral framework Al, which contrasts with the distortions arising from the two F - or OH - bridges between octahedral Al atoms in all already known AlPO 4 -34 materials. The presence of Al-OH-Al linkages in this triclinic AlPO 4 -34 molecular sieve has been further corroborated by thermal analysis, variable-temperature IR,27Al magic-angle spinning NMR, and dispersion-corrected density functional theory calculations.

  11. Virtual Design of a 4-Bed Molecular Sieve for Exploration

    NASA Technical Reports Server (NTRS)

    Giesy, Timothy J.; Coker, Robert F.; O'Connor, Brian F.; Knox, James C.

    2017-01-01

    Simulations of six new 4-Bed Molecular Sieve configurations have been performed using a COMSOL (COMSOL Multiphysics - commercial software) model. The preliminary results show that reductions in desiccant bed size and sorbent bed size when compared to the International Space Station configuration are feasible while still yielding a process that handles at least 4.0 kilograms a day CO2. The results also show that changes to the CO2 sorbent are likewise feasible. Decreasing the bed sizes was found to have very little negative effect on the adsorption process; breakthrough of CO2 in the sorbent bed was observed for two of the configurations, but a small degree of CO2 breakthrough is acceptable, and water breakthrough in the desiccant beds was not observed. Both configurations for which CO2 breakthrough was observed still yield relatively high CO2 efficiency, and future investigations will focus on bed size in order to find the optimum configuration.

  12. Synthesis, characterization, and pulsed laser ablation of molecular sieves for thin film applications

    NASA Astrophysics Data System (ADS)

    Munoz, Trinidad, Jr.

    1998-12-01

    Molecular sieves are one class of crystalline low density metal oxides which are made up of one-, two-, and three dimensional pores and/or cages. We have investigated the synthesis and characterization of metal substituted aluminophosphates and all silica molecular sieves for thin film applications. A new copper substituted aluminophosphate, CuAPO-5 has been synthesized and characterized using x-ray powder diffraction, FT-IR spectroscopy and scanning electron microscopy. Electron spin resonance and electron spin echo modulation provided supporting evidence of framework incorporation of Cu(II) ions. Thus, an exciting addition has been added to the family of metal substituted aluminophosphates where substitution of the metal has been demonstrated as framework species. Also presented here is the synthesis and characterization of an iron substituted aluminophosphate, FeAPO-5, and an all silica zeolite, UTD-1 for thin film applications. Pulsed laser ablation has been employed as the technique to generate thin films. Here an excimer laser (KrFsp*, 248 nm) was used to deposit the molecular sieves on a variety of substrates including polished silicon, titanium nitride, and porous stainless steel disks. The crystallinity of the deposited films was enhanced by a post hydrothermal treatment. A vapor phase treatment of the laser deposited FeAPO-5 films has been shown to increase the crystallinity of the film without increasing film thickness. Thin films of the FeAPO-5 molecular sieves were subsequently used as the dielectric phase in capacitive type chemical sensors. The capacitance change of the FeAPO-5 devices to the relative moisture makes them potential humidity sensors. The all silica zeolite UTD-1 thin films were deposited on polished silicon and porous supports. A brief post hydrothermal treatment of the laser deposited films deposited on polished silicon and porous metal supports resulted in oriented film growth lending these films to applications in gas separations

  13. [Preparation and evaluation of novel mesoporous molecular sieve of baicalin surface molecularly imprinted polymers].

    PubMed

    Gu, Xia-li; He, Hong-liang; Shi, Li-ying; Gao, Yan-kun; Chen, Li-na

    2015-05-01

    Taking mesoporous molecular sieve MCM-41 as a substrate, baicalin (BA) as template, acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, ethanol as solvent, under thermal polymerization initiator of azobis isobutyronitrilo (AIBN) , a kind of selective recognition of baicalin surface molecularly imprinted polymer was synthesized. The surface morphologies and characteristics of the MIPs were characterized by infrared spectroscopy (IR) and transmission electron microscope (TEM). The adsorption properties of polymer microsphere for the template were tested by the dynamic adsorption equilibrium experiments and static adsorption equilibrium experiments. The experiment showed that the imprinting process was successfully and the well-ordered one-dimensional pore structure of MCM-41 was still preserved. Furthermore, molecularly imprinted polymers had higher selective ability for BA, then provided a new method for the efficient separation and enrichment of baicalin active ingredients from medicinal plants Scutellaria baicalensis.

  14. Investigations to improve carbon dioxide control with amine and molecular sieve type sorbers

    NASA Technical Reports Server (NTRS)

    Bertrand, J. F.; Brose, H. F.; Kester, F. L.; Lunde, P. J.

    1972-01-01

    The optimization trends and operating parameters of an integral molecular sieve bed heat exchanger were investigated. The optimum combination of substrate and coating for the HS-B porous polymer was determined based on the CO2 dynamic capacity in the presence of water vapor. Full size HS-B canister performance was evaluated. An Amine CO2 Concentrator utilizing IR-45 sorber material and available Manned Orbiting Laboratory hardware was designed, fabricated and tested for use as an experiment in the NASA 90-day space simulator test of 1970. It supported four men in the simulator for 71 days out of the 90-day test duration.

  15. Reliable determination of oxygen and hydrogen isotope ratios in atmospheric water vapour adsorbed on 3A molecular sieve.

    PubMed

    Han, Liang-Feng; Gröning, Manfred; Aggarwal, Pradeep; Helliker, Brent R

    2006-01-01

    The isotope ratio of atmospheric water vapour is determined by wide-ranging feedback effects from the isotope ratio of water in biological water pools, soil surface horizons, open water bodies and precipitation. Accurate determination of atmospheric water vapour isotope ratios is important for a broad range of research areas from leaf-scale to global-scale isotope studies. In spite of the importance of stable isotopic measurements of atmospheric water vapour, there is a paucity of published data available, largely because of the requirement for liquid nitrogen or dry ice for quantitative trapping of water vapour. We report results from a non-cryogenic method for quantitatively trapping atmospheric water vapour using 3A molecular sieve, although water is removed from the column using standard cryogenic methods. The molecular sieve column was conditioned with water of a known isotope ratio to 'set' the background signature of the molecular sieve. Two separate prototypes were developed, one for large collection volumes (3 mL) and one for small collection volumes (90 microL). Atmospheric water vapour was adsorbed to the column by pulling air through the column for several days to reach the desired final volume. Water was recovered from the column by baking at 250 degrees C in a dry helium or nitrogen air stream and cryogenically trapped. For the large-volume apparatus, the recovered water differed from water that was simultaneously trapped by liquid nitrogen (the experimental control) by 2.6 per thousand with a standard deviation (SD) of 1.5 per thousand for delta(2)H and by 0.3 per thousand with a SD of 0.2 per thousand for delta(18)O. Water-vapour recovery was not satisfactory for the small volume apparatus. Copyright (c) 2006 John Wiley & Sons, Ltd.

  16. Phytoplasma-triggered Ca(2+) influx is involved in sieve-tube blockage.

    PubMed

    Musetti, Rita; Buxa, Stefanie V; De Marco, Federica; Loschi, Alberto; Polizzotto, Rachele; Kogel, Karl-Heinz; van Bel, Aart J E

    2013-04-01

    Phytoplasmas are obligate, phloem-restricted phytopathogens that are disseminated by phloem-sap-sucking insects. Phytoplasma infection severely impairs assimilate translocation in host plants and might be responsible for massive changes in phloem physiology. Methods to study phytoplasma- induced changes thus far provoked massive, native occlusion artifacts in sieve tubes. Hence, phytoplasma-phloem relationships were investigated here in intact Vicia faba host plants using a set of vital fluorescent probes and confocal laser-scanning microscopy. We focused on the effects of phytoplasma infection on phloem mass-flow performance and evaluated whether phytoplasmas induce sieve-plate occlusion. Apparently, phytoplasma infection brings about Ca(2+) influx into sieve tubes, leading to sieve-plate occlusion by callose deposition or protein plugging. In addition, Ca(2+) influx may confer cell wall thickening of conducting elements. In conclusion, phytoplasma effectors may cause gating of sieve-element Ca(2+) channels leading to sieve-tube occlusion with presumptive dramatic effects on phytoplasma spread and photoassimilate distribution.

  17. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    PubMed

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  18. Continuously Adjustable, Molecular-Sieving “Gate” on 5A Zeolite for Distinguishing Small Organic Molecules by Size

    PubMed Central

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-01-01

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. This novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation. PMID:26358480

  19. Continuously adjustable, molecular-sieving “gate” on 5A zeolite for distinguishing small organic molecules by size

    DOE PAGES

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; ...

    2015-09-11

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences weremore » effectively distinguished via appropriate misalignment. Lastly, this novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation.« less

  20. Probing Graphene χ((2)) Using a Gold Photon Sieve.

    PubMed

    Lobet, Michaël; Sarrazin, Michaël; Cecchet, Francesca; Reckinger, Nicolas; Vlad, Alexandru; Colomer, Jean-François; Lis, Dan

    2016-01-13

    Nonlinear second harmonic optical activity of graphene covering a gold photon sieve was determined for different polarizations. The photon sieve consists of a subwavelength gold nanohole array placed on glass. It combines the benefits of efficient light trapping and surface plasmon propagation to unravel different elements of graphene second-order susceptibility χ((2)). Those elements efficiently contribute to second harmonic generation. In fact, the graphene-coated photon sieve produces a second harmonic intensity at least two orders of magnitude higher compared with a bare, flat gold layer and an order of magnitude coming from the plasmonic effect of the photon sieve; the remaining enhancement arises from the graphene layer itself. The measured second harmonic generation yield, supplemented by semianalytical computations, provides an original method to constrain the graphene χ((2)) elements. The values obtained are |d31 + d33| ≤ 8.1 × 10(3) pm(2)/V and |d15| ≤ 1.4 × 10(6) pm(2)/V for a second harmonic signal at 780 nm. This original method can be applied to any kind of 2D materials covering such a plasmonic structure.

  1. A novel approach for the removal of radiocesium from aqueous solution by ZSM-5 molecular sieve.

    PubMed

    Gao, Xiaoqing; Zhang, Peng; Yang, Junqiang; Sun, Xuejie; Fu, Yi; Shi, Keliang; Chai, Zhifang; Wu, Wangsuo

    2018-05-21

    Finding an approach for pretreatment of radionuclides from contaminated water are interesting topics of research. In present work, the ZSM-5 molecular sieve was characterized with different techniques such as zeta potential, SEM, FT-IR and XRD to clarify the surface properties of sample and applied as a sorbent to concentrate and recover Cs(I) from aqueous solution. The effect of environmental conditions such as contact time, ionic strength, content of sorbent and solution pH on Cs(I) uptake were optimized using batch techniques. Different kinetic and isotherm models were utilized to evaluate the experimental data and the correlation parameters were obtained. Based on the sorption/desorption experiment, it can be deduced that the ZSM-5 molecular sieve has potential application for the rapid and quantitative recovery of radiocesium from wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Experiments for the Undergraduate Laboratory that Illustrate the Size-Exclusion Properties of Zeolite Molecular Sieves

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.

    2009-01-01

    Experiments are presented that demonstrate the size-exclusion properties of zeolites and reveal the reason for naming zeolites "molecular sieves". If an IR spectrometer is available, the adsorption or exclusion of alcohols of varying sizes from dichloromethane or chloroform solutions can be readily demonstrated by monitoring changes in the…

  3. Molecular Sieve Bench Testing and Computer Modeling

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, Habib; DaLee, Robert C.; Blackmon, James B.

    1995-01-01

    The design of an efficient four-bed molecular sieve (4BMS) CO2 removal system for the International Space Station depends on many mission parameters, such as duration, crew size, cost of power, volume, fluid interface properties, etc. A need for space vehicle CO2 removal system models capable of accurately performing extrapolated hardware predictions is inevitable due to the change of the parameters which influences the CO2 removal system capacity. The purpose is to investigate the mathematical techniques required for a model capable of accurate extrapolated performance predictions and to obtain test data required to estimate mass transfer coefficients and verify the computer model. Models have been developed to demonstrate that the finite difference technique can be successfully applied to sorbents and conditions used in spacecraft CO2 removal systems. The nonisothermal, axially dispersed, plug flow model with linear driving force for 5X sorbent and pore diffusion for silica gel are then applied to test data. A more complex model, a non-darcian model (two dimensional), has also been developed for simulation of the test data. This model takes into account the channeling effect on column breakthrough. Four FORTRAN computer programs are presented: a two-dimensional model of flow adsorption/desorption in a packed bed; a one-dimensional model of flow adsorption/desorption in a packed bed; a model of thermal vacuum desorption; and a model of a tri-sectional packed bed with two different sorbent materials. The programs are capable of simulating up to four gas constituents for each process, which can be increased with a few minor changes.

  4. Four Bed Molecular Sieve - Exploration (4BMS-X) Virtual Heater Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schunk, R. Gregory; Peters, Warren T.; Thomas, John T., Jr.

    2017-01-01

    A 4BMS-X (Four Bed Molecular Sieve - Exploration) design and heater optimization study for CO2 sorbent beds in proposed exploration system architectures is presented. The primary objectives of the study are to reduce heater power and thermal gradients within the CO2 sorbent beds while minimizing channeling effects. Some of the notable changes from the ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) to the proposed exploration system architecture include cylindrical beds, alternate sorbents and an improved heater core. Results from both 2D and 3D sorbent bed thermal models with integrated heaters are presented. The 2D sorbent bed models are used to optimize heater power and fin geometry while the 3D models address end effects in the beds for more realistic thermal gradient and heater power predictions.

  5. Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants

    PubMed Central

    2010-01-01

    Background The phloem of dicotyledonous plants contains specialized P-proteins (phloem proteins) that accumulate during sieve element differentiation and remain parietally associated with the cisternae of the endoplasmic reticulum in mature sieve elements. Wounding causes P-protein filaments to accumulate at the sieve plates and block the translocation of photosynthate. Specialized, spindle-shaped P-proteins known as forisomes that undergo reversible calcium-dependent conformational changes have evolved exclusively in the Fabaceae. Recently, the molecular characterization of three genes encoding forisome components in the model legume Medicago truncatula (MtSEO1, MtSEO2 and MtSEO3; SEO = sieve element occlusion) was reported, but little is known about the molecular characteristics of P-proteins in non-Fabaceae. Results We performed a comprehensive genome-wide comparative analysis by screening the M. truncatula, Glycine max, Arabidopsis thaliana, Vitis vinifera and Solanum phureja genomes, and a Malus domestica EST library for homologs of MtSEO1, MtSEO2 and MtSEO3 and identified numerous novel SEO genes in Fabaceae and even non-Fabaceae plants, which do not possess forisomes. Even in Fabaceae some SEO genes appear to not encode forisome components. All SEO genes have a similar exon-intron structure and are expressed predominantly in the phloem. Phylogenetic analysis revealed the presence of several subgroups with Fabaceae-specific subgroups containing all of the known as well as newly identified forisome component proteins. We constructed Hidden Markov Models that identified three conserved protein domains, which characterize SEO proteins when present in combination. In addition, one common and three subgroup specific protein motifs were found in the amino acid sequences of SEO proteins. SEO genes are organized in genomic clusters and the conserved synteny allowed us to identify several M. truncatula vs G. max orthologs as well as paralogs within the G. max genome

  6. Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants.

    PubMed

    Rüping, Boris; Ernst, Antonia M; Jekat, Stephan B; Nordzieke, Steffen; Reineke, Anna R; Müller, Boje; Bornberg-Bauer, Erich; Prüfer, Dirk; Noll, Gundula A

    2010-10-08

    The phloem of dicotyledonous plants contains specialized P-proteins (phloem proteins) that accumulate during sieve element differentiation and remain parietally associated with the cisternae of the endoplasmic reticulum in mature sieve elements. Wounding causes P-protein filaments to accumulate at the sieve plates and block the translocation of photosynthate. Specialized, spindle-shaped P-proteins known as forisomes that undergo reversible calcium-dependent conformational changes have evolved exclusively in the Fabaceae. Recently, the molecular characterization of three genes encoding forisome components in the model legume Medicago truncatula (MtSEO1, MtSEO2 and MtSEO3; SEO = sieve element occlusion) was reported, but little is known about the molecular characteristics of P-proteins in non-Fabaceae. We performed a comprehensive genome-wide comparative analysis by screening the M. truncatula, Glycine max, Arabidopsis thaliana, Vitis vinifera and Solanum phureja genomes, and a Malus domestica EST library for homologs of MtSEO1, MtSEO2 and MtSEO3 and identified numerous novel SEO genes in Fabaceae and even non-Fabaceae plants, which do not possess forisomes. Even in Fabaceae some SEO genes appear to not encode forisome components. All SEO genes have a similar exon-intron structure and are expressed predominantly in the phloem. Phylogenetic analysis revealed the presence of several subgroups with Fabaceae-specific subgroups containing all of the known as well as newly identified forisome component proteins. We constructed Hidden Markov Models that identified three conserved protein domains, which characterize SEO proteins when present in combination. In addition, one common and three subgroup specific protein motifs were found in the amino acid sequences of SEO proteins. SEO genes are organized in genomic clusters and the conserved synteny allowed us to identify several M. truncatula vs G. max orthologs as well as paralogs within the G. max genome. The unexpected

  7. N-methyldiethanolamine: a multifunctional structure-directing agent for the synthesis of SAPO and AlPO molecular sieves.

    PubMed

    Wang, Dehua; Tian, Peng; Fan, Dong; Yang, Miao; Gao, Beibei; Qiao, Yuyan; Wang, Chan; Liu, Zhongmin

    2015-05-01

    In the present study, N-methyldiethanolamine (MDEA) is demonstrated to be a multifunctional structure-directing agent for the synthesis of aluminophosphate-based molecular sieves. Four types of molecular sieves, including SAPO-34, -35, AlPO-9 and -22, are for the first time acquired with MDEA as a novel template. The phase selectivity of the present synthesis is found to be condition-dependent. SAPO-34 (CHA) crystallizes from a conventional hydrothermal system with a higher MDEA concentration. When using MDEA as both the template and solvent, pure SAPO-35 (LEV) is obtained from the synthetic gel with a high P2O5/Al2O3 ratio of (2-3), in which the concentration of MDEA could be varied in a wide range. AlPO-9 and AlPO-22 (AWW) are synthesized under the similar conditions to SAPO-35, except without the addition of Si source. The physicochemical properties of the obtained samples are investigated by XRD, XRF, SEM, N2 physisorption, TG-DSC, and various NMR spectra ((13)C, (29)Si, (27)Al and (31)P). Both SAPO-34 and SAPO-35 show good thermal stability, large surface area, and high pore volume. The catalytic performance of SAPO-34 is evaluated by the methanol-to-olefins (MTO) reaction and a good (C2H4+C3H6) selectivity of 82.7% has been achieved. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Titanium-containing zeolites and microporous molecular sieves as photovoltaic solar cells.

    PubMed

    Atienzar, Pedro; Valencia, Susana; Corma, Avelino; García, Hermenegildo

    2007-05-14

    Four titanium-containing zeolites and microporous molecular sieves differing on the crystal structure and particle size (Ti/Beta, Ti/Beta-60, TS-1 and ETS-10) are prepared, and their activity for solar cells after incorporating N3 (a commercially available ruthenium polypyridyl dye) is tested. All the zeolites exhibit photovoltaic activity, and the photoresponse is quite independent of the zeolite pore dimensions or particle size. The photoresponse increases with titanium content in the range 1-7% wt. In this way, cells are obtained that have open-circuit voltage Voc=560 mV and maximum short-circuit photocurrent density Isc=100 microA, measured for 1x1 cm2 surfaces with a solar simulator at 1000 W through and AM 1.5 filter. These values are promising and comparable to those obtained for current dye-sensitized titania solar cells.

  9. Speciation of copper diffused in a bi-porous molecular sieve

    NASA Astrophysics Data System (ADS)

    Huang, C.-H.; Paul Wang, H.; Wei, Y.-L.; Chang, J.-E.

    2010-07-01

    To better understand diffusion of copper in the micro- and mesopores, speciation of copper in a bi-porous molecular sieve (BPMS) possessing inter-connecting 3-D micropores (0.50-0.55 nm) and 2-D mesopores (4.1 nm) has been studied by X-ray absorption near edge structure (XANES) spectroscopy. It is found that about 77% (16% of CuO nanoparticles and 61% of CuO clusters) and 23% (CuO ads) of copper can be diffused into the meso- and micropores, respectively, in the BPMS. At least two diffusion steps in the BPMS may be involved: (i) free diffusion of copper in the mesopores and (ii) diffusion-controlled copper migrating into the micropores of the BPMS. The XANES data also indicate that diffusion rate of copper in the BPMS (4.68×10 -5 g/s) is greater than that in the ZSM-5 (1.11×10 -6 g/s) or MCM-41 (1.17×10 -5 g/s).

  10. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF₆ Decomposition Gases under Partial Discharge.

    PubMed

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-11-11

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors' resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors.

  11. Oxidation of refractory sulfur compounds over Ti-containing mesoporous molecular sieves prepared by using a fluorosilicon compound.

    PubMed

    Jeong, Kwang-Eun; Cho, Chin-Soo; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong

    2010-05-01

    Titanium containing mesoporous molecular sieve (Ti-MMS) catalysts were studied for the oxidative desulfurization of refractory sulfur compounds. Ti-MMS catalysts were synthesized from fluorosilicon compounds and Ti with the hydrolysis reaction of H2SiF6 in an ammonia-surfactant mixed solution. The solid products were characterized by XRD, XRF, nitrogen adsorption, and diffuse reflectance UV-vis spectroscopy. Effects of Ti loading and oxidant/sulfur mole ratio, and sulfur species on ODS activity were investigated.

  12. On the synthesis of AlPO4-21 molecular sieve by vapor phase transport method and its phase transformation to AlPO4-15 molecular sieve

    NASA Astrophysics Data System (ADS)

    Shao, Hui; Chen, Jingjing; Chen, Xia; Leng, Yixin; Zhong, Jing

    2015-04-01

    An experimental design was applied to the synthesis of AlPO4-21 molecular sieve (AWO structure) by vapor phase transport (VPT) method, using tetramethylguanidine (TMG) as the template. In this study, the effects of crystallization time, crystallization temperature, phosphor content, template content and water content in the synthesis gel were investigated. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy and fourier transform infrared spectroscopy (FT-IR). Microstructural analysis of the crystal growth in vapor synthetic conditions revealed a revised crystal growth route from zeolite AlPO4-21 to AlPO4-15 in the presence of the TMG. Homogenous hexagonal prism AlPO4-21 crystals with size of 7 × 3 μm were synthesized at a lower temperature (120 °C), which were completely different from the typical tabular parallelogram crystallization microstructure of AlPO4-21 phase. The crystals were transformed into AlPO4-21 phase with higher crystallization temperature, longer crystallization time, higher P2O5/Al2O3 ratio and higher TMG/Al2O3 ratio.

  13. Adsorption equilibrium and thermodynamics of CO2 and CH4 on carbon molecular sieves

    NASA Astrophysics Data System (ADS)

    Song, Xue; Wang, Li'ao; Ma, Xu; Zeng, Yunmin

    2017-02-01

    Carbon molecular sieves (CMS) are widely used in the separation of dioxide carbon and methane. In this research, three commercial CMS were utilized to analyze the pore structure and chemical properties. The adsorption isotherms of CO2 and CH4 were studied at 298 K, 308 K and 318 K over the pressure range of 0-1 MPa by an Intelligent Gravimetric analysis (IGA-100B, UK). Langmuir model was adopted to fit the experimental data. The working capacity and selectivity were employed to evaluate the adsorbents. The adsorption thermodynamics were discussed. The adsorbed amounts of both CO2 and CH4 are found to be highly related with the BET specific surface area and the volume of micropores, and also are interrelated with the total pore volume and micropore surface area. The standard enthalpy change (ΔHΘ), standard Gibbs free energy (ΔGΘ) and standard entropy change (ΔSΘ) at zero surface loading are negative, manifesting the adsorption process is exothermic and spontaneous, and the system tends to be ordered. With the increasing surface coverage, the absolute values of Gibbs free energy (ΔG) decrease whereas the absolute values of enthalpy change (ΔH) and entropy change(ΔS) increase. This indicates that as the adsorbed amount increases, the degree of the spontaneity reduces, the intermolecular forces among the adsorbate molecules increase, the orderliness of the system improves and the adsorbed amount approaches the maximum adsorbed capacity.

  14. Active sieving across driven nanopores for tunable selectivity

    NASA Astrophysics Data System (ADS)

    Marbach, Sophie; Bocquet, Lydéric

    2017-10-01

    Molecular separation traditionally relies on sieving processes across passive nanoporous membranes. Here we explore theoretically the concept of non-equilibrium active sieving. We investigate a simple model for an active noisy nanopore, where gating—in terms of size or charge—is externally driven at a tunable frequency. Our analytical and numerical results unveil a rich sieving diagram in terms of the forced gating frequency. Unexpectedly, the separation ability is strongly increased as compared to its passive (zero frequency) counterpart. It also points to the possibility of tuning dynamically the osmotic pressure. Active separation outperforms passive sieving and represents a promising avenue for advanced filtration.

  15. Structure and positron annihilation spectra of tin incorporated in mesoporous molecular sieves

    NASA Astrophysics Data System (ADS)

    Zhang, H. Y.; He, Y. J.; Chen, Y. B.; Wang, H. Y.

    2002-12-01

    Mesoporous molecular sieves (MCM-41) consist of an ordered array of silica tubules comprised of pores with uniform controllable diameters in the nanometer range. Tin was successfully incorporated into MCM-41 using wet chemical techniques. Detailed structural analysis via x-ray diffraction and high resolution transmission electron microscopy confirm this, and indicate that, after sintering samples in air, SnO2 crystal nanoclusters formed in the channels. These conclusions are further supported by a study of the positron annihilation spectrum. In particular, the insensitivity, after incorporation of tin, of the long-lived component of the positron annihilation spectrum to whether an air or a vacuum annealing atmosphere is used indicates that tin in the MCM-41 channels hinders the entry of quenching oxygen from the air. Furthermore, after sintering, the complete loss of this long-lived component indicates that SnO2 nanoclusters fill the channels.

  16. Size selectivity of hyaluronan molecular sieving by extracellular matrix in rabbit synovial joints

    PubMed Central

    Sabaratnam, S; Arunan, V; Coleman, PJ; Mason, RM; Levick, JR

    2005-01-01

    In joint fluid the polymer hyaluronan (HA) confers viscous lubrication and greatly attenuates trans-synovial fluid loss (outflow buffering). Outflow buffering arises from the molecular sieving (reflection) and concentration polarization of HA at the synovial membrane surface. Outflow buffering declines if HA chain length is reduced, as in arthritis, and this has been attributed to reduced HA reflection. This was tested directly in the present study. Infused solutions of HA of ∼2200 kDa (HA2000, 0.2 mg ml−1) or ∼500 kDa (HA500, 0.2 mg ml−1) or ∼140 kDa (HA140, 0.2–4.0 mg ml−1) were filtered across the synovial lining of the knee joint cavity of anaesthetized rabbits at a constant rate, along with a freely permeating reference solute, 20 kDa fluorescein–dextran (FD20). After a priming period the femoral lymph was sampled over 3 h. Mixed intra-articular (i.a.) fluid and subsynovial fluid were sampled at the end. Fluids were analysed by gel exclusion chromatography. The trans-synovial concentration profile was found to depend on polymer size. The i.a. concentration of HA2000 increased substantially relative to infusate and the subsynovial and lymph concentrations fell substantially. For HA500 and HA140 the trans-synovial concentration gradients were less pronounced, and absent for FD. The reflected fractions for HA2000, HA500 and HA140 across the cavity-to-lymph barrier were 0.65 ± 0.05 (n = 10), 0.43 ± 0.09 (n = 3) and 0.19 ± 0.05 (n = 7), respectively, at matched filtration rates (P < 0.0001, analysis of variance). Reflected fractions calculated from HA i.a. accumulation or subsynovial dilution showed the same trend. The results demonstrate size-selective molecular sieving by the synovial extracellular matrix, equivalent to steric exclusion from cylindrical pores of radius 33–59 nm. The findings underpin the concentration polarization-outflow buffering theory and indicate that reduced HA chain length in arthritis exacerbates lubricant loss from a

  17. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF6 Decomposition Gases under Partial Discharge

    PubMed Central

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-01-01

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors’ resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors. PMID:26569245

  18. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide.

    PubMed

    Qiu, Wulin; Zhang, Kuang; Li, Fuyue Stephanie; Zhang, Ke; Koros, William J

    2014-04-01

    6FDA-mPDA/DABA (3:2) polyimide was synthesized and characterized for uncross-linked, thermally crosslinked, and carbon molecular sieve (CMS) membranes. The membranes were characterized with thermogravimetric analysis, FTIR spectroscopy, wide-angle X-ray diffraction, and gas permeation tests. Variations in the d spacing, the formation of pore structures, and changes in the pore sizes of the CMS membranes were discussed in relation to pyrolysis protocols. The uncross-linked polymer membranes showed high CO2 /CH4 selectivity, whereas thermally crosslinked membranes exhibited significantly improved CO2 permeability and excellent CO2 plasticization resistance. The CMS membranes showed even higher CO2 permeability and CO2 /CH4 selectivity. An increase in the pyrolysis temperature resulted in CMS membranes with lower gas permeability but higher selectivity. The 550 °C pyrolyzed CMS membranes showed CO2 permeability as high as 14 750 Barrer with CO2 /CH4 selectivity of approximately 52. Even 800 °C pyrolyzed CMS membranes still showed high CO2 permeability of 2610 Barrer with high CO2 /CH4 selectivity of approximately 118. Both polymer membranes and the CMS membranes are very attractive in aggressive natural gas purification applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ultraselective Carbon Molecular Sieve Membranes with Tailored Synergistic Sorption Selective Properties.

    PubMed

    Zhang, Chen; Koros, William J

    2017-09-01

    Membrane-based separations can reduce the energy consumption and the CO 2 footprint of large-scale fluid separations, which are traditionally practiced by energy-intensive thermally driven processes. Here, a new type of membrane structure based on nanoporous carbon is reported, which, according to this study, is best referred to as carbon/carbon mixed-matrix (CCMM) membranes. The CCMM membranes are formed by high-temperature (up to 900 °C) pyrolysis of polyimide precursor hollow-fiber membranes. Unprecedentedly high permselectivities are seen in CCMM membranes for CO 2 /CH 4 , N 2 /CH 4 , He/CH 4 , and H 2 /CH 4 separations. Analysis of permeation data suggests that the ultrahigh selectivities result from substantially increased sorption selectivities, which is hypothetically owing to the formation of ultraselective micropores that selectively exclude the bulkier CH 4 molecules. With tunable sorption selectivities, the CCMM membranes outperform flexible polymer membranes and traditional rigid molecular-sieve membranes. The capability to increase sorption selectivities is a powerful tool to leverage diffusion selectivities, and has opened the door to many challenging and economically important fluid separations that require ultrafine differentiation of closely sized molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. XPS characterization of silver exchanged ETS-10 and mordenite molecular sieves.

    PubMed

    Anson, A; Maham, Y; Lin, C C H; Kuznicki, T M; Kuznicki, S M

    2009-05-01

    Silver exchanged molecular sieves ETS-10 (Ag-ETS-10) and mordenite (Ag-mordenite) were dehydrated under vacuum at temperatures between 100 degrees C-350 degrees C. Changes in the state of the silver were studied using X-ray photoelectron spectroscopy (XPS). Silver cations in titanosilicate Ag-ETS-10 are fully reduced to Ag(0) at temperatures as low as 150 degrees C. The characteristic features of the XPS spectrum of silver in this Ag-ETS-10 species correspond to only metallic silver. The signal for metallic silver is not observed in the XPS spectrum of aluminosilicate Ag-mordenite, indicating that silver cations are not reduced, even after heating to 350 degrees C.

  1. (Trans)esterification of mannose catalyzed by lipase B from Candida antarctica in an improved reaction medium using co-solvents and molecular sieve.

    PubMed

    Nott, Katherine; Brognaux, Alison; Richard, Gaëtan; Laurent, Pascal; Favrelle, Audrey; Jérôme, Christine; Blecker, Christophe; Wathelet, Jean-Paul; Paquot, Michel; Deleu, Magali

    2012-01-01

    Four co-solvents (dimethylformamide [DMF], formamide, dimethyl sulfoxide [DMSO], and pyridine) were tested with tert-butanol (tBut) to optimize the initial rate (v₀) and yield of mannosyl myristate synthesis by esterification catalyzed by immobilized lipase B from Candida antarctica. Ten percent by volume of DMSO resulted in the best improvement of v₀ and 48-hr yield (respectively 115% and 13% relative gain compared to pure tBut). Use of molecular sieve (5% w/v) enhances the 48-hr yield (55% in tBut/DMSO [9:1, v/v]). Transesterification in tBut/DMSO (9:1, v/v) with vinyl myristate leads to further improvement of v₀ and 48-hr yield: a relative gain of 85% and 65%, respectively, without sieve and 25% and 10%, respectively, with sieve, compared to esterification. No difference in v₀ and 48-hr yield is observed when transesterification is carried out with or without sieve.

  2. The experiment of the elemental mercury was removed from natural gas by 4A molecular sieve

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Chen, Yanhao

    2018-04-01

    Most of the world's natural gas fields contain elemental mercury and mercury compounds, and the amount of mercury in natural gas is generally 1μg/m3 200μg/m3. This paper analyzes the mercury removal principle of chemical adsorption process, the characteristics and application of mercury removal gent and the factors that affect the efficiency of mercury removal. The mercury in the natural gas is adsorbed by the mercury-silver reaction of the 4 molecular sieve after the manned treatment. The limits for mercury content for natural gas for different uses and different treatment processes are also different. From the environmental protection, safety and other factors, it is recommended that the mercury content of natural gas in the pipeline is less than 28μg / m3, and the mercury content of the raw material gas in the equipment such as natural gas liquefaction and natural gas condensate recovery is less than 0.01μg/m3. This paper mainly analyzes the existence of mercury in natural gas, and the experimental research process of using 4A molecular sieve to absorb mercury in natural gas.

  3. SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion.

    PubMed

    Knoblauch, Michael; Froelich, Daniel R; Pickard, William F; Peters, Winfried S

    2014-04-01

    The phloem provides a network of sieve tubes for long-distance translocation of photosynthates. For over a century, structural proteins in sieve tubes have presented a conundrum since they presumably increase the hydraulic resistance of the tubes while no potential function other than sieve tube or wound sealing in the case of injury has been suggested. Here we summarize and critically evaluate current speculations regarding the roles of these proteins. Our understanding suffers from the suggestive power of images; what looks like a sieve tube plug on micrographs may not actually impede translocation very much. Recent reports of an involvement of SEOR (sieve element occlusion-related) proteins, a class of P-proteins, in the sealing of injured sieve tubes are inconclusive; various lines of evidence suggest that, in neither intact nor injured plants, are SEORs determinative of translocation stoppage. Similarly, the popular notion that P-proteins serve in the defence against phloem sap-feeding insects is unsupported by empirical facts; it is conceivable that in functional sieve tubes, aphids actually could benefit from inducing a plug. The idea that rising cytosolic Ca(2+) generally triggers sieve tube blockage by P-proteins appears widely accepted, despite lacking experimental support. Even in forisomes, P-protein assemblages restricted to one single plant family and the only Ca(2+)-responsive P-proteins known, the available evidence does not unequivocally suggest that plug formation is the cause rather than a consequence of translocation stoppage. We conclude that the physiological roles of structural P-proteins remain elusive, and that in vivo studies of their dynamics in continuous sieve tube networks combined with flow velocity measurements will be required to (hopefully) resolve this scientific roadblock.

  4. Defect-Controlled Preparation of UiO-66 Metal-Organic Framework Thin Films with Molecular Sieving Capability.

    PubMed

    Zhang, Caiqin; Zhao, Yajing; Li, Yali; Zhang, Xuetong; Chi, Lifeng; Lu, Guang

    2016-01-01

    Metal-organic framework (MOF) UiO-66 thin films are solvothermally grown on conducting substrates. The as-synthesized MOF thin films are subsequently dried by a supercritical process or treated with polydimethylsiloxane (PDMS). The obtained UiO-66 thin films show excellent molecular sieving capability as confirmed by the electrochemical studies for redox-active species with different sizes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. n-alkane profiles of engine lubricating oil and particulate matter by molecular sieve extraction.

    PubMed

    Caravaggio, Gianni A; Charland, Jean-Pierre; Macdonald, Penny; Graham, Lisa

    2007-05-15

    As part of the Canadian Atmospheric Fine Particle Research Program to obtain reliable primary source emission profiles, a molecular sieve method was developed to reliably determine n-alkanes in lubricating oils, vehicle emissions, and mobile source dominated ambient particulate matter (PM). This work was also initiated to better calculate carbon preference index values (CPI: the ratio of the sums of odd over even n-alkanes), a parameter for estimating anthropogenic versus biogenic contributions in PM. n-Alkanes in lubricating oil and mobile source dominated PM are difficult to identify and quantify by gas chromatography due to the presence of similar components that cannot be fully resolved. This results in a hump, the unresolved complex mixture (UCM) that leads to incorrect n-alkane concentrations and CPI values. The sieve method yielded better chromatography, unambiguous identification of n-alkanes and allowed examination of differences between n-alkane profiles in light (LDV) and heavy duty vehicle (HDV) lubricating oils that would have been otherwise difficult. These profile differences made it possible to relate the LDV profile to that of the PM samples collected during a tunnel study in August 2001 near Vancouver (British Columbia, Canada). The n-alkane PM data revealed that longer sampling times result in a negative artifact, i.e., the desorption of the more volatile n-alkanes from the filters. Furthermore, the sieve procedure yielded n-alkane data that allowed calculation of accurate CPI values for lubricating oils and PM samples. Finally, this method may prove helpful in estimating the respective diesel and gasoline contributions to ambient PM.

  6. Forisome performance in artificial sieve tubes.

    PubMed

    Knoblauch, Michael; Stubenrauch, Mike; van Bel, Aart J E; Peters, Winfried S

    2012-08-01

    In the legume phloem, sieve element occlusion (SEO) proteins assemble into Ca(2+)-dependent contractile bodies. These forisomes presumably control phloem transport by forming reversible sieve tube plugs. This function, however, has never been directly demonstrated, and appears questionable as forisomes were reported to be too small to plug sieve tubes, and failed to block flow efficiently in artificial microchannels. Moreover, plugs of SEO-related proteins in Arabidopsis sieve tubes do not affect phloem translocation. We improved existing procedures for forisome isolation and storage, and found that the degree of Ca(2+)-driven deformation that is possible in forisomes of Vicia faba, the standard object of earlier research, has been underestimated substantially. Forisomes deform particularly strongly under reducing conditions and high sugar concentrations, as typically found in sieve tubes. In contrast to our previous inference, Ca(2+)-inducible forisome swelling certainly seems sufficient to plug sieve tubes. This conclusion was supported by 3D-reconstructions of forisome plugs in Canavalia gladiata. For a direct test, we built microfluidics chips with artificial sieve tubes. Using fluorescent dyes to visualize flow, we demonstrated the complete blockage of these biomimetic microtubes by Ca(2+)-induced forisome plugs, and concluded by analogy that forisomes are capable of regulating phloem flow in vivo. © 2012 Blackwell Publishing Ltd.

  7. Catalytic Reforming of Lignin-Derived Bio-Oil Over a Nanoporous Molecular Sieve Silicoaluminophosphate-11.

    PubMed

    Park, Y K; Kang, Hyeon Koo; Jang, Hansaem; Suh, Dong Jin; Park, Sung Hoon

    2016-05-01

    Catalytic pyrolysis of lignin, a major constituent of biomass, was performed. A nanoporous molecular sieve silicoaluminophosphate-11 (SAPO-11) was selected as catalyst. Thermogravimetric analysis showed that 500 degrees C was the optimal pyrolysis temperature. Pyrolyzer-gas chromatography/mass spectroscopy was used to investigate the pyrolysis product distribution. Production of phenolics, the dominant product from the pyrolysis of lignin, was promoted by the increase in the catalyst dose. In particular, low-molecular-mass phenolics were produced more over SAPO-11, while high-molecular-mass phenolics and double-bond-containing phenolics were produced less. The fraction of aromatic compounds, including benzene, toluene, xylene, and ethylbenzene, was also increased by catalytic reforming. The catalytic effects were more pronounced when the catalyst/biomass ratio was increased. The enhanced production of aromatic compounds by an acidic catalyst obtained in this study is in good agreement with the results of previous studies.

  8. Mesoporous Silica Molecular Sieve based Nanocarriers: Transpiring Drug Dissolution Research.

    PubMed

    Pattnaik, Satyanarayan; Pathak, Kamla

    2017-01-01

    Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Catalytic Synthesis of n-Butyl Oleate by Cerium Complex Doped Y/SBA-15 Composite Molecular Sieve

    NASA Astrophysics Data System (ADS)

    Shi, Chunwei; Bian, Xue; Wu, Yongfu; Cong, Yufeng; Pei, Mingyuan

    2018-01-01

    Cerium ion was successfully incorporated into Y/SBA-15 micro-mesoporous molecular sieves via the hydrothermal synthesis method to give a series of composite materials. The prepared materials were thoroughly characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and differential thermo gravimetric analysis (TG-DTG). The results showed that the prepared composite materials retained the highly ordered mesoporous two-dimensional hexagonal structure of SBA-15 and the octagonal structure of Y. The catalyst Ce-Y/SBA-15 was prepared and characterized, then the esterification of n-butanol and oleic acid was studied with bismuth phosphotungstate as a catalyst. Using this model reaction, the effects of Ce-HY/SBA-15, molar ratio of alcohol to oleic acid, amount of catalysts, reaction time and reaction temperature were investigated. The experimental results show that the optimal reaction conditions were: 1.8:1 molar ratio of alcohol to acid, 5 % catalyst amount (based on weight of oleic acid), 4 h reaction time and reflux conditions. Under these conditions, the yield of esterification was 90.6 %. The results suggest that the addition of Ce can effectively improve the catalytic properties of composite molecular sieves.

  10. Design and development of radioactive xenon gas purification and analysis system based on molecular sieves.

    PubMed

    Sabzian, M; Nasrabadi, M N; Haji-Hosseini, M

    2018-10-01

    The dynamic adsorption of xenon on molecular sieve packed columns was investigated. The modified Wheeler-Jonas equation was used to describe adsorption parameters such as adsorption capacity and adsorption rate coefficient. Different experimental conditions were accomplished to study their effects and to touch appropriate adsorbing circumstances. Respectable consistency was reached between experimental and modeled values. A purification and analysis setup was developed for radioactive xenon gas determination. Standard sample analysis results approved acceptable quantification accuracy. Copyright © 2018. Published by Elsevier Ltd.

  11. A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2015-01-01

    Developments to improve system efficiency and reliability for water and carbon dioxide separation systems on crewed vehicles combine sub-scale systems testing and multi-physics simulations. This paper describes the development of COMSOL simulations in support of the Life Support Systems (LSS) project within NASA's Advanced Exploration Systems (AES) program. Specifically, we model the 4 Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) operating on the International Space Station (ISS).

  12. Method for removing soot from exhaust gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.

    A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine andmore » collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).« less

  13. CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings

    DOE PAGES

    Schmidt, Joel E.; Xie, Dan; Rea, Thomas; ...

    2015-01-23

    A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [4 25 46 2] mtw building unit and a previously unreported [4 45 2] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected withmore » oval 8-rings (2.9 Å × 5.5 Å opening) through medium-sized cavities (~7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants.« less

  14. Sieving polymer synthesis by reversible addition fragmentation chain transfer polymerization.

    PubMed

    Nai, Yi Heng; Jones, Roderick C; Breadmore, Michael C

    2013-12-01

    Replaceable sieving polymers are the fundamental component for high resolution nucleic acids separation in CE. The choice of polymer and its physical properties play significant roles in influencing separation performance. Recently, reversible addition fragmentation chain transfer (RAFT) polymerization has been shown to be a versatile polymerization technique capable of yielding well defined polymers previously unattainable by conventional free radical polymerization. In this study, a high molecular weight PDMA at 765 000 gmol-1 with a PDI of 1.55 was successfully synthesized with the use of chain transfer agent - 2-propionic acidyl butyl trithiocarbonate (PABTC) in a multi-step sequential RAFT polymerization approach. This study represents the first demonstration of RAFT polymerization for synthesizing polymers with the molecular weight range suitable for high resolution DNA separation in sieving electrophoresis. Adjustment of pH in the reaction was found to be crucial for the successful RAFT polymerization of high molecular weight polymer as the buffered condition minimizes the effect of hydrolysis and aminolysis commonly associated with trithiocarbonate chain transfer agents. The separation efficiency of PABTC-PDMA was found to have marginally superior separation performance compared to a commercial PDMA formulation, POP™-CAP, of similar molecular weight range.

  15. Chemically-inducible diffusion trap at cilia (C-IDTc) reveals molecular sieve-like barrier

    PubMed Central

    Lin, Yu-Chun; Phua, Siew Cheng; Jiao, John; Levchenko, Andre; Inoue, Takafumi; Rohatgi, Rajat; Inoue, Takanari

    2013-01-01

    Primary cilia function as specialized compartments for signal transduction. The stereotyped structure and signaling function of cilia inextricably depend on the selective segregation of molecules in cilia. However, the fundamental principles governing the access of soluble proteins to primary cilia remain unresolved. We developed a methodology termed Chemically-Inducible Diffusion Trap at Cilia (C-IDTc) to visualize the diffusion process of a series of fluorescent proteins ranging in size from 3.2 to 7.9 nm into primary cilia. We found that the interior of the cilium was accessible to proteins as large as 7.9 nm. The kinetics of ciliary accumulation of this panel of proteins was exponentially limited by their Stokes radii. Quantitative modeling suggests that the diffusion barrier operates as a molecular sieve at the base of cilia. Our study presents a set of powerful, generally applicable tools for the quantitative monitoring of ciliary protein diffusion under both physiological and pathological conditions. PMID:23666116

  16. The geometry of the forisome-sieve element-sieve plate complex in the phloem of Vicia faba L. leaflets.

    PubMed

    Peters, Winfried S; van Bel, Aart J E; Knoblauch, Michael

    2006-01-01

    Forisomes are contractile protein bodies that appear to control flux rates in the phloem of faboid legumes by reversibly plugging the sieve tubes. Plugging is triggered by Ca(2+) which induces an anisotropic deformation of forisomes, consisting of a longitudinal contraction and a radial expansion. By conventional light microscopy and confocal laser-scanning microscopy, the three-dimensional geometry of the forisome-sieve element-sieve plate complex in intact sieve tubes of leaflets of Vicia faba L. was reconstructed. Forisomes were mostly located close to sieve plates, and occasionally were observed drifting unrestrainedly along the sieve element, suggesting that they might be utilized as internal markers of flow direction. The diameter of forisomes in the resting state correlated with the diameter of their sieve elements, supporting the idea that radial expansion of forisomes is the geometric basis of reversible sieve tube plugging. Comparison of the present results regarding forisome geometry in situ with previously published data on forisome reactivity in vitro makes it questionable, however, whether forisomes are capable of completely sealing sieve tubes in V. faba leaves.

  17. Carbon molecular sieve membranes on porous composite tubular supports for high performance gas separations

    DOE PAGES

    Lee, Pyung -Soo; Bhave, Ramesh R.; Nam, Seung -Eun; ...

    2016-01-11

    Thin carbon molecular sieve membranes (<500 nm) were fabricated inside of long geometry (9 inch) of stainless steel tubes with all welded construction. Alumina intermediate layer on porous stainless steel tube support was used to reduce effective support pore size and to provide a more uniform surface roughness. Novolac phenolic resin solution was then coated on the inside of porous stainless steel tube by slip casting while their viscosities were controlled from 5 centipoises to 30 centipoises. Carbonization was carried out at 700 °C in which thermal stress was minimized and high quality carbon films were prepared. The highest separationmore » performance characteristics were obtained using 20 cP phenolic resin solutions. The fabricated CMSM showed good separation factor for He/N 2 462, CO 2/N 2 97, and O 2/N 2 15.4. As the viscosity of polymer precursor solution was reduced from 20 cP to 15 cP, gas permeance values almost doubled with somewhat lower separation factor He/N 2 156, CO 2/N 2 88, and O 2/N 2 7.7.« less

  18. Carbon Nanotube Networks as Nanoscaffolds for Fabricating Ultrathin Carbon Molecular Sieve Membranes.

    PubMed

    Hou, Jue; Zhang, Huacheng; Hu, Yaoxin; Li, Xingya; Chen, Xiaofang; Kim, Seungju; Wang, Yuqi; Simon, George P; Wang, Huanting

    2018-06-13

    Carbon molecular sieve (CMS) membranes have shown great potential for gas separation owing to their low cost, good chemical stability, and high selectivity. However, most of the conventional CMS membranes exhibit low gas permeance due to their thick active layer, which limits their practical applications. Herein, we report a new strategy for fabricating CMS membranes with a 100 nm-thick ultrathin active layer using poly(furfuryl alcohol) (PFA) as a carbon precursor and carbon nanotubes (CNTs) as nanoscaffolds. CNT networks are deposited on a porous substrate as nanoscaffolds, which guide PFA solution to effectively spread over the substrate and form a continuous layer, minimizing the penetration of PFA into the pores of the substrate. After pyrolysis process, the CMS membranes with 100-1000 nm-thick active layer can be obtained by adjusting the CNT loading. The 322 nm-thick CMS membrane exhibits the best trade-off between the gas permeance and selectivity, a H 2 permeance of 4.55 × 10 -8 mol m -2 s -1 Pa -1 , an O 2 permeance of 2.1 × 10 -9 mol m -2 s -1 Pa -1 , and an O 2 /N 2 ideal selectivity of 10.5, which indicates the high quality of the membrane produced by this method. This work provides a simple, efficient strategy for fabricating ultrathin CMS membranes with high selectivity and improved gas flux.

  19. Evolution of molecular weight and fluorescence of effluent organic matter (EfOM) during oxidation processes revealed by advanced spectrographic and chromatographic tools.

    PubMed

    Chen, Zhiqiang; Li, Mo; Wen, Qinxue; Ren, Nanqi

    2017-11-01

    Effluent organic matter (EfOM) is an emerging concern to receiving aquatic environment due to its refractory property. The degradation of EfOM in ozonation and other two advanced oxidation processes (AOPs), UV/H 2 O 2 and UV/persulfate (PS), was investigated in this study. Fluorescence spectra coupled with parallel factor analysis (PARAFAC) and two-dimensional correlation gel permeation chromatography (2D-GPC) were used to track the evolution of EfOM during each oxidation process. Results showed that the degradation of EfOM indicated by dissolved organic carbon (DOC), UV 254 and fluorescence components, fitted well with pseudo-first-order kinetic model during the oxidation processes. Ozonation showed higher degradation efficiency than AOPs, while UV/PS was more effective than UV/H 2 O 2 with equimolar oxidants dosage. Ozone and SO· 4 - were more reactive with terrestrial humic-like substances, while hydroxyl radical preferentially reacted with protein-like substances. Organic molecules with higher molecular weight (MW) were susceptible to ozone or radicals. Ozonation could transform higher MW (MW of 3510 and 575) organic matters into lower MW organic matters (MW of 294), while reductions of all the organics were observed in both AOPs. Due to the higher reaction rates between ozone and EfOM, ozonation maybe serve as a pre-treatment for AOPs to reduce the radical and energy consumption and improve mineralization of EfOM by AOPs. The decline in DOC, UV 254 , fluorescence and reduction in oxidants increased with the increase of oxidants dosage, and linear correlations among them were found during the ozonation and AOPs. Copyright © 2017. Published by Elsevier Ltd.

  20. Synthesis and catalytic performance of ZSM-5/MCM-41 composite molecular sieve from palygorskite

    NASA Astrophysics Data System (ADS)

    Jiang, Jinlong; Wu, Mei; Yang, Yong; Duanmu, Chuansong; Chen, Jing; Gu, Xu

    2017-10-01

    ZSM-5/MCM-41 composite molecular sieve has been hydrothermally synthesized through a two-step crystallization process using palygorskite (PAL) as silicon and aluminum source. The products were characterized by various means and their catalytic properties for acetalization of cyclohexanone and esterification of acetic acid and n-butanol were also investigated. In the first step ZSM-5 zeolite could be formed from the acid-treated PAL after hydrothermal treatment using tetrapropylammonium bromide as template. XRD patterns, N2 adsorption and desorption data, and TEM images show that the composite obtained in the secondary step had a well-ordered mesoporous MCM-41 phase and a microporous ZSM-5 zeolite phase. Compared with ZSM-5, ZSM-5/MCM-41 composite possessed more total acid amount, weak acid sites and large pore structure due to the formation of MCM-41 and exhibited higher catalytic activity for the acetalization and esterification reaction.

  1. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure.

    PubMed

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5-15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery.

  2. Synthesis, Characterization and Application of N-Ti/13X/MCM-41 Mesoporous Molecular Sieves.

    PubMed

    Tao, Hong; Nguyen, Nhat-Thien; Hei, Xiao-Hui; Nguyen, Cong Nguyen; Tsai, Hsiao-Hsin; Chang, I-Cheng; Chang, Chang-Tang

    2016-06-01

    Di-n-butyl phthalate (DBP) is a type of phthalate ester. In recent years, an increasing number of studies have examined the removal of DBP. In this study we use a composite material of N-Ti/13X/MCM-41, synthesized by nitrogen, molecular sieve 13X, tetrabutyl orthotitanate and tetraethyl orthosilicate as raw materials, CTAB as a structural template and tetrabutyl titanate and urea under hydrothermal conditions. The optimized experimental conditions, such as the amount of material, reaction time, pH value and initial concentration were tested. The surface areas of N-Ti/13X/MCM-41 were found to be 664 m2g(-1). TEM micrographs revealed N-Ti/13X/MCM-41 is consisting of aggregates of spherical particles, similar with standard synthesized MCM-41 (Mobil Composition of Matter No. 41). Through photocatalytic degradation experiments, the optimum degradation efficiency of DBP was more than 90% at a pH 6.0 with catalyst dosing of 0.15 g L(-1).

  3. Competitive adsorption behaviors of carbon dioxide and n-dodecane mixtures in 13X molecular sieve

    NASA Astrophysics Data System (ADS)

    Zhu, Chaofan; Dong, Mingzhe; Gong, Houjian

    2018-01-01

    The CO2 cyclic injection has been proven to be effective to enhance tight oil recovery under constant reservoir temperature and down hole pressure conditions. However, the enhance tight oil recovery mechanism was unclear, especially the adsorption of the CO2 and alkane in the surface. Therefore, it is great important to study the adsorption mechanism of CO2 and alkane mixtures in tight oil. In this study, a new experimental method and apparatus have been designed to test the change of the mole fraction of CO2 and n-C12 before and after the adsorption equilibrium. Then, the adsorption amount of CO2 and n-C12 was obtained by a mathematical method. Moreover, the adsorption character of CO2 and n-C12 mixtures in 13X molecular sieve and the effect of pressure on the adsorption and amount were studied. The results show that the adsorption of CO2 and the desorption of n-C12 follow the Langmuir adsorption. This study provides a straightforward method to experimentally determine the adsorption properties of the tight oil, which can be used to evaluate enhanced tight oil recovery by CO2 injection.

  4. Green synthesis of mesoporous molecular sieve incorporated monoliths using room temperature ionic liquid and deep eutectic solvents.

    PubMed

    Zhang, Li-Shun; Zhao, Qing-Li; Li, Xin-Xin; Li, Xi-Xi; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-12-01

    A hybrid monolith incorporated with mesoporous molecular sieve MCM-41 of uniform pore structure and high surface area was prepared with binary green porogens in the first time. With a mixture of room temperature ionic liquids and deep eutectic solvents as porogens, MCM-41 was modified with 3-(trimethoxysilyl) propyl methacrylate (γ-MPS) and the resulting MCM-41-MPS was incorporated into poly (BMA-co-EDMA) monoliths covalently. Because of good dispersibility of MCM-41-MPS in the green solvent-based polymerization system, high permeability and homogeneity for the resultant hybrid monolithic columns was achieved. The MCM-41-MPS grafted monolith was characterized by scanning electron microscopy, energy dispersive spectrometer area scanning, transmission electron microscopy, FT-IR spectra and nitrogen adsorption tests. Chromatographic performance of MCM-41-MPS grafted monolith was characterized by separating small molecules in capillary electrochromatography, including phenol series, naphthyl substitutes, aniline series and alkyl benzenes. The maximum column efficiency of MCM-41-MPS grafted monolith reached 209,000 plates/m, which was twice higher than the corresponding MCM-41-MPS free monolith. Moreover, successful separation of non-steroidal anti-inflammatory drugs and polycyclic aromatic hydrocarbons demonstrated the capacity in broad-spectrum application of the MCM-41-MPS incorporated monolith. The results indicated that green synthesis using room temperature ionic liquid and deep eutectic solvents is an effective method to prepare molecular sieve-incorporated monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The sieve element occlusion gene family in dicotyledonous plants

    PubMed Central

    Jekat, Stephan B; Nordzieke, Steffen; Reineke, Anna R; Müller, Boje; Bornberg-Bauer, Erich; Noll, Gundula A

    2011-01-01

    Sieve element occlusion (SEO) genes encoding forisome subunits have been identified in Medicago truncatula and other legumes. Forisomes are structural phloem proteins uniquely found in Fabaceae sieve elements. They undergo a reversible conformational change after wounding, from a condensed to a dispersed state, thereby blocking sieve tube translocation and preventing the loss of photoassimilates. Recently, we identified SEO genes in several non-Fabaceae plants (lacking forisomes) and concluded that they most probably encode conventional non-forisome P-proteins. Molecular and phylogenetic analysis of the SEO gene family has identified domains that are characteristic for SEO proteins. Here, we extended our phylogenetic analysis by including additional SEO genes from several diverse species based on recently published genomic data. Our results strengthen the original assumption that SEO genes seem to be widespread in dicotyledonous angiosperms, and further underline the divergent evolution of SEO genes within the Fabaceae. PMID:21422825

  6. The sieve element occlusion gene family in dicotyledonous plants.

    PubMed

    Ernst, Antonia M; Rüping, Boris; Jekat, Stephan B; Nordzieke, Steffen; Reineke, Anna R; Müller, Boje; Bornberg-Bauer, Erich; Prüfer, Dirk; Noll, Gundula A

    2011-01-01

    Sieve element occlusion (SEO) genes encoding forisome subunits have been identified in Medicago truncatula and other legumes. Forisomes are structural phloem proteins uniquely found in Fabaceae sieve elements. They undergo a reversible conformational change after wounding, from a condensed to a dispersed state, thereby blocking sieve tube translocation and preventing the loss of photoassimilates. Recently, we identified SEO genes in several non-Fabaceae plants (lacking forisomes) and concluded that they most probably encode conventional non-forisome P-proteins. Molecular and phylogenetic analysis of the SEO gene family has identified domains that are characteristic for SEO proteins. Here, we extended our phylogenetic analysis by including additional SEO genes from several diverse species based on recently published genomic data. Our results strengthen the original assumption that SEO genes seem to be widespread in dicotyledonous angiosperms, and further underline the divergent evolution of SEO genes within the Fabaceae.

  7. Moisture ingress prediction in polyisobutylene-based edge seal with molecular sieve desiccant

    DOE PAGES

    Kempe, Michael D.; Nobles, Dylan L.; Postak, Lori; ...

    2017-10-26

    Often photovoltaic modules are constructed with materials that are sensitive to water. This is most often the case with thin film technologies, including perovskite cells, where the active layers are a few microns thick and can be sensitive to moisture, liquid water or both. When moisture or liquid water can ingress, a small amount of water can lead to corrosion and depending on the resulting reactions, a larger local detrimental effect is possible. To prevent moisture from contacting photovoltaic components, impermeable frontsheets and backsheets are used with a polyisobutylene (PIB)-based edge seal material around the perimeter. Here, we evaluate themore » ability of a PIB-based edge seal using a molecular sieve desiccant to keep moisture out for the expected module lifetime. Moisture ingress is evaluated using test coupons where the edge seal is placed between 2 pieces of glass, one of which has a metallic calcium film on it, and monitoring the moisture ingress distance as a function of time. We expose samples to different temperature and humidity conditions to create permeation models useful for extrapolation to field use. This extrapolation indicates that this PIB material is capable of keeping moisture out of a module for the desired lifetime.« less

  8. Moisture ingress prediction in polyisobutylene-based edge seal with molecular sieve desiccant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, Michael D.; Nobles, Dylan L.; Postak, Lori

    Often photovoltaic modules are constructed with materials that are sensitive to water. This is most often the case with thin film technologies, including perovskite cells, where the active layers are a few microns thick and can be sensitive to moisture, liquid water or both. When moisture or liquid water can ingress, a small amount of water can lead to corrosion and depending on the resulting reactions, a larger local detrimental effect is possible. To prevent moisture from contacting photovoltaic components, impermeable frontsheets and backsheets are used with a polyisobutylene (PIB)-based edge seal material around the perimeter. Here, we evaluate themore » ability of a PIB-based edge seal using a molecular sieve desiccant to keep moisture out for the expected module lifetime. Moisture ingress is evaluated using test coupons where the edge seal is placed between 2 pieces of glass, one of which has a metallic calcium film on it, and monitoring the moisture ingress distance as a function of time. We expose samples to different temperature and humidity conditions to create permeation models useful for extrapolation to field use. This extrapolation indicates that this PIB material is capable of keeping moisture out of a module for the desired lifetime.« less

  9. CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication.

    PubMed

    Dettmer, Jan; Ursache, Robertas; Campilho, Ana; Miyashima, Shunsuke; Belevich, Ilya; O'Regan, Seana; Mullendore, Daniel Leroy; Yadav, Shri Ram; Lanz, Christa; Beverina, Luca; Papagni, Antonio; Schneeberger, Korbinian; Weigel, Detlef; Stierhof, York-Dieter; Moritz, Thomas; Knoblauch, Michael; Jokitalo, Eija; Helariutta, Ykä

    2014-07-10

    Phloem, a plant tissue responsible for long-distance molecular transport, harbours specific junctions, sieve areas, between the conducting cells. To date, little is known about the molecular framework related to the biogenesis of these sieve areas. Here we identify mutations at the CHER1/AtCTL1 locus of Arabidopsis thaliana. The mutations cause several phenotypic abnormalities, including reduced pore density and altered pore structure in the sieve areas associated with impaired phloem function. CHER1 encodes a member of a poorly characterized choline transporter-like protein family in plants and animals. We show that CHER1 facilitates choline transport, localizes to the trans-Golgi network, and during cytokinesis is associated with the phragmoplast. Consistent with its function in the elaboration of the sieve areas, CHER1 has a sustained, polar localization in the forming sieve plates. Our results indicate that the regulation of choline levels is crucial for phloem development and conductivity in plants.

  10. Rapid Generation of Large Dimension Photon Sieve Designs

    NASA Technical Reports Server (NTRS)

    Hariharan, Shravan; Fitzpatrick, Sean; Kim, Hyun Jung; Julian, Matthew; Sun, Wenbo; Tedjojuwono, Ken; MacDonnell, David

    2017-01-01

    A photon sieve is a revolutionary optical instrument that provides high resolution imaging at a fraction of the weight of typical telescopes (areal density of 0.3 kg/m2 compared to 25 kg/m2 for the James Webb Space Telescope). The photon sieve is a variation of a Fresnel Zone Plate consisting of many small holes spread out in a ring-like pattern, which focuses light of a specific wavelength by diffraction. The team at NASA Langley Research Center has produced a variety of small photon sieves for testing. However, it is necessary to increase both the scale and rate of production, as a single sieve previously took multiple weeks to design and fabricate. This report details the different methods used in producing photon sieve designs in two file formats: CIF and DXF. The difference between these methods, and the two file formats were compared, to determine the most efficient design process. Finally, a step-by-step sieve design and fabrication process was described. The design files can be generated in both formats using an editing tool such as Microsoft Excel. However, an approach using a MATLAB program reduced the computing time of the designs and increased the ability of the user to generate large photon sieve designs. Although the CIF generation process was deemed the most efficient, the design techniques for both file types have been proven to generate complete photon sieves that can be used for scientific applications

  11. Molecular separation method and apparatus

    DOEpatents

    Villa-Aleman, E.

    1996-04-09

    A method and apparatus are disclosed for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular sieve. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve. 2 figs.

  12. OZONE REACTION WITH N-ALDEHYDES (N=4-10), BENZALDEHYDE, ETHANOL, ISOPROPANOL, AND N-PROPANOL ADSORBED ON A DUAL-BED GRAPHITIZED CARBON/CARBON MOLECULAR SIEVE ADSORBENT CARTRIDGE

    EPA Science Inventory

    Ozone reacts with n-aldehydes (n = 4 - 10), benzaldehyde, ethanol, isopropanol, and n-propanol adsorbed on a dual-bed graphitized carbon/carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some samp...

  13. Integrated Testing of a 4-Bed Molecular Sieve and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Mulloth, Lila M.; Affleck, David L.

    2004-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. This paper reports the integrated 4BMS and liquid-cooled TSAC testing conducted during the period of March 3 to April 18, 2003. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  14. High-Energy-Density Aqueous Magnesium-Ion Battery Based on a Carbon-Coated FeVO4 Anode and a Mg-OMS-1 Cathode.

    PubMed

    Zhang, Hongyu; Ye, Ke; Zhu, Kai; Cang, Ruibai; Yan, Jun; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2017-12-01

    Porous FeVO 4 is prepared by hydrothermal method and further modified by coating with carbon to obtain FeVO 4 /C with a hierarchical pore structure. FeVO 4 /C is used as an anodic electrode in aqueous rechargeable magnesium-ion batteries. The FeVO 4 /C material not only has improved electrical conductivity as a result of the carbon coating layer, but also has an increased specific surface area as a result of the hierarchical pore structure, which is beneficial for magnesium-ion insertion/deinsertion. Therefore, an aqueous rechargeable magnesium-ion full battery is successfully constructed with FeVO 4 /C as the anode, Mg-OMS-1 (OMS=octahedral molecular sieves) as the cathode, and 1.0 mol L -1 MgSO 4 as the electrolyte. The discharge capacity of the Mg-OMS-1//FeVO 4 /C aqueous battery is 58.9 mAh g -1 at a current density of 100 mA g -1 ; this value is obtained by calculating the total mass of two electrodes and the capacity retention rate of this device is 97.7 % after 100 cycles, with almost 100 % coulombic efficiency, which indicates that the system has a good electrochemical reversibility. Additionally, this system can achieve a high energy density of 70.4 Wh kg -1 , which provides powerful evidence that an aqueous magnesium-ion battery is possible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Integrated Testing of a 4-Bed Molecular Sieve, Air-Cooled Temperature Swing Adsorption Compressor, and Sabatier Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini

    2006-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.

  16. A Virtual Laboratory for the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, James; O'Connor, Brian

    2016-01-01

    Ongoing work to improve water and carbon dioxide separation systems to be used on crewed space vehicles combines sub-scale systems testing and multi-physics simulations. Thus, as part of NASA's Advanced Exploration Systems (AES) program and the Life Support Systems Project (LSSP), fully predictive COMSOL Multiphysics models of the Four Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) on the International Space Station (ISS) have been developed. This Virtual Laboratory is being used to help reduce mass, power, and volume requirements for exploration missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future missions as well as the resolution of anomalies observed in the ISS CDRA.

  17. Synthesis of [11C]palmitic acid for PET imaging using a single molecular sieve 13X cartridge for reagent trapping, radiolabeling and selective purification.

    PubMed

    Amor-Coarasa, Alejandro; Kelly, James M; Babich, John W

    2015-08-01

    Radiolabeled fatty acids are valuable metabolic tracers for PET imaging. Carbon-11 is widely used in clinical PET studies due to the prevalence of facile techniques enabling the incorporation of [(11)C]CO2 and [(11)C]CH3 into molecules and a short half-life (20.4 min) that translates into low patient dose. However, the short half-life considerably limits the time for radiosynthesis. Furthermore, the majority of the syntheses of [(11)C]palmitic acid in common use employ high starting [(11)C]CO2 activities and/or expensive equipment. [(11)C]CO2 was trapped with greater than 99.99% efficiency by a three stage cartridge packed with molecular sieve 13X, 100-120 mesh. The labeling of n-pentadecylmagnesium bromide took place in 5 min in the cartridge, and the [(11)C]palmitic acid product was selectively eluted in ethanol following alkaline and acidic washes of the column. The system reliably produced more than 925 MBq (25 mCi) of [(11)C]palmitic acid suitable for human use from 7.4 GBq (200 mCi) of [(11)C]CO2 in 8 min from end-of-bombardment. We have exploited the properties of the inexpensive molecular sieve 13X to develop a miniature, disposable and leak tight "gas capture" system for the rapid labeling and purification of [(11)C]fatty acids in good yield and >99% radiochemical purity. The rapidity of the synthesis and purification allows small [(11)C]CO2 starting activities to be used, and with no requirement for expensive synthesis equipment or facilities, the system can be implemented in any radiopharmaceutical center. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Tolerances for sieves. 801.8 Section 801.8 Agriculture... FOR GRAIN INSPECTION EQUIPMENT § 801.8 Tolerances for sieves. The maintenance tolerances for sieves...) Accuracy of perforation: ±0.001 inch from design specification. (c) Sieving accuracy: Sieve description...

  19. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Tolerances for sieves. 801.8 Section 801.8 Agriculture... FOR GRAIN INSPECTION EQUIPMENT § 801.8 Tolerances for sieves. The maintenance tolerances for sieves...) Accuracy of perforation: ±0.001 inch from design specification. (c) Sieving accuracy: Sieve description...

  20. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerances for sieves. 801.8 Section 801.8 Agriculture... FOR GRAIN INSPECTION EQUIPMENT § 801.8 Tolerances for sieves. The maintenance tolerances for sieves...) Accuracy of perforation: ±0.001 inch from design specification. (c) Sieving accuracy: Sieve description...

  1. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Tolerances for sieves. 801.8 Section 801.8 Agriculture... FOR GRAIN INSPECTION EQUIPMENT § 801.8 Tolerances for sieves. The maintenance tolerances for sieves...) Accuracy of perforation: ±0.001 inch from design specification. (c) Sieving accuracy: Sieve description...

  2. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Tolerances for sieves. 801.8 Section 801.8 Agriculture... FOR GRAIN INSPECTION EQUIPMENT § 801.8 Tolerances for sieves. The maintenance tolerances for sieves...) Accuracy of perforation: ±0.001 inch from design specification. (c) Sieving accuracy: Sieve description...

  3. Performance model-directed data sieving for high-performance I/O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yong; Lu, Yin; Amritkar, Prathamesh

    2014-09-10

    Many scientific computing applications and engineering simulations exhibit noncontiguous I/O access patterns. Data sieving is an important technique to improve the performance of noncontiguous I/O accesses by combining small and noncontiguous requests into a large and contiguous request. It has been proven effective even though more data are potentially accessed than demanded. In this study, we propose a new data sieving approach namely performance model-directed data sieving, or PMD data sieving in short. It improves the existing data sieving approach from two aspects: (1) dynamically determines when it is beneficial to perform data sieving; and (2) dynamically determines how tomore » perform data sieving if beneficial. It improves the performance of the existing data sieving approach considerably and reduces the memory consumption as verified by both theoretical analysis and experimental results. Given the importance of supporting noncontiguous accesses effectively and reducing the memory pressure in a large-scale system, the proposed PMD data sieving approach in this research holds a great promise and will have an impact on high-performance I/O systems.« less

  4. Photon sieve telescope

    NASA Astrophysics Data System (ADS)

    Andersen, Geoff; Tullson, Drew

    2006-06-01

    In designing next-generation, ultra-large (>20m) apertures for space, many current concepts involve compactable, curved membrane reflectors. Here we present the idea of using a flat diffractive element that requires no out-of-plane deformation and so is much simpler to deploy. The primary is a photon sieve - a diffractive element consisting of a large number of precisely positioned holes distributed according to an underlying Fresnel Zone Plate (FZP) geometry. The advantage of the photon sieve over the FZP is that all the regions are connected, so the membrane substrate under simple tension can avoid buckling. Also, the hole distribution can be varied to generate any conic or apodization for specialized telescope requirements such as exo-solar planet detection. We have designed and tested numerous photon sieves as telescope primaries. Some of these have over 10 million holes in a 0.1 m diameter aperture and all of them give diffraction limited imaging. While photon sieves are diffractive elements and thus suffer from dispersion, we will present two successful solutions to this problem.

  5. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    PubMed

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  6. Two emissive-magnetic composite platforms for Hg(II) sensing and removal: The combination of magnetic core, silica molecular sieve and rhodamine chemosensors

    NASA Astrophysics Data System (ADS)

    Mao, Hanping; Liu, Zhongshou

    2018-01-01

    In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe3O4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples.

  7. Synthesis of Cation and Water Free Cryptomelane Type OMS-2 Cathode Materials: The Impact of Tunnel Water on Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyraz, Altug S.; Huang, Jianping; Zhang, Bingjie

    Cryptomelane type manganese dioxides (α-MnO 2, OMS-2) are interesting potential cathode materials due to the ability of their one dimensional (1D) tunnels to reversibly host various cations including Li +and an accessible stable 3+/4+ redox couple. Here, we synthesized metal cation free OMS-2 materials where the tunnels were occupied by only water and hydronium ions. Water was subsequently removed from the tunnels. Cation free OMS-2 and Dry-OMS-2 were used as cathodes in Li based batteries to investigate the role of tunnel water on their electrochemistry. The initial discharge capacity was higher for Dry-OMS-2 (252 mAh/g) compared to OMS-2 (194 mAh/g),more » however, after 100 cycles Dry-OMS-2 and OMS-2 delivered 137 mAh/g and 134 mAh/g, respectively. Li +ion diffusion was more facile for Dry-OMS as evidenced by rate capability, at 400 mA/g. Dry-OMS-2 delivered 135mAh/g whereas OMS-2 delivered ~115 mAh/g. This first report of the impact of tunnel water on the electrochemistry of OMS-2 type materials demonstrates that the presence of tunnel water in OMS-2 type materials negatively impacts the electrochemistry.« less

  8. Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon?

    PubMed

    Will, Torsten; Kornemann, Sarah R; Furch, Alexandra C U; Tjallingii, W Fred; van Bel, Aart J E

    2009-10-01

    Ca2+-binding proteins in the watery saliva of Megoura viciae counteract Ca2+-dependent occlusion of sieve plates in Vicia faba and so prevent the shut-down of food supply in response to stylet penetration. The question arises whether this interaction between aphid saliva and sieve-element proteins is a universal phenomenon as inferred by the coincidence between sieve-tube occlusion and salivation. For this purpose, leaf tips were burnt in a number of plant species from four different families to induce remote sieve-plate occlusion. Resultant sieve-plate occlusion in these plant species was counteracted by an abrupt switch of aphid behaviour. Each of the seven aphid species tested interrupted its feeding behaviour and started secreting watery saliva. The protein composition of watery saliva appeared strikingly different between aphid species with less than 50% overlap. Secretion of watery saliva seems to be a universal means to suppress sieve-plate occlusion, although the protein composition of watery saliva seems to diverge between species.

  9. Interactions among tobacco sieve element occlusion (SEO) proteins.

    PubMed

    Jekat, Stephan B; Ernst, Antonia M; Zielonka, Sascia; Noll, Gundula A; Prüfer, Dirk

    2012-12-01

    Angiosperms transport their photoassimilates through sieve tubes, which comprise longitudinally-connected sieve elements. In dicots and also some monocots, the sieve elements contain parietal structural proteins known as phloem proteins or P-proteins. Following injury, P proteins disperse and accumulate as viscous plugs at the sieve plates to prevent the loss of valuable transport sugars. Tobacco (Nicotiana tabacum) P-proteins are multimeric complexes comprising subunits encoded by members of the SEO (sieve element occlusion) gene family. The existence of multiple subunits suggests that P-protein assembly involves interactions between SEO proteins, but this process is largely uncharacterized and it is unclear whether the different subunits perform unique roles or are redundant. We therefore extended our analysis of the tobacco P-proteins NtSEO1 and NtSEO2 to investigate potential interactions between them, and found that both proteins can form homomeric and heteromeric complexes in planta.

  10. Toward a four-toothed molecular bevel gear with C2-symmetrical rotors.

    PubMed

    Kao, Chen-Yi; Hsu, Ya-Ting; Lu, Hsiu-Feng; Chao, Ito; Huang, Shou-Ling; Lin, Ying-Chih; Sun, Wei-Ting; Yang, Jye-Shane

    2011-07-15

    The design, synthesis, conformational analysis, and variable-temperature NMR studies of pentiptycene-based molecular gears Pp(2)X, where Pp is the unlabeled (in 1H) or methoxy groups-labeled (in 1OM) pentiptycene rotor and X is the phenylene stator containing ortho-bridged ethynylene axles, are reported. The approach of using shape-persistent rotors of four teeth but C(2) symmetry for constructing four-toothed molecular gears is unprecedented. In addition, the first example of enantioresolution of chiral pentiptycene scaffolds is demonstrated. Density functional theory (DFT) and AM1 calculations on these Pp(2)X systems suggest two possible correlated torsional motions, geared rocking and four-toothed geared rotations, which compete with the uncorrelated gear slippage. The DFT-derived torsional barriers in 1H for rocking, four-toothed rotation, and gear slippage are approximately 2.9, 5.5, and 4.7 kcal mol(-1), respectively. The low energy barriers for these torsional motions result from the low energy cost of bending the ethynylene axles. Comparison of the NMR spectra of 1OM in a mixture of stereoisomers (1OM-mix) and in an enantiopure form (1OM-op) confirms a fast gear slippage in these Pp(2)X systems. The effect of the methoxy labels on rotational potential energy surface and inter-rotor dynamics is also discussed.

  11. The liver sieve and atherosclerosis.

    PubMed

    Fraser, Robin; Cogger, Victoria C; Dobbs, Bruce; Jamieson, Hamish; Warren, Alessandra; Hilmer, Sarah N; Le Couteur, David G

    2012-04-01

    The 'liver sieve' is a term developed to describe the appearance and the role of fenestrations in the liver sinusoidal endothelial cell (LSEC). LSECs are gossamer-thin cells that line the hepatic sinusoid and they are perforated with pores called fenestrations clustered in sieve plates. There is growing evidence that fenestrations act like a permselective ultrafiltration system which is important for the hepatic uptake of many substrates, particularly chylomicron remnant lipoproteins. The liver sieve is a very efficient exchange system, however in conditions such as hepatic cirrhosis and fibrosis, diabetes mellitus and old age, there is defenestration of the liver sieve. Such defenestration has been shown to influence the hepatic uptake of various substrates including lipoproteins. In the future, pharmacological manipulation of the liver sieve may play a number of therapeutic roles including the management of dyslipidaemia; increasing the efficiency of liver-targeted gene therapy; and improving regeneration of old livers. (C) 2012 Royal College of Pathologists of Australasia.

  12. [Removal of toluene from waste gas by honeycomb adsorption rotor with modified 13X molecular sieves].

    PubMed

    Wang, Jia-De; Zheng, Liang-Wei; Zhu, Run-Ye; Yu, Yun-Feng

    2013-12-01

    The removal of toluene from waste gas by Honeycomb Adsorption Rotor with modified 13X molecular sieves was systematically investigated. The effects of the rotor operating parameters and the feed gas parameters on the adsorption efficiency were clarified. The experimental results indicated that the honeycomb adsorption rotor had a good humidity resistance. The removal efficiency of honeycomb adsorption rotor achieved the maximal value with optimal rotor speed and optimal generation air temperature. Moreover, for an appropriate flow rate ratio the removal efficiency and energy consumption should be taken into account. When the recommended operating parameters were regeneration air temperature of 180 degrees C, rotor speed of 2.8-5 r x h(-1), flow rate ratio of 8-12, the removal efficiency kept over 90% for the toluene gas with concentration of 100 mg x m(-3) and inlet velocity of 2 m x s(-1). The research provided design experience and operating parameters for industrial application of honeycomb adsorption rotor. It showed that lower empty bed velocity, faster rotor speed and higher temperature were necessary to purify organic waste gases of higher concentrations.

  13. Semi-Technical Cryogenic Molecular Sieve Bed for the Tritium Extraction System of the Test Blanket Module for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beloglazov, S.; Bekris, N.; Glugla, M.

    2005-07-15

    The tritium extraction from the ITER Helium Cooled Pebble Bed (HCPB) Test Blanket Module purge gas is proposed to be performed in a two steps process: trapping water in a cryogenic Cold Trap, and adsorption of hydrogen isotopes (H{sub 2}, HT, T{sub 2}) as well as impurities (N{sub 2}, O{sub 2}) in a Cryogenic Molecular Sieve Bed (CMSB) at 77K. A CMSB in a semi-technical scale (one-sixth of the flow rate of the ITER-HCPB) was design and constructed at the Forschungszentrum Karlsruhe. The full capacity of CMSB filled with 20 kg of MS-5A was calculated based on adsorption isotherm datamore » to be 9.4 mol of H{sub 2} at partial pressure 120 Pa. The breakthrough tests at flow rates up to 2 Nm{sup 3}h{sup -1} of He with 110 Pa of H{sub 2} conformed with good agreement the adsorption capacity of the CMSB. The mass-transfer zone was found to be relatively narrow (12.5 % of the MS Bed height) allowing to scale up the CMSB to ITER flow rates.« less

  14. Two emissive-magnetic composite platforms for Hg(II) sensing and removal: The combination of magnetic core, silica molecular sieve and rhodamine chemosensors.

    PubMed

    Mao, Hanping; Liu, Zhongshou

    2018-01-15

    In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe 3 O 4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N 2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. SieveSifter: a web-based tool for visualizing the sieve analyses of HIV-1 vaccine efficacy trials.

    PubMed

    Fiore-Gartland, Andrew; Kullman, Nicholas; deCamp, Allan C; Clenaghan, Graham; Yang, Wayne; Magaret, Craig A; Edlefsen, Paul T; Gilbert, Peter B

    2017-08-01

    Analysis of HIV-1 virions from participants infected in a randomized controlled preventive HIV-1 vaccine efficacy trial can help elucidate mechanisms of partial protection. By comparing the genetic sequence of viruses from vaccine and placebo recipients to the sequence of the vaccine itself, a technique called 'sieve analysis', one can identify functional specificities of vaccine-induced immune responses. We have created an interactive web-based visualization and data access tool for exploring the results of sieve analyses performed on four major preventive HIV-1 vaccine efficacy trials: (i) the HIV Vaccine Trial Network (HVTN) 502/Step trial, (ii) the RV144/Thai trial, (iii) the HVTN 503/Phambili trial and (iv) the HVTN 505 trial. The tool acts simultaneously as a platform for rapid reinterpretation of sieve effects and as a portal for organizing and sharing the viral sequence data. Access to these valuable datasets also enables the development of novel methodology for future sieve analyses. Visualization: http://sieve.fredhutch.org/viz . Source code: https://github.com/nkullman/SIEVE . Data API: http://sieve.fredhutch.org/data . agartlan@fredhutch.org. © The Author(s) 2017. Published by Oxford University Press.

  16. Sieve tube geometry in relation to phloem flow.

    PubMed

    Mullendore, Daniel L; Windt, Carel W; Van As, Henk; Knoblauch, Michael

    2010-03-01

    Sieve elements are one of the least understood cell types in plants. Translocation velocities and volume flow to supply sinks with photoassimilates greatly depend on the geometry of the microfluidic sieve tube system and especially on the anatomy of sieve plates and sieve plate pores. Several models for phloem translocation have been developed, but appropriate data on the geometry of pores, plates, sieve elements, and flow parameters are lacking. We developed a method to clear cells from cytoplasmic constituents to image cell walls by scanning electron microscopy. This method allows high-resolution measurements of sieve element and sieve plate geometries. Sieve tube-specific conductivity and its reduction by callose deposition after injury was calculated for green bean (Phaseolus vulgaris), bamboo (Phyllostachys nuda), squash (Cucurbita maxima), castor bean (Ricinus communis), and tomato (Solanum lycopersicum). Phloem sap velocity measurements by magnetic resonance imaging velocimetry indicate that higher conductivity is not accompanied by a higher velocity. Studies on the temporal development of callose show that small sieve plate pores might be occluded by callose within minutes, but plants containing sieve tubes with large pores need additional mechanisms.

  17. Sieve Tube Geometry in Relation to Phloem Flow

    PubMed Central

    Mullendore, Daniel L.; Windt, Carel W.; Van As, Henk; Knoblauch, Michael

    2010-01-01

    Sieve elements are one of the least understood cell types in plants. Translocation velocities and volume flow to supply sinks with photoassimilates greatly depend on the geometry of the microfluidic sieve tube system and especially on the anatomy of sieve plates and sieve plate pores. Several models for phloem translocation have been developed, but appropriate data on the geometry of pores, plates, sieve elements, and flow parameters are lacking. We developed a method to clear cells from cytoplasmic constituents to image cell walls by scanning electron microscopy. This method allows high-resolution measurements of sieve element and sieve plate geometries. Sieve tube–specific conductivity and its reduction by callose deposition after injury was calculated for green bean (Phaseolus vulgaris), bamboo (Phyllostachys nuda), squash (Cucurbita maxima), castor bean (Ricinus communis), and tomato (Solanum lycopersicum). Phloem sap velocity measurements by magnetic resonance imaging velocimetry indicate that higher conductivity is not accompanied by a higher velocity. Studies on the temporal development of callose show that small sieve plate pores might be occluded by callose within minutes, but plants containing sieve tubes with large pores need additional mechanisms. PMID:20354199

  18. Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis

    NASA Astrophysics Data System (ADS)

    Bu, Hongling; Yuan, Peng; Liu, Hongmei; Liu, Dong; Liu, Jinzhong; He, Hongping; Zhou, Junming; Song, Hongzhe; Li, Zhaohui

    2017-09-01

    The stability and persistence of organic matter (OM) in source rocks are of great significance for hydrocarbon generation and the global carbon cycle. Clay-OM associations commonly occur in sedimentation and diagenesis processes and can influence the pyrolytic behaviors of OM. In this study, clay-OM complexes, i.e., interlayer clay-OM complexes and clay-OM mixture, were prepared and exposed to high-pressure pyrolysis conditions in confined gold capsule reactors to assess variations in OM pyrolysis products in the presence of clay minerals. Three model organic compounds, octadecanoic acid (OA), octadecy trimethyl ammonium bromide (OTAB), and octadecylamine (ODA), were employed and montmorillonite (Mt) was selected as the representative clay mineral. The solid acidity of Mt plays a key role in affecting the amount and composition of the pyrolysis gases generated by the clay-OM complexes. The Brønsted acid sites significantly promote the cracking of hydrocarbons through a carbocation mechanism and the isomerization of normal hydrocarbons. The Lewis acid sites are primarily involved in the decarboxylation reaction during pyrolysis and are responsible for CO2 generation. Mt exhibits either a catalysis effect or pyrolysis-inhibiting during pyrolysis of a given OM depending on the nature of the model organic compound and the nature of the clay-OM complexation. The amounts of C1-5 hydrocarbons and CO2 that are released from the Mt-OA and Mt-ODA complexes were higher than those of the parent OA and ODA, respectively, indicating a catalysis effect of Mt. In contrast, the amount of C1-5 hydrocarbons produced from the pyrolysis of Mt-OTAB complexes was lower than that of OTAB, which we attribute to an inhibiting effect of Mt. This pyrolysis-inhibiting effect works through the Hoffmann elimination that is promoted by the catalysis of the Brønsted acid sites of Mt, therefore releasing smaller amounts of gas hydrocarbons than the nucleophilic reaction that is induced by the

  19. Catalyzing the oxidation of sulfamethoxazole by permanganate using molecular sieves supported ruthenium nanoparticles.

    PubMed

    Zhang, Jing; Sun, Bo; Huang, Yuying; Guan, Xiaohong

    2015-12-01

    This study developed a heterogeneous catalytic permanganate oxidation system with three molecular sieves, i.e., nanosized ZSM-5 (ZSM-5A), microsized ZSM-5 (ZSM-5B) and MCM-41, supported ruthenium nanoparticles as catalyst, denoted as Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41, respectively. The presence of 0.5gL(-1) Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41 increased the oxidation rate of sulfamethoxazole (SMX) by permanganate at pH 7.0 by 27-1144 times. The catalytic performance of Ru catalysts toward SMX oxidation by permanganate was strongly dependent on Ru loading on the catalysts. The X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses confirmed that Ru catalyst acted as an electron shuttle in catalytic permanganate oxidation process. Ru(III) deposited on the surface of catalysts was oxidized by permanganate to its higher oxidation state Ru(VII), which could work as a co-oxidant with permanganate to decompose SMX and was then reduced to its initial tri-valence. During the successive runs, Ru/ZSM-5A could not maintain its catalytic activity due to the deposition of MnO2, which was the reductive product of permanganate, onto the surface of Ru/ZSM-5A. Thus, the regeneration of partially deactivated Ru catalysts by reductant NH2OH⋅HCl or ascorbic acid was proposed. Ru/ZSM-5A regenerated by NH2OH⋅HCl displayed comparable catalytic ability to its virgin counterpart, while ascorbic acid could not completely remove the deposited MnO2. A trace amount of leaching of Ru into the reaction solution was also observed, which would be ameliorated by improving the preparation conditions in the future study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Unplugging the callose plug from sieve pores.

    PubMed

    Xie, Bo; Hong, Zonglie

    2011-04-01

    The presence of callose in sieve plates has been known for a long time, but how this polysaccharide plug is synthesized has remained unsolved. Two independent laboratories have recently reported the identification of callose synthase 7 (CalS7), also known as glucan synthase-like 7 (GSL7), as the enzyme responsible for callose deposition in sieve plates. Mutant plants defective in this enzyme failed to synthesize callose in developing sieve plates during phloem formation and were unable to accumulate callose in sieve pores in response to stress treatments. The mutant plants developed less open pores per sieve plate and the pores were smaller in diameter. As a result, phloem conductivity was reduced significantly and the mutant plants were shorter and set fewer seeds.

  1. Unplugging the callose plug from sieve pores

    PubMed Central

    Xie, Bo

    2011-01-01

    The presence of callose in sieve plates has been known for a long time, but how this polysaccharide plug is synthesized has remained unsolved. Two independent laboratories have recently reported the identification of callose synthase 7 (CalS7), also known as glucan synthase-like 7 (GSL7), as the enzyme responsible for callose deposition in sieve plates. Mutant plants defective in this enzyme failed to synthesize callose in developing sieve plates during phloem formation and were unable to accumulate callose in sieve pores in response to stress treatments. The mutant plants developed less open pores per sieve plate and the pores were smaller in diameter. As a result, phloem conductivity was reduced significantly and the mutant plants were shorter and set fewer seeds. PMID:21386663

  2. Effect of sieving polymer concentration on separation of 100 bp DNA Ladder by capillary gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Nakazumi, T.; Hara, Y.

    2017-09-01

    We studied the effect of sieving polymer concentration on separation of a 100 bp DNA Ladder by capillary gel electrophoresis (CGE) using hydroxyethyl cellulose (HEC) with a molecular size of 1000 k. For measurement purposes, we selected a fused silica capillary with total length of 15 cm and effective length of 7.5 cm; this was applied to compact CGE equipment for a Point-Care-Testing (POCT) system. Measurement results of the 100 bp DNA Ladder sample indicated that small DNA separation was significantly affected by HEC sieving polymer concentration. This was due to the level of entanglement between small DNA molecules and the sieving polymer chain significantly influencing migration time, mobility, and resolution length of the CGE process. We concluded that 1.0 w/v % HEC sieving polymer concentration was optimal for CGE separation of DNA ≥1000bp in the 100 bp DNA Ladder (100-1500 bp) when using the short-length capillary.

  3. On the occurrence of nuclei in mature sieve elements.

    PubMed

    Event, R F; Davis, J D; Tucker, C M; Alfieri, F J

    1970-12-01

    The secondary phloem of 3 species of the Taxodiaceae and 13 species of woody dicotyledons was examined for the occurrence of nuclei in mature sieve elements. Nuclei were found in all mature sieve cells of Metasequoia glyptostroboides, Sequoia sempervirens and Taxodium distichum, and in some mature sieve-tube members in 12 of the 13 species of woody dicotyledons. Except for nuclei of sieve cells undergoing cessation of function, the nuclei in mature sieve cells of M. glyptostroboides, S. sempervirens and T. distichum were normal in appearance. The occurrence and morphology of nuclei in mature sieve-tube members of the woody dicotyledons were quite variable. Only 3 species, Robinia pseudoacacia, Ulmus americana and Vitis riparia, contained some mature sieve elements with apparently normal nuclei.

  4. Gold-catalyzed heterogeneous aerobic dehydrogenative amination of α,β-unsaturated aldehydes to enaminals.

    PubMed

    Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka

    2014-01-07

    Although enaminals (β-enaminals) are very important compounds and have been utilized as useful synthons for various important compounds, they have been synthesized through non-green and/or limited procedures until now. Herein, we have successfully developed a green synthetic procedure using a heterogeneous catalyst. In the presence of gold nanoparticles supported on manganese-oxide-based octahedral molecular sieves OMS-2 (Au/OMS-2), dehydrogenative amination of α,β-unsaturated aldehydes with amines proceeded efficiently, with the corresponding enaminals isolated in moderate to high yields (50-97 %). The catalysis was truly heterogeneous, and Au/OMS-2 could be reused. Furthermore, the formal Wacker-type oxidation of α,β-unsaturated aldehydes to enaminones has been realized. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Interplay of H2O and K+ inside the channels of Mn8O16

    NASA Astrophysics Data System (ADS)

    Sharma, Vidushi; Kaltak, Merzuk; Hybertsen, Mark; Fernandez-Serra, Marivi

    With the rapid growth in consumer electronics and electric vehicles, there is an increasing interest in developing high-density batteries, which requires investigation of robust electrode materials. One of these, α-MnO2, is inexpensive and environmentally benign to manufacture. It consists of an arrangement of corner- and edge- shared MnO6 octahedra forming a 2 × 2 tunnel structure, and belongs to a family of ``octahedral molecular sieve structures'' (OMS-2). Owing to the large tunnel cavity of OMS-2, cations such as K+, Li+, Ag+, etc. as well as water molecules can be introduced into the 2 × 2 tunnel, thereby enabling us to tailor its chemical and physical properties. In this work, we focus on the incorporation of K+ in the tunnel, which stabilizes α-MnO2, in agreement with experiment. Our primary goal is to investigate the role of water in stabilizing the ions already present in a tunnel cavity, using first-principles density functional theory (DFT) calculations, including van der Waals interactions. We also analyze how the hydrogen-bond network competes with the ionic bonding of K+ in the channel.

  6. Live imaging of companion cells and sieve elements in Arabidopsis leaves.

    PubMed

    Cayla, Thibaud; Batailler, Brigitte; Le Hir, Rozenn; Revers, Frédéric; Anstead, James A; Thompson, Gary A; Grandjean, Olivier; Dinant, Sylvie

    2015-01-01

    The phloem is a complex tissue composed of highly specialized cells with unique subcellular structures and a compact organization that is challenging to study in vivo at cellular resolution. We used confocal scanning laser microscopy and subcellular fluorescent markers in companion cells and sieve elements, for live imaging of the phloem in Arabidopsis leaves. This approach provided a simple framework for identifying phloem cell types unambiguously. It highlighted the compactness of the meshed network of organelles within companion cells. By contrast, within the sieve elements, unknown bodies were observed in association with the PP2-A1:GFP, GFP:RTM1 and RTM2:GFP markers at the cell periphery. The phloem lectin PP2-A1:GFP marker was found in the parietal ground matrix. Its location differed from that of the P-protein filaments, which were visualized with SEOR1:GFP and SEOR2:GFP. PP2-A1:GFP surrounded two types of bodies, one of which was identified as mitochondria. This location suggested that it was embedded within the sieve element clamps, specific structures that may fix the organelles to each another or to the plasma membrane in the sieve tubes. GFP:RTM1 was associated with a class of larger bodies, potentially corresponding to plastids. PP2-A1:GFP was soluble in the cytosol of immature sieve elements. The changes in its subcellular localization during differentiation provide an in vivo blueprint for monitoring this process. The subcellular features obtained with these companion cell and sieve element markers can be used as landmarks for exploring the organization and dynamics of phloem cells in vivo.

  7. Live Imaging of Companion Cells and Sieve Elements in Arabidopsis Leaves

    PubMed Central

    Cayla, Thibaud; Batailler, Brigitte; Le Hir, Rozenn; Revers, Frédéric; Anstead, James A.; Thompson, Gary A.; Grandjean, Olivier; Dinant, Sylvie

    2015-01-01

    The phloem is a complex tissue composed of highly specialized cells with unique subcellular structures and a compact organization that is challenging to study in vivo at cellular resolution. We used confocal scanning laser microscopy and subcellular fluorescent markers in companion cells and sieve elements, for live imaging of the phloem in Arabidopsis leaves. This approach provided a simple framework for identifying phloem cell types unambiguously. It highlighted the compactness of the meshed network of organelles within companion cells. By contrast, within the sieve elements, unknown bodies were observed in association with the PP2-A1:GFP, GFP:RTM1 and RTM2:GFP markers at the cell periphery. The phloem lectin PP2-A1:GFP marker was found in the parietal ground matrix. Its location differed from that of the P-protein filaments, which were visualized with SEOR1:GFP and SEOR2:GFP. PP2-A1:GFP surrounded two types of bodies, one of which was identified as mitochondria. This location suggested that it was embedded within the sieve element clamps, specific structures that may fix the organelles to each another or to the plasma membrane in the sieve tubes. GFP:RTM1 was associated with a class of larger bodies, potentially corresponding to plastids. PP2-A1:GFP was soluble in the cytosol of immature sieve elements. The changes in its subcellular localization during differentiation provide an in vivo blueprint for monitoring this process. The subcellular features obtained with these companion cell and sieve element markers can be used as landmarks for exploring the organization and dynamics of phloem cells in vivo. PMID:25714357

  8. Are phloem sieve tubes leaky conduits supported by numerous aquaporins?

    PubMed

    Stanfield, Ryan C; Hacke, Uwe G; Laur, Joan

    2017-05-01

    Aquaporin membrane water channels have been previously identified in the phloem of angiosperms, but currently their cellular characterization is lacking, especially in tree species. Pinpointing the cellular location will help generate new hypotheses of how membrane water exchange facilitates sugar transport in plants. We studied histological sections of balsam poplar ( Populus balsamifera L.) in leaf, petiole, and stem organs. Immuno-labeling techniques were used to characterize the distribution of PIP1 and PIP2 subfamilies of aquaporins along the phloem pathway. Confocal and super resolution microscopy (3D-SIM) was used to identify the localization of aquaporins at the cellular level. Sieve tubes of the leaf lamina, petiole, and stem were labeled with antibodies directed at PIP1s and PIP2s. While PIP2s were mostly observed in the plasma membrane, PIP1s showed both an internal membrane and plasma membrane labeling pattern. The specificity and consistency of PIP2 labeling in sieve element plasma membranes points to high water exchange rates between sieve tubes and adjacent cells. The PIP1s may relocate between internal membranes and the plasma membrane to facilitate dynamic changes in membrane permeability of sieve elements in response to changing internal or environmental conditions. Aquaporin-mediated changes in membrane permeability of sieve tubes would also allow for some control of radial exchange of water between xylem and phloem. © 2017 Botanical Society of America.

  9. Ordered micro/macro porous K-OMS-2/SiO2 nanocatalysts: Facile synthesis, low cost and high catalytic activity for diesel soot combustion

    PubMed Central

    Yu, Xuehua; Zhao, Zhen; Wei, Yuechang; Liu, Jian

    2017-01-01

    A series of novel oxide catalysts, which contain three-dimensionally ordered macroporous (3DOM) and microporous structure, were firstly designed and successfully synthesized by simple method. In the as-prepared catalysts, 3DOM SiO2 is used as support and microporous K-OMS-2 oxide nanoparticles are supported on the wall of SiO2. 3DOM K-OMS-2/SiO2 oxide catalysts were firstly used in soot particle oxidation reaction and they show very high catalytic activities. The high activities of K-OMS-2/SiO2 oxide catalysts can be assigned to three possible reasons: macroporous effect of 3DOM structure for improving contact between soot and catalyst, microporous effect of K-OMS-2 for adsorption of small gas molecules and interaction of K and Mn for activation of gas molecules. The catalytic activities of catalysts are comparable to or even higher than noble metal catalyst in the medium and high temperature range. For example, the T50 of K-OMS-2/SiO2-50, 328 °C, is much lower than those of Pt/Al2O3 and 3DOM Au/LaFeO3, 464 and 356 °C,respectively. Moreover, catalysts exhibited high catalytic stability. It is attributed to that the K+ ions are introduced into the microporous structure of OMS-2 and stabilized in the catalytic reaction. Meanwhile, the K+ ions play an important role in templating and stabilizing the tunneled framework of OMS-2. PMID:28443610

  10. Modeling the hydrodynamics of Phloem sieve plates.

    PubMed

    Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele; Bohr, Tomas; Knoblauch, Michael; Bruus, Henrik

    2012-01-01

    Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway.

  11. Modeling the Hydrodynamics of Phloem Sieve Plates

    PubMed Central

    Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele; Bohr, Tomas; Knoblauch, Michael; Bruus, Henrik

    2012-01-01

    Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway. PMID:22811681

  12. An artificial compound eye of photon Sieves

    NASA Astrophysics Data System (ADS)

    Jiang, Wenbo; Hu, Song; He, Yu; Bu, Yun

    2015-11-01

    The compound eye of insects has numerous extraordinary optical performances, such as minimum chromatic aberration, wide-angle field of view, and high sensitivity to the incidence light. Inspired by these unique performances, we present a novel artificial compound eye of photon sieves in this paper, where the photon sieves play the roles of insects' ommatidia. These photon sieves have the same focal length. The incidence light can be focused into the same focal plane and produce the superposition effect, the utilization ratio of energy can be largely improved. Through the numerical simulation, the results show that this novel structure has similar focusing performance with the conventional photon sieves, but has higher utilization ratio of energy and wider angle field of view than that of the conventional photon sieves. Our findings provide a new direction for optics and biology researchers, which will be beneficial for medical imaging, astronomy, etc.

  13. Adsorptive Water Removal from Dichloromethane and Vapor-Phase Regeneration of a Molecular Sieve 3A Packed Bed

    PubMed Central

    2017-01-01

    The drying of dichloromethane with a molecular sieve 3A packed bed process is modeled and experimentally verified. In the process, the dichloromethane is dried in the liquid phase and the adsorbent is regenerated by water desorption with dried dichloromethane product in the vapor phase. Adsorption equilibrium experiments show that dichloromethane does not compete with water adsorption, because of size exclusion; the pure water vapor isotherm from literature provides an accurate representation of the experiments. The breakthrough curves are adequately described by a mathematical model that includes external mass transfer, pore diffusion, and surface diffusion. During the desorption step, the main heat transfer mechanism is the condensation of the superheated dichloromethane vapor. The regeneration time is shortened significantly by external bed heating. Cyclic steady-state experiments demonstrate the feasibility of this novel, zero-emission drying process. PMID:28539701

  14. Reversible Calcium-Regulated Stopcocks in Legume Sieve TubesW⃞

    PubMed Central

    Knoblauch, Michael; Peters, Winfried S.; Ehlers, Katrin; van Bel, Aart J. E.

    2001-01-01

    Sieve tubes of legumes (Fabaceae) contain characteristic P-protein crystalloids with controversial function. We studied their behavior by conventional light, electron, and confocal laser scanning microscopy. In situ, crystalloids are able to undergo rapid (<1 sec) and reversible conversions from the condensed resting state into a dispersed state, in which they occlude the sieve tubes. Crystalloid dispersal is triggered by plasma membrane leakage induced by mechanical injury or permeabilizing substances. Similarly, abrupt turgor changes imposed by osmotic shock cause crystalloid dispersal. Because chelators generally prevent the response, divalent cations appear to be the decisive factor in crystalloid expansion. Cycling between dispersal and condensation can be induced in opened cells by repetitive exchange of bathing media containing either Ca2+ or chelators. Sr2+ and Ba2+, but not Mg2+, are equally active. In conclusion, the fabacean P-protein crystalloids represent a novel class of mechanically active proteinaceous structures, which provide an efficient mechanism with which to control sieve tube conductivity. PMID:11340193

  15. Comparative Modal Analysis of Sieve Hardware Designs

    NASA Technical Reports Server (NTRS)

    Thompson, Nathaniel

    2012-01-01

    The CMTB Thwacker hardware operates as a testbed analogue for the Flight Thwacker and Sieve components of CHIMRA, a device on the Curiosity Rover. The sieve separates particles with a diameter smaller than 150 microns for delivery to onboard science instruments. The sieving behavior of the testbed hardware should be similar to the Flight hardware for the results to be meaningful. The elastodynamic behavior of both sieves was studied analytically using the Rayleigh Ritz method in conjunction with classical plate theory. Finite element models were used to determine the mode shapes of both designs, and comparisons between the natural frequencies and mode shapes were made. The analysis predicts that the performance of the CMTB Thwacker will closely resemble the performance of the Flight Thwacker within the expected steady state operating regime. Excitations of the testbed hardware that will mimic the flight hardware were recommended, as were those that will improve the efficiency of the sieving process.

  16. Sulfur oxide adsorbents and emissions control

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  17. Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving

    PubMed Central

    Li, Zhi; Yu, Rong; Huang, Jinglu; Shi, Yusheng; Zhang, Diyang; Zhong, Xiaoyan; Wang, Dingsheng; Wu, Yuen; Li, Yadong

    2015-01-01

    Developing catalysts that provide the effective activation of hydrogen and selective absorption of substrate on metal surface is crucial to simultaneously improve activity and selectivity of hydrogenation reaction. Here we present an unique in situ etching and coordination synthetic strategy for exploiting a functionalized metal-organic framework to incorporate the bimetallic platinum–nickel frames, thereby forming a frame within frame nanostructure. The as-grown metal-organic framework serves as a ‘breath shell' to enhance hydrogen enrichment and activation on platinum–nickel surface. More importantly, this framework structure with defined pores can provide the selective accessibility of molecules through its one-dimensional channels. In a mixture containing four olefins, the composite can selectively transport the substrates smaller than its pores to the platinum–nickel surface and catalyse their hydrogenation. This molecular sieve effect can be also applied to selectively produce imines, which are important intermediates in the reductive imination of nitroarene, by restraining further hydrogenation via cascade processes. PMID:26391605

  18. Coating magnetic CuFe2O4 nanoparticles with OMS-2 for enhanced degradation of organic pollutants via peroxymonosulfate activation

    NASA Astrophysics Data System (ADS)

    Ye, Peng; Wu, Deming; Wang, Manye; Wei, Yi; Xu, Aihua; Li, Xiaoxia

    2018-01-01

    A heterogeneous magnetic CuFe2O4@OMS-2 catalyst was fabricated through a facile solvent-free process using Mn(CH3COO)2 and KMnO4 in the presence of CuFe2O4. It was found that the BET surface area of OMS-2 as well as the ratio of low-valent manganese species significantly increased in the hybrid catalyst, due to interactions between CuFe2O4 and the precursor of amorphous manganese oxide. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the CuFe2O4@OMS-2 catalyst within 30 min in the presence of peroxymonosulfate (PMS), while CuFe2O4 and OMS-2 showed no significant activity for the reaction. The hybrid catalyst also exhibited excellent long-term stability and could be easily recovered with the assistance of an external magnetic field. A possible degradation mechanism for the synergistic effects of different valent metal species and reactive radicals was proposed, which involved the electron transfer from Mn(III) or Mn(II) species to PMS with the generation of sulfate and hydroxyl radicals, and from AO7 and Cu(I) in CuFe2O4 to Mn(IV) and Mn(III) to reduce these Mn species.

  19. Manganese dioxide as a new cathode catalyst in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Hu, Boxun; Suib, Steven; Lei, Yu; Li, Baikun

    This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells (MFCs). Undoped (ud-OSM-2) and three catalysts doped with cobalt (Co-OMS-2), copper (Cu-OMS-2), and cerium (Ce-OMS-2) to enhance their catalytic performances were investigated. The novel OMS-2 cathodes were examined in granular activated carbon MFC (GACMFC) with sodium acetate as the anode reagent and oxygen in air as the cathode reagent. The results showed that after 400 h of operation, the Co-OMS-2 and Cu-OMS-2 exhibited good catalytic performance in an oxygen reduction reaction (ORR). The voltage of the Co-OMS-2 GACMFC was 217 mV, and the power density was 180 mW m -2. The voltage of the Cu-OMS-2 GACMFC was 214 mV and the power density was 165 mW m -2. The internal resistance (R in) of the OMS-2 GACMFCs (18 ± 1 Ω) was similar to that of the platinum GACMFCs (17 Ω). Furthermore, the degradation rates of organic substrates in the OMS-2 GACMFCs were twice those in the platinum GACMFCs, which enhance their wastewater treatment efficiencies. This study indicated that using OMS-2 manganese oxides to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.

  20. Molecular dynamics computer simulation of permeation in solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohl, P.I.; Heffelfinger, G.S.; Fisler, D.K.

    1997-12-31

    In this work the authors simulate permeation of gases and cations in solid models using molecular mechanics and a dual control volume grand canonical molecular dynamics technique. The molecular sieving nature of microporous zeolites are discussed and compared with that for amorphous silica made by sol-gel methods. One mesoporous and one microporous membrane model are tested with Lennard-Jones gases corresponding to He, H{sub 2}, Ar and CH{sub 4}. The mesoporous membrane model clearly follows a Knudsen diffusion mechanism, while the microporous model having a hard-sphere cutoff pore diameter of {approximately}3.4 {angstrom} demonstrates molecular sieving of the methane ({sigma} = 3.8more » {angstrom}) but anomalous behavior for Ar ({sigma} = 3.4 {angstrom}). Preliminary results of Ca{sup +} diffusion in calcite and He/H{sub 2} diffusion in polyisobutylene are also presented.« less

  1. Fractionation of distillers dried grains with solubles (DDGS) by sieving and winnowing.

    PubMed

    Liu, KeShun

    2009-12-01

    Four commercial samples of distillers dried grains with solubles (DDGS) were sieved. All sieved fractions except for the pan fraction, constituting about 90% of original mass, were then winnowed with an air blast seed cleaner. Sieving was effective in producing fractions with varying composition. As the particle size decreased, protein and ash contents increased, and total carbohydrate (CHO) decreased. Winnowing sieved fractions was also effective in shifting composition, particularly for larger particle classes. Heavy sub-fractions were enriched in protein, oil and ash, while light sub-fractions were enriched for CHO. For protein, the combination of the two procedures resulted in a maximum 56.4% reduction in a fraction and maximum 60.2% increase in another fraction. As airflow velocity increased, light sub-fraction mass increased, while the compositional difference between the heavy and light sub-fractions decreased. Winnowing three times at a lower velocity was as effective as winnowing one time at a medium velocity. Winnowing the whole DDGS was much less effective than winnowing sieved fractions in changing composition, but sieving winnowed fractions was more effective than sieving whole DDGS. The two combination sequences gave comparable overall effects but sieving followed by winnowing is recommended because it requires less time. Regardless of combinational sequence, the second procedure was more effective in shifting composition than the first procedure.

  2. Enhancement of arsenite removal using manganese oxide coupled with iron (III) trimesic

    NASA Astrophysics Data System (ADS)

    Phanthasri, Jakkapop; Khamdahsag, Pummarin; Jutaporn, Panitan; Sorachoti, Kwannapat; Wantala, Kitirote; Tanboonchuy, Visanu

    2018-01-01

    A simultaneous removal of As(III) was investigated on a mixture of manganese oxide based octahedral molecular sieves (K-OMS2) and iron-benzenetricarboxylate (Fe-BTC). As(III) removal was stimulated by an oxidation cooperated with adsorption process. K-OMS2 and Fe-BTC were separately synthesized and characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). K-OMS2 showed characters of pure cryptomelane phase, nanorod structure, and a mixed-valent manganese framework with the coexistence of Mn(IV) and Mn(III). As(III) was successfully oxidized to As(V) by K-OMS2 in a temperature range of 303-333 K. An intermediate adsorption of As(V) was carried out with Fe-BTC in the same batch. A maximum adsorption capacity, described by Langmuir isotherm model, was observed at 76.34 mg/g. With an As(III) initial concentration of 5 mg/L, when K-OMS2 and Fe-BTC were simultaneously introduced into the solution, the As(III) removal process was completed within 60 min. Thus, it shortened the process time compared to the case where K-OMS2 was added first, followed by the addition of Fe-BTC.

  3. Impact of Fe(III)-OM complexes and Fe(III) polymerization on SOM pools reactivity under different land uses

    NASA Astrophysics Data System (ADS)

    Giannetta, B.; Plaza, C.; Zaccone, C.; Siebecker, M. G.; Rovira, P.; Vischetti, C.; Sparks, D. L.

    2017-12-01

    Soil organic matter (SOM) protection and long-term accumulation are controlled by adsorption to mineral surfaces in different ways, depending on its molecular structure and pedo-climatic conditions. Iron (Fe) oxides are known to be key regulators of the soil carbon (C) cycle, and Fe speciation in soils is highly dependent on environmental conditions and chemical interactions with SOM. However, the molecular structure and hydrolysis of Fe species formed in association with SOM is still poorly described. We hypothesize the existence of two pools of Fe which interact with SOM: mononuclear Fe(III)-SOM complexes and precipitated Fe(III) hydroxides. To verify our hypothesis, we investigated the interactions between Fe(III) and physically isolated soil fractions by means of batch experiments at pH 7. Specifically, we examined the fine silt plus clay (FSi+C) fraction, obtained by ultrasonic dispersion and wet sieving. The soil samples spanned several land uses, including coniferous forest (CFS), grassland (GS), technosols (TS) and agricultural (AS) soils. Solid phase products and supernatants were analyzed for C and Fe content. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis were also performed. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to assess the main C functional groups involved in C complexation and desorption experiments. Preliminary linear combination fitting (LCF) of Fe K-edge extended X-ray absorption fine structure (EXAFS) spectra suggested the formation of ferrihydrite-like polymeric Fe(III) oxides in reacted CFS and GS samples, with higher C and Fe concentration. Conversely, mononuclear Fe(III) OM complexes dominated the speciation for TS and AS samples, characterized by lower C and Fe concentration, inhibiting the hydrolysis and polymerization of Fe (III). This approach will help revealing the mechanisms by which SOM pools can control Fe(III) speciation, and will elucidate how both Fe(III)-OM

  4. Prime Numbers Comparison using Sieve of Eratosthenes and Sieve of Sundaram Algorithm

    NASA Astrophysics Data System (ADS)

    Abdullah, D.; Rahim, R.; Apdilah, D.; Efendi, S.; Tulus, T.; Suwilo, S.

    2018-03-01

    Prime numbers are numbers that have their appeal to researchers due to the complexity of these numbers, many algorithms that can be used to generate prime numbers ranging from simple to complex computations, Sieve of Eratosthenes and Sieve of Sundaram are two algorithm that can be used to generate Prime numbers of randomly generated or sequential numbered random numbers, testing in this study to find out which algorithm is better used for large primes in terms of time complexity, the test also assisted with applications designed using Java language with code optimization and Maximum memory usage so that the testing process can be simultaneously and the results obtained can be objective

  5. Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer.

    PubMed

    Ramachandran, Anup; Schuettler, Martin; Lago, Natalia; Doerge, Thomas; Koch, Klaus Peter; Navarro, Xavier; Hoffmann, Klaus-Peter; Stieglitz, Thomas

    2006-06-01

    This paper reports on the design, in vitro and in vivo investigation of a flexible, lightweight, polyimide based implantable sieve electrode with a hybrid assembly of multiplexers and polymer encapsulation. The integration of multiplexers enables us to connect a large number of electrodes on the sieve using few input connections. The implant assembly of the sieve electrode with the electronic circuitry was verified by impedance measurement. The 27 platinum electrodes of the sieve were coated with platinum black to reduce the electrode impedance. The impedance magnitude of the electrode sites on the sieve (geometric surface area 2,200 microm(2)) was |Z(f=1kHz)| = 5.7 kOmega. The sieve electrodes, encased in silicone, have been implanted in the transected sciatic nerve of rats. Initial experiments showed that axons regenerated through the holes of the sieve and reinnervated distal target organs. Nerve signals were recorded in preliminary tests after 3-7 months post-implantation.

  6. Does aphid salivation affect phloem sieve element occlusion in vivo?

    PubMed

    Medina-Ortega, Karla J; Walker, G P

    2013-12-01

    To protect against loss of photo-assimilate-rich phloem sap, plants have evolved several mechanisms to plug phloem sieve tubes in response to damage. In many Fabaceae, each sieve element contains a discrete proteinaceous body called a forisome, which, in response to damage, rapidly transforms from a condensed configuration that does not impede the flow of sap to a dispersed configuration that plugs the sieve element. Aphids and other specialized phloem sap feeders can ingest phloem sap from a single sieve element for hours or days, and to do this, they must be able to suppress or reverse phloem plugging. A recent study provided in vitro evidence that aphid saliva can reverse forisome plugs. The present study tested this hypothesis in vivo by inducing forisome plugs which triggered aphids to switch behaviour from phloem sap ingestion to salivation into the sieve element. After salivating into the sieve element for various periods of time, the aphids were instantaneously cryofixed (freeze fixed) in situ on their leaf. The state of the forisome was then determined in the penetrated sieve element and in nearby non-penetrated sieve elements which served as controls for sieve elements not subjected to direct aphid salivation. Forisomes were almost always in close contact with the stylet tips and thus came into direct contact with the saliva. Nonetheless, forisome plugs in the penetrated sieve element did not revert back to a non-plugging state any faster than those in neighbouring sieve elements that were not subjected to direct aphid salivation.

  7. Does aphid salivation affect phloem sieve element occlusion in vivo?

    PubMed Central

    Medina-Ortega, Karla J.

    2013-01-01

    To protect against loss of photo-assimilate-rich phloem sap, plants have evolved several mechanisms to plug phloem sieve tubes in response to damage. In many Fabaceae, each sieve element contains a discrete proteinaceous body called a forisome, which, in response to damage, rapidly transforms from a condensed configuration that does not impede the flow of sap to a dispersed configuration that plugs the sieve element. Aphids and other specialized phloem sap feeders can ingest phloem sap from a single sieve element for hours or days, and to do this, they must be able to suppress or reverse phloem plugging. A recent study provided in vitro evidence that aphid saliva can reverse forisome plugs. The present study tested this hypothesis in vivo by inducing forisome plugs which triggered aphids to switch behaviour from phloem sap ingestion to salivation into the sieve element. After salivating into the sieve element for various periods of time, the aphids were instantaneously cryofixed (freeze fixed) in situ on their leaf. The state of the forisome was then determined in the penetrated sieve element and in nearby non-penetrated sieve elements which served as controls for sieve elements not subjected to direct aphid salivation. Forisomes were almost always in close contact with the stylet tips and thus came into direct contact with the saliva. Nonetheless, forisome plugs in the penetrated sieve element did not revert back to a non-plugging state any faster than those in neighbouring sieve elements that were not subjected to direct aphid salivation. PMID:24127515

  8. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes

    NASA Astrophysics Data System (ADS)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhang, Li; Zhou, Junhu; Cen, Kefa

    2017-07-01

    Mixed matrix membranes with ionic liquids and molecular sieve particles had high CO2 permeabilities, but CO2 separation from small gas molecules such as H2 was dissatisfied because of bad interfacial interaction between ionic liquid and molecular sieve particles. To solve that, amine groups were introduced to modify surface of molecular sieve particles before loading with ionic liquid. SAPO 34 was adopted as the original filler, and four mixed matrix membranes with different fillers were prepared on the outer surface of ceramic hollow fibers. Both surface voids and hard agglomerations disappeared, and the surface became smooth after SAPO 34 was modified by amine groups and ionic liquid [P66614][2-Op]. Mixed matrix membranes with composites of amine-modified SAPO 34 and ionic liquid exhibited excellent CO2 permeability (408.9 Barrers) and CO2/H2 selectivity (22.1).

  9. Selective Activation of Human Dendritic Cells by OM-85 through a NF-kB and MAPK Dependent Pathway

    PubMed Central

    Scutera, Sara; Somma, Paolo; Salvi, Valentina; Musso, Tiziana; Tabbia, Giuseppe; Bardessono, Marco; Pasquali, Christian; Mantovani, Alberto; Sozzani, Silvano; Bosisio, Daniela

    2013-01-01

    OM-85 (Broncho-Vaxom®, Broncho-Munal®, Ommunal®, Paxoral®, Vaxoral®), a product made of the water soluble fractions of 21 inactivated bacterial strain patterns responsible for respiratory tract infections, is used for the prevention of recurrent upper respiratory tract infections and acute exacerbations in chronic obstructive pulmonary disease patients. OM-85 is able to potentiate both innate and adaptive immune responses. However, the molecular mechanisms responsible for OM-85 activation are still largely unknown. Purpose of this study was to investigate the impact of OM-85 stimulation on human dendritic cell functions. We show that OM-85 selectively induced NF-kB and MAPK activation in human DC with no detectable action on the interferon regulatory factor (IRF) pathway. As a consequence, chemokines (i.e. CXCL8, CXCL6, CCL3, CCL20, CCL22) and B-cell activating cytokines (i.e. IL-6, BAFF and IL-10) were strongly upregulated. OM-85 also synergized with the action of classical pro-inflammatory stimuli used at suboptimal concentrations. Peripheral blood mononuclear cells from patients with COPD, a pathological condition often associated with altered PRR expression pattern, fully retained the capability to respond to OM-85. These results provide new insights on the molecular mechanisms of OM-85 activation of the immune response and strengthen the rational for its use in clinical settings. PMID:24386121

  10. Soluble and filamentous proteins in Arabidopsis sieve elements.

    PubMed

    Batailler, Brigitte; Lemaître, Thomas; Vilaine, Françoise; Sanchez, Christian; Renard, Denis; Cayla, Thibaud; Beneteau, Julie; Dinant, Sylvie

    2012-07-01

    Phloem sieve elements are highly differentiated cells involved in the long-distance transport of photoassimilates. These cells contain both aggregated phloem-proteins (P-proteins) and soluble proteins, which are also translocated by mass flow. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to carry out a proteomic survey of the phloem exudate of Arabidopsis thaliana, collected by the ethylenediaminetetraacetic acid (EDTA)-facilitated method. We identified 287 proteins, a large proportion of which were enzymes involved in the metabolic precursor generation and amino acid synthesis, suggesting that sieve tubes display high levels of metabolic activity. RNA-binding proteins, defence proteins and lectins were also found. No putative P-proteins were detected in the EDTA-exudate fraction, indicating a lack of long-distance translocation of such proteins in Arabidopsis. In parallel, we investigated the organization of P-proteins, by high-resolution transmission electron microscopy, and the localization of the phloem lectin PP2, a putative P-protein component, by immunolocalization with antibodies against PP2-A1. Transmission electron microscopy observations of P-proteins revealed bundles of filaments resembling strings of beads. PP2-A1 was found weakly associated with these structures in the sieve elements and bound to plastids. These observations suggest that PP2-A1 is anchored to P-proteins and organelles rather than being a structural component of P-proteins. © 2012 Blackwell Publishing Ltd.

  11. Biofuel manufacturing from woody biomass: effects of sieve size used in biomass size reduction.

    PubMed

    Zhang, Meng; Song, Xiaoxu; Deines, T W; Pei, Z J; Wang, Donghai

    2012-01-01

    Size reduction is the first step for manufacturing biofuels from woody biomass. It is usually performed using milling machines and the particle size is controlled by the size of the sieve installed on a milling machine. There are reported studies about the effects of sieve size on energy consumption in milling of woody biomass. These studies show that energy consumption increased dramatically as sieve size became smaller. However, in these studies, the sugar yield (proportional to biofuel yield) in hydrolysis of the milled woody biomass was not measured. The lack of comprehensive studies about the effects of sieve size on energy consumption in biomass milling and sugar yield in hydrolysis process makes it difficult to decide which sieve size should be selected in order to minimize the energy consumption in size reduction and maximize the sugar yield in hydrolysis. The purpose of this paper is to fill this gap in the literature. In this paper, knife milling of poplar wood was conducted using sieves of three sizes (1, 2, and 4 mm). Results show that, as sieve size increased, energy consumption in knife milling decreased and sugar yield in hydrolysis increased in the tested range of particle sizes.

  12. Purification and heterogeneity of human kininogen. Use of DEAE-chromatography, molecular sieving and antibody specific immunosorbents.

    PubMed

    Hamberg, U; Elg, P; Nissinen, E; Stelwagen, P

    1975-01-01

    Various methods of preparing human kininogen were investigated with an aim to limit the immunoreactive contaminant proteins to permit purification by immunosorption. A five-step procedure is described giving 7.5% yield of highly purified kininogen (pharmacological purity 14--20) from pooled human plasma, and containing approximately 30% alpha-2HS-glycoprotein and 2.8% albumin. Alpha-2HS could not be removed by polyacrylamide gel electrophoresis or isoelectric focusing in column. Analysis of heterogeneity of kininogen after chromatography on DEAE-Sephadex using various linear gradients and gel filtration on Sephadex G-100 suggested that a minor component may be an aggregate, not included in the yield. It remains uncertain whether this component derives from an occasionally observed high molecular form of active kininogen in the primary purification steps in the 7-12 S sieve fractions from Sephadex G-200, and excluded from further purification by pooling. Purification with immunosorbents was investigated using batch operations with antibody specific polymers prepared with antisera insolubilized with ethylchloroformate. It was found that the adsorption-desorption procedure was favourable for immunization purposes in producing highly specific immunologically pure kininogen. The kininogen obtained by this method or by the removal of contaminant alpha-2HS and albumin with the corresponding antibody specific polymers gave similar heterogenous patterns by polyacrylamide gel electrophoresis, indicating a main band of kininogen and several faintly stained bands which responded only to anti-kininogen. With 200 mug of the kininogen protein purified by immunosorption using monospecific antiserum the kininogen precipitation titre was 1:8 after 6--8 weeks in rabbits. With a polymer prepared with 4 ml anti-kininogen serum (1:8) and incubated with 800 mug highly purified kininogen approximately half the protein was desorbed with 2 M and 3 M sodium iodide in the first adsorption

  13. O&M Best Practices - A Guide to Achieving Operational Efficiency (Release 2.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Gregory P.; Pugh, Ray; Melendez, Aldo P.

    2004-07-31

    This guide, sponsored by DOE's Federal Energy Management Program, highlights operations and maintenance (O&M) programs targeting energy efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide the federal O&M energy manager and practitioner with useful information about O&M management, technologies, energy efficiency and cost-reduction approaches.

  14. Interfacing peripheral nerve with macro-sieve electrodes following spinal cord injury.

    PubMed

    Birenbaum, Nathan K; MacEwan, Matthew R; Ray, Wilson Z

    2017-06-01

    Macro-sieve electrodes were implanted in the sciatic nerve of five adult male Lewis rats following spinal cord injury to assess the ability of the macro-sieve electrode to interface regenerated peripheral nerve fibers post-spinal cord injury. Each spinal cord injury was performed via right lateral hemisection of the cord at the T 9-10 site. Five months post-implantation, the ability of the macro-sieve electrode to interface the regenerated nerve was assessed by stimulating through the macro-sieve electrode and recording both electromyography signals and evoked muscle force from distal musculature. Electromyography measurements were recorded from the tibialis anterior and gastrocnemius muscles, while evoked muscle force measurements were recorded from the tibialis anterior, extensor digitorum longus, and gastrocnemius muscles. The macro-sieve electrode and regenerated sciatic nerve were then explanted for histological evaluation. Successful sciatic nerve regeneration across the macro-sieve electrode interface following spinal cord injury was seen in all five animals. Recorded electromyography signals and muscle force recordings obtained through macro-sieve electrode stimulation confirm the ability of the macro-sieve electrode to successfully recruit distal musculature in this injury model. Taken together, these results demonstrate the macro-sieve electrode as a viable interface for peripheral nerve stimulation in the context of spinal cord injury.

  15. Filamentous sieve element proteins are able to limit phloem mass flow, but not phytoplasma spread.

    PubMed

    Pagliari, Laura; Buoso, Sara; Santi, Simonetta; Furch, Alexandra C U; Martini, Marta; Degola, Francesca; Loschi, Alberto; van Bel, Aart J E; Musetti, Rita

    2017-06-15

    In Fabaceae, dispersion of forisomes-highly ordered aggregates of sieve element proteins-in response to phytoplasma infection was proposed to limit phloem mass flow and, hence, prevent pathogen spread. In this study, the involvement of filamentous sieve element proteins in the containment of phytoplasmas was investigated in non-Fabaceae plants. Healthy and infected Arabidopsis plants lacking one or two genes related to sieve element filament formation-AtSEOR1 (At3g01680), AtSEOR2 (At3g01670), and AtPP2-A1 (At4g19840)-were analysed. TEM images revealed that phytoplasma infection induces phloem protein filament formation in both the wild-type and mutant lines. This result suggests that, in contrast to previous hypotheses, sieve element filaments can be produced independently of AtSEOR1 and AtSEOR2 genes. Filament presence was accompanied by a compensatory overexpression of sieve element protein genes in infected mutant lines in comparison with wild-type lines. No correlation was found between phloem mass flow limitation and phytoplasma titre, which suggests that sieve element proteins are involved in defence mechanisms other than mechanical limitation of the pathogen. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Molecular separation method and apparatus

    DOEpatents

    Villa-Aleman, Eliel

    1996-01-01

    A method and apparatus for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve.

  17. Silver-Containing α-MnO 2 Nanorods: Electrochemistry in Na-Based Battery Systems

    DOE PAGES

    Huang, Jianping; Poyraz, Altug S.; Lee, Seung-Yong; ...

    2016-09-01

    Manganese oxides are considered attractive cathode materials for rechargeable batteries due to the high abundance and environmental friendliness of manganese. In particular, cryptomelane and hollandite are desirable due to their ability to host cations within their octahedral molecular sieve (OMS-2) Alpha-MnO 2 structure. In this work, we investigate silver containing Alpha-MnO 2 structured materials (Ag xMn 8O 16, x = 1.22, L-Ag-OMS-2 or 1.66, H-Ag-OMS-2) as host materials for Li ion and Na ion insertion/de-insertion. The results indicate a significant difference in the lithiation versus sodiation process the OMS-2 materials. Initial reduction of Ag 1.22Mn 8O 16 to 1.0 Vmore » delivered ~370 mAh/g. Cycling of Ag1.22Mn8O16 between voltage ranges of 3.8 - 1.7 V and 3.8 - 1.3 V in a Na battery delivered initial capacities of 113 and 247 mAh/g, respectively. In contrast, Ag1.66Mn8O16 delivered only 15 mAh/g, ~0.5 electron equivalents, to 1.7 and 1.3 volts. Study of the system by electrochemical impedance spectroscopy (EIS) showed a significant decrease in charge transfer resistance from 2029 Omega to 594 Omega after 1.5 electron equivalents per Ag 1.22Mn 8O 16 formula unit of Na ion insertion. In contrast, both Ag 1.22Mn 8O 16 and Ag 1.66Mn 8O 16 exhibited gradual impedance increases during lithiation. The formation of silver metal could be detected only in the sodiated material by X-ray diffraction (XRD). Thus, the impedance of Ag-OMS-2 decreases upon sodiation coincident with the formation of silver metal during the discharge process, consistent with the more favorable formation of silver metal during the sodiation process relative to the lithation process.« less

  18. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    PubMed

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  19. Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air.

    PubMed

    Nguyen Dinh, M T; Giraudon, J-M; Vandenbroucke, A M; Morent, R; De Geyter, N; Lamonier, J-F

    2016-08-15

    The total oxidation of trichloroethylene (TCE) in air at low relative humidity (RH=10%) in the presence of CO2 (520ppmv) was investigated in function of energy density using an atmospheric pressure negative DC luminescent glow discharge combined with a cryptomelane catalyst positioned downstream of the plasma reactor at a temperature of 150°C. When using Non-Thermal Plasma (NTP) alone, it is found a low COx (x=1-2) yield in agreement with the detection of gaseous polychlorinated by-products in the outlet stream as well as ozone which is an harmful pollutant. Introduction of cryptomelane enhanced trichloroethylene removal, totally inhibited plasma ozone formation and increased significantly the COx yield. The improved performances of the hybrid system were mainly ascribed to the total destruction of plasma generated ozone on cryptomelane surface to produce active oxygen species. Consequently these active oxygen species greatly enhanced the abatement of the plasma non-reacted TCE and completely destroyed the hazardous plasma generated polychlorinated intermediates. The facile redox of Mn species associated with oxygen vacancies and mobility as well as the textural properties of the catalyst might also contribute as a whole to the efficiency of the process. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Syntheses and characterizations of transition-metal-substituted aluminophosphate molecular sieves |(C3N2H5) 8|[M8Al16P24O96] (M = Co, Mn, Zn) with zeotype LAU topology.

    PubMed

    Song, Xiaowei; Li, Jiyang; Guo, Yanan; Pan, Qinhe; Gan, Lin; Yu, Jihong; Xu, Ruren

    2009-01-05

    Three transitional-metal-substituted aluminophosphate molecular sieves, |(C3N2H5)8|[M8Al16P24O96] (denoted MAPO-LAU, M = Co, Mn, Zn), have been synthesized under solvothermal conditions in the presence of imidazole as the structure-directing agent. Their structures are determined by single-crystal X-ray diffraction and further characterized by powder X-ray diffraction, inductively coupled plasma, thermogravimetric, and diffuse reflectance spectroscopy (UV-vis) analyses. The structure of MAPO-LAU is based on the strict alternation of MO4/AlO4 tetrahedra and PO4 tetrahedra through vertex oxygen atoms. Their frameworks are analogous to the zeotype LAU structure in which 33% of the aluminum sites are replaced by transitional-metal ions. The protonated imidazole cations resided in the 10-ring channels. These compounds show photoluminescent properties due to the existence of imidazole molecules in the structures. Magnetic measurements reveal that there is very weak antiferromagnetic interaction among the metal centers of MnAPO-LAU.

  1. Interlinked Test Results for Fusion Fuel Processing and Blanket Tritium Recovery Systems Using Cryogenic Molecular Sieve Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanishi, Toshihiko; Hayashi, Takumi; Kawamura, Yoshinori

    2005-07-15

    A simulated fuel processing (cryogenic distillation columns and a palladium diffuser) and CMSB (cryogenic molecular sieve bed) systems were linked together, and were operated. The validity of the CMSB was discussed through this experiment as an integrated system for the recovery of blanket tritium. A gas stream of hydrogen isotopes and He was supplied to the CMSB as the He sweep gas in blanket of a fusion reactor. After the breakthrough of tritium was observed, regeneration of the CMSB was carried out by evacuating and heating. The hydrogen isotopes were finally recovered by the diffuser. At first, only He gasmore » was sent by the evacuating. The hydrogen isotopes gas was then rapidly released by the heating. The system worked well against the above drastic change of conditions. The amount of hydrogen isotopes gas finally recovered by the diffuser was in good agreement with that adsorbed by the CMSB. The dynamic behaviors (breakthrough and regeneration) of the system were explained well by a set of basic codes.« less

  2. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units.

  3. Centrifugal Sieve for Gravity-Level-Independent Size Segregation of Granular Materials

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.; Dreyer, Christopher; Riedel, Edward

    2013-01-01

    Conventional size segregation or screening in batch mode, using stacked vibrated screens, is often a time-consuming process. Utilization of centrifugal force instead of gravity as the primary body force can significantly shorten the time to segregate feedstock into a set of different-sized fractions. Likewise, under reduced gravity or microgravity, a centrifugal sieve system would function as well as it does terrestrially. When vibratory and mechanical blade sieving screens designed for terrestrial conditions were tested under lunar gravity conditions, they did not function well. The centrifugal sieving design of this technology overcomes the issues that prevented sieves designed for terrestrial conditions from functioning under reduced gravity. These sieves feature a rotating outer (cylindrical or conical) screen wall, rotating fast enough for the centrifugal forces near the wall to hold granular material against the rotating screen. Conventional centrifugal sieves have a stationary screen and rapidly rotating blades that shear the granular solid near the stationary screen, and effect the sieving process assisted by the airflow inside the unit. The centrifugal sieves of this new design may (or may not) have an inner blade or blades, moving relative to the rotating wall screen. Some continuous flow embodiments would have no inner auger or blades, but achieve axial motion through vibration. In all cases, the shearing action is gentler than conventional centrifugal sieves, which have very high velocity differences between the stationary outer screen and the rapidly rotating blades. The new design does not depend on airflow in the sieving unit, so it will function just as well in vacuum as in air. One advantage of the innovation for batch sieving is that a batch-mode centrifugal sieve may accomplish the same sieving operation in much less time than a conventional stacked set of vibrated screens (which utilize gravity as the primary driving force for size separation

  4. CEBS object model for systems biology data, SysBio-OM.

    PubMed

    Xirasagar, Sandhya; Gustafson, Scott; Merrick, B Alex; Tomer, Kenneth B; Stasiewicz, Stanley; Chan, Denny D; Yost, Kenneth J; Yates, John R; Sumner, Susan; Xiao, Nianqing; Waters, Michael D

    2004-09-01

    To promote a systems biology approach to understanding the biological effects of environmental stressors, the Chemical Effects in Biological Systems (CEBS) knowledge base is being developed to house data from multiple complex data streams in a systems friendly manner that will accommodate extensive querying from users. Unified data representation via a single object model will greatly aid in integrating data storage and management, and facilitate reuse of software to analyze and display data resulting from diverse differential expression or differential profile technologies. Data streams include, but are not limited to, gene expression analysis (transcriptomics), protein expression and protein-protein interaction analysis (proteomics) and changes in low molecular weight metabolite levels (metabolomics). To enable the integration of microarray gene expression, proteomics and metabolomics data in the CEBS system, we designed an object model, Systems Biology Object Model (SysBio-OM). The model is comprehensive and leverages other open source efforts, namely the MicroArray Gene Expression Object Model (MAGE-OM) and the Proteomics Experiment Data Repository (PEDRo) object model. SysBio-OM is designed by extending MAGE-OM to represent protein expression data elements (including those from PEDRo), protein-protein interaction and metabolomics data. SysBio-OM promotes the standardization of data representation and data quality by facilitating the capture of the minimum annotation required for an experiment. Such standardization refines the accuracy of data mining and interpretation. The open source SysBio-OM model, which can be implemented on varied computing platforms is presented here. A universal modeling language depiction of the entire SysBio-OM is available at http://cebs.niehs.nih.gov/SysBioOM/. The Rational Rose object model package is distributed under an open source license that permits unrestricted academic and commercial use and is available at http

  5. Novel synthesis of manganese and vanadium mixed oxide (V{sub 2}O{sub 5}/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdavi, Vahid, E-mail: v-mahdavi@araku.ac.ir; Soleimani, Shima

    2014-03-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V{sub 2}O{sub 5}/OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V{sub 2}O{sub 5}/OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V{sub 2}O{sub 5}/K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V{sub 2}O{sub 5}/K-OMS-2 catalyst. • V{sub 2}O{sub 5}/K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidationmore » using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V{sub 2}O{sub 5}/K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V{sub 2}O{sub 5} species. Oxidation of various alcohols was studied in the liquid phase over the V{sub 2}O{sub 5}/K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H{sub 2}O{sub 2} as the oxidant. Activity of the V{sub 2}O{sub 5}/K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V{sub 2}O{sub 5}. The kinetic of benzyl alcohol oxidation using excess TBHP over V{sub 2}O{sub 5}/K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential

  6. 20 CFR 229.52 - Age reduction when a reduced age O/M is effective before DIB O/M.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Age reduction when a reduced age O/M is... Minimum Rate § 229.52 Age reduction when a reduced age O/M is effective before DIB O/M. If an employee received a reduced age O/M before the effective date of a DIB O/M, the PIA amount for the DIB O/M is...

  7. The molecular characteristics of pyrogenic organic materials and their aqueous leachates

    NASA Astrophysics Data System (ADS)

    Wozniak, A. S.; Hatcher, P.; Mitra, S.; Bostick, K. W.; Zimmerman, A. R.

    2016-12-01

    Pyrogenic organic matter (Py-OM), or black carbon, is known to impact soil chemistry, pollutant transport, regional and global carbon cycling, and climate. Py-OM is incorporated into soils via atmospheric deposition (e.g., from biomass, fossil fuel combustion) or direct applications by humans (e.g., biochars applied for agricultural production). Due to its presumed refractory and immobile nature, soil Py-OM is thought to be efficiently buried, sequestering atmospheric CO2. However, tracers of dissolved Py-OM (Py-DOM) have been detected in appreciable quantities in riverine, estuarine, and oceanic waters suggesting that Py-OM is more mobile in the environment than expected. The molecular characteristics of Py-OM are likely to be a controlling factor in the quantities and impacts of Py-DOM released to aqueous systems. Yet, little is known about the detailed molecular composition of these materials, let alone how those molecular characteristics vary with combustion conditions or are altered by environmental processes. Here, we examine oak and grass Py-OM (combusted over a range of temperatures), natural Py-OM (chars aged in the environment for variable lengths of time), and their Py-DOM leachates via nuclear magnetic resonance spectroscopy (NMR) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Multi-CP 13C NMR analyses of Py-OM materials and 1H NMR analyses of corresponding Py-DOM leachates reveal that Py-OM combustion temperature, environmental exposure, and molecular characteristics are reflected in Py-DOM quantities and characteristics. The relative amounts of aromatic C in Py-OM 1) decreases with environmental exposure, the relative oxygen-content in both Py-OM and Py-DOM, and the amount of Py-DOC released per g of Py-OC but 2) is positively correlated with combustion temperature and the relative contributions of acetate and aliphatic hydrogens (CH2) in Py-DOM. Preliminary FTICR-MS analyses show Py-DOM produced from oak at 400 °C to

  8. Microfluidic sieve valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  9. Super-resolving random-Gaussian apodized photon sieve.

    PubMed

    Sabatyan, Arash; Roshaninejad, Parisa

    2012-09-10

    A novel apodized photon sieve is presented in which random dense Gaussian distribution is implemented to modulate the pinhole density in each zone. The random distribution in dense Gaussian distribution causes intrazone discontinuities. Also, the dense Gaussian distribution generates a substantial number of pinholes in order to form a large degree of overlap between the holes in a few innermost zones of the photon sieve; thereby, clear zones are formed. The role of the discontinuities on the focusing properties of the photon sieve is examined as well. Analysis shows that secondary maxima have evidently been suppressed, transmission has increased enormously, and the central maxima width is approximately unchanged in comparison to the dense Gaussian distribution. Theoretical results have been completely verified by experiment.

  10. Chemical Reactivity of Formaldehyde in FeAlP0{sub 4} Sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeom, Young-Hoon; Ulagappan, Nagappan; Frei, Heinz

    2001-03-12

    Formaldehyde gas loaded into framework Fe aluminophosphate sieve (FeAlP O4-5) at 250 K was found to react with adsorbed H2O, CH3OH, H2O2, or lattice OH groups to yield the corresponding addition product, namely CH2(OH)2, CH3OCH2OH, HO 2CH2OH, or POCH2OH, respectively. Reactions were monitored in situ by static FT-IR spectroscopy, and assignments are based on experiments with CD2=0 and CD3OD. Most efficient was the reaction with H2O2 as indicated by the fact that HO2CH2OH was formed at the exclusion of CH2(OH)2 and POCH2OH when adsorbing formaldehyde onto a sieve loaded with H2O2 and H2O. Methoxymethanol, methanediol, and POCH2OH were stable atmore » 250 K, but dissociated above 0 degrees C under release of formaldehyde. Hydromethyl hydroperoxide disproportionates to formic acid and water. Under 355 nm irradiation in FeAlPO4 sieve, HO2CH2OH was found to undergo efficient photofragmentation.« less

  11. Atomic hydrogen surrounded by water molecules, H(H2O)m, modulates basal and UV-induced gene expressions in human skin in vivo.

    PubMed

    Shin, Mi Hee; Park, Raeeun; Nojima, Hideo; Kim, Hyung-Chel; Kim, Yeon Kyung; Chung, Jin Ho

    2013-01-01

    Recently, there has been much effort to find effective ingredients which can prevent or retard cutaneous skin aging after topical or systemic use. Here, we investigated the effects of the atomic hydrogen surrounded by water molecules, H(H2O)m, on acute UV-induced responses and as well as skin aging. Interestingly, we observed that H(H2O)m application to human skin prevented UV-induced erythema and DNA damage. And H(H2O)m significantly prevented UV-induced MMP-1, COX-2, IL-6 and IL-1β mRNA expressions in human skin in vivo. We found that H(H2O)m prevented UV-induced ROS generation and inhibited UV-induced MMP-1, COX-2 and IL-6 expressions, and UV-induced JNK and c-Jun phosphorylation in HaCaT cells. Next, we investigated the effects of H(H2O)m on intrinsically aged or photoaged skin of elderly subjects. In intrinsically aged skin, H(H2O)m application significantly reduced constitutive expressions of MMP-1, IL-6, and IL-1β mRNA. Additionally, H(H2O)m significantly increased procollagen mRNA and also decreased MMP-1 and IL-6 mRNA expressions in photoaged facial skin. These results demonstrated that local application of H(H2O)m may prevent UV-induced skin inflammation and can modulate intrinsic skin aging and photoaging processes. Therefore, we suggest that modifying the atmospheric gas environment within a room may be a new way to regulate skin functions or skin aging.

  12. Atomic Hydrogen Surrounded by Water Molecules, H(H2O)m, Modulates Basal and UV-Induced Gene Expressions in Human Skin In Vivo

    PubMed Central

    Shin, Mi Hee; Park, Raeeun; Nojima, Hideo; Kim, Hyung-Chel; Kim, Yeon Kyung; Chung, Jin Ho

    2013-01-01

    Recently, there has been much effort to find effective ingredients which can prevent or retard cutaneous skin aging after topical or systemic use. Here, we investigated the effects of the atomic hydrogen surrounded by water molecules, H(H2O)m, on acute UV-induced responses and as well as skin aging. Interestingly, we observed that H(H2O)m application to human skin prevented UV-induced erythema and DNA damage. And H(H2O)m significantly prevented UV-induced MMP-1, COX-2, IL-6 and IL-1β mRNA expressions in human skin in vivo. We found that H(H2O)m prevented UV-induced ROS generation and inhibited UV-induced MMP-1, COX-2 and IL-6 expressions, and UV-induced JNK and c-Jun phosphorylation in HaCaT cells. Next, we investigated the effects of H(H2O)m on intrinsically aged or photoaged skin of elderly subjects. In intrinsically aged skin, H(H2O)m application significantly reduced constitutive expressions of MMP-1, IL-6, and IL-1β mRNA. Additionally, H(H2O)m significantly increased procollagen mRNA and also decreased MMP-1 and IL-6 mRNA expressions in photoaged facial skin. These results demonstrated that local application of H(H2O)m may prevent UV-induced skin inflammation and can modulate intrinsic skin aging and photoaging processes. Therefore, we suggest that modifying the atmospheric gas environment within a room may be a new way to regulate skin functions or skin aging. PMID:23637886

  13. Purification and characterization of native and recombinant SaPIN2a, a plant sieve element-localized proteinase inhibitor.

    PubMed

    Wang, Zhen-Yu; Ding, Ling-Wen; Ge, Zhi-Juan; Wang, Zhaoyu; Wang, Fanghai; Li, Ning; Xu, Zeng-Fu

    2007-01-01

    SaPIN2a encodes a proteinase inhibitor in nightshade (Solanum americanum), which is specifically localized to the enucleate sieve elements. It has been proposed to play an important role in phloem development by regulating proteolysis in sieve elements. In this study, we purified and characterized native SaPIN2a from nightshade stems and recombinant SaPIN2a expressed in Escherichia coli. Purified native SaPIN2a was found as a charge isomer family of homodimers, and was weakly glycosylated. Native SaPIN2a significantly inhibited serine proteinases such as trypsin, chymotrypsin, and subtilisin, with the most potent inhibitory activity on subtilisin. It did not inhibit cysteine proteinase papain and aspartic proteinase cathepsin D. Recombinant SaPIN2a had a strong inhibitory effect on chymotrypsin, but its inhibitory activities toward trypsin and especially toward subtilisin were greatly reduced. In addition, native SaPIN2a can effectively inhibit midgut trypsin-like activities from Trichoplusia ni and Spodoptera litura larvae, suggesting a potential for the production of insect-resistant transgenic plants.

  14. Short-range interactions between surfactants, silica species and EDTA⁴- salt during self-assembly of siliceous mesoporous molecular sieve: a UV Raman study.

    PubMed

    Song, Jiayin; Liu, Liping; Li, Peng; Xiong, Guang

    2012-11-01

    The effects of surfactants, counterions and additive salts on the formation of siliceous mesoporous molecular sieves during self-assembly process were investigated by UV Raman spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The surfactant molecules experience the rearrangement after adding the silica species and adjusting the pH value. The obvious change of the Raman bands related to the surfactants supports a cooperative interaction between surfactant and inorganic species during self-assembly process. The addition of EDTANa(4) to the system induces the interaction between the COO(-) groups of EDTA(4-) and silanol groups of silica and a strong interaction between the EDTA(4-) and the N(+)(CH(3))(3) groups of the surfactant. The above interactions may be the main reason for the salt effect. The new information from the change of the chemical bonds allows for a further analysis to the interactions of different salts between surfactants and silica species at molecular level. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Sieve element occlusion provides resistance against Aphis gossypii in TGR-1551 melons.

    PubMed

    Peng, Hsuan-Chieh; Walker, Gregory P

    2018-05-30

    Feeding behavior and plant response to feeding were studied for the aphid Aphis gossypii (Glover) on susceptible and resistant melons (cv. Iroquois and TGR-1551, respectively). Average phloem phase bout duration on TGR-1551 was <7% of the duration on Iroquois. Sixty-seven percent of aphids on TGR-1551 never produced a phloem phase that attained ingestion (EPG waveform E2) in contrast to only 7% of aphids on Iroquois. Average bout duration of waveform E2 (scored as zero if phloem phase did not attain E2) on TGR-1551 was <3% of the duration on Iroquois. Conversely, average bout duration of EPG waveform E1 (sieve element salivation) was 2.8 times greater on TGR-1551 than on Iroquois. In a second experiment, liquid nitrogen was used to rapidly cryofix leaves and aphids within a few minutes after the aphids penetrated a sieve element. Phloem near the penetration site was then examined by confocal laser scanning microscopy. Ninety-six percent of penetrated sieve elements were occluded by protein in TGR-1551 in contrast to only 28% in Iroquois. Usually in TGR-1551, occlusion was also observed in nearby non-penetrated sieve elements. Next, a calcium channel blocker, trivalent lanthanum, was used to prevent phloem occlusion in TGR-1551, and A. gossypii feeding behavior and the plant's phloem response were compared between lanthanum-treated and control TGR-1551. Lanthanum treatment eliminated the sieve element protein occlusion response and the aphids readily ingested phloem sap from treated plants. This study provides strong evidence that phloem occlusion is a mechanism for resistance against A. gossypii in TGR-1551. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Paramedic Application of a Triage Sieve: A Paper-Based Exercise.

    PubMed

    Cuttance, Glen; Dansie, Kathryn; Rayner, Tim

    2017-02-01

    Introduction Triage is the systematic prioritization of casualties when there is an imbalance between the needs of these casualties and resource availability. The triage sieve is a recognized process for prioritizing casualties for treatment during mass-casualty incidents (MCIs). While the application of a triage sieve generally is well-accepted, the measurement of its accuracy has been somewhat limited. Obtaining reliable measures for triage sieve accuracy rates is viewed as a necessity for future development in this area. The goal of this study was to investigate how theoretical knowledge acquisition and the practical application of an aide-memoir impacted triage sieve accuracy rates. Two hundred and ninety-two paramedics were allocated randomly to one of four separate sub-groups, a non-intervention control group, and three intervention groups, which involved them receiving either an educational review session and/or an aide-memoir. Participants were asked to triage sieve 20 casualties using a previously trialed questionnaire. The study showed the non-intervention control group had a correct accuracy rate of 47%, a similar proportion of casualties found to be under-triaged (37%), but a significantly lower number of casualties were over-triaged (16%). The provision of either an educational review or aide-memoir significantly increased the correct triage sieve accuracy rate to 77% and 90%, respectively. Participants who received both the educational review and aide-memoir had an overall accuracy rate of 89%. Over-triaged rates were found not to differ significantly across any of the study groups. This study supports the use of an aide-memoir for maximizing MCI triage accuracy rates. A "just-in-time" educational refresher provided comparable benefits, however its practical application to the MCI setting has significant operational limitations. In addition, this study provides some guidance on triage sieve accuracy rate measures that can be applied to define

  17. Multiregion apodized photon sieve with enhanced efficiency and enlarged pinhole sizes.

    PubMed

    Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng

    2015-08-20

    A novel multiregion structure apodized photon sieve is proposed. The number of regions, the apodization window values, and pinhole sizes of each pinhole ring are all optimized to enhance the energy efficiency and enlarge the pinhole sizes. The design theory and principle are thoroughly proposed and discussed. Two numerically designed apodized photon sieves with the same diameter are given as examples. Comparisons have shown that the multiregion apodized photon sieve has a 25.5% higher energy efficiency and the minimum pinhole size is enlarged by 27.5%. Meanwhile, the two apodized photon sieves have the same form of normalized intensity distribution at the focal plane. This method could improve the flexibility of the design and the fabrication the apodized photon sieve.

  18. P protein in the phloem of Cucurbita. II. The P protein of mature sieve elements.

    PubMed

    Cronshaw, J; Esau, K

    1968-08-01

    During maturation of sieve elements in Cucurbita maxima Duchesne, the P-protein bodies (slime bodies) usually disperse in the tonoplast-free cell. In some sieve elements the P-protein bodies fail to disperse. The occurrence of dispersal or nondispersal of P-protein bodies can be related to the position of the sieve elements in the stem or petiole. In the sieve elements within the vascular bundle the bodies normally disperse; in the extrafascicular sieve elements the bodies often fail to disperse. Extrafascicular sieve elements showing partial dispersal also occur. The appearance of the sieve plate in fixed material is related to the degree of dispersal or nondispersal of the P-protein bodies. In sieve elements in which complete dispersal occurs the sieve plate usually has a substantial deposit of callose, and the sieve-plate pores are filled with P protein. In sieve elements containing nondispersing P-protein bodies the sieve plate bears little or no callose, and its pores usually are essentially "open." The dispersed P-protein components may aggregate into loosely organized "strands," which sometimes extend vertically through the cell and continue through the sieve-plate pores; but they may be oriented otherwise in the cell, even transversely.

  19. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M.; Prates, Luciana L.; Yu, Peiqiang

    2017-08-01

    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HEDN/OM), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions.

  20. Diagnostic aids: the Surgical Sieve revisited.

    PubMed

    Chai, Jason; Evans, Lloyd; Hughes, Tom

    2017-08-01

    Diagnostic errors are well documented in the literature and emphasise the need to teach diagnostic skills at an early stage in medical school to create effective and safe clinicians. Hence, there may be a place for diagnostic aids (such as the Surgical Sieve) that provide a framework for generating ideas about diagnoses. With repeated use of the Surgical Sieve in teaching sessions with students, and prompted by the traditional handheld wheels used in antenatal clinics, we developed the Compass Medicine, a handheld diagnostic wheel comprising three concentric discs attached at the centre. We report a preliminary study comparing the Surgical Sieve and the Compass Medicine in generating differential diagnoses. A total of 48 third-year medical students from Cardiff University participated in a study aimed at measuring the efficacy of diagnostic aids (Surgical Sieve and Compass Medicine) in generating diagnoses. We quantified the effect each aid had on the number of diagnoses generated, and compared the size of the effect between the two diagnostic aids. There may be a place for diagnostic aids that provide a framework for generating ideas about diagnoses RESULTS: The study suggests that both diagnostic aids prompted users to generate a greater number of diagnoses, but there was no significant difference in the size of effect between the two diagnostic aids. We hope that our study with diagnostic aids will encourage the use of robust tools to teach medical students an easily visualised framework for diagnostic thinking. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  1. Synthesis, structure and magnetic properties of porous magnetic composite, based on MCM-41 molecular sieve with Fe{sub 3}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolotilov, Sergey V.; Shvets, Oleksiy; Cador, Olivier

    2006-08-15

    Porous magnetic composites were prepared by the synthesis of molecular sieve MCM-41 in the presence of Fe{sub 3}O{sub 4} nanoparticles with average diameter of 15 nm. Nanoparticles were captured by porous silica matrix MCM-41, which resulted in their incorporation, as it was confirmed by TEM, SEM and X-ray diffraction. The materials possessed high surface area (392-666 m{sup 2} g{sup -1}), high pore volume (0.39-0.73 cm{sup 3} g{sup -1}) along with high magnetic response (M {sub S} up to 28.4 emu g{sup -1} at 300 K). Calcination of samples resulted in partial oxidation of Fe{sub 3}O{sub 4} to {alpha}-Fe{sub 2}O{sub 3}.more » The influence of nanoparticles content on sorption and magnetic properties of the composites was shown. No hysteresis was found for the samples at 300 K; at 5 K, H {sub C} was in the range 370-385 G for non-calcinated samples and 350-356 G for calcinated ones. - Graphical abstract: Schematic presentation of MCM-41/Fe{sub 3}O{sub 4} composite.« less

  2. The Effect of Operating Conditions on Drying Characteristics and Quality of Ginger (Zingiber Officinale Roscoe) Using Combination of Solar Energy-Molecular Sieve Drying System

    NASA Astrophysics Data System (ADS)

    Hasibuan, R.; Zamzami, M. A.

    2017-03-01

    Ginger (Zingiber officinale Roscoe) is an agricultural product that can be used as beverages and snacks, and especially for traditional medicines. One of the important stages in the processing of ginger is drying. The drying process intended to reduce the water content of 85-90% to 8-10%, making it safe from the influence of fungi or insecticide. During the drying takes place, the main ingredient contained in ginger is homologous ketone phenolic known as gingerol are chemically unstable at high temperatures, for the drying technology is an important factor in maintaining the active ingredient (gingerol) which is in ginger. The combination of solar energy and molecular sieve dryer that are used in the research is capable of operating 24 hours. The purpose of this research is to study the effect of operating conditions (in this case the air velocity) toward the drying characteristics and the quality of dried ginger using the combination of solar energy and molecular sieve dryer. Drying system consist of three main parts which is: desiccator, solar collector, and the drying chamber. To record data changes in the mass of the sample, a load cell mounted in the drying chamber, and then connected to the automated data recording system using a USB data cable. All data of temperature and RH inside the dryer box and the change of samples mass recorded during the drying process takes place and the result is stored in the form of Microsoft Excel. The results obtained, shows that the air velocity is influencing the moisture content and ginger drying rate, where the moisture content equilibrium of ginger for the air velocity of 1.3 m/s was obtained on drying time of 360 minutes and moisture content of 2.8%, at 1.0 m/s was obtained on drying time of 300 minutes and moisture content of 1.4%, at 0, 8 m/s was obtained at 420 minutes drying time and the moisture content is 2.0%. The drying characteristics shows that there are two drying periods, which is: the increasing drying rate

  3. Summary of LO2/Ethanol OMS/RCS Technology and Advanced Development 99-2744

    NASA Technical Reports Server (NTRS)

    Curtis, Leslie A.; Hurlbert, Eric A.

    1999-01-01

    NASA is pursuing non-toxic propellant technologies applicable to RLV and Space Shuttle orbital maneuvering system (OMS) and reaction control system (RCS). The primary objectives of making advancements in an OMS/RCS system are improved safety, reliability, and reduced operations and maintenance cost, while meeting basic operational and performance requirements. An OMS/RCS has a high degree of direct interaction with the vehicle and crew and requires subsystem and components that are compatible with integration into the vehicle with regard to external mold-line, power, and thermal control. In July 1997, a Phase I effort for the technology and advanced development of an upgrade of the space shuttle was conducted to define the system architecture, propellant tank, feed system, RCS thrusters, and OMS engine. Phase I of the project ran from July 1997 to October 1998. Phase II is currently being planned for the development and test of full-scale prototype of the system in 1999 and 2000. The choice of pressure-fed liquid oxygen (LO2) and ethanol is the result of numerous trade studies conducted from 1980 to 1996. Liquid oxygen and ethanol are clean burning, high-density propellants that provide a high degree of commonality with other spacecraft subsystems including life support, power, and thermal control, and with future human exploration and development of space missions. The key to this pressure-fed system is the use of subcooled liquid oxygen at 350 psia. In this approach, there is 80 degrees R of subcooling, which means that boil-off will not occur until the temperature has risen 80 R. The sub-cooling results naturally from loading propellants at 163 R, which is the saturation temperature at 14.7 psia, and then pressurizing to 350 psia on the launch pad. Thermal insulation and conditioning techniques are then used to limit the LO2 temperature to 185 R maximum, and maintain the sub-cooling. The other key is the wide temperature range of ethanol, -173 F to +300 F, which

  4. Trace matrix solid phase dispersion using a molecular sieve as the sorbent for the determination of flavonoids in fruit peels by ultra-performance liquid chromatography.

    PubMed

    Cao, Wan; Hu, Shuai-Shuai; Ye, Li-Hong; Cao, Jun; Pang, Xiao-Qing; Xu, Jing-Jing

    2016-01-01

    A simple, rapid, and highly selective trace matrix solid phase dispersion (MSPD) technique, coupled with ultra-performance liquid chromatography-ultraviolet detection, was proposed for extracting flavonoids from orange fruit peel matrices. Molecular sieve SBA-15 was applied for the first time as a solid support in trace MSPD. Parameters, such as the type of dispersant, mass ratio of the sample to the dispersant, grinding time, and elution pH, were optimized in detail. The optimal extraction conditions involved dispersing a powdered fruit peel sample (25 mg) into 25mg of SBA-15 and then eluting the target analytes with 500 μL of methanol. A satisfactory linearity (r(2) > 0.9990) was obtained, and the calculated limits of detection reached 0.02-0.03 μg/mL for the compounds. The results showed that the method developed was successfully applied to determine the content of flavonoids in complex fruit peel matrices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. 20 CFR 229.52 - Age reduction when a reduced age O/M is effective before DIB O/M.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Age reduction when a reduced age O/M is effective before DIB O/M. 229.52 Section 229.52 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... Minimum Rate § 229.52 Age reduction when a reduced age O/M is effective before DIB O/M. If an employee...

  6. 20 CFR 229.52 - Age reduction when a reduced age O/M is effective before DIB O/M.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Age reduction when a reduced age O/M is effective before DIB O/M. 229.52 Section 229.52 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS... Minimum Rate § 229.52 Age reduction when a reduced age O/M is effective before DIB O/M. If an employee...

  7. Sub-nanometer pore formation in single-molecule-thick polyurea molecular-sieving membrane: a computational study.

    PubMed

    Park, Seongjin; Lansac, Yves; Jang, Yun Hee

    2018-06-07

    A polymeric network of 1-(4-tritylphenyl)urea (TPU) built via layer-by-layer cross-linking polymerization has been proposed to be an excellent mesh equipped with single-molecule-thick pores (i.e., cyclic poly-TPU rings), which can sieve glucose (∼0.7 nm) out of its mixture with urea for hemodialysis applications. Monte Carlo search for the lowest-energy conformation of various sizes of poly-TPU rings unravels the origin of narrow pore size distribution, which is around the sizes of dimer and trimer rings (0.3-0.8 nm). Flexible rings larger than the dimer and trimer rings, in particular tetramer rings, prefer a twisted conformation in the shape of the infinity symbol (∞, which looks like two dimer rings joined together) locked by a hydrogen bond between diphenylurea linker groups facing each other. Translocation energy profiles across these TPU rings reveal their urea-versus-glucose sieving mechanism: glucose is either too large (to enter dimers and twisted tetramers) or too perfectly fit (to exit trimers), leaving only a dimer-sized free space in the ring, whereas smaller-sized urea and water pass through these effective dimer-sized rings (bare dimers, twisted tetramers, and glucose-filled trimers) without encountering a substantial energy barrier or trap.

  8. Fractionation of Distillers Dried Grains with Solubles (DDGS) by Sieving and Winnowing

    USDA-ARS?s Scientific Manuscript database

    Four commercial samples of distillers dried grains with solubles (DDGS), were subjected to sieving and then winnowing. All sieved fractions except for the pan fraction, constituting about 90% of original mass, were subjected to winnowing with an air blast seed cleaner. Sieving was effective in pro...

  9. OMS 1987 Annual Report.

    ERIC Educational Resources Information Center

    Association of Research Libraries, Washington, DC. Office of Management Studies.

    Designed to serve both as an activity report on Office of Management Studies (OMS) progress during 1987 and a catalog of OMS services and products, this annual report focuses on the management of technology in a scholarly environment. Programs and services are reported in five sections: (1) Applied Research and Development (the Institute on…

  10. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  11. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    PubMed Central

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  12. Sieve efficiency in benthic sampling as related to chironomid head capsule width

    USGS Publications Warehouse

    Hudson, Patrick L.; Adams, Jean V.

    1998-01-01

    The width of the head capsule in chironomid larvae is the most important morphometric character controlling retention of specimens in sieving devices. Knowledge of the range in size of these widths within any chironomid community is fundamental to sampling and interpreting the resulting data. We present the head capsule widths of 30 species of chironomids and relate their size distribution to loss or retention in several experiments using graded sieve sizes. Based on our measurements and those found in the literature we found the head capsule width of fourth instars in half the chironomids species to be less than 350 I?m. Many species may never be collected with the commonly used U.S. Standard No. 30 sieve (589 I?m), and the No. 60 (246 I?m) screen appears to retain most species only qualitatively. We found 70 to 90% of the chironomid larvae and 19 to 34% of their biomass can pass through a No. 80 sieve (177 I?m). The implications of sieve loss and other factors affecting sieving efficiency are discussed.

  13. OCTOPUS-LIKE 2, a novel player in Arabidopsis root and vascular development, reveals a key role for OCTOPUS family genes in root metaphloem sieve tube differentiation.

    PubMed

    Ruiz Sola, M Aguila; Coiro, Mario; Crivelli, Simona; Zeeman, Samuel C; Schmidt Kjølner Hansen, Signe; Truernit, Elisabeth

    2017-12-01

    Protophloem and metaphloem sieve tubes are essential for transporting carbohydrates and signalling molecules towards sink tissues. OCTOPUS (OPS) was previously identified as an important regulator of protophloem differentiation in Arabidopsis roots. Here, we investigated the role of OCTOPUS-LIKE 2 (OPL2), a gene homologous to OPS. OPL2 expression patterns were analysed, and functional equivalence of OPS and OPL2 was tested. Mutant and double mutant phenotypes were investigated. OPS and OPL2 displayed overlapping expression patterns and a high degree of functional overlap. A mutation in OPL2 revealed redundant functions of OPS and OPL2 in developmental processes in which OPS was known to play a role, notably cotyledon vascular patterning and protophloem development. Moreover, we also uncovered redundant roles for OPS and OPL2 in leaf vascular patterning and, most interestingly, metaphloem sieve tube differentiation. Our results reveal a novel OPS-like protein that, together with OPS, is an important regulator of vascular patterning, root growth and phloem development. OPS and OPL2 are the first genes identified that play a role in metaphloem sieve tube differentiation. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Mesh Algorithms for PDE with Sieve I: Mesh Distribution

    DOE PAGES

    Knepley, Matthew G.; Karpeev, Dmitry A.

    2009-01-01

    We have developed a new programming framework, called Sieve, to support parallel numerical partial differential equation(s) (PDE) algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode notmore » only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding. Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these benefits and compare our approach to other existing mesh libraries.« less

  15. Too Big for the Sieve

    NASA Image and Video Library

    2012-10-11

    In this image, the scoop on NASA Curiosity rover shows the larger soil particles that were too big to filter through a sample-processing sieve that is porous only to particles less than 0.006 inches 150 microns across.

  16. Laser Diffraction Techniques Replace Sieving for Lunar Soil Particle Size Distribution Data

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Gonzalez, C. P.; McKay, D. S.; Fruland, R. L.

    2012-01-01

    Sieving was used extensively until 1999 to determine the particle size distribution of lunar samples. This method is time-consuming, and requires more than a gram of material in order to obtain a result in which one may have confidence. This is demonstrated by the difference in geometric mean and median for samples measured by [1], in which a 14-gram sample produced a geometric mean of approx.52 micrometers, whereas two other samples of 1.5 grams resulted in gave means of approx.63 and approx.69 micrometers. Sample allocations for sieving are typically much smaller than a gram, and many of the sample allocations received by our lab are 0.5 to 0.25 grams in mass. Basu [2] has described how the finest fraction of the soil is easily lost in the sieving process, and this effect is compounded when sample sizes are small.

  17. Sieve-element differentiation and phloem sap contamination.

    PubMed

    Knoblauch, Michael; Peters, Winfried S; Bell, Karen; Ross-Elliott, Timothy J; Oparka, Karl J

    2018-06-01

    Sieve elements (SEs) degrade selected organelles and cytoplasmic structures when they differentiate. According to classical investigations, only smooth ER, mitochondria, sieve element plastids, and, in most cases, P-proteins remain in mature SEs. More recent proteomics and immuno-histochemical studies, however, suggested that additional components including a protein-synthesizing machinery and a fully developed actin cytoskeleton operate in mature SEs. These interpretations are at odds with conventional imaging studies. Here we discuss potential causes for these discrepancies, concluding that differentiating SEs may play a role by 'contaminating' phloem exudates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mission Concepts for High-Resolution Solar Imaging with a Photon Sieve

    NASA Astrophysics Data System (ADS)

    Rabin, Douglas M.; Davila, Joseph; Daw, Adrian N.; Denis, Kevin L.; Novo-Gradac, Anne-Marie; Shah, Neerav; Widmyer, Thomas R.

    2017-08-01

    The best EUV coronal imagers are unable to probe the expected energy dissipation scales of the solar corona (<100 km) because conventional optics cannot be figured to near diffraction-limited accuracy at these wavelengths. Davila (2011) has proposed that a photon sieve, a diffractive imaging element similar to a Fresnel zone plate, provides a technically feasible path to the required angular resolution. We have produced photon sieves as large as 80 mm clear aperture. We discuss laboratory measurements of these devices and the path to larger apertures. The focal length of a sieve with high EUV resolution is at least 10 m. Options for solar imaging with such a sieve include a sounding rocket, a single spacecraft with a deployed boom, and two spacecraft flying in precise formation.

  19. Aphid salivary proteases are capable of degrading sieve-tube proteins.

    PubMed

    Furch, Alexandra C U; van Bel, Aart J E; Will, Torsten

    2015-02-01

    Sieve tubes serve as transport conduits for photo-assimilates and other resources in angiosperms and are profitable targets for piercing-sucking insects such as aphids. Sieve-tube sap also contains significant amounts of proteins with diverse functions, for example in signalling, metabolism, and defence. The identification of salivary proteases in Acyrthosiphon pisum led to the hypothesis that aphids might be able to digest these proteins and by doing so suppress plant defence and access additional nitrogen sources. Here, the scarce knowledge of proteases in aphid saliva is briefly reviewed. In order to provide a better platform for discussion, we conducted a few tests on in vitro protease activity and degradation of sieve-tube sap proteins of Cucurbita maxima by watery saliva. Inhibition of protein degradation by EDTA indicates the presence of different types of proteases (e.g. metalloproteses) in saliva of A. pisum. Proteases in the watery saliva from Macrosiphum euphorbiae and A. pisum were able to degrade the most abundant phloem protein, which is phloem protein 1. Our results provide support for the breakdown of sieve-element proteins by aphid saliva in order to suppress/neutralize the defence responses of the plant and to make proteins of sieve-tube sap accessible as a nitrogen source, as is discussed in detail. Finally, we discuss whether glycosylation of sieve-element proteins and the presence of protease inhibitors may confer partial protection against the proteolytic activity of aphid saliva. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Simulation, Design, and Test of Square, Apodized Photon Sieves for High Contrast, Exoplanet Imaging

    DTIC Science & Technology

    reason, square apodized photon sieves were simulated, designed, and tested for high-contrast performance and use in an exoplanet imaging telescope...for apodizing sieves, measuring PSFs, and characterizing high-contrast performance. Tests indicated that square apodized sieves could detect

  1. Carbon molecular sieve based micro-matrix-solid-phase dispersion for the extraction of polyphenols in pomegranate peel by UHPLC-Q-TOF/MS.

    PubMed

    Du, Li-Jing; Huang, Jian-Ping; Wang, Bin; Wang, Chen-Hui; Wang, Qiu-Yan; Hu, Yu-Han; Yi, Ling; Cao, Jun; Peng, Li-Qing; Chen, Yu-Bo; Zhang, Qi-Dong

    2018-06-04

    A rapid, simple and efficient sample extraction method based on micro-matrix-solid-phase dispersion (micro-MSPD) was applied to the extraction of polyphenols from pomegranate peel. Five target analytes were determined by ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Carbon molecular sieve (CMS) was firstly used as dispersant to improve extraction efficiency in micro-MSPD. The major micro-MSPD parameters, such as type of dispersant, amount of dispersant, grinding time and the type and the volume of elution solvents, were studied and optimized. Under optimized conditions, 26 mg of pomegranate peel was dispersed with 32.5 mg of CMS, the grinding time was selected as 90 s, the dispersed sample was eluted with 100 μL of methanol. Results showed that the proposed method was of good linearity for concentrations of analytes against their peak areas (coefficient of determination r 2 >0.990), the limit of the detection was as low as 3.2 ng/mL, and the spiking recoveries were between 88.1% and 106%. Satisfactory results were obtained for the extraction of gallic acid, punicalagin A, punicalagin B, catechin and ellagic acid from pomegranate peel sample, which demonstrated nice reliability and high sensitivity of this approach. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Broncho Vaxom (OM-85) modulates rhinovirus docking proteins on human airway epithelial cells via Erk1/2 mitogen activated protein kinase and cAMP

    PubMed Central

    Pasquali, Christian; Stolz, Daiana; Tamm, Michael

    2017-01-01

    Background Bronchial epithelial cells (BEC) are primary target for Rhinovirus infection through attaching to cell membrane proteins. OM-85, a bacterial extract, improves recovery of asthma and COPD patients after viral infections, but only part of the mechanism was addressed, by focusing on defined immune cells. Objective We therefore determined the effect of OM-85 on isolated primary human BEC of controls (n = 8), asthma patients (n = 10) and COPD patients (n = 9). Methods BEC were treated with OM-85 alone (24 hours) or infected with Rhinovirus. BEC survival was monitored by manual cell counting and Rhinovirus replication by lytic activity. Immuno-blotting and ELISA were used to determine the expression of Rhinovirus interacting proteins: intracellular adhesion molecule (ICAM), major histocompatibility complex class II (MHC-2), complement component C1q receptor (C1q-R), inducible T-Cell co-stimulator (ICOS), its ligand ICOSL, and myeloid differentiation primary response gene 88 (Myd88); as well as for signal transducers Erk1/2, p38, JNK mitogen activated protein kinases MAPK), and cAMP. Results OM-85 significantly reduced Rhinovirus-induced BEC death and virus replication. OM-85 significantly increased the expression of virus interacting proteins C1q-R and β-defensin in all 3 probes and groups, which was prevented by either Erk1/2 MAPK or cAMP inhibition. In addition, OM-85 significantly reduced Rhinovirus induced expression of ICAM1 involving p38 MAPK. In BEC OM-85 had no significant effect on the expression of ICOS, ICOSL and MHC-2 membrane proteins nor on the adaptor protein MyD88. Conclusion The OM-85-induced increased of C1q-R and β-defensin, both important for antigen presentation and phagocytosis, supports its activity in host cell’s defence against Rhinovirus infection. PMID:29182620

  3. Broncho Vaxom (OM-85) modulates rhinovirus docking proteins on human airway epithelial cells via Erk1/2 mitogen activated protein kinase and cAMP.

    PubMed

    Roth, Michael; Pasquali, Christian; Stolz, Daiana; Tamm, Michael

    2017-01-01

    Bronchial epithelial cells (BEC) are primary target for Rhinovirus infection through attaching to cell membrane proteins. OM-85, a bacterial extract, improves recovery of asthma and COPD patients after viral infections, but only part of the mechanism was addressed, by focusing on defined immune cells. We therefore determined the effect of OM-85 on isolated primary human BEC of controls (n = 8), asthma patients (n = 10) and COPD patients (n = 9). BEC were treated with OM-85 alone (24 hours) or infected with Rhinovirus. BEC survival was monitored by manual cell counting and Rhinovirus replication by lytic activity. Immuno-blotting and ELISA were used to determine the expression of Rhinovirus interacting proteins: intracellular adhesion molecule (ICAM), major histocompatibility complex class II (MHC-2), complement component C1q receptor (C1q-R), inducible T-Cell co-stimulator (ICOS), its ligand ICOSL, and myeloid differentiation primary response gene 88 (Myd88); as well as for signal transducers Erk1/2, p38, JNK mitogen activated protein kinases MAPK), and cAMP. OM-85 significantly reduced Rhinovirus-induced BEC death and virus replication. OM-85 significantly increased the expression of virus interacting proteins C1q-R and β-defensin in all 3 probes and groups, which was prevented by either Erk1/2 MAPK or cAMP inhibition. In addition, OM-85 significantly reduced Rhinovirus induced expression of ICAM1 involving p38 MAPK. In BEC OM-85 had no significant effect on the expression of ICOS, ICOSL and MHC-2 membrane proteins nor on the adaptor protein MyD88. The OM-85-induced increased of C1q-R and β-defensin, both important for antigen presentation and phagocytosis, supports its activity in host cell's defence against Rhinovirus infection.

  4. Temperature & wood source control PyOM turnover in a Northern American forest

    NASA Astrophysics Data System (ADS)

    Hatton, Pierre-Joseph; Le Moine, James; Auclerc, Apolline; Gormley, Mark; Filley, Tim R.; Nadelhoffer, Knute J.; Bird, Jeff. A.

    2016-04-01

    Surprisingly little is known about how pyrolysis temperature and wood source affect the stability of forest-fire derived pyrogenic organic matter (PyOM). Here, we show that wood source and temperature affect in situ mineralization rates of PyOM in soils for two co-occurring gymnosperm (jack pine; JP [Pinus banksiana]) and angiosperm (red maple; RM [Acer rubrum])¬ species from North American boreal-temperate ecotones. We assess the effect of pyrolysis temperature on PyOM fates by following the decay of 13C/15N-enriched JP wood (JPwood) and PyOM produced at 300 °C (JP300) and 450 °C (JP450); and assess the effect of PyOM wood source by comparing fates of JP450 and RM450. JPwood mineralized 18× faster than JP300 and 44× faster than JP450 after 2.8y. RM450 mineralized initially faster than JP450 during the first ~2y, but became equivalent afterwards (1.1±0.2% of CO¬2 losses after 2.8y). Modeled turnover times suggest that this can be attributed to ~1% of fast-cycling PyOM (<3y). Slower-cycling pools are 12× faster for JPwood (13±5y) than for JP300 (157±28y) and 55× faster than for JP450 (700±229y). Modeled turnover times of the slow-cycling pools were equivalent for JP450 and RM450. The priming effect was positive for JPwood (0.10±0.05), neutral for JP300 (-0.02±0.04), and negative for JP450 (-0.15±0.03) and RM50 (-0.59±0.03). DOC losses were minimal compared with CO2 losses (DOC:CO2 ratio ≤0.005), but followed the same patterns: JPwood 6× greater than that of JP300 and 39× greater compared with JP450. After 1y, C recoveries were lower for JPwood than for PyOM, with no influence of pyrolysis temperature or wood source (yet); N recoveries did not differ. PLFA-(13)C data reveal that (i) treatments have similar microbial communities after 1y, (ii) JPwood is preferentially utilized by fungi, and (iii) bacteria increasingly utilize PyOM as pyrolysis temperature increases. Estimated carbon use efficiency decreased with increasing pyrolysis temperature

  5. Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation.

    PubMed

    Furuta, Kaori Miyashima; Yadav, Shri Ram; Lehesranta, Satu; Belevich, Ilya; Miyashima, Shunsuke; Heo, Jung-ok; Vatén, Anne; Lindgren, Ove; De Rybel, Bert; Van Isterdael, Gert; Somervuo, Panu; Lichtenberger, Raffael; Rocha, Raquel; Thitamadee, Siripong; Tähtiharju, Sari; Auvinen, Petri; Beeckman, Tom; Jokitalo, Eija; Helariutta, Ykä

    2014-08-22

    Photoassimilates such as sugars are transported through phloem sieve element cells in plants. Adapted for effective transport, sieve elements develop as enucleated living cells. We used electron microscope imaging and three-dimensional reconstruction to follow sieve element morphogenesis in Arabidopsis. We show that sieve element differentiation involves enucleation, in which the nuclear contents are released and degraded in the cytoplasm at the same time as other organelles are rearranged and the cytosol is degraded. These cellular reorganizations are orchestrated by the genetically redundant NAC domain-containing transcription factors, NAC45 and NAC86 (NAC45/86). Among the NAC45/86 targets, we identified a family of genes required for enucleation that encode proteins with nuclease domains. Thus, sieve elements differentiate through a specialized autolysis mechanism. Copyright © 2014, American Association for the Advancement of Science.

  6. Functional Sieve Element Protoplasts1[OA

    PubMed Central

    Hafke, Jens B.; Furch, Alexandra C.U.; Reitz, Marco U.; van Bel, Aart J.E.

    2007-01-01

    Sieve element (SE) protoplasts were liberated by exposing excised phloem strands of Vicia faba to cell wall-degrading enzyme mixtures. Two types of SE protoplasts were found: simple protoplasts with forisome inclusions and composite twin protoplasts—two protoplasts intermitted by a sieve plate—of which one protoplast often includes a forisome. Forisomes are giant protein inclusions of SEs in Fabaceae. Membrane integrity of SE protoplasts was tested by application of CFDA, which was sequestered in the form of carboxyfluorescein. Further evidence for membrane intactness was provided by swelling of SE protoplasts and forisome dispersion in reaction to abrupt lowering of medium osmolarity. The absence of cell wall remnants as demonstrated by negative Calcofluor White staining allowed patch-clamp studies. At negative membrane voltages, the current-voltage relations of the SE protoplasts were dominated by a weak inward-rectifying potassium channel that was active at physiological membrane voltages of the SE plasma membrane. This channel had electrical properties that are reminiscent of those of the AKT2/3 channel family, localized in phloem cells of Arabidopsis (Arabidopsis thaliana). All in all, SE protoplasts promise to be a powerful tool in studying the membrane biology of SEs with inherent implications for the understanding of long-distance transport and signaling. PMID:17885083

  7. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode.

    PubMed

    MacEwan, Matthew R; Zellmer, Erik R; Wheeler, Jesse J; Burton, Harold; Moran, Daniel W

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm 2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation.

  8. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode

    PubMed Central

    MacEwan, Matthew R.; Zellmer, Erik R.; Wheeler, Jesse J.; Burton, Harold; Moran, Daniel W.

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation. PMID:28008303

  9. An efficient synthesis of graphenated carbon nanotubes over the tailored mesoporous molecular sieves by chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atchudan, R.; Department of Chemistry, CEG Campus, Anna University, Chennai 600025; Joo, Jin., E-mail: joojin@knu.ac.kr

    2013-06-01

    Highlights: ► Tailored 3D cubic Ni/KIT-6 with large pores was synthesized successfully. ► The new hybrid g-CNTs in large scale were synthesized using Ni/KIT-6 by CVD method. ► The use of mesoporous material by CVD method would be an ideal choice to prepare g-CNTs at reasonable cost. ► This type of g-CNTs might be a new avenue for nano-electronic applications. - Abstract: The new hybrid of graphenated carbon nanotubes (g-CNTs) was superior to either CNTs or graphene. Mesoporous 3D cubic Ni/KIT-6 were synthesized hydrothermally through organic template route and then were used as catalytic template for the production of g-CNTsmore » using acetylene as a carbon precursor by chemical vapor deposition (CVD) method. The deposited new hybrid carbon materials were purified and analyzed by various physico-chemical techniques such as XRD, TGA, SEM, TEM and Raman spectroscopy techniques. The graphitization of CNTs was confirmed by TGA and HRTEM studies. Thermal stability, surface morphology, and structural morphology of these materials were revealed by TGA, SEM and TEM analysis, respectively. Moreover, the tailored mesoporous Ni/KIT-6 molecular sieves were found to possess better quality and massive quantity of g-CNTs produced compared to other catalytic template route.« less

  10. Mechanical sieve for screening mineral samples

    NASA Technical Reports Server (NTRS)

    Otto, W. P.

    1970-01-01

    Mechanical sieve consists of three horizontal screens mounted in a vertical stack. A combination of rotation and tapping produces an even flow across the screens, dislodges trapped particles, an ensures rapid segregation of the sample.

  11. OM85-BV Induced the Productions of IL-1β, IL-6, and TNF-α via TLR4- and TLR2-Mediated ERK1/2/NF-κB Pathway in RAW264.7 Cells

    PubMed Central

    Luan, Hong; Zhang, Qian; Wang, Le; Wang, Chuanxiao; Zhang, Miao; Xu, Xiaoli; Zhou, Huan; Li, Xing'ai; Xu, Qing; He, Fan

    2014-01-01

    Broncho-Vaxom (OM85-BV) is an extract mixture from 8 strains of Gram+ and Gram− bacteria and plays an important role in anti-infection immune response by regulating macrophage activity and cytokine productions. However, the mechanism by which OM85-BV enhances the cytokine expression is still obscure. In this study, we evaluated the effects of OM85-BV on the productions of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in RAW264.7 murine macrophages. Exposure of RAW264.7 cells to 100 μg/mL OM85-BV upregulated the expression of IL-1β, IL-6, and TNF-α at the mRNA and protein levels in a time- and dose-dependent manner. In addition, OM85-BV induced extracellular signal-regulated kinase (ERK) 1/2 and nuclear factor-kappa B (NF-κB) phosphorylation. Pretreatment with U0126 or Bay11-7082, respectively, could decrease IL-1β, IL-6, and TNF-α productions induced by OM85-BV. Application of Toll-like receptor (TLR) 4 or TLR2 small-interfering RNA (siRNA) into RAW264.7 cells could inhibit the productions of cytokines and ERK1/2 and NF-κB phosphorylation induced by OM85-BV. Consistent with this, downregulating either myeloid differentiation factor 88 (MyD88) or TRIF-related adaptor molecule (TRAM) gene with MyD88-siRNA or TRAM-siRNA separately could reduce the productions of cytokines and ERK1/2 and NF-κB phosphorylation induced by OM85-BV. Our study demonstrated that the productions of IL-1β, IL-6, and TNF-α induced by OM85-BV in RAW264.7 cells were through TLR4 and TLR2 signaling pathway-mediated activation of ERK1/2 and NF-κB. PMID:24605772

  12. Variations in the OM/OC ratio of urban organic aerosol next to a major roadway.

    PubMed

    Brown, Steven G; Lee, Taehyoung; Roberts, Paul T; Collett, Jeffrey L

    2013-12-01

    Understanding the organic matter/organic carbon (OM/OC) ratio in ambient particulate matter (PM) is critical to achieve mass closure in routine PM measurements, to assess the sources of and the degree of chemical processing organic aerosol particles have undergone, and to relate ambient pollutant concentrations to health effects. Of particular interest is how the OM/OC ratio varies in the urban environment, where strong spatial and temporal gradients in source emissions are common. We provide results of near-roadway high-time-resolution PM1 OM concentration and OM/OC ratio observations during January 2008 at Fyfe Elementary School in Las Vegas, NV, 18 m from the U.S. 95 freeway soundwall, measured with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The average OM/OC ratio was 1.54 (+/- 0.20 standard deviation), typical of environments with a low amount of secondary aerosol formation. The 2-min average OM/OC ratios varied between 1.17 and 2.67, and daily average OM/OC ratios varied between 1.44 and 1.73. The ratios were highest during periods of low OM concentrations and generally low during periods of high OM concentrations. OM/OC ratios were low (1.52 +/- 0.14, on average) during the morning rush hour (average OM = 2.4 microg/m3), when vehicular emissions dominate this near-road measurement site. The ratios were slightly lower (1.46 +/- 0.10) in the evening (average OM = 6.3 microg/m3), when a combination of vehicular and fresh residential biomass burning emissions was typically present during times with temperature inversions. The hourly averaged OM/OC ratio peaked at 1.66 at midday. OM concentrations were similar regardless of whether the monitoring site was downwind or upwind of the adjacent freeway throughout the day, though they were higher during stagnant conditions (wind speed < 0.5 m/sec). The OM/OC ratio generally varied more with time of day than with wind direction and speed.

  13. Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.

    PubMed

    Froelich, Daniel R; Mullendore, Daniel L; Jensen, Kåre H; Ross-Elliott, Tim J; Anstead, James A; Thompson, Gary A; Pélissier, Hélène C; Knoblauch, Michael

    2011-12-01

    Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch's classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)-yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed.

  14. Effects of plasma proteins on sieving of tracer macromolecules in glomerular basement membrane.

    PubMed

    Lazzara, M J; Deen, W M

    2001-11-01

    It was found previously that the sieving coefficients of Ficoll and Ficoll sulfate across isolated glomerular basement membrane (GBM) were greatly elevated when BSA was present at physiological levels, and it was suggested that most of this increase might have been the result of steric interactions between BSA and the tracers (5). To test this hypothesis, we extended the theory for the sieving of macromolecular tracers to account for the presence of a second, abundant solute. Increasing the concentration of an abundant solute is predicted to increase the equilibrium partition coefficient of a tracer in a porous or fibrous membrane, thereby increasing the sieving coefficient. The magnitude of this partitioning effect depends on solute size and membrane structure. The osmotic reduction in filtrate velocity caused by an abundant, mostly retained solute will also tend to elevate the tracer sieving coefficient. The osmotic effect alone explained only about one-third of the observed increase in the sieving coefficients of Ficoll and Ficoll sulfate, whereas the effect of BSA on tracer partitioning was sufficient to account for the remainder. At physiological concentrations, predictions for tracer sieving in the presence of BSA were found to be insensitive to the assumed shape of the protein (sphere or prolate spheroid). For protein mixtures, the theoretical effect of 6 g/dl BSA on the partitioning of spherical tracers was indistinguishable from that of 3 g/dl BSA and 3 g/dl IgG. This suggests that for partitioning and sieving studies in vitro, a good experimental model for plasma is a BSA solution with a mass concentration matching that of total plasma protein. The effect of plasma proteins on tracer partitioning is expected to influence sieving not only in isolated GBM but also in intact glomerular capillaries in vivo.

  15. CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41silicate sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Wenyong; Han, Hongxian; Frei, Heinz

    2004-04-06

    The 266 nm light-induced reaction of CO{sub 2} and H{sub 2}O gas mixtures (including isotopic modifications {sup 13}CO{sub 2}, C{sup 18}O{sub 2}, and D{sub 2}O) in framework TiMCM-41 silicate sieve was monitored by in-situ FT-IR spectroscopy at room temperature. Carbon monoxide gas was observed as the sole product by infrared, and the growth was found to depend linearly on the photolysis laser power. H{sub 2}O was confirmed as stoichiometric electron donor. The work establishes CO as the single photon, 2-electron transfer product of CO{sub 2} photoreduction by H{sub 2}O at framework Ti centers for the first time. O{sub 2} wasmore » detected as co-product by mass spectrometric analysis of the photolysis gas mixture. These results are explained by single UV photon-induced splitting of CO{sub 2} by H{sub 2}O to CO and surface OH radical.« less

  16. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanju Karanfil; Seyed A. Dastgheib; Dina Mauldin

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers ACF10 and ACF20H and two granular activated carbons, coal-based F400 and Macro preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 {angstrom}. It also had the highest volume in pores 5-8 {angstrom}, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve duringmore » preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 {angstrom}, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the way that the carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption. 40 refs., 3 figs., 2 tabs.« less

  17. Investigating molecular changes in organic matter composition in two Holocene lake-sediment records from central Sweden using pyrolysis-GC/MS

    NASA Astrophysics Data System (ADS)

    Ninnes, Sofia; Tolu, Julie; Meyer-Jacob, Carsten; Mighall, Tim M.; Bindler, Richard

    2017-06-01

    Organic matter (OM) is a key component of lake sediments, affecting carbon, nutrient, and trace metal cycling at local and global scales. Yet little is known about long-term (millennial) changes in OM composition due to the inherent chemical complexity arising from multiple OM sources and from secondary transformations. In this study we explore how the molecular composition of OM changes throughout the Holocene in two adjacent boreal lakes in central Sweden and compare molecular-level information with conventional OM variables, including total carbon, total nitrogen, C:N ratios, δ13C, and δ15N. To characterize the molecular OM composition, we employed a new method based on pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), which yields semiquantitative data on >100 organic compounds of different origin and degradation status. We identify large changes in OM composition after deglaciation (circa 8500 ± 500 B.C.), associated with early landscape development, and during the most recent 40-50 years, driven by degradation processes. With molecular-level information we can also distinguish between natural landscape development and human catchment disturbance during the last 1700 years. Our study demonstrates that characterization of the molecular OM composition by the high-throughput Py-GC/MS method is an efficient complement to conventional OM variables for identification and understanding of past OM dynamics in lake-sediment records. Holocene changes observed for pyrolytic compounds and compound classes known for having different reactivity indicate the need for further paleo-reconstruction of the molecular OM composition to better understand both past and future OM dynamics and associated environmental changes.

  18. In-line digital holography with phase-shifting Greek-ladder sieves

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang

    2018-04-01

    Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.

  19. Characteristics of organic matter fractions separated by wet-sieving and differences in density from five soils of different pedogenesis under mature beech forest.

    NASA Astrophysics Data System (ADS)

    Vormstein, Svendja; Kaiser, Michael; Ludwig, Bernard

    2017-04-01

    Forest top- and subsoil account for approximately 70 % of the organic C (OC) globally stored in soil reasoning their large importance for terrestrial ecosystem services such as the mitigation of climate change. In contrast to forest topsoil, there is much less information about the decomposition and stabilization of organic matter (OM) in subsoil. Therefore, we sampled the pedogenetic horizons of five soils under mature beech forest developed on different parent material (i.e. Tertiary Sand, Loess, Basalt, Lime Stone, Red Sandstone) down to the bedrock. The bulk soil samples were characterized for texture, oxalate and dithionite soluble Fe and Al, pH, OC, microbial biomass C and basal respiration (cumulative CO2 emission after 7 and 14 days). Furthermore, we analyzed aggregate size fractions separated by wet-sieving (i.e. >1000 µm, 1000-250 µm, 250-53 µm, <53 µm) and density fractions separated using NaPT (i.e. light, occluded light, and heavy fraction) from the soil horizon specific samples. The OC of the topsoil (Ah horizon) on Lime Stone and Red Sandstone was predominately stored in the larger macro-aggregates (>1000 µm). In contrast, the major part of the topsoil OC on Basalt and Tertiary Sand was found in the smaller macro-aggregates (1000-250 µm). For the topsoil samples, we found that the basal respiration as well as the microbial biomass C were positively correlated (p ≤0.05) with the OC amounts associated with the free and occluded light fraction and with the macro-aggregates (1000-250 µm) and micro-aggregates (250-53 µm) suggesting these fractions to store the major part of the easily decomposable OM. The OC amount associated with the heavy fraction and the fraction <53 µm was correlated with the contents of oxalate and dithionite soluble Fe and Al suggesting interactions between organic compounds and Fe- and Al-oxides to be highly important for the OM stabilization in forest topsoil. In the subsoil (horizons below the Ah), the contribution of

  20. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Dongyan, E-mail: xdy0156@sina.com; Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidicmore » property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.« less

  1. The rendez-vous of mobile sieve-element and abundant companion-cell proteins.

    PubMed

    De Marco, Federica; Le Hir, Rozenn; Dinant, Sylvie

    2018-06-01

    Thousands of sieve tube exudate proteins (STEP) have now been identified and predicted to fulfill a diversity of functions. However, most STEPs should be considered putative, since methods to collect sieve tube exudates have many technical drawbacks, and advanced functional characterization will be required to distinguish contaminant from bonafide proteins, and determine the latter's location and activity in sieve elements (SE). One major challenge is to develop new approaches to elucidate the function of these SE proteins, which in turn, is expected to shed light on intriguing aspects of SE cell biology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Phloem Ultrastructure and Pressure Flow: Sieve-Element-Occlusion-Related Agglomerations Do Not Affect Translocation[W

    PubMed Central

    Froelich, Daniel R.; Mullendore, Daniel L.; Jensen, Kåre H.; Ross-Elliott, Tim J.; Anstead, James A.; Thompson, Gary A.; Pélissier, Hélène C.; Knoblauch, Michael

    2011-01-01

    Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch’s classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)–yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed. PMID:22198148

  3. Electrophysiological approach to determine kinetic parameters of sucrose uptake by single sieve elements or phloem parenchyma cells in intact Vicia faba plants.

    PubMed

    Hafke, Jens B; Höll, Sabina-Roxana; Kühn, Christina; van Bel, Aart J E

    2013-01-01

    Apart from cut aphid stylets in combination with electrophysiology, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (-130 mV to -110 mV), while the membrane potential of the phloem parenchyma cells was stable (approx. -100 mV). In roots, the membrane potential of sieve elements dropped abruptly to -55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H(+)-induced depolarizations were recorded. Data analysis by non-linear least-square data fittings as well as by linear Eadie-Hofstee (EH) -transformations pointed at biphasic Michaelis-Menten kinetics (2 MM, EH: K m1 1.2-1.8 mM, K m2 6.6-9.0 mM) of sucrose uptake by sieve elements. However, Akaike's Information Criterion (AIC) favored single MM kinetics. Using single MM as the best-fitting model, K m values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher K m values (EH: K m1 10 mM, K m2 70 mM) as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (-0.1 to -0.3 pA/pF) were detected in the whole-cell mode. In conclusion (a) K m values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b) electrophysiology provides a useful tool for in situ determination of K m values, (c) As yet, it remains unclear if one or two uptake systems are involved in sucrose

  4. Electrophysiological approach to determine kinetic parameters of sucrose uptake by single sieve elements or phloem parenchyma cells in intact Vicia faba plants

    PubMed Central

    Hafke, Jens B.; Höll, Sabina-Roxana; Kühn, Christina; van Bel, Aart J. E.

    2013-01-01

    Apart from cut aphid stylets in combination with electrophysiology, no attempts have been made thus far to measure in vivo sucrose-uptake properties of sieve elements. We investigated the kinetics of sucrose uptake by single sieve elements and phloem parenchyma cells in Vicia faba plants. To this end, microelectrodes were inserted into free-lying phloem cells in the main vein of the youngest fully-expanded leaf, half-way along the stem, in the transition zone between the autotrophic and heterotrophic part of the stem, and in the root axis. A top-to-bottom membrane potential gradient of sieve elements was observed along the stem (−130 mV to −110 mV), while the membrane potential of the phloem parenchyma cells was stable (approx. −100 mV). In roots, the membrane potential of sieve elements dropped abruptly to −55 mV. Bathing solutions having various sucrose concentrations were administered and sucrose/H+-induced depolarizations were recorded. Data analysis by non-linear least-square data fittings as well as by linear Eadie–Hofstee (EH) -transformations pointed at biphasic Michaelis–Menten kinetics (2 MM, EH: Km1 1.2–1.8 mM, Km2 6.6–9.0 mM) of sucrose uptake by sieve elements. However, Akaike's Information Criterion (AIC) favored single MM kinetics. Using single MM as the best-fitting model, Km values for sucrose uptake by sieve elements decreased along the plant axis from 1 to 7 mM. For phloem parenchyma cells, higher Km values (EH: Km1 10 mM, Km2 70 mM) as compared to sieve elements were found. In preliminary patch-clamp experiments with sieve-element protoplasts, small sucrose-coupled proton currents (−0.1 to −0.3 pA/pF) were detected in the whole-cell mode. In conclusion (a) Km values for sucrose uptake measured by electrophysiology are similar to those obtained with heterologous systems, (b) electrophysiology provides a useful tool for in situ determination of Km values, (c) As yet, it remains unclear if one or two uptake systems are involved

  5. MassSieve: Panning MS/MS peptide data for proteins

    PubMed Central

    Slotta, Douglas J.; McFarland, Melinda A.; Markey, Sanford P.

    2010-01-01

    We present MassSieve, a Java-based platform for visualization and parsimony analysis of single and comparative LC-MS/MS database search engine results. The success of mass spectrometric peptide sequence assignment algorithms has led to the need for a tool to merge and evaluate the increasing data set sizes that result from LC-MS/MS-based shotgun proteomic experiments. MassSieve supports reports from multiple search engines with differing search characteristics, which can increase peptide sequence coverage and/or identify conflicting or ambiguous spectral assignments. PMID:20564260

  6. Shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses using WinXCom and MCNP5 code

    NASA Astrophysics Data System (ADS)

    Dong, M. G.; El-Mallawany, R.; Sayyed, M. I.; Tekin, H. O.

    2017-12-01

    Gamma ray shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses, where AnOm is Nb2O5 = 0.01, 5, Nd2O3 = 3, 5 and Er2O3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy.

  7. Photon Sieve Space Telescope

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Dearborn, M.; Hcharg, G.

    2010-09-01

    We are investigating new technologies for creating ultra-large apertures (>20m) for space-based imagery. Our approach has been to create diffractive primaries in flat membranes deployed from compact payloads. These structures are attractive in that they are much simpler to fabricate, launch and deploy compared to conventional three-dimensional optics. In this case the flat focusing element is a photon sieve which consists of a large number of holes in an otherwise opaque substrate. A photon sieve is essentially a large number of holes located according to an underlying Fresnel Zone Plate (FZP) geometry. The advantages over the FZP are that there are no support struts which lead to diffraction spikes in the far-field and non-uniform tension which can cause wrinkling of the substrate. Furthermore, with modifications in hole size and distribution we can achieve improved resolution and contrast over conventional optics. The trade-offs in using diffractive optics are the large amounts of dispersion and decreased efficiency. We present both theoretical and experimental results from small-scale prototypes. Several key solutions to issues of limited bandwidth and efficiency have been addressed. Along with these we have studied the materials aspects in order to optimize performance and achieve a scalable solution to an on-orbit demonstrator. Our current efforts are being directed towards an on-orbit 1m solar observatory demonstration deployed from a CubeSat bus.

  8. The gelatinous extracellular matrix facilitates transport studies in kelp: visualization of pressure-induced flow reversal across sieve plates

    PubMed Central

    Knoblauch, Jan; Peters, Winfried S.; Knoblauch, Michael

    2016-01-01

    Background and Aims In vascular plants, important questions regarding phloem function remain unanswered due to problems with invasive experimental procedures in this highly sensitive tissue. Certain brown algae (kelps; Laminariales) also possess sieve tubes for photoassimilate transport, but these are embedded in large volumes of a gelatinous extracellular matrix which isolates them from neighbouring cells. Therefore, we hypothesized that kelp sieve tubes might tolerate invasive experimentation better than their analogues in higher plants, and sought to establish Nereocystis luetkeana as an experimental system. Methods The predominant localization of cellulose and the gelatinous extracellular matrix in N. luetkeana was verified using specific fluorescent markers and confocal laser scanning microscopy. Sieve tubes in intact specimens were loaded with fluorescent dyes, either passively (carboxyfluorescein diacetate; CFDA) or by microinjection (rhodamine B), and the movement of the dyes was monitored by fluorescence microscopy. Key Results Application of CFDA demonstrated source to sink bulk flow in N. luetkeana sieve tubes, and revealed the complexity of sieve tube structure, with branches, junctions and lateral connections. Microinjection into sieve elements proved comparatively easy. Pulsed rhodamine B injection enabled the determination of flow velocity in individual sieve elements, and the direct visualization of pressure-induced reversals of flow direction across sieve plates. Conclusions The reversal of flow direction across sieve plates by pressurizing the downstream sieve element conclusively demonstrates that a critical requirement of the Münch theory is satisfied in kelp; no such evidence exists for tracheophytes. Because of the high tolerance of its sieve elements to experimental manipulation, N. luetkeana is a promising alternative to vascular plants for studying the fluid mechanics of sieve tube networks. PMID:26929203

  9. Efficacy of Conventional Laser Irradiation Versus a New Method for Gingival Depigmentation (Sieve Method): A Clinical Trial.

    PubMed

    Houshmand, Behzad; Janbakhsh, Noushin; Khalilian, Fatemeh; Talebi Ardakani, Mohammad Reza

    2017-01-01

    Introduction: Diode laser irradiation has recently shown promising results for treatment of gingival pigmentation. This study sought to compare the efficacy of 2 diode laser irradiation protocols for treatment of gingival pigmentations, namely the conventional method and the sieve method. Methods: In this split-mouth clinical trial, 15 patients with gingival pigmentation were selected and their pigmentation intensity was determined using Dummett's oral pigmentation index (DOPI) in different dental regions. Diode laser (980 nm wavelength and 2 W power) was irradiated through a stipple pattern (sieve method) and conventionally in the other side of the mouth. Level of pain and satisfaction with the outcome (both patient and periodontist) were measured using a 0-10 visual analog scale (VAS) for both methods. Patients were followed up at 2 weeks, one month and 3 months. Pigmentation levels were compared using repeated measures of analysis of variance (ANOVA). The difference in level of pain and satisfaction between the 2 groups was analyzed by sample t test and general estimate equation model. Results: No significant differences were found regarding the reduction of pigmentation scores and pain and scores between the 2 groups. The difference in satisfaction with the results at the three time points was significant in both conventional and sieve methods in patients ( P = 0.001) and periodontists ( P = 0.015). Conclusion: Diode laser irradiation in both methods successfully eliminated gingival pigmentations. The sieve method was comparable to conventional technique, offering no additional advantage.

  10. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing.

    PubMed

    Jekat, Stephan B; Ernst, Antonia M; von Bohl, Andreas; Zielonka, Sascia; Twyman, Richard M; Noll, Gundula A; Prüfer, Dirk

    2013-01-01

    Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing.

  11. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing

    PubMed Central

    Jekat, Stephan B.; Ernst, Antonia M.; von Bohl, Andreas; Zielonka, Sascia; Twyman, Richard M.; Noll, Gundula A.; Prüfer, Dirk

    2013-01-01

    Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing. PMID:23840197

  12. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving

    PubMed Central

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na+ and Cl− ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na+ and Cl− ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl−). Nano-sieving incorporated with larger frameworks has been used in filtering Na+ and Cl− ions in functional devices. PMID:26892277

  13. Coreference analysis in clinical notes: a multi-pass sieve with alternate anaphora resolution modules.

    PubMed

    Jonnalagadda, Siddhartha Reddy; Li, Dingcheng; Sohn, Sunghwan; Wu, Stephen Tze-Inn; Wagholikar, Kavishwar; Torii, Manabu; Liu, Hongfang

    2012-01-01

    This paper describes the coreference resolution system submitted by Mayo Clinic for the 2011 i2b2/VA/Cincinnati shared task Track 1C. The goal of the task was to construct a system that links the markables corresponding to the same entity. The task organizers provided progress notes and discharge summaries that were annotated with the markables of treatment, problem, test, person, and pronoun. We used a multi-pass sieve algorithm that applies deterministic rules in the order of preciseness and simultaneously gathers information about the entities in the documents. Our system, MedCoref, also uses a state-of-the-art machine learning framework as an alternative to the final, rule-based pronoun resolution sieve. The best system that uses a multi-pass sieve has an overall score of 0.836 (average of B(3), MUC, Blanc, and CEAF F score) for the training set and 0.843 for the test set. A supervised machine learning system that typically uses a single function to find coreferents cannot accommodate irregularities encountered in data especially given the insufficient number of examples. On the other hand, a completely deterministic system could lead to a decrease in recall (sensitivity) when the rules are not exhaustive. The sieve-based framework allows one to combine reliable machine learning components with rules designed by experts. Using relatively simple rules, part-of-speech information, and semantic type properties, an effective coreference resolution system could be designed. The source code of the system described is available at https://sourceforge.net/projects/ohnlp/files/MedCoref.

  14. The gelatinous extracellular matrix facilitates transport studies in kelp: visualization of pressure-induced flow reversal across sieve plates.

    PubMed

    Knoblauch, Jan; Peters, Winfried S; Knoblauch, Michael

    2016-04-01

    In vascular plants, important questions regarding phloem function remain unanswered due to problems with invasive experimental procedures in this highly sensitive tissue. Certain brown algae (kelps; Laminariales) also possess sieve tubes for photoassimilate transport, but these are embedded in large volumes of a gelatinous extracellular matrix which isolates them from neighbouring cells. Therefore, we hypothesized that kelp sieve tubes might tolerate invasive experimentation better than their analogues in higher plants, and sought to establish Nereocystis luetkeana as an experimental system. The predominant localization of cellulose and the gelatinous extracellular matrix in N. luetkeana was verified using specific fluorescent markers and confocal laser scanning microscopy. Sieve tubes in intact specimens were loaded with fluorescent dyes, either passively (carboxyfluorescein diacetate; CFDA) or by microinjection (rhodamine B), and the movement of the dyes was monitored by fluorescence microscopy. Application of CFDA demonstrated source to sink bulk flow in N. luetkeana sieve tubes, and revealed the complexity of sieve tube structure, with branches, junctions and lateral connections. Microinjection into sieve elements proved comparatively easy. Pulsed rhodamine B injection enabled the determination of flow velocity in individual sieve elements, and the direct visualization of pressure-induced reversals of flow direction across sieve plates. The reversal of flow direction across sieve plates by pressurizing the downstream sieve element conclusively demonstrates that a critical requirement of the Münch theory is satisfied in kelp; no such evidence exists for tracheophytes. Because of the high tolerance of its sieve elements to experimental manipulation, N. luetkeana is a promising alternative to vascular plants for studying the fluid mechanics of sieve tube networks. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company

  15. A bacterial extract of OM-85 Broncho-Vaxom prevents allergic rhinitis in mice.

    PubMed

    Han, Ling; Zheng, Chao-Pan; Sun, Yue-Qi; Xu, Geng; Wen, Weiping; Fu, Qing-Ling

    2014-01-01

    According to the hygiene hypothesis, bacterial infections during early life contribute to a reduced incidence of asthma in animals. However, the effects of microbial products at a safe dose and within a rational time course on the prevention of allergic rhinitis (AR) have been inconclusive. This study investigated the immunomodulatory effects of oral administration of a bacterial extract, OM-85 Broncho-Vaxom (BV), with a low dose and general time course, which is currently used for respiratory infections in humans, on AR inflammation in mice. We developed a mouse model of ovalbumin (OVA)-induced AR allergic inflammation in the nose mucosa of mice. Low doses of OM-85 BV were orally administered for 3 months (long term) before sensitization. We evaluated nasal symptoms, pathology in the nose, inflammatory cells, and the levels of T helper 1 (Th1)/Th2 cytokines in the nasal lavage fluids, and the serum levels of specific IgE and IgG1. We also observed enhanced effects of OM-85 BV with 1 month (short term) of treatment. We found that long-term pretreatment with OM-85 BV protected the mice from the majority of allergy-specific symptoms; specifically, OM-85 BV suppressed nasal symptoms, inhibited eosinophil infiltration in the nose, inhibited inflammatory infiltrates and the Th2 response by reducing cytokines (IL-4, IL-5, or IL-13) in the nasal lavage fluids, and reduced IgE and IgG1 levels. Furthermore, short-term treatment with OM-85 BV decreased the levels of Th2 cytokines and IgE. Taken together, our data suggested that OM-85 BV is a low-cost alternative candidate to prevent AR with simple oral administration.

  16. A bacterial extract of OM-85 Broncho-Vaxom prevents allergic rhinitis in mice.

    PubMed

    Han, L; Zheng, C-P; Sun, Y-Q; Xu, G; Wen, W; Fu, Q-L

    2013-12-06

    According to the hygiene hypothesis, bacterial infections during early life contribute to a reduced incidence of asthma in animals. However, the effects of microbial products at a safe dose and within a rational time course on the prevention of allergic rhinitis (AR) have been inconclusive. This study investigated the immunomodulatory effects of oral administration of a bacterial extract, OM-85 Broncho-Vaxom (BV), with a low dose and general time course, which is currently used for respiratory infections in humans, on AR inflammation in mice. We developed a mouse model of ovalbumin (OVA)-induced AR allergic inflammation in the nose mucosa of mice. Low doses of OM-85 BV were orally administered for 3 months (long term) before sensitization. We evaluated nasal symptoms, pathology in the nose, inflammatory cells, and the levels of T helper 1 (Th1)/Th2 cytokines in the nasal lavage fluids, and the serum levels of specific IgE and IgG1. We also observed enhanced effects of OM-85BV with 1 month (short term) of treatment. We found that long-term pretreatment with OM-85 BV protected the mice from the majority of allergy-specific symptoms; specifically, OM-85 BV suppressed nasal symptoms, inhibited eosinophil infiltration in the nose, inhibited inflammatory infiltrates and the Th2 response by reducing cytokines (IL-4, IL-5, or IL-13) in the nasal lavage fluids, and reduced IgE and IgG1 levels. Furthermore, short-term treatment with OM-85 BV decreased the levels of Th2 cytokines and IgE. Taken together, our data suggested that OM-85 BV is a low-cost alternative candidate to prevent AR with simple oral administration.

  17. Rotating belt sieves for primary treatment, chemically enhanced primary treatment and secondary solids separation.

    PubMed

    Rusten, B; Rathnaweera, S S; Rismyhr, E; Sahu, A K; Ntiako, J

    2017-06-01

    Fine mesh rotating belt sieves (RBS) offer a very compact solution for removal of particles from wastewater. This paper shows examples from pilot-scale testing of primary treatment, chemically enhanced primary treatment (CEPT) and secondary solids separation of biofilm solids from moving bed biofilm reactors (MBBRs). Primary treatment using a 350 microns belt showed more than 40% removal of total suspended solids (TSS) and 30% removal of chemical oxygen demand (COD) at sieve rates as high as 160 m³/m²-h. Maximum sieve rate tested was 288 m³/m²-h and maximum particle load was 80 kg TSS/m²-h. When the filter mat on the belt increased from 10 to 55 g TSS/m², the removal efficiency for TSS increased from about 35 to 60%. CEPT is a simple and effective way of increasing the removal efficiency of RBS. Adding about 1 mg/L of cationic polymer and about 2 min of flocculation time, the removal of TSS typically increased from 40-50% without polymer to 60-70% with polymer. Using coagulation and flocculation ahead of the RBS, separation of biofilm solids was successful. Removal efficiencies of 90% TSS, 83% total P and 84% total COD were achieved with a 90 microns belt at a sieve rate of 41 m³/m²-h.

  18. Use of thermal sieve to allow optical testing of cryogenic optical systems.

    PubMed

    Kim, Dae Wook; Cai, Wenrui; Burge, James H

    2012-05-21

    Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.

  19. The Organic Matter Molecular Characteristics of Pyrogenic Solids and Their Aqueous Leachable Fractions

    NASA Astrophysics Data System (ADS)

    Wozniak, A. S.; Hatcher, P.; Mitra, S.; Bostick, K. W.; Zimmerman, A. R.

    2016-02-01

    Pyrogenic organic matter (Py-OM), or black carbon (BC), derives from the incomplete combustion of fossil fuels and biomass and is recognized for its impacts on soil chemistry, pollutant transport, climate, and regional and global carbon cycling. In fact, Py-OM is commonly applied to agricultural plots, in the form of "biochars," with the intention of enhancing agricultural production and the expectation of a carbon sequestration side benefit due to Py-OM's refractory and immobile nature. However, several studies of riverine, estuarine, and oceanic waters have detected tracers of dissolved Py-OM in appreciable quantities suggesting that it is more mobile in the environment than previously expected. The quantities and impacts of Py-OM released to aqueous systems are likely dependent on Py-OM molecular characteristics which in turn likely depend on initial combustion conditions and environmental processing. Yet, very little is known about the detailed molecular composition of these materials, let alone their relationships with combustion and environmental processing. Here, pyrophosphate extractable and water leachable components of a range of Py-OM materials (natural charcoals aged in the environment for variable lengths of time, oak and grass combusted over a range of temperatures) are examined by Fourier transform ion cyclotron resonance mass spectrometry. The molecular characteristics of the dissolved and pyrophosphate extractable Py-OM is then compared in the context of production conditions. Results of this study will greatly improve our understanding of Py-OM cycling between watersheds and the oceans.

  20. Shuttle performance enhancements using an OMS payload bay kit

    NASA Technical Reports Server (NTRS)

    Templin, Kevin C.; Mallini, Charles J.

    1991-01-01

    The study focuses on the use of an orbital maneuvering system (OMS) payload bay kit (PBK) designed to utilize OMS tanks identical to those currently employed in the Orbiter OMS pods. Emphasis is placed on payload deployment capability and payload servicing/reboost capability augmentation from the point of view of payload mass, maximum deployment altitudes, and initial retrieval and final deployment altitudes. The deployment, servicing, and reboost requirements of the Hubble Space Telescope and Advanced X-ray and Astrophysics Facility are analyzed in order to show the benefits an OMS PBK can provide for these missions. It is shown that OMS PBKs can provide the required capability enhancement necessary to support deployment, reboost, and servicing of payloads requiring altitudes greater than 325 nautical miles.

  1. Molecular-sieve chromatography and electrophoresis in polyacrylamide gels

    PubMed Central

    Morris, C. J. O. R.; Morris, Peggy

    1971-01-01

    1. The absolute electrophoretic mobilities of eight proteins have been measured at pH8.76, I 0.05, in polyacrylamide gels of 20 different compositions at 10°C. 2. The partition coefficients of these proteins have been determined chromatographically under the same conditions by using columns of granulated polyacrylamide gel prepared simultaneously. 3. The electrophoretic mobilities are an exponential function of the gel concentrations when the latter are corrected for water uptake. The constants of this function have been determined by curvefitting methods. They have been shown to be related to the free solution mobility and to the mean molecular radius respectively. 4. The reduced mobilities have been shown to be a linear function of the partition coefficients by statistical analyses. 5. The physical significance of the relation between electrophoretic mobility and chromatographic phase distribution in gel media is discussed in the context of these results. PMID:5135238

  2. Coreference analysis in clinical notes: a multi-pass sieve with alternate anaphora resolution modules

    PubMed Central

    Li, Dingcheng; Sohn, Sunghwan; Wu, Stephen Tze-Inn; Wagholikar, Kavishwar; Torii, Manabu; Liu, Hongfang

    2012-01-01

    Objective This paper describes the coreference resolution system submitted by Mayo Clinic for the 2011 i2b2/VA/Cincinnati shared task Track 1C. The goal of the task was to construct a system that links the markables corresponding to the same entity. Materials and methods The task organizers provided progress notes and discharge summaries that were annotated with the markables of treatment, problem, test, person, and pronoun. We used a multi-pass sieve algorithm that applies deterministic rules in the order of preciseness and simultaneously gathers information about the entities in the documents. Our system, MedCoref, also uses a state-of-the-art machine learning framework as an alternative to the final, rule-based pronoun resolution sieve. Results The best system that uses a multi-pass sieve has an overall score of 0.836 (average of B3, MUC, Blanc, and CEAF F score) for the training set and 0.843 for the test set. Discussion A supervised machine learning system that typically uses a single function to find coreferents cannot accommodate irregularities encountered in data especially given the insufficient number of examples. On the other hand, a completely deterministic system could lead to a decrease in recall (sensitivity) when the rules are not exhaustive. The sieve-based framework allows one to combine reliable machine learning components with rules designed by experts. Conclusion Using relatively simple rules, part-of-speech information, and semantic type properties, an effective coreference resolution system could be designed. The source code of the system described is available at https://sourceforge.net/projects/ohnlp/files/MedCoref. PMID:22707745

  3. Recent Improvements To the Sieve of Eratosthenes.

    ERIC Educational Resources Information Center

    Quesada, Antonio R.

    1997-01-01

    Presents recently developed generalizations to the sieve of Eratosthenes, showing the principles underlying these improvements, which increase its efficiency without changing too much of its simplicity. Offers several possibilities to propose good investigations for students to explore, find patterns, and make generalizations. (JRH)

  4. Micro-matrix solid-phase dispersion coupled with MEEKC for quantitative analysis of lignans in Schisandrae Chinensis Fructus using molecular sieve TS-1 as a sorbent.

    PubMed

    Chu, Chu; Wei, Mengmeng; Wang, Shan; Zheng, Liqiong; He, Zheng; Cao, Jun; Yan, Jizhong

    2017-09-15

    A simple and effective method was developed for determining lignans in Schisandrae Chinensis Fructus by using a micro-matrix solid phase dispersion (MSPD) technique coupled with microemulsion electrokinetic chromatography (MEEKC). Molecular sieve, TS-1, was applied as a solid supporting material in micro MSPD extraction for the first time. Parameters that affect extraction efficiency, such as type of dispersant, mass ratio of the sample to the dispersant, grinding time, elution solvent and volume were optimized. The optimal extraction conditions involve dispersing 25mg of powdered Schisandrae samples with 50mg of TS-1 by a mortar and pestle. A grinding time of 150s was adopted. The blend was then transferred to a solid-phase extraction cartridge and the target analytes were eluted with 500μL of methanol. Moreover, several parameters affecting MEEKC separation were studied, including the type of oil, SDS concentration, type and concentration of cosurfactant, and concentration of organic modifier. A satisfactory linearity (R>0.9998) was obtained, and the calculated limits of quantitation were less than 2.77μg/mL. Finally, the micro MSPD-MEEKC method was successfully applied to the analysis of lignans in complex Schisandrae fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Multiprocessing the Sieve of Eratosthenes

    NASA Technical Reports Server (NTRS)

    Bokhari, S.

    1986-01-01

    The Sieve of Eratosthenes for finding prime numbers in recent years has seen much use as a benchmark algorithm for serial computers while its intrinsically parallel nature has gone largely unnoticed. The implementation of a parallel version of this algorithm for a real parallel computer, the Flex/32, is described and its performance discussed. It is shown that the algorithm is sensitive to several fundamental performance parameters of parallel machines, such as spawning time, signaling time, memory access, and overhead of process switching. Because of the nature of the algorithm, it is impossible to get any speedup beyond 4 or 5 processors unless some form of dynamic load balancing is employed. We describe the performance of our algorithm with and without load balancing and compare it with theoretical lower bounds and simulated results. It is straightforward to understand this algorithm and to check the final results. However, its efficient implementation on a real parallel machine requires thoughtful design, especially if dynamic load balancing is desired. The fundamental operations required by the algorithm are very simple: this means that the slightest overhead appears prominently in performance data. The Sieve thus serves not only as a very severe test of the capabilities of a parallel processor but is also an interesting challenge for the programmer.

  6. Spatial variability of organic matter molecular composition and elemental geochemistry in surface sediments of a small boreal Swedish lake

    NASA Astrophysics Data System (ADS)

    Tolu, Julie; Rydberg, Johan; Meyer-Jacob, Carsten; Gerber, Lorenz; Bindler, Richard

    2017-04-01

    The composition of sediment organic matter (OM) exerts a strong control on biogeochemical processes in lakes, such as those involved in the fate of carbon, nutrients and trace metals. While between-lake spatial variability of OM quality is increasingly investigated, we explored in this study how the molecular composition of sediment OM varies spatially within a single lake and related this variability to physical parameters and elemental geochemistry. Surface sediment samples (0-10 cm) from 42 locations in Härsvatten - a small boreal forest lake with a complex basin morphometry - were analyzed for OM molecular composition using pyrolysis gas chromatography mass spectrometry for the contents of 23 major and trace elements and biogenic silica. We identified 162 organic compounds belonging to different biochemical classes of OM (e.g., carbohydrates, lignin and lipids). Close relationships were found between the spatial patterns of sediment OM molecular composition and elemental geochemistry. Differences in the source types of OM (i.e., terrestrial, aquatic plant and algal) were linked to the individual basin morphometries and chemical status of the lake. The variability in OM molecular composition was further driven by the degradation status of these different source pools, which appeared to be related to sedimentary physicochemical parameters (e.g., redox conditions) and to the molecular structure of the organic compounds. Given the high spatial variation in OM molecular composition within Härsvatten and its close relationship with elemental geochemistry, the potential for large spatial variability across lakes should be considered when studying biogeochemical processes involved in the cycling of carbon, nutrients and trace elements or when assessing lake budgets.

  7. Wood source and pyrolysis temperature interact to control PyOM degradation rates

    NASA Astrophysics Data System (ADS)

    Bird, J. A.; Hatton, P. J.; Filley, T. R.; Chatterjee, S.; Auclerc, A.; Gormley, M.; Dastmalchi, K.; Stark, R. E.; Nadelhoffer, K. J.

    2015-12-01

    Surprisingly little is known about how shifts in tree species composition and increased forest fire frequency and intensity will affect one of the most stable pools of soil organic matter, i.e. the pyrogenic organic matter (PyOM or char). In a previous study, we showed that wood source and pyrolysis temperature interact to control PyOM structure and potential reactivity for two tree species common in high-latitude forests, jack pine (JP) and red maple (RM). Here, we investigate whether these differences affect PyOM turnover by examining the fates of 13C/15N-enriched JP wood and PyOM pyrolyzed at 300 (JP300) and 450 °C (JP450) and RM pyrolyzed at 450 °C (RM450). The substrates were applied 1-3 cm below the O/A interface of a well-drained Spodosol in a long-term forest fire study located at the University of Michigan Biological Station (Pellston, MI, USA). 13C-CO2effluxes from the first 996 days of decay showed a significant wood source by pyrolysis temperature interaction on PyOM field mineralisation rates, with RM450 mineralising twice faster than JP450 during the first 90 days. Increasing pyrolysis temperature substantially decreased field mineralization rates during the first 996 days, with mineralisation rates 24 and 80 times slower for JP300 and JP450 compared with JP wood. After 1 year, (i) bacterial groups were large sinks for PyOM-derived C as pyrolysis temperature increased and as substrate use efficiency decreased; (ii) potential phenol oxidase and net peroxidase activities were unaffected by the PyOM addition, although net peroxidase activities measured tended to lesser for soils amended with JP450 and RM450; and (iii) Collembola detritivores appeared less likely to be found for soils amended with JP450 and RM450. PyOM-derived C and N recoveries did not differ after 1 year; we will present 3-y recovery data. Our results suggest that the composition of angiosperms (e.g. RM) and gymnosperms (e.g. JP) in high-latitude forests is an underappreciated but

  8. Efficiency-enhanced photon sieve using Gaussian/overlapping distribution of pinholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabatyan, A.; Mirzaie, S.

    2011-04-10

    A class of photon sieve is introduced whose structure is based on the overlapping pinholes in the innermost zones. This kind of distribution is produced by, for example, a particular form of Gaussian function. The focusing property of the proposed model was examined theoretically and experimentally. It is shown that under He-Ne laser and white light illumination, the focal spot size of this novel structure has considerably smaller FWHM than a photon sieve with randomly distributed pinholes and a Fresnel zone plate. In addition, secondary maxima have been suppressed effectively.

  9. An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis.

    PubMed

    Khan, Junaid A; Wang, Qi; Sjölund, Richard D; Schulz, Alexander; Thompson, Gary A

    2007-04-01

    Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae) tissue cultures, recognizes an antigen in the Arabidopsis (Arabidopsis thaliana) ecotype Columbia that is associated specifically with the plasma membrane of sieve elements, but not companion cells, and accumulates at the earliest stages of sieve element differentiation. The identity of the RS6 antigen was revealed by reverse transcription-PCR of Arabidopsis leaf RNA using degenerate primers to be an early nodulin (ENOD)-like protein that is encoded by the expressed gene At3g20570. Arabidopsis ENOD-like proteins are encoded by a multigene family composed of several types of structurally related phytocyanins that have a similar overall domain structure of an amino-terminal signal peptide, plastocyanin-like copper-binding domain, proline/serine-rich domain, and carboxy-terminal hydrophobic domain. The amino- and carboxy-terminal domains of the 21.5-kD sieve element-specific ENOD are posttranslationally cleaved from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both floral and vegetative tissues, the sieve element-specific ENOD is expressed only within the phloem. Members of the ENOD subfamily of the cupredoxin superfamily do not appear to bind copper and have unknown functions. Phenotypic analysis of homozygous T-DNA insertion mutants for the gene At3g20570 shows minimal alteration in vegetative growth but a significant reduction in the overall reproductive potential.

  10. Circulating form of beta-2-microglobulin in dialysis patients.

    PubMed

    Gagnon, R F; Somerville, P; Thomson, D M

    1988-01-01

    The circulating profile of beta-2-microglobulin (beta 2M) was determined in 8 end-stage renal disease patients on long-term dialysis (6 on hemodialysis, 2 on CAPD) by measuring beta 2M in different fraction after molecular sieve separation of their sera. Four patients had carpal tunnel syndrome with demonstrated amyloid in excised wrist tissues of which 2 were positive for beta 2M. In all patients despite very high blood levels (34.3-63.1 mg/l), beta 2M eluted exclusively as a single peak in the molecular weight region of about 12,000 daltons on a calibrated Sephacryl S-200 column. Recoveries from within the peak accounted for 96% of the applied beta 2M serum concentrations. These results were confirmed by molecular sieve separation of the enriched beta 2M-containing fractions by high-pressure liquid chromatography. We conclude that immunoreactive beta 2M in dialysis patients circulates as an intact monomer without evidence for the formation of aggregates or fragments. The pathogenesis of tissue deposition of this low-molecular-weight protein and its polymerisation to form a specific amyloid remains to be defined.

  11. Sieve-based relation extraction of gene regulatory networks from biological literature

    PubMed Central

    2015-01-01

    Background Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. Results We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice

  12. Sieve-based relation extraction of gene regulatory networks from biological literature.

    PubMed

    Žitnik, Slavko; Žitnik, Marinka; Zupan, Blaž; Bajec, Marko

    2015-01-01

    Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice of transforming

  13. Analyzing adsorption characteristics of CO2, N2 and H2O in MCM-41 silica by molecular simulation

    NASA Astrophysics Data System (ADS)

    Chang, Shing-Cheng; Chien, Shih-Yao; Chen, Chieh-Li; Chen, Cha'o.-Kuang

    2015-03-01

    The adsorption characteristics of carbon dioxide, nitrogen and water molecules in MCM-41 mesoporous molecular sieve have been investigated by the molecular simulation. We evaluate the pressure-adsorption isotherms and adsorption density profiles under variant gas pressure, operating temperature and mesopore radius of MCM-41 by the grand canonical Monte Carlo simulation. According to the calculated adsorption energy distributions, the adsorption mechanisms of gas in MCM-41 are mainly divided into three types, namely "surface adsorption" on the pore wall, "multilayer adsorption" on the adsorbed gas molecules and "molecular self-aggregation" near the pore center. In addition, the adsorption characteristics of water molecules in MCM-41 are found to be quite different from those of carbon dioxide and nitrogen due to the hydrogen bonds effect. The results indicate that the MCM-41 is practicable in engineering application for the capture, storage, and re-use of water molecules, since it is temperature-sensitive and can achieve significant adsorption loadings within a small range of pressure values via the capillary condensation phenomena.

  14. A study on the reactivity characteristics of dissolved effluent organic matter (EfOM) from municipal wastewater treatment plant during ozonation.

    PubMed

    Jin, Pengkang; Jin, Xin; Bjerkelund, Viggo A; Østerhus, Stein W; Wang, Xiaochang C; Yang, Lei

    2016-01-01

    The reactivity of dissolved effluent organic matter (EfOM) in the process of ozonation was examined. Under different ozone dosages (0.42 ± 0.09, 0.98 ± 0.11 and 2.24 ± 0.17 mgO3/mg DOC), the EfOM before and after ozonation could be classified into four fractions according to their hydrophobicities. By ozonation, the hydrophobic fractions, especially hydrophobic acid (HOA) and hydrophobic neutral (HON), were found to undergo a process of transformation into hydrophilic fractions (HI), of which the HOA were first transformed into HON, and then the majority of the HON fraction was later converted to HI by further ozonation. It was noticeable that after ozonation, the fluorescence intensity in the humic-like and protein-like regions decreased as indicated by the excitation and emission matrix (EEM) spectra for the hydrophobic fractions. By coupling the EEM spectra with the molecular size analysis using high performance size exclusion chromatography (HPSEC), the difference between the characteristic distributions of the humic-like and protein-like fluorophores were further revealed. It could thus be extrapolated that ozone might have preferentially reacted with the protein-like hydrophobic fraction with molecular weight (MW) less than 100 kDa. Moreover, by X-ray photoelectron spectroscopy (XPS) analysis, it was identified that with increasing ozone dosage (from 0 to 2.24 ± 0.17 mgO3/mg DOC), the aromaticity of HON decreased dramatically, while aliphatics and ketones increased especially at the low ozone dose (0.42 ± 0.09 mgO3/mg DOC). Of the EfOM fractions, the HON fraction would have a higher content of electron enriched aromatics which could preferentially react with ozone rather than the HOA fraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. 20 CFR 229.68 - Reduction of DIB O/M.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Reduction of DIB O/M. 229.68 Section 229.68..., State, or Local Law or Plan § 229.68 Reduction of DIB O/M. A reduction for entitlement to worker's compensation or a public disability benefit is applied after the DIB O/M is reduced for age and the family...

  16. 20 CFR 229.68 - Reduction of DIB O/M.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Reduction of DIB O/M. 229.68 Section 229.68..., State, or Local Law or Plan § 229.68 Reduction of DIB O/M. A reduction for entitlement to worker's compensation or a public disability benefit is applied after the DIB O/M is reduced for age and the family...

  17. Chemical effects in biological systems (CEBS) object model for toxicology data, SysTox-OM: design and application.

    PubMed

    Xirasagar, Sandhya; Gustafson, Scott F; Huang, Cheng-Cheng; Pan, Qinyan; Fostel, Jennifer; Boyer, Paul; Merrick, B Alex; Tomer, Kenneth B; Chan, Denny D; Yost, Kenneth J; Choi, Danielle; Xiao, Nianqing; Stasiewicz, Stanley; Bushel, Pierre; Waters, Michael D

    2006-04-01

    The CEBS data repository is being developed to promote a systems biology approach to understand the biological effects of environmental stressors. CEBS will house data from multiple gene expression platforms (transcriptomics), protein expression and protein-protein interaction (proteomics), and changes in low molecular weight metabolite levels (metabolomics) aligned by their detailed toxicological context. The system will accommodate extensive complex querying in a user-friendly manner. CEBS will store toxicological contexts including the study design details, treatment protocols, animal characteristics and conventional toxicological endpoints such as histopathology findings and clinical chemistry measures. All of these data types can be integrated in a seamless fashion to enable data query and analysis in a biologically meaningful manner. An object model, the SysBio-OM (Xirasagar et al., 2004) has been designed to facilitate the integration of microarray gene expression, proteomics and metabolomics data in the CEBS database system. We now report SysTox-OM as an open source systems toxicology model designed to integrate toxicological context into gene expression experiments. The SysTox-OM model is comprehensive and leverages other open source efforts, namely, the Standard for Exchange of Nonclinical Data (http://www.cdisc.org/models/send/v2/index.html) which is a data standard for capturing toxicological information for animal studies and Clinical Data Interchange Standards Consortium (http://www.cdisc.org/models/sdtm/index.html) that serves as a standard for the exchange of clinical data. Such standardization increases the accuracy of data mining, interpretation and exchange. The open source SysTox-OM model, which can be implemented on various software platforms, is presented here. A universal modeling language (UML) depiction of the entire SysTox-OM is available at http://cebs.niehs.nih.gov and the Rational Rose object model package is distributed under an open

  18. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements.

    PubMed

    Buxa, Stefanie V; Degola, Francesca; Polizzotto, Rachele; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; di Toppi, Luigi Sanità; van Bel, Aart J E; Musetti, Rita

    2015-01-01

    Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by 'Candidatus Phytoplasma solani,' the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes.

  19. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements

    PubMed Central

    Buxa, Stefanie V.; Degola, Francesca; Polizzotto, Rachele; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; di Toppi, Luigi Sanità; van Bel, Aart J. E.; Musetti, Rita

    2015-01-01

    Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by ‘Candidatus Phytoplasma solani,’ the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes. PMID:26347766

  20. Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions.

    PubMed

    Braet, Filip; Wisse, Eddie; Bomans, Paul; Frederik, Peter; Geerts, Willie; Koster, Abraham; Soon, Lilian; Ringer, Simon

    2007-03-01

    Correlative microscopy has become increasingly important for the analysis of the structure, function, and dynamics of cells. This is largely due to the result of recent advances in light-, probe-, laser- and various electron microscopy techniques that facilitate three-dimensional studies. Furthermore, the improved understanding in the past decade of imaging cell compartments in the third dimension has resulted largely from the availability of powerful computers, fast high-resolution CCD cameras, specifically developed imaging analysis software, and various probes designed for labeling living and or fixed cells. In this paper, we review different correlative high-resolution imaging methodologies and how these microscopy techniques facilitated the accumulation of new insights in the morpho-functional and structural organization of the hepatic sieve. Various aspects of hepatic endothelial fenestrae regarding their structure, origin, dynamics, and formation will be explored throughout this paper by comparing the results of confocal laser scanning-, correlative fluorescence and scanning electron-, atomic force-, and whole-mount electron microscopy. Furthermore, the recent advances of vitrifying cells with the vitrobot in combination with the glove box for the preparation of cells for cryo-electron microscopic investigation will be discussed. Finally, the first transmission electron tomography data of the liver sieve in three-dimensions are presented. The obtained data unambiguously show the involvement of special domains in the de novo formation and disappearance of hepatic fenestrae, and focuses future research into the (supra)molecular structure of the fenestrae-forming center, defenestration center and fenestrae-, and sieve plate cytoskeleton ring by using advanced cryo-electron tomography. (c) 2007 Wiley-Liss, Inc.

  1. Quadratic grating apodized photon sieves for simultaneous multiplane microscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin

    2017-10-01

    We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.

  2. Differential distribution of proteins expressed in companion cells in the sieve element-companion cell complex of rice plants.

    PubMed

    Fukuda, Akari; Fujimaki, Syu; Mori, Tomoko; Suzui, Nobuo; Ishiyama, Keiki; Hayakawa, Toshihiko; Yamaya, Tomoyuki; Fujiwara, Toru; Yoneyama, Tadakatsu; Hayashi, Hiroaki

    2005-11-01

    Sieve tubes are comprised of sieve elements, enucleated cells that are incapable of RNA and protein synthesis. The proteins in sieve elements are supplied from the neighboring companion cells through plasmodesmata. In rice plants, it was unclear whether or not all proteins produced in companion cells had the same distribution pattern in the sieve element-companion cell complex. In this study, the distribution pattern of four proteins, beta-glucuronidase (GUS), green fluorescent protein (GFP), thioredoxin h (TRXh) and glutathione S-transferase (GST) were analyzed. The foreign proteins GUS and GFP were expressed in transgenic rice plants under the control of the TRXh gene promoter (PTRXh), a companion cell-specific promoter. Analysis of leaf cross-sections of PTRXh-GUS and PTRXh-GFP plants indicated high accumulation of GUS and GFP, respectively, in companion cells rather than in sieve elements. GUS and GFP were also detected in phloem sap collected from leaf sheaths of the transgenic rice plants, suggesting these proteins could enter sieve elements. Relative amounts of GFP and endogenous phloem proteins, TRXh and GST, in phloem sap and total leaf extracts were compared. Compared to TRXh and GST, GFP content was higher in total leaf extracts, but lower in phloem sap, suggesting that GFP accumulated mainly in companion cells rather than in sieve elements. On the other hand, TRXh and GST appeared to accumulate in sieve elements rather than in companion cells. These results indicate the evidence for differential distribution of proteins between sieve elements and companion cells in rice plants.

  3. The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of nicotiana clevelandii

    PubMed Central

    Blackman, LM; Boevink, P; Cruz, SS; Palukaitis, P; Oparka, KJ

    1998-01-01

    The location of the 3a movement protein (MP) of cucumber mosaic virus (CMV) was studied by quantitative immunogold labeling of the wild-type 3a MP in leaves of Nicotiana clevelandii infected by CMV as well as by using a 3a-green fluorescent protein (GFP) fusion expressed from a potato virus X (PVX) vector. Whether expressed from CMV or PVX, the 3a MP targeted plasmodesmata and accumulated in the central cavity of the pore. Within minor veins, the most extensively labeled plasmodesmata were those connecting sieve elements and companion cells. In addition to targeting plasmodesmata, the 3a MP accumulated in the parietal layer of mature sieve elements. Confocal imaging of cells expressing the 3a-GFP fusion protein showed that the 3a MP assembled into elaborate fibrillar formations in the sieve element parietal layer. The ability of 3a-GFP, expressed from PVX rather than CMV, to enter sieve elements demonstrates that neither the CMV RNA nor the CMV coat protein is required for trafficking of the 3a MP into sieve elements. CMV virions were not detected in plasmodesmata from CMV-infected tissue, although large CMV aggregates were often found in the parietal layer of sieve elements and were usually surrounded by 3a MP. These data suggest that CMV traffics into minor vein sieve elements as a ribonucleoprotein complex that contains the viral RNA, coat protein, and 3a MP, with subsequent viral assembly occurring in the sieve element parietal layer. PMID:9548980

  4. Combustion inputs into a terrestrial archive over 265 years as evidenced by BPCA molecular markers

    NASA Astrophysics Data System (ADS)

    Hanke, Ulrich M.; Eglinton, Timothy I.; Wiedemeier, Daniel B.; Schmidt, Michael W. I.

    2015-04-01

    Pyrogenic organic matter (PyOM) such as char and soot is produced during the incomplete combustion of biomass and fossil fuel. It is composed of condensed aromatic structures and can resist degradation processes, maybe over long periods of time. Land-use changes, industrial activity and its transport by wind and water affect the fluxes of PyOM from the source to its sedimentary archive. Investigating environmental PyOM with the molecular marker benzene polycarboxylic acid (BPCA) method provides various information about quantity, quality (BPCA distribution pattern) and about its isotopic composition (13C and 14C). Assessing PyOM quality can indicate whether it is mostly combustion condensate (soot) or combustion residue (charcoal) and potentially allow source apportionment. Our study area is the Pettaquamscutt River catchment area (35 km2), Rhode Island, U.S.A. It is located down-wind of industrial areas recording deposition of long-distance atmospheric transport as well as local catchment inputs, both from natural and anthropogenic sources. We investigated 50 samples of a sediment record over a time span of 265 years (1733-1998 AD). Previous investigations provided information on the age of deposition, the content of polycyclic aromatic hydrocarbons (PAH) as well as of the radiocarbon contents of total organic carbon (TOC) and PAH (Lima, 2004). We used the BPCA molecular marker method to quantify and characterize PyOM in the same record. First results show that quantity and quality of PyOM change over 265 years. Our investigation aims at understanding how different sources of PyOM are reflected in terrestrial archives by comparing the results of BPCA with radiocarbon-dated TOC and PAH records. Among other aspects, the PAH record reflects the Great Depression and the 1970s oil embargo in North America. We interpret the BPCA distribution patterns regarding the simultaneous shift of dominant fuels including wood, coal, petroleum and gas. Future work will include

  5. GFP tagging of sieve element occlusion (SEO) proteins results in green fluorescent forisomes.

    PubMed

    Pélissier, Hélène C; Peters, Winfried S; Collier, Ray; van Bel, Aart J E; Knoblauch, Michael

    2008-11-01

    Forisomes are Ca(2+)-driven, ATP-independent contractile protein bodies that reversibly occlude sieve elements in faboid legumes. They apparently consist of at least three proteins; potential candidates have been described previously as 'FOR' proteins. We isolated three genes from Medicago truncatula that correspond to the putative forisome proteins and expressed their green fluorescent protein (GFP) fusion products in Vicia faba and Glycine max using the composite plant methodology. In both species, expression of any of the constructs resulted in homogenously fluorescent forisomes that formed sieve tube plugs upon stimulation; no GFP fluorescence occurred elsewhere. Isolated fluorescent forisomes reacted to Ca(2+) and chelators by contraction and expansion, respectively, and did not lose fluorescence in the process. Wild-type forisomes showed no affinity for free GFP in vitro. The three proteins shared numerous conserved motifs between themselves and with hypothetical proteins derived from the genomes of M. truncatula, Vitis vinifera and Arabidopsis thaliana. However, they showed neither significant similarities to proteins of known function nor canonical metal-binding motifs. We conclude that 'FOR'-like proteins are components of forisomes that are encoded by a well-defined gene family with relatives in taxa that lack forisomes. Since the mnemonic FOR is already registered and in use for unrelated genes, we suggest the acronym SEO (sieve element occlusion) for this family. The absence of binding sites for divalent cations suggests that the Ca(2+) binding responsible for forisome contraction is achieved either by as yet unidentified additional proteins, or by SEO proteins through a novel, uncharacterized mechanism.

  6. GFP Tagging of Sieve Element Occlusion (SEO) Proteins Results in Green Fluorescent Forisomes

    PubMed Central

    Pélissier, Hélène C.; Peters, Winfried S.; Collier, Ray; van Bel, Aart J. E.; Knoblauch, Michael

    2008-01-01

    Forisomes are Ca2+-driven, ATP-independent contractile protein bodies that reversibly occlude sieve elements in faboid legumes. They apparently consist of at least three proteins; potential candidates have been described previously as ‘FOR’ proteins. We isolated three genes from Medicago truncatula that correspond to the putative forisome proteins and expressed their green fluorescent protein (GFP) fusion products in Vicia faba and Glycine max using the composite plant methodology. In both species, expression of any of the constructs resulted in homogenously fluorescent forisomes that formed sieve tube plugs upon stimulation; no GFP fluorescence occurred elsewhere. Isolated fluorescent forisomes reacted to Ca2+ and chelators by contraction and expansion, respectively, and did not lose fluorescence in the process. Wild-type forisomes showed no affinity for free GFP in vitro. The three proteins shared numerous conserved motifs between themselves and with hypothetical proteins derived from the genomes of M. truncatula, Vitis vinifera and Arabidopsis thaliana. However, they showed neither significant similarities to proteins of known function nor canonical metal-binding motifs. We conclude that ‘FOR’-like proteins are components of forisomes that are encoded by a well-defined gene family with relatives in taxa that lack forisomes. Since the mnemonic FOR is already registered and in use for unrelated genes, we suggest the acronym SEO (sieve element occlusion) for this family. The absence of binding sites for divalent cations suggests that the Ca2+ binding responsible for forisome contraction is achieved either by as yet unidentified additional proteins, or by SEO proteins through a novel, uncharacterized mechanism. PMID:18784195

  7. Structure and composition of Fe-OM co-precipitates that form in soil-derived solutions

    NASA Astrophysics Data System (ADS)

    Fritzsche, Andreas; Schröder, Christian; Wieczorek, Arkadiusz K.; Händel, Matthias; Ritschel, Thomas; Totsche, Kai U.

    2015-11-01

    Iron oxides represent a substantial fraction of secondary minerals and particularly affect the reactive properties of natural systems in which they formed, e.g. in soils and sediments. Yet, it is still obscure how transient conditions in the solution will affect the properties of in situ precipitated Fe oxides. Transient compositions, i.e. compositions that change with time, arise due to predominant non-equilibrium states in natural systems, e.g. between liquid and solid phases in soils. In this study, we characterize Fe-OM co-precipitates that formed in pH-neutral exfiltrates from anoxic topsoils under transient conditions. We applied soil column outflow experiments, in which Fe2+ was discharged with the effluent from anoxic soil and subsequently oxidized in the effluent due to contact with air. Our study features three novel aspects being unconsidered so far: (i) the transient composition of soil-derived solutions, (ii) that pedogenic Fe oxides instead of Fe salts serve as major source for Fe2+ in soil solution and (iii) the presence of exclusively soil-derived organic and inorganic compounds during precipitation. The experiments were carried out with two topsoil materials that differed in composition, texture and land use. Derived from Mössbauer spectroscopy, broad distributions in quadrupole splittings (0-2 mm s-1) and magnetic hyperfine fields (35-53 T) indicated the presence of low-crystalline ferrihydrite and even lower crystalline Fe phases in all Fe-OM co-precipitates. There was no unequivocal evidence for other Fe oxides, i.e. lepidocrocite and (nano)goethite. The Fe-OM co-precipitates contained inorganic (P, sulfate, silicate, Al, As) and organic compounds (proteins, polysaccharides), which were concurrently discharged from the soils. Their content in the Fe-OM co-precipitates was controlled by their respective concentration in the soil-derived solution. On a molar basis, OC and Fe were the main components in the Fe-OM co-precipitates (OC/Fe ratio = 0.5-2

  8. PV O&M Cost Model and Cost Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Andy

    This is a presentation on PV O&M cost model and cost reduction for the annual Photovoltaic Reliability Workshop (2017), covering estimating PV O&M costs, polynomial expansion, and implementation of Net Present Value (NPV) and reserve account in cost models.

  9. Final Technical Report: Amicus O&M Cooperative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bybee, Amanda

    Despite the maturation of the broader solar PV industry, the operations and maintenance (O&M) market segment is still relatively under developed. The lack of industry coherence jeopardizes the long-term performance of multiple gigawatts of installed capacity, and thus, the legitimacy of solar PV as a dependable source of electricity generation in the U.S. To address these challenges, the project team formed a new company, the Amicus Operations and Maintenance (O&M) Cooperative, whose mission is to ensure that solar PV fulfills its promise as a responsible and reliable energy source, for generations to come. Amicus O&M Cooperative created solutions to themore » market gaps by establishing a consistent level of O&M service offerings; standardizing scopes of work and legal agreements; training and certifying technicians; minimizing transaction costs for asset owners; and mitigating risk by creating redundancy in the companies who are able to perform work to these standards. We attracted double the number of member-companies originally forecast (goal: 10, actual: 20), broadening the reach of the service area, minimizing travel costs, and reducing response times for O&M services. We built a professional website and a software platform for managing work orders. Lastly, we have established multiple channels for communication among members, including monthly calls for sales topics and for technical/operational topics, an intranet for announcements/ questions/articles, and regular in-person meetings in association with the meetings of our sister cooperative, Amicus Solar. Throughout the project, participants sought feedback, input, and insights from stakeholders in the O&M market segment, including current and potential member-companies and potential clients. The problem statement above was confirmed many times over, with additional insight on the need for more workforce development, driving efficiency and lowering cost through better data analysis and remote diagnostics

  10. Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem.

    PubMed

    Ernst, Antonia M; Jekat, Stephan B; Zielonka, Sascia; Müller, Boje; Neumann, Ulla; Rüping, Boris; Twyman, Richard M; Krzyzanek, Vladislav; Prüfer, Dirk; Noll, Gundula A

    2012-07-10

    The sieve element occlusion (SEO) gene family originally was delimited to genes encoding structural components of forisomes, which are specialized crystalloid phloem proteins found solely in the Fabaceae. More recently, SEO genes discovered in various non-Fabaceae plants were proposed to encode the common phloem proteins (P-proteins) that plug sieve plates after wounding. We carried out a comprehensive characterization of two tobacco (Nicotiana tabacum) SEO genes (NtSEO). Reporter genes controlled by the NtSEO promoters were expressed specifically in immature sieve elements, and GFP-SEO fusion proteins formed parietal agglomerates in intact sieve elements as well as sieve plate plugs after wounding. NtSEO proteins with and without fluorescent protein tags formed agglomerates similar in structure to native P-protein bodies when transiently coexpressed in Nicotiana benthamiana, and the analysis of these protein complexes by electron microscopy revealed ultrastructural features resembling those of native P-proteins. NtSEO-RNA interference lines were essentially devoid of P-protein structures and lost photoassimilates more rapidly after injury than control plants, thus confirming the role of P-proteins in sieve tube sealing. We therefore provide direct evidence that SEO genes in tobacco encode P-protein subunits that affect translocation. We also found that peptides recently identified in fascicular phloem P-protein plugs from squash (Cucurbita maxima) represent cucurbit members of the SEO family. Our results therefore suggest a common evolutionary origin for P-proteins found in the sieve elements of all dicotyledonous plants and demonstrate the exceptional status of extrafascicular P-proteins in cucurbits.

  11. 12om Methodology: Process v1.1

    DTIC Science & Technology

    2014-03-31

    in support of the Applied Research Project (ARP) 12om entitled “Collaborative Understanding of Complex Situations”. The overall purpose of this...Definition ARP Applied Research Project CF Canadian Forces CFOPP Canadian Forces Operational Planning Process CIDA Canadian International... Research Project (ARP) 12om entitled “Collaborative Understanding of Complex Situations”. The overall purpose of this project is to develop a

  12. Ricinus communis cyclophilin: functional characterisation of a sieve tube protein involved in protein folding.

    PubMed

    Gottschalk, Maren; Dolgener, Elmar; Xoconostle-Cázares, Beatriz; Lucas, William J; Komor, Ewald; Schobert, Christian

    2008-09-01

    The phloem translocation stream of the angiosperms contains a special population of proteins and RNA molecules which appear to be produced in the companion cells prior to being transported into the sieve tube system through the interconnecting plasmodesmata. During this process, these non-cell-autonomous proteins are thought to undergo partial unfolding. Recent mass spectroscopy studies identified peptidyl-prolyl cis-trans isomerase (PPIases) as potential molecular chaperones functioning in the phloem translocation stream (Giavalisco et al. 2006). In the present study, we describe the cloning and characterisation of a castor bean phloem cyclophilin, RcCYP1 that has high peptidyl-prolyl cis-trans isomerase activity. Equivalent enzymatic activity was detected with phloem sap or purified recombinant (His)(6)-tagged RcCYP1. Mass spectrometry analysis of proteolytic peptides, derived from a 22 kDa band in HPLC-fractionated phloem sap, immunolocalisation studies and Western analysis of proteins extracted from castor bean tissues/organs indicated that RcCYP1 is an abundant protein in the companion cell-sieve element complex. Microinjection experiments established that purified recombinant (His)(6)-RcCYP1 can interact with plasmodesmata to both induce an increase in size exclusion limit and mediate its own cell-to-cell trafficking. Collectively, these findings support the hypothesis that RcCYP1 plays a role in the refolding of non-cell-autonomous proteins after their entry into the phloem translocation stream.

  13. Application of computational fluid dynamics for the simulation of cryogenic molecular sieve bed absorber of hydrogen isotopes recovery system for Indian LLCB-TBM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayathri Devi, V.; Sircar, A.; Sarkar, B.

    One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption massmore » transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)« less

  14. Modelling, simulation and verification of the screening process of a swing-bar sieve based on the DEM

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Yu, Jianqun; Yu, Yajun

    2018-05-01

    To solve the problems in the DEM simulations of the screening process of a swing-bar sieve, in this paper we propose the real-virtual boundary method to build the geometrical model of the screen deck on a swing-bar sieve. The motion of the swing-bar sieve is modelled by the planer multi-body kinematics. A coupled model of the discrete element method (DEM) with multi-body kinematics (MBK) is presented to simulate the flowing and passing processes of soybean particles on the screen deck. By the comparison of the simulated results with the experimental results of the screening process of the LA-LK laboratory scale swing-bar sieve, the feasibility and validity of the real-virtual boundary method and the coupled DEM-MBK model we proposed in this paper can be verified. This work provides the basis for the optimization design of the swing-bar sieve with circular apertures and complex motion.

  15. Evaluation of Hydrogen Isotope Exchange Methodology on Adsorbents for Tritium Removal

    DOE PAGES

    Morgan, Gregg A.; Xiao, S. Xin

    2015-03-06

    The Savannah River National Laboratory has demonstrated a potential process that can be used to remove tritium from tritiated water using Pt-catalyzed molecular sieves. The process is an elemental isotope exchange process in which H 2 (when flowed through the molecular sieves) will exchange with the adsorbed water, D 2O, leaving H 2O adsorbed on the molecular sieves. Various formulations of catalyzed molecular sieve material were prepared using two different techniques, Pt-implantation and Pt-ion exchange. This technology has been demonstrated for a protium (H) and deuterium (D) system, but can also be used for the removal of tritium from contaminatedmore » water (T 2O, HTO, and DTO) using D 2 (or H 2)« less

  16. Involvement of the sieve element cytoskeleton in electrical responses to cold shocks.

    PubMed

    Hafke, Jens B; Ehlers, Katrin; Föller, Jens; Höll, Sabina-Roxana; Becker, Stefanie; van Bel, Aart J E

    2013-06-01

    This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca(2+)-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca(2+) influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D). Under control conditions, cold shocks elicited a graded initial voltage transient, ΔV1, reduced by external La(3+) in keeping with the involvement of Ca(2+) channels, and a second voltage transient, ΔV2. Cytochalasin D had no effect on ΔV1, while ΔV1 was significantly reduced with 500 nm latrunculin A. Forisome dispersion was triggered by cold shocks of 4°C or greater, which was indicative of an all-or-none behavior. Forisome dispersion was suppressed by incubation with latrunculin A. In conclusion, the cytoskeleton controls cold shock-induced Ca(2+) influx into SEs, leading to forisome dispersion and sieve plate occlusion in fava bean (Vicia faba).

  17. A differential delay equation arising from the sieve of Eratosthenes

    NASA Astrophysics Data System (ADS)

    Cheer, A. Y.; Goldston, D. A.

    1990-07-01

    The differential delay equation defined by ω (u) = 1/u for 1 ≤ u ≤ 2 and (uω (u))' = ω (u - 1) for u ≥ 2 was introduced by Buchstab in connection with an asymptotic formula for the number of uncanceled terms in the sieve of Eratosthenes. Maier has recently used this result to show there is unexpected irregularity in the distribution of primes in short intervals. The function ω (u) is studied in this paper using numerical and analytical techniques. The results are applied to give some numerical constants in Maier's theorem.

  18. Flux of granular particles through a shaken sieve plate

    PubMed Central

    Wen, Pingping; Zheng, Ning; Nian, Junwei; Li, Liangsheng; Shi, Qingfan

    2015-01-01

    We experimentally investigate a discharging flux of granular particles through a sieve plate subject to vertical vibrations. The mean mass flux shows a non-monotonic relation with the vibration strength. High-speed photography reveals that two stages, the free flight of the particles’ bulk over the plate and the adhesion of the particles’ bulk with the plate, alternately appear, where only the adhesion stage contributes to the flow. With two independent methods, we then measure the adhesion time under different vibration conditions, and define an adhesion flux. The adhesion flux monotonically increases with increasing vibration strength. By rescaling the adhesion flux, we find that the adhesion flux is approximately determined by the peak vibration velocity of the shaker. The conclusion is examined with other sieve geometries. PMID:26056080

  19. 43 CFR 426.23 - Recovery of operation and maintenance (O&M) costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Recovery of operation and maintenance (O&M... operation and maintenance (O&M) costs. (a) General. All new, amended, and renewed contracts shall provide for payment of O&M costs as specified in this section. (b) Amount of O&M costs a district must pay if...

  20. Chronic recording of regenerating VIIIth nerve axons with a sieve electrode

    NASA Technical Reports Server (NTRS)

    Mensinger, A. F.; Anderson, D. J.; Buchko, C. J.; Johnson, M. A.; Martin, D. C.; Tresco, P. A.; Silver, R. B.; Highstein, S. M.

    2000-01-01

    A micromachined silicon substrate sieve electrode was implanted within transected toadfish (Opsanus tau) otolith nerves. High fidelity, single unit neural activity was recorded from seven alert and unrestrained fish 30 to 60 days after implantation. Fibrous coatings of genetically engineered bioactive protein polymers and nerve guide tubes increased the number of axons regenerating through the electrode pores when compared with controls. Sieve electrodes have potential as permanent interfaces to the nervous system and to bridge missing connections between severed or damaged nerves and muscles. Recorded impulses might also be amplified and used to control prosthetic devices.

  1. An Early Nodulin-Like Protein Accumulates in the Sieve Element Plasma Membrane of Arabidopsis1[OA

    PubMed Central

    Khan, Junaid A.; Wang, Qi; Sjölund, Richard D.; Schulz, Alexander; Thompson, Gary A.

    2007-01-01

    Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae) tissue cultures, recognizes an antigen in the Arabidopsis (Arabidopsis thaliana) ecotype Columbia that is associated specifically with the plasma membrane of sieve elements, but not companion cells, and accumulates at the earliest stages of sieve element differentiation. The identity of the RS6 antigen was revealed by reverse transcription-PCR of Arabidopsis leaf RNA using degenerate primers to be an early nodulin (ENOD)-like protein that is encoded by the expressed gene At3g20570. Arabidopsis ENOD-like proteins are encoded by a multigene family composed of several types of structurally related phytocyanins that have a similar overall domain structure of an amino-terminal signal peptide, plastocyanin-like copper-binding domain, proline/serine-rich domain, and carboxy-terminal hydrophobic domain. The amino- and carboxy-terminal domains of the 21.5-kD sieve element-specific ENOD are posttranslationally cleaved from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both floral and vegetative tissues, the sieve element-specific ENOD is expressed only within the phloem. Members of the ENOD subfamily of the cupredoxin superfamily do not appear to bind copper and have unknown functions. Phenotypic analysis of homozygous T-DNA insertion mutants for the gene At3g20570 shows minimal alteration in vegetative growth but a significant reduction in the overall reproductive potential. PMID:17293437

  2. Impact of fine mesh sieve primary treatment on nitrogen removal in moving bed biofilm reactors.

    PubMed

    Rusten, B; Razafimanantsoa, V A; Andriamiarinjaka, M A; Otis, C L; Sahu, A K; Bilstad, T

    2016-01-01

    The purpose of this project was to investigate the effect of selective particle removal during primary treatment on nitrogen removal in moving bed biofilm reactors (MBBRs). Two small MBBR pilot plants were operated in parallel, where one train treated 2 mm screened municipal wastewater and the other train treated wastewater that had passed through a Salsnes Filter SF1000 rotating belt sieve (RBS) with a 33 µs sieve cloth. The SF1000 was operated without a filter mat on the belt. The tests confirmed that, for the wastewater characteristics at the test plant, Salsnes Filter primary treatment with a 33 µs RBS and no filter mat produced a primary effluent that was close to optimum. Removal of organic matter with the 33 µs sieve had no negative effect on the denitrification process. Nitrification rates improved by 10-15% in the train with 33 µs RBS primary treatment. Mass balance calculations showed that without RBS primary treatment, the oxygen demand in the biological system was 36% higher. Other studies have shown that the sludge produced by RBS primary treatment is beneficial for biogas production and will also significantly improve sludge dewatering of the combined primary and biological sludge.

  3. Symplastic isolation of the sieve element-companion cell complex in the phloem of Ricinus communis and Salix alba stems.

    PubMed

    van Bel, A J; Kempers, R

    1991-12-01

    The anatomical and physiological isolation of the sieve element-companion cell complex (se-cc complex) was investigated in stems of Ricinus communis L. and Salix alba L. In Ricinus, the plasmodesmatal frequencies were in the proportions 8∶1∶2∶30, in the order given, at the interfaces between sieve tube-companion cell, sieve tube-phloem parenchyma cell, companion cellphloem parenchyma cell, and phloem parenchyma cellphloem parenchyma cell. The membrane potentials of the se-cc complex and the surrounding phloem-parenchyma cells sharply contrasted: the membrane potential of the se-cc complex was about twice as negative as that of the phloem parenchyma. Lucifer Yellow CH injected into the sieve element or into the companion cell remained within the se-cc complex. Dye introduced into phloem parenchyma only moved (mostly poorly) to other phloem-parenchyma cells. The distribution of the plasmodesmatal frequencies, the differential dye-coupling and the sharp discontinuities in membrane potentials indicate that the se-cc complexes constitute symplast domains in the stem phloem. Symplastic autonomy is discussed as a basic necessity for the functioning of the se-cc complex in the stem.

  4. Predictability sieve, pointer states, and the classicality of quantum trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalvit, D. A. R.; Zurek, W. H.; Dziarmaga, J.

    2005-12-15

    We study various measures of classicality of the states of open quantum systems subject to decoherence. Classical states are expected to be stable in spite of decoherence, and are thought to leave conspicuous imprints on the environment. Here these expected features of environment-induced superselection are quantified using four different criteria: predictability sieve (which selects states that produce least entropy), purification time (which looks for states that are the easiest to find out from the imprint they leave on the environment), efficiency threshold (which finds states that can be deduced from measurements on a smallest fraction of the environment), and puritymore » loss time (that looks for states for which it takes the longest to lose a set fraction of their initial purity). We show that when pointer states--the most predictable states of an open quantum system selected by the predictability sieve--are well defined, all four criteria agree that they are indeed the most classical states. We illustrate this with two examples: an underdamped harmonic oscillator, for which coherent states are unanimously chosen by all criteria, and a free particle undergoing quantum Brownian motion, for which most criteria select almost identical Gaussian states (although, in this case, the predictability sieve does not select well defined pointer states)« less

  5. Enhancement of operating flux in a membrane bio-reactor coupled with a mechanical sieve unit.

    PubMed

    Park, Seongjun; Yeon, Kyung-Min; Moon, Seheum; Kim, Jong-Oh

    2018-01-01

    Filtration flux is one of the key factors in regulating the performance of membrane bio-reactors (MBRs) for wastewater treatment. In this study, we explore the effectiveness of a mechanical sieve unit for effective flux enhancement through retardation of the fouling effect in a modified MBR system (SiMBR). In brief, the coarse sieve unit having 100 μm and 50 μm permits small size microorganism flocs to adjust the biomass concentration from the suspended basin to the membrane basin. As a result, the reduced biofouling effect due to the lowered biomass concentration from 7800 mg/L to 2400 mg/L, enables higher flux through the membrane. Biomass rejection rate of the sieve is identified to be the crucial design parameter for the flux enhancement through the incorporation of numerical simulations and operating critical-flux measurement in a batch reactor. Then, the sieve unit is prepared for 10 L lab-scale continuous SiMBR based on the correlation between sieve pore size and biomass rejection characteristics. During continuous operation of lab-scale SiMBR, biomass concentration is maintained with a higher biomass concentration in the aerobic basin (7400 mg/L) than that in the membrane basin (2400 mg/L). In addition, the SiMBR operations are conducted using three different commercial hollow fiber membranes to compare the permeability to that of conventional MBR operations. For all cases, the modified MBR having a sieve unit clearly results in enhanced permeability. These results successfully validate that SiMBR can effectively improve flux through direct reduction of biomass concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. OMS Annual Report, 1985.

    ERIC Educational Resources Information Center

    Association of Research Libraries, Washington, DC. Office of Management Studies.

    This report describes the following 1985 Office of Management Studies (OMS) programs and services: (1) the Academic Library Program (ALP), which includes the Organizational Screening Program, the Collection Analysis Project (CAP), the Preservation Planning Program (PPP), the Public Services Study (PSS), the Management Review and Analysis Program…

  7. Microfluidic sieve using intertwined, free-standing carbon nanotube mesh as active medium

    DOEpatents

    Bakajin, Olgica; Noy, Aleksandr

    2007-11-06

    A microfluidic sieve having a substrate with a microfluidic channel, and a carbon nanotube mesh. The carbon nanotube mesh is formed from a plurality of intertwined free-standing carbon nanotubes which are fixedly attached within the channel for separating, concentrating, and/or filtering molecules flowed through the channel. In one embodiment, the microfluidic sieve is fabricated by providing a substrate having a microfluidic channel, and growing the intertwined free-standing carbon nanotubes from within the channel to produce the carbon nanotube mesh attached within the channel.

  8. Evaluation of hydrogen isotope exchange methodology on adsorbents for tritium removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, G.A.; Xin Xiao, S.

    2015-03-15

    The Savannah River National Laboratory has demonstrated a potential process that can be used to remove tritium from tritiated water using Pt-catalyzed molecular sieves. The process is an elemental isotope exchange process in which H{sub 2} (when flowed through the molecular sieves) will exchange with the adsorbed water, D{sub 2}O, leaving H{sub 2}O adsorbed on the molecular sieves. Various formulations of catalyzed molecular sieve material were prepared using two different techniques, Pt-implantation and Pt-ion exchange. This technology has been demonstrated for a protium (H) and deuterium (D) system, but can also be used for the removal of tritium from contaminatedmore » water (T{sub 2}O, HTO, and DTO) using D{sub 2} (or H{sub 2}). (authors)« less

  9. Actinide Oxidation State and O/M Ratio in Hypostoichiometric Uranium-Plutonium-Americium U0.750Pu0.246Am0.004O2-x Mixed Oxides.

    PubMed

    Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M

    2016-03-07

    Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process.

  10. Cameras instead of sieves for aggregate characterization : research spotlight

    DOT National Transportation Integrated Search

    2012-01-01

    Michigan researchers explored the use of cameras and software that may eventually replace the use of screen sieves in sizing and assessing crushed aggregate for pavement construction. This research explored approaches to imaging aggregate as a way to...

  11. Quality Control of Trichinella Testing at the Slaughterhouse Laboratory: Evaluation of the Use of a 400-Micrometer-Mesh-Size Sieve in the Magnetic Stirrer Method.

    PubMed

    Franssen, Frits; van Andel, Esther; Swart, Arno; van der Giessen, Joke

    2016-02-01

    The performance of a 400-μm-mesh-size sieve (sieve400) has not previously been compared with that of a 180-μm-mesh-size sieve (sieve180). Using pork samples spiked with 0 to 10 Trichinella muscle larvae and an artificial digestion method, sieve performance was evaluated for control of Trichinella in meat-producing animals. The use of a sieve400 resulted in 12% lower larval counts, 147% more debris, and 28% longer counting times compared with the use of a sieve180. Although no false-negative results were obtained, prolonged counting times with the sieve400 may have an impact on performance in a high-throughput environment such as a slaughterhouse laboratory. Based on our results, the sieve180 remains the sieve of choice for Trichinella control in meat in slaughterhouse laboratories, according to the European Union reference method (European Commission regulation 2075/2005). Furthermore, the results of the present study contribute to the discussion of harmonization of meat inspection requirements among countries.

  12. Structural ordering of casein micelles on silicon nitride micro-sieves during filtration.

    PubMed

    Gebhardt, Ronald; Holzmüller, Wolfgang; Zhong, Qi; Müller-Buschbaum, Peter; Kulozik, Ulrich

    2011-11-01

    The paper reports on the structure and formation of casein micelle deposits on silicon nitride micro-sieves during the frontal filtration. The most frequent radius of the fractionated casein micelles we use is R=60 nm as detected by static light scattering (SLS) and atomic force microscopy (AFM). We estimate the size and size distribution of the casein micelles which pass through the micro-sieve during the filtration process. A sharpening of the size distribution at the beginning of the filtration process (t=40s) is followed by a broadening and a shift of the most frequent radii towards smaller sizes at later times (t=840 s). The size distribution of the micelles deposited on the micro-sieve during filtration is bimodal and consists of the largest and smallest micelles. At larger filtration times, we observe a shift of both deposited size classes towards smaller sizes. The atomic force micrographs of the reference sample reveal a tendency of the casein micelles to order in a hexagonal lattice when deposited on the micro-sieves by solution casting. The deposition of two size classes can be explained by a formation of a mixed hexagonal lattice with large micelles building up the basis lattice and smaller sizes filling octahedral and tetrahedral holes of the lattice. The accompanied compression with increasing thickness of the casein layer could result from preferential deposition of smaller sizes in the course of the filtration. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Capability and flight record of the versatile space shuttle OMS engine

    NASA Astrophysics Data System (ADS)

    Judd, D. Craig

    The development contract for Aerojet's Orbital Manuevering Subsystem (OMS) engine was awarded in February 1974. This paper provides a description of the OMS subcomponents along with a summary of the OMS development program and subsequent flight record. The major subcomponents include the platelet injector, regeneratively cooled chamber, radiation cooled nozzle extension, bipropellant valve, thrust mount, gimbal actuator assembly, and propellant feedlines. The OMS engine underwent an extensive development program between 1974 and 1978 that included approximately 3680 tests performed on 21 separate engines on components for a total duration of more than 19,000 seconds. This was followed with qualification testing of two engines with another 521 tests and 18,504 seconds of hot fire testing. The Space Shuttle system has completed 45 orbital flights with the OMS engines having fired a total of 356 times with a cumulative duration of 38,094 seconds. In all cases, the OMS engine has performed as required because of its maturity, simplicity, and built-in redundancy. Also described are the results of studies performed to increase the performance of the OMS engine either by using LOX/hydrocarbon propellants or by converting to a pump fed system to increase chamber pressure and area ratio.

  14. Importance of neutralization sieve analyses when seeking correlates of HIV-1 vaccine efficacy.

    PubMed

    Montefiori, David C

    2014-01-01

    This commentary describes a rationale for the use of breakthrough viruses from clinical trial participants to assess neutralizing antibodies as a correlate of HIV-1 vaccine efficacy. The rationale is based on principles of a genetic sieve analysis, where the 2 analyses may be cooperative for delineating neutralizing antibodies as a mechanistic correlate of protection.

  15. Bacterial extract OM-85 BV protects mice against experimental chronic rhinosinusitis

    PubMed Central

    Tao, Yanli; Yuan, Tiejun; Li, Xuechang; Yang, Shuqin; Zhang, Fanping; Shi, Li

    2015-01-01

    Objectives: To investigate the therapeutic effects of OM-85 BV as an adjunctive treatment on experimental chronic rhinosinusitis (CRS) in mice. Methodology: Female BALB/c mice aged 8-12 weeks were sensitized and administrated by intranasal Aspergillus fumigatis (AF) three times per week for 1 week, 3 weeks, 2 months and 3 months (n = 10 each time point). The mice were randomly and equally assigned to four groups: normal control group, model group, OM-85-BV plus amoxicillin group, and isolated amoxicillin group. Inflammatory changes were determined by hematoxylin-eosin (HE) staining. The expression levels of suppressor of cytokine signaling (SOCS) 1, SOCS3, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in samples were assessed by using real-time PCR (RT-PCR) and Western blotting. Results: There were significantly inflammatory and structural changes between the model and other groups. Compared to the model group, the mRNA expression levels of SOCS1, SOCS3, TNF-α, and IFN-γ were significantly decreased in OM-85-BV plus amoxicillin group and isolated amoxicillin group, along with the protein levels. Conclusion: The bacterial extract OM-85 BV is a low-cost alternatively adjunctive drug to treat CRS with simple oral administration, good safety, and few side effects. PMID:26261565

  16. 40 CFR 61.55 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a molecular sieve or carbon adsorber; (iv) Outlet concentration of available chlorine, pH, liquid... adsorbers or molecular sieves. (3) The recorded parameters in paragraphs (b)(2)(i) through (b)(2)(vi) of...

  17. 40 CFR 61.55 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a molecular sieve or carbon adsorber; (iv) Outlet concentration of available chlorine, pH, liquid... adsorbers or molecular sieves. (3) The recorded parameters in paragraphs (b)(2)(i) through (b)(2)(vi) of...

  18. 40 CFR 61.55 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a molecular sieve or carbon adsorber; (iv) Outlet concentration of available chlorine, pH, liquid... adsorbers or molecular sieves. (3) The recorded parameters in paragraphs (b)(2)(i) through (b)(2)(vi) of...

  19. 40 CFR 61.55 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a molecular sieve or carbon adsorber; (iv) Outlet concentration of available chlorine, pH, liquid... adsorbers or molecular sieves. (3) The recorded parameters in paragraphs (b)(2)(i) through (b)(2)(vi) of...

  20. Loss-of-heterozygosity facilitates passage through Haldane's sieve for Saccharomyces cerevisiae undergoing adaptation.

    PubMed

    Gerstein, A C; Kuzmin, A; Otto, S P

    2014-05-07

    Haldane's sieve posits that the majority of beneficial mutations that contribute to adaptation should be dominant, as these are the mutations most likely to establish and spread when rare. It has been argued, however, that if the dominance of mutations in their current and previous environments are correlated, Haldane's sieve could be eliminated. We constructed heterozygous lines of Saccharomyces cerevisiae containing single adaptive mutations obtained during exposure to the fungicide nystatin. Here we show that no clear dominance relationship exists across environments: mutations exhibited a range of dominance levels in a rich medium, yet were exclusively recessive under nystatin stress. Surprisingly, heterozygous replicates exhibited variable-onset rapid growth when exposed to nystatin. Targeted Sanger sequencing demonstrated that loss-of-heterozygosity (LOH) accounted for these growth patterns. Our experiments demonstrate that recessive beneficial mutations can avoid Haldane's sieve in clonal organisms through rapid LOH and thus contribute to rapid evolutionary adaptation.

  1. Influence of activated carbon preloading by EfOM fractions from treated wastewater on adsorption of pharmaceutically active compounds.

    PubMed

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2016-05-01

    In this study, the preloading effects of different fractions of wastewater effluent organic matter (EfOM) on the adsorption of trace-level pharmaceutically active compounds (PhACs) onto granular activated carbon (GAC) were investigated. A nanofiltration (NF) membrane was employed to separate the EfOM by size, and two GACs with distinct pore structures were chosen for comparison. The results showed that preloading with EfOM substantially decreased PhAC uptake of the GACs; however, comparable PhAC adsorption capacities were achieved on GACs preloaded by feed EfOM and the NF-permeating EfOM. This indicates that: (1) the NF-rejected, larger EfOM molecules with an expectation to block the PhAC adsorption pores exerted little impact on the adsorbability of PhACs; (2) the smaller EfOM molecules present in the NF permeate contributed mainly to the decrease in PhAC uptake, mostly due to site competition. Of the two examined GACs, the wide pore-size-distributed GAC was found to be more susceptible to EfOM preloading than the microporous GAC. Furthermore, among the fourteen investigated PhACs, the negatively charged hydrophilic PhACs were generally subjected to a greater EfOM preloading impact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shulei; Zheng, Shili; Wang, Zheming

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li2TiO3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x0.15, Fe-doping led to grain shrinkage as compared to Li2TiO3 and at the samemore » time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g-1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH 2 solutions (1.8 g L-1 Li, pH 12) reached 53.3 mg g-1 within 24 h, which was higher than that of pristine Li2TiO3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  3. OM-101 Decreases the Fibrotic Response Associated with Proliferative Vitreoretinopathy

    PubMed Central

    Dvashi, Zeev; Ben-Yaakov, Keren; Weinberg, Tamir; Greenwald, Yoel

    2017-01-01

    Purpose This study aimed to investigate the effect of OM-101 on the fibrotic response occurring in proliferative vitreoretinopathy (PVR) in an animal model. Methods Antifibrotic effect of OM-101 was investigated in vivo. As control, eight weeks old c57black mice underwent intravitreal injection with Hepes (group A) or dispase (0.3 units), to induce retinal detachment (RD) and PVR. The dispase-injected mice were randomly divided into two groups B and C (N = 25 mice); in group C, the eyes were treated with intravitreal injection of OM-101 (3 μl), and group B with PBS, as a control. After additional five days, mice were injected with the same initial treatment. Three days later, mice were euthanized, and the eyes were enucleated and processed for histological analysis. Results Intravitreal injection of dispase caused RD in 64% of the mice in group B, and 93% of those mice had PVR. Only 32% of mice treated with OM-101 and dispase (group C) developed RD, and only 25% of those developed PVR. Conclusions OM-101 was found effective in reducing the incidence of RD and PVR maintaining the normal architecture of the retina. This study suggests that OM-101 is a potentially effective and safe drug for the treatment of PVR patients. PMID:29109865

  4. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils

    PubMed Central

    Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

    2014-01-01

    The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (<2 mm) topsoil with labelled litter, we find that only some of the clay-sized surfaces bind organic matter (OM). Surprisingly, <19% of the visible mineral areas show an OM attachment. OM is preferentially associated with organo-mineral clusters with rough surfaces. By combining nano-scale secondary ion mass spectrometry and isotopic tracing, we distinguish between new labelled and pre-existing OM and show that new OM is preferentially attached to already present organo-mineral clusters. These results, which provide evidence that only a limited proportion of the clay-sized surfaces contribute to OM sequestration, revolutionize our view of carbon sequestration in soils and the widely used carbon saturation estimates. PMID:24399306

  5. Continuous-Flow Electrophoresis of DNA and Proteins in a Two-Dimensional Capillary-Well Sieve.

    PubMed

    Duan, Lian; Cao, Zhen; Yobas, Levent

    2017-09-19

    Continuous-flow electrophoresis of macromolecules is demonstrated using an integrated capillary-well sieve arranged into a two-dimensional anisotropic array on silicon. The periodic array features thousands of entropic barriers, each resulting from an abrupt interface between a 2 μm deep well (channel) and a 70 nm capillary. These entropic barriers owing to two-dimensional confinement within the capillaries are vastly steep in relation to those arising from slits featuring one-dimensional confinement. Thus, the sieving mechanisms can sustain relatively large electric field strengths over a relatively small array area. The sieve rapidly sorts anionic macromolecules, including DNA chains and proteins in native or denatured states, into distinct trajectories according to size or charge under electric field vectors orthogonally applied. The baseline separation is achieved in less than 1 min within a horizontal migration length of ∼1.5 mm. The capillaries are self-enclosed conduits in cylindrical profile featuring a uniform diameter and realized through an approach that avoids advanced patterning techniques. The approach exploits a thermal reflow of a layer of doped glass for shape transformation into cylindrical capillaries and for controllably shrinking the capillary diameter. Lastly, atomic layer deposition of alumina is introduced for the first time to fine-tune the capillary diameter as well as to neutralize the surface charge, thereby suppressing undesired electroosmotic flows.

  6. Non-Toxic Orbiter Maneuvering System (OMS) and Reaction Control System

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    NASA is pursuing the technology and advanced development of a non-toxic (NT) orbital maneuvering system (OMS) and reaction control system (RCS) for shuttle upgrades, RLV, and reusable first stages. The primary objectives of the shuttle upgrades program are improved safety, improved reliability, reduced operations time and cost, improved performance or capabilities, and commonality with future space exploration needs. Non-Toxic OMS/RCS offers advantages in each of these categories. A non-toxic OMS/RCS eliminates the ground hazards and the flight safety hazards of the toxic and corrosive propellants. The cost savings for ground operations are over $24M per year for 7 flights, and the savings increase with increasing flight rate up to $44M per year. The OMS/RCS serial processing time is reduced from 65 days to 13 days. The payload capability can be increased up to 5100 Ibms. The non-toxic OMS/RCS also provides improved space station reboost capability up to 20 nautical miles over the current toxic system of 14 nautical miles. A NT OMS/RCS represents a clear advancement in the SOA over MMH/NTO. Liquid oxygen and ethanol are clean burning, high-density propellants that provide a high degree of commonality with other spacecraft subsystems including life support, power, and thermal control, and with future human exploration and development of space missions. The simple and reliable pressure-fed design uses sub-cooled liquid oxygen at 250 to 350 psia, which allows a propellant to remain cryogenic for longer periods of time. The key technologies are thermal insulation and conditioning techniques are used to maintain the sub-cooling. Phase I successfully defined the system architecture, designed an integrated OMS/RCS propellant tank, analyzed the feed system, built and tested the 870 lbf RCS thrusters, and tested the 6000 lbf OMS engine. Phase 11 is currently being planned for the development and test of full-scale prototype of the system in 1999 and 2000

  7. Polyethylene Oxide (PEO) and Polyethylene Glycol (PEG) Polymer Sieving Matrix for RNA Capillary Electrophoresis

    PubMed Central

    Yamaguchi, Yoshinori; Li, Zhenqing; Zhu, Xifang; Liu, Chenchen; Zhang, Dawei; Dou, Xiaoming

    2015-01-01

    The selection of sieving polymer for RNA fragments separation by capillary electrophoresis is imperative. We investigated the separation of RNA fragments ranged from 100 to 10,000 nt in polyethylene glycol (PEG) and polyethylene oxide (PEO) solutions with different molecular weight and different concentration. We found that the separation performance of the small RNA fragments (<1000 nt) was improved with the increase of polymer concentration, whereas the separation performance for the large ones (>4000 nt) deteriorated in PEG/PEO solutions when the concentration was above 1.0%/0.6%, respectively. By double logarithmic plot of mobility and RNA fragment size, we revealed three migration regimes for RNA in PEG (300-500k) and PEO (4,000k). Moreover, we calculated the smallest resolvable nucleotide length (N min) from the resolution length analysis. PMID:25933347

  8. Recovery of macroinvertebrates by screening in the field: a comparison between coarse (1.18 mm) and fine (0.60 mm) mesh sieves

    USGS Publications Warehouse

    Dukerschein, J.T.; Gent, R.; Sauer, J.

    1996-01-01

    We evaluated the potential loss of target benthic macroinvertebrates from coarse-mesh field wash down of samples through a 1.18-mm mesh sieve nested on a 0.60-mm mesh sieve. Visible target organisms (midges, mayflies, and fingernail clams) in the 1.18-mm mesh sieve were removed from the sample and enumerated in the field. The entire contents of both sieves were preserved for subsequent laboratory enumeration under 4X magnification. Percent recoveries from each treatment were based on total intact organisms found in all sieves. Percent recovery for fingernail clams found in the field (31%) was lower than for mayflies (79%) and midges (88%). Laboratory enumeration of organisms retained by the 1.18-mm sieve yielded additional fingernail clams (to total 74% recovered in the field and lab), mayflies (to total 89%), and midges (to total 91%). If the 1.18-mm sieve is used alone in the field, it is adequate to monitor mayflies, midges >1 cm, and adult fingernail clams greater than or equal to 5.0 mm shell length.

  9. Itegrated Test and Evaluation of a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removtal System (CDRA), Mechanical Compressor Engineering Development Unit (EDU), and Sabitier Engineering Development Unit (EDU)

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Campbell, Melissa; Murdoch, Karen; Miller, Lee A.; Jeng, Frank

    2005-01-01

    Currently on the International Space Station s (ISS) U.S. Segment, carbon dioxide (CO2) scrubbed from the cabin by a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal Assembly (CDRA) is vented overboard as a waste product. Likewise, the product hydrogen (H2) that will be generated by the Oxygen Generation Assembly (OGA) planned for installation will also be vented. A flight experiment has been proposed that will take the waste CO2 removed from the cabin, and via the catalytic Sabatier process, reduce it with waste H2 to generate water and methane. The water produced may provide cost and logistics savings for ISS by reducing the amount of water periodically re-supplied to orbit. To make this concept viable, a mechanical piston compressor and accumulator were developed for collecting and storing the CO2 from the CDRA. The compressor, accumulator and Sabatier system would be packaged together as one unit and referred to as the Carbon Dioxide Reduction Assembly (CRA). Testing was required to evaluate the performance of a 4BMS CDRA, compressor, accumulator, and Sabatier performance along with their operating rules when integrated together. This had been numerically modeled and simulated; however, testing was necessary to verify the results from the engineering analyses. Testing also allowed a better understanding of the practical inefficiencies and control issues involved in a fully integrated system versus the theoretical ideals in the model. This paper presents and discusses the results of an integrated engineering development unit test.

  10. Preparation of amorphous sulfide sieves

    DOEpatents

    Siadati, Mohammad H.; Alonso, Gabriel; Chianelli, Russell R.

    2006-11-07

    The present invention involves methods and compositions for synthesizing catalysts/porous materials. In some embodiments, the resulting materials are amorphous sulfide sieves that can be mass-produced for a variety of uses. In some embodiments, methods of the invention concern any suitable precursor (such as thiomolybdate salt) that is exposed to a high pressure pre-compaction, if need be. For instance, in some cases the final bulk shape (but highly porous) may be same as the original bulk shape. The compacted/uncompacted precursor is then subjected to an open-flow hot isostatic pressing, which causes the precursor to decompose and convert to a highly porous material/catalyst.

  11. Distinct effects of Broncho-Vaxom (OM-85 BV) on gp130 binding cytokines

    PubMed Central

    Roth, M; Block, L

    2000-01-01

    BACKGROUND—Broncho-Vaxom (OM-85 BV) is known to support respiratory tract resistance to bacterial infections. In vivo and in vitro studies in animals and humans have shown that the action of the drug is based on the modulation of the host immune response, and it has been found to upregulate interferon γ (IFN-γ) and interleukin (IL)-2, IL-6, and IL-8. These immunomodulatory effects of the compound may explain its stimulation on T helper cells and natural killer cells. Following earlier findings that OM-85 BV induces the synthesis of IL-6, a study was undertaken to investigate its possible effect on other gp130 binding cytokines including IL-11, IL-12, leukaemia inhibitory factor (LIF), oncostatin M (OSM), and ciliary neutrophil factor (CNTF). Its modulation of the corresponding receptors of the above mentioned cytokines and of the signal transducer gp130 in human pulmonary fibroblasts and peripheral blood lymphocytes was also studied.
METHODS—Transcription of cytokines was assessed by Northern blot analysis. Secretion of cytokines was analysed using commercially available enzyme linked immunosorbent assay kits. Cytokine receptors and gp130 proteins were determined by Western blot analysis.
RESULTS—OM-85 BV increased the expression of IL-11 in human lung fibroblasts, but not in lymphocytes, in a dose and time dependent manner by maximal fivefold within 20 hours. The compound inhibited serum induced IL-12 expression in peripheral blood lymphocytes but did not induce OSM, LIF, or CNTF at any concentration. In lung fibroblasts the expression of the IL-6 receptor was enhanced fourfold at a concentration of 10 µg/ml OM-85 BV while that of the IL-11 receptor was not altered. In peripheral blood lymphocytes LIF receptor α expression was downregulated in the presence of 10 µg/ml OM-85 BV. At a concentration of 10 µg/ml OM-85 BV enhanced gp130 gene transcription fivefold and increased gp130 protein accumulation in cell membranes by 2.5times

  12. Effects of a polyelectrolyte additive on the selective dialysis membrane permeability for low-molecular-weight proteins.

    PubMed

    Krieter, Detlef H; Morgenroth, Andreas; Barasinski, Artur; Lemke, Horst-Dieter; Schuster, Oliver; von Harten, Bodo; Wanner, Christoph

    2007-02-01

    Improving the sieving characteristics of dialysis membranes enhances the clearance of low-molecular-weight (LMW) proteins and may have an impact on outcome in patients receiving haemodialysis. To approach this goal, a novel polyelectrolyte additive process was applied to a polyethersulphone (PES) membrane. Polyelectrolyte-modified PES was characterized in vitro by measuring complement activation and sieving coefficients of cytochrome c and serum albumin. In a prospective, randomized, cross-over study, instantaneous plasma water clearances and reduction rates of LMW proteins [beta(2)-microglobulin (b2m), cystatin c, myoglobin, retinol binding protein] were determined in eight patients receiving dialysis treatment with PES in comparison with polysulphone (PSU). Biocompatibility was assessed by determination of transient leucopenia, plasma levels of complement C5a, thrombin-antithrombin III (TAT), myeloperoxidase (MPO) and elastase (ELT). PES showed a steeper sieving profile and lower complement activation in vitro compared with PSU. Instantaneous clearance (69 +/- 8 vs. 58 +/- 3 ml/min; P < 0.001) and reduction rate (72.3 +/- 1 5% vs 66.2 +/- 6.1%; P < 0.001) of b2m were significantly higher with PES as compared with PSU. With higher molecular weight of proteins, differences in the solute removal between PES and PSU further increased, whereas albumin loss remained low (PES, 0.53 +/- 0.17 vs PSU, <0.22 g/dialysis). MPO, ELT and TAT did not differ between the two membranes. In contrast, leucopenia was less pronounced and C5a generation was significantly lower during dialysis with PES. Polyelectrolyte modification of PES results in a higher LMW protein removal and in optimized biocompatibility. Whether these findings translate into better outcome of patients receiving haemodialysis requires further studies.

  13. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shulei; Zheng, Shili; Wang, Zheming

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  14. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE PAGES

    Wang, Shulei; Zheng, Shili; Wang, Zheming; ...

    2018-09-09

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  15. Improving the accuracy of sediment-associated constituent concentrations in whole storm water samples by wet-sieving

    USGS Publications Warehouse

    Selbig, W.R.; Bannerman, R.; Bowman, G.

    2007-01-01

    Sand-sized particles (>63 ??m) in whole storm water samples collected from urban runoff have the potential to produce data with substantial bias and/or poor precision both during sample splitting and laboratory analysis. New techniques were evaluated in an effort to overcome some of the limitations associated with sample splitting and analyzing whole storm water samples containing sand-sized particles. Wet-sieving separates sand-sized particles from a whole storm water sample. Once separated, both the sieved solids and the remaining aqueous (water suspension of particles less than 63 ??m) samples were analyzed for total recoverable metals using a modification of USEPA Method 200.7. The modified version digests the entire sample, rather than an aliquot, of the sample. Using a total recoverable acid digestion on the entire contents of the sieved solid and aqueous samples improved the accuracy of the derived sediment-associated constituent concentrations. Concentration values of sieved solid and aqueous samples can later be summed to determine an event mean concentration. ?? ASA, CSSA, SSSA.

  16. Involvement of the Sieve Element Cytoskeleton in Electrical Responses to Cold Shocks1[W

    PubMed Central

    Hafke, Jens B.; Ehlers, Katrin; Föller, Jens; Höll, Sabina-Roxana; Becker, Stefanie; van Bel, Aart J.E.

    2013-01-01

    This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca2+-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca2+ influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D). Under control conditions, cold shocks elicited a graded initial voltage transient, ΔV1, reduced by external La3+ in keeping with the involvement of Ca2+ channels, and a second voltage transient, ΔV2. Cytochalasin D had no effect on ΔV1, while ΔV1 was significantly reduced with 500 nm latrunculin A. Forisome dispersion was triggered by cold shocks of 4°C or greater, which was indicative of an all-or-none behavior. Forisome dispersion was suppressed by incubation with latrunculin A. In conclusion, the cytoskeleton controls cold shock-induced Ca2+ influx into SEs, leading to forisome dispersion and sieve plate occlusion in fava bean (Vicia faba). PMID:23624858

  17. Difunctional polyisobutylene prepared by polymerization of monomer on molecular sieve

    NASA Technical Reports Server (NTRS)

    Midler, J. A., Jr.

    1970-01-01

    Process yields difunctional isobutylene polymers ranging in molecular weight from 1150 to 3600. These polymers have the potential for copolymerization and cross-linking with other monomers to form elastomeric materials.

  18. Mechanistic modeling of the loss of protein sieving due to internal and external fouling of microfilters.

    PubMed

    Bolton, Glen R; Apostolidis, Alex J

    2017-09-01

    Fed-batch and perfusion cell culture processes used to produce therapeutic proteins can use microfilters for product harvest. In this study, new explicit mathematical models of sieving loss due to internal membrane fouling, external membrane fouling, or a combination of the two were generated. The models accounted for membrane and cake structures and hindered solute transport. Internal membrane fouling was assumed to occur due to the accumulation of foulant on either membrane pore walls (pore-retention model) or membrane fibers (fiber-retention model). External cake fouling was assumed to occur either by the growth of a single incompressible cake layer (cake-growth) or by the accumulation of a number of independent cake layers (cake-series). The pore-retention model was combined with either the cake-series or cake-growth models to obtain models that describe internal and external fouling occurring either simultaneously or sequentially. The models were tested using well-documented sieving decline data available in the literature. The sequential pore-retention followed by cake-growth model provided a good fit of sieving decline data during beer microfiltration. The cake-series and cake-growth models provided good fits of sieving decline data during the microfiltration of a perfusion cell culture. The new models provide insights into the mechanisms of fouling that result in the loss of product sieving. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1323-1333, 2017. © 2017 American Institute of Chemical Engineers.

  19. On polynomial selection for the general number field sieve

    NASA Astrophysics Data System (ADS)

    Kleinjung, Thorsten

    2006-12-01

    The general number field sieve (GNFS) is the asymptotically fastest algorithm for factoring large integers. Its runtime depends on a good choice of a polynomial pair. In this article we present an improvement of the polynomial selection method of Montgomery and Murphy which has been used in recent GNFS records.

  20. Evaluation of INL Supplied MOOSE/OSPREY Model: Modeling Water Adsorption on Type 3A Molecular Sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pompilio, L. M.; DePaoli, D. W.; Spencer, B. B.

    The purpose of this study was to evaluate Idaho National Lab’s Multiphysics Object-Oriented Simulation Environment (MOOSE) software in modeling the adsorption of water onto type 3A molecular sieve (3AMS). MOOSE can be thought-of as a computing framework within which applications modeling specific coupled-phenomena can be developed and run. The application titled Off-gas SeParation and REcoverY (OSPREY) has been developed to model gas sorption in packed columns. The sorbate breakthrough curve calculated by MOOSE/OSPREY was compared to results previously obtained in the deep bed hydration tests conducted at Oak Ridge National Laboratory. The coding framework permits selection of various options, whenmore » they exist, for modeling a process. For example, the OSPREY module includes options to model the adsorption equilibrium with a Langmuir model or a generalized statistical thermodynamic adsorption (GSTA) model. The vapor solid equilibria and the operating conditions of the process (e.g., gas phase concentration) are required to calculate the concentration gradient driving the mass transfer between phases. Both the Langmuir and GSTA models were tested in this evaluation. Input variables were either known from experimental conditions, or were available (e.g., density) or were estimated (e.g., thermal conductivity of sorbent) from the literature. Variables were considered independent of time, i.e., rather than having a mass transfer coefficient that varied with time or position in the bed, the parameter was set to remain constant. The calculated results did not coincide with data from laboratory tests. The model accurately estimated the number of bed volumes processed for the given operating parameters, but breakthrough times were not accurately predicted, varying 50% or more from the data. The shape of the breakthrough curves also differed from the experimental data, indicating a much wider sorption band. Model modifications are needed to improve its utility and

  1. Effects of the Bacterial Extract OM-85 on Phagocyte Functions and the Stress Response

    PubMed Central

    Baladi, S.; Kantengwa, S.; Donati, Y. R. A.; Polla, B. S.

    1994-01-01

    The effects of the bacterial extract OM-85 on the respiratory burst, intracellular calcium and the stress response have been investigated in human peripheral blood monocytes from normal donors. Activation of the respiratory burst during bacterial phagocytosis has been previously associated with heat shock/stress proteins synthesis. Whereas OM-85 stimulated superoxide production and increased Ca2+ mobilization, it fared to induce synthesis of classical HSPs. The lack of stress protein induction was observed even in the presence of iron which potentiates both oxidative injury and stress protein induction during bacterial phagocytosis. However OM-85 induced a 75–78 kDa protein, which is likely to be a glucose regulated protein (GRP78), and enhanced intracellular expression of interleukin-lβ precursor. PMID:18472933

  2. OHMS**: Phytoplasmas dictate changes in sieve-element ultrastructure to accommodate their requirements for nutrition, multiplication and translocation.

    PubMed

    Musetti, Rita; Pagliari, Laura; Buxa, Stefanie V; Degola, Francesca; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; van Bel, Aart J E

    2016-01-01

    Phytoplasmas are among the most recently discovered plant pathogenic microorganisms so, many traits of the interactions with host plants and insect vectors are still unclear and need to be investigated. At now, it is impossible to determine the precise sequences leading to the onset of the relationship with the plant host cell. It is still unclear how phytoplasmas, located in the phloem sieve elements, exploit host cell to draw nutrition for their metabolism, growth and multiplication. In this work, basing on microscopical observations, we give insight about the structural interactions established by phytoplasmas and the sieve element plasma membrane, cytoskeleton, sieve endoplasmic reticulum, speculating about a possible functional role.

  3. Facilitating Successful Outdoor O&M Instruction of Multihandicapped Blind Travelers.

    ERIC Educational Resources Information Center

    Ehresman, Paul

    1994-01-01

    An orientation and mobility (O&M) instructor presents a case study of a blind 14 year old with mild cognitive deficits and emotional and behavioral problems. The case study demonstrates the importance of individualizing the O&M curriculum, including changing the usual sequence of instruction. (DB)

  4. Using XMM-OM UV Data to Study Cluster Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Miller, Neal A.; O'Steen, R.

    2010-01-01

    The XMM-Newton satellite includes an Optical Monitor (XMM-OM) for the simultaneous observation of its X-ray targets at UV and optical wavelengths. On account of XMM's excellent characteristics for the observation of the hot intracluster medium, a large number of galaxy clusters have been observed by XMM and there is consequently a large and virtually unused database of XMM-OM UV data for galaxies in the cores of these clusters. We have begun a program to capitalize on such data, and describe here our efforts on a subsample of ten nearby clusters having XMM-OM, GALEX, and SDSS data. We present our methods for photometry and calibration of the XMM-OM UV data, and briefly present some applications including galaxy color magnitude diagrams (and identification of the red sequence, blue cloud, and green valley) and SED fitting (and galaxy stellar masses and star formation histories). Support for this work is provided by NASA Award Number NNX09AC76G.

  5. Compact sieve-tray distillation column for ammonia-water absorption heat pump: Part 1 -- Design methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, G.; Erickson, D.C.

    1999-07-01

    The distillation column is a key component of ammonia-water absorption units including advanced generator-absorber heat exchange (GAX) cycle heat pumps. The design of the distillation column is critical to unit performance, size, and cost. The distillation column can be designed with random packing, structured packing, or various tray configurations. A sieve-tray distillation column is the least complicated tray design and is less costly than high-efficiency packing. Substantial literature is available on sieve tray design and performance. However, most of the correlations and design recommendations were developed for large industrial hydrocarbon systems and are generally not directly applicable to the compactmore » ammonia-water column discussed here. The correlations were reviewed and modified as appropriate for this application, and a sieve-tray design model was developed. This paper presents the sieve-tray design methodology for highly compact ammonia-water columns. A conceptual design of the distillation column for an 8 ton vapor exchange (VX) GAX heat pump is presented, illustrating relevant design parameters and trends. The design process revealed several issues that have to be investigated experimentally to design the final optimized rectifier. Validation of flooding and weeping limits and tray/point efficiencies are of primary importance.« less

  6. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Shi, Guosheng; Shen, Jie; Peng, Bingquan; Zhang, Bowu; Wang, Yuzhu; Bian, Fenggang; Wang, Jiajun; Li, Deyuan; Qian, Zhe; Xu, Gang; Liu, Gongping; Zeng, Jianrong; Zhang, Lijuan; Yang, Yizhou; Zhou, Guoquan; Wu, Minghong; Jin, Wanqin; Li, Jingye; Fang, Haiping

    2017-10-01

    Graphene oxide membranes—partially oxidized, stacked sheets of graphene—can provide ultrathin, high-flux and energy-efficient membranes for precise ionic and molecular sieving in aqueous solution. These materials have shown potential in a variety of applications, including water desalination and purification, gas and ion separation, biosensors, proton conductors, lithium-based batteries and super-capacitors. Unlike the pores of carbon nanotube membranes, which have fixed sizes, the pores of graphene oxide membranes—that is, the interlayer spacing between graphene oxide sheets (a sheet is a single flake inside the membrane)—are of variable size. Furthermore, it is difficult to reduce the interlayer spacing sufficiently to exclude small ions and to maintain this spacing against the tendency of graphene oxide membranes to swell when immersed in aqueous solution. These challenges hinder the potential ion filtration applications of graphene oxide membranes. Here we demonstrate cationic control of the interlayer spacing of graphene oxide membranes with ångström precision using K+, Na+, Ca2+, Li+ or Mg2+ ions. Moreover, membrane spacings controlled by one type of cation can efficiently and selectively exclude other cations that have larger hydrated volumes. First-principles calculations and ultraviolet absorption spectroscopy reveal that the location of the most stable cation adsorption is where oxide groups and aromatic rings coexist. Previous density functional theory computations show that other cations (Fe2+, Co2+, Cu2+, Cd2+, Cr2+ and Pb2+) should have a much stronger cation-π interaction with the graphene sheet than Na+ has, suggesting that other ions could be used to produce a wider range of interlayer spacings.

  7. Molecular Sieving by the Bacillus megaterium Cell Wall and Protoplast

    PubMed Central

    Scherrer, Rene; Gerhardt, Philipp

    1971-01-01

    Passive permeabilities of the cell wall and protoplast of Bacillus megaterium strain KM were characterized by use of 50 hydrophilic probing molecules (tritiated water, sugars, dextrans, glycols, and polyglycols) which varied widely in size. Weight per cent uptake values (Rw) were measured at diffusional equilibrium under conditions that negated the influences of adsorption or active transport. Plots of Rw for intact cells as a function of number-average molecular weight (¯Mn) or Einstein-Stokes hydrodynamic radius (¯rES) of the solutes showed three phases: a protoplast uptake phase with a polydisperse exclusion threshold of ¯Mn = 0.6 × 103 to 1.1 × 103, ¯rES = 0.6 to 1.1 nm; a cell wall uptake phase with a polydisperse exclusion threshold of ¯Mn = 0.7 × 105 to 1.2 × 105, ¯rES ≅ 8.3 nm; and a total exclusion phase. Isolated cell walls showed only the latter two phases. However, it became evident that the cell wall selectively passed only the smallest molecules in a heterodisperse polymer sample. When the molecular-weight distributions of polyglycol samples (¯Mn = 1,000, 1,450, and 3,350) were determined by analytical gel chromatography before and after uptake by intact cells or isolated cell walls, a quasi-monodisperse exclusion threshold was obtained corresponding to Mn = 1,200, rES = 1.1 nm. The permeability of isolated protoplasts was assessed by the relative ability of solutes to effect osmotic stabilization. An indefinite exclusion threshold, evident even with monodisperse sugars, was attributed to lengthwise orientation of the penetrating rod-shaped molecules. Altogether, the best estimate of the limiting equivalent porosity of the protoplast was 0.4 to 0.6 nm in radius and of the cell wall, 1.1 nm. PMID:4999413

  8. In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control?

    PubMed

    Knoblauch, Jan; Tepler Drobnitch, Sarah; Peters, Winfried S; Knoblauch, Michael

    2016-08-01

    Kelps, brown algae (Phaeophyceae) of the order Laminariales, possess sieve tubes for the symplasmic long-distance transport of photoassimilates that are evolutionarily unrelated but structurally similar to the tubes in the phloem of vascular plants. We visualized sieve tube structure and wound responses in fully functional, intact Bull Kelp (Nereocystis luetkeana [K. Mertens] Postels & Ruprecht 1840). In injured tubes, apparent slime plugs formed but were unlikely to cause sieve tube occlusion as they assembled at the downstream side of sieve plates. Cell walls expanded massively in the radial direction, reducing the volume of the wounded sieve elements by up to 90%. Ultrastructural examination showed that a layer of the immediate cell wall characterized by circumferential cellulose fibrils was responsible for swelling and suggested that alginates, abundant gelatinous polymers of the cell wall matrix, were involved. Wall swelling was rapid, reversible and depended on intracellular pressure, as demonstrated by pressure-injection of silicon oil. Our results revive the concept of turgor generation and buffering by swelling cell walls, which had fallen into oblivion over the last century. Because sieve tube transport is pressure-driven and controlled physically by tube diameter, a regulatory role of wall swelling in photoassimilate distribution is implied in kelps. © 2016 John Wiley & Sons Ltd.

  9. Neuro-cognitive aspects of "OM" sound/syllable perception: A functional neuroimaging study.

    PubMed

    Kumar, Uttam; Guleria, Anupam; Khetrapal, Chunni Lal

    2015-01-01

    The sound "OM" is believed to bring mental peace and calm. The cortical activation associated with listening to sound "OM" in contrast to similar non-meaningful sound (TOM) and listening to a meaningful Hindi word (AAM) has been investigated using functional magnetic resonance imaging (MRI). The behaviour interleaved gradient technique was employed in order to avoid interference of scanner noise. The results reveal that listening to "OM" sound in contrast to the meaningful Hindi word condition activates areas of bilateral cerebellum, left middle frontal gyrus (dorsolateral middle frontal/BA 9), right precuneus (BA 5) and right supramarginal gyrus (SMG). Listening to "OM" sound in contrast to "non-meaningful" sound condition leads to cortical activation in bilateral middle frontal (BA9), right middle temporal (BA37), right angular gyrus (BA 40), right SMG and right superior middle frontal gyrus (BA 8). The conjunction analysis reveals that the common neural regions activated in listening to "OM" sound during both conditions are middle frontal (left dorsolateral middle frontal cortex) and right SMG. The results correspond to the fact that listening to "OM" sound recruits neural systems implicated in emotional empathy.

  10. Ultrastructure of compatible and incompatible interactions in phloem sieve elements during the stylet penetration by cotton aphids in melon.

    PubMed

    Garzo, Elisa; Fernández-Pascual, Mercedes; Morcillo, Cesar; Fereres, Alberto; Gómez-Guillamón, M Luisa; Tjallingii, W Fred

    2017-02-18

    Resistance of the melon line TGR-1551 to the aphid Aphis gossypii is based on preventing aphids from ingesting phloem sap. In electrical penetration graphs (EPGs), this resistance has been characterized with A. gossypii showing unusually long phloem salivation periods (waveform E1) mostly followed by pathway activities (waveform C) or if followed by phloem ingestion (waveform E2), ingestion was not sustained for more than 10 min. Stylectomy with aphids on susceptible and resistant plants was performed during EPG recording while the stylet tips were phloem inserted. This was followed by dissection of the penetrated leaf section, plant tissue fixation, resin embedding, and ultrathin sectioning for transmission electron microscopic observation in order to study the resistance mechanism in the TGR. The most obvious aspect appeared to be the coagulation of phloem proteins inside the stylet canals and the punctured sieve elements. Stylets of 5 aphids per genotype were amputated during sieve element (SE) salivation (E1) and SE ingestion (E2). Cross-sections of stylet bundles in susceptible melon plants showed that the contents of the stylet canals were totally clear and also, no coagulated phloem proteins occurred in their punctured sieve elements. In contrast, electron-dense coagulations were found in both locations in the resistant plants. Due to calcium binding, aphid saliva has been hypothesized to play an essential role in preventing/suppressing such coagulations that cause occlusion of sieves plate and in the food canal of the aphid's stylets. Doubts about this role of E1 salivation are discussed on the basis of our results. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  11. Synthesis and application of mesoporous molecular sieve for miniaturized matrix solid-phase dispersion extraction of bioactive flavonoids from toothpaste, plant, and saliva.

    PubMed

    Cao, Wan; Cao, Jun; Ye, Li-Hong; Xu, Jing-Jing; Hu, Shuai-Shuai; Peng, Li-Qing

    2015-12-01

    This article describes the use of the mesoporous molecular sieve KIT-6 as a sorbent in miniaturized matrix solid-phase dispersion (MSPD) in combination with ultra-performance LC for the determination of bioactive flavonoids in toothpaste, Scutellariae Radix, and saliva. In this study, for the first time, KIT-6 was used as a sorbent material for this mode of extraction. Compared with common silica-based sorbents (C18 and activated silica gel), the proposed KIT-6 dispersant with a three-dimensional cubic Ia3d structure and highly ordered arrays of mesoporous channels exhibits excellent adsorption capability of the tested compounds. In addition, several experimental variables, such as the mass ratio of sample to dispersant, grinding time, and elution solvent, were optimized to maximize the extraction efficiency. The proposed analytical method is simple, fast, and entails low consumption of samples, dispersants and elution solvents, thereby meeting "green chemistry" requirements. Under the optimized conditions, the recoveries of three bioactive flavonoids obtained by analyzing the spiked samples were from 89.22 to 101.17%. Also, the LODs and LOQs for determining the analytes were in the range of 0.02-0.04 μg/mL and 0.07-0.13 μg/mL, respectively. Finally, the miniaturized matrix solid-phase dispersion method was successfully applied to the analysis of target solutes in real samples, and satisfactory results were obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. [Correlation of molecular weight and nanofiltration mass transfer coefficient of phenolic acid composition from Salvia miltiorrhiza].

    PubMed

    Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping

    2018-04-01

    Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.

  13. Sieve estimation in a Markov illness-death process under dual censoring.

    PubMed

    Boruvka, Audrey; Cook, Richard J

    2016-04-01

    Semiparametric methods are well established for the analysis of a progressive Markov illness-death process observed up to a noninformative right censoring time. However, often the intermediate and terminal events are censored in different ways, leading to a dual censoring scheme. In such settings, unbiased estimation of the cumulative transition intensity functions cannot be achieved without some degree of smoothing. To overcome this problem, we develop a sieve maximum likelihood approach for inference on the hazard ratio. A simulation study shows that the sieve estimator offers improved finite-sample performance over common imputation-based alternatives and is robust to some forms of dependent censoring. The proposed method is illustrated using data from cancer trials. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Centrifugal Size-Separation Sieve for Granular Materials

    NASA Technical Reports Server (NTRS)

    Walton, Otis (Inventor); Dreyer, Christopher (Inventor); Riedel, Edward (Inventor)

    2015-01-01

    A centrifugal sieve and method utilizes centrifugal force in rapidly-rotated cylindrical or conical screens as the primary body force contributing to size segregation. Within the centrifugal acceleration field, vibration and/or shearing flows are induced to facilitate size segregation and eventual separation of the fines from the coarse material. Inside a rotating cylindrical or conical screen, a separately-rotated screw auger blade can be used to transport material along the rotating cylinder or conical wall and to induce shearing in the material.

  15. Phloem-Conducting Cells in Haustoria of the Root-Parasitic Plant Phelipanche aegyptiaca Retain Nuclei and Are Not Mature Sieve Elements.

    PubMed

    Ekawa, Minako; Aoki, Koh

    2017-12-05

    Phelipanche aegyptiaca parasitizes a wide range of plants, including important crops, and causes serious damage to their production. P. aegyptiaca develops a specialized intrusive organ called a haustorium that establishes connections to the host's xylem and phloem. In parallel with the development of xylem vessels, the differentiation of phloem-conducting cells has been demonstrated by the translocation of symplasmic tracers from the host to the parasite. However, it is unclear yet whether haustorial phloem-conducting cells are sieve elements. In this study, we identified phloem-conducting cells in haustoria by the host-to-parasite translocation of green fluorescent protein (GFP) from AtSUC2pro::GFP tomato sieve tubes. Haustorial GFP-conducting cells contained nuclei but not callose-rich sieve plates, indicating that phloem-conducting cells in haustoria differ from conventional sieve elements. To ascertain why the nuclei were not degenerated, expression of the P. aegyptiaca homologs NAC-domain containing transcription factor ( NAC45 ), NAC45/86-dependent exonuclease-domain protein 1 ( NEN1 ), and NEN4 was examined. However, these genes were more highly expressed in the haustorium than in tubercle protrusion, implying that nuclear degradation in haustoria may not be exclusively controlled by the NAC45 / 86 - NEN regulatory pathway. Our results also suggest that the formation of plasmodesmata with large size exclusion limits is independent of nuclear degradation and callose deposition.

  16. OHMS**: Phytoplasmas dictate changes in sieve-element ultrastructure to accommodate their requirements for nutrition, multiplication and translocation

    PubMed Central

    Musetti, Rita; Pagliari, Laura; Buxa, Stefanie V.; Degola, Francesca; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; van Bel, Aart J. E.

    2016-01-01

    ABSTRACT Phytoplasmas are among the most recently discovered plant pathogenic microorganisms so, many traits of the interactions with host plants and insect vectors are still unclear and need to be investigated. At now, it is impossible to determine the precise sequences leading to the onset of the relationship with the plant host cell. It is still unclear how phytoplasmas, located in the phloem sieve elements, exploit host cell to draw nutrition for their metabolism, growth and multiplication. In this work, basing on microscopical observations, we give insight about the structural interactions established by phytoplasmas and the sieve element plasma membrane, cytoskeleton, sieve endoplasmic reticulum, speculating about a possible functional role. PMID:26795235

  17. Use of OM-85 BV in children suffering from recurrent respiratory tract infections and subnormal IgG subclass levels.

    PubMed

    Del-Río-Navarro, B E; Luis Sienra-Monge, J J; Berber, A; Torres-Alcántara, S; Avila-Castañón, L; Gómez-Barreto, D

    2003-01-01

    Recurrent acute respiratory tract infections (RARTIs) in children are related to IgG subclass deficiencies. The aim of the trial was to evaluate the effect of OM-85 BV in the number of RARTIs as well as in the IgG subclass levels. This was a randomized, double-blind, placebo-controlled clinical trial. Patients of ages three to six years, having three or more documented ARTIs during the last six months with subnormal IgG subclass levels were included. Patients took either one capsule of OM-85 BV (3.5 mg) or placebo orally every day for ten consecutive days per month during three consecutive months. Patients were followed three further months without drug intake. IgG subclass levels were determined before and after treatment. IgG4 levels diminished after the OM-85 BV treatment (-3 [-8.0, -1.0] median difference [95 % CI] p < 0.05 by Wilcoxon test). No other significant changes in IgG subclasses were observed. After six months the patients in the OM-85 BV group (n = 20) experienced 2.8 1.4 (mean SD) ARTIs, while the patients in the placebo group (n = 20) suffered 5.2 1.5 ARTIs (-2.4 [3.3, -1.5] mean difference [95 % CI] p < 0.001 by Student's t test). Three patients with OM-85 BV had gastrointestinal events related to drug administration, as well as three placebo patients. This study demonstrated the clinical benefit of OM-85 BV in patients suffering from RARTIs and subnormal levels of IgG subclasses. This trial opens new perspectives in the research of the mechanism of action of OM-85 BV.

  18. Molecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures.

    PubMed

    Altintas, Cigdem; Keskin, Seda

    2017-11-11

    Metal organic framework (MOF) membranes have been widely investigated for gas separation applications. Several MOFs have been recently examined for selective separation of C 2 H 6 . Considering the large number of available MOFs, it is not possible to fabricate and test the C 2 H 6 separation performance of every single MOF membrane using purely experimental methods. In this study, we used molecular simulations to assess the membrane-based C 2 H 6 /C 2 H 4 and C 2 H 6 /CH 4 separation performances of 175 different MOF structures. This is the largest number of MOF membranes studied to date for C 2 H 6 separation. We computed adsorption selectivity, diffusion selectivity, membrane selectivity and gas permeability of MOFs for C 2 H 6 /C 2 H 4 and C 2 H 6 /CH 4 mixtures. Our results show that a significant number of MOF membranes are C 2 H 6 selective for C 2 H 6 /C 2 H 4 separation in contrast to traditional nanoporous materials. Selectivity and permeability of MOF membranes were compared with other membrane materials, such as polymers, zeolites, and carbon molecular sieves. Several MOFs were identified to exceed the upper bound established for polymeric membranes and many MOF membranes exhibited higher gas permeabilities than zeolites and carbon molecular sieves. Examining the structure-performance relations of MOF membranes revealed that MOFs with cavity diameters between 6 and 9 Å, porosities lower than 0.50, and surface areas between 500-1000 m 2 g -1 have high C 2 H 6 selectivities. The results of this study will be useful to guide the experiments to the most promising MOF membranes for efficient separation of C 2 H 6 and to accelerate the development of new MOFs with high C 2 H 6 selectivities.

  19. Relationship between soluble microbial products (SMP) and effluent organic matter (EfOM): characterized by fluorescence excitation emission matrix coupled with parallel factor analysis.

    PubMed

    Yu, Huarong; Qu, Fangshu; Sun, Lianpeng; Liang, Heng; Han, Zhengshuang; Chang, Haiqing; Shao, Senlin; Li, Guibai

    2015-02-01

    Effluent organic matter (EfOM) originating from wastewater treatment plant (WWTP) is of significant concern, as it not only influences the discharge quality of WWTP but also exerts a significant effect on the efficiency of the downstream advanced treatment facilities. Soluble microbial products (SMP) is a major part of EfOM. In order to further understand the relationship between soluble microbial products (SMP) and EfOM, and in turn, to propose measures for EfOM control, the formation of SMP and EfOM in identical activated sludge sequencing batch reactors (SBR) with different feed water was investigated using fluorescence excitation and emission spectroscopy matrix coupled with parallel factor analysis (EEM-PARAFAC) as well as other organic matter quantification tools. Results showed that EfOM contained not only SMP but also a considerable amount of allochthonous organic matter that derived not merely from natural organic matter (NOM). Four components in EfOM/SMP were identified by EEM-PARAFAC. Tyrosine-like substances in EfOM (Component 3, λex/em=270/316 nm) were mainly originated from utilization associated products (UAP) of SMP. Tryptophan-like substances (Component 2, λex/em=280/336 nm) as well as fulvic-like and humic-like substances in EfOM (Component 1, λex/em=240(290)/392 nm and Component 4, λex/em=260(365)/444 nm) were majorly derived from the refractory substances introduced along with the influent, among which Component 2 was stemmed from sources other than NOM. As solid retention time (SRT) increased, Component 2 and polysaccharides in SMP/EfOM decreased, while Component 4 in SMP increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A tale of two neglected systems-structure and function of the thin- and thick-walled sieve tubes in monocotyledonous leaves.

    PubMed

    Botha, C E J

    2013-01-01

    There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However, there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate, and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled) and late (thick-walled) sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma (VP) cells, whilst the late metaphloem, contains thick-walled sieve tubes (TSTs) that lack companion cells. TSTs are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube (ST) -companion cell complexes, TSTs are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the STs. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5-7 million years old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer.

  1. Decolorization/Deodorization of Zein via Activated Carbons and Molecular Sieves

    USDA-ARS?s Scientific Manuscript database

    A series of commercial activated carbons generated from different media and selective microporous zeolites with different pore sizes were used in a batch system to sequester the low molecular weight odor and color contaminants in commercial zein products. Because the adsorbents can also adsorb prot...

  2. Dr. Grant Heikan examines lunar material in sieve from sample container

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Dr. Grant Heikan, Manned Spacecraft Center and a Lunar Sample preliminary Examination Team member, examines lunar material in a sieve from the bulk sample container which was opened in the Biopreparation Laboratory of the Lunar Receiving Laboratory.

  3. Solution conformation of a neuronal nicotinic acetylcholine receptor antagonist {alpha}-conotoxin OmIA that discriminates {alpha}3 vs. {alpha}6 nAChR subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Seung-Wook; Kim, Do-Hyoung; Olivera, Baldomero M.

    2006-06-23

    {alpha}-Conotoxin OmIA from Conus omaria is the only {alpha}-conotoxin that shows a {approx}20-fold higher affinity to the {alpha}3{beta}2 over the {alpha}6{beta}2 subtype of nicotinic acetylcholine receptor. We have determined a three-dimensional structure of {alpha}-conotoxin OmIA by nuclear magnetic resonance spectroscopy. {alpha}-Conotoxin OmIA has an '{omega}-shaped' overall topology with His{sup 5}-Asn{sup 12} forming an {alpha}-helix. Structural features of {alpha}-conotoxin OmIA responsible for its selectivity are suggested by comparing its surface characteristics with other functionally related {alpha}4/7 subfamily conotoxins. Reduced size of the hydrophilic area in {alpha}-conotoxin OmIA seems to be associated with the reduced affinity towards the {alpha}6{beta}2 nAChR subtype.

  4. Using Sieving and Unknown Sand Samples for a Sedimentation-Stratigraphy Class Project with Linkage to Introductory Courses

    ERIC Educational Resources Information Center

    Videtich, Patricia E.; Neal, William J.

    2012-01-01

    Using sieving and sample "unknowns" for instructional grain-size analysis and interpretation of sands in undergraduate sedimentology courses has advantages over other techniques. Students (1) learn to calculate and use statistics; (2) visually observe differences in the grain-size fractions, thereby developing a sense of specific size…

  5. Ball mill tool for crushing coffee and cocoa beans base on fraction size sieving results

    NASA Astrophysics Data System (ADS)

    Haryanto, B.; Sirait, M.; Azalea, M.; Alvin; Cahyani, S. E.

    2018-02-01

    Crushing is one of the operation units that aimed to convert the size of solid material to be smoother particle’s size. The operation unit that can be used in this crushing is ball mill. The purpose of this study is to foresee the effect of raw material mass, grinding time, and the number of balls that are used in the ball mill tool related to the amount of raw material of coffee and cocoa beans. Solid material that has become smooth is then sieved with sieve mesh with size number: 50, 70, 100, and 140. It is in order to obtain the mass fraction that escaped from each sieve mesh. From the experiment, it can be concluded that mass percentage fraction of coffee powder is bigger than cocoa powder that escaped from the mesh. Hardness and humidity of coffee beans and cocoa beans have been the important factors that made coffee beans is easier to be crushed than cocoa beans.

  6. OM-85 is an immunomodulator of interferon-β production and inflammasome activity

    PubMed Central

    Dang, A. T.; Pasquali, C.; Ludigs, K.; Guarda, G.

    2017-01-01

    The inflammasome–IL-1 axis and type I interferons (IFNs) have been shown to exert protective effects upon respiratory tract infections. Conversely, IL-1 has also been implicated in inflammatory airway pathologies such as asthma and chronic obstructive pulmonary disease (COPD). OM-85 is a bacterial extract with proved efficacy against COPD and recurrent respiratory tract infections, a cause of co-morbidity in asthmatic patients. We therefore asked whether OM-85 affects the above-mentioned innate immune pathways. Here we show that OM-85 induced interferon-β through the Toll-like receptor adaptors Trif and MyD88 in bone marrow-derived dendritic cells. Moreover, it exerted a dual role on IL-1 production; on the one hand, it upregulated proIL-1β and proIL-1α levels in a MyD88-dependent manner without activating the inflammasome. On the other hand, it repressed IL-1β secretion induced by alum, a well-known NLRP3 activator. In vivo, OM-85 diminished the recruitment of inflammatory cells in response to peritoneal alum challenge. Our findings therefore suggest that OM-85 favors a protective primed state, while dampening inflammasome activation in specific conditions. Taken together, these data bring new insights into the mechanisms of OM-85 action on innate immune pathways and suggest potential explanations for its efficacy in the treatment of virus-induced airway diseases. PMID:28262817

  7. A tale of two neglected systems—structure and function of the thin- and thick-walled sieve tubes in monocotyledonous leaves

    PubMed Central

    Botha, C. E. J.

    2013-01-01

    There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However, there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate, and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled) and late (thick-walled) sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma (VP) cells, whilst the late metaphloem, contains thick-walled sieve tubes (TSTs) that lack companion cells. TSTs are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube (ST) -companion cell complexes, TSTs are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the STs. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5–7 million years old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer. PMID:23964280

  8. Effect of sample area and sieve size on benthic macrofaunal community condition assessments in California enclosed bays and estuaries.

    PubMed

    Hammerstrom, Kamille K; Ranasinghe, J Ananda; Weisberg, Stephen B; Oliver, John S; Fairey, W Russell; Slattery, Peter N; Oakden, James M

    2012-10-01

    Benthic macrofauna are used extensively for environmental assessment, but the area sampled and sieve sizes used to capture animals often differ among studies. Here, we sampled 80 sites using 3 different sized sampling areas (0.1, 0.05, 0.0071 m(2)) and sieved those sediments through each of 2 screen sizes (0.5, 1 mm) to evaluate their effect on number of individuals, number of species, dominance, nonmetric multidimensional scaling (MDS) ordination, and benthic community condition indices that are used to assess sediment quality in California. Sample area had little effect on abundance but substantially affected numbers of species, which are not easily scaled to a standard area. Sieve size had a substantial effect on both measures, with the 1-mm screen capturing only 74% of the species and 68% of the individuals collected in the 0.5-mm screen. These differences, though, had little effect on the ability to differentiate samples along gradients in ordination space. Benthic indices generally ranked sample condition in the same order regardless of gear, although the absolute scoring of condition was affected by gear type. The largest differences in condition assessment were observed for the 0.0071-m(2) gear. Benthic indices based on numbers of species were more affected than those based on relative abundance, primarily because we were unable to scale species number to a common area as we did for abundance. Copyright © 2010 SETAC.

  9. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  10. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  11. Fast DNA sieving through submicrometer cylindrical glass capillary matrix.

    PubMed

    Cao, Zhen; Yobas, Levent

    2014-01-07

    Here, we report on DNA electrophoresis through a novel artificial sieving matrix based on the highly regular submicrometer cylindrical glass capillary segments alternatingly arranged with wells. Such round capillaries pose a higher-order confinement resulting in a lower partition coefficient and greater entropic energy barrier while limiting the driving field strength to a small fraction of the applied electric field. In return, the separation can be performed at high average field strengths (up to 1.6 kV/cm) without encountering the field-dependent loss of resolving power. This leads to fast DNA sieving as demonstrated here on the capillaries of 750 nm in diameter. The 600 bp to 21 kbp long chains are shown to resolve within 4 min after having undergone a fairly limited number of entropic barriers (128 in total). The capillary matrix also exhibits a critical field threshold below which DNA bands fail to launch, and this occurs at a considerably greater magnitude than in other matrixes. The submicrometer capillaries are batch-fabricated on silicon through a fabrication process that does not require high-resolution advanced lithography or well-controlled wafer bonding techniques to define their critical dimension.

  12. Reproducibility of a silicone-based test food to masticatory performance evaluation by different sieve methods.

    PubMed

    Sánchez-Ayala, Alfonso; Vilanova, Larissa Soares Reis; Costa, Marina Abrantes; Farias-Neto, Arcelino

    2014-01-01

    The aim of this study was to evaluate the reproducibility of the condensation silicone Optosil Comfort® as an artificial test food for masticatory performance evaluation. Twenty dentate subjects with mean age of 23.3±0.7 years were selected. Masticatory performance was evaluated using the simple (MPI), the double (IME) and the multiple sieve methods. Trials were carried out five times by three examiners: three times by the first, and once by the second and third examiners. Friedman's test was used to find the differences among time trials. Reproducibility was determined by the intra-class correlation (ICC) test (α=0.05). No differences among time trials were found, except for MPI-4 mm (p=0.022) from the first examiner results. The intra-examiner reproducibility (ICC) of almost all data was high (ICC≥0.92, p<0.001), being moderate only for MPI-0.50 mm (ICC=0.89, p<0.001). The inter-examiner reproducibility was high (ICC>0.93, p<0.001) for all results. For the multiple sieve method, the average mean of absolute difference from repeated measurements were lower than 1 mm. This trend was observed only from MPI-0.50 to MPI-1.4 for the single sieve method, and from IME-0.71/0.50 to IME-1.40/1.00 for the double sieve method. The results suggest that regardless of the method used, the reproducibility of Optosil Comfort® is high.

  13. Obesity-resistant S5B rats showed great cocaine conditioned place preference than the obesity-prone OM rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanos, P.K.; Wang, G.; Thanos, P.K..

    Dopamine (DA) and the DA D2 receptor (D2R) are involved in the rewarding and conditioned responses to food and drug rewards. Osborne-Mendel (OM) rats are genetically prone and S5B/P rats are genetically resistant to obesity when fed a high-fat diet. We hypothesized that the differential sensitivity of these two rat strains to natural rewards may also be reflected in sensitivity to drugs of abuse. Therefore, we tested whether OM and S5B/P rats showed a differential preference to cocaine using conditioned place preference (CPP). To also evaluate whether there is specific involvement of the D2R in this differential conditioning sensitivity, wemore » then tested whether the D2R agonist bromocriptine (BC) would differentially affect the effects of cocaine in the two strains. OM and S5B/P rats were conditioned with cocaine (5 or 10 mg/kg) in one chamber and saline in another for 8 days. Rats were then tested for cocaine preference. The effects of BC (0.5, 1, 5, 10, 20 mg/kg) on cocaine preference were then assessed in subsequent test sessions. OM rats did not show a significant preference for the cocaine-paired chamber on test day. Only the S5B/P rats showed cocaine CPP. Later treatment with only the highest dose of BC resulted in reduced cocaine CPP in S5B/P rats when treated with 5 mg/kg cocaine and in OM rats treated with 10 mg/kg cocaine. Our results indicated that obesity-resistant S5B rats showed greater cocaine CPP than the obesity-prone OM rats. These findings do not support a theory of common vulnerability for reinforcer preferences (food and cocaine). However, they show that BC reduced cocaine conditioning effects supporting at least a partial regulatory role of D2R in conditioned responses to drugs.« less

  14. The Relationship between Fenestrations, Sieve Plates and Rafts in Liver Sinusoidal Endothelial Cells

    PubMed Central

    McNerney, Gregory P.; Owen, Dylan M.; Zencak, Dusan; Zykova, Svetlana N.; Crane, Harry; Huser, Thomas; Quinn, Ronald J.; Smedsrød, Bård; Le Couteur, David G.; Cogger, Victoria C.

    2012-01-01

    Fenestrations are transcellular pores in endothelial cells that facilitate transfer of substrates between blood and the extravascular compartment. In order to understand the regulation and formation of fenestrations, the relationship between membrane rafts and fenestrations was investigated in liver sinusoidal endothelial cells where fenestrations are grouped into sieve plates. Three dimensional structured illumination microscopy, scanning electron microscopy, internal reflectance fluorescence microscopy and two-photon fluorescence microscopy were used to study liver sinusoidal endothelial cells isolated from mice. There was an inverse distribution between sieve plates and membrane rafts visualized by structured illumination microscopy and the fluorescent raft stain, Bodipy FL C5 ganglioside GM1. 7-ketocholesterol and/or cytochalasin D increased both fenestrations and lipid-disordered membrane, while Triton X-100 decreased both fenestrations and lipid-disordered membrane. The effects of cytochalasin D on fenestrations were abrogated by co-administration of Triton X-100, suggesting that actin disruption increases fenestrations by its effects on membrane rafts. Vascular endothelial growth factor (VEGF) depleted lipid-ordered membrane and increased fenestrations. The results are consistent with a sieve-raft interaction, where fenestrations form in non-raft lipid-disordered regions of endothelial cells once the membrane-stabilizing effects of actin cytoskeleton and membrane rafts are diminished. PMID:23029409

  15. Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry.

    PubMed

    Cao, Wan; Ye, Li-Hong; Cao, Jun; Xu, Jing-Jing; Peng, Li-Qing; Zhu, Qiong-Yao; Zhang, Qian-Yun; Hu, Shuai-Shuai

    2015-08-07

    An analytical procedure based on miniaturized solid phase extraction (SPE) and ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed and validated for determination of six flavanones in Citrus fruits. The mesoporous molecular sieve SBA-15 as a solid sorbent was characterised by Fourier transform-infrared spectroscopy and scanning electron microscopy. Additionally, compared with reported extraction techniques, the mesoporous SBA-15 based SPE method possessed the advantages of shorter analysis time and higher sensitivity. Furthermore, considering the different nature of the tested compounds, all of the parameters, including the SBA-15 amount, solution pH, elution solvent, and the sorbent type, were investigated in detail. Under the optimum condition, the instrumental detection and quantitation limits calculated were less than 4.26 and 14.29ngmL(-1), respectively. The recoveries obtained for all the analytes were ranging from 89.22% to 103.46%. The experimental results suggested that SBA-15 was a promising material for the purification and enrichment of target flavanones from complex citrus fruit samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance.

    PubMed

    Hao, Peiying; Liu, Caixiang; Wang, Yuanyuan; Chen, Rongzhi; Tang, Ming; Du, Bo; Zhu, Lili; He, Guangcun

    2008-04-01

    The brown planthopper (Nilaparvata lugens Stål; BPH) is a specialist herbivore on rice (Oryza sativa) that ingests phloem sap from the plant through its stylet mouthparts. Electronic penetration graphs revealed that BPH insects spent more time wandering over plants carrying the resistance genes Bph14 and Bph15, but less time ingesting phloem than they did on susceptible plants. They also showed that their feeding was frequently interrupted. Tests with [(14)C]sucrose showed that insects ingested much less phloem sap from the resistant than the susceptible plants. BPH feeding up-regulated callose synthase genes and induced callose deposition in the sieve tubes at the point where the stylet was inserted. The compact callose remained intact in the resistant plants, but genes encoding beta-1,3-glucanases were activated, causing unplugging of the sieve tube occlusions in susceptible plants. Continuing ingestion led to a remarkable reduction in the susceptible plants' sucrose content and activation of the RAmy3D gene, leading to starch hydrolysis and ultimately carbohydrate deprivation in the plants. Our results demonstrate that BPH feeding induces the deposition of callose on sieve plates in rice and that this is an important defense mechanism that prevents insects from ingesting phloem sap. In response, however, the BPH can unplug sieve tube occlusions by activating beta-1,3-glucanase genes in rice plants.

  17. Effect of H{sub 3}PW{sub 12}O{sub 40} impregnation on Sn-MCM-41 mesoporous molecular sieves and their physico-chemical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedumaran, D.; Department of Chemistry, RMK Engineering College, Chennai; Pandurangan, A., E-mail: pandurangan_a@yahoo.com

    2015-01-15

    Graphical abstract: The wide angle XRD shows the well dispersion of HPWA in Sn-MCM-41. It enhances the total acidity of the material. The acidity of the material is correlated with sulfone selectivity. The FT-IR of dibenzothiophene and product shows the formation of sulfone (DBTO{sub 2}). - Highlights: • To enhance the total acidity of Sn-MCM-41 TPA is impregnated. • FT-IR and {sup 31}P MAS NMR confirms the HPWA intact on Sn-MCM-41. • EDAX shows the presence of W and P on Sn-MCM-41. • In ODS formation of sulfone was confirmed by FT-IR and {sup 1}H NMR. • The order ofmore » the catalytic activity of the catalysts are 18HSnM > 28HSnM > 8HSnM. - Abstract: Si-Sn-MCM-41 (Si/Sn = 110) mesoporous molecular sieve was synthesized by hydrothermal sol–gel method using cetyltrimethylammonium bromide (CTAB) as surfactant and SnCl{sub 4}·5H{sub 2}O as a metal source. To generate surface acidity of Si-Sn-MCM-41, 12-tungstophosphoric acid (HPWA) is impregnated on it. The acidity of HPWA loading on Sn-MCM-41 was investigated by temperature programmed desorption of NH{sub 3}. The diffused reflectance spectra of ultraviolet radiation, Raman spectra, FT-IR, {sup 29}Si-MAS NMR and {sup 31}P-MAS NMR techniques revealed the intact of α-Keggin anions on Sn-MCM-41. The wide angle XRD results showed that the HPWA is well dispersed on the support. The total acidity was enhanced with increase in loading of H{sub 3}PW{sub 12}O{sub 40}. The catalytic activity was examined in desulfurization of dibenzothiophene in vapor phase system. Among the catalysts 18% HPWA loaded Sn-MCM-41 showed good catalytic activity in desulfurization at 325 °C. The HPWA/Sn-MCM-41 are a suitable solid acid catalyst for converting organic sulfur into insoluble sulfone.« less

  18. Quantification of amine functional groups and their influence on OM/OC in the IMPROVE network

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, Mohammed; Takahama, Satoshi; Dillner, Ann M.

    2018-01-01

    Recently, we developed a method using FT-IR spectroscopy coupled with partial least squares (PLS) regression to measure the four most abundant organic functional groups, aliphatic C-H, alcohol OH, carboxylic acid OH and carbonyl C=O, in atmospheric particulate matter. These functional groups are summed to estimate organic matter (OM) while the carbon from the functional groups is summed to estimate organic carbon (OC). With this method, OM and OM/OC can be estimated for each sample rather than relying on one assumed value to convert OC measurements to OM. This study continues the development of the FT-IR and PLS method for estimating OM and OM/OC by including the amine functional group. Amines are ubiquitous in the atmosphere and come from motor vehicle exhaust, animal husbandry, biomass burning, and vegetation among other sources. In this study, calibration standards for amines are produced by aerosolizing individual amine compounds and collecting them on PTFE filters using an IMPROVE sampler, thereby mimicking the filter media and collection geometry of ambient standards. The moles of amine functional group on each standard and a narrow range of amine-specific wavenumbers in the FT-IR spectra (wavenumber range 1 550-1 500 cm-1) are used to develop a PLS calibration model. The PLS model is validated using three methods: prediction of a set of laboratory standards not included in the model, a peak height analysis and a PLS model with a broader wavenumber range. The model is then applied to the ambient samples collected throughout 2013 from 16 IMPROVE sites in the USA. Urban sites have higher amine concentrations than most rural sites, but amine functional groups account for a lower fraction of OM at urban sites. Amine concentrations, contributions to OM and seasonality vary by site and sample. Amine has a small impact on the annual average OM/OC for urban sites, but for some rural sites including amine in the OM/OC calculations increased OM/OC by 0.1 or more.

  19. Fast and accurate focusing analysis of large photon sieve using pinhole ring diffraction model.

    PubMed

    Liu, Tao; Zhang, Xin; Wang, Lingjie; Wu, Yanxiong; Zhang, Jizhen; Qu, Hemeng

    2015-06-10

    In this paper, we developed a pinhole ring diffraction model for the focusing analysis of a large photon sieve. Instead of analyzing individual pinholes, we discuss the focusing of all of the pinholes in a single ring. An explicit equation for the diffracted field of individual pinhole ring has been proposed. We investigated the validity range of this generalized model and analytically describe the sufficient conditions for the validity of this pinhole ring diffraction model. A practical example and investigation reveals the high accuracy of the pinhole ring diffraction model. This simulation method could be used for fast and accurate focusing analysis of a large photon sieve.

  20. Solar PV O&M Standards and Best Practices - Existing Gaps and Improvement Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Balfour, John R.; Keating, T. J.

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PVmore » systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.« less

  1. Computational Studies on the Anharmonic Dynamics of Molecular Clusters

    NASA Astrophysics Data System (ADS)

    Mancini, John S.

    Molecular nanoclusters present ideal systems to probe the physical forces and dynamics that drive the behavior of larger bulk systems. At the nanocluster limit the first instances of several phenomena can be observed including the breaking of hydrogen and molecular bonds. Advancements in experimental and theoretical techniques have made it possible to explore these phenomena in great detail. The most fruitful of these studies have involved the use of both experimental and theoretical techniques to leverage to strengths of the two approaches. This dissertation seeks to explore several important phenomena of molecular clusters using new and existing theoretical methodologies. Three specific systems are considered, hydrogen chloride clusters, mixed water and hydrogen chloride clusters and the first cluster where hydrogen chloride autoionization occurs. The focus of these studies remain as close as possible to experimentally observable phenomena with the intention of validating, simulating and expanding on experimental work. Specifically, the properties of interested are those related to the vibrational ground and excited state dynamics of these systems. Studies are performed using full and reduced dimensional potential energy surface alongside advanced quantum mechanical methods including diffusion Monte Carlo, vibrational configuration interaction theory and quasi-classical molecular dynamics. The insight gained from these studies are great and varied. A new on-they-fly ab initio method for studying molecular clusters is validated for (HCl)1--6. A landmark study of the dissociation energy and predissociation mechanism of (HCl)3 is reported. The ground states of mixed (HCl)n(H2O)m are found to be highly delocalized across multiple stationary point configurations. Furthermore, it is identified that the consideration of this delocalization is required in vibrational excited state calculations to achieve agreement with experimental measurements. Finally, the theoretical

  2. Hydroxyl and molecular H2O diffusivity in a haploandesitic melt

    NASA Astrophysics Data System (ADS)

    Ni, Huaiwei; Xu, Zhengjiu; Zhang, Youxue

    2013-02-01

    H2O diffusion in a haploandesitic melt (a high-silica and Fe-free andesitic melt, NBO/T = 0.173) has been investigated at 1 GPa in a piston-cylinder apparatus. We adopted a double diffusion couple technique, in which one couple was composed of a nominally anhydrous glass with 0.01 wt.% H2O and a hydrous glass with 5.7 wt.% H2O, and the other contained the same nominally anhydrous glass and a hydrous glass with 3.3 wt.% H2O. Both couples were annealed in a single experimental run and hence experienced exactly the same P-T history, which is crucial for constraining the dependence of H2O diffusivity on water content. H2O concentration profiles were measured by both Fourier transform infrared (FTIR) microspectroscopy and confocal Raman microspectroscopy. Nearly identical profiles were obtained from Raman and FTIR methods for profile length >1 mm (produced at 1619-1842 K). By contrast, for profile lengths <100 μm (produced at 668-768 K), FTIR profiles show marked convolution effects compared to Raman profiles. A comparison between the short FTIR and Raman profiles indicates that the real spatial resolution (FWHM) of FTIR analyses is about 28 μm for a 7 μm wide aperture on ˜200 μm thick glasses. While the short profiles are not reliable for quantitative modeling, the long diffusion profiles at superliquidus temperatures can be fit reasonably well by a diffusivity model previously developed for felsic melts, in which molecular H2O (H2Om) is the only diffusive species and its diffusivity (D) increases exponentially with the content of total water (H2Ot). However, there is noticeable misfit of the data at low H2Ot concentrations, suggesting that OH diffusivity (DOH) cannot be neglected in this andesitic melt at high temperatures and low water contents. We hence develop a new fitting procedure that simultaneously fits both diffusion profiles from a single experimental run and accounts for the roles of both OH and H2Om diffusion. With this procedure, DOH/D is constrained

  3. Medical sieve: a cognitive assistant for radiologists and cardiologists

    NASA Astrophysics Data System (ADS)

    Syeda-Mahmood, T.; Walach, E.; Beymer, D.; Gilboa-Solomon, F.; Moradi, M.; Kisilev, P.; Kakrania, D.; Compas, C.; Wang, H.; Negahdar, R.; Cao, Y.; Baldwin, T.; Guo, Y.; Gur, Y.; Rajan, D.; Zlotnick, A.; Rabinovici-Cohen, S.; Ben-Ari, R.; Guy, Amit; Prasanna, P.; Morey, J.; Boyko, O.; Hashoul, S.

    2016-03-01

    Radiologists and cardiologists today have to view large amounts of imaging data relatively quickly leading to eye fatigue. Further, they have only limited access to clinical information relying mostly on their visual interpretation of imaging studies for their diagnostic decisions. In this paper, we present Medical Sieve, an automated cognitive assistant for radiologists and cardiologists designed to help in their clinical decision-making. The sieve is a clinical informatics system that collects clinical, textual and imaging data of patients from electronic health records systems. It then analyzes multimodal content to detect anomalies if any, and summarizes the patient record collecting all relevant information pertinent to a chief complaint. The results of anomaly detection are then fed into a reasoning engine which uses evidence from both patient-independent clinical knowledge and large-scale patient-driven similar patient statistics to arrive at potential differential diagnosis to help in clinical decision making. In compactly summarizing all relevant information to the clinician per chief complaint, the system still retains links to the raw data for detailed review providing holistic summaries of patient conditions. Results of clinical studies in the domains of cardiology and breast radiology have already shown the promise of the system in differential diagnosis and imaging studies summarization.

  4. Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Paul

    2012-05-01

    IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of themore » capital cost and ~27% parasitic energy consumption. Ideally, a one-box process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactor's behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and

  5. Dissolved organic matter (DOM) in pore water of Arctic Ocean sediments: linking DOM molecular composition with microbial community structure

    NASA Astrophysics Data System (ADS)

    Rossel, P. E.; Bienhold, C.; Boetius, A.; Dittmar, T.

    2016-02-01

    Marine organic matter (OM) that sinks from surface waters to the seafloor is the energy and carbon source for benthic communities. These communities produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. In the Arctic Ocean, primary production is limited by nutrients and light and is thus strongly influenced by sea ice cover. Ice cover is expected to further decrease due to global warming, which may have important consequences for primary production and the quantity and quality of OM exported to the seafloor. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether there is any relation between Arctic Ocean ice cover and DOM composition and 3) whether the DOM composition correlates with microbial community structure. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometry, were statistically correlated with environmental parameters. The productive ice margin stations showed higher abundances of molecular formulae of peptides, unsaturated aliphatics and saturated fatty acids. This molecular trend is indicative of fresh OM and phytodetritus deposition, compared to the northernmost, ice-covered stations which had stronger aromatic signals. Benthic bacterial community structure, as assessed with the fingerprinting method ARISA, was significantly correlated with DOM molecular composition. Further analyses using Illumina next-generation sequencing will enable the taxonomic identification of specific bacterial groups and their interdependence with DOM compounds. This study contributes to the understanding of the coupling between Arctic Ocean productivity and its depositional regime, and provides first insights into potential links between microbial community structure and DOM molecular composition in Arctic sediments

  6. Preventing gastric sieving by blending a solid/water meal enhances satiation in healthy humans.

    PubMed

    Marciani, Luca; Hall, Nicholas; Pritchard, Susan E; Cox, Eleanor F; Totman, John J; Lad, Mita; Hoad, Caroline L; Foster, Tim J; Gowland, Penny A; Spiller, Robin C

    2012-07-01

    Separation of solids and liquids within the stomach allows faster gastric emptying of liquids compared with solids, a phenomenon known as sieving. We tested the hypothesis that blending a solid and water meal would abolish sieving, preventing the early rapid decrease in gastric volume and thereby enhancing satiety. We carried out 2 separate studies. Study 1 was a 2-way, crossover, satiety study of 22 healthy volunteers who consumed roasted chicken and vegetables with a glass of water (1008 kJ) or the same blended to a soup. They completed satiety visual analogue scales at intervals for 3 h. Study 2 was a 2-way, crossover, mechanistic study of 18 volunteers who consumed the same meals and underwent an MRI to assess gastric emptying, gallbladder contraction, and small bowel water content (SBWC) at intervals for 3 h. In Study 1, the soup meal was associated with reduced hunger (P = 0.02). In Study 2, the volume of the gastric contents after the soup meal decreased more slowly than after the solid/liquid meal (P = 0.0003). The soup meal caused greater gallbladder contraction (P < 0.04). SBWC showed a biphasic response with an initial "gastric" phase during which SBWC was greater when the solid/liquid meal was consumed (P < 0.001) and a later "small bowel" phase when SBWC was greater when the soup meal was consumed (P < 0.01). Blending the solid/liquid meal to a soup delayed gastric emptying and increased the hormonal response to feeding, which may contribute to enhanced postprandial satiety.

  7. 43 CFR 426.23 - Recovery of operation and maintenance (O&M) costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operation and maintenance (O&M) costs. (a) General. All new, amended, and renewed contracts shall provide... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Recovery of operation and maintenance (O&M) costs. 426.23 Section 426.23 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF...

  8. Protein–Protein Interactions between Sucrose Transporters of Different Affinities Colocalized in the Same Enucleate Sieve Element

    PubMed Central

    Reinders, Anke; Schulze, Waltraud; Kühn, Christina; Barker, Laurence; Schulz, Alexander; Ward, John M.; Frommer, Wolf B.

    2002-01-01

    Suc represents the major transport form for carbohydrates in plants. Suc is loaded actively against a concentration gradient into sieve elements, which constitute the conduit for assimilate export out of leaves. Three members of the Suc transporter family with different properties were identified: SUT1, a high-affinity Suc proton cotransporter; SUT4, a low-affinity transporter; and SUT2, which in yeast is only weakly active and shows features similar to those of the yeast sugar sensors RGT2 and SNF3. Immunolocalization demonstrated that all three SUT proteins are localized in the same enucleate sieve element. Thus, the potential of Suc transporters to form homooligomers was tested by the yeast-based split-ubiquitin system. The results show that both SUT1 and SUT2 have the potential to form homooligomers. Moreover, all three Suc transporters have the potential to interact with each other. As controls, a potassium channel and a monosaccharide transporter, expressed in the plasma membrane, did not interact with the SUTs. The in vivo interaction between the functionally different Suc transporters indicates that the membrane proteins are capable of forming oligomeric structures that, like mammalian Glc transporter complexes, might be of functional significance for the regulation of transport. PMID:12119375

  9. Columbia: The first five flights entry heating data series. Volume 2: The OMS Pod

    NASA Technical Reports Server (NTRS)

    Williams, S. D.

    1983-01-01

    Entry heating flight data and wind tunnel data on the OMS Pod are presented for the first five flights of the Space Shuttle Orbiter. The heating rate data are presented in terms of normalized film heat transfer coefficients as a function of angle-of-attack, Mach number, and normal shock Reynolds number. The surface heating rates and temperatures were obtained via the JSC NONLIN/INVERSE computer program. Time history plots of the surface heating rates and temperatures are also presented.

  10. Estimating the number and size of phloem sieve plate pores using longitudinal views and geometric reconstruction.

    PubMed

    Bussières, Philippe

    2014-05-12

    Because it is difficult to obtain transverse views of the plant phloem sieve plate pores, which are short tubes, to estimate their number and diameters, a method based on longitudinal views is proposed. This method uses recent methods to estimate the number and the sizes of approximately circular objects from their images, given by slices perpendicular to the objects. Moreover, because such longitudinal views are obtained from slices that are rather close to the plate centres whereas the pore size may vary with the pore distance from the plate edge, a sieve plate reconstruction model was developed and incorporated in the method to consider this bias. The method was successfully tested with published longitudinal views of phloem of Soybean and an exceptional entire transverse view from the same tissue. The method was also validated with simulated slices in two sieve plates from Cucurbita and Phaseolus. This method will likely be useful to estimate and to model the hydraulic conductivity and the architecture of the plant phloem, and it could have applications for other materials with approximately cylindrical structures.

  11. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  12. Molecular characterization of effluent organic matter in secondary effluent and reclaimed water: Comparison to natural organic matter in source water.

    PubMed

    Wang, Xin; Wang, Juan; Li, Kuixiao; Zhang, Haifeng; Yang, Min

    2018-01-01

    Municipal wastewater reclamation is becoming of increasing importance in the world to solve the problem of water scarcity. A better understanding of the molecular composition of effluent organic matter (EfOM) in the treated effluents of municipal wastewater treatment plants (WWTPs) is crucial for ensuring the safety of water reuse. In this study, the molecular composition of EfOM in the secondary effluent of a WWTP in Beijing and the reclaimed water further treated with a coagulation-sedimentation-ozonation process were characterized using a non-target Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) method and compared to that of natural organic matter (NOM) in the local source water from a reservoir. It was found that the molecular composition of EfOM in the secondary effluent and reclaimed water was dominated by CHOS formulas, while NOM in the source water was dominated by CHO formulas. The CHO formulas of the three samples had similar origins. Anthropogenic surfactants were responsible for the CHOS formulas in EfOM of the secondary effluent and were not well removed by the coagulation-sedimentation-ozonation treatment process adopted. Copyright © 2017. Published by Elsevier B.V.

  13. Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia

    NASA Astrophysics Data System (ADS)

    Cooper, Rebecca Elizabeth; Eusterhues, Karin; Wegner, Carl-Eric; Totsche, Kai Uwe; Küsel, Kirsten

    2017-11-01

    The formation of Fe(III) oxides in natural environments occurs in the presence of natural organic matter (OM), resulting in the formation of OM-mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III) reduction in natural environments most often occurs in the presence of OM-mineral complexes rather than pure Fe(III) minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III) reduction by Shewanella oneidensis MR-1, a model Fe(III)-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III) reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite-OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose) mimics S. oneidensis under the same experimental Fe(III)-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM-ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III)-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria) during pure ferrihydrite incubations which are known to use Fe(III) as an electron sink. Instead, OM-mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and acetate as an electron

  14. Solar PV O&M Standards and Best Practices – Existing Gaps and Improvement Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Balfour, John R.; Keating, T. J.

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PVmore » systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.« less

  15. Biodiversity Data Interoperability Issues: on the Opportunity of Exploiting O&M for Biotic Data Management

    NASA Astrophysics Data System (ADS)

    Oggioni, A.; Tagliolato, P.; Schleidt, K.; Carrara, P.; Grellet, S.; Sarretta, A.

    2016-02-01

    The state of the art in biodiversity data management unfortunately encompases a plethora of diverse data formats. Compared to other research fields, there is a lack in harmonization and standardization of these data. While data from traditional biodiversity collections (e.g. from museums) can be easily represented by existing standard as provided by TDWG, the growing number of field observations stemming from both VGI activities (e.g. iNaturalist) as well as from automated systems (e.g. animal biotelemetry) would at the very least require upgrades of current formats. Moreover, from an eco-informatics perspective, the integration and use of data from different scientific fields is the norm (abiotic data, geographic information, etc.); the possibility to represent this information and biodiversity data in a homogeneous way would be an advantage for interoperability, allowing for easy integration across environmental media. We will discuss the possibility to exploit the Open Geospatial Consortium/ISO standard, Observations and Measurements (O&M) [1], a generic conceptual model developed for observation data but with strong analogies with the biodiversity-oriented OBOE ontology [2]. The applicability of OGC O&M for the provision of biodiviersity occurence data has been suggested by the INSPIRE Cross Thematic Working Group on Observations & Measurements [3], Inspire Environmental Monitoring Facilities Thematic Working Group [4] and New Zealand Environmental Information Interoperability Framework [5]. This approach, in our opinion, could be an advantage for the biodiversity community. We will provide some examples for encoding biodiversity occurence data using the O&M standard in addition to highlighting the advatages offered by O&M in comparison to other representation formats. [1] Cox, S. (2013). Geographic information - Observations and measurements - OGC and ISO 19156. [2] Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., & Villa, F. (2007). An

  16. RNA interference-based resistance in transgenic tomato plants against Tomato yellow leaf curl virus-Oman (TYLCV-OM) and its associated betasatellite.

    PubMed

    Ammara, Um e; Mansoor, Shahid; Saeed, Muhammad; Amin, Imran; Briddon, Rob W; Al-Sadi, Abdullah Mohammed

    2015-03-04

    Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus (family Geminiviridae) is responsible for heavy yield losses for tomato production around the globe. In Oman at least five distinct begomoviruses cause disease in tomato, including TYLCV. Unusually, TYLCV infections in Oman are sometimes associated with a betasatellite (Tomato leaf curl betasatellite [ToLCB]; a symptom modulating satellite). RNA interference (RNAi) can be used to develop resistance against begomoviruses at either the transcriptional or post-transcriptional levels. A hairpin RNAi (hpRNAi) construct to express double-stranded RNA homologous to sequences of the intergenic region, coat protein gene, V2 gene and replication-associated gene of Tomato yellow leaf curl virus-Oman (TYLCV-OM) was produced. Initially, transient expression of the hpRNAi construct at the site of virus inoculation was shown to reduce the number of plants developing symptoms when inoculated with either TYLCV-OM or TYLCV-OM with ToLCB-OM to Nicotiana benthamiana or tomato. Solanum lycopersicum L. cv. Pusa Ruby was transformed with the hpRNAi construct and nine confirmed transgenic lines were obtained and challenged with TYLCV-OM and ToLCB-OM by Agrobacterium-mediated inoculation. For all but one line, for which all plants remained symptomless, inoculation with TYLCV-OM led to a proportion (≤25%) of tomato plants developing symptoms of infection. For inoculation with TYLCV-OM and ToLCB-OM all lines showed a proportion of plants (≤45%) symptomatic. However, for all infected transgenic plants the symptoms were milder and virus titre in plants was lower than in infected non-transgenic tomato plants. These results show that RNAi can be used to develop resistance against geminiviruses in tomato. The resistance in this case is not immunity but does reduce the severity of infections and virus titer. Also, the betasatellite may compromise resistance, increasing the proportion of plants which ultimately show symptoms.

  17. Removal and transformation of effluent organic matter (EfOM) in biotreated textile wastewater by GAC/O3 pre-oxidation and enhanced coagulation.

    PubMed

    Qian, Feiyue; Sun, Xianbo; Liu, Yongdi; Xu, Hongyong

    2013-01-01

    GAC/O3 (ozonation in the presence of granular activated carbon) combined with enhanced coagulation was employed to process biotreated textile wastewater for possible reuse. The doses of ozone, GAC and coagulant were the variables studied for optimization. The effects of different treatment processes on effluent organic matter (EfOM) characteristics, including biodegradability, hydrophobic and hydrophilic nature, and apparent molecular weight (AMW) distribution were also investigated. Compared with ozonation, GAC/O3 not only presented a higher pre-oxidation efficiency, but also improved the treatability of hydrophobic and high molecular weight compounds by enhanced coagulation. After treatment by GAC/O3 pre-oxidation (0.6 mg O3 x mg(-1) COD and 20 g x L(-1) GAC) and enhanced coagulation (25 mg x L(-1) Al3+ at pH 5.5), the removal efficiencies of chemical oxygen demand (COD), dissolved organic carbon (DOC) and colour were higher than those for coagulation alone by 17.3%, 12.0% and 25.6%, respectively. Residual organic matter consisted mainly of hydrophobic acids and hydrophilic compounds of AMW < 1 kDa, which were colourless and of limited biological availability. The combination of GAC/O3 and enhanced coagulation was proved to be a simple and effective treatment strategy for removing EfOM from biotreated textile wastewater.

  18. Sieve analysis using the number of infecting pathogens.

    PubMed

    Follmann, Dean; Huang, Chiung-Yu

    2017-12-14

    Assessment of vaccine efficacy as a function of the similarity of the infecting pathogen to the vaccine is an important scientific goal. Characterization of pathogen strains for which vaccine efficacy is low can increase understanding of the vaccine's mechanism of action and offer targets for vaccine improvement. Traditional sieve analysis estimates differential vaccine efficacy using a single identifiable pathogen for each subject. The similarity between this single entity and the vaccine immunogen is quantified, for example, by exact match or number of mismatched amino acids. With new technology, we can now obtain the actual count of genetically distinct pathogens that infect an individual. Let F be the number of distinct features of a species of pathogen. We assume a log-linear model for the expected number of infecting pathogens with feature "f," f=1,…,F. The model can be used directly in studies with passive surveillance of infections where the count of each type of pathogen is recorded at the end of some interval, or active surveillance where the time of infection is known. For active surveillance, we additionally assume that a proportional intensity model applies to the time of potentially infectious exposures and derive product and weighted estimating equation (WEE) estimators for the regression parameters in the log-linear model. The WEE estimator explicitly allows for waning vaccine efficacy and time-varying distributions of pathogens. We give conditions where sieve parameters have a per-exposure interpretation under passive surveillance. We evaluate the methods by simulation and analyze a phase III trial of a malaria vaccine. © 2017, The International Biometric Society.

  19. Spectroscopic Investigation of O-,M-, and P-Cyanostyrenes

    NASA Astrophysics Data System (ADS)

    Korn, Joseph A.; Knezz, Stephanie N.; McMahon, Robert J.; Zwier, Timothy S.

    2014-06-01

    The atmosphere of Titan contains nitrogen, methane, and a rich mixture of more complex hydrocarbons and nitriles produced by photochemical processing. Data from the 2005 Cassini-Huygens mission suggests that among the more complex compounds are substituted benzenes that are themselves precursors to large polymeric tholins. Nitriles are particularly prevalent in Titan's atmosphere due to the dominance of N2 in the atmosphere. The cyanostyrenes are of particular interest, in part because they have the same molecular formula (C9H7N) as quinoline, a prototypical heteroaromatic, and therefore could engage in photochemical isomerization to form this molecule of significant pre-biotic relevance. As a first step in understanding the pathways leading to heteroaromatics, we have studied the isotope-selective spectroscopy of o-,m-, and p-cyanostyrene under jet-cooled conditions relevant to Titan's atmosphere. In this talk, the excitation and emission spectra for the three isomers will be presented. Using a combination of resonant two-photon ionization, LIF excitation, and dispersed fluorescence spectroscopies, the vibronic spectroscopy of the three isomers were recorded and compared. The meta isomer has two conformational isomers, which have been distinguished and studied using hole-burning methods. The talk will compare and contrast the UV spectral signatures of the set of structural and conformational isomers of the cyanostyrenes, using the ethynylstyrene counterparts as points of comparison. Sebree, J. A.; Kidwell, N. M.; Selby, T. M.; Amberger, B. K.; McMahon, R. J.; Zwier, T. S., Photochemistry of Benzylallene: Ring-Closing Reactions to Form Naphthalene. Journal of the American Chemical Society 2012, 134 (2), 1153-1163. Selby, T. M.; Clarkson, J. R.; Mitchell, D.; Fitzpatrick, J. A. J.; Lee, H. D.; Pratt, D. W.; Zwier, T. S., Isomer-Specific Spectroscopy and Conformational Isomerization Energetics of o-, m-, and p-Ethynylstyrenes. The Journal of Physical Chemistry A 2005

  20. Similar Intracellular Location and Stimulus Reactivity, but Differential Mobility of Tailless (Vicia faba) and Tailed Forisomes (Phaseolus vulgaris) in Intact Sieve Tubes.

    PubMed

    Furch, Alexandra C U; Buxa, Stefanie V; van Bel, Aart J E

    2015-01-01

    Sieve elements of legumes contain forisomes-fusiform protein bodies that are responsible for sieve-tube occlusion in response to damage or wound signals. Earlier work described the existence of tailless and tailed forisomes. This study intended to quantify and compare location and position of tailless (in Vicia faba) and tailed (in Phaseolus vulgaris) forisomes inside sieve elements and to assess their reactivity and potential mobility in response to a remote stimulus. Location (distribution within sieve elements) and position (forisome tip contacts) of more than altogether 2000 forisomes were screened in 500 intact plants by laser scanning confocal microscopy in the transmission mode. Furthermore, we studied the dispersion of forisomes at different locations in different positions and their positional behaviour in response to distant heat shocks. Forisome distribution turned out to be species-specific, whereas forisome positions at various locations were largely similar in bushbean (Phaseolus) and broadbean (Vicia). In general, the tailless forisomes had higher dispersion rates in response to heat shocks than the tailed forisomes and forisomes at the downstream (basal) end dispersed more frequently than those at the upstream end (apical). In contrast to the tailless forisomes that only oscillate in response to heat shocks, downstream-located tailed forisomes can cover considerable distances within sieve elements. This displacement was prevented by gentle rubbing of the leaf (priming) before the heat shock. Movement of these forisomes was also prohibited by Latrunculin A, an inhibitor of actin polymerization. The apparently active mobility of tailed forisomes gives credence to the idea that at least the latter forisomes are not free-floating, but connected to other sieve-element structures.

  1. Similar Intracellular Location and Stimulus Reactivity, but Differential Mobility of Tailless (Vicia faba) and Tailed Forisomes (Phaseolus vulgaris) in Intact Sieve Tubes

    PubMed Central

    van Bel, Aart J. E.

    2015-01-01

    Sieve elements of legumes contain forisomes—fusiform protein bodies that are responsible for sieve-tube occlusion in response to damage or wound signals. Earlier work described the existence of tailless and tailed forisomes. This study intended to quantify and compare location and position of tailless (in Vicia faba) and tailed (in Phaseolus vulgaris) forisomes inside sieve elements and to assess their reactivity and potential mobility in response to a remote stimulus. Location (distribution within sieve elements) and position (forisome tip contacts) of more than altogether 2000 forisomes were screened in 500 intact plants by laser scanning confocal microscopy in the transmission mode. Furthermore, we studied the dispersion of forisomes at different locations in different positions and their positional behaviour in response to distant heat shocks. Forisome distribution turned out to be species-specific, whereas forisome positions at various locations were largely similar in bushbean (Phaseolus) and broadbean (Vicia). In general, the tailless forisomes had higher dispersion rates in response to heat shocks than the tailed forisomes and forisomes at the downstream (basal) end dispersed more frequently than those at the upstream end (apical). In contrast to the tailless forisomes that only oscillate in response to heat shocks, downstream-located tailed forisomes can cover considerable distances within sieve elements. This displacement was prevented by gentle rubbing of the leaf (priming) before the heat shock. Movement of these forisomes was also prohibited by Latrunculin A, an inhibitor of actin polymerization. The apparently active mobility of tailed forisomes gives credence to the idea that at least the latter forisomes are not free-floating, but connected to other sieve-element structures. PMID:26624625

  2. Photochemistry and Photophysics of Aqueous Cr(NH3)5(CN)(2+) and Trans-Cr(NH3)4(CN)(2+).

    DTIC Science & Technology

    1983-06-01

    molecular sieve., and distilled at reduced pressure, under nitrogen atmosphere, before use. -4- Equipment and procedures. - Emission lifetimes...either process could be assigned such an activation energy from the molecular point of view. Chemical reaction from Dl could certainly be activated. In...requiring both a change in molecular geometry and in spin. In the present case, incidentally, it is difficult to estimate the Ql0-D 0 energy gap because of

  3. Acute effects of 3G mobile phone radiations on frontal haemodynamics during a cognitive task in teenagers and possible protective value of Om chanting.

    PubMed

    Bhargav, Hemant; N K, Manjunath; Varambally, Shivarama; Mooventhan, A; Bista, Suman; Singh, Deepeshwar; Chhabra, Harleen; Venkatasubramanian, Ganesan; T M, Srinivasan; H R, Nagendra

    2016-06-01

    Mobile phone induced electromagnetic field (MPEMF) as well as chanting of Vedic mantra 'OM' has been shown to affect cognition and brain haemodynamics, but findings are still inconclusive. Twenty right-handed healthy teenagers (eight males and 12 females) in the age range of 18.25 ± 0.44 years were randomly divided into four groups: (1) MPONOM (mobile phone 'ON' followed by 'OM' chanting); (2) MPOFOM (mobile phone 'OFF' followed by 'OM' chanting); (3) MPONSS (mobile phone 'ON' followed by 'SS' chanting); and (4) MPOFSS (mobile phone 'OFF' followed by 'SS' chanting). Brain haemodynamics during Stroop task were recorded using a 64-channel fNIRS device at three points of time: (1) baseline, (2) after 30 min of MPON/OF exposure, and (3) after 5 min of OM/SS chanting. RM-ANOVA was applied to perform within- and between-group comparisons, respectively. Between-group analysis revealed that total scores on incongruent Stroop task were significantly better after OM as compared to SS chanting (MPOFOM vs MPOFSS), pre-frontal activation was significantly lesser after OM as compared to SS chanting in channel 13. There was no significant difference between MPON and MPOF conditions for Stroop performance, as well as brain haemodynamics. These findings need confirmation through a larger trial in future.

  4. Thermal stability of the Mobil Five type metallosilicate molecular sieves-An in situ high temperature X-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhange, D.S.; Ramaswamy, Veda

    2007-05-03

    We have carried out in situ high temperature X-ray diffraction (HTXRD) studies of silicalite-1 (S-1) and metallosilicate molecular sieves containing iron, titanium and zirconium having Mobil Five (MFI) structure (iron silicalite-1 (FeS-1), titanium silicalite-1 (TS-1) and zirconium silicalite-1 (ZrS-1), respectively) in order to study the thermal stability of these materials. Isomorphous substitution of Si{sup 4+} by metal atoms is confirmed by the expansion of unit cell volume by X-ray diffraction (XRD) and the presence of Si-O-M stretching band at {approx}960 cm{sup -1} by Fourier transform infrared (FTIR) spectroscopy. Appearance of cristobalite phase is seen at 1023 and 1173 K inmore » S-1 and FeS-1 samples. While the samples S-1 and FeS-1 decompose completely to cristobalite at 1173 and 1323 K, respectively, the other two samples are thermally stable upto 1623 K. This transformation is irreversible. Although all materials show a negative lattice thermal expansion, their lattice thermal expansion coefficients vary. The thermal expansion behavior in all samples is anisotropic with relative strength of contraction along 'a' axes is more than along 'b' and 'c' axes in S-1, TS-1, ZrS-1 and vice versa in FeS-1. Lattice thermal expansion coefficients ({alpha} {sub v}) in the temperature range 298-1023 K were -6.75 x 10{sup -6} K{sup -1} for S-1, -12.91 x 10{sup -6} K{sup -1} for FeS-1, -16.02 x 10{sup -6} K{sup -1} for TS-1 and -17.92 x 10{sup -6} K{sup -1} for ZrS-1. The highest lattice thermal expansion coefficients ({alpha} {sub v}) obtained were -11.53 x 10{sup -6} K{sup -1} for FeS-1 in temperature range 298-1173 K, -20.86 x 10{sup -6} K{sup -1} for TS-1 and -25.54 x 10{sup -6} K{sup -1} for ZrS-1, respectively, in the temperature range 298-1623 K. Tetravalent cation substitution for Si{sup 4+} in the lattice leads to a high thermal stability as compared to substitution by trivalent cations.« less

  5. A differential delay equation arising from the sieve of Eratosthenes

    NASA Technical Reports Server (NTRS)

    Cheer, A. Y.; Goldston, D. A.

    1990-01-01

    Consideration is given to the differential delay equation introduced by Buchstab (1937) in connection with an asymptotic formula for the uncanceled terms in the sieve of Eratosthenes. Maier (1985) used this result to show there is unexpected irreqularity in the distribution of primes in short intervals. The function omega(u) is studied in this paper using numerical and analytical techniques. The results are applied to give some numerical constants in Maier's theorem.

  6. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enokida, Y.; Tanada, Y.; Hirabayashi, D.

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged applicationmore » is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)« less

  7. A combinatory approach for analysis of protein sets in barley sieve-tube samples using EDTA-facilitated exudation and aphid stylectomy.

    PubMed

    Gaupels, Frank; Knauer, Torsten; van Bel, Aart J E

    2008-01-01

    This study investigated advantages and drawbacks of two sieve-tube sap sampling methods for comparison of phloem proteins in powdery mildew-infested vs. non-infested Hordeum vulgare plants. In one approach, sieve tube sap was collected by stylectomy. Aphid stylets were cut and immediately covered with silicon oil to prevent any contamination or modification of exudates. In this way, a maximum of 1muL pure phloem sap could be obtained per hour. Interestingly, after pathogen infection exudation from microcauterized stylets was reduced to less than 40% of control plants, suggesting that powdery mildew induced sieve tube-occlusion mechanisms. In contrast to the laborious stylectomy, facilitated exudation using EDTA to prevent calcium-mediated callose formation is quick and easy with a large volume yield. After two-dimensional (2D) electrophoresis, a digital overlay of the protein sets extracted from EDTA solutions and stylet exudates showed that some major spots were the same with both sampling techniques. However, EDTA exudates also contained large amounts of contaminative proteins of unknown origin. A combinatory approach may be most favourable for studies in which the protein composition of phloem sap is compared between control and pathogen-infected plants. Facilitated exudation may be applied for subtractive identification of differentially expressed proteins by 2D/mass spectrometry, which requires large amounts of protein. A reference gel loaded with pure phloem sap from stylectomy may be useful for confirmation of phloem origin of candidate spots by digital overlay. The method provides a novel opportunity to study differential expression of phloem proteins in monocotyledonous plant species.

  8. REE Sorption Study of Sieved -50 +100 mesh Media #1 in Brine #1 with Different Starting pH's at 70C

    DOE Data Explorer

    Gary Garland

    2015-07-21

    This dataset described shaker table experiments ran with sieved -50 +100 mesh media #1 in brine #1 that have 2ppm each of the 7 REE metals at different starting pH's of 3.5, 4.5, and 5.5. The experimental conditions are 2g media to 150mL of REE solution, at 70C.

  9. Simultaneous removal of phosphorus and EfOM using MIEX, coagulation, and low-pressure membrane filtration.

    PubMed

    Kim, Hyun-Chul; Timmes, Thomas C; Dempsey, Brian A

    2015-01-01

    The feasibility of using magnetic ion exchange (MIEX) treatment, in-line alum coagulation, and low-pressure membrane filtration was investigated for the simultaneous removal of total phosphorus (TP) and effluent organic matter (EfOM) from biologically treated wastewater. The focus was also placed on minimizing fouling of polyvinylidene fluoride and polyethersulfone membranes, which are the most commonly used low-pressure membranes in new and retrofit wastewater treatment plants. MIEX alone was effective for the removal of EfOM, and MIEX plus a small alum dose was very effective in removing both EfOM and TP. MIEX removed phosphorus, but organic acids in EfOM were preferentially removed, and the effects of competing anions on the removal of EfOM were insignificant. All the pretreatment strategies decreased the resistance to filtration. The greatest decrease in fouling was achieved by using MIEX (15 mL L⁻¹) plus a very low dose of alum (∼0.5 mg Al L⁻¹). Sweep floc coagulation using alum and without MIEX also significantly decreased fouling but did not effectively remove EfOM and produced high floc volume that could be problematic for inside-out hollow-fibre modules. The addition of these reagents into rapid mix followed by membrane filtration would provide operational simplicity and could be easily retrofitted at existing membrane filtration facilities.

  10. Anatomy of the human orbital muscle (OM): Features of its detailed topography, syntopy and morphology.

    PubMed

    Wilden, Andre; Feiser, Janna; Wöhler, Aliona; Isik, Zeynep; Bendella, Habib; Angelov, Doychin N

    2017-05-01

    The human orbital muscle (OM) is not readily accessible during ordinary anatomical teaching because of insufficient time and difficulties encountered in the preparation. Accordingly, its few anatomical descriptions are supported only by drawings, but not by photographs. The aim of this study was to present OM in dissected anatomic specimens in more detail. Following microscope-assisted dissection, its location, syntopy and morphology were analyzed in 88 orbits of 51 cadavers. Together with the periorbital connective tissue OM filled the infraorbital fissure (IOF) and extended back to the cavernous sinus. As a new finding, we here report that in 34% of the orbits we observed OM-fibers, which proceeded from IOF caudally to the facies infratemporalis of the maxilla. OM had a mean width of 4±1mm, a mean length of 22±5mm and its mean mass was 0.22±0.19g. The subsequent histological analysis of all specimens showed features of smooth muscle tissue: long, spindle-like cells with a centrally located cell nucleus (hematoxylin-eosin staining) which were innervated by tyrosine-hydroxylase immunopositive adrenergic fibers. We conclude that precise knowledge on OM might be very helpful not only to students in medicine and dentistry during anatomical dissection courses, but also to head and neck surgeons, ear-nose-throat specialists and neurosurgeons working in this field. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Protein sterilization method of firefly luciferase using reduced pressure and molecular sieves

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Rich, E., Jr. (Inventor)

    1973-01-01

    The sterilization of the protein fruitfly luciferase under conditions that prevent denaturation is examined. Denaturation is prevented by heating the protein in contact with molecular seives and under a reduced pressure of the order of 0.00005 millimeters of mercury.

  12. Combining sieving and washing, a way to treat MSWI boiler fly ash.

    PubMed

    De Boom, Aurore; Degrez, Marc

    2015-05-01

    Municipal Solid Waste Incineration (MSWI) fly ashes contain some compounds that could be extracted and valorised. A process based on wet sieving and washing steps has been developed aiming to reach this objective. Such unique combination in MSWI fly ash treatment led to a non-hazardous fraction from incineration fly ashes. More specifically, MSWI Boiler Fly Ash (BFA) was separately sampled and treated. The BFA finer particles (13wt%) were found to be more contaminated in Pb and Zn than the coarser fractions. After three washing steps, the coarser fractions presented leaching concentrations acceptable to landfill for non-hazardous materials so that an eventual subsequent valorisation may be foreseen. At the contrary, too much Pb leached from the finest particles and this fraction should be further treated. Wet sieving and washing permit thus to reduce the leachability of MSWI BFA and to concentrate the Pb and Zn contamination in a small (in particle size and volume) fraction. Such combination would therefore constitute a straightforward and efficient basis to valorise coarse particles from MSWI fly ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. OM-VPE growth of Mg-doped GaAs. [OrganoMetallic-Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Dietze, W. T.; Ludowise, M. J.

    1982-01-01

    The epitaxial growth of Mg-doped GaAs by the organometallic vapor phase epitaxial process (OM-VPE) has been achieved for the first time. The doping is controllable over a wide range of input fluxes of bis (cyclopentadienyl) magnesium, (C5H5)2Mg, the organometallic precursor to Mg.

  14. Induction of interleukin 6 and interleukin 8 expression by Broncho-Vaxom (OM-85 BV) via C-Fos/serum responsive element.

    PubMed Central

    Keul, R.; Roth, M.; Papakonstantinou, E.; Nauck, M.; Perruchoud, A. P.; Block, L. H.

    1996-01-01

    BACKGROUND: Broncho-Vaxom (OM-85 BV) increases the resistance of the respiratory tract to bacterial infections by modulating host immune responses. The compound increases serum IgG levels but decreases IgE levels in patients suffering from chronic bronchitis or chronic obstructive pulmonary disease. It increases concentrations of gamma-interferon (IFN-gamma), IgA, and interleukin (IL)-2 in bronchoalveolar lavage fluid of patients with bronchitis. Treatment with OM-85 BV increases the number of T helper and natural killer cells. In this study the effects of OM-85 BV on transcription of cytokines is investigated in human lung fibroblasts. METHODS: Transcription and synthesis of IL-6 and IL-8 were assessed in cultured primary human lung fibroblasts using standard methods of Northern blot analysis for the level of mRNAs and enzyme linked immunosorbent assay for proteins. RESULTS: Broncho-Vaxom (OM-85 BV) at different concentrations induced transcription of IL-6 and IL-8. The effect of the drug on transcription of IL-6 and IL-8 genes correlated with secretion of the proteins into cell supernatants. OM-85 BV-dependent expression of the interleukin genes involved C-Fos/serum responsive element (C-Fos/SRE). CONCLUSIONS: The data suggest that the various immunopharmacological activities of OM-85 BV that have been described in clinical studies may be explained by its ability to induce expression of IL-6 and IL-8. Images PMID:8711646

  15. Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface.

    PubMed

    Regtmeier, Jan; Käsewieter, Jörg; Everwand, Martina; Anselmetti, Dario

    2011-05-01

    Continuous-flow separation of nanoparticles (NPs) (15 and 39 nm) is demonstrated based on electrostatic sieving at a micro-nanofluidic interface. The interface is realized in a poly(dimethylsiloxane) device with a nanoslit of 525 nm laterally spanning the microfluidic channel (aspect ratio of 540:1). Within this nanoslit, the Debye layers overlap and generate an electrostatic sieve. This was exploited to selectively deflect and sort NPs with a sorting purity of up to 97%. Because of the continuous-flow operation, the sample is continuously fed into the device, immediately separated, and the parameters can be adapted in real time. For bioanalytical purposes, we also demonstrate the deflection of proteins (longest axis 6.8 nm). The continuous operation mode and the general applicability of this separation concept make this method a valuable addition to the current Lab-on-a-Chip devices for continuous sorting of NPs and macromolecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fractionation of surface sediment fines based on a coupled sieve-SPLITT (split flow thin cell) method.

    PubMed

    Coppola, Laurent; Gustafsson, Orjan; Andersson, Per; Axelsson, Pär

    2005-05-01

    In traditional sediment grain-size separation using sieve technique, the bulk of the organic matter passes through the smallest mesh size (generally 38 microm) and is not further fractionated. In this study, a common sieve separation has therefore been coupled with an extra high capacity split flow thin cell fractionation (EHC-SPLITT) instrument to separate the bulk surface sediment not only into size-based sieve fractions (> 100, 63-100, 38-63 and < 38 microm) but particularly to further fractionate hydrodynamically the fine fraction (< 38 microm) using the EHC-SPLITT. Compared to the few previous studies using a smaller high capacity (HC) SPLITT cell, the EHC-SPLITT evaluated in detail here has several advantages (e.g., 23 times higher throughput and allowance for large particle diameters). First, the EHC-SPLITT was calibrated with particle standards. Then, its ability to fractionate fine surface sediments hydrodynamically was demonstrated with material from biogeochemically distinct regimes using two cutoff velocities (1 and 6 m d(-1)). The results from particle standards indicated a good agreement between theory and experiment and a satisfactory mass recovery for the sieve-SPLITT method (80-97%) was observed for sediment samples. The mass distributions revealed that particles < 38 microm were predominant (70-90%), indicating the large need for a technique such as the EHC-SPLITT to further fractionate the fine particles. There were clearly different compositions in the EHC-SPLITT-mediated sub-fractions of the sediment fines as indicated by analyses of organic and inorganic parameters (POC, Si, Fe and Al). The EHC-SPLITT technique has the potential to provide information of great utility to studies of benthic boundary layer transport and off-shelf export and how such processes fractionate geochemical signals.

  17. Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Ananddeep; Zhang, Shaojie; Shrestha, Amrit

    Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner.more » siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H{sub 2}O{sub 2}) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H{sub 2}O{sub 2} levels. Furthermore, H{sub 2}O{sub 2} independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H{sub 2}O{sub 2} levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H{sub 2}O{sub 2}-independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H{sub 2}O{sub 2} - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role. - Highlights: • Omeprazole induces HO-1 in human fetal lung cells. • AhR deficiency fails to abrogate omeprazole-mediated induction of HO-1. • Nrf2 knockdown abrogates omeprazole-mediated HO-1 induction in human lung cells. • Hydrogen peroxide depletion

  18. A Best Practice for Developing Availability Guarantee Language in Photovoltaic (PV) O&M Agreements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Balfour, John

    This document outlines the foundation for developing language that can be utilized in an Equipment Availability Guarantee, typically included in an O&M services agreement between a PV system or plant owner and an O&M services provider, or operator. Many of the current PV O&M service agreement Availability Guarantees are based on contracts used for traditional power generation, which create challenges for owners and operators due to the variable nature of grid-tied photovoltaic generating technologies. This report documents language used in early PV availability guarantees and presents best practices and equations that can be used to more openly communicate how themore » reliability of the PV system and plant equipment can be expressed in an availability guarantee. This work will improve the bankability of PV systems by providing greater transparency into the equipment reliability state to all parties involved in an O&M services contract.« less

  19. Branched Pectic Galactan in Phloem-Sieve-Element Cell Walls: Implications for Cell Mechanics.

    PubMed

    Torode, Thomas A; O'Neill, Rachel; Marcus, Susan E; Cornuault, Valérie; Pose, Sara; Lauder, Rebecca P; Kračun, Stjepan K; Rydahl, Maja Gro; Andersen, Mathias C F; Willats, William G T; Braybrook, Siobhan A; Townsend, Belinda J; Clausen, Mads H; Knox, J Paul

    2018-02-01

    A major question in plant biology concerns the specification and functional differentiation of cell types. This is in the context of constraints imposed by networks of cell walls that both adhere cells and contribute to the form and function of developing organs. Here, we report the identification of a glycan epitope that is specific to phloem sieve element cell walls in several systems. A monoclonal antibody, designated LM26, binds to the cell wall of phloem sieve elements in stems of Arabidopsis ( Arabidopsis thaliana ), Miscanthus x giganteus , and notably sugar beet ( Beta vulgaris ) roots where phloem identification is an important factor for the study of phloem unloading of Suc. Using microarrays of synthetic oligosaccharides, the LM26 epitope has been identified as a β-1,6-galactosyl substitution of β-1,4-galactan requiring more than three backbone residues for optimized recognition. This branched galactan structure has previously been identified in garlic ( Allium sativum ) bulbs in which the LM26 epitope is widespread throughout most cell walls including those of phloem cells. Garlic bulb cell wall material has been used to confirm the association of the LM26 epitope with cell wall pectic rhamnogalacturonan-I polysaccharides. In the phloem tissues of grass stems, the LM26 epitope has a complementary pattern to that of the LM5 linear β-1,4-galactan epitope, which is detected only in companion cell walls. Mechanical probing of transverse sections of M x giganteus stems and leaves by atomic force microscopy indicates that phloem sieve element cell walls have a lower indentation modulus (indicative of higher elasticity) than companion cell walls. © 2018 The author(s). All Rights Reserved.

  20. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process.

    PubMed

    Liao, Xiaoyong; Li, You; Yan, Xiulan

    2016-03-01

    Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing. Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: <0.1, 2-0.1, and >2mm. With increased contact time, the concentration of heavy metals in the leachate was significantly decreased for small particles, probably because of adsorption by the clay soil component. For the different particle sizes, the removal efficiencies for Pb and Cd were 75%-87%, and 61%-77% for Zn and Cu, although the extent of removal was decreased for As and Cr at <45%. The highest efficiency by washing for Pb, Cd, Zn, and As was from the soil particles >2mm, although good metal removal efficiencies were also achieved in the small particle size fractions. Through SEM-EDS observations and correlation analysis, the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe, Mn, and Ca contents of the soil fractions. The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient, and practical remediation parameters were also recommended. Copyright © 2015. Published by Elsevier B.V.

  1. 50 Gb/s NRZ and 4-PAM data transmission over OM5 fiber in the SWDM wavelength range

    NASA Astrophysics Data System (ADS)

    Agustin, M.; Ledentsov, N.; Kropp, J.-R.; Shchukin, V. A.; Kalosha, V. P.; Chi, K. L.; Khan, Z.; Shi, J. W.; Ledentsov, N. N.

    2018-02-01

    The development of advanced OM5 wideband multimode fiber (WBMMF) allowing high modal bandwidth in the spectral range 840-950 nm motivates research in vertical-cavity-surface-emitting-lasers (VCSELs) at wavelengths beyond the previously accepted for short reach communications. Thus, short wavelength division multiplexing (SWDM) solutions can be implemented as a strategy to satisfy the increasing demand of data rate in datacenter environments. As an alternative solution to 850 nm parallel links, four wavelengths with 30 nm separation between 850 nm and 940 nm can be multiplexed on a single OM5-MMF, so the number of fibers deployed is reduced by a factor of four. In this paper high speed transmission is studied for VCSELs in the 850 nm - 950 nm range. The devices had a modulating bandwidth of 26-28 GHz. 50 Gb/s non-return-to-zero (NRZ) operation is demonstrated at each wavelength without preemphasis and equalization, with bit-error-rate (BER) below 7% forward error correction (FEC) threshold. Furthermore, the use of single-mode VCSELs (SM-VCSELs) as a way to mitigate the effects of chromatic dispersions in order to extend the maximum transmission distance over OM5 is explored. Analysis of loss as a function of wavelength in OM5 fiber is also performed. Significant decrease is observed, from 2.2 dB/km to less than 1.7 dB/km at 910 nm wavelength of the VCSEL.

  2. Operations and Maintenance Introductory O&M Newsletter | Poster

    Cancer.gov

    The Operations and Maintenance (O&M) department has been serving and supporting the NCI scientific mission since 1972. Our dedicated staff works 24/7 behind the scenes to ensure that the NCI campus and laboratory environments are safe, functional, and reliable, as well as comfortable and aesthetically pleasing.

  3. EVALUATION OF AIRBORNE ASBESTOS CONCENTRATIONS BEFORE AND DURING AND O&M ACTIVITY: A CASE STUDY

    EPA Science Inventory

    The current lack of information regarding the impact of O&M activities on the potential for asbestos exposure to building staff and occupants prompted this study. This report presents a statistical evaluation of airborne asbestos data collected before and during an O&M activity i...

  4. [Construction and Characterization of B850-Only LH2 Energy Transfer System in Purple Bacteria].

    PubMed

    Li, Kai; Zhao, Chun-gui; Yue, Hui-ying; Yang, Su-ping; Qu, Yin-bo; Jiao, Nian-zhi

    2015-04-01

    To seek microscopic molecular mechanism of energy transfer and complex reconstitution in the photosynthesis, the conditions for construction of B850-only peripheral light-harvesting complex (LH2) and their properties were investigated using absorption, fluorescence spectroscopy, molecular sieve chromatography, ultrafiltration and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) from the purple bacteria. The results indicated that bacteriochlorophylls (BChl) of B800 incubated in 10 mmo · L(-1) Tris-HCl (pH 8.0) buffer are selectively released from their binding sites of LH2 of Rhodobacter azotoformans (A-LH2) by 0.08% (W/V) SDS. B850-only A-LH2 was constructed after removing free BChl mixing with 10% methyl alcohol by ultrafiltration. B850 BChl was released after A-LH2 was incubated for 240 min in dark at room temperature (RT). While BChl of B800 incubated in pH 1.9 buffer were selectively released from their binding sites of LH2 of Rhodopseudomonas palustris (P-LH2). The authors acquired two components using molecular sieve chromatography. Free BChl of one component was not removed and self-assembled to P-LH2. The other removed free BChl and B850-only P-LH2 was constructed. B850 unchanged after P-LH2 was incubated. P-LH2 α and β subunits have different molecular weights, but those of A-LH2 are in the contrary. It is concluded that B850-only P-LH2 is more stable than A-LH2. The enigmatic split of the B800 absorption band was not observed in these LH2, but we acquired two kinds of B800-released LH2 from Rhodopseudomonas palustris. The authors' results may provide a new light to separate homogeneous Apoprotein LH2.

  5. Mammalian histidine decarboxylase; changes in molecular properties induced by oxidation and reduction.

    PubMed

    Hammar, L; Hjertén, S

    1980-04-01

    Histidine decarboxylase from a murine mastocytoma has been submitted to different separation methods. In these experiments the activity peaks were often very broad. This heterogeneity of the enzyme is traced back to the formation of aggregates, differing in apparent molecular weight by a multiple of about 55,000, as a result of oxidation. Under non-oxidative conditions the histidine decarboxylase activity is confined to one peak in both molecular sieve chromatography, hydrophic interaction chromatography, chromatography on hydroxy apatite, pore gradient electrophoresis and electrofocusing. The molecular weight of the enzyme is estimated to be 110,000 by pore gradient electrophoresis (alkylated enzyme). The isoelectric point is pH 4.9--5.0, determined by electrofocusing under reducing conditions.

  6. The Use of Cryogenically Cooled 5A Molecular Sieves for Large Volume Reduction of Tritiated Hydrogen Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniazzi, A.B.; Bartoszek, F.E.; Sherlock, A.M.

    2006-07-01

    A commercial hydrogen isotope separation system based on gas chromatography (AGC-ISS) has been built. The system operates in two modes: stripping and volume reduction. The purpose of the stripping mode is to reduce a large volume of tritiated hydrogen gas to a small volume of tritium rich hydrogen gas. The results here illustrate the effectiveness of the AGC-ISS in the stripping and volume reduction phases. Column readiness for hydrogen isotope separation is confirmed by room temperature air separation tests. Production runs were initially carried out using natural levels of deuterium (110-160 ppm) in high purity hydrogen. After completion of themore » deuterium/hydrogen runs the system began operations with tritiated hydrogen. The paper presents details of the AGC-ISS design and results of tritium tests. The heart of the AGC-ISS consists of two packed columns (9 m long, 3.8 cm OD) containing 5A molecular sieve material of 40/60 mesh size. Each column has 5 individually controlled heaters along the length of the column and is coiled around an inverted inner dewar. The coiled column and inner dewar are both contained within an outer dewar. In this arrangement liquid nitrogen, used to cryogenically cool the columns, flows into and out off the annular space defined by the two dewars, allowing for alternate heating and cooling cycles. Tritiated hydrogen feed is injected in batch quantities. The batch size is variable with the maximum quantity restricted by the tritium concentration in the exhausted hydrogen. The stripping operations can be carried out in full automated mode or in full manual mode. The average cycle time between injections is about 75 minutes. To date, the maximum throughput achieved is 10.5 m{sup 3}/day. A total of 37.8 m{sup 3} of tritiated hydrogen has been processed during commissioning. The system has demonstrated that venting of >99.95% of the feed gas is possible while retaining 99.98% of the tritium. At a maximum tritium concentration of

  7. Evaluation of BAUER K-20 Diesel Powered High Pressure Breathing Air Compressor and the P-5 Purification System (Unmanned)

    DTIC Science & Technology

    1991-08-01

    sieve and hopcalite using Bauer cartridge No. 068416. The molecular sieve absorbs oil and water vapors. The hopcalite converts carbon monoxide (CO) to...Molecular Sieve (058825)/ Hopcalite (068416) Cartridge purification system Evaluation. 4. MIL-C-52973A(ME) Military Specification Compressor Unit, 20 CFM

  8. Removal of H2S pollutant from gasifier syngas by a multistage dual-flow sieve plate column wet scrubber.

    PubMed

    Kurella, Swamy; Bhukya, Pawan Kishan; Meikap, B C

    2017-05-12

    The objective of this study was to observe the performance of a lab-scale three-stage dual-flow sieve plate column scrubber for hydrogen sulfide (H 2 S) gas removal from a gas stream, in which the H 2 S concentration was similar to that of gasifier syngas. The tap water was used as scrubbing liquid. The gas and liquid were operated at flow rates in the range of 16.59 × 10 -4 -27.65 × 10 -4 Nm 3 /s and 20.649 × 10 -6 -48.183 × 10 -6 m 3 /s, respectively. The effects of gas and liquid flow rates on the percentage removal of H 2 S were studied at 50-300 ppm inlet concentrations of H 2 S. The increase in liquid flow rate, gas flow rate and inlet H 2 S concentration increased the percentage removal of H 2 S. The maximum of 78.88% removal of H 2 S was observed at 27.65 × 10 -4 Nm 3 /s gas flow rate and 48.183 × 10 -6 m 3 /s liquid flow rate for 300 ppm inlet concentration of H 2 S. A model has also been developed to predict the H 2 S gas removal by using the results from the experiments and adding the parameters that affect the scrubber's performance. The deviations between experimental and predicted H 2 S percentage removal values were observed as less than 16%.

  9. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    PubMed

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. © 2016 American Society of Plant Biologists. All rights reserved.

  10. Elements of an Asbestos Operations and Maintenance (O&M) Program

    EPA Pesticide Factsheets

    Links to descriptions of Elements of an Operations and Maintenance (O&M) Program: Training, Occupant Notification, Monitoring ACM, Job-Site Controls for Work Involving ACM, Safe Work Practices, Recordkeeping, Worker Protection.

  11. Setting up an Asbestos Operations and Maintenance (O&M) Program

    EPA Pesticide Factsheets

    Covers steps a buidling's O&M plan should including: appointing an asbestos program manager, inspecting the building, developing a plan, and if necessary selecting and implementing larger repair or abatement projects.

  12. OM300 Direction Drilling Module

    DOE Data Explorer

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  13. Glow phenomenon surrounding the vertical stabilizer and OMS pods

    NASA Image and Video Library

    1994-03-05

    STS062-42-026 (4-18 March 1994) --- This 35mm frame, photographed as the Space Shuttle Columbia was orbiting Earth during a "night" pass, documents the glow phenomenon surrounding the vertical stabilizer and the Orbital Maneuvering System (OMS) pods of the spacecraft.

  14. Molecular-Level Transformations of Lignin During Photo-Oxidation and Biodegradation

    NASA Astrophysics Data System (ADS)

    Feng, X.; Hills, K.; Simpson, A. J.; Simpson, M. J.

    2009-05-01

    As the second most abundant component of terrestrial plant residues, lignin plays a key role in regulating plant litter decomposition, humic substance formation, and dissolved organic matter (OM) production from terrestrial sources. Biodegradation is the primary decomposition process of lignin on land. However, photo- oxidation of lignin-derived compounds has been reported in aquatic systems and is considered to play a vital role in arid and semiarid regions. With increasing ultraviolet (UV) radiation due to ozone depletion, it is important to understand the biogeochemical fate of lignin exposed to photo-oxidation in terrestrial environments. This study examines and compares the transformation of lignin in a three-month laboratory simulation of biodegradation and photo-oxidation using molecular-level techniques. Lignin-derived monomers extracted by copper oxidation were analyzed by gas chromatography/mass spectrometry (GC/MS) from the water-soluble and insoluble OM of 13C-labeled corn leaves. Biodegradation increased the solubility of lignin monomers in comparison to the control samples, and the acid-to-aldehyde (Ad/Al) ratios increased in both the water-soluble and insoluble OM, indicating a higher degree of side-chain lignin oxidation. Photo-oxidation did not produce a significant change on the solubility or Ad/Al ratios of lignin from corn leaves. However, the ratios of trans-to-cis isomers of both cinnamyl units (p-coumaric acid and ferulic acid) increased with photo-oxidation and decreased with biodegradation in the insoluble OM. We also investigated the role of photo-oxidation in lignin transformation in soils cropped with 13C-labeled corn. Interestingly, the organic carbon content increased significantly with time in the water-soluble OM from soil/corn residues under UV radiation. An increase in the concentration of lignin monomers and dimers and the Ad/Al ratios was also observed with photo-oxidation. Iso-branched fatty acids of microbial origin remained in

  15. Molecular-level transformations of lignin during photo-oxidation and biodegradation

    NASA Astrophysics Data System (ADS)

    Feng, X.; Hills, K.; Simpson, A. J.; Simpson, M. J.

    2009-04-01

    As the second most abundant component of terrestrial plant residues, lignin plays a key role in regulating plant litter decomposition, humic substance formation, and dissolved organic matter (OM) production from terrestrial sources. Biodegradation is the primary decomposition process of lignin on land. However, photo-oxidation of lignin-derived compounds has been reported in aquatic systems and is considered to play a vital role in arid and semiarid regions. With increasing ultraviolet (UV) radiation due to ozone depletion, it is important to understand the biogeochemical fate of lignin exposed to photo-oxidation in terrestrial environments. This study examines and compares the transformation of lignin in a three-month laboratory simulation of biodegradation and photo-oxidation using molecular-level techniques. Lignin-derived monomers extracted by copper oxidation were analyzed by gas chromatography/mass spectrometry (GC/MS) from the water-soluble and insoluble OM of 13C-labeled corn leaves. Biodegradation increased the solubility of lignin monomers in comparison to the control samples, and the acid-to-aldehyde (Ad/Al) ratios increased in both the water-soluble and insoluble OM, indicating a higher degree of side-chain lignin oxidation. Photo-oxidation did not produce a significant change on the solubility or Ad/Al ratios of lignin from corn leaves. However, the ratios of trans-to-cis isomers of both cinnamyl units (p-coumaric acid and ferulic acid) increased with photo-oxidation and decreased with biodegradation in the insoluble OM. We also investigated the role of photo-oxidation in lignin transformation in soils cropped with 13C-labeled corn. Interestingly, the organic carbon content increased significantly with time in the water-soluble OM from soil/corn residues under UV radiation. An increase in the concentration of lignin monomers and dimers and the Ad/Al ratios was also observed with photo-oxidation. Iso-branched fatty acids of microbial origin remained in

  16. CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings† †Electronic supplementary information (ESI) available: Details of the synthesis and characterization of all materials as well as details on the synchrotron and RED data collection and structure determination, including the cif file. See DOI: 10.1039/c4sc03935a Click here for additional data file.

    PubMed Central

    Schmidt, Joel E.; Xie, Dan; Rea, Thomas

    2015-01-01

    A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [425462] mtw building unit and a previously unreported [4452] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected with oval 8-rings (2.9 Å × 5.5 Å opening) through medium-sized cavities (∼7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants. PMID:29163872

  17. Molecular engineering of porous silica using aryl templates

    DOEpatents

    Loy, D.A.; Shea, K.J.

    1994-06-14

    A process is described for manipulating the porosity of silica using a series of organic template groups covalently incorporated into the silicate matrix. The templates in the bridged polysilsesquioxanes are selectively removed from the material by oxidation with oxygen plasma or other means, leaving engineered voids or pores. The size of these pores is dependent upon the length or size of the template or spacer. The size of the templates is measured in terms of Si-Si distances which range from about 0.67 nm to 1.08 nm. Changes introduced by the loss of the templates result in a narrow range of micropores (i.e. <2 nm). Both aryl and alkyl template groups are used as spacers. Novel microporous silica materials useful as molecular sieves, desiccants, and catalyst supports are produced. 3 figs.

  18. The angiosperm phloem sieve tube system: a role in mediating traits important to modern agriculture.

    PubMed

    Ham, Byung-Kook; Lucas, William J

    2014-04-01

    The plant vascular system serves a vital function by distributing water, nutrients and hormones essential for growth and development to the various organs of the plant. In this review, attention is focused on the role played by the phloem as the conduit for delivery of both photosynthate and information macromolecules, especially from the context of its mediation in traits that are important to modern agriculture. Resource allocation of sugars and amino acids, by the phloem, to specific sink tissues is of importance to crop yield and global food security. Current findings are discussed in the context of a hierarchical control network that operates to integrate resource allocation to competing sinks. The role of plasmodesmata that connect companion cells to neighbouring sieve elements and phloem parenchyma cells is evaluated in terms of their function as valves, connecting the sieve tube pressure manifold system to the various plant tissues. Recent studies have also revealed that plasmodesmata and the phloem sieve tube system function cooperatively to mediate the long-distance delivery of proteins and a diverse array of RNA species. Delivery of these information macromolecules is discussed in terms of their roles in control over the vegetative-to-floral transition, tuberization in potato, stress-related signalling involving miRNAs, and genetic reprogramming through the delivery of 24-nucleotide small RNAs that function in transcriptional gene silencing in recipient sink organs. Finally, we discuss important future research areas that could contribute to developing agricultural crops with engineered performance characteristics for enhance yield potential.

  19. [In situ diffuse reflectance FTIR spectroscopy study of CO adsorption on Ni2P/mesoporous molecule sieve catalysts].

    PubMed

    Liu, Qian-qian; Ji, Sheng-fu; Wu, Ping-yi; Hu, Lin-hua; Huang, Xiao-fan; Zhu, Ji-qin; Li, Cheng-yue

    2009-05-01

    Abstract The supported nickel phosphate precursors were prepared by incipient wetness impregnation using nickel nitrate as nickel source, diammonium hydrogen phosphate as phosphorus source, and MCM-41, MCM-48, SBA-15 and SBA-16 as supports, respectively. Then, the supported Ni2 P catalysts were prepared by temperature-programmed reduction in flowing Hz from their nickel phosphate precursors. The in situ diffuse reflectance FTIR spectroscopy (DRIFTS) analysis with the probe molecule CO was carried out to characterize the surface properties. The results indicated that there were significant differences in the spectral features of the samples. The upsilon(CO) absorbances observed for adsorbed CO on mesoporous molecule sieve was attributed to weak physical adsorption. There are four different kinds of upsilon(CO) absorbances observed for adsorbed CO on Ni2 P/MCM-41 catalyst with the following assignments: (1) the formation of Ni(CO)4 at 2055 cm(-1). (2) CO terminally bonded to cus Ni(delta+) (02P/MCM-48, Ni2P/ SBA-15 and Ni2P/SBA-16 catalysts. The absorbance observed at 2051-2055 cm(-1) for CO adsorption on Ni2P/MCM-48, Ni2P/SBA-15 and Ni2P/SBA-16 catalysts is due to the formation of Ni(CO)4 species. The other upsilon absorbances observed at 2093-2096 cm(-1) was attributed to CO terminally bonded to cus Ni(delta+) (0

  20. Bacterial extract (OM-85) with human-equivalent doses does not inhibit the development of asthma in a murine model.

    PubMed

    Rodrigues, A; Gualdi, L P; de Souza, R G; Vargas, M H M; Nuñez, N K; da Cunha, A A; Jones, M H; Pinto, L A; Stein, R T; Pitrez, P M

    OM-85 is an immunostimulant bacterial lysate, which has been proven effective in reducing the number of lower airways infections. We investigated the efficacy of the bacterial lysate OM-85 in the primary prevention of a murine model of asthma. In the first phase of our study the animals received doses of 0.5μg, 5μg and 50μg of OM-85 through gavage for five days (days -10 to -6 of the protocol), 10 days prior to starting the sensitisation with ovalbumin (OVA), in order to evaluate the results of dose-response protocols. A single dose (5μg) was then chosen in order to verify in detail the effect of OM-85 on the pulmonary allergic response. Total/differential cells count and cytokine levels (IL-4, IL-5, IL-13 and IFN-γ) from bronchoalveolar lavage fluid (BALF), OVA-specific IgE levels from serum, lung function and lung histopathological analysis were evaluated. OM-85 did not reduce pulmonary eosinophilic response, regardless of the dose used. In the phase protocol using 5μg/animal of OM-85, no difference was shown among the groups studied, including total cell and eosinophil counts in BALF, serum OVA-specific IgE, lung histopathologic findings and lung resistance. However, OM-85 decreased IL-5 and IL-13 levels in BALF. OM-85, administered in early life in mice in human-equivalent doses, does not inhibit the development of allergic pulmonary response in mice. Copyright © 2016 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.