Science.gov

Sample records for molecular sieves

  1. Space station molecular sieve development

    NASA Technical Reports Server (NTRS)

    Chang, C.; Rousseau, J.

    1986-01-01

    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

  2. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L. ); Naruse, Y. )

    1992-01-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows inventory by difference'' for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  3. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Naruse, Y.

    1992-03-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows ``inventory by difference`` for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  4. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2006-10-17

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  5. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2003-07-22

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  6. Carbon fiber composite molecular sieves

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.; Williams, A.M.

    1996-06-01

    The removal of CO{sub 2} is of significance in several energy applications. The combustion of fossil fuels, such as coal or natural gas, releases large volumes of CO{sub 2} to the environment. Several options exist to reduce CO{sub 2} emissions, including substitution of nuclear power for fossil fuels, increasing the efficiency of fossil plants and capturing the CO{sub 2} prior to emission to the environment. All of these techniques have the attractive feature of limiting the amount of CO{sub 2} emitted to the atmosphere, but each has economic, technical, or societal limitations. In the production of natural gas, the feed stream from the well frequently contains contaminants and diluents which must be removed before the gas can enter the pipeline distribution system. Notable amongst these diluent gasses is CO{sub 2}, which has no calorific value. Currently, the pipeline specification calls for <2 mol % CO{sub 2} in the gas. Gas separation is thus a relevant technology in the field of energy production. A novel separation system based on a parametric swing process has been developed that utilizes the unique combination of properties exhibited by our carbon fiber composite molecular sieve (CFCMS).

  7. Enhanced Molecular Sieve CO2 Removal Evaluation

    NASA Technical Reports Server (NTRS)

    Rose, Susan; ElSherif, Dina; MacKnight, Allen

    1996-01-01

    The objective of this research is to quantitatively characterize the performance of two major types of molecular sieves for two-bed regenerative carbon dioxide removal at the conditions compatible with both a spacesuit and station application. One sorbent is a zeolite-based molecular sieve that has been substantially improved over the materials used in Skylab. The second sorbent is a recently developed carbon-based molecular sieve. Both molecular sieves offer the potential of high payoff for future manned missions by reducing system complexity, weight (including consumables), and power consumption in comparison with competing concepts. The research reported here provides the technical data required to improve CO2 removal systems for regenerative life support systems for future IVA and EVA missions.

  8. Synthesis of biological molecules on molecular sieves.

    PubMed

    Poncelet, G; Van Assche, A T; Fripiat, J J

    1975-07-01

    Catalytic properties of aluminosilicates may play a role in the synthesis of biological molecules from simple gaseous molecules commonly found in planetary atmospheres. Urea, amino acids and UV absorbing substances have been obtained by heating CO and NH3 with Linde molecular sieves saturated with Ca+2, NH4+ or Fe+3. The yields of amino acids produced have been determined by an amino acid analyzer. The quantity of urea produced largely depends on the nature of the saturating cation. Experiments using 14CO confirm that the amino acids are not due to contaminants adsorbed on the surface of the molecular sieves. PMID:171609

  9. Catalytic cracking catalysts using silicoaluminophosphate molecular sieves

    SciTech Connect

    Pellet, R.J.; Coughlin, P.K.; Staniulis, M.T.; Long, G.N.; Rabo, J.A.

    1987-05-19

    A cracking catalyst is described comprising: a silicoaluminophosphate molecular sieve of U.S. Pat. No. 4,440,871 characterized in its calcined form by an adsorption of isobutane of at least 2 percent by weight at a pressure of 500 torr and a temperature of 20/sup 0/C and having an effective amount of the cations associated with the silicoaluminophosphate molecular sieve selected from the group consisting of H+, ammonium, Group IIA, groups IIIB to VIIB, cerium, lanthanum, praseodymium, neodymium, and promethium.

  10. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, Narayan K.; Brinker, Charles Jeffrey

    1998-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  11. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, Narayan K.; Brinker, Charles Jeffrey

    1999-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  12. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, N.K.; Brinker, C.J.

    1999-08-10

    A process is described for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film. 11 figs.

  13. Coal-based carbons with molecular sieve properties

    SciTech Connect

    El-Wakil, A.M.; Youssef, A.M.; Tollan, K.A. )

    1991-01-01

    Carbon molecular sieves are used extensively in gas chromatography for the separation of permanent gases and light hydrocarbons. Carbon molecular sieves also find commercial application for the manufacture of pure hydrogen from hydrogen-rich gases such as coke-oven gas, and for the separation of air by the pressure-swing adsorption technique. The objective of this investigation was to prepare carbons from Maghara coal, recently available on the commercial market. Coal-based carbons, if they possess molecular sieve properties, are superior to molecular sieve carbons from agricultural by-products because they have more satisfactory mechanical properties.

  14. Adsorption of gases on carbon molecular sieves

    SciTech Connect

    Vyas, S.N.; Patwardhan, S.R.; Vijayalakshmi, S. . Dept. of Chemical Engineering); Ganesh, K.S. )

    1994-12-01

    Adsorption on carbon molecular sieves (CMS) prepared by coke deposition has become an interesting area of adsorption due to its microporous nature and favorable separation factor on size and shape selectivity basis for many gaseous systems. In the present work CMS was synthesized from coconut shell through three major steps, namely, carbonization, activation, and coke deposition by hydrocarbon cracking. The crushed, washed, and sieved granules of coconut shell (particle size 2--3 mm) were pretreated with sodium silicate solution and oven-dried at 150 C to create the inorganic sites necessary for coke deposition. Carbonization and activation of the dried granules were carried out at 800 C, for 30 min each. The activated char thus produced was subjected to hydrocarbon cracking at 600 C for periods varying from 30 to 180 min. The product samples were characterized in terms of adsorption isotherm, kinetic adsorption curve, surface area, pore volume, pore size distribution, and characteristic energy for adsorption by using O[sub 2], N[sub 2], C[sub 2]H[sub 2], CO[sub 2], C[sub 3]H[sub 6], and CH[sub 4].

  15. Octahedral molecular sieve sorbents and catalysts

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2010-04-20

    Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

  16. Silicotitanate molecular sieve and condensed phases

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2002-01-01

    A new microporous crystalline molecular sieve material having the formula Cs.sub.3 TiSi.sub.3 O.sub.95.cndot.3H.sub.2 O and its hydrothermally condensed phase, Cs.sub.2 TiSi.sub.6 O.sub.15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.

  17. Copper crystallite in carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1993-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfurfuryl alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  18. Copper modified carbon molecular sieves for selective oxygen removal

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Seshan, Panchalam K. (Inventor)

    1992-01-01

    Carbon molecular sieves modified by the incorporation of finely divided elemental copper useful for the selective sorption of oxygen at elevated temperatures. The carbon molecular sieves can be regenerated by reduction with hydrogen. The copper modified carbon molecular sieves are prepared by pyrolysis of a mixture of a copper-containing material and polyfunctional alcohol to form a sorbent precursor. The sorbent precursors are then heated and reduced to produce copper modified carbon molecular sieves. The copper modified carbon molecular sieves are useful for sorption of all concentrations of oxygen at temperatures up to about 200.degree. C. They are also useful for removal of trace amount of oxygen from gases at temperatures up to about 600.degree. C.

  19. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) The molecular sieve resins consist of purified dextran having an average molecular weight of 40,000, cross-linked with epichlorohydrin in a ratio of 1 part of dextran to 10 parts of epichlorohydrin,...

  20. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) The molecular sieve resins consist of purified dextran having an average molecular weight of 40,000, cross-linked with epichlorohydrin in a ratio of 1 part of dextran to 10 parts of epichlorohydrin,...

  1. Porous Organic Cage Thin Films and Molecular-Sieving Membranes.

    PubMed

    Song, Qilei; Jiang, Shan; Hasell, Tom; Liu, Ming; Sun, Shijing; Cheetham, Anthony K; Sivaniah, Easan; Cooper, Andrew I

    2016-04-01

    Porous organic cage molecules are fabricated into thin films and molecular-sieving membranes. Cage molecules are solution cast on various substrates to form amorphous thin films, with the structures tuned by tailoring the cage chemistry and processing conditions. For the first time, uniform and pinhole-free microporous cage thin films are formed and demonstrated as molecular-sieving membranes for selective gas separation. PMID:26800019

  2. A 99 percent purity molecular sieve oxygen generator

    NASA Technical Reports Server (NTRS)

    Miller, G. W.

    1991-01-01

    Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.

  3. Antibacterial mesoporous molecular sieves modified with polymeric N-halamine.

    PubMed

    Wang, Yingfeng; Li, Lin; Liu, Ying; Ren, Xuehong; Liang, Jie

    2016-12-01

    In this research, a new kind of porous N-halamine material with high antibacterial efficacies was prepared. Poly [5,5-dimethyl-3-(3'-triethoxysilylpropyl)-hydantoin] (PSPH), an N-halamine precursor, was synthesized and grafted onto the surface of mesoporous molecular sieves (SBA-15). The mesoporous molecular sieves modified with the N-halamine polymer could be rendered biocidal upon exposure to dilute household bleach. The modified mesoporous molecular sieves were characterized by SEM, TEM, FTIR, XPS, TGA, XRD and BET analysis. It was found that the PSPH has been successfully grafted on the surface of mesoporous molecular sieves, and the morphology and structure of the modified mesoporous molecular sieves were slightly affected. The N-halamine modified mesoporous molecular sieves showed excellent antibacterial property, and inactivated 100% of S. aureus and E. coli O157:H7 with 8.05 and 7.92 log reductions within 1min of contact, respectively. The modified SBA-15 with high-antibacterial efficiency has potential application in water treatment and biomaterials areas. PMID:27612805

  4. Molecular Sieve Bench Testing and Computer Modeling

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, Habib; DaLee, Robert C.; Blackmon, James B.

    1995-01-01

    The design of an efficient four-bed molecular sieve (4BMS) CO2 removal system for the International Space Station depends on many mission parameters, such as duration, crew size, cost of power, volume, fluid interface properties, etc. A need for space vehicle CO2 removal system models capable of accurately performing extrapolated hardware predictions is inevitable due to the change of the parameters which influences the CO2 removal system capacity. The purpose is to investigate the mathematical techniques required for a model capable of accurate extrapolated performance predictions and to obtain test data required to estimate mass transfer coefficients and verify the computer model. Models have been developed to demonstrate that the finite difference technique can be successfully applied to sorbents and conditions used in spacecraft CO2 removal systems. The nonisothermal, axially dispersed, plug flow model with linear driving force for 5X sorbent and pore diffusion for silica gel are then applied to test data. A more complex model, a non-darcian model (two dimensional), has also been developed for simulation of the test data. This model takes into account the channeling effect on column breakthrough. Four FORTRAN computer programs are presented: a two-dimensional model of flow adsorption/desorption in a packed bed; a one-dimensional model of flow adsorption/desorption in a packed bed; a model of thermal vacuum desorption; and a model of a tri-sectional packed bed with two different sorbent materials. The programs are capable of simulating up to four gas constituents for each process, which can be increased with a few minor changes.

  5. Molecular Sieve Regeneration System for assaying HTO from detritiation systems

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Naruse, Y.

    1992-07-01

    A Molecular Sieve Regeneration System (MSRS) is being added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory. This system is an upgrade to the TWT to provide accurate measurements of the liquid waste generated from this system. Within the TWT, hydrogen isotopes are removed from the effluent gas stream by the catalytic conversion to water and the subsequent removal of water by molecular sieve trapping prior to the release to the environment. Within the TWT and similar systems, molecular sieve regeneration is required to rejuvenate the beds. The major difference of the MSRS and other regeneration systems is the capability of direct assay of long-term storage waste containers. This is accomplished with loop-flow regeneration, water collection, and tritiated water assay by scintillation and calorimetric techniques. This paper describes the MSRS in detail and how it is interfaced with the Tritium Waste Treatment system.

  6. Molecular Sieve Regeneration System for assaying HTO from detritiation systems

    SciTech Connect

    Nasise, J.E.; Anderson, J.L. ); Naruse, Y. )

    1992-01-01

    A Molecular Sieve Regeneration System (MSRS) is being added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory. This system is an upgrade to the TWT to provide accurate measurements of the liquid waste generated from this system. Within the TWT, hydrogen isotopes are removed from the effluent gas stream by the catalytic conversion to water and the subsequent removal of water by molecular sieve trapping prior to the release to the environment. Within the TWT and similar systems, molecular sieve regeneration is required to rejuvenate the beds. The major difference of the MSRS and other regeneration systems is the capability of direct assay of long-term storage waste containers. This is accomplished with loop-flow regeneration, water collection, and tritiated water assay by scintillation and calorimetric techniques. This paper describes the MSRS in detail and how it is interfaced with the Tritium Waste Treatment system.

  7. Carbon molecular sieves for air separation from Nomex aramid fibers.

    PubMed

    Villar-Rodil, Silvia; Martínez-Alonso, Amelia; Tascón, Juan M D

    2002-10-15

    Activated carbon fibers prepared from aramid fibers have proved to possess outstanding homogeneity in pore size, most of all when Nomex aramid fiber is used as precursor. Taking advantage of this feature, microporous carbon molecular sieves for air separation have been prepared through carbon vapor deposition of benzene on Nomex-derived carbon fibers activated to two different burnoff degrees. Carbon molecular sieves with good selectivity for this separation and showing acceptable adsorption capacities were obtained from ACFs activated to the two burnoff degrees chosen. PMID:12702417

  8. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    SciTech Connect

    Jelinek, R. |

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. {sup 27}Al and {sup 23}Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework {sup 27}Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na{sup +} cations are directly involved in adsorption processes and reactions in zeolite cavities.

  9. Decolorization / deodorization of zein via activated carbons and molecular sieves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective is to evaluate a series of granular media consisting of activated carbons and molecular sieves in a batch process for the purpose of clarifying and removal of color and odor components from yellow zein dispersed in an aqueous alcohol medium. The major contributors of yellow zein is du...

  10. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... gram of dry resin (expressed in terms of water regain), and a particle size of 10 to 300 microns. (b) The molecular sieve resins are thoroughly washed with potable water prior to their first use in... purification of partially delactosed whey. The gel bed shall be maintained in a sanitary manner in...

  11. Molecular Sieves: Porous Organic Cage Thin Films and Molecular-Sieving Membranes (Adv. Mater. 13/2016).

    PubMed

    Song, Qilei; Jiang, Shan; Hasell, Tom; Liu, Ming; Sun, Shijing; Cheetham, Anthony K; Sivaniah, Easan; Cooper, Andrew I

    2016-04-01

    Porous organic cage molecules are a new class of molecular materials that combine microporosity and solution-processability. On page 2629, E. Sivaniah, A. I. Cooper, and co-workers demonstrate solution processing of cage molecules into thin films with tunable structures. For the first time, cage molecules are fabricated into continuous and pinhole-free microporous molecular-sieving membranes, as confirmed by selective gas transport in terms of high permeance and molecular selectivity. Image credit: Adam Kewley. PMID:27037946

  12. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.

    1998-01-01

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.

  13. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, K.A.; Burchell, T.D.; Judkins, R.R.

    1998-10-27

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.

  14. NMR of small solutes in liquid crystals and molecular sieves

    NASA Astrophysics Data System (ADS)

    Ylihautala, Mika Petri

    The present thesis deals with the nuclear magnetic resonance (NMR) spectroscopy of small solutes applied to the studies of liquid crystals and molecular sieves. In this method, changes induced by the investigated environment to the static spectral parameters (i.e. nuclear shielding, indirect and direct spin-spin coupling and quadrupole coupling) of the solute are measured. The nuclear shielding of dissolved noble gases is utilized for the studies of thermotropic liquid crystals. The relation between the symmetry properties of mesophases and the nuclear shielding is described. The different interaction mechanisms perturbing the observed noble gas nuclear shielding are discussed, particularly, the role of long-range attractive van der Waals interactions is brought out. The suitability of the noble gas NMR spectroscopy to the studies of Iyotropic liquid crystals is investigated in terms of nuclear shielding and quadrupole coupling interactions. In molecular sieve systems, the effect of inter- and intracrystalline motions of solutes on their NMR spectra is discussed. A novel method for the measurement of the intracrystalline motions is developed. The distinctions in the 13C shielding of methane adsorbed in AlPO4-11 and SAPO-11, two structurally similar molecular sieves differing in composition, are indicated.

  15. A controllable molecular sieve for Na+ and K+ ions.

    PubMed

    Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui

    2010-02-17

    The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems. Molecular sieves for ions can be achieved by steric and electrical effects. However, the radii of Na(+) and K(+) are quite similar; they both carry a positive charge, making them difficult to separate. Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K(+) or Na(+) across the cell membrane. However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e.g., KcsA). Our molecular dynamics simulations show that the remarkable selectivity is attributed to the hydration structure of Na(+) or K(+) confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms. The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water. PMID:20102186

  16. Evaluation of Strontium Selectivity by Sandia Octahedral Molecular Sieves (SOMS).

    SciTech Connect

    Rigali, Mark J.; Stewart, Thomas Austin

    2016-01-01

    Sandia National Laboratories has collaborated with Pleasanton Ridge Research Company (PRRC) to determine whether Sandia Octahedral Molecular Sieves (SOMS) and modified SOMs materials can be synthesized in large batches and produced in granular form. Sandia National Laboratories tested these SOMS and its variants based in aqueous chemical environments for an application-based evaluation of material performance as a sorbent. Testing focused primarily on determining the distribution coefficients (K d ) and chemical selectivity SOMs for alkali earth (Sr) ions in aqueous and dilute seawater solutions. In general the well-crystallized SOMS materials tested exhibited very high K d values (>10 6 ) in distilled water but K d values dropped substantially (%7E10 2 -10 3 ) in the dilute seawater (3%). However, one set of SOMS samples (1.4.2 and 1.4.6) provided by PRRC yielded relatively high K d (approaching 10 4 ) in dilute seawater. Further examination of these samples by scanning electron microscopy (SEM) revealed the presence of at least two phases at least one of which may be accounting for the improved K d values in dilute seawater. Evaluation of Strontium Selectivity by Sandia Octahedral Molecular Sieves (SOMS) January 20, 2016

  17. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, Harvey R.; Fanslow, Glenn E.

    1983-01-01

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed.

  18. Method of recovering adsorbed liquid compounds from molecular sieve columns

    DOEpatents

    Burkholder, H.R.; Fanslow, G.E.

    1983-12-20

    Molecularly adsorbed volatile liquid compounds are recovered from molecular sieve adsorbent columns by directionally applying microwave energy to the bed of the adsorbent to produce a mixed liquid-gas effluent. The gas portion of the effluent generates pressure within the bed to promote the discharge of the effluent from the column bottoms. Preferably the discharged liquid-gas effluent is collected in two to three separate fractions, the second or intermediate fraction having a substantially higher concentration of the desorbed compound than the first or third fractions. The desorption does not need to be assisted by passing a carrier gas through the bed or by applying reduced pressure to the outlet from the bed. 8 figs.

  19. Carbon dioxide sorption in a nanoporous octahedral molecular sieve

    NASA Astrophysics Data System (ADS)

    Williamson, Izaak; Nelson, Eric B.; Li, Lan

    2015-08-01

    We have performed first-principles density functional theory calculations, incorporated with van der Waals interactions, to study CO2 adsorption and diffusion in nanoporous solid—OMS-2 (Octahedral Molecular Sieve). We found the charge, type, and mobility of a cation, accommodated in a porous OMS-2 material for structural stability, can affect not only the OMS-2 structural features but also CO2 sorption performance. This paper targets K+, Na+, and Ba2+ cations. First-principles energetics and electronic structure calculations indicate that Ba2+ has the strongest interaction with the OMS-2 porous surface due to valence electrons donation to the OMS-2 and molecular orbital hybridization. However, the Ba-doped OMS-2 has the worst CO2 uptake capacity. We also found evidence of sorption hysteresis in the K- and Na-doped OMS-2 materials.

  20. Transformation of metal-organic frameworks for molecular sieving membranes.

    PubMed

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-01-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively. PMID:27090597

  1. Transformation of metal-organic frameworks for molecular sieving membranes

    PubMed Central

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-01-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively. PMID:27090597

  2. Transformation of metal-organic frameworks for molecular sieving membranes

    NASA Astrophysics Data System (ADS)

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-04-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively.

  3. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization.

    PubMed

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-Lin; Pei, Ming-Yuan

    2016-01-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves. PMID:27029526

  4. Investigation of Y/SBA Composite Molecular Sieves Morphology Control and Catalytic Performance for n-Pentane Aromatization

    PubMed Central

    Shi, Chun-Wei; Wu, Wen-Yuan; Li, Shuai; Bian, Xue; Zhao, Shan-lin; Pei, Ming-Yuan

    2016-01-01

    Using Y molecular sieve as the core, Y/SBA-15 composite molecular sieves were prepared by different crystallization methods in the paper. The growth process and morphologies of the composite molecular sieves were controlled by adjusting the synthesis factors. The structures and acidity of two kinds of composite molecular sieves were characterized by X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscopy (TEM), and NH3-TPD. The catalysis performances of the composite molecular sieves were investigated in the aromatization reaction of n-pentane. The results indicated that the desired core-shell composite molecular sieves were obtained when the crystallization conditions were 36 hours, 100 °C and secondary crystallization. The aromatization results showed that core-shell composite molecular sieves had better selectivity for producing high application value xylenes compared to mixed-crystal composite molecular sieves. PMID:27029526

  5. Use of Carbon Fiber Composite Molecular Sieves for Air Separation

    SciTech Connect

    Baker, Frederick S; Contescu, Cristian I; Gallego, Nidia C; Burchell, Timothy D

    2005-09-01

    A novel adsorbent material, 'carbon fiber composite molecular sieve' (CFCMS), has been developed by the Oak Ridge National Laboratory. Its features include high surface area, large pore volume, and a rigid, permeable carbon structure that exhibits significant electrical conductivity. The unique combination of high adsorptive capacity, permeability, good mechanical properties, and electrical conductivity represents an enabling technology for the development of novel gas separation and purification systems. In this context, it is proposed that a fast-cycle air separation process that exploits a kinetic separation of oxygen and nitrogen should be possible using a CFCMS material coupled with electrical swing adsorption (ESA). The adsorption of O{sub 2}, N{sub 2}, and CO{sub 2} on activated carbon fibers was investigated using static and dynamic techniques. Molecular sieving effects in the activated carbon fiber were highlighted by the adsorption of CO{sub 2}, a more sensitive probe molecule for the presence of microporosity in adsorbents. The kinetic studies revealed that O2 was more rapidly adsorbed on the carbon fiber than N{sub 2}, and with higher uptake under equilibrium conditions, providing the fiber contained a high proportion of very narrow micropores. The work indicated that CFCMS is capable of separating O{sub 2} and N{sub 2} from air on the basis of the different diffusion rates of the two molecules in the micropore network of the activated carbon fibers comprising the composite material. In response to recent enquires from several potential users of CFCMS materials, attention has been given to the development of a viable continuous process for the commercial production of CFCMS material. As part of this effort, work was implemented on characterizing the performance of lignin-based activated carbon fiber, a potentially lower cost fiber than the pitch-based fibers used for CFCMS production to date. Similarly, to address engineering issues, measurements were

  6. Fringe field NMR diffusometry of anomalous self-diffusion in molecular sieves

    NASA Astrophysics Data System (ADS)

    Ylihautala, Mika; Jokisaari, Jukka; Fischer, Elmar; Kimmich, Rainer

    1998-06-01

    Superconducting magnet fringe field NMR diffusometry is applied to an adsorbate-molecular sieve system in order to obtain intracrystalline self-diffusion of adsorbed molecules. Effects of self-diffusion, exchange, relaxation, and dipolar correlation are discussed. The proper equations for one- and two-dimensional anomalous self-diffusion with and without macroscopic order are derived. The method is applied to investigate methane self-diffusion in the molecular sieve silicoaluminophosphate, type 11 (SAPO-11). It is concluded that the nature of the methane displacements in the sieve channels is single-file self-diffusion.

  7. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    DOE PAGESBeta

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that themore » GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.« less

  8. Isotherms for Water Adsorption on Molecular Sieve 3A: Influence of Cation Composition

    SciTech Connect

    Lin, Ronghong; Ladshaw, Austin; Nan, Yue; Liu, Jiuxu; Yiacoumi, Sotira; Tsouris, Costas; DePaoli, David W.; Tavlarides, Lawrence L.

    2015-06-16

    This study is part of our continuing efforts to address engineering issues related to the removal of tritiated water from off-gases produced in used nuclear fuel reprocessing facilities. In the current study, adsorption equilibrium of water on molecular sieve 3A beads was investigated. Adsorption isotherms for water on the UOP molecular sieve 3A were measured by a continuous-flow adsorption system at 298, 313, 333, and 353 K. Experimental data collected were analyzed by the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. The K+/Na+ molar ratio of this particular type of molecular sieve 3A was ~4:6. Our results showed that the GSTA isotherm model worked very well to describe the equilibrium behavior of water adsorption on molecular sieve 3A. The optimum number of parameters for the current experimental data was determined to be a set of four equilibrium parameters. This result suggests that the adsorbent crystals contain four energetically distinct adsorption sites. In addition, it was found that water adsorption on molecular sieve 3A follows a three-stage adsorption process. This three-stage adsorption process confirmed different water adsorption sites in molecular sieve crystals. In addition, the second adsorption stage is significantly affected by the K+/Na+ molar ratio. In this stage, the equilibrium adsorption capacity at a given water vapor pressure increases as the K+/Na+ molar ratio increases.

  9. Titanium modified {beta} and MCM-41 molecular sieves K

    SciTech Connect

    Reddy, K.M.; Reddy, J.S.; Dicko, A.

    1995-12-01

    Ti modified large Pore {beta} zeolite and mesoporous MCM-41 molecular sieve were synthesized using hydrothermal procedures. Several other Ti-{beta} zeolites were prepared by treating a {beta} zeolite (Si/Al = 100) with ammonium titanyl oxalate solution. All samples were characterized by atomic absorption, XRD, IR, UV-Vis, Raman and XPS. The presence of tetrahedral Ti was evidenced particularly by the presence of a 212 nm absorption band in the UV-Vis spectra and a Ti(2p{sub 3/2}) binding energy of 459.5 eV. All samples were tested for the hydroxylation of hexane, benzene and phenol, and also for the epoxidation of 1-hexene. High catalytic activity was found only for the epoxidation reaction. Previous reports showed that, contrary to TS-1 and TS-2 zeolites, Ti modified {beta} (M.E. Davis et al. Prepr. Div. Petrol. Chem. 1993, p.769) and ZSM-48 (A. Sayari et at Catal. Lett. 23 (1994) 175) zeolites are poor hydroxylation catalysts in the presence of H{sub 2}O{sub 2}. In a paper devoted to Ti-MCM-41, Corma et al. (Chem. Commun. 1994, 147) reported only on the 1-hexene epoxidation. However, in the presence of excess H{sub 2}O{sub 2}, Pinnavaia et al. (Nature 368 (1994) 321) found that Ti-MCM-41 exhibits significant catalytic activity in the hydroxylation of benzene and substituted phenol. This behavior may indicate that in TS-1 and TS-2, Ti has a different local environment.

  10. A systematic investigation of the preparation and properties of composite carbon molecular sieves containing inorganic oxides

    NASA Technical Reports Server (NTRS)

    Foley, Henry C.

    1990-01-01

    The objective of this research is to define the methodology for the preparation and characterization of new carbon-based molecular sieves with composite structures. Carbon molecular sieves have found increasing application in the field of separation and purification of gases. These materials are relatively easy to prepare and their surfaces can be modified to some extent. It is expected that by combining inorganic oxides with the carbonaceous structure one can begin to design composite materials with a wider range of possible chemical and physical properties. In this way, the IOM-CMS materials may confer distinct advantages over pure carbon molecular sieves, not just for separation, but also for catalysis. The most recent results in the design and characterization of these IOM-CMS materials are reviewed and summarized. Directions for further research are also presented.

  11. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    PubMed Central

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-01-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol. PMID:26960707

  12. In-situ preparation of functionalized molecular sieve material and a methodology to remove template.

    PubMed

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-01-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, (13)C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol. PMID:26960707

  13. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    NASA Astrophysics Data System (ADS)

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  14. Update on N2O4 Molecular Sieving with 3A Material at NASA/KSC

    NASA Technical Reports Server (NTRS)

    Davis, Chuck; Dorn, Claudia

    2000-01-01

    During its operational life, the Shuttle Program has experienced numerous failures in the Nitrogen Tetroxide (N2O4) portion of Reaction Control System (RCS), many of which were attributed to iron-nitrate contamination. Since the mid-1980's, N2O4 has been processed through a molecular sieve at the N2O4 manufacturer's facility which results in an iron content typically less than 0.5 parts-per-million-by-weight (ppmw). In February 1995, a Tiger Team was formed to attempt to resolve the iron nitrate problem. Eighteen specific actions were recommended as possibly reducing system failures. Those recommended actions include additional N2O4 molecular sieving at the Shuttle launch site. Testing at NASA White Sands Test Facility (WSTF) determined an alternative molecular sieve material could also reduce the water-equivalent content (free water and HNO3) and thereby further reduce the natural production of iron nitrate in N2O4 while stored in iron-alloy storage tanks. Since April '96, NASA Kennedy Space Center (KSC) has been processing N2O4 through the alternative molecular sieve material prior to delivery to Shuttle launch pad N2O4 storage tanks. A new, much larger capacity molecular sieve unit has also been used. This paper will evaluate the effectiveness of N2O4 molecular sieving on a large-scale basis and attempt to determine if the resultant lower-iron and lower-water content N2O4 maintains this new purity level in pad storage tanks and shuttle flight systems.

  15. Application of 3A molecular sieve layer in dye-sensitized solar cells

    SciTech Connect

    Yan, Yuan; Wang, Jinzhong E-mail: qingjiang.yu@hit.edu.cn; Yu, Qingjiang E-mail: qingjiang.yu@hit.edu.cn; Huang, Yuewu; Chang, Quanhong; Hao, Chunlei; Jiao, Shujie; Gao, Shiyong; Li, Hongtao; Wang, Dongbo

    2014-08-25

    3A molecular sieve layer was used as dehydration and electronic-insulation layer on the TiO{sub 2} electrode of dye-sensitized solar cells. This layer diminished the effect of water in electrolyte efficiently and enhanced the performance of cells. The conversion efficiency increased from 9.58% to 10.2%. The good moisture resistance of cells was attributed to the three-dimensional interconnecting structure of 3A molecular sieve with strong adsorption of water molecule. While the performance enhancement benefited from the suppression of the charge recombination of electronic-insulation layer and scattering effect of large particles.

  16. Overtone and combination tone bands in the DRIFT spectra of molecular sieves

    NASA Astrophysics Data System (ADS)

    Peuker, Ch.; Splett, Ch.

    1993-03-01

    The DRIFT spectra of molecular sieves of type A, X, ZSM-5 and SAPO are measured. It is demonstrated that in some cases the overtone and combination tone bands of the lattice vibrations may be used for characterizing the structure of molecular sieves. For instance crystal phase transition due to thermal or hydrothermal treatment, can easily be studied in the region between 2500 and 1500 cm -1. In general the variations in the spectra of the samples due to structural distortion are less significant in the overtone and combination tone bands than in fundamental ones.

  17. CTR Fuel recovery system using regeneration of a molecular sieve drying bed

    DOEpatents

    Folkers, Charles L.

    1981-01-01

    A primary molecular sieve drying bed is regenerated by circulating a hot inert gas through the heated primary bed to desorb water held on the bed. The inert gas plus water vapor is then cooled and passed through an auxiliary molecular sieve bed which adsorbs the water originally desorbed from the primary bed. The main advantage of the regeneration technique is that the partial pressure of water can be reduced to the 10.sup.-9 atm. range. This is significant in certain CTR applications where tritiated water (T.sub.2 O, HTO) must be collected and kept at very low partial pressure.

  18. Development of design information for molecular-sieve type regenerative CO2-removal systems

    NASA Technical Reports Server (NTRS)

    Wright, R. M.; Ruder, J. M.; Dunn, V. B.; Hwang, K. C.

    1973-01-01

    Experimental and analytic studies were conducted with molecular sieve sorbents to provide basic design information, and to develop a system design technique for regenerable CO2-removal systems for manned spacecraft. Single sorbate equilibrium data were obtained over a wide range of conditions for CO2, water, nitrogen, and oxygen on several molecular sieve and silica gel sorbents. The coadsorption of CO2 with water preloads, and with oxygen and nitrogen was experimentally evaluated. Mass-transfer, and some limited heat-transfer performance evaluations were accomplished under representative operating conditions, including the coadsorption of CO2 and water. CO2-removal system performance prediction capability was derived.

  19. Characterization of Se-loaded molecular sieves A, X, Y, AlPO-5, and mordenite

    SciTech Connect

    Parise, J.B.; MacDougall, J.E.; Herron, N.; Farlee, R.; Sleight, A.W.; Ying Wang; Bein, T.; Moller, K.; Moroney, L.M.

    1988-01-27

    Selenium has been successfully loaded into molecular sieves A, X, Y, AlPO-5, and mordenite, and the products were characterized by using EXAFS, solid-state NMR, and diffuse-reflectance techniques. This study reveals selenium is predominantly of the trigonal (helical chains) form in all but the A sample, where only the Se/sub 8/-crown ring form is found. A mixture of allotropes and helical chains occupy the large 3D-pore and channel systems of molecular sieves X and Y; however, a single, probably fixed-pitch helical-chain allotrope occupies the more constrained 12-membered-ring channels found in mordenite and AlPO-5. The high degree of order in these last two sieves is reflected in a strong second-shell feature in the EXAFS spectra. 22 refs., 12 figs., 3 tabs.

  20. [Preparation and evaluation of novel mesoporous molecular sieve of baicalin surface molecularly imprinted polymers].

    PubMed

    Gu, Xia-li; He, Hong-liang; Shi, Li-ying; Gao, Yan-kun; Chen, Li-na

    2015-05-01

    Taking mesoporous molecular sieve MCM-41 as a substrate, baicalin (BA) as template, acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, ethanol as solvent, under thermal polymerization initiator of azobis isobutyronitrilo (AIBN) , a kind of selective recognition of baicalin surface molecularly imprinted polymer was synthesized. The surface morphologies and characteristics of the MIPs were characterized by infrared spectroscopy (IR) and transmission electron microscope (TEM). The adsorption properties of polymer microsphere for the template were tested by the dynamic adsorption equilibrium experiments and static adsorption equilibrium experiments. The experiment showed that the imprinting process was successfully and the well-ordered one-dimensional pore structure of MCM-41 was still preserved. Furthermore, molecularly imprinted polymers had higher selective ability for BA, then provided a new method for the efficient separation and enrichment of baicalin active ingredients from medicinal plants Scutellaria baicalensis. PMID:26323135

  1. Drying R-407C and R-410A refrigerant blends with molecular sieve desiccants

    SciTech Connect

    Cohen, A.P.; Tucker, D.M.

    1998-10-01

    The hydrofluorocarbon (HFC) R-32 (CF{sub 2}H{sub 2}) is a component of refrigerant blends in the 407 and 410 series being tested and commercialized for use as replacements for R-502 and the hydrochlorofluorocarbon (HCFC) R-22. The molecular sieve desiccants used with chlorofluorocarbon (CFC) and HCFC mineral oil systems in the past have achieved high water capacity by excluding the refrigerant and adsorbing only the water. Unfortunately, R-32 is adsorbed on commercial type 3A molecular sieve desiccant products. The result of this adsorption is a loss of water capacity when drying R-32 compared to drying R-22 or R-502 and a reduced level of chemical compatibility of the desiccant with the refrigerant. Some compressor manufacturers are seeking a water concentration as low as 10 mg/kg (ppm[wt]) in the circulating refrigerant of polyolester-lubricated refrigerating equipment using these HFC blends. This paper compares unmodified commercial type 3A molecular sieve desiccants with a recently developed, modified 3A molecular sieve that excludes R-32. The modified 3A has better chemical compatibility with R-32 and high water capacity in liquid R-407C and R-410A. The drying rates of the two desiccants in R-407C and R-410A are similar. Data and test methods are reported on refrigerant adsorption, water capacity, drying rate, and chemical compatibility.

  2. A reconstruction strategy to synthesize mesoporous SAPO molecular sieve single crystals with high MTO catalytic activity.

    PubMed

    Wang, Chan; Yang, Miao; Li, Mingrun; Xu, Shutao; Yang, Yue; Tian, Peng; Liu, Zhongmin

    2016-05-11

    Mesoporous SAPO-34 single crystals with tunable porosity and Si content have been fast synthesized within 4 hours by a reconstruction strategy, which show excellent hydrothermal stability and MTO catalytic activity. This new strategy is further proven to be applicable to prepare other mesoporous SAPO molecular sieve single crystals. PMID:27101359

  3. Molecular sieve generation of aviator's oxygen: Performance of a prototype system under simulated flight conditions.

    PubMed

    Miller, R L; Ikels, K G; Lamb, M J; Boscola, E J; Ferguson, R H

    1980-07-01

    The molecular sieve method of generating an enriched-oxygen breathing gas is one of several candidate onboard oxygen generation (OBOG) systems under joint Army-Navy-Air Force development for application in tactical aircraft. The performance of a nominal two-man-capacity molecular sieve oxygen generation system was characterized under simulated flight conditions. Data are given on the composition of the molecular sieve-generated breathing gas (oxygen, nitrogen, carbon dioxide, and argon) as a function of inlet air pressure, altitude, breathing gas flow rate, and ambient temperature. The maximum oxygen concentration observed was 95%, with the balance argon. At low demand flow rates and certain conditions of pressure and altitude, the argon enrichment factor exceeded that of oxygen giving a maximum argon concentration of 6.6% with the balance oxygen. The structural integrity of the unit was verified by vibration and centrifuge testing. The performance of the molecular sieve unit is discussed in the context of aircraft operating envelopes using both diluter-demand and 100% delivery subsystems. PMID:6774707

  4. Experiments for the Undergraduate Laboratory that Illustrate the Size-Exclusion Properties of Zeolite Molecular Sieves

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.

    2009-01-01

    Experiments are presented that demonstrate the size-exclusion properties of zeolites and reveal the reason for naming zeolites "molecular sieves". If an IR spectrometer is available, the adsorption or exclusion of alcohols of varying sizes from dichloromethane or chloroform solutions can be readily demonstrated by monitoring changes in the…

  5. EVALUATION OF MOLECULAR SIEVES FOR SAMPLING N0X EMISSIONS AT ELECTRIC UTILITY PLANTS

    EPA Science Inventory

    A field study was conducted to evaluate the use of molecular sieves for collection of NOx (NO + NO2) emissions from utility boilers. It was found that NOx could be collected efficiently (99%) at sample flow rates of 1 L/min over 20- to 40-min sampling periods at the NOx levels en...

  6. Low Temperature VOC Combustion Over Manganese, Cobalt and Zinc AlPO{sub 4} Molecular Sieves

    SciTech Connect

    Szostak, R.

    1997-03-31

    The objective of this project is to prepare manganese, cobalt and zinc containing AlPO{sub 4} molecular sieves and evaluate their catalytic activities for the removal of low levels of volatile organic compounds (VOCs) from gas streams. This report highlights our research activities for period October 1,1996 to March 31, 1997.

  7. Probing the structure of metal-substituted molecular sieves by solid-state NMR

    SciTech Connect

    Labouriau, A.; Crawford, S.N.; Ott, K.; Earl, W.L.

    1998-08-01

    Paramagnetic metal ions exert large influences on the NMR spectra of neighboring nuclei. The authors are using these effects to probe metal sites in zeolites and AlPO{sub 4} molecular sieves. In particular, they are studying [Co]-AlPO{sub 4}-5 because similar cobalt substituted AlPO{sub 4} sieves are reported in the literature. They have extended that work to probe the titanium zeolite TS-1 by comparing spectra of normal TS-1 to samples where the titanium has been reduced to the paramagnetic Ti{sup 3+}. This promises to be a useful technique for determining framework substitution in many zeolite systems.

  8. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes

    NASA Astrophysics Data System (ADS)

    Song, Qilei; Cao, Shuai; Pritchard, Robyn H.; Ghalei, Behnam; Al-Muhtaseb, Shaheen A.; Terentjev, Eugene M.; Cheetham, Anthony K.; Sivaniah, Easan

    2014-09-01

    Organic open frameworks with well-defined micropore (pore dimensions below 2 nm) structure are attractive next-generation materials for gas sorption, storage, catalysis and molecular level separations. Polymers of intrinsic microporosity (PIMs) represent a paradigm shift in conceptualizing molecular sieves from conventional ordered frameworks to disordered frameworks with heterogeneous distributions of microporosity. PIMs contain interconnected regions of micropores with high gas permeability but with a level of heterogeneity that compromises their molecular selectivity. Here we report controllable thermal oxidative crosslinking of PIMs by heat treatment in the presence of trace amounts of oxygen. The resulting covalently crosslinked networks are thermally and chemically stable, mechanically flexible and have remarkable selectivity at permeability that is three orders of magnitude higher than commercial polymeric membranes. This study demonstrates that controlled thermochemical reactions can delicately tune the topological structure of channels and pores within microporous polymers and their molecular sieving properties.

  9. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes.

    PubMed

    Koh, Dong-Yeun; McCool, Benjamin A; Deckman, Harry W; Lively, Ryan P

    2016-08-19

    Liquid-phase separations of similarly sized organic molecules using membranes is a major challenge for energy-intensive industrial separation processes. We created free-standing carbon molecular sieve membranes that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids. Polymer precursors were cross-linked with a one-pot technique that protected the porous morphology of the membranes from thermally induced structural rearrangement during carbonization. Permeation studies using benzene derivatives whose kinetic diameters differ by less than an angstrom show kinetically selective organic liquid reverse osmosis. Ratios of single-component fluxes for para- and ortho-xylene exceeding 25 were observed and para- and ortho- liquid mixtures were efficiently separated, with an equimolar feed enriched to 81 mole % para-xylene, without phase change and at ambient temperature. PMID:27540170

  10. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... purified dextran having an average molecular weight of 40,000, cross-linked with epichlorohydrin in a ratio of 1 part of dextran to 10 parts of epichlorohydrin, to give a stable three dimensional...

  11. Synthesis of a specified, silica molecular sieve by using computationally predicted organic structure-directing agents.

    PubMed

    Schmidt, Joel E; Deem, Michael W; Davis, Mark E

    2014-08-01

    Crystalline molecular sieves are used in numerous applications, where the properties exploited for each technology are the direct consequence of structural features. New materials are typically discovered by trial and error, and in many cases, organic structure-directing agents (OSDAs) are used to direct their formation. Here, we report the first successful synthesis of a specified molecular sieve through the use of an OSDA that was predicted from a recently developed computational method that constructs chemically synthesizable OSDAs. Pentamethylimidazolium is computationally predicted to have the largest stabilization energy in the STW framework, and is experimentally shown to strongly direct the synthesis of pure-silica STW. Other OSDAs with lower stabilization energies did not form STW. The general method demonstrated here to create STW may lead to new, simpler OSDAs for existing frameworks and provide a way to predict OSDAs for desired, theoretical frameworks. PMID:24961789

  12. Evaluation of RTV as a Moldable Matrix When Combined With Molecular Sieve and Organic Hydrogen Getter

    SciTech Connect

    Knight, J. A.

    2011-12-01

    This work was undertaken in an effort to develop a combined RTV 615/3Å molecular sieve/DEB molded component. A molded RTV 615/3Å molecular sieve component is currently in production, and an RTV 615/DEB component was produced in the past. However, all three materials have never before been combined in a single production part, and this is an opportunity to create a new component capable of being molded to shape, performing desiccation, and hydrogen gettering. This analysis looked at weapons system parameters and how they might influence part design. It also looked at material processing and how it related to mixing, activating a dessicant, and hydrogen uptake testing.

  13. Synthesis of highly selective zeolite topology molecular sieve for adsorption of benzene gas

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Chen, Yunlin; Zhang, Baoping; Zu, Zhinan

    2013-02-01

    Shangdong fly ash (SFA), Fangshan fly ash (FFA) and Heilongjiang fly ash (HFA) were selected as the raw materials to be used for synthesis of highly selective zeolite topology molecular sieve. Twice foaming method was studied in terms of synthetic zeolite. The experimental products were characterized by means of X-ray fluorescence (XRF), scanning electron microscope (SEM), X-ray diffraction (XRD), and automated surface area & pore size analyser. The results indicated that 10 M NaOH was chosen as modification experiment condition to process SFA. Crystallization temperature and time were 140 °C and 8 h, respectively. Zeolite topology molecular sieve was prepared with Si/Al molar ratio of 7.9, and its adsorption ratio of benzene gas was up to 66.51%.

  14. [Removal Characteristics of Elemental Mercury by Mn-Ce/molecular Sieve].

    PubMed

    Tan, Zeng-qiang; Niu, Guo-ping; Chen, Xiao-wen; An, Zhen

    2015-06-01

    The impregnation method was used to support molecular sieve with active manganese and cerium components to obtain a composite molecular sieve catalyst. The mercury removal performance of the catalyst was studied with a bench-scale setup. XPS analysis was used to characterize the sample before and after the modification in order to study the changes in the active components of the catalyst prepared. The results showed that the catalyst carrying manganese and cerium components had higher oxidation ability of elemental mercury in the temperature range of 300 degrees C - 450 degrees C, especially at 450 degrees C, the oxidation efficiency of elemental mercury was kept above 80%. The catalyst had more functional groups that were conducive to the oxidation of elemental mercury, and the mercury removal mainly depended on the chemical adsorption. The SO2 and NO in flue gas could inhibit the oxidation of elemental mercury to certain extent. PMID:26387298

  15. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  16. Removal of Nitrogen Oxides in Diesel Engine Exhaust by Plasma Assisted Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Rajanikanth, B. S.; Ravi, V.

    2002-08-01

    This paper reports the studies conducted on removal of oxides of nitrogen (NOx) from diesel engine exhaust using electrical discharge plasma combined with adsorbing materials such as molecular sieves. This study is being reported for the first time. The exhaust is taken from a diesel engine of 6 kW under no load conditions. The characteristic behavior of a pulse energized dielectric barrier discharge reactor in the diesel exhaust treatment is reported. The NOx removal was not significant (36%) when the reactor without any packing was used. However, when the reactor was packed with molecular sieves (MS -3A, -4A & -13X), the NOx removal efficiency was increased to 78% particularly at a temperature of 200 °C. The studies were conducted at different temperatures and the results were discussed.

  17. Design Through Simulation of a Molecular Sieve Column for Treatment of MON-3

    NASA Technical Reports Server (NTRS)

    Swartz, A. Ben; Wilson, D. B.

    1999-01-01

    The presence of water in propellant-grade MON-3 is a concern in the Aerospace Industry. NASA Johnson Space Center (JSC), White Sands Test Facility (WSTF) Propulsion Department has evaluated many types of molecular sieves for control of iron, the corrosion product of water in Mixed Oxides of Nitrogen (MON-3). In 1995, WSTF initiated laboratory and pilot-scale testing of molecular sieve type 3A for removal of water and iron. These tests showed sufficient promise that a series of continuous recycle tests were conducted at WSTF. Periodic samples of the circulating MON-3 solution were analyzed for water (wt %) and iron (ppm, wt). This test column was modeled as a series of transfer units; i. e., each unit represented the height equivalent of a theoretical plate. Such a model assumes there is equilibrium between the adsorbent material and the effluent stream from the unit. Operational and design parameters were derived based on the simulation results. These parameters were used to predict the design characteristics of a proposed molecular sieve column for removal of water and iron from MON-3 at the NASA Kennedy Space Center (KSC). In addition, these parameters were used to simulate a small, single-pass operation column at KSC currently used for treating MON-3. The results of this work indicated that molecular sieve type 3A in 1/16 in. diameter pellets, in a column 2.5 ft. in diameter, 18 ft. in height, and operated at 25 gpm is adequate for the required removal of water and iron from MON-3.

  18. A 1-D Model of the 4 Bed Molecular Sieve of the Carbon Dioxide Removal Assembly

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Knox, Jim

    2015-01-01

    Developments to improve system efficiency and reliability for water and carbon dioxide separation systems on crewed vehicles combine sub-scale systems testing and multi-physics simulations. This paper describes the development of COMSOL simulations in support of the Life Support Systems (LSS) project within NASA's Advanced Exploration Systems (AES) program. Specifically, we model the 4 Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) operating on the International Space Station (ISS).

  19. A Pervaporation Study of Ammonia Solutions Using Molecular Sieve Silica Membranes

    PubMed Central

    Yang, Xing; Fraser, Thomas; Myat, Darli; Smart, Simon; Zhang, Jianhua; Diniz da Costa, João C.; Liubinas, Audra; Duke, Mikel

    2014-01-01

    An innovative concept is proposed to recover ammonia from industrial wastewater using a molecular sieve silica membrane in pervaporation (PV), benchmarked against vacuum membrane distillation (VMD). Cobalt and iron doped molecular sieve silica-based ceramic membranes were evaluated based on the ammonia concentration factor downstream and long-term performance. A modified low-temperature membrane evaluation system was utilized, featuring the ability to capture and measure ammonia in the permeate. It was found that the silica membrane with confirmed molecular sieving features had higher water selectivity over ammonia. This was due to a size selectivity mechanism that favoured water, but blocked ammonia. However, a cobalt doped silica membrane previously treated with high temperature water solutions demonstrated extraordinary preference towards ammonia by achieving up to a 50,000 mg/L ammonia concentration (a reusable concentration level) measured in the permeate when fed with 800 mg/L of ammonia solution. This exceeded the concentration factor expected by the benchmark VMD process by four-fold, suspected to be due to the competitive adsorption of ammonia over water into the silica structure with pores now large enough to accommodate ammonia. However, this membrane showed a gradual decline in selectivity, suspected to be due to the degradation of the silica material/pore structure after several hours of operation. PMID:24957120

  20. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    NASA Astrophysics Data System (ADS)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2015-03-01

    In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption-desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Qmax) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Qmax of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation.

  1. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds

    NASA Astrophysics Data System (ADS)

    Tanev, Peter T.; Chibwe, Malama; Pinnavaia, Thomas J.

    1994-03-01

    TITANIUM silicalite is an effective molecular-sieve catalyst for the selective oxidation of alkanes, the hydroxylation of phenol and the epoxidation of alkenes in the presence of H2O2 (refs 1-3). The range of organic compounds that can be oxidized is greatly limited, however, by the relatively small pore size (about 0.6 nm) of the host framework4. Large-pore (mesoporous) silica-based molecular sieves have been prepared recently by Kresge et all5-7 and Kuroda et al 8.; the former used a templating approach in which the formation of an inorganic mesoporous structure is assisted by self-organization of surfactants, and the latter involved topochemical rearrangement of a layered silica precursor. Here we describe the use of the templating approach to synthesize mesoporous silica-based molecular sieves partly substituted with titanium-large-pore analogues of titanium silicalite. We find that these materials show selective catalytic activity towards the oxidation of 2,6-ditert-butyl phenol to the corresponding quinone and the conversion of benzene to phenol.

  2. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  3. Synthetic zeolites and other microporous oxide molecular sieves.

    PubMed

    Sherman, J D

    1999-03-30

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  4. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  5. Investigations to improve carbon dioxide control with amine and molecular sieve type sorbers

    NASA Technical Reports Server (NTRS)

    Bertrand, J. F.; Brose, H. F.; Kester, F. L.; Lunde, P. J.

    1972-01-01

    The optimization trends and operating parameters of an integral molecular sieve bed heat exchanger were investigated. The optimum combination of substrate and coating for the HS-B porous polymer was determined based on the CO2 dynamic capacity in the presence of water vapor. Full size HS-B canister performance was evaluated. An Amine CO2 Concentrator utilizing IR-45 sorber material and available Manned Orbiting Laboratory hardware was designed, fabricated and tested for use as an experiment in the NASA 90-day space simulator test of 1970. It supported four men in the simulator for 71 days out of the 90-day test duration.

  6. Synthesis, characterization, and pulsed laser ablation of molecular sieves for thin film applications

    NASA Astrophysics Data System (ADS)

    Munoz, Trinidad, Jr.

    1998-12-01

    Molecular sieves are one class of crystalline low density metal oxides which are made up of one-, two-, and three dimensional pores and/or cages. We have investigated the synthesis and characterization of metal substituted aluminophosphates and all silica molecular sieves for thin film applications. A new copper substituted aluminophosphate, CuAPO-5 has been synthesized and characterized using x-ray powder diffraction, FT-IR spectroscopy and scanning electron microscopy. Electron spin resonance and electron spin echo modulation provided supporting evidence of framework incorporation of Cu(II) ions. Thus, an exciting addition has been added to the family of metal substituted aluminophosphates where substitution of the metal has been demonstrated as framework species. Also presented here is the synthesis and characterization of an iron substituted aluminophosphate, FeAPO-5, and an all silica zeolite, UTD-1 for thin film applications. Pulsed laser ablation has been employed as the technique to generate thin films. Here an excimer laser (KrFsp*, 248 nm) was used to deposit the molecular sieves on a variety of substrates including polished silicon, titanium nitride, and porous stainless steel disks. The crystallinity of the deposited films was enhanced by a post hydrothermal treatment. A vapor phase treatment of the laser deposited FeAPO-5 films has been shown to increase the crystallinity of the film without increasing film thickness. Thin films of the FeAPO-5 molecular sieves were subsequently used as the dielectric phase in capacitive type chemical sensors. The capacitance change of the FeAPO-5 devices to the relative moisture makes them potential humidity sensors. The all silica zeolite UTD-1 thin films were deposited on polished silicon and porous supports. A brief post hydrothermal treatment of the laser deposited films deposited on polished silicon and porous metal supports resulted in oriented film growth lending these films to applications in gas separations

  7. 13C NMR spectroscopy of methane adsorbed in SAPO-11 molecular sieve

    NASA Astrophysics Data System (ADS)

    Koskela, Tuomas; Ylihautala, Mika; Vaara, Juha; Jokisaari, Jukka

    1996-10-01

    Static 13C and 13C-{ 1H} NMR spectra of carbon-13 enriched methane ( 13CH 4) adsorbed into SAPO-11 molecular sieve were recorded at variable temperatures. Moreover, the corresponding MAS NMR spectra were measured. These experiments reveal a temperature-dependent, anisotropic and asymmetric 13C nuclear shielding tensor. Ab initio model calculations of methane in the field of a positive point charge suggest that the deformation of the shielding tensor may be related to the interaction between the methane molecule and the charge-compensating protons. A comparison with existing Xe data is made.

  8. Improved light olefin yield from methyl bromide coupling over modified SAPO-34 molecular sieves.

    PubMed

    Zhang, Aihua; Sun, Shouli; Komon, Zachary J A; Osterwalder, Neil; Gadewar, Sagar; Stoimenov, Peter; Auerbach, Daniel J; Stucky, Galen D; McFarland, Eric W

    2011-02-21

    As an alternative to the partial oxidation of methane to synthesis gas followed by methanol synthesis and the subsequent generation of olefins, we have studied the production of light olefins (ethylene and propylene) from the reaction of methyl bromide over various modified microporous silico-aluminophosphate molecular-sieve catalysts with an emphasis on SAPO-34. Some comparisons of methyl halides and methanol as reaction intermediates in their conversion to olefins are presented. Increasing the ratio of Si/Al and incorporation of Co into the catalyst framework improved the methyl bromide yield of light olefins over that obtained using standard SAPO-34. PMID:21203621

  9. Catalytic Reforming of Lignin-Derived Bio-Oil Over a Nanoporous Molecular Sieve Silicoaluminophosphate-11.

    PubMed

    Park, Y K; Kang, Hyeon Koo; Jang, Hansaem; Suh, Dong Jin; Park, Sung Hoon

    2016-05-01

    Catalytic pyrolysis of lignin, a major constituent of biomass, was performed. A nanoporous molecular sieve silicoaluminophosphate-11 (SAPO-11) was selected as catalyst. Thermogravimetric analysis showed that 500 degrees C was the optimal pyrolysis temperature. Pyrolyzer-gas chromatography/mass spectroscopy was used to investigate the pyrolysis product distribution. Production of phenolics, the dominant product from the pyrolysis of lignin, was promoted by the increase in the catalyst dose. In particular, low-molecular-mass phenolics were produced more over SAPO-11, while high-molecular-mass phenolics and double-bond-containing phenolics were produced less. The fraction of aromatic compounds, including benzene, toluene, xylene, and ethylbenzene, was also increased by catalytic reforming. The catalytic effects were more pronounced when the catalyst/biomass ratio was increased. The enhanced production of aromatic compounds by an acidic catalyst obtained in this study is in good agreement with the results of previous studies. PMID:27483769

  10. Redox chemistry of gaseous reactants inside photoexcited FeAlPO{sub 4} molecular sieve

    SciTech Connect

    Ulagappan, N.; Frei, H.

    2000-01-27

    The reactivity of ligand-to-metal charge transfer excited Fe centers of FeAlPO{sub 4}-5 molecular sieve at the gas-micropore interface has been probed by in situ FT-IR spectroscopy. Laser light in the region 350--430 nm was used to excite the metal centers, and reaction was induced between methanol or 2-propanol and O{sub 2}. Acetone and H{sub 2}O are the observed products of the 2-propanol + O{sub 2} system, while the reaction of methanol with O{sub 2} yields formic acid, methyl formate, and H{sub 2}O as final products. These originate from secondary thermal reaction of initially produced formaldehyde and hydrogen peroxide. The primary step of the proposed mechanism involves one-electron reduction of O{sub 2} by transient Fe{sup +II} under concurrent donation of an electron to be hole of framework oxygen by the alcohol molecule. The efficient reaction suggests that the photoreduced Fe center of the molecular sieve has a substantially stronger reducing power than the conduction band electrons of dense-phase Fe{sub 2}O{sub 3} semiconductor particles.

  11. Hydroxylation of phenol over MeAPO molecular sieves synthesized by vapor phase transport

    NASA Astrophysics Data System (ADS)

    Shao, Hui; Chen, Jingjing; Chen, Xia; Leng, Yixin; Zhong, Jing

    2016-07-01

    In this study, MeAPO-25 (Me = Fe, Cu, Mn) molecular sieves were first synthesized by a vapor phase transport method using tetramethyl guanidine as the template and applied to hydroxylation of phenol. The zeolites were characterized by XRD, SEM, FT-IR, and DR UV-Vis. As a result, MeAPO-21 and MeAPO-15 were synthesized by changing the Me/Al ratio. UV-Visible diffuse reflectance study suggested incorporation of heteroatoms into the framework and FT-IR study also supported these data. Effects of heteroatoms, contents of Me in MeAPO-25, reaction temperature, phenol/H2O2 mole ratios, reaction time and concentration of catalyst on the conversion of phenol, as well as on the selectivity were studied. FeAPO-25 exhibited a high catalytic activity at the mole ratio of FeO and Al2O3 equal to 0.1 in the synthesis gel, giving the phenol conversion of 88.75% and diphenols selectivity of 66.23% at 60°C within 3 h [ n(phenol)/ n(H2O2) = 0.75, m(FeAPO-25)/ m(phenol) = 7.5%]. Experimental results indicated that the FeAPO-25 molecular sieve was a fairly promising candidate for the application in hydroxylation of phenol.

  12. Cryogenic adsorption of low-concentration hydrogen on charcoal, 5A molecular sieve, sodalite, ZSM-5 and Wessalith DAY

    SciTech Connect

    Willms, R.S.

    1993-12-01

    The separation of low-concentration hydrogen isotopes from helium is a processing step that is required for ceramic lithium breeding blanket processing. Cryogenic adsorption is one method of effecting this separation. In this study live adsorbents were considered for this purpose: charcoal, 5A molecular sieve, UOP S-115, ZSM-5 and Wessalith DAY. The first two adsorbents exhibit good equilibrium loadings and are shown to be quite effective at adsorbing low-concentration hydrogen isotopes. The latter three adsorbents display considerably lower equilibrium loadings. This study concludes that by using either charcoal or 5A molecular sieve, cryogenic adsorption would be an effective means of separating hydrogen isotopes from helium.

  13. A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements

    NASA Astrophysics Data System (ADS)

    Palonen, V.

    2015-12-01

    We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.

  14. A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements.

    PubMed

    Palonen, V

    2015-12-01

    We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented. PMID:26724067

  15. A portable molecular-sieve-based CO{sub 2} sampling system for radiocarbon measurements

    SciTech Connect

    Palonen, V.

    2015-12-15

    We have developed a field-capable sampling system for the collection of CO{sub 2} samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO{sub 2} concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO{sub 2} selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO{sub 2} from chambers prior to the CO{sub 2} build-up phase and sampling. In addition, both the CO{sub 2} and H{sub 2}O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO{sub 2} and the determination of CO{sub 2} flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.

  16. Exploring meso-/microporous composite molecular sieves with core-shell structures.

    PubMed

    Qian, Xufang F; Li, Bin; Hu, Yuanyuan Y; Niu, Guoxing X; Zhang, D Yahong H; Che, Renchao C; Tang, Yi; Su, Dangsheng S; Asiri, Abdullah M; Zhao, Dongyuan Y

    2012-01-16

    A series of core-shell-structured composite molecular sieves comprising zeolite single crystals (i.e., ZSM-5) as a core and ordered mesoporous silica as a shell were synthesized by means of a surfactant-directed sol-gel process in basic medium by using cetyltrimethylammonium bromide (CTAB) as a template and tetraethylorthosilicate (TEOS) as silica precursor. Through this coating method, uniform mesoporous silica shells closely grow around the anisotropic zeolite single crystals, the shell thickness of which can easily be tuned in the range of 15-100 nm by changing the ratio of TEOS/zeolite. The obtained composite molecular sieves have compact meso-/micropore junctions that form a hierarchical pore structure from ordered mesopore channels (2.4-3.0 nm in diameter) to zeolite micropores (≈0.51 nm). The short-time kinetic diffusion efficiency of benzene molecules within pristine ZSM-5 (≈7.88×10(-19)  m(2)  s(-1)) is almost retainable after covering with 75 nm-thick mesoporous silica shells (≈7.25×10(-19)  m(2)  s(-1)), which reflects the greatly opened junctions between closely connected mesopores (shell) and micropores (core). The core-shell composite shows greatly enhanced adsorption capacity (≈1.35 mmol  g(-1)) for large molecules such as 1,3,5-triisopropylbenzene relative to that of pristine ZSM-5 (≈0.4 mmol  g(-1)) owing to the mesoporous silica shells. When Al species are introduced during the coating process, the core-shell composite molecular sieves demonstrate a graded acidity distribution from weak acidity of mesopores (predominant Lewis acid sites) to accessible strong acidity of zeolite cores (Lewis and Brønsted acid sites). The probe catalytic cracking reaction of n-dodecane shows the superiority of the unique core-shell structure over pristine ZSM-5. Insight into the core-shell composite structure with hierarchical pore and graded acidity distribution show great potential for petroleum catalytic processes. PMID

  17. Titanium-containing zeolites and microporous molecular sieves as photovoltaic solar cells.

    PubMed

    Atienzar, Pedro; Valencia, Susana; Corma, Avelino; García, Hermenegildo

    2007-05-14

    Four titanium-containing zeolites and microporous molecular sieves differing on the crystal structure and particle size (Ti/Beta, Ti/Beta-60, TS-1 and ETS-10) are prepared, and their activity for solar cells after incorporating N3 (a commercially available ruthenium polypyridyl dye) is tested. All the zeolites exhibit photovoltaic activity, and the photoresponse is quite independent of the zeolite pore dimensions or particle size. The photoresponse increases with titanium content in the range 1-7% wt. In this way, cells are obtained that have open-circuit voltage Voc=560 mV and maximum short-circuit photocurrent density Isc=100 microA, measured for 1x1 cm2 surfaces with a solar simulator at 1000 W through and AM 1.5 filter. These values are promising and comparable to those obtained for current dye-sensitized titania solar cells. PMID:17410619

  18. Inorganic fluoride uptake as a measure of relative compatibility of molecular sieve desiccants with fluorocarbon refrigerants

    SciTech Connect

    Cohen, A.P.; Blackwell, C.S.

    1995-12-31

    The fluoride content of molecular sieve desiccants after exposure to R-32 in compatibility tests indicates the extent of the reaction of refrigerant with desiccant. The objective is to determine this fluoride content in a way that reports fluorine that has reacted with the desiccant, not fluorine that is present as adsorbed refrigerant. A conditioning procedure is described to remove adsorbed refrigerant by displacement with water vapor. The efficacy of this procedure is substantiated by {sup 19}F NMR spectroscopy. The conditioned desiccant undergoes pyrohydrolysis at a high temperature (975 C, 1787 F) to remove reacted fluorine as HF. Fluoride is determined in the resulting condensate using an ion-selective electrode. The ability of this technique to report accurate fluoride values is confirmed with standard reference materials.

  19. Catalytic Transformation of Bio-oil to Olefins with Molecular Sieve Catalysts

    NASA Astrophysics Data System (ADS)

    Huang, Wei-wei; Gong, Fei-yan; Zhai, Qi; Li, Quan-xin

    2012-08-01

    Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5>SAPO-34>MCM-41> Y-zeolite. The highest olefins yield from bio-oil using HZSM-5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.

  20. Efficient adsorption of phenanthrene by simply synthesized hydrophobic MCM-41 molecular sieves

    NASA Astrophysics Data System (ADS)

    Hu, Yun; He, Yinyun; Wang, Xiaowen; Wei, Chaohai

    2014-08-01

    Hydrophobic molecular sieve MCM-41 including surfactant template was synthesized by a simple method. The adsorption properties of this material toward phenanthrene were studied. The effects of adsorbent dose and pH value on the adsorption process as well as the adsorption mechanism and reuse performance were investigated. The template-containing MCM-41 showed a significant adsorption for phenanthrene, due to its hydrophobicity created by the surfactant template in MCM-41. The solution pH had little effect on the adsorption capacity. The adsorption kinetic could be fitted well with pseudo-second-order kinetic model. The adsorption equilibrium was fitted well by the linear model, and the adsorption process followed the liquid/solid phase distribution mechanism. The thermodynamic results indicated that the adsorption was a spontaneous and exothermic process.

  1. Production of carbon molecular sieves from Illinois coal. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect

    Lizzio, A.A.; Rostam-Abadi, M.; Feizoulof, C.A.; Vyas, S.N.

    1994-09-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois coal is a suitable feedstock for the production of CMS and to evaluate the potential application of the products in commercial gas separation processes. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II, the optimal char preparation conditions determined in Phase I are being applied to production of larger quantities of CMS in a 2 in. ID batch fluidized-bed reactor (FBR) and a 4 in. ID continuous rotary tube kiln (RTK). In the previous reporting period, an invention disclosure describing a novel CMS preparation technique (oxygen deposition) was prepared and submitted to Research Corporation Technologies for evaluation. During this reporting period, work continued on the development of the oxygen deposition process. Carbon deposition as a means to narrow pore size was also investigated. Pound quantities of CMS were prepared from IBC-102 coal in the TRK. A meeting was arranged between the ISGS and Carbo Tech Industieservice GmbH, one of two companies in the world that produce CMS from coal, to discuss possible shipment of Illinois coal to Germany for CMS production. A secrecy agreement between the ISGS and Carbo Tech is in preparation. Several large scale char production runs using Industry Mine coal were conducted in an 18 in. ID batch and 8 in. ID continuous RTK at Allis Mineral Systems, Milwaukee, WI. The molecular sieve properties of the chars have yet to be determined.

  2. The combined use of ultrasound and molecular sieves improves the synthesis of ethyl butyrate catalyzed by immobilized Thermomyces lanuginosus lipase.

    PubMed

    Paludo, Natalia; Alves, Joana S; Altmann, Cintia; Ayub, Marco A Z; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C

    2015-01-01

    In this work, the combined use of ultrasound energy and molecular sieves was investigated for the synthesis of ethyl butyrate, ester with mango and banana notes, catalyzed by the immobilized lipase from Thermomyces lanuginosus (Lipozyme TL-IM). Initially, the best concentrations of biocatalysts (35%) and butyric acid (0.7M) were tested using ultrasound as an alternative to mechanical agitation. The amount of acid in the reaction could be increased by 2-fold when compared to previous works where mechanical agitation was used. In the next step, substrate molar ratio and reaction temperature were optimized and the best conditions were at their lowest levels: 1:1 (acid:alcohol), and 30°C, reaching 61% of conversion in 6h. Molecular sieves (3Å) were added to optimized reaction medium in order to remove the formed water and improve the maximum yield. The reaction yield increased 1.5 times, reaching 90% of conversion in 6h, when 60mg of molecular sieves per mmol of butyric acid was used. Finally, the reuse of Lipozyme TL-IM for the ultrasound-assisted synthesis of ethyl butyrate was verified for 10 batches, without any appreciable loss of activity, whereas in systems using mechanical agitation, the biocatalyst was completely inactivated after 5 batches. These results suggest that the combined use of ultrasound and molecular sieves greatly improve esterification reactions by stabilizing the enzyme and increasing yields. PMID:24844439

  3. The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics

    NASA Astrophysics Data System (ADS)

    Carran, Richard S.; Ghosh, Arun; Dyer, Jolon M.

    2013-12-01

    Wool is a natural composite fiber, with keratin and keratin-associated proteins as the key molecular components. The outermost surface of wool fibers comprises a hydrophobic lipid layer that can lead to unsatisfactory processing and properties of fabric products. In this study, molecular sieve 5A, a Na+ and Ca2+ exchanged type A zeolite with a 1:1 Si:Al ratio was integrated onto the surface of wool using 3-mercaptopropyl trimethoxy silane. The resultant surface morphology, hydrophilicity and mechanical performance of the treated wool fabrics were then evaluated. Notably, the surface hydrophilicity of wool was observed to increase dramatically. When wool was treated with a dispersion of 2 wt% acetic acid, 2.5 wt% zeolite and 0.3 wt% or more silane, the water contact angle was observed to decrease from an average value of 148° to 0° over a period of approximately 30 s. Scanning electron microscopic imaging indicated good coverage of the wool surface with zeolite particles, with infrared spectroscopic evaluation indicating strong bonding of the dealuminated zeolite to wool keratins. This application of zeolite showed no adverse effects on the tensile and other mechanical properties of the fabric. This study indicates that zeolite-based treatment is a potentially efficient approach to increasing the surface hydrophilicity and modifying other key surface properties of wool and wool fabrics.

  4. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules.

    PubMed

    Kuznicki, S M; Bell, V A; Nair, S; Hillhouse, H W; Jacubinas, R M; Braunbarth, C M; Toby, B H; Tsapatsis, M

    2001-08-16

    Zeolites and related crystalline microporous oxides-tetrahedrally coordinated atoms covalently linked into a porous framework-are of interest for applications ranging from catalysis to adsorption and ion-exchange. In some of these materials (such as zeolite rho) adsorbates, ion-exchange, and dehydration and cation relocation can induce strong framework deformations. Similar framework flexibility has to date not been seen in mixed octahedral/tetrahedral microporous framework materials, a newer and rapidly expanding class of molecular sieves. Here we show that the framework of the titanium silicate ETS-4, the first member of this class of materials, can be systematically contracted through dehydration at elevated temperatures to 'tune' the effective size of the pores giving access to the interior of the crystal. We show that this so-called 'molecular gate' effect can be used to tailor the adsorption properties of the materials to give size-selective adsorbents suitable for commercially important separations of gas mixtures of molecules with similar size in the 4.0 to 3.0 A range, such as that of N2/CH4, Ar/O2 and N2/O2. PMID:11507636

  5. Continuously Adjustable, Molecular-Sieving “Gate” on 5A Zeolite for Distinguishing Small Organic Molecules by Size

    PubMed Central

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-01-01

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. This novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation. PMID:26358480

  6. Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures

    SciTech Connect

    Pauly, T.R.; Liu, Y.; Pinnavaia, T.J.; Billinge, S.J.L.; Rieker, T.P.

    1999-09-29

    Three different water-alcohol cosolvent systems were used to assemble mesoporous molecular sieve silicas with wormhole framework structures (previously denoted HMS silicas) from an electrically neutral amine surfactant (S{degree}) and a silicon alkoxide precursor (I{degree}). The fundamental particle size and associated textural (interparticle) porosity of the disordered structures were correlated with the solubility of the surfactant in the water-alcohol cosolvents used for the S{degree}I{degree} assembly process. Polar cosolvents containing relatively low volume fractions of C{sub n}H{sub 2n+1}OH alcohols (n = 1--3) gave heterogeneous surfactant emulsions that assembled intergrown aggregates of small primary particles with high textural pore volumes (designated HMS-HTx). Conversely, three-dimensional, monolithic particles with little or no textural porosity (designated HMS-LTx) were formed from homogeneous surfactant solutions in lower polarity cosolvents. Aluminum substituted AL-HMS-HTx analogues with high textural porosity and improved framework accessibility also were shown to be much more efficient catalysts than AL-HMS-LTx or monolithic forms of hexagonal AL-MCM-41 for the sterically demanding condensed phase alkylation of 2,4-di-tert-butylphenol with cinnamyl alcohol. Transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies verified the textural differences between wormhole HMS and electrostatically assembled hexagonal MCM-41 and SBA-3 molecular sieves. Power law fits to the scattering data indicated a surface fractal (D{sub s} = 2.76) for HMS-HTx, consistent with rough surfaces. A second power law at lower-q indicated the formation of a mass fractal (D{sub m} = 1.83) consistent with branching of small fundamental particles. Hexagonal MCM-41 and SBA-3 silicas, on the other hand, exhibited scattering properties consistent with moderately rough surfaces (D{sub s} = 2.35 and 2.22, respectively) and large particle diameters ({much

  7. Degradation of antibiotic amoxicillin using 1 x 1 molecular sieve-structured manganese oxide.

    PubMed

    Kuan, Wen-Hui; Hu, Ching-Yao; Liu, Bin-Sheng; Tzou, Yu-Min

    2013-01-01

    The kinetics and mechanism ofamoxicillin (AMO) degradation using a 1 x 1 molecular sieve-structured manganese oxide (MnO2) was studied. The presence of the buffer solution (i.e., NaHCO3, NaH2PO4 and KH2PO4) diminished AMO binding to MnO2, thus reducing AMO degradation in the pretest; therefore, all other experiments in this study were conducted without the addition of a buffer. Third-order rate constants, second-order on AMO and first-order on MnO2 increased with elevating pH level (2.81-7.23) from 0.54 to 9.17 M(-2) s(-1), and it decreased to 4.27 M(-2) s(-1) at pH 8.53 beyond the pk(a2) of AMO (7.3). The dissolution of the MnO2 suspension with and without AMO exhibited a similar trend; that is, Mn2+ concentration increased with decreasing pH. However, the dissolution of MnO2 with AMO was greater than that without AMO, except for the reaction occurring at pH 8.53, partially indicating that MnO2 acts as an oxidant in AMO degradation. The preliminary chromatogram data display different products with varying pH reaction s, implying that AMO elimination using this 1 x 1 molecular sieve-structured MnO2 is by adsorption as well as oxidative degradation. A complementary experiment indicates that the amount of oxidatively degraded AMO increases substantially from 65.5% at 4 h to 95% at 48 h, whereas the AMO adsorbed onto MnO2 decreases slightly from 4.5% at4 h to 2.4% at 48 h. The oxidative degradation accounted for more AMO removal than adsorption over the whole reaction course, indicating that the oxidative reaction of AMO on MnO2 dominated the AMO removal. PMID:24350501

  8. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes

    PubMed Central

    Song, Yingjun; Wang, David K.; Birkett, Greg; Martens, Wayde; Duke, Mikel C.; Smart, Simon; Diniz da Costa, João C.

    2016-01-01

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m−2 h−1 for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93–99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%. PMID:27469389

  9. CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings

    SciTech Connect

    Schmidt, Joel E.; Xie, Dan; Rea, Thomas; Davis, Mark E.

    2015-01-23

    A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [425462] mtw building unit and a previously unreported [4452] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected with oval 8-rings (2.9 Å × 5.5 Å opening) through medium-sized cavities (~7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants.

  10. Tunable ionic-conductivity of collapsed Sandia octahedral molecular sieves (SOMS).

    SciTech Connect

    Pless, Jason; Nenoff, Tina Maria; Garino, Terry J.; Axness, Marlene

    2006-11-01

    This proposal focuses on the synthesis and characterization of ''tunable'' perovskite ceramics with resulting controlled strength and temperature of dielectric constants and/or with ionic conductivity. Traditional methods of synthesis involve high temperature oxide mixing and baking. We developed a new methodology of synthesis involving the (1) low temperature hydrothermal synthesis of metastable porous phases with ''tuned'' stoichiometry, and element types, and then (2) low temperature heat treatment to build exact stoichiometry perovskites, with the desired vacancy concentrations. This flexible pathway can lead to compositions and structures not attainable by conventional methods. During the course of this program, a series of Na-Nb perovskites were synthesized by calcining and collapsing microporous Sandia Octahedral Molecular Sieve (SOMS) phases. These materials were studied by various characterization techniques and conductivity measurements to better delineate stability and stoichiometry/bulk conductivity relationships. The conductivity can be altered by changing the concentration and type of the substituting framework cation(s) or by ion exchange of sodium. To date, the Na{sub 0.9}Mg{sub 0.1}Nb{sub 0.8}Ti{sub 0.2}O{sub 3-{delta}} shows the best conductivity.

  11. CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings

    DOE PAGESBeta

    Schmidt, Joel E.; Xie, Dan; Rea, Thomas; Davis, Mark E.

    2015-01-23

    A new crystalline molecular sieve, denoted CIT-7, is synthesized using an imidazolium-based diquaternary organic structure directing agent (OSDA). The framework structure is determined from a combination of rotation electron diffraction and synchrotron X-ray powder diffraction data. The structure has 10 crystallographically unique tetrahedral atoms (T-atoms) in the unit cell, and can be described as an ordered arrangement of the [425462] mtw building unit and a previously unreported [4452] building unit. The framework contains a 2-dimensional pore system that is bounded by 10 T-atom rings (10-ring, 5.1 Å × 6.2 Å opening) that are connected with oval 8-rings (2.9 Å ×more » 5.5 Å opening) through medium-sized cavities (~7.9 Å) at the channel intersections. CIT-7 can be synthesized over a broad range of compositions including pure-silica and heteroatom, e.g., aluminosilicate and titanosilicate, containing variants.« less

  12. Passive CO{sub 2} removal using a carbon fiber composite molecular sieve

    SciTech Connect

    Burchell, T.D.; Judkins, R.R.

    1995-12-01

    Manufacture and characterization of a carbon fiber composite molecular sieve (CFCMS), and its efficacy as a CO{sub 2} gas adsorbent are reported. The CFCMS consists of an isotropic pitch derived carbon fiber and a phenolic resin derived carbon binder. Activation (selective gasification) of the CFCMS creates microporosity in the carbon fibers, yielding high micropore volumes (>0.5 cm{sup 3}/g) and BET surface areas (>1000 m{sup 2}/g). Moreover, the CFCMS material is a rigid, strong, monolith with an open structure that allows the free-flow of fluids through the material. This combination of properties provides an adsorbent material that has several distinct advantages over granular adsorbents in gas separation systems such as pressure swing adsorption (PSA) units. The results of our initial evaluations of the CO{sub 2} adsorption capacity and kinetics of CFCMS are reported. The room temperature CO{sub 2} adsorption capacity of CFCMS is >120 mg of CO{sub 2} per g of CFCMS. A proposed project is described that targets the development, over a three-year period, of a demonstration separation system based on CFCMS for the removal of CO{sub 2} from a flue gas slip stream at a coal-fired power plant. The proposed program would be conducted jointly with industrial and utility partners.

  13. Covalent anchoring of chloroperoxidase and glucose oxidase on the mesoporous molecular sieve SBA-15.

    PubMed

    Jung, Dirk; Streb, Carsten; Hartmann, Martin

    2010-01-01

    Functionalization of porous solids plays an important role in many areas, including heterogeneous catalysis and enzyme immobilization. In this study, large-pore ordered mesoporous SBA-15 molecular sieves were synthesized with tetraethyl orthosilicate (TEOS) in the presence of the non-ionic triblock co-polymer Pluronic P123 under acidic conditions. These materials were grafted with 3-aminopropyltrimethoxysilane (ATS), 3-glycidoxypropyltrimethoxysilane (GTS) and with 3-aminopropyltrimethoxysilane and glutaraldehyde (GA-ATS) in order to provide covalent anchoring points for enzymes. The samples were characterized by nitrogen adsorption, powder X-ray diffraction, solid-state NMR spectroscopy, elemental analysis, diffuse reflectance fourier transform infrared spectroscopy and diffuse reflectance UV/Vis spectroscopy. The obtained grafted materials were then used for the immobilization of chloroperoxidase (CPO) and glucose oxidase (GOx) and the resulting biocatalysts were tested in the oxidation of indole. It is found that enzymes anchored to the mesoporous host by the organic moieties can be stored for weeks without losing their activity. Furthermore, the covalently linked enzymes are shown to be less prone to leaching than the physically adsorbed enzymes, as tested in a fixed-bed reactor under continuous operation conditions. PMID:20386667

  14. Adsorbate shape selectivity: Separation of the HF/134a azeotrope over carbogenic molecular sieve

    SciTech Connect

    Hong, A.; Mariwala, R.K.; Kane, M.S.; Foley, H.C.

    1995-03-01

    Experimental evidence is provided for adsorptive shape selectivity in the separation of the azeotrope between HF and 1,1,1,2-tetrafluoroethane (134a) over pyrolyzed poly(furfuryl alcohol)-derived carbogenic molecular sieve (PPFA-CMS). The separation can be accomplished over coconut charcoal or Carbosieve G on the basis of the differences in the extent of equilibrium adsorption of HF and 134a. On these adsorbents 134a is more strongly bound than HF, thus it elutes much more slowly from the bed. The heat of adsorption for 134a in the vicinity of 200 C on Carbosieve G is {approximately}8.8 kcal/mol. In contrast, when the same azeotropic mixture is separated over PPFA-CMS prepared at 500 C, 134a is not adsorbed. As a result 134a elutes from the bed first, followed by HF. The reversal is brought about by the narrower pore size and pore size distribution of the PPFA-CMS versus that for Carbosieve G. Thus the separation over PPFA-CMS is an example of adsorbate shape selectivity and represents a limiting case of kinetic separation.

  15. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes.

    PubMed

    Song, Yingjun; Wang, David K; Birkett, Greg; Martens, Wayde; Duke, Mikel C; Smart, Simon; Diniz da Costa, João C

    2016-01-01

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m(-2) h(-1) for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93-99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%. PMID:27469389

  16. Carbon molecular sieve membranes on porous composite tubular supports for high performance gas separations

    DOE PAGESBeta

    Lee, Pyung -Soo; Bhave, Ramesh R.; Nam, Seung -Eun; Kim, Daejin

    2016-01-11

    Thin carbon molecular sieve membranes (<500 nm) were fabricated inside of long geometry (9 inch) of stainless steel tubes with all welded construction. Alumina intermediate layer on porous stainless steel tube support was used to reduce effective support pore size and to provide a more uniform surface roughness. Novolac phenolic resin solution was then coated on the inside of porous stainless steel tube by slip casting while their viscosities were controlled from 5 centipoises to 30 centipoises. Carbonization was carried out at 700 °C in which thermal stress was minimized and high quality carbon films were prepared. The highest separationmore » performance characteristics were obtained using 20 cP phenolic resin solutions. The fabricated CMSM showed good separation factor for He/N2 462, CO2/N2 97, and O2/N2 15.4. As the viscosity of polymer precursor solution was reduced from 20 cP to 15 cP, gas permeance values almost doubled with somewhat lower separation factor He/N2 156, CO2/N2 88, and O2/N2 7.7.« less

  17. Studies of oxygen species in synthetic Todorokite-like manganese oxide octahedral molecular sieves

    SciTech Connect

    Yin, Yuan-Gen; Xu, Wen-Qing; Shen, Yan-Fei; Suib, S.L. ); O'Young, C.L. )

    1994-10-01

    Manganese oxide octahedral molecular sieves of 3 x 3 tunnel structure (OMS-1) doped with various cations possess high thermal stability and were studied by means of temperature-programmed desorption and reduction by H[sub 2] and CO. Different oxygen species can be discerned according to their peak positions in the temperature-programmed desorption and reduction and assigned to chemisorbed dioxygen, oxygen atoms bound to Mn[sup 2+], and those bound to Mn[sup 4+] ions in the framework. Differences in peak positions and availabilities of these species during TPD and TPR can be explained by creation of nascent Mn[sup 2+] ions during TPR. The effects of doping cations on the reactivity and availability of these oxygen species are demonstrated to be more pronounced in TPR in H[sub 2] or CO than in TPD. In some instances, the trends of changes in reactivity and availability of the oxygen species due to doping of Cu[sup 2+], Ni[sup 2+], Zn[sup 2+], and Mg[sup 2+] correlated with the changes in the heat of formation of oxides of these cations. Temperature-programmed reactions with methane show some reactivity of these doped OMS-1 materials. Pulse reactions with CO show higher reactivity of Cu-doped OM-1 than with butane. However, the recovery of Cu-doped OMS-1 by reoxidation with oxygen pulses seems rather incomplete at the same temperature. 27 refs., 9 figs.

  18. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes

    NASA Astrophysics Data System (ADS)

    Song, Yingjun; Wang, David K.; Birkett, Greg; Martens, Wayde; Duke, Mikel C.; Smart, Simon; Diniz da Costa, João C.

    2016-07-01

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m‑2 h‑1 for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93–99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%.

  19. The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve.

    PubMed

    Schwab, J C; Beckers, C J; Joiner, K A

    1994-01-18

    The obligate intracellular protozoan parasite Toxoplasma gondii creates and enters into a unique membrane-bounded cytoplasmic compartment, the parasitophorous vacuole, when invading mammalian host cells. By microinjecting polar fluorescent molecules into individual T. gondii-infected fibroblasts, we show here that the parasitophorous vacuole membrane (PVM) surrounding the parasite functions as a molecular sieve. Lucifer yellow (457 Da) displayed free bidirectional flux across the PVM and distinctly outlined the parasites, which did not take up the dye, within the vacuole. This dye movement was not appreciably delayed by pretreatment of cells with 5 mM probenecid or chilling the monolayer to 5 degrees C, suggesting that dye movement was due to passive permeation through a membrane pore rather than active transport. Calcein, fluo-3, and a series of fluorescein isothiocyanate-labeled peptides up to 1291 Da crossed the PVM in a size-restricted fashion. A labeled peptide of 1926 Da and labeled dextrans and proteins (> or = 3000 Da) failed to transit the PVM. This putative channel in the PVM therefore allows exchange of molecules up to 1300-1900 Da between the host cell cytoplasm and the parasitophorous vacuolar space. PMID:8290555

  20. Identification of tetrahedrally ordered Si-O-Al environments in molecular sieves by { 27Al}- 29Si REAPDOR NMR

    NASA Astrophysics Data System (ADS)

    Ganapathy, S.; Kumar, Rajiv; Montouillout, V.; Fernandez, C.; Amoureux, J. P.

    2004-05-01

    The silicon sites tetrahedrally connected to aluminum in framework positions of a molecular sieve may be identified by a selective reintroduction of the hetero-nuclear 27Al- 29Si dipolar interaction through Rotational Echo Adiabatic Passage DOuble Resonance (REAPDOR) NMR. In this rotor synchronized 29Si MAS experiment, an effective dipolar dephasing of the Si-O-Al, over Si-O-Si, environments is shown to aid in the identification of silicon sites in the immediate vicinity of aluminum. Application of the method in the structurally interesting and novel molecular sieve ETAS-10 provides valuable insights on the details of aluminum substitution in the zeolite lattice and further leads to the first direct NMR estimate of Al-Si distance ( rAl-Si=323±5 pm) in ETAS-10.

  1. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes.

    PubMed

    Hu, Yaoxin; Wei, Jing; Liang, Yan; Zhang, Huacheng; Zhang, Xiwang; Shen, Wei; Wang, Huanting

    2016-02-01

    A defect-free zeolitic imidazolate framework-8 (ZIF-8)/graphene oxide (GO) membrane with a thickness of 100 nm was prepared using two-dimensional (2D) ZIF-8/GO hybrid nanosheets as seeds. Hybrid nanosheets with a suitable amount of ZIF-8 nanocrystals were essential for producing a uniform seeding layer that facilitates fast crystal intergrowth during membrane formation. Moreover, the seeding layer acts as a barrier between two different synthesis solutions, and self-limits crystal growth and effectively eliminates defects during the contra-diffusion process. The resulting ultrathin membranes show excellent molecular sieving gas separation properties, such as with a high CO2 /N2 selectivity of 7.0. This 2D nano-hybrid seeding strategy can be readily extended to the fabrication of other defect-free and ultrathin MOF or zeolite molecular sieving membranes for a wide range of separation applications. PMID:26710246

  2. The reversible transition of the molecular sieve VPI-5 into ALPO -84 and the structure of ALPO -84

    NASA Astrophysics Data System (ADS)

    Vogt, Eelco T. C.; Richardson, James W.

    1990-08-01

    In this letter we describe the reversibility of the recrystallization of the aluminophosphate molecular sieve VPI-5 to ALPO -84, and the structure of ALPO -84. VPI-5 is known to contain one-dimensional circular pores circumscribed by 18 tetrahedral atoms. Upon heating in the presence of moisture it is known to recrystallize to ALPO -84. This transition now proves to be reversible. Although phase transitions of aluminophosphate molecular sieves have been described, this is the first report of such a transition being reversible. ALPO -84 is found to contain one-dimensional elliptical pores, with free diameters of 7.5 to 9.5 Å circumscribed by 14 tetrahedral atoms. This new pore system thus contains one of the largest openings described so far, second only to VPI-5.

  3. Defect-Controlled Preparation of UiO-66 Metal-Organic Framework Thin Films with Molecular Sieving Capability.

    PubMed

    Zhang, Caiqin; Zhao, Yajing; Li, Yali; Zhang, Xuetong; Chi, Lifeng; Lu, Guang

    2016-01-01

    Metal-organic framework (MOF) UiO-66 thin films are solvothermally grown on conducting substrates. The as-synthesized MOF thin films are subsequently dried by a supercritical process or treated with polydimethylsiloxane (PDMS). The obtained UiO-66 thin films show excellent molecular sieving capability as confirmed by the electrochemical studies for redox-active species with different sizes. PMID:26548455

  4. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    PubMed

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly. PMID:23947020

  5. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    PubMed

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out. PMID:25804669

  6. Catalyzing the oxidation of sulfamethoxazole by permanganate using molecular sieves supported ruthenium nanoparticles.

    PubMed

    Zhang, Jing; Sun, Bo; Huang, Yuying; Guan, Xiaohong

    2015-12-01

    This study developed a heterogeneous catalytic permanganate oxidation system with three molecular sieves, i.e., nanosized ZSM-5 (ZSM-5A), microsized ZSM-5 (ZSM-5B) and MCM-41, supported ruthenium nanoparticles as catalyst, denoted as Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41, respectively. The presence of 0.5gL(-1) Ru/ZSM-5A, Ru/ZSM-5B and Ru/MCM-41 increased the oxidation rate of sulfamethoxazole (SMX) by permanganate at pH 7.0 by 27-1144 times. The catalytic performance of Ru catalysts toward SMX oxidation by permanganate was strongly dependent on Ru loading on the catalysts. The X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses confirmed that Ru catalyst acted as an electron shuttle in catalytic permanganate oxidation process. Ru(III) deposited on the surface of catalysts was oxidized by permanganate to its higher oxidation state Ru(VII), which could work as a co-oxidant with permanganate to decompose SMX and was then reduced to its initial tri-valence. During the successive runs, Ru/ZSM-5A could not maintain its catalytic activity due to the deposition of MnO2, which was the reductive product of permanganate, onto the surface of Ru/ZSM-5A. Thus, the regeneration of partially deactivated Ru catalysts by reductant NH2OH⋅HCl or ascorbic acid was proposed. Ru/ZSM-5A regenerated by NH2OH⋅HCl displayed comparable catalytic ability to its virgin counterpart, while ascorbic acid could not completely remove the deposited MnO2. A trace amount of leaching of Ru into the reaction solution was also observed, which would be ameliorated by improving the preparation conditions in the future study. PMID:26196405

  7. Infrared study of CO{sub 2} sorption over 'molecular basket' sorbent consisting of polyethylenimine-modified mesoporous molecular sieve

    SciTech Connect

    Wang, X.X.; Schwartz, V.; Clark, J.C.; Ma, X.L.; Overbury, S.H.; Xu, X.C.; Song, C.S.

    2009-04-15

    An infrared study has been conducted on CO{sub 2} sorption into nanoporous CO{sub 2} 'molecular basket' sorbents prepared by loading polyethylenimine (PEI) into mesoporous molecular sieve SBA-15. IR results from DRIFTS showed that a part of loaded PEI is anchored on the surface of SBA-15 through the interaction between amine groups and isolated surface silanol groups. Raising the temperature from 25 to 75{sup o}C increased the molecular flexibility of PEI loaded in the mesopore channels, which may partly contribute to the increase of CO{sub 2} sorption capacity at higher temperatures. CO{sub 2} sorption/desorption behavior studied by in situ transmission FTIR showed that CO{sub 2} is sorbed on amine sites through the formation of alkylammonium carbamates and absorbed into the multiple layers of PEI located in mesopores of SBA-15. A new observation by in situ IR is that two broad IR bands emerged at 2450 and 2160 cm{sup -1} with CO{sub 2} flowing over PEI(50)/SBA-15, which could be attributed to chemically sorbed CO{sub 2} species on PEI molecules inside the mesopores of SBA-15. The intensities of these two bands also increased with increasing CO{sub 2} exposure time and with raising CO{sub 2} sorption temperature. By comparison of the CO{sub 2} sorption rate at 25 and 75{sup o}C in terms of differential IR intensities, it was found that CO{sub 2} sorption over molecular basket sorbent includes two rate regimes which suggest two distinct steps: rapid sorption on exposed outer surface layers of PEI (controlled by sorption affinity or thermodynamics) and the diffusion and sorption inside the bulk of multiple layers of PEI (controlled by diffusion). The sorption of CO{sub 2} is reversible at 75{sup o}C.

  8. Phase behavior and molecular mobility of n -octylcyanobiphenyl confined to molecular sieves: Dependence on the pore size

    NASA Astrophysics Data System (ADS)

    Frunza, Ligia; Frunza, Stefan; Kosslick, Hendrik; Schönhals, Andreas

    2008-11-01

    The molecular dynamics of 4- n -octyl- 4' -cyanobiphenyl (8CB) confined inside the pores of a series of AlMCM-41 samples with the same structure, constant composition (Si/Al=14.7) but different pore sizes (diameter between 2.3 and 4.6nm ) was investigated by broadband dielectric spectroscopy (10-2-109Hz) in a large temperature interval. Two relaxation processes are observed: one has a bulklike behavior and is assigned to the 8CB in the pore center. The relaxation time of the second relaxation process is essentially slower than that of the former one and this process is related to the dynamics of molecules in a surface layer with a paranematic order. Both relaxation processes are specifically influenced by the interaction of the molecules with the surface and by the confinement. Above the clearing temperature the temperature dependence of the relaxation rate of the bulklike process obeys the Vogel-Fulcher-Tammann (VFT) law. The Vogel temperature increases with decreasing pore size. This is explained by increasing influence of paranematic potential of the surface layer with decreasing pore size. The temperature dependence of the relaxation rate of the surface layer follows also the VFT formula and the Vogel temperature decreases with decreasing pore size. This temperature dependence is controlled by both the interaction of the 8CB molecules with the surface via hydrogen bonding and by spatial confinement effects. To discriminate between both effects the data for the surface layer of 8CB confined to the molecular sieves are compared with results concerning 8CB adsorbed as a quasimonolayer on the surface of silica spheres of aerosil. On this basis a confinement parameter is defined and discussed.

  9. Phase behavior and molecular mobility of n-octylcyanobiphenyl confined to molecular sieves: dependence on the pore size.

    PubMed

    Frunza, Ligia; Frunza, Stefan; Kosslick, Hendrik; Schönhals, Andreas

    2008-11-01

    The molecular dynamics of 4-n-octyl-4'-cyanobiphenyl (8CB) confined inside the pores of a series of AlMCM-41 samples with the same structure, constant composition (SiAl=14.7) but different pore sizes (diameter between 2.3 and 4.6 nm) was investigated by broadband dielectric spectroscopy (10(-2)-10(9) Hz) in a large temperature interval. Two relaxation processes are observed: one has a bulklike behavior and is assigned to the 8CB in the pore center. The relaxation time of the second relaxation process is essentially slower than that of the former one and this process is related to the dynamics of molecules in a surface layer with a paranematic order. Both relaxation processes are specifically influenced by the interaction of the molecules with the surface and by the confinement. Above the clearing temperature the temperature dependence of the relaxation rate of the bulklike process obeys the Vogel-Fulcher-Tammann (VFT) law. The Vogel temperature increases with decreasing pore size. This is explained by increasing influence of paranematic potential of the surface layer with decreasing pore size. The temperature dependence of the relaxation rate of the surface layer follows also the VFT formula and the Vogel temperature decreases with decreasing pore size. This temperature dependence is controlled by both the interaction of the 8CB molecules with the surface via hydrogen bonding and by spatial confinement effects. To discriminate between both effects the data for the surface layer of 8CB confined to the molecular sieves are compared with results concerning 8CB adsorbed as a quasimonolayer on the surface of silica spheres of aerosil. On this basis a confinement parameter is defined and discussed. PMID:19113137

  10. 13C NMR of methane in an AlPO4-11 molecular sieve: Exchange effects and shielding anisotropy

    NASA Astrophysics Data System (ADS)

    Koskela, Tuomas; Ylihautala, Mika; Jokisaari, Jukka; Vaara, Juha

    1998-12-01

    13C NMR spectra of 13CH4 in an AlPO4-11 molecular sieve reveal exchange effects between adsorbed and nonadsorbed methane gas. An application of pulsed field gradients is introduced to decrease nonadsorbed and exchanging gas signals in order to extract the chemical shift anisotropy line shape of the adsorbed gas. The resulting 13C shielding anisotropy of methane is compared to existing value for methane in related SAPO-11 material. Less anisotropic shielding is observed in AlPO4-11, most likely due to the lack of charge-compensating cations.

  11. Infrared Study of CO2 Sorption over ?Molecular Basket? Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve

    SciTech Connect

    Overbury, Steven {Steve} H; Wang, Xiaoxing; Clark, Jason; Ma, Xiaoliang; Xu, Xiaochun; Song, Chunshan; Schwartz, Viviane

    2009-01-01

    An infrared study has been conducted on CO{sub 2} sorption into nanoporous CO{sub 2} 'molecular basket' sorbents prepared by loading polyethylenimine (PEI) into mesoporous molecular sieve SBA-15. IR results from DRIFTS showed that a part of loaded PEI is anchored on the surface of SBA-15 through the interaction between amine groups and isolated surface silanol groups. Raising the temperature from 25 to 75 C increased the molecular flexibility of PEI loaded in the mesopore channels, which may partly contribute to the increase of CO{sub 2} sorption capacity at higher temperatures. CO{sub 2} sorption/desorption behavior studied by in situ transmission FTIR showed that CO{sub 2} is sorbed on amine sites through the formation of alkylammonium carbamates and absorbed into the multiple layers of PEI located in mesopores of SBA-15. A new observation by in situ IR is that two broad IR bands emerged at 2450 and 2160 cm{sup -1} with CO{sub 2} flowing over PEI(50)/SBA-15, which could be attributed to chemically sorbed CO{sub 2} species on PEI molecules inside the mesopores of SBA-15. The intensities of these two bands also increased with increasing CO{sub 2} exposure time and with raising CO{sub 2} sorption temperature. By comparison of the CO{sub 2} sorption rate at 25 and 75 C in terms of differential IR intensities, it was found that CO{sub 2} sorption over molecular basket sorbent includes two rate regimes which suggest two distinct steps: rapid sorption on exposed outer surface layers of PEI (controlled by sorption affinity or thermodynamics) and the diffusion and sorption inside the bulk of multiple layers of PEI (controlled by diffusion). The sorption of CO{sub 2} is reversible at 75 C. Comparative IR examination of the CO{sub 2} sorption/desorption spectra on dry and prewetted PEI/SBA-15 sorbent revealed that presorbed water does not significantly affect the CO{sub 2}-amine interaction patterns.

  12. N-methyldiethanolamine: a multifunctional structure-directing agent for the synthesis of SAPO and AlPO molecular sieves.

    PubMed

    Wang, Dehua; Tian, Peng; Fan, Dong; Yang, Miao; Gao, Beibei; Qiao, Yuyan; Wang, Chan; Liu, Zhongmin

    2015-05-01

    In the present study, N-methyldiethanolamine (MDEA) is demonstrated to be a multifunctional structure-directing agent for the synthesis of aluminophosphate-based molecular sieves. Four types of molecular sieves, including SAPO-34, -35, AlPO-9 and -22, are for the first time acquired with MDEA as a novel template. The phase selectivity of the present synthesis is found to be condition-dependent. SAPO-34 (CHA) crystallizes from a conventional hydrothermal system with a higher MDEA concentration. When using MDEA as both the template and solvent, pure SAPO-35 (LEV) is obtained from the synthetic gel with a high P2O5/Al2O3 ratio of (2-3), in which the concentration of MDEA could be varied in a wide range. AlPO-9 and AlPO-22 (AWW) are synthesized under the similar conditions to SAPO-35, except without the addition of Si source. The physicochemical properties of the obtained samples are investigated by XRD, XRF, SEM, N2 physisorption, TG-DSC, and various NMR spectra ((13)C, (29)Si, (27)Al and (31)P). Both SAPO-34 and SAPO-35 show good thermal stability, large surface area, and high pore volume. The catalytic performance of SAPO-34 is evaluated by the methanol-to-olefins (MTO) reaction and a good (C2H4+C3H6) selectivity of 82.7% has been achieved. PMID:25616250

  13. Time-Dependent CO[subscript 2] Sorption Hysteresis in a One-Dimensional Microporous Octahedral Molecular Sieve

    SciTech Connect

    Espinal, Laura; Wong-Ng, Winnie; Kaduk, James A.; Allen, Andrew J.; Snyder, Chad R.; Chiu, Chun; Siderius, Daniel W.; Li, Lan; Cockayne, Eric; Espinal, Anais E.; Suib, Steven L.

    2014-09-24

    The development of sorbents for next-generation CO{sub 2} mitigation technologies will require better understanding of CO{sub 2}/sorbent interactions. Among the sorbents under consideration are shape-selective microporous molecular sieves with hierarchical pore morphologies of reduced dimensionality. We have characterized the non-equilibrium CO{sub 2} sorption of OMS-2, a well-known one-dimensional microporous octahedral molecular sieve with manganese oxide framework. Remarkably, we find that the degree of CO{sub 2} sorption hysteresis increases when the gas/sorbent system is allowed to equilibrate for longer times at each pressure step. Density functional theory calculations indicate a 'gate-keeping' role of the cation in the tunnel, only allowing CO{sub 2} molecules to enter fully into the tunnel via a highly unstable transient state when CO{sub 2} loadings exceed 0.75 mmol/g. The energy barrier associated with the gate-keeping effect suggests an adsorption mechanism in which kinetic trapping of CO{sub 2} is responsible for the observed hysteretic behavior.

  14. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure

    PubMed Central

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5–15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery. PMID:26347257

  15. Activation and Micropore Structure Determination of Carbon-Fiber Composite Molecular Sieves

    SciTech Connect

    Jagtoyen, M.

    1995-01-01

    levels of burnoff above about 40%, the extent of contraction is sufficient to produce stresses that result in fracture. Activated composites have been evaluated for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus has been constructed specifically for this purpose. Samples activated to low burn-off (5-7% wt loss) with low surface areas (from 300-500m{sup 2}/g) give much better separation of CO{sub 2} and CH{sub 4}, than samples produced at higher burnoff, and there appears to be no benefit in producing composites at burnoffs higher than 10%. The greater separation efficiency obtained at low burnoff means that the most effective CFCMS can be produced at relatively low cost. Continuing work will attempt to define the parameters that influence this gas separation, and whether these are applicable to other gas mixtures. Five samples of CFCMS have been recently prepared for shipment to British Oxygen Corporation (BOC) for testing as molecular sieves. The samples were machined to specific dimensions at ORNL (approx. 2.5 cm diameter x 1.25 cm thick) and activated at CAER. The samples were produced to different burn-off, but all have relatively narrow pore size distributions with average pore diameters around 6A.

  16. Formation of hydroxyl-functionalized stilbenoid molecular sieves at the liquid/solid interface on top of a 1-decanol monolayer

    NASA Astrophysics Data System (ADS)

    Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice

    2014-10-01

    Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons’ self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.

  17. In situ solid-state NMR studies of the catalytic conversion of methanol on the molecular sieve SAPO-34

    SciTech Connect

    Anderson, M.W.; Sulikowski, B.; Barrie, P.J.; Klinowski, J. )

    1990-04-05

    We have monitored the shape-selective catalytic conversion of methanol (MeOH) to low-molecular-weight olefins and aliphatics over the molecular sieve SAPO-34 using {sup 13}C and {sup 1}H magic-angle-spinning (MAS) NMR in tandem with gas chromatography. The size of the eight-membered windows in the structure limits the gas-phase products to linear C{sub 1}, C{sub 2}, and C{sub 3} species. However, the main species present in the intracrystalline space are branched C{sub 4} and C{sub 5} saturated hydrocarbons such as isobutane and isopentane: too large to leave the intracrystalline pore system they become trapped, thus imposing an additional steric constraint on the diffusion of linear hydrocarbons.

  18. Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production

    SciTech Connect

    Liu, Paul

    2012-05-01

    IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of the capital cost and ~27% parasitic energy consumption. Ideally, a one-box process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactor's behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and

  19. Mathematical model and calculation algorithm of micro and meso levels of separation process of gaseous mixtures in molecular sieves

    SciTech Connect

    Umarova, Zhanat; Botayeva, Saule; Yegenova, Aliya; Usenova, Aisaule

    2015-05-15

    In the given article, the main thermodynamic aspects of the issue of modeling diffusion transfer in molecular sieves have been formulated. Dissipation function is used as a basic notion. The differential equation, connecting volume flow with the change of the concentration of catchable component has been derived. As a result, the expression for changing the concentration of the catchable component and the coefficient of membrane detecting has been received. As well, the system approach to describing the process of gases separation in ultra porous membranes has been realized and micro and meso-levels of mathematical modeling have been distinguished. The non-ideality of the shared system is primarily taken into consideration at the micro-level and the departure from the diffusion law of Fick has been taken into account. The calculation method of selectivity considering fractal structure of membranes has been developed at the meso level. The calculation algorithm and its software implementation have been suggested.

  20. Mathematical model and calculation algorithm of micro and meso levels of separation process of gaseous mixtures in molecular sieves

    NASA Astrophysics Data System (ADS)

    Umarova, Zhanat; Botayeva, Saule; Yegenova, Aliya; Usenova, Aisaule

    2015-05-01

    In the given article, the main thermodynamic aspects of the issue of modeling diffusion transfer in molecular sieves have been formulated. Dissipation function is used as a basic notion. The differential equation, connecting volume flow with the change of the concentration of catchable component has been derived. As a result, the expression for changing the concentration of the catchable component and the coefficient of membrane detecting has been received. As well, the system approach to describing the process of gases separation in ultra porous membranes has been realized and micro and meso-levels of mathematical modeling have been distinguished. The non-ideality of the shared system is primarily taken into consideration at the micro-level and the departure from the diffusion law of Fick has been taken into account. The calculation method of selectivity considering fractal structure of membranes has been developed at the meso level. The calculation algorithm and its software implementation have been suggested.

  1. Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents

    PubMed Central

    Martínez-Franco, Raquel; Moliner, Manuel; Yun, Yifeng; Sun, Junliang; Wan, Wei; Zou, Xiaodong; Corma, Avelino

    2013-01-01

    The synthesis of crystalline microporous materials containing large pores is in high demand by industry, especially for the use of these materials as catalysts in chemical processes involving bulky molecules. An extra-large–pore silicoaluminophosphate with 16-ring openings, ITQ-51, has been synthesized by the use of bulky aromatic proton sponges as organic structure-directing agents. Proton sponges show exceptional properties for directing extra-large zeolites because of their unusually high basicity combined with their large size and rigidity. This extra-large–pore material is stable after calcination, being one of the very few examples of hydrothermally stable molecular sieves containing extra-large pores. The structure of ITQ-51 was solved from submicrometer-sized crystals using the rotation electron diffraction method. Finally, several hypothetical zeolites related to ITQ-51 have been proposed. PMID:23431186

  2. Integrated Testing of a 4-Bed Molecular Sieve, Air-Cooled Temperature Swing Adsorption Compressor, and Sabatier Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini

    2006-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.

  3. Modification of molecular sieves MCM-41 and SBA-15 with covalently grafted pyromellitimide and 1,4,5,8-naphthalenediimide.

    PubMed

    Trindade, Fabiane Jesus; Rey, José Fernando Queiruga; Brochsztain, Sergio

    2012-02-15

    This article describes the covalent grafting of pyromellitimide and 1,4,5,8-naphthalenediimide, which are organic semiconductors with very interesting electro-optical properties, onto the walls of mesoporous molecular sieves. The mesoporous materials MCM-41 and SBA-15 were first treated with 3-aminopropyltriethoxysilane, generating materials with a surface coverage of primary amino groups. These materials were further reacted with either pyromellitic dianhydride or 1,4,5,8-naphthalenetetracarboxylic dianhydride, generating surface-bound pyromellitimide or 1,4,5,8-naphthalenediimide, respectively. The success of the modification reactions was confirmed by elemental and thermogravimetric analyses, X-ray diffraction patterns and infrared, reflectance and fluorescence spectroscopies. The results indicated that the mesoporous structure of the new materials was preserved after the modification reactions and that the chromophores were included inside the mesoporous channels with stacked aromatic rings. PMID:22153336

  4. Small-Pore Molecular Sieves SAPO-34 with Chabazite Structure: Theoretical Study of Silicon Incorporation and Interrelated Catalytic Activity

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Lewis, James; Liu, Zhongmin

    2011-03-01

    The catalytic conversion of methonal to olefin (MTO) has attracted attention both in industrial and academic fields. Strong evidence shows that small-pore molecular sieves with certain amount silicon incorporated (SAPO) present promising high catalytic activity in MTO conversion. Using DFT, we study the structural and electronic properties of chabazite SAPO-34. Although there are extensively experimental results show that silicon incorporation does not change the overall structure as the original AlPO structure, local structural changes are still created by silicon substitution, which probably accounted for the high catalytic activity. It is noted that the catalytic activity of SAPO-34 presents increasing trend along with the silicon incorporation amount increasing and maintain a flat peak even with more silicon incorporated. Hence, there is an optimal silicon incorporation amount which possibly yields the highest catalytic MTO conversion.

  5. Laboratory test and evaluation report of the essex model 60C-0037-2 molecular sieve oxygen generating system

    NASA Astrophysics Data System (ADS)

    Squire, Brendan E.; Bruckart, James E.; Quattlebaum, Martin; Johnston, Leslie W.

    1993-06-01

    The Essex Model 60C-0037-2 Molecular Sieve Oxygen Generating System was tested for environmental and electromagnetic interference/compatibility under the U.S. Army Program for Testing and Evaluation of Equipment for Aeromedical Operations. The tests were conducted using current military and industrial standards and procedures for environmental tests and electromagnetic interference/compatibility and human factors. The Essex Model 60C-0037-2 performed properly in the test environments. The oxygen concentration produced by the unit depends on the compressed air pressure, oxygen flow, and vent pressure. A separate oxygen concentration analyzer would be required to determine the oxygen concentration for patient use. The unit produces a significant amount of noise while operating.

  6. Production of carbon molecular sieves from Illinois coal; [Quarterly] technical report, September 1, 1993--November 30, 1993

    SciTech Connect

    Lizzio, A.A.; Rostam-Abadi, M.; Vyas, S.N.

    1994-03-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois Basin coal is a suitable feedstock for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase I of this project, gram quantities of char were produced from IBC-102 coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas. of 1500--2100 m{sup 2}/g were produced by chemical activation using potassium hydroxide as the activant. These high surface area chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, i.e., O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4} and H{sub 2} on these chars at 25{degree}C was studied. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4}, CO{sub 2}/H{sub 2} and CH{sub 4}/H{sub 2} separation; both high adsorption capacities and selectivities were achieved. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II, the optimal preparation conditions determined in Phase I will be applied to production of larger quantities of CMS in a batch fluidized-bed reactor (FBR) and continuous rotary tube kiln (RTK).

  7. Production of carbon molecular sieves from Illinois coal. Final technical report, 1 September, 1992--31 August 1993

    SciTech Connect

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-12-31

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois Basin coals are a suitable feedstock for the production of CMS and to evaluate the potential application of these products in commercial gas separation processes. In Phase 1 of this project, gram quantities of char were prepared from Illinois coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. Chars having surface areas of 1,500--2,100 m{sup 2}/g were produced by chemical activation using potassium hydroxide (KOH) as the chemical activant. These high surface area (HSA) chars had more than twice the adsorption capacity of commercial molecular sieves. The kinetics of adsorption of various gases, e.g., O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4}, and H{sub 2}, on these chars at 25 C was determined. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4} and CH{sub 4}/H{sub 2} separation. In Phase 2 of this project, larger quantities of char are being prepared from Illinois coal in a batch fluidized-bed reactor and in a continuous rotary tube kiln. The ability of these chars to separate binary gas mixtures is tested in an adsorption column/gas chromatography system. Oxygen and nitrogen breakthrough curves obtained for selected chars were compared to those of a commercial zeolite. Selected chars were subjected to a nitric acid oxidation treatment. The air separation capability of nitric acid treated char was strongly dependent on the outgassing conditions used prior to an O{sub 2}/N{sub 2} adsorption experiment. An outgassing temperature of 130--160 C produced chars with the most favorable air separation properties. 61 refs.

  8. A novel molecular sieve supporting material for enhancing activity and stability of Ag3PO4 photocatalyst

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Wang, Peifu; Niu, Futao; Huang, Cunping; Li, Yang; Yao, Weifeng

    2016-08-01

    A small-pore silicon-substituted silicon aluminum phosphate (SAPO-34) molecular sieve, for the first time, is reported to significantly increase both the activity and life span of Ag3PO4 photocatalyst for visible-light degradation of methylene blue (MB) and rhodamine B (RhB). Results show that 60 wt.% Ag3PO4/SAPO-34 exhibits the highest photocatalytic degradation efficiencies for both MB (91.0% degradation within 2.0 min) and RhB (91.0% degradation within 7.0 min). In comparison, pure Ag3PO4 powder photocatalyst requires 8.0 min and 12.0 min for decomposing 91.0% of MB and RhB, respectively. During MB degradation the rate constant for 60 wt.% Ag3PO4/SAPO-34 increases 317.2% in comparison with the rate constant of pure Ag3PO4. This activity is also much higher than literature reported composite or supported Ag3PO4 photocatalysts. In three photocatalytic runs for the degradation of RhB, the rate constant for 60 wt.% Ag3PO4/SAPO-34 reduces from 0.33 to 0.18 min-1 (45.5% efficiency loss). In contrast, the rate constant of pure Ag3PO4 catalyst decreases from 0.2 to 0.07 min-1 (80.0% efficiency loss). All experimental results have shown that small pores and zero light absorption loss of SAPO-34 molecular sieves minimize Ag3PO4 loading, enhance photocatalytic activity and prolong the lifespan of Ag3PO4 photocatalyst.

  9. Titanium(IV) in the organic-structure-directing-agent-free synthesis of hydrophobic and large-pore molecular sieves as redox catalysts.

    PubMed

    Wang, Jingui; Yokoi, Toshiyuki; Kondo, Junko N; Tatsumi, Takashi; Zhao, Yanli

    2015-08-10

    Titanium(IV) incorporated into the framework of molecular sieves can be used as a highly active and sustainable catalyst for the oxidation of industrially important organic molecules. Unfortunately, the current process for the incorporation of titanium(IV) requires a large amount of expensive organic molecules used as organic-structure-directing agents (OSDAs), and this significantly increases the production costs and causes environmental problems owing to the removal of OSDAs by pyrolysis. Herein, an OSDA-free process was developed to incorporate titanium(IV) into BEA-type molecular sieves for the first time. More importantly, the hydrophobic environment and the robust, 3 D, and large pore structure of the titanium(IV)-incorporated molecular sieves fabricated from the OSDA-free process created a catalyst that was extremely active and selective for the epoxidation of bulky cyclooctene in comparison to Ti-incorporated BEA-type molecular sieves synthesized with OSDAs and commercial titanosilicate TS-1. PMID:26073555

  10. Effect of lipase immobilization on resolution of (R, S)-2-octanol in nonaqueous media using modified ultrastable-Y molecular sieve as support.

    PubMed

    Dai, Dazhang; Xia, Liming

    2006-07-01

    The lipase from Penicillium expansum PED-03 (PEL) was immobilized onto modified ultrastable-Y (USY) molecular sieve and the resolution of (R, S)- 2-octanol was carried out in a bioreactor in nonaqueous media by the immobilized lipase. It was found that the conversion rate, enantiomeric excess (ee) value, and enantioselectivity (E) value of the resolution catalyzed by PEL immobilized on modified USY molecular sieve were much higher than those of the reaction catalyzed by free PEL and PEL immobilized on other supports. Immobilized on modified USY molecular sieve, the PEL exhibited obvious activity within a wider pH range and at a much higher temperature and showed a markedly enhanced stability against thermal inactivation, by which the suitable pH of the buffer used for immobilization could be "memorized." The conversion rate of the reaction catalyzed by PEL immobilized on modified USY molecular sieve reached 48.84%, with excellent enantioselectivity (average E value of eight batches >460) in nonaqueous media at "memorial" pH 9.5, 50 degrees C for 24 h, demonstrating a good application potential in the production of optically pure (R, S)-2-octanol. PMID:16891665

  11. Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving

    PubMed Central

    Li, Zhi; Yu, Rong; Huang, Jinglu; Shi, Yusheng; Zhang, Diyang; Zhong, Xiaoyan; Wang, Dingsheng; Wu, Yuen; Li, Yadong

    2015-01-01

    Developing catalysts that provide the effective activation of hydrogen and selective absorption of substrate on metal surface is crucial to simultaneously improve activity and selectivity of hydrogenation reaction. Here we present an unique in situ etching and coordination synthetic strategy for exploiting a functionalized metal-organic framework to incorporate the bimetallic platinum–nickel frames, thereby forming a frame within frame nanostructure. The as-grown metal-organic framework serves as a ‘breath shell' to enhance hydrogen enrichment and activation on platinum–nickel surface. More importantly, this framework structure with defined pores can provide the selective accessibility of molecules through its one-dimensional channels. In a mixture containing four olefins, the composite can selectively transport the substrates smaller than its pores to the platinum–nickel surface and catalyse their hydrogenation. This molecular sieve effect can be also applied to selectively produce imines, which are important intermediates in the reductive imination of nitroarene, by restraining further hydrogenation via cascade processes. PMID:26391605

  12. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units. PMID:27335235

  13. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    SciTech Connect

    Xu, Dongyan Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  14. Production of carbon molecular sieves from Illinois coal. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect

    Lizzio, A.A.; Rostam-Abadi, M.; Vyas, S.N.

    1994-06-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for use in gas separation and recovery processes. The overall objective of this project is to determine whether Illinois coal is a suitable feedstock for the production of CMS and to evaluate the potential application of the products in commercial gas separation processes. In Phase I of this project, gram quantities of char were produced from IBC-102 coal in a fixed-bed reactor under a wide range of pyrolysis and activation conditions. The kinetics of adsorption of various gases, i.e., O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4} and H{sub 2}, on these chars at 25{degree}C was studied. Several chars showed good potential for efficient O{sub 2}/N{sub 2}, CO{sub 2}/CH{sub 4}, CO{sub 2}H{sub 2} and CH{sub 4}/H{sub 2} separation; both high adsorption capacities and selectivities were achieved. The full potential of these materials in commercial gas separations has yet to be realized. In Phase II, the optimal char preparation conditions determined in Phase I are applied to production of larger quantities of CMS in a batch fluidized-bed reactor (FBR) and a continuous rotary tube kiln (RTFK).

  15. Ionothermal Synthesis of MnAPO-SOD Molecular Sieve without the Aid of Organic Structure-Directing Agents.

    PubMed

    Liu, Hao; Tian, Zhijian; Wang, Lei; Wang, Yasong; Li, Dawei; Ma, Huaijun; Xu, Renshun

    2016-02-15

    An SOD-type metalloaluminophosphate molecular sieve (denoted as SOD-Mn) was ionothermally synthesized by introducing manganese(II) cations into the reaction mixture via MnO-acid or MnO2-reductant reactions. Composition and structure analyses results show that two kinds of manganese(II) cations exist in the SOD-Mn structure. Part of the manganese(II) cations isomorphously substitute the framework aluminum(III) with a substitution degree of ∼30%. The rest of the manganese(II) cations occupy a fraction of the sod cages in their hydrated forms. A comprehensive investigation of the synthesis parameters, crystal sizes, and crystallization kinetics indicates that the in situ released hydrated manganese(II) cations direct the formation of SOD-Mn. Such structure-directing effect may be inhibited by both the fluorination of manganese(II) cations and the water accumulation during crystallization. In the fluoride anion-containing reaction mixture with a low ionic liquid content, the crystallization process is strongly suppressed, and large SOD-Mn single crystals of over 200 μm in size are yielded. SOD-Mn is free from organics and shows improved thermal stability compared with metalloaluminophosphates synthesized by using organic structure-directing agents. PMID:26821274

  16. Platinum-nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Yu, Rong; Huang, Jinglu; Shi, Yusheng; Zhang, Diyang; Zhong, Xiaoyan; Wang, Dingsheng; Wu, Yuen; Li, Yadong

    2015-09-01

    Developing catalysts that provide the effective activation of hydrogen and selective absorption of substrate on metal surface is crucial to simultaneously improve activity and selectivity of hydrogenation reaction. Here we present an unique in situ etching and coordination synthetic strategy for exploiting a functionalized metal-organic framework to incorporate the bimetallic platinum-nickel frames, thereby forming a frame within frame nanostructure. The as-grown metal-organic framework serves as a `breath shell' to enhance hydrogen enrichment and activation on platinum-nickel surface. More importantly, this framework structure with defined pores can provide the selective accessibility of molecules through its one-dimensional channels. In a mixture containing four olefins, the composite can selectively transport the substrates smaller than its pores to the platinum-nickel surface and catalyse their hydrogenation. This molecular sieve effect can be also applied to selectively produce imines, which are important intermediates in the reductive imination of nitroarene, by restraining further hydrogenation via cascade processes.

  17. Preparation, characterization and application of p-tert-butyl-calix[4]arene-SBA-15 mesoporous silica molecular sieves.

    PubMed

    Huang, Huayu; Zhao, Chuande; Ji, Yongsheng; Nie, Rong; Zhou, Pan; Zhang, Haixia

    2010-06-15

    p-tert-Butyl-calix[4]arene-SBA-15 mesoporous silica molecular sieves have been prepared and characterized by Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and nitrogen adsorption-desorption measurements. FT-IR spectra showed the presence of methylene (-CH(2)-), methyl (-CH(3)) and phenyl bands on the modified SBA-15. Powder XRD data indicated the structure of p-tert-butyl-calix[4]arene-SBA-15 remained the host SBA-15 structure. Brunauer-Emmett-Teller (BET) surface area analysis revealed a decrease in surface area and pore size. The adsorption capacity of the materials to diethylstilbestrol and bisphenol A was studied via the dynamic adsorption experiments. The maximum dynamic adsorption capacity on modified materials was 34.8 and 2.9 times higher than SBA-15 particles for diethylstilbestrol and bisphenol A, respectively. The results indicated that p-tert-butyl-calix[4]arene-SBA-15 particles could be used to the enrich the various compounds in water samples before the further analysis. PMID:20185235

  18. Diffusion of methane and carbon dioxide in carbon molecular sieve membranes by multinuclear pulsed field gradient NMR.

    PubMed

    Mueller, Robert; Kanungo, Rohit; Kiyono-Shimobe, Mayumi; Koros, William J; Vasenkov, Sergey

    2012-07-10

    Carbon molecular sieve (CMS) membranes are promising materials for energy efficient separations of light gases. In this work, we report a detailed microscopic study of carbon dioxide and methane self-diffusion in three CMS membrane derived from 6FDA/BPDA(1:1)-DAM and Matrimid polymers. In addition to diffusion of one-component sorbates, diffusion of a carbon dioxide/methane mixture was investigated. Self-diffusion studies were performed by the multinuclear (i.e., (1)H and (13)C) pulsed field gradient (PFG) NMR technique which combines the advantages of high field (17.6 T) NMR and high magnetic field gradients (up to 30 T/m). Diffusion measurements were carried out at different temperatures and for a broad range of the root-mean-square displacements of gas molecules inside the membranes. The diffusion data obtained from PFG NMR are compared with the corresponding results of membrane permeation measurements reported previously for the same membrane types. The observed differences between the transport diffusivities and self-diffusion coefficients of carbon dioxide and methane are discussed. PMID:22694169

  19. Interlinked Test Results for Fusion Fuel Processing and Blanket Tritium Recovery Systems Using Cryogenic Molecular Sieve Bed

    SciTech Connect

    Yamanishi, Toshihiko; Hayashi, Takumi; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; Uzawa, Masayuki; Nishi, Masataka

    2005-07-15

    A simulated fuel processing (cryogenic distillation columns and a palladium diffuser) and CMSB (cryogenic molecular sieve bed) systems were linked together, and were operated. The validity of the CMSB was discussed through this experiment as an integrated system for the recovery of blanket tritium. A gas stream of hydrogen isotopes and He was supplied to the CMSB as the He sweep gas in blanket of a fusion reactor. After the breakthrough of tritium was observed, regeneration of the CMSB was carried out by evacuating and heating. The hydrogen isotopes were finally recovered by the diffuser. At first, only He gas was sent by the evacuating. The hydrogen isotopes gas was then rapidly released by the heating. The system worked well against the above drastic change of conditions. The amount of hydrogen isotopes gas finally recovered by the diffuser was in good agreement with that adsorbed by the CMSB. The dynamic behaviors (breakthrough and regeneration) of the system were explained well by a set of basic codes.

  20. Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation.

    PubMed

    Duan, Lian; Sun, Binzhe; Wei, Mingyu; Luo, Shilu; Pan, Fei; Xu, Aihua; Li, Xiaoxia

    2015-03-21

    In this paper, the photodegradation of Acid Orange 7 (AO7) in aqueous solutions with peroxymonosulfate (PMS) was studied with manganese oxide octahedral molecular sieves (OMS-2) as the catalyst. The activities of different systems including OMS-2 under visible light irradiation (OMS-2/Vis), OMS-2/PMS and OMS-2/PMS/Vis were evaluated. It was found that the efficiency of OMS-2/PMS was much higher than that of OMS-2/Vis and could be further enhanced by visible light irradiation. The catalyst also exhibited stable performance for multiple runs. Results from ESR and XPS analyses suggested that the highly catalytic activity of the OMS-2/PMS/Vis system possible involved the activation of PMS to sulfate radicals meditated by the redox pair of Mn(IV)/Mn(III) and Mn(III)/Mn(II), while in the OMS-2/PMS system, only the redox reaction between Mn(IV)/Mn(III) occurred. Several operational parameters, such as dye concentration, catalyst load, PMS concentration and solution pH, affected the degradation of AO7. PMID:25528234

  1. Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor.

    PubMed

    Pan, Fei; Xu, Aihua; Xia, Dongsheng; Yu, Yang; Chen, Guo; Meyer, Melissa; Zhao, Dongye; Huang, Ching-Hua; Wu, Qihang; Fu, Jie

    2015-12-15

    This study evaluated the effects of synthesized octahedral molecular sieve (OMS-2) nanoparticles on the anaerobic microbial community in a model digester, expanded granular sludge bed (EGSB) reactor. The addition of OMS-2 (0.025 g/L) in the EGSB reactors resulted in an enhanced operational performance, i.e., COD removal and biogas production increased by 4% and 11% respectively, and effluent volatile fatty acid (VFA) decreased by 11% relative to the control group. The Biolog EcoPlate™ test was employed to investigate microbial metabolism in the EGSB reactors. Results showed that OMS-2 not only increased the microbial metabolic level but also significantly changed the community level physiological profiling of the microorganisms. The Illumina MiSeq high-throughput sequencing of 16S rRNA gene indicated OMS-2 enhanced the microbial diversity and altered the community structure. The largest bacterial genus Lactococcus, a lactic acid bacterium, reduced from 29.3% to 20.4% by abundance in the presence of 0.25 g/L OMS-2, which may be conducive to decreasing the VFA production and increasing the microbial diversity. OMS-2 also increased the quantities of acetogenic bacteria and Archaea, and promoted the acetogenesis and methanogenesis. The X-ray photoelectron spectroscopy illustrated that Mn(IV)/Mn(III) with high redox potential in OMS-2 were reduced to Mn(II) in the EGSB reactors; this in turn affected the microbial community. PMID:26397455

  2. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units.

  3. An efficient synthesis of graphenated carbon nanotubes over the tailored mesoporous molecular sieves by chemical vapor deposition

    SciTech Connect

    Atchudan, R.; Joo, Jin.; Pandurangan, A.

    2013-06-01

    Highlights: ► Tailored 3D cubic Ni/KIT-6 with large pores was synthesized successfully. ► The new hybrid g-CNTs in large scale were synthesized using Ni/KIT-6 by CVD method. ► The use of mesoporous material by CVD method would be an ideal choice to prepare g-CNTs at reasonable cost. ► This type of g-CNTs might be a new avenue for nano-electronic applications. - Abstract: The new hybrid of graphenated carbon nanotubes (g-CNTs) was superior to either CNTs or graphene. Mesoporous 3D cubic Ni/KIT-6 were synthesized hydrothermally through organic template route and then were used as catalytic template for the production of g-CNTs using acetylene as a carbon precursor by chemical vapor deposition (CVD) method. The deposited new hybrid carbon materials were purified and analyzed by various physico-chemical techniques such as XRD, TGA, SEM, TEM and Raman spectroscopy techniques. The graphitization of CNTs was confirmed by TGA and HRTEM studies. Thermal stability, surface morphology, and structural morphology of these materials were revealed by TGA, SEM and TEM analysis, respectively. Moreover, the tailored mesoporous Ni/KIT-6 molecular sieves were found to possess better quality and massive quantity of g-CNTs produced compared to other catalytic template route.

  4. Decolorization/Deodorization of Zein via Activated Carbons and Molecular Sieves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of commercial activated carbons generated from different media and selective microporous zeolites with different pore sizes were used in a batch system to sequester the low molecular weight odor and color contaminants in commercial zein products. Because the adsorbents can also adsorb prot...

  5. Protein sterilization method of firefly luciferase using reduced pressure and molecular sieves

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Rich, E., Jr. (Inventor)

    1973-01-01

    The sterilization of the protein fruitfly luciferase under conditions that prevent denaturation is examined. Denaturation is prevented by heating the protein in contact with molecular seives and under a reduced pressure of the order of 0.00005 millimeters of mercury.

  6. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption

    SciTech Connect

    Tanju Karanfil; Seyed A. Dastgheib; Dina Mauldin

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers ACF10 and ACF20H and two granular activated carbons, coal-based F400 and Macro preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 {angstrom}. It also had the highest volume in pores 5-8 {angstrom}, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve during preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 {angstrom}, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the way that the carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption. 40 refs., 3 figs., 2 tabs.

  7. Atmospheric weathering and silica-coated feldspar: Analogy with zeolite molecular sieves, granite weathering, soil formation, ornamental slabs, and ceramics

    PubMed Central

    Smith, Joseph V.

    1998-01-01

    Feldspar surfaces respond to chemical, biological, and mechanical weathering. The simplest termination is hydroxyl (OH), which interacts with any adsorption layer. Acid leaching of alkalis and aluminum generated a silica-rich, nanometers-thick skin on certain feldspars. Natural K, Na-feldspars develop fragile surfaces as etch pits expand into micrometer honeycombs, possibly colonized by lichens. Most crystals have various irregular coats. Based on surface-catalytic processes in molecular sieve zeolites, I proposed that some natural feldspars lose weakly bonded Al-OH (aluminol) to yield surfaces terminated by strongly bonded Si-OH (silanol). This might explain why some old feldspar-bearing rocks weather slower than predicted from brief laboratory dissolution. Lack of an Al-OH infrared frequency from a feldspar surface is consistent with such a silanol-dominated surface. Raman spectra of altered patches on acid-leached albite correspond with amorphous silica rather than hydroxylated silica–feldspar, but natural feldspar may respond differently. The crystal structure of H-exchanged feldspar provides atomic positions for computer modeling of complex ideas for silica-terminated feldspar surfaces. Natural weathering also depends on swings of temperature and hydration, plus transport of particles, molecules, and ionic complexes by rain and wind. Soil formation might be enhanced by crushing granitic outcrops to generate new Al-rich surfaces favorable for chemical and biological weathering. Ornamental slabs used by architects and monumental masons might last longer by minimizing mechanical abrasion during sawing and polishing and by silicifying the surface. Silica-terminated feldspar might be a promising ceramic surface. PMID:9520371

  8. Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts

    SciTech Connect

    Gao, Feng; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

    2013-11-03

    Selective catalytic reduction (SCR) of NOx with ammonia using metal-exchanged molecular sieves with a chabazite (CHA) structure has recently been commercialized on diesel vehicles. One of the commercialized catalysts, i.e., Cu-SSZ-13, has received much attention for both practical and fundamental studies. For the latter, the particularly well-defined structure of this zeolite is allowing long-standing issues of the catalytically active site for SCR in metal-exchanged zeolites to be addressed. In this review, recent progress is summarized with a focus on two areas. First, the technical significance of Cu-SSZ-13 as compared to other Cu-ion exchanged zeolites (e.g., Cu-ZSM-5 and Cu-beta) is highlighted. Specifically, the much enhanced hydrothermal stability for Cu-SSZ-13 compared to other zeolite catalysts is addressed via performance measurements and catalyst characterization using several techniques. The enhanced stability of Cu-SSZ-13 is rationalized in terms of the unique small pore structure of this zeolite catalyst. Second, the fundamentals of the catalytically active center; i.e., the chemical nature and locations within the SSZ-13 framework are presented with an emphasis on understanding structure-function relationships. For the SCR reaction, traditional kinetic studies are complicated by intra-particle diffusion limitations. However, a major side reaction, nonselective ammonia oxidation by oxygen, does not suffer from mass-transfer limitations at relatively low temperatures due to significantly lower reaction rates. This allows structure-function relationships that are rather well understood in terms of Cu ion locations and redox properties. Finally, some aspects of the SCR reaction mechanism are addressed on the basis of in-situ spectroscopic studies.

  9. Synthesis and modification of mesoporous silica and the preparation of molecular sieve thin films via pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Coutinho, Decio Heringer

    2001-07-01

    describes the evaluation of the HISIV(TM) 1000 molecular sieve for TBC adsorption. The TBC equilibrium capacity was determined from a cyclohexane/TBC liquid mixture and was comparable to alumina adsorbents. Practicum One. A fluorescent diagnostic system was developed to image the inhomogeneous mixture formed as two miscible fluids mix. This diagnostic for the mixing fraction uses a commercially available CCD color camera, a polarity sensitive fluorescent probe (DCM), and the planar laser induced fluorescence (PLIF) imaging technique to track the mixing of two miscible fluids of different polarity (ethanol and decane). The DCM fluorescence spectrum shifts to the red with increasing polarity, and the CCD camera's red, green, and blue color channels serve as spectral filters for the probe's fluorescence.

  10. Dark- and photoreactions of ethanol and acetaldehyde over TiO{sub 2}/carbon molecular sieve fibers

    SciTech Connect

    Reztsova, T.; Chang, C.H.; Idriss, H.; Koresh, J.

    1999-07-01

    TiO{sub 2} has been synthesized within the pores of carbon molecular sieve fibers (CMSF) in order to grow particles of quantum size. TiO{sub 2}/CMSF characteristics were followed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV-vis diffuse reflectance. XPS showed that all Ti cations are in a +4 oxidation state. The reduction profile of Ti cations (made by preferential O anion removal due to Ar{sup +} sputtering), as evidenced by Ti{sup +x}/Ti{sup +4} cations, is very similar to that already observed for well-defined TiO{sub 2} surfaces. The absence of XRD pattern indicated that TiO{sub 2} particles are in an amorphous form. UV-vis diffuse reflectance showed a considerably blue shift ({Delta}E = 0.6--0.7 eV) of the band gap of TiO{sub 2}/CMSF when compared to TiO{sub 2} (anatase). This shift translates an average particle radius of 15 {+-} 2 {angstrom}. Larger TiO{sub 2} particles, outside the CMSF nanopores, are, however, observed by TEM. Dark- and photoreactions of ethanol and acetaldehyde have been investigated over TiO{sub 2}/CMSF by steady state kinetics and temperature programmed desorption in UHV conditions, as well as in batch conditions at atmospheric pressure. UHV-steady state ethanol reactions have shown eightfold increase in the reaction rate at 573 K in the presence of UV when compared to dark reactions at the same temperatures. The rate constants ratio k{sub 2}K{sub 2}/k{sub 1}K{sub 1}, for the photoreactions of ethanol, is ca. 40 times higher for TiO{sub 2}/CMSF than for TiO{sub 2} (powder) indicating the high selectivity of the former toward total conversion of ethanol to CO{sub 2} with minor accumulation of acetaldehyde (k{sub 1}K{sub 1} and k{sub 2}K{sub 2} are the rate constants for ethanol to acetaldehyde and acetaldehyde to CO{sub 2}, respectively). Evidence of C-C bond dissociation is given by formaldehyde desorption during UV-acetaldehyde-TPD over TiO{sub 2}/CMSF under UHV conditions. Moreover, UV

  11. Evaluation of INL Supplied MOOSE/OSPREY Model: Modeling Water Adsorption on Type 3A Molecular Sieve

    SciTech Connect

    Pompilio, L. M.; DePaoli, D. W.; Spencer, B. B.

    2014-08-29

    The purpose of this study was to evaluate Idaho National Lab’s Multiphysics Object-Oriented Simulation Environment (MOOSE) software in modeling the adsorption of water onto type 3A molecular sieve (3AMS). MOOSE can be thought-of as a computing framework within which applications modeling specific coupled-phenomena can be developed and run. The application titled Off-gas SeParation and REcoverY (OSPREY) has been developed to model gas sorption in packed columns. The sorbate breakthrough curve calculated by MOOSE/OSPREY was compared to results previously obtained in the deep bed hydration tests conducted at Oak Ridge National Laboratory. The coding framework permits selection of various options, when they exist, for modeling a process. For example, the OSPREY module includes options to model the adsorption equilibrium with a Langmuir model or a generalized statistical thermodynamic adsorption (GSTA) model. The vapor solid equilibria and the operating conditions of the process (e.g., gas phase concentration) are required to calculate the concentration gradient driving the mass transfer between phases. Both the Langmuir and GSTA models were tested in this evaluation. Input variables were either known from experimental conditions, or were available (e.g., density) or were estimated (e.g., thermal conductivity of sorbent) from the literature. Variables were considered independent of time, i.e., rather than having a mass transfer coefficient that varied with time or position in the bed, the parameter was set to remain constant. The calculated results did not coincide with data from laboratory tests. The model accurately estimated the number of bed volumes processed for the given operating parameters, but breakthrough times were not accurately predicted, varying 50% or more from the data. The shape of the breakthrough curves also differed from the experimental data, indicating a much wider sorption band. Model modifications are needed to improve its utility and

  12. Activation and micropore structure determination of carbon-fiber composite molecular sieves. Topical report, 30 March 1994--14 April 1995

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.; Fei, You Qing

    1995-05-19

    Progress in developing novel, rigid, monolithic adsorbent carbon fiber composites is described. Carbon fiber composites are activated using steam or CO{sub 2}, in order to produce uniform activation through the material and to control the pore structure and adsorptive properties. There is an overall shrinkage during activation, which is directly correlated with burnoff; burnoff above 40% results in fracture. Burnoffs higher than 10% does not produce any benefit for separation of CH{sub 4}-CO{sub 2} mixtures. Five samples of CFCMS have been prepared for testing as molecular sieves; all have relatively narrow pore size distributions with average pore diameters around 6A.

  13. Synthesis of 4 A˚ single-walled carbon nanotubes in catalytic Si-substituted AlPO4-5 molecular sieves

    NASA Astrophysics Data System (ADS)

    Li, Z. M.; Zhai, J. P.; Liu, H. J.; Li, I. L.; Chan, C. T.; Sheng, Ping; Tang, Z. K.

    2004-08-01

    4Å single-walled carbon nanotubes (SWCNs) were fabricated using Si-substituted AlPO4-5 (SAPO-5) molecular sieves as the template. In comparison with neutral AlPO4-5, the SAPO-5 framework plays an important role as a catalyst in pyrolyzing the hydrocarbon molecules, owing to the Bønsted acid sites. The first-principles calculation shows the Si decoration to be very favorable to the formation of carbon nanotubes in the SAPO-5 channels. The resulting SWCNs have better quality than those fabricated without Si doping, evidenced by clearer and stronger radial breathing modes in the Raman spectra.

  14. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF6 Decomposition Gases under Partial Discharge

    PubMed Central

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-01-01

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors’ resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors. PMID:26569245

  15. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF₆ Decomposition Gases under Partial Discharge.

    PubMed

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-01-01

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors' resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors. PMID:26569245

  16. Low temperature VOC combustion over manganese, Cobalt and Zinc ALPO(4) Molecular sieves. Semi-annual, March 1, 1996 - Aug. 31, 1996

    SciTech Connect

    Das, K.; Sheehan, D.G.; Szostak, R.

    1996-12-31

    A functional fixed bed continuous flow catalytic reactor was constructed for conducting experiments on the catalytic destruction of VOCs using cobalt and manganese containing aluminophosphate catalysts (MeAPOs). The reactor was also interfaced to a Gas Chromatograph in order to facilitate on line product analysis. As preliminary catalytic experiments, a cobalt exchanged form of large pore zeolite Y was used as a reference catalyst for the oxidation of methylene chloride (CH{sub 2}Cl{sub 2}). At 350{degrees}C, the catalyst was effective in partial conversion of this feed stream of VOC to CO{sub 2}. Optimization of reaction conditions are currently underway in order to obtain higher conversion levels. The effect of variations in reaction conditions such as reactant flow rate, reaction temperature and catalyst compositions are currently been investigated. In the next phase of this project, the Co-exchanged Y zeolite will be substituted by the MeAPOs catalysts and the reactivities of the latter will be assessed. The potential of the MeAPOs to function as oxidation catalysts was evaluated in the liquid phase conversion of phenol to hydroquinone and catechol. The percentage conversion and product yield were significant and varied depending on the metal type and content of the molecular sieve framework. Conversion levels were also dependent on molecular sieve pore dimensions as the medium pore MeAPO-11 was more active than the larger pore MeAPO-5 or MeAPO-36.

  17. The Use of Cryogenically Cooled 5A Molecular Sieves for Large Volume Reduction of Tritiated Hydrogen Gas

    SciTech Connect

    Antoniazzi, A.B.; Bartoszek, F.E.; Sherlock, A.M.

    2006-07-01

    A commercial hydrogen isotope separation system based on gas chromatography (AGC-ISS) has been built. The system operates in two modes: stripping and volume reduction. The purpose of the stripping mode is to reduce a large volume of tritiated hydrogen gas to a small volume of tritium rich hydrogen gas. The results here illustrate the effectiveness of the AGC-ISS in the stripping and volume reduction phases. Column readiness for hydrogen isotope separation is confirmed by room temperature air separation tests. Production runs were initially carried out using natural levels of deuterium (110-160 ppm) in high purity hydrogen. After completion of the deuterium/hydrogen runs the system began operations with tritiated hydrogen. The paper presents details of the AGC-ISS design and results of tritium tests. The heart of the AGC-ISS consists of two packed columns (9 m long, 3.8 cm OD) containing 5A molecular sieve material of 40/60 mesh size. Each column has 5 individually controlled heaters along the length of the column and is coiled around an inverted inner dewar. The coiled column and inner dewar are both contained within an outer dewar. In this arrangement liquid nitrogen, used to cryogenically cool the columns, flows into and out off the annular space defined by the two dewars, allowing for alternate heating and cooling cycles. Tritiated hydrogen feed is injected in batch quantities. The batch size is variable with the maximum quantity restricted by the tritium concentration in the exhausted hydrogen. The stripping operations can be carried out in full automated mode or in full manual mode. The average cycle time between injections is about 75 minutes. To date, the maximum throughput achieved is 10.5 m{sup 3}/day. A total of 37.8 m{sup 3} of tritiated hydrogen has been processed during commissioning. The system has demonstrated that venting of >99.95% of the feed gas is possible while retaining 99.98% of the tritium. At a maximum tritium concentration of {approx}7 GBq

  18. Low temperature VOC combustion over manganese, cobalt and zinc AlPO{sub 4} molecular sieves. Semi-annual report-1, September 1, 1995--February 29, 1996

    SciTech Connect

    Szostak, R.

    1997-06-01

    The objective of this project is to prepare manganese, cobalt and zinc containing AlPO{sub 4} large pore molecular sieves of structure type -36 and evaluate their ability to function as successful oxidation catalysts for the removal of low levels of VOC`s from gas streams. The tasks to be accomplished are as follows: (1) To develop reliable synthesis methods that produce the large pore metal aluminophosphates containing manganese, cobalt and zinc in their framework. (2) To characterize these materials to determine phase purity and the location of the incorporated metal in the framework. Characterization will also include the nature of the active sites within the structures and the effect manganese, cobalt and zinc has on the structures` acidity. (3) To screen the material for their catalytic activity in the oxidation of hydrocarbons and aromatics. This report gives a summary of the status of the project as of 28th February 1996.

  19. Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIF-8 for Membrane-Based CO2 Capture.

    PubMed

    Ban, Yujie; Li, Zhengjie; Li, Yanshuo; Peng, Yuan; Jin, Hua; Jiao, Wenmei; Guo, Ang; Wang, Po; Yang, Qingyuan; Zhong, Chongli; Yang, Weishen

    2015-12-14

    Fine-tuning of effective pore size of microporous materials is necessary to achieve precise molecular sieving properties. Herein, we demonstrate that room temperature ionic liquids can be used as cavity occupants for modification of the microenvironment of MOF nanocages. Targeting CO2 capture applications, we tailored the effective cage size of ZIF-8 to be between CO2 and N2 by confining an imidazolium-based ionic liquid [bmim][Tf2 N] into ZIF-8's SOD cages by in-situ ionothermal synthesis. Mixed matrix membranes derived from ionic liquid-modified ZIF-8 exhibited remarkable combinations of permeability and selectivity that transcend the upper bound of polymer membranes for CO2 /N2 and CO2 /CH4 separation. We observed an unusual response of the membranes to varying pressure, that is, an increase in the CO2 /CH4 separation factor with pressure, which is highly desirable for practical applications in natural gas upgrading. PMID:26515558

  20. Nanoscopic imaging of meso-tetraalkylporphyrins prepared in high yields enabled by Montmorrilonite K10 and 3A molecular sieves.

    PubMed

    Plamont, Rémi; Kikkawa, Yoshihiro; Takahashi, Mayuko; Kanesato, Masatoshi; Giorgi, Michel; Chan Kam Shun, Anita; Roussel, Christian; Balaban, Teodor Silviu

    2013-08-19

    We have developed a high-yielding synthesis of meso-tetraalkylporphyrins, which previously have been obtained only in lower yields. By employing Montmorrilonite K10 as the acid catalyst and 3 Å molecular sieves as the dehydrating agent, yields that reached 70 % could be achieved with some aliphatic aldehydes. The free-base porphyrins with decyl (C10) or longer chains were imaged at the single-molecule level at the solvent/surface interface. Highly oriented pyrolytic graphite (HOPG) was used as a π-stacking surface, whereas 1-phenyloctane and 1-phenylnonane were used as solvents. An odd-even effect was observed from C13 to C16. For C13 a single-crystal X-ray structure allowed an unprecedented insight into how packing from two dimensions is expanded into a three-dimensional crystal lattice. PMID:23839774

  1. Integrated Testing of a 4-Bed Molecular Sieve and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Mulloth, Lila M.; Affleck, David L.

    2004-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. This paper reports the integrated 4BMS and liquid-cooled TSAC testing conducted during the period of March 3 to April 18, 2003. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  2. A New Class of Octahedral Molecular Sieve Materials for the Selective Removal and Sequestration of {sup 90}Sr{sup 2+}

    SciTech Connect

    NYMAN,MAY D.; NENOFF,TINA M.; TRIPATHI,AKHILESH; PARISE,JOHN B.; MAXWELL,ROBERT S.; HARRISON,WILLIAM T.A.

    2000-07-14

    The structure of Na{sub 16}Nb{sub 12.8}Ti{sub 3.2}O{sub 44.8}(OH){sub 3.2} {center_dot} 8H{sub 2}O, a member of a new family of Sandia Octahedral Molecular Sieves (SOMS) having a Nb/Na/M{sup IV} (M= Ti, Zr) oxide framework and exchangeable Na and water in open channels, was determined from Synchrotron X-ray data. The SOMS phases are isostructural with variable M{sup IV}:Nb(1:50--1:4) ratios. The SOMS are extremely selective for sorption of divalent cations, particularly Sr{sup 2+}. The ion-exchanged SOMS undergo direct thermal conversion to a perovskite-type phase, indicating this is a promising new method for removal and sequestration of radioactive Sr-90 from mixed nuclear wastes.

  3. Trace matrix solid phase dispersion using a molecular sieve as the sorbent for the determination of flavonoids in fruit peels by ultra-performance liquid chromatography.

    PubMed

    Cao, Wan; Hu, Shuai-Shuai; Ye, Li-Hong; Cao, Jun; Pang, Xiao-Qing; Xu, Jing-Jing

    2016-01-01

    A simple, rapid, and highly selective trace matrix solid phase dispersion (MSPD) technique, coupled with ultra-performance liquid chromatography-ultraviolet detection, was proposed for extracting flavonoids from orange fruit peel matrices. Molecular sieve SBA-15 was applied for the first time as a solid support in trace MSPD. Parameters, such as the type of dispersant, mass ratio of the sample to the dispersant, grinding time, and elution pH, were optimized in detail. The optimal extraction conditions involved dispersing a powdered fruit peel sample (25 mg) into 25mg of SBA-15 and then eluting the target analytes with 500 μL of methanol. A satisfactory linearity (r(2) > 0.9990) was obtained, and the calculated limits of detection reached 0.02-0.03 μg/mL for the compounds. The results showed that the method developed was successfully applied to determine the content of flavonoids in complex fruit peel matrices. PMID:26212999

  4. Natural gas cleanup: Evaluation of a molecular sieve carbon as a pressure swing adsorbent for the separation of methane/nitrogen mixtures

    SciTech Connect

    Grimes, R.W.

    1994-06-01

    This report describes the results of a preliminary evaluation to determine the technical feasibility of using a molecular sieve carbon manufactured by the Takeda Chemical Company of Japan in a pressure owing adsorption cycle for upgrading natural gas (methane) contaminated with nitrogen. Adsorption tests were conducted using this adsorbent in two, four, and five-step adsorption cycles. Separation performance was evaluated in terms of product purity, product recovery, and sorbent productivity for all tests. The tests were conducted in a small, single-column adsorption apparatus that held 120 grams of the adsorbent. Test variables included adsorption pressure, pressurization rate, purge rate and volume, feed rate, and flow direction in the steps from which the product was collected. Sorbent regeneration was accomplished by purging the column with the feed gas mixture for all but one test series where a pure methane purge was used. The ratio between the volumes of the pressurization gas and the purge gas streams was found to be an important factor in determining separation performance. Flow rates in the various cycle steps had no significant effect. Countercurrent flow in the blow-down and purge steps improved separation performance. Separation performance appears to improve with increasing adsorption pressure, but because there are a number of interrelated variables that are also effected by pressure, further testing will be needed to verify this. The work demonstrates that a molecular sieve carbon can be used to separate a mixture of methane and nitrogen when used in a pressure swing cycle with regeneration by purge. Further work is needed to increase product purity and product recovery.

  5. Massively parallel mathematical sieves

    SciTech Connect

    Montry, G.R.

    1989-01-01

    The Sieve of Eratosthenes is a well-known algorithm for finding all prime numbers in a given subset of integers. A parallel version of the Sieve is described that produces computational speedups over 800 on a hypercube with 1,024 processing elements for problems of fixed size. Computational speedups as high as 980 are achieved when the problem size per processor is fixed. The method of parallelization generalizes to other sieves and will be efficient on any ensemble architecture. We investigate two highly parallel sieves using scattered decomposition and compare their performance on a hypercube multiprocessor. A comparison of different parallelization techniques for the sieve illustrates the trade-offs necessary in the design and implementation of massively parallel algorithms for large ensemble computers.

  6. Application of computational fluid dynamics for the simulation of cryogenic molecular sieve bed absorber of hydrogen isotopes recovery system for Indian LLCB-TBM

    SciTech Connect

    Gayathri Devi, V.; Sircar, A.; Sarkar, B.

    2015-03-15

    One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption mass transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)

  7. 129Xe NMR of xenon adsorbed on the molecular sieves AlPO 4-11 and SAPO-11. Chemical shift anisotropy related to the asymmetry of the adsorption zones

    NASA Astrophysics Data System (ADS)

    Springuel-Huet, M. A.; Fraissard, J.

    1989-01-01

    The form of the 129Xe NMR signal of xenon adsorbed at low concentration on the molecular sieves SAPO-11 and AlPO 4-11 corresponds to a highly anisotropic chemical shift which expresses the asymmetry of the channels in which the xenon is located. To the asymmetry of the xenon-wall interaction is added that of the xenon-xenon interaction when the channels are largely filled.

  8. Microfluidic sieve valves

    SciTech Connect

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  9. Carbon fiber composite molecular sieves

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.

    1997-12-01

    Monolithic adsorbents based on isotropic pitch fibers have been developed jointly by ORNL and the University of Kentucky, Center for Applied Energy Research. The monoliths are attractive for gas separation and storage applications because of their unique combination of physical properties and microporous structure. Currently at ORNL the monoliths are produced in billets that are 10 cm in diameter and 25 cm in length. The monolithic adsorbent material is being considered for guard bed applications on a natural gas (NG) powered device. In order for the material to be successful in this application, one must attain a uniform activation to modest micropore volumes throughout the large monoliths currently being produced. Here the authors report the results of a study directed toward attaining uniform activation in these billets.

  10. Research on Molecular Sieve Technology.

    ERIC Educational Resources Information Center

    Shah, Dhananjai B.; Hayhurst, David T.

    1985-01-01

    The zeolite synthesis and modification research program at Cleveland State University (Ohio) is described, including program philosophy and objectives, and research facilities. Also considers zeolite synthesis, adsorption on zeolites, kinetics of adsorption, and zeolite catalysis research. (JN)

  11. Ultrasound- and Molecular Sieves-Assisted Synthesis, Molecular Docking and Antifungal Evaluation of 5-(4-(Benzyloxy)-substituted phenyl)-3-((phenylamino)methyl)-1,3,4-oxadiazole-2(3H)-thiones.

    PubMed

    Nimbalkar, Urja D; Tupe, Santosh G; Seijas Vazquez, Julio A; Khan, Firoz A Kalam; Sangshetti, Jaiprakash N; Nikalje, Anna Pratima G

    2016-01-01

    A novel series of 5-(4-(benzyloxy)substituted phenyl)-3-((phenyl amino)methyl)-1,3,4-oxadiazole-2(3H)-thione Mannich bases 6a-o were synthesized in good yield from the key compound 5-(4-(benzyloxy)phenyl)-1,3,4-oxadiazole-2(3H)-thione by aminomethylation with paraformaldehyde and substituted amines using molecular sieves and sonication as green chemistry tools. The antifungal activity of the new products was evaluated against seven human pathogenic fungal strains, namely, Candida albicans ATCC 24433, Candida albicans ATCC 10231, Candida glabrata NCYC 388, Cryptococcus neoformans ATCC 34664, Cryptococcus neoformans PRL 518, Aspergillus fumigatus NCIM 902 and Aspergillus niger ATCC 10578. The synthesized compounds 6d, 6f, 6g, 6h and 6j exhibited promising antifungal activity against the tested fungal pathogens. In molecular docking studies, derivatives 6c, 6f and 6i showed good binding at the active site of C. albicans cytochrome P450 enzyme lanosterol 14 α-demethylase. The in vitro antifungal activity results and docking studies indicated that the synthesized compounds have potential antifungal activity and can be further optimized as privileged scaffolds to design and develop potent antifungal drugs. PMID:27171073

  12. Generalized Fibonacci photon sieves.

    PubMed

    Ke, Jie; Zhang, Junyong

    2015-08-20

    We successfully extend the standard Fibonacci zone plates with two on-axis foci to the generalized Fibonacci photon sieves (GFiPS) with multiple on-axis foci. We also propose the direct and inverse design methods based on the characteristic roots of the recursion relation of the generalized Fibonacci sequences. By switching the transparent and opaque zones, according to the generalized Fibonacci sequences, we not only realize adjustable multifocal distances but also fulfill the adjustable compression ratio of focal spots in different directions. PMID:26368763

  13. Surface Interaction and Quantum Kinetic Molecular Sieving for H2 and D2 Adsorption on a Mixed-Metal-Organic Framework Material

    SciTech Connect

    Chen, Banglin; Zhaou, Xuebo; Putkham, Apipong; Hong, Kunlun; Labkovsky, Emil B; Hurtado, Eric J; Fletcher, Ashleigh J; Thomas, K Mark

    2008-01-01

    two types of pores, a slow component with high activation energy (13.35 {+-} 0.59 kJ mol{sup -1}) for the narrow pores and a faster component with low activation energy (8.56 0.41 kJ mol{sup -1}). The D{sub 2} adsorption kinetic constants for both components were significantly faster than the corresponding H{sub 2} kinetics for specific pressure increments and had slightly lower activation energies than the corresponding values for H{sub 2} adsorption. The kD{sub 2}/kH{sub 2} ratio for the slow component was 1.62 {+-} 0.07, while the fast component was 1.38 {+-} 0.04 at 77.3 K, and the corresponding ratios were smaller at 87.3 K. These observations of kinetic isotope quantum molecular sieving in porous materials are due to the larger zero-point energy for the lighter H{sub 2}, resulting in slower adsorption kinetics compared with the heavier D{sub 2}. The results show that a combination of open metal centers and confinement in ultramicroporosity leads to a high enthalpy for H{sub 2} adsorption over a wide range of surface coverage and quantum effects influence diffusion of H{sub 2} and D{sub 2} in pores in M{prime}MOF 1.

  14. Turnover of Soluble Proteins in the Wheat Sieve Tube

    PubMed Central

    Fisher, Donald B.; Wu, Yujia; Ku, Maurice S. B.

    1992-01-01

    Although the enucleate conducting cells of the phloem are incapable of protein synthesis, phloem exudates characteristically contain low concentrations of soluble proteins. The role of these proteins and their movement into and out of the sieve tubes poses important questions for phloem physiology and for cell-to-cell protein movement via plasmodesmata. The occurrence of protein turnover in sieve tubes was investigated by [35S]methionine labeling and by the use of aphid stylets to sample the sieve tube contents at three points along a source-to-sink pathway (flag leaf to grains) in wheat plants (Triticum aestivum L.). Protein concentration and composition were similar at all sampling sites. The kinetics of 35S-labeling of protein suggested a basically source-to-sink pattern of movement for many proteins. However, an appreciable amount of protein synthesis and, presumably, removal also occurred along the path. This movement appeared to be protein specific and not based on passive molecular sieving. The results have important implications for the transport capacities of plasmodesmata between sieve tubes and companion cells. The observations considerably expand the possible basis for ongoing sieve tube-companion cell interactions and, perhaps, interaction between sources and sinks. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 8 Figure 10 Figure 11 Figure 12 PMID:16653142

  15. Itegrated Test and Evaluation of a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removtal System (CDRA), Mechanical Compressor Engineering Development Unit (EDU), and Sabitier Engineering Development Unit (EDU)

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Campbell, Melissa; Murdoch, Karen; Miller, Lee A.; Jeng, Frank

    2005-01-01

    Currently on the International Space Station s (ISS) U.S. Segment, carbon dioxide (CO2) scrubbed from the cabin by a 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal Assembly (CDRA) is vented overboard as a waste product. Likewise, the product hydrogen (H2) that will be generated by the Oxygen Generation Assembly (OGA) planned for installation will also be vented. A flight experiment has been proposed that will take the waste CO2 removed from the cabin, and via the catalytic Sabatier process, reduce it with waste H2 to generate water and methane. The water produced may provide cost and logistics savings for ISS by reducing the amount of water periodically re-supplied to orbit. To make this concept viable, a mechanical piston compressor and accumulator were developed for collecting and storing the CO2 from the CDRA. The compressor, accumulator and Sabatier system would be packaged together as one unit and referred to as the Carbon Dioxide Reduction Assembly (CRA). Testing was required to evaluate the performance of a 4BMS CDRA, compressor, accumulator, and Sabatier performance along with their operating rules when integrated together. This had been numerically modeled and simulated; however, testing was necessary to verify the results from the engineering analyses. Testing also allowed a better understanding of the practical inefficiencies and control issues involved in a fully integrated system versus the theoretical ideals in the model. This paper presents and discusses the results of an integrated engineering development unit test.

  16. Cadherin selectivity filter regulates endothelial sieving properties

    PubMed Central

    Quadri, Sadiqa K.; Sun, Li; Islam, Mohammad Naimul; Shapiro, Lawrence; Bhattacharya, Jahar

    2013-01-01

    The molecular basis of endothelial protein sieving, the critical vascular barrier function that restricts flow of large plasma proteins into tissues while allowing small molecules and water to pass, is not understood. Here, we address this issue using a novel assay to detect macromolecular penetrance at microdomains of endothelial adherens junctions. Adherens junctions, as detected by cadherin-GFP expression, were distributed in the cell perimeter as high- or low-density segments. Low but not high-density segments permitted penetrance of a 70-kDa fluorescent dextran, a molecule of equivalent size to albumin. Expression of a cadherin mutant that abrogates strand–swap adhesive binding in the cadherin EC1 ectodomain, or alternatively of an α-actinin-1 mutant that inhibits F-actin bundling, increased both cadherin mobility and 70 kDa dextran penetrance at high-density segments. These findings suggest that adhesive interactions in the cadherin EC1 domain, which underlie adherens junction structure, are critical determinants of endothelial macromolecular sieving. PMID:23033075

  17. Multiprocessing the Sieve of Eratosthenes

    SciTech Connect

    Bokhari, S.H.

    1987-04-01

    More than two thousand years ago, Eratosthenes of Cyrene described a procedure for finding all prime numbers in a given range. This straightforward algorithm, known as the Sieve of Eratosthenes, is to this day the only procedure for finding prime numbers. In recent years it has been of interest to computer scientists and engineers because it serves as a convenient benchmark against which to measure some aspects of a computer's performance. Specifically, the Sieve tests the power of a machine (or of a compiler) to access a very large array in memory rapidly and repeatedly. This power is clearly influenced by memory access time, the speed at which indexing is done, and the overhead of looping. The parallel version of the Sieve is very useful as a test of some of the capabilities of a parallel machine. The parallel algorithm is straightforward, and so is the process for checking the final results. However, the efficient implementation of the algorithm on a real parallel machine, especially in the dynamic load-balancing case, requires thoughtful design.

  18. Preparation of amorphous sulfide sieves

    DOEpatents

    Siadati, Mohammad H.; Alonso, Gabriel; Chianelli, Russell R.

    2006-11-07

    The present invention involves methods and compositions for synthesizing catalysts/porous materials. In some embodiments, the resulting materials are amorphous sulfide sieves that can be mass-produced for a variety of uses. In some embodiments, methods of the invention concern any suitable precursor (such as thiomolybdate salt) that is exposed to a high pressure pre-compaction, if need be. For instance, in some cases the final bulk shape (but highly porous) may be same as the original bulk shape. The compacted/uncompacted precursor is then subjected to an open-flow hot isostatic pressing, which causes the precursor to decompose and convert to a highly porous material/catalyst.

  19. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins

    PubMed Central

    Fu, Jianping; Schoch, Reto B.; Stevens, Anna L.; Tannenbaum, Steven R.; Han, Jongyoon

    2008-01-01

    Microfabricated regular sieving structures hold great promise as an alternative to gels to improve biomolecule separation speed and resolution. In contrast to disordered gel porous networks, these regular structures also provide well-defined environments ideal for study of molecular dynamics in confining spaces. However, previous regular sieving structures have been limited for separation of long DNA molecules, and separation of smaller, physiologically-relevant macromolecules, such as proteins, still remains as a challenge. Here we report a microfabricated anisotropic sieving structure consisting of a two-dimensional periodic nanofluidic filter array (Anisotropic Nanofilter Array: ANA). The designed structural anisotropy in the ANA causes different-sized or -charged biomolecules to follow distinct trajectories, leading to efficient separation. Continuous-flow size-based separation of DNA and proteins as well as electrostatic separation of proteins were achieved, thus demonstrating the potential of the ANA as a generic molecular sieving structure for an integrated biomolecule sample preparation and analysis system. PMID:18654231

  20. Multiprocessing the Sieve of Eratosthenes

    NASA Technical Reports Server (NTRS)

    Bokhari, S.

    1986-01-01

    The Sieve of Eratosthenes for finding prime numbers in recent years has seen much use as a benchmark algorithm for serial computers while its intrinsically parallel nature has gone largely unnoticed. The implementation of a parallel version of this algorithm for a real parallel computer, the Flex/32, is described and its performance discussed. It is shown that the algorithm is sensitive to several fundamental performance parameters of parallel machines, such as spawning time, signaling time, memory access, and overhead of process switching. Because of the nature of the algorithm, it is impossible to get any speedup beyond 4 or 5 processors unless some form of dynamic load balancing is employed. We describe the performance of our algorithm with and without load balancing and compare it with theoretical lower bounds and simulated results. It is straightforward to understand this algorithm and to check the final results. However, its efficient implementation on a real parallel machine requires thoughtful design, especially if dynamic load balancing is desired. The fundamental operations required by the algorithm are very simple: this means that the slightest overhead appears prominently in performance data. The Sieve thus serves not only as a very severe test of the capabilities of a parallel processor but is also an interesting challenge for the programmer.

  1. Effect of H{sub 3}PW{sub 12}O{sub 40} impregnation on Sn-MCM-41 mesoporous molecular sieves and their physico-chemical properties

    SciTech Connect

    Nedumaran, D.; Pandurangan, A.

    2015-01-15

    Graphical abstract: The wide angle XRD shows the well dispersion of HPWA in Sn-MCM-41. It enhances the total acidity of the material. The acidity of the material is correlated with sulfone selectivity. The FT-IR of dibenzothiophene and product shows the formation of sulfone (DBTO{sub 2}). - Highlights: • To enhance the total acidity of Sn-MCM-41 TPA is impregnated. • FT-IR and {sup 31}P MAS NMR confirms the HPWA intact on Sn-MCM-41. • EDAX shows the presence of W and P on Sn-MCM-41. • In ODS formation of sulfone was confirmed by FT-IR and {sup 1}H NMR. • The order of the catalytic activity of the catalysts are 18HSnM > 28HSnM > 8HSnM. - Abstract: Si-Sn-MCM-41 (Si/Sn = 110) mesoporous molecular sieve was synthesized by hydrothermal sol–gel method using cetyltrimethylammonium bromide (CTAB) as surfactant and SnCl{sub 4}·5H{sub 2}O as a metal source. To generate surface acidity of Si-Sn-MCM-41, 12-tungstophosphoric acid (HPWA) is impregnated on it. The acidity of HPWA loading on Sn-MCM-41 was investigated by temperature programmed desorption of NH{sub 3}. The diffused reflectance spectra of ultraviolet radiation, Raman spectra, FT-IR, {sup 29}Si-MAS NMR and {sup 31}P-MAS NMR techniques revealed the intact of α-Keggin anions on Sn-MCM-41. The wide angle XRD results showed that the HPWA is well dispersed on the support. The total acidity was enhanced with increase in loading of H{sub 3}PW{sub 12}O{sub 40}. The catalytic activity was examined in desulfurization of dibenzothiophene in vapor phase system. Among the catalysts 18% HPWA loaded Sn-MCM-41 showed good catalytic activity in desulfurization at 325 °C. The HPWA/Sn-MCM-41 are a suitable solid acid catalyst for converting organic sulfur into insoluble sulfone.

  2. Comparative Modal Analysis of Sieve Hardware Designs

    NASA Technical Reports Server (NTRS)

    Thompson, Nathaniel

    2012-01-01

    The CMTB Thwacker hardware operates as a testbed analogue for the Flight Thwacker and Sieve components of CHIMRA, a device on the Curiosity Rover. The sieve separates particles with a diameter smaller than 150 microns for delivery to onboard science instruments. The sieving behavior of the testbed hardware should be similar to the Flight hardware for the results to be meaningful. The elastodynamic behavior of both sieves was studied analytically using the Rayleigh Ritz method in conjunction with classical plate theory. Finite element models were used to determine the mode shapes of both designs, and comparisons between the natural frequencies and mode shapes were made. The analysis predicts that the performance of the CMTB Thwacker will closely resemble the performance of the Flight Thwacker within the expected steady state operating regime. Excitations of the testbed hardware that will mimic the flight hardware were recommended, as were those that will improve the efficiency of the sieving process.

  3. An artificial compound eye of photon Sieves

    NASA Astrophysics Data System (ADS)

    Jiang, Wenbo; Hu, Song; He, Yu; Bu, Yun

    2015-11-01

    The compound eye of insects has numerous extraordinary optical performances, such as minimum chromatic aberration, wide-angle field of view, and high sensitivity to the incidence light. Inspired by these unique performances, we present a novel artificial compound eye of photon sieves in this paper, where the photon sieves play the roles of insects' ommatidia. These photon sieves have the same focal length. The incidence light can be focused into the same focal plane and produce the superposition effect, the utilization ratio of energy can be largely improved. Through the numerical simulation, the results show that this novel structure has similar focusing performance with the conventional photon sieves, but has higher utilization ratio of energy and wider angle field of view than that of the conventional photon sieves. Our findings provide a new direction for optics and biology researchers, which will be beneficial for medical imaging, astronomy, etc.

  4. Generation of optical vortices by apodized photon sieves

    NASA Astrophysics Data System (ADS)

    Sun, Hai-bin; Wang, Xing-hai; Chen, Jun; Sun, Ping

    2016-05-01

    As a novel diffractive optical element, photon sieve has good focusing properties. We propose a method to verify the focusing properties by using apodized photon sieves. The apodized photon sieve is obtained by using a Gaussian window function to modulate the general photon sieve. Focusing properties of apodized photon sieve are studied by numerical simulations and experiments. It shows that photon sieves have good focusing ability, and the focusing ability of the photon sieve on the focal plane is stronger than that on other image planes. The experimental results also demonstrate that photon sieves can be used to generate optical vortices. The existence of optical vortices is confirmed by the formation of fork fringes. This apodized photon sieve is expected to have some practical applications in focusing analysis, optical imaging, and optical communication.

  5. SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion.

    PubMed

    Knoblauch, Michael; Froelich, Daniel R; Pickard, William F; Peters, Winfried S

    2014-04-01

    The phloem provides a network of sieve tubes for long-distance translocation of photosynthates. For over a century, structural proteins in sieve tubes have presented a conundrum since they presumably increase the hydraulic resistance of the tubes while no potential function other than sieve tube or wound sealing in the case of injury has been suggested. Here we summarize and critically evaluate current speculations regarding the roles of these proteins. Our understanding suffers from the suggestive power of images; what looks like a sieve tube plug on micrographs may not actually impede translocation very much. Recent reports of an involvement of SEOR (sieve element occlusion-related) proteins, a class of P-proteins, in the sealing of injured sieve tubes are inconclusive; various lines of evidence suggest that, in neither intact nor injured plants, are SEORs determinative of translocation stoppage. Similarly, the popular notion that P-proteins serve in the defence against phloem sap-feeding insects is unsupported by empirical facts; it is conceivable that in functional sieve tubes, aphids actually could benefit from inducing a plug. The idea that rising cytosolic Ca(2+) generally triggers sieve tube blockage by P-proteins appears widely accepted, despite lacking experimental support. Even in forisomes, P-protein assemblages restricted to one single plant family and the only Ca(2+)-responsive P-proteins known, the available evidence does not unequivocally suggest that plug formation is the cause rather than a consequence of translocation stoppage. We conclude that the physiological roles of structural P-proteins remain elusive, and that in vivo studies of their dynamics in continuous sieve tube networks combined with flow velocity measurements will be required to (hopefully) resolve this scientific roadblock. PMID:24591057

  6. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....3 percent, mean deviation from standard sieve using barley ±0.5 percent, mean deviation from standard sieve using barley 55/64×3/4 inch slotted ±0.5 percent, mean deviation from standard sieve using barley ±0.7 percent, mean deviation from standard sieve using barley 6/64×3/4 inch slotted ±0.7...

  7. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....3 percent, mean deviation from standard sieve using barley ±0.5 percent, mean deviation from standard sieve using barley 55/64×3/4 inch slotted ±0.5 percent, mean deviation from standard sieve using barley ±0.7 percent, mean deviation from standard sieve using barley 6/64×3/4 inch slotted ±0.7...

  8. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....3 percent, mean deviation from standard sieve using barley ±0.5 percent, mean deviation from standard sieve using barley 55/64×3/4 inch slotted ±0.5 percent, mean deviation from standard sieve using barley ±0.7 percent, mean deviation from standard sieve using barley 6/64×3/4 inch slotted ±0.7...

  9. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....3 percent, mean deviation from standard sieve using barley ±0.5 percent, mean deviation from standard sieve using barley 55/64×3/4 inch slotted ±0.5 percent, mean deviation from standard sieve using barley ±0.7 percent, mean deviation from standard sieve using barley 6/64×3/4 inch slotted ±0.7...

  10. 7 CFR 801.8 - Tolerances for sieves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....3 percent, mean deviation from standard sieve using barley ±0.5 percent, mean deviation from standard sieve using barley 55/64×3/4 inch slotted ±0.5 percent, mean deviation from standard sieve using barley ±0.7 percent, mean deviation from standard sieve using barley 6/64×3/4 inch slotted ±0.7...

  11. Recent Improvements To the Sieve of Eratosthenes.

    ERIC Educational Resources Information Center

    Quesada, Antonio R.

    1997-01-01

    Presents recently developed generalizations to the sieve of Eratosthenes, showing the principles underlying these improvements, which increase its efficiency without changing too much of its simplicity. Offers several possibilities to propose good investigations for students to explore, find patterns, and make generalizations. (JRH)

  12. Factorization using the quadratic sieve algorithm

    SciTech Connect

    Davis, J.A.; Holdridge, D.B.

    1983-12-01

    Since the cryptosecurity of the RSA two key cryptoalgorithm is no greater than the difficulty of factoring the modulus (product of two secret primes), a code that implements the Quadratic Sieve factorization algorithm on the CRAY I computer has been developed at the Sandia National Laboratories to determine as sharply as possible the current state-of-the-art in factoring. Because all viable attacks on RSA thus far proposed are equivalent to factorization of the modulus, sharper bounds on the computational difficulty of factoring permit improved estimates for the size of RSA parameters needed for given levels of cryptosecurity. Analysis of the Quadratic Sieve indicates that it may be faster than any previously published general purpose algorithm for factoring large integers. The high speed of the CRAY I coupled with the capability of the CRAY to pipeline certain vectorized operations make this algorithm (and code) the front runner in current factoring techniques.

  13. Factorization using the quadratic sieve algorithm

    SciTech Connect

    Davis, J.A.; Holdridge, D.B.

    1983-01-01

    Since the cryptosecurity of the RSA two key cryptoalgorithm is no greater than the difficulty of factoring the modulus (product of two secret primes), a code that implements the Quadratic Sieve factorization algorithm on the CRAY I computer has been developed at the Sandia National Laboratories to determine as sharply as possible the current state-of-the-art in factoring. Because all viable attacks on RSA thus far proposed are equivalent to factorization of the modulus, sharper bounds on the computational difficulty of factoring permit improved estimates for the size of RSA parameters needed for given levels of cryptosecurity. Analysis of the Quadratic Sieve indicates that it may be faster than any previously published general purpose algorithm for factoring large integers. The high speed of the CRAY I coupled with the capability of the CRAY to pipeline certain vectorized operations make this algorithm (and code) the front runner in current factoring techniques.

  14. Sieve Tube Geometry in Relation to Phloem Flow

    PubMed Central

    Mullendore, Daniel L.; Windt, Carel W.; Van As, Henk; Knoblauch, Michael

    2010-01-01

    Sieve elements are one of the least understood cell types in plants. Translocation velocities and volume flow to supply sinks with photoassimilates greatly depend on the geometry of the microfluidic sieve tube system and especially on the anatomy of sieve plates and sieve plate pores. Several models for phloem translocation have been developed, but appropriate data on the geometry of pores, plates, sieve elements, and flow parameters are lacking. We developed a method to clear cells from cytoplasmic constituents to image cell walls by scanning electron microscopy. This method allows high-resolution measurements of sieve element and sieve plate geometries. Sieve tube–specific conductivity and its reduction by callose deposition after injury was calculated for green bean (Phaseolus vulgaris), bamboo (Phyllostachys nuda), squash (Cucurbita maxima), castor bean (Ricinus communis), and tomato (Solanum lycopersicum). Phloem sap velocity measurements by magnetic resonance imaging velocimetry indicate that higher conductivity is not accompanied by a higher velocity. Studies on the temporal development of callose show that small sieve plate pores might be occluded by callose within minutes, but plants containing sieve tubes with large pores need additional mechanisms. PMID:20354199

  15. Clad photon sieve for generating localized hollow beams

    NASA Astrophysics Data System (ADS)

    Cheng, Yiguang; Tong, Junmin; Zhu, Jiangping; Liu, Junbo; Hu, Song; He, Yu

    2016-02-01

    A novel photon sieve structure called clad photon sieve is proposed to generate localized hollow beams and its design principle and focusing properties are studied. The clad photon sieve is composed of the internal zone and external zone with pinholes being positioned on the dark zones. Pinholes in the internal zone and in the external zone give destructive interference to the focus, leading to localized hollow beams being generated on the focal plane. Focusing properties of clad photon sieve with different focal lengths, zone numbers and modulation factors are also studied by theoretical calculations, numerical simulations and experiments, showing that the central dark spot size can be controlled by the focal length and rings number, and the intensity of the central dark spot varies with different modulation factors related with the internal zone and the external zone. This photon sieve can be useful for trapping and manipulating of particles and cooling of atoms.

  16. Sieving wastewater--cellulose recovery, economic and energy evaluation.

    PubMed

    Ruiken, C J; Breuer, G; Klaversma, E; Santiago, T; van Loosdrecht, M C M

    2013-01-01

    Application of fine-mesh sieves (<0.35 mm) as pretreatment for municipal biological wastewater treatment gives an opportunity to recover resources and increase sustainability of wastewater treatment processes. Sieves are traditionally used for single stage mechanical treatment (typical mesh of 0.35 mm) or in combination with an MBR (typical mesh >0.7 mm). When sieves with a mesh of 0.35 mm are used on raw sewage we observed that cellulose fibres mainly originating from toilet paper are removed efficiently from the influent with a high recovery and purity. The application of sieves as pretreatment for conventional activated sludge processes has been evaluated based on pilot plant research at three WWTPs in the Netherlands. With sieving applied to the dry weather flow only the overall energy usage of the WWTP including sludge treatment can be decreased by at least 40% with a payback time of 7 years. PMID:23121895

  17. Subnanometer Two-Dimensional Graphene Oxide Channels for Ultrafast Gas Sieving.

    PubMed

    Shen, Jie; Liu, Gongping; Huang, Kang; Chu, Zhenyu; Jin, Wanqin; Xu, Nanping

    2016-03-22

    Two-dimensional (2D) materials with atomic thickness and extraordinary physicochemical properties exhibit unique mass transport behaviors, enabling them as emerging nanobuilding blocks for separation membranes. Engineering 2D materials into membrane with subnanometer apertures for precise molecular sieving remains a great challenge. Here, we report rational-designing external forces to precisely manipulate nanoarchitecture of graphene oxide (GO)-assembled 2D channels with interlayer height of ∼0.4 nm for fast transporting and selective sieving gases. The external forces are synergistic to direct the GO nanosheets stacking so as to realize delicate size-tailoring of in-plane slit-like pores and plane-to-plane interlayer-galleries. The 2D channels endow GO membrane with excellent molecular-sieving characteristics that offer 2-3 orders of magnitude higher H2 permeability and 3-fold enhancement in H2/CO2 selectivity compared with commercial membranes. Formation mechanism of 2D channels is proposed on the basis of the driving forces, nanostructures, and transport behaviors. PMID:26866661

  18. Continuous-Flow Bioseparation Using Microfabricated Anisotropic Nanofluidic Sieving Structures

    PubMed Central

    Fu, Jianping; Mao, Pan; Han, Jongyoon

    2010-01-01

    The anisotropic nanofluidic filter (nanofilter) array (ANA) is a unique molecular sieving structure for separating biomolecules. Here we describe fabrication of planar and vertical ANA chips and how to perform continuous-flow bioseparation using them. This protocol is most useful for bioengineers that are interested in developing automated multistep chip-based bioanalysis systems and assumes prior cleanroom microfabrication knowledge. The ANA consists of a two-dimensional periodic nanofilter array, and the designed structural anisotropy of the ANA causes different sized- or charged-biomolecules to follow distinct trajectories under applied electric fields, leading to efficient continuous-flow separation. Using microfluidic channels surrounding the ANA, the fractionated biomolecule streams are collected and routed to different fluid channels or reservoirs for convenient sample recovery and downstream bioanalysis. The ANA is physically robust and can be reused repeatedly. Compared to conventional gel-based separation techniques, the ANA offers the potential for faster separation, higher throughput, and more convenient sample recovery. PMID:19876028

  19. Carbon-fiber composite molecular sieves for gas separation

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.

    1996-08-01

    This report describes continuing work on the activation and characterization of formed carbon fiber composites. The composites are produced at the Oak Ridge National Laboratory (ORNL) and activated at the Center for Applied Energy Research (CAER) using steam, CO{sub 2}, or O{sub 2} at different conditions of temperature and time, and with different furnace configurations. The general aims of the project are to produce uniformly activated samples with controlled pore structures for specialist applications such as gas separation and water treatment. In previous work the authors reported that composites produced from isotropic pitch fibers weighing up to 25g can be uniformly activated through the appropriate choice of reaction conditions and furnace configurations. They have now succeeded in uniformly activating composites of dimensions up to 12 x 7 x 6 cm, or up to about 166 gram - a scale-up factor of about six. Part of the work has involved the installation of a new furnace that can accommodate larger composites. Efforts were made to achieve uniform activation in both steam and CO{sub 2}. The authors have also succeeded in producing materials with very uniform and narrow pore size distributions by using a novel method involving low temperature oxygen chemisorption in combination with heat treatment in N{sub 2} at high temperatures. Work has also started on the activation of PAN based carbon fibers and fiber composites with the aim of producing composites with wide pore structures for use as catalyst supports. So far activation of the PAN fiber composites supplied by ORNL has been difficult which is attributed to the low reactivity of the PAN fibers. As a result, studies are now being made of the activation of the PAN fibers to investigate the optimum carbonization and activation conditions for PAN based fibers.

  20. Separation of branched hexane isomers using zeolite molecular sieves

    SciTech Connect

    Huddersman, K.; Klimczyk, M.

    1996-02-01

    A range of small, medium and large pore zeolite, and their modified forms are studied for their ability to separate di- from monobranched isomers of hexane. The separation studies are carried out using high-temperature (250--350 C) gas chromatography. Beta(H,Ba) is found to be the most effective separator of 2,3-dimethylbutane and 3-methyl-pentane and is therefore studied for its sorption capacities toward the two hexane isomers. This work is directed to the improvement of the quality of petrol by separating hydrocarbon mixtures using zeolites. Since maximum hydrocarbon branching is desirable in petrol (hydrocarbons with a branching structure burn more efficiently and thus have a higher octane rating), catalytic isomerization is used to isomerize straight-chain hydrocarbons to their mono- or dibranched isomers.

  1. Advanced Nanostructured Molecular Sieves for Energy Efficient Industrial Separations

    SciTech Connect

    Kunhao Li, Michael Beaver

    2012-01-18

    Due to the very small relative volatility difference between propane and propylene, current propane/propylene separation by distillation requires very tall distillation towers (150-250 theoretical plates) and large reflux ratios (up to 15), which is considered to be the most energy consuming large-scale separation process. Adsorptive separation processes are widely considered to be more energy-efficient alternatives to distillation. However, slow diffusion kinetics/mass transport rate through the adsorbent bed often limits the performance of such processes, so further improvements are possible if intra-particle mass transfer rates can be improved. Rive Technology, Inc. is developing and commercializing its proprietary mesoporous zeolite technology for catalysis and separation. With well-controlled intracrystalline mesoporosity, diffusion kinetics through such mesoporous zeolite based catalysts is much improved relative to conventional zeolites, leading to significantly better product selectivity. This 'proof-of-principle' project (DE-EE0003470) is intended to demonstrate that Rive mesoporous zeolite technology can be extended and applied in adsorptive propane/propylene separation and lead to significant energy saving compared to the current distillation process. In this project, the mesoporous zeolite Y synthesis technology was successfully extended to X and A zeolites that are more relevant to adsorbent applications. Mesoporosity was introduced to zeolite X and A for the first time while maintaining adequate adsorption capacity. Zeolite adsorbents were tested for liquid phase separation performance using a pulse flow test unit and the test results show that the separation selectivity of the mesoporous zeolite adsorbent is much closer to optimal for a Simulated Moving Bed (SMB) separation process and the enhanced mesoporosity lead to >100% increase of overall mass transport rate for propane and propylene. These improvements will significantly improve the performance of an adsorptive separation unit for propane/propylene separation compared with traditional zeolite adsorbents. The enhanced transport will allow for more efficient utilization of a given adsorbent inventory by reducing process cycle time, allowing a faster production rate with a fixed amount of adsorbent or smaller adsorbent inventory at a fixed production rate. Smaller adsorbent inventory would also lead to significant savings in the capital cost due to smaller footprint of the equipment. Energy consumption calculation, based on the pulse test results for rived NaX zeolite adsorbent, of a hypothetical moderate-scale SMB propane/propylene separation plant that processes 6000 BPSD refinery grade propylene (70% propylene) will consume about 60-80% less energy (both re-boiler and condenser duties) compared to a C3 splitter that process the same amount of feed. This energy saving also translates to a reduction of 30,000-35,000 tons of CO2 emission per year at this moderate processing rate. The enhancement of mass transport achievable by introduction of controlled mesoporosity to the zeolite also opens the door for the technology to be applied to several other adsorption separation processes such as the separation of xylene isomers by SMB, small- and large scale production of O2/N2 from air by pressure swing adsorption, the separation of CO2 from natural gas at natural gas wellheads, and the purification of ultra-high purity H2 from the off gas produced by steam-methane-reforming.

  2. Molecular sieve sensors for selective detection at the nanogram level

    DOEpatents

    Bein, Thomas; Brown, Kelly D.; Frye, Gregory C.; Brinker, Charles J.

    1992-01-01

    The invention relates to a selective chemical sensor for selective detection of chemical entities even at the nanogram level. The invention further relates to methods of using the sensor. The sensor comprises: (a) a piezoelectric substrate capable of detecting mass changes resulting from adsorption of material thereon; and (b) a coating applied to the substrate, which selectively sorbs chemical entities of a size smaller than a preselected magnitude.

  3. 21 CFR 173.40 - Molecular sieve resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... give a stable three dimensional structure. The resins have a pore size of 2.0 to 3.0 milliliters per gram of dry resin (expressed in terms of water regain), and a particle size of 10 to 300 microns....

  4. Framework redox sites in nanoporous molecular sieve catalyst

    NASA Astrophysics Data System (ADS)

    Nguyen, Khanh Dieu Hong

    The work described in this thesis is concerned with the characterisation of metal ions substituted nanosporous materials. The first chapter deals with the introduction to nanoporous materials, with historical background, structural chemistry, synthetic methods and catalytic applications. The second chapter describes the experiment techniques for synthesis and characterization throughout this work with background of theory, applications, equipment used and useful information achieved from each technique. Chapter 3 deals with the study of cobalt ions substituted microporous aluminophosphate material. Here the main aim is to understand the effect of synthesis condition used in preparing CoAlPO-34, CoSAPO-34 and SAPO-34 materials on the particle size, nano-structure stability and more importantly the oxidation-reduction chemistry of cobalt ions. XRD, SEM, EDX and in situ XRD/EXAFS techniques were used to charactersize the materials in detail. It was found, using microscopy and in situ XRD/EXAFS technique, that when CoAlPO or CoSAPO-34 materials are prepared around pH 7.5, the system has small particles, with good structural stability and complete redox chemistry of cobalt ions. Chapter 4 describes the results obtained from the in situ studies of iron substituted A1PO-5. A1PO-5 samples were synthesized by the hydrothermal reaction of a gel mixture with different templates and different Fe content. These materials were studied using XRD, SEM, EDX and in situ XRD/EXAFS. Here the aim is to investigate the influence of structure directing organic template on the state of iron in the as-synthesised and calcined form. It was found that, depending on the nature of template, the coordination of Fe(III) ions change from octahedral to tetrahedral at different temperature. In situ studies of the reactivity of Ti(IV) species in the titanosilicate TS-1 material was studied using X-ray absorption near edge structure and they are described in the chapter 5. A comparison between the amorphous titanosilicate and crystalline TS-1 was made and it was found that titanium ions in amorphous material reacts much more readily with water molecules compared to crystalline counter part and this correlates with the hydrophobic character of crystalline TS-1 material. In the final chapter, 6, a brief summary and conclusions obtained from the work described in the results chapter as well as future works are given.

  5. Carbon-fiber composite molecular sieves for gas separation

    SciTech Connect

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.; Fei, Y.Q.

    1995-08-01

    The progress of research in the development of novel, rigid, monolithic adsorbent carbon fiber composites is described. Carbon fiber composites are produced at ORNL and activated at the CAER using steam or CO{sub 2} under different conditions, with the aims of producing a uniform degree of activation through the material, and of closely controlling pore structure and adsorptive properties The principal focus of the work to date has been to produce materials with narrow porosity for use in gas separations.

  6. Quantum-size effects in the titanosilicate molecular sieve

    NASA Astrophysics Data System (ADS)

    Borello, Enzo; Lamberti, Carlo; Bordiga, Silvia; Zecchina, Adriano; Areán, Carlos Otero

    1997-10-01

    The recently synthesized Engelhard titanosilicate (ETS-10) represents a material which contains in the structure well defined atomic ⋯O-Ti-O-Ti-O⋯ quantum wires embedded in a highly insulating siliceous matrix. We report and discuss the UV-Vis spectrum of this material and compare the experimentally determined optical band gap with the results predicted by simple modeling of a titanium oxide semiconductor wire unidimensionally confined by an infinite potential barrier.

  7. Mesh Algorithms for PDE with Sieve I: Mesh Distribution

    DOE PAGESBeta

    Knepley, Matthew G.; Karpeev, Dmitry A.

    2009-01-01

    We have developed a new programming framework, called Sieve, to support parallel numerical partial differential equation(s) (PDE) algorithms operating over distributed meshes. We have also developed a reference implementation of Sieve in C++ as a library of generic algorithms operating on distributed containers conforming to the Sieve interface. Sieve makes instances of the incidence relation, or arrows, the conceptual first-class objects represented in the containers. Further, generic algorithms acting on this arrow container are systematically used to provide natural geometric operations on the topology and also, through duality, on the data. Finally, coverings and duality are used to encode notmore » only individual meshes, but all types of hierarchies underlying PDE data structures, including multigrid and mesh partitions. In order to demonstrate the usefulness of the framework, we show how the mesh partition data can be represented and manipulated using the same fundamental mechanisms used to represent meshes. We present the complete description of an algorithm to encode a mesh partition and then distribute a mesh, which is independent of the mesh dimension, element shape, or embedding. Moreover, data associated with the mesh can be similarly distributed with exactly the same algorithm. The use of a high level of abstraction within the Sieve leads to several benefits in terms of code reuse, simplicity, and extensibility. We discuss these benefits and compare our approach to other existing mesh libraries.« less

  8. Molecular separation method and apparatus

    DOEpatents

    Villa-Aleman, E.

    1996-04-09

    A method and apparatus are disclosed for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular sieve. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve. 2 figs.

  9. Ultra-broadband achromatic imaging with diffractive photon sieves

    PubMed Central

    Zhao, Xiaonan; Hu, Jingpei; Lin, Yu; Xu, Feng; Zhu, Xiaojun; Pu, Donglin; Chen, Linsen; Wang, Chinhua

    2016-01-01

    Diffractive optical elements suffer from large chromatic aberration due to the strong wavelength-dependent nature in diffraction phenomena, and therefore, diffractive elements can work only at a single designed wavelength, which significantly limits the applications of diffractive elements in imaging. Here, we report on a demonstration of a wavefront coded broadband achromatic imaging with diffractive photon sieves. The broadband diffraction imaging is implemented with a wavefront coded pinhole pattern that generates equal focusing power for a wide range of operating wavelength in a single thin-film element without complicated auxiliary optical system. Experimental validation was performed using an UV-lithography fabricated wavefront coded photon sieves. Results show that the working bandwidth of the wavefront coded photon sieves reaches 28 nm compared with 0.32 nm of the conventional one. Further demonstration of the achromatic imaging with a bandwidth of 300 nm is also performed with a wavefront coded photon sieves integrated with a refractive element. PMID:27328713

  10. Ultra-broadband achromatic imaging with diffractive photon sieves.

    PubMed

    Zhao, Xiaonan; Hu, Jingpei; Lin, Yu; Xu, Feng; Zhu, Xiaojun; Pu, Donglin; Chen, Linsen; Wang, Chinhua

    2016-01-01

    Diffractive optical elements suffer from large chromatic aberration due to the strong wavelength-dependent nature in diffraction phenomena, and therefore, diffractive elements can work only at a single designed wavelength, which significantly limits the applications of diffractive elements in imaging. Here, we report on a demonstration of a wavefront coded broadband achromatic imaging with diffractive photon sieves. The broadband diffraction imaging is implemented with a wavefront coded pinhole pattern that generates equal focusing power for a wide range of operating wavelength in a single thin-film element without complicated auxiliary optical system. Experimental validation was performed using an UV-lithography fabricated wavefront coded photon sieves. Results show that the working bandwidth of the wavefront coded photon sieves reaches 28 nm compared with 0.32 nm of the conventional one. Further demonstration of the achromatic imaging with a bandwidth of 300 nm is also performed with a wavefront coded photon sieves integrated with a refractive element. PMID:27328713

  11. Sieve Element Ca2+ Channels as Relay Stations between Remote Stimuli and Sieve Tube Occlusion in Vicia faba[W

    PubMed Central

    Furch, Alexandra C.U.; van Bel, Aart J.E.; Fricker, Mark D.; Felle, Hubert H.; Fuchs, Maike; Hafke, Jens B.

    2009-01-01

    Damage induces remote occlusion of sieve tubes in Vicia faba by forisome dispersion, triggered during the passage of an electropotential wave (EPW). This study addresses the role of Ca2+ channels and cytosolic Ca2+ elevation as a link between EPWs and forisome dispersion. Ca2+ channel antagonists affect the initial phase of the EPW as well as the prolonged plateau phase. Resting levels of sieve tube Ca2+ of ∼50 nM were independently estimated using Ca2+-selective electrodes and a Ca2+-sensitive dye. Transient changes in cytosolic Ca2+ were observed in phloem tissue in response to remote stimuli and showed profiles similar to those of EPWs. The measured elevation of Ca2+ in sieve tubes was below the threshold necessary for forisome dispersion. Therefore, forisomes need to be associated with Ca2+ release sites. We found an association between forisomes and endoplasmic reticulum (ER) at sieve plates and pore-plasmodesma units where high-affinity binding of a fluorescent Ca2+ channel blocker mapped an increased density of Ca2+ channels. In conclusion, propagation of EPWs in response to remote stimuli is linked to forisome dispersion through transiently high levels of parietal Ca2+, release of which depends on both plasma membrane and ER Ca2+ channels. PMID:19602624

  12. High-Resolution Solar Imaging With Photon Sieves

    NASA Astrophysics Data System (ADS)

    Oktem, F. S.; Kamalabadi, F.; Davila, J. M.

    2014-12-01

    A photon sieve is a modification of a Fresnel zone plate in which open zones are replaced by a large number of circular holes. This lightweight optical device offers a superior image forming capability compared with the Fresnel zone plate, and is specially suited to observations at UV and x-ray wavelengths where refractive lenses are not available due to strong absorption of materials, and reflective mirrors are difficult to manufacture to achieve near diffraction-limited resolution. At these shorter wavelengths, photon sieves enable diffraction-limited imaging performance with relaxed manufacturing tolerances, and simple and low-cost fabrication. In this work, we present a new photon sieve imaging modality that, unlike previous designs, takes advantage of chromatic aberration. The fact that different wavelengths are focused at different distances from photon sieve is exploited to develop a novel multi-spectral imaging technique. The idea is to use a photon sieve imaging system with a moving detector which records images at different planes. Each measurement consists of superimposed images of different wavelengths, with each individual image being either in focus or out of focus. For spatially incoherent illumination, we study the problem of recovering the individual images from these superimposed measurements. We first formulate the discrete forward problem using the closed-form Fresnel imaging formulas. The inverse problem is then a multi-frame deconvolution problem involving multiple objects, and is formulated as a maximum posterior estimation problem. The resulting nonlinear optimization problem is solved using a fixed-point iterative algorithm. In contrast to traditional spectral imagers employing a series of wavelength filters, the proposed technique relies on a simple optical system, but incorporates powerful image processing methods to form spectral images computationally. In addition to diffraction-limited high spatial resolution enabled by photon sieves

  13. The feasibility of images reconstructed with the method of sieves

    SciTech Connect

    Veklerov, E.; Llacer, J.

    1989-04-01

    The concept of sieves has been applied with the Maximum likelihood Estimator (MLE) to image reconstruction. While it makes it possible to recover smooth images consistent with the data, the degree of smoothness provided by it is arbitrary. It is shown that the concept of feasibility is able to resolve this arbitrariness. By varying the values of parameters determining the degree of smoothness, one can generate images on both sides of the feasibility region, as well as within the region. Feasible images recovered by using different sieve parameters are compared with feasible results of other procedures. One- and two-dimensional examples using both simulated and real data sets are considered. 12 refs., 3 figs., 2 tabs.

  14. Focusing properties of phase-only generalized Fibonacci photon sieves

    NASA Astrophysics Data System (ADS)

    Ke, Jie; Zhang, Junyong

    2016-06-01

    We propose a new algorithm to extend the standard Fibonacci photon sieve to the phase-only generalized Fibonacci photon sieve (GFiPS) and find that the focusing properties of the phase-only GFiPS are only relevant to the characteristic roots of the recursion relation of the generalized Fibonacci sequences. By switching the transparent and opaque zones on the basis of the generalized Fibonacci sequences, we not only realize adjustable bifocal lengths, but also give their corresponding analytic expressions. Besides, we investigate a special phase-only GFiPS, a spiral-phase GFiPS, which can present twin vortices along the axial coordinate. Compared with the single focusing system, bifocal system can be exploited to enhance the processing speed, and offer a broad range of applications, such as direct laser writing, optical tweezers or atom trapping and paralleled fluorescence microscope.

  15. SUT2, a Putative Sucrose Sensor in Sieve Elements

    PubMed Central

    Barker, Laurence; Kühn, Christina; Weise, Andreas; Schulz, Alexander; Gebhardt, Christiane; Hirner, Brigitte; Hellmann, Hanjo; Schulze, Waltraud; Ward, John M.; Frommer, Wolf B.

    2000-01-01

    In leaves, sucrose uptake kinetics involve high- and low-affinity components. A family of low- and high-affinity sucrose transporters (SUT) was identified. SUT1 serves as a high-affinity transporter essential for phloem loading and long-distance transport in solanaceous species. SUT4 is a low-affinity transporter with an expression pattern overlapping that of SUT1. Both SUT1 and SUT4 localize to enucleate sieve elements of tomato. New sucrose transporter–like proteins, named SUT2, from tomato and Arabidopsis contain extended cytoplasmic domains, thus structurally resembling the yeast sugar sensors SNF3 and RGT2. Features common to these sensors are low codon bias, environment of the start codon, low expression, and lack of detectable transport activity. In contrast to LeSUT1, which is induced during the sink-to-source transition of leaves, SUT2 is more highly expressed in sink than in source leaves and is inducible by sucrose. LeSUT2 protein colocalizes with the low- and high-affinity sucrose transporters in sieve elements of tomato petioles, indicating that multiple SUT mRNAs or proteins travel from companion cells to enucleate sieve elements. The SUT2 gene maps on chromosome V of potato and is linked to a major quantitative trait locus for tuber starch content and yield. Thus, the putative sugar sensor identified colocalizes with two other sucrose transporters, differs from them in kinetic properties, and potentially regulates the relative activity of low- and high-affinity sucrose transport into sieve elements. PMID:10899981

  16. A differential delay equation arising from the sieve of Eratosthenes

    NASA Technical Reports Server (NTRS)

    Cheer, A. Y.; Goldston, D. A.

    1990-01-01

    Consideration is given to the differential delay equation introduced by Buchstab (1937) in connection with an asymptotic formula for the uncanceled terms in the sieve of Eratosthenes. Maier (1985) used this result to show there is unexpected irreqularity in the distribution of primes in short intervals. The function omega(u) is studied in this paper using numerical and analytical techniques. The results are applied to give some numerical constants in Maier's theorem.

  17. Predictability sieve, pointer states, and the classicality of quantum trajectories

    SciTech Connect

    Dalvit, D. A. R.; Zurek, W. H.; Dziarmaga, J.

    2005-12-15

    We study various measures of classicality of the states of open quantum systems subject to decoherence. Classical states are expected to be stable in spite of decoherence, and are thought to leave conspicuous imprints on the environment. Here these expected features of environment-induced superselection are quantified using four different criteria: predictability sieve (which selects states that produce least entropy), purification time (which looks for states that are the easiest to find out from the imprint they leave on the environment), efficiency threshold (which finds states that can be deduced from measurements on a smallest fraction of the environment), and purity loss time (that looks for states for which it takes the longest to lose a set fraction of their initial purity). We show that when pointer states--the most predictable states of an open quantum system selected by the predictability sieve--are well defined, all four criteria agree that they are indeed the most classical states. We illustrate this with two examples: an underdamped harmonic oscillator, for which coherent states are unanimously chosen by all criteria, and a free particle undergoing quantum Brownian motion, for which most criteria select almost identical Gaussian states (although, in this case, the predictability sieve does not select well defined pointer states)

  18. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving.

    PubMed

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na(+) and Cl(-) ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na(+) and Cl(-) ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl(-)). Nano-sieving incorporated with larger frameworks has been used in filtering Na(+) and Cl(-) ions in functional devices. PMID:26892277

  19. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving

    PubMed Central

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na+ and Cl− ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na+ and Cl− ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl−). Nano-sieving incorporated with larger frameworks has been used in filtering Na+ and Cl− ions in functional devices. PMID:26892277

  20. Nios II hardware acceleration of the epsilon quadratic sieve algorithm

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Uwe; Botella, Guillermo; Castillo, Encarnacion; García, Antonio

    2010-04-01

    The quadratic sieve (QS) algorithm is one of the most powerful algorithms to factor large composite primes used to break RSA cryptographic systems. The hardware structure of the QS algorithm seems to be a good fit for FPGA acceleration. Our new ɛ-QS algorithm further simplifies the hardware architecture making it an even better candidate for C2H acceleration. This paper shows our design results in FPGA resource and performance when implementing very long arithmetic on the Nios microprocessor platform with C2H acceleration for different libraries (GMP, LIP, FLINT, NRMP) and QS architecture choices for factoring 32-2048 bit RSA numbers.

  1. A differential delay equation arising from the sieve of Eratosthenes

    NASA Astrophysics Data System (ADS)

    Cheer, A. Y.; Goldston, D. A.

    1990-07-01

    The differential delay equation defined by ω (u) = 1/u for 1 ≤ u ≤ 2 and (uω (u))' = ω (u - 1) for u ≥ 2 was introduced by Buchstab in connection with an asymptotic formula for the number of uncanceled terms in the sieve of Eratosthenes. Maier has recently used this result to show there is unexpected irregularity in the distribution of primes in short intervals. The function ω (u) is studied in this paper using numerical and analytical techniques. The results are applied to give some numerical constants in Maier's theorem.

  2. Centrifugal Size-Separation Sieve for Granular Materials

    NASA Technical Reports Server (NTRS)

    Walton, Otis (Inventor); Dreyer, Christopher (Inventor); Riedel, Edward (Inventor)

    2015-01-01

    A centrifugal sieve and method utilizes centrifugal force in rapidly-rotated cylindrical or conical screens as the primary body force contributing to size segregation. Within the centrifugal acceleration field, vibration and/or shearing flows are induced to facilitate size segregation and eventual separation of the fines from the coarse material. Inside a rotating cylindrical or conical screen, a separately-rotated screw auger blade can be used to transport material along the rotating cylinder or conical wall and to induce shearing in the material.

  3. Molecular separation method and apparatus

    DOEpatents

    Villa-Aleman, Eliel

    1996-01-01

    A method and apparatus for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve.

  4. Fractionation of distillers dried grains with solubles (DDGS) by sieving and winnowing.

    PubMed

    Liu, KeShun

    2009-12-01

    Four commercial samples of distillers dried grains with solubles (DDGS) were sieved. All sieved fractions except for the pan fraction, constituting about 90% of original mass, were then winnowed with an air blast seed cleaner. Sieving was effective in producing fractions with varying composition. As the particle size decreased, protein and ash contents increased, and total carbohydrate (CHO) decreased. Winnowing sieved fractions was also effective in shifting composition, particularly for larger particle classes. Heavy sub-fractions were enriched in protein, oil and ash, while light sub-fractions were enriched for CHO. For protein, the combination of the two procedures resulted in a maximum 56.4% reduction in a fraction and maximum 60.2% increase in another fraction. As airflow velocity increased, light sub-fraction mass increased, while the compositional difference between the heavy and light sub-fractions decreased. Winnowing three times at a lower velocity was as effective as winnowing one time at a medium velocity. Winnowing the whole DDGS was much less effective than winnowing sieved fractions in changing composition, but sieving winnowed fractions was more effective than sieving whole DDGS. The two combination sequences gave comparable overall effects but sieving followed by winnowing is recommended because it requires less time. Regardless of combinational sequence, the second procedure was more effective in shifting composition than the first procedure. PMID:19692227

  5. A rhenium complex doped in a silica molecular sieve for molecular oxygen sensing: Construction and characterization.

    PubMed

    Yang, Xiaozhou; Li, Yanxiao

    2016-01-15

    This paper reported a diamine ligand and its Re(I) complex for potential application in oxygen sensing. The novelty of this diamine ligand localized at its increased conjugation chain which had a typical electron-withdrawing group of 1,3,4-oxadiazole. Electronic distribution of excited electrons and their lifetime were supposed to be increased, favoring oxygen sensing collision. This hypothesis was confirmed by single crystal analysis, theoretical calculation and photophysical measurement. It was found that this Re(I) complex had a long-lived emission peaking at 545 nm, favoring sensing application. By doping this complex into a silica matrix MCM-41, oxygen sensing performance and mechanism of the resulting composites were discussed in detail. Non-linear Stern-Volmer working curves were observed with maximum sensitivity of 5.54 and short response time of ~6 s. PMID:26478986

  6. A rhenium complex doped in a silica molecular sieve for molecular oxygen sensing: Construction and characterization

    NASA Astrophysics Data System (ADS)

    Yang, Xiaozhou; Li, Yanxiao

    2016-01-01

    This paper reported a diamine ligand and its Re(I) complex for potential application in oxygen sensing. The novelty of this diamine ligand localized at its increased conjugation chain which had a typical electron-withdrawing group of 1,3,4-oxadiazole. Electronic distribution of excited electrons and their lifetime were supposed to be increased, favoring oxygen sensing collision. This hypothesis was confirmed by single crystal analysis, theoretical calculation and photophysical measurement. It was found that this Re(I) complex had a long-lived emission peaking at 545 nm, favoring sensing application. By doping this complex into a silica matrix MCM-41, oxygen sensing performance and mechanism of the resulting composites were discussed in detail. Non-linear Stern-Volmer working curves were observed with maximum sensitivity of 5.54 and short response time of ~ 6 s.

  7. A Sieving ANN for Emotion-Based Movie Clip Classification

    NASA Astrophysics Data System (ADS)

    Watanapa, Saowaluk C.; Thipakorn, Bundit; Charoenkitkarn, Nipon

    Effective classification and analysis of semantic contents are very important for the content-based indexing and retrieval of video database. Our research attempts to classify movie clips into three groups of commonly elicited emotions, namely excitement, joy and sadness, based on a set of abstract-level semantic features extracted from the film sequence. In particular, these features consist of six visual and audio measures grounded on the artistic film theories. A unique sieving-structured neural network is proposed to be the classifying model due to its robustness. The performance of the proposed model is tested with 101 movie clips excerpted from 24 award-winning and well-known Hollywood feature films. The experimental result of 97.8% correct classification rate, measured against the collected human-judges, indicates the great potential of using abstract-level semantic features as an engineered tool for the application of video-content retrieval/indexing.

  8. Biofuel Manufacturing from Woody Biomass: Effects of Sieve Size Used in Biomass Size Reduction

    PubMed Central

    Zhang, Meng; Song, Xiaoxu; Deines, T. W.; Pei, Z. J.; Wang, Donghai

    2012-01-01

    Size reduction is the first step for manufacturing biofuels from woody biomass. It is usually performed using milling machines and the particle size is controlled by the size of the sieve installed on a milling machine. There are reported studies about the effects of sieve size on energy consumption in milling of woody biomass. These studies show that energy consumption increased dramatically as sieve size became smaller. However, in these studies, the sugar yield (proportional to biofuel yield) in hydrolysis of the milled woody biomass was not measured. The lack of comprehensive studies about the effects of sieve size on energy consumption in biomass milling and sugar yield in hydrolysis process makes it difficult to decide which sieve size should be selected in order to minimize the energy consumption in size reduction and maximize the sugar yield in hydrolysis. The purpose of this paper is to fill this gap in the literature. In this paper, knife milling of poplar wood was conducted using sieves of three sizes (1, 2, and 4 mm). Results show that, as sieve size increased, energy consumption in knife milling decreased and sugar yield in hydrolysis increased in the tested range of particle sizes. PMID:22665985

  9. Clast-contact conglomerates in submarine canyons: possible subaqueous sieve deposits

    SciTech Connect

    Fitzgerald, M.S.

    1987-05-01

    Thick, coarse, clast-contact conglomerates in submarine canyon fill have previously been attributed to rock-fall, grain-flow, or winnowing processes. However, these processes do not adequately explain some thick conglomeratic sequences. The proposed process of subaqueous sieve deposition could account for these clast-contact conglomerates. Subaerial sieve deposition has been documented on small-scale fan models and on alluvial fans. A subaerial sieve deposit begins as a debris flow which at some point freezes up. The matrix is then lost by subsequent filtration or outflow, and the emplacement of a clast-contact gravel ensues. A subaqueous sieve deposit would be slightly modified in that the matrix would not be lost by filtration into the submarine canyon floor, but rather by outflow at the terminus of the lobe immediately after deposition, or possibly from the top and/or sides of the freezing flow mass during transport. Besides forming in submarine canyons, subaqueous sieve deposits might also occur in paralic, submarine fan channel, and base-of-the-slope settings. In substantiating the existence of subaqueous sieve deposits, the sedimentary structures and grain-size data from recent sieve deposits on alluvial fans are compared to those of ancient submarine canyon deposits. Numerous similarities are found supporting this new method of deposition. Some discrepancies are encountered, but these are expected due to modifications caused by an aqueous medium.

  10. Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer

    NASA Astrophysics Data System (ADS)

    Ramachandran, Anup; Schuettler, Martin; Lago, Natalia; Doerge, Thomas; Koch, Klaus Peter; Navarro, Xavier; Hoffmann, Klaus-Peter; Stieglitz, Thomas

    2006-06-01

    This paper reports on the design, in vitro and in vivo investigation of a flexible, lightweight, polyimide based implantable sieve electrode with a hybrid assembly of multiplexers and polymer encapsulation. The integration of multiplexers enables us to connect a large number of electrodes on the sieve using few input connections. The implant assembly of the sieve electrode with the electronic circuitry was verified by impedance measurement. The 27 platinum electrodes of the sieve were coated with platinum black to reduce the electrode impedance. The impedance magnitude of the electrode sites on the sieve (geometric surface area 2200 µm2) was |Zf=1kHz| = 5.7 kΩ. The sieve electrodes, encased in silicone, have been implanted in the transected sciatic nerve of rats. Initial experiments showed that axons regenerated through the holes of the sieve and reinnervated distal target organs. Nerve signals were recorded in preliminary tests after 3-7 months post-implantation.

  11. Dr. Grant Heikan examines lunar material in sieve from sample container

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Dr. Grant Heikan, Manned Spacecraft Center and a Lunar Sample preliminary Examination Team member, examines lunar material in a sieve from the bulk sample container which was opened in the Biopreparation Laboratory of the Lunar Receiving Laboratory.

  12. Centrifugal Sieve for Gravity-Level-Independent Size Segregation of Granular Materials

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.; Dreyer, Christopher; Riedel, Edward

    2013-01-01

    Conventional size segregation or screening in batch mode, using stacked vibrated screens, is often a time-consuming process. Utilization of centrifugal force instead of gravity as the primary body force can significantly shorten the time to segregate feedstock into a set of different-sized fractions. Likewise, under reduced gravity or microgravity, a centrifugal sieve system would function as well as it does terrestrially. When vibratory and mechanical blade sieving screens designed for terrestrial conditions were tested under lunar gravity conditions, they did not function well. The centrifugal sieving design of this technology overcomes the issues that prevented sieves designed for terrestrial conditions from functioning under reduced gravity. These sieves feature a rotating outer (cylindrical or conical) screen wall, rotating fast enough for the centrifugal forces near the wall to hold granular material against the rotating screen. Conventional centrifugal sieves have a stationary screen and rapidly rotating blades that shear the granular solid near the stationary screen, and effect the sieving process assisted by the airflow inside the unit. The centrifugal sieves of this new design may (or may not) have an inner blade or blades, moving relative to the rotating wall screen. Some continuous flow embodiments would have no inner auger or blades, but achieve axial motion through vibration. In all cases, the shearing action is gentler than conventional centrifugal sieves, which have very high velocity differences between the stationary outer screen and the rapidly rotating blades. The new design does not depend on airflow in the sieving unit, so it will function just as well in vacuum as in air. One advantage of the innovation for batch sieving is that a batch-mode centrifugal sieve may accomplish the same sieving operation in much less time than a conventional stacked set of vibrated screens (which utilize gravity as the primary driving force for size separation

  13. Shape-selective sieving layers on an oxide catalyst surface.

    PubMed

    Canlas, Christian P; Lu, Junling; Ray, Natalie A; Grosso-Giordano, Nicolas A; Lee, Sungsik; Elam, Jeffrey W; Winans, Randall E; Van Duyne, Richard P; Stair, Peter C; Notestein, Justin M

    2012-12-01

    New porous materials such as zeolites, metal-organic frameworks and mesostructured oxides are of immense practical utility for gas storage, separations and heterogeneous catalysis. Their extended pore structures enable selective uptake of molecules or can modify the product selectivity (regioselectivity or enantioselectivity) of catalyst sites contained within. However, diffusion within pores can be problematic for biomass and fine chemicals, and not all catalyst classes can be readily synthesized with pores of the correct dimensions. Here, we present a novel approach that adds reactant selectivity to existing, non-porous oxide catalysts by first grafting the catalyst particles with single-molecule sacrificial templates, then partially overcoating the catalyst with a second oxide through atomic layer deposition. This technique is used to create sieving layers of Al(2)O(3) (thickness, 0.4-0.7 nm) with 'nanocavities' (<2 nm in diameter) on a TiO(2) photocatalyst. The additional layers result in selectivity (up to 9:1) towards less hindered reactants in otherwise unselective, competitive photocatalytic oxidations and transfer hydrogenations. PMID:23174984

  14. Shape-selective sieving layers on an oxide catalyst surface

    NASA Astrophysics Data System (ADS)

    Canlas, Christian P.; Lu, Junling; Ray, Natalie A.; Grosso-Giordano, Nicolas A.; Lee, Sungsik; Elam, Jeffrey W.; Winans, Randall E.; van Duyne, Richard P.; Stair, Peter C.; Notestein, Justin M.

    2012-12-01

    New porous materials such as zeolites, metal-organic frameworks and mesostructured oxides are of immense practical utility for gas storage, separations and heterogeneous catalysis. Their extended pore structures enable selective uptake of molecules or can modify the product selectivity (regioselectivity or enantioselectivity) of catalyst sites contained within. However, diffusion within pores can be problematic for biomass and fine chemicals, and not all catalyst classes can be readily synthesized with pores of the correct dimensions. Here, we present a novel approach that adds reactant selectivity to existing, non-porous oxide catalysts by first grafting the catalyst particles with single-molecule sacrificial templates, then partially overcoating the catalyst with a second oxide through atomic layer deposition. This technique is used to create sieving layers of Al2O3 (thickness, 0.4-0.7 nm) with ‘nanocavities’ (<2 nm in diameter) on a TiO2 photocatalyst. The additional layers result in selectivity (up to 9:1) towards less hindered reactants in otherwise unselective, competitive photocatalytic oxidations and transfer hydrogenations.

  15. Sieve of Eratosthenes benchmarks for the Z8 FORTH microcontroller

    SciTech Connect

    Edwards, R.

    1989-02-01

    This report presents benchmarks for the Z8 FORTH microcontroller system that ORNL uses extensively in proving concepts and developing prototype test equipment for the Smart House Project. The results are based on the sieve of Eratosthenes algorithm, a calculation used extensively to rate computer systems and programming languages. Three benchmark refinements are presented,each showing how the execution speed of a FORTH program can be improved by use of a particular optimization technique. The last version of the FORTH benchmark shows that optimization is worth the effort: It executes 20 times faster than the Gilbreaths' widely-published FORTH benchmark program. The National Association of Home Builders Smart House Project is a cooperative research and development effort being undertaken by American home builders and a number of major corporations serving the home building industry. The major goal of the project is to help the participating organizations incorporate advanced technology in communications,energy distribution, and appliance control products for American homes. This information is provided to help project participants use the Z8 FORTH prototyping microcontroller in developing Smart House concepts and equipment. The discussion is technical in nature and assumes some experience with microcontroller devices and the techniques used to develop software for them. 7 refs., 5 tabs.

  16. A sieving method for collecting the metacercariae of trematode parasites from freshwater fish.

    PubMed

    Fan, P C; Wu, C C; Huang, P; Yen, C W

    2002-03-01

    This study describes a sieving method for the collection of metacercariae from frozen (-20 degrees C) freshwater fish. Digested fish tissue is filtered through a series of sieves; the crude filtrate is then centrifuged. Centrifugation produces a sediment from which metacercariae can be removed. Half of the metracercariae that were obtained from the fish meat that had been frozen for 10 days (-20 degrees C) were dead; the other half were alive and some larvae were moving slowly. PMID:12118453

  17. Aphid salivary proteases are capable of degrading sieve-tube proteins.

    PubMed

    Furch, Alexandra C U; van Bel, Aart J E; Will, Torsten

    2015-02-01

    Sieve tubes serve as transport conduits for photo-assimilates and other resources in angiosperms and are profitable targets for piercing-sucking insects such as aphids. Sieve-tube sap also contains significant amounts of proteins with diverse functions, for example in signalling, metabolism, and defence. The identification of salivary proteases in Acyrthosiphon pisum led to the hypothesis that aphids might be able to digest these proteins and by doing so suppress plant defence and access additional nitrogen sources. Here, the scarce knowledge of proteases in aphid saliva is briefly reviewed. In order to provide a better platform for discussion, we conducted a few tests on in vitro protease activity and degradation of sieve-tube sap proteins of Cucurbita maxima by watery saliva. Inhibition of protein degradation by EDTA indicates the presence of different types of proteases (e.g. metalloproteses) in saliva of A. pisum. Proteases in the watery saliva from Macrosiphum euphorbiae and A. pisum were able to degrade the most abundant phloem protein, which is phloem protein 1. Our results provide support for the breakdown of sieve-element proteins by aphid saliva in order to suppress/neutralize the defence responses of the plant and to make proteins of sieve-tube sap accessible as a nitrogen source, as is discussed in detail. Finally, we discuss whether glycosylation of sieve-element proteins and the presence of protease inhibitors may confer partial protection against the proteolytic activity of aphid saliva. PMID:25540441

  18. Sieve efficiency in benthic sampling as related to chironomid head capsule width

    USGS Publications Warehouse

    Hudson, Patrick L.; Adams, Jean V.

    1998-01-01

    The width of the head capsule in chironomid larvae is the most important morphometric character controlling retention of specimens in sieving devices. Knowledge of the range in size of these widths within any chironomid community is fundamental to sampling and interpreting the resulting data. We present the head capsule widths of 30 species of chironomids and relate their size distribution to loss or retention in several experiments using graded sieve sizes. Based on our measurements and those found in the literature we found the head capsule width of fourth instars in half the chironomids species to be less than 350 I?m. Many species may never be collected with the commonly used U.S. Standard No. 30 sieve (589 I?m), and the No. 60 (246 I?m) screen appears to retain most species only qualitatively. We found 70 to 90% of the chironomid larvae and 19 to 34% of their biomass can pass through a No. 80 sieve (177 I?m). The implications of sieve loss and other factors affecting sieving efficiency are discussed.

  19. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing

    PubMed Central

    Jekat, Stephan B.; Ernst, Antonia M.; von Bohl, Andreas; Zielonka, Sascia; Twyman, Richard M.; Noll, Gundula A.; Prüfer, Dirk

    2013-01-01

    Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing. PMID:23840197

  20. Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO2.

    PubMed

    Chen, Kai-Jie; Madden, David G; Pham, Tony; Forrest, Katherine A; Kumar, Amrit; Yang, Qing-Yuan; Xue, Wei; Space, Brian; Perry, John J; Zhang, Jie-Peng; Chen, Xiao-Ming; Zaworotko, Michael J

    2016-08-22

    Porous materials capable of selectively capturing CO2 from flue-gases or natural gas are of interest in terms of rising atmospheric CO2 levels and methane purification. Size-exclusive sieving of CO2 over CH4 and N2 has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore-size in a coordination network, [Cu(quinoline-5-carboxyate)2 ]n (Qc-5-Cu) ena+bles ultra-high selectivity for CO2 over N2 (SCN ≈40 000) and CH4 (SCM ≈3300). Qc-5-Cu-sql-β, a narrow pore polymorph of the square lattice (sql) coordination network Qc-5-Cu-sql-α, adsorbs CO2 while excluding both CH4 and N2 . Experimental measurements and molecular modeling validate and explain the performance. Qc-5-Cu-sql-β is stable to moisture and its separation performance is unaffected by humidity. PMID:27439315

  1. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    PubMed

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. PMID:27194709

  2. Laser Diffraction Techniques Replace Sieving for Lunar Soil Particle Size Distribution Data

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Gonzalez, C. P.; McKay, D. S.; Fruland, R. L.

    2012-01-01

    Sieving was used extensively until 1999 to determine the particle size distribution of lunar samples. This method is time-consuming, and requires more than a gram of material in order to obtain a result in which one may have confidence. This is demonstrated by the difference in geometric mean and median for samples measured by [1], in which a 14-gram sample produced a geometric mean of approx.52 micrometers, whereas two other samples of 1.5 grams resulted in gave means of approx.63 and approx.69 micrometers. Sample allocations for sieving are typically much smaller than a gram, and many of the sample allocations received by our lab are 0.5 to 0.25 grams in mass. Basu [2] has described how the finest fraction of the soil is easily lost in the sieving process, and this effect is compounded when sample sizes are small.

  3. Live Imaging of Companion Cells and Sieve Elements in Arabidopsis Leaves

    PubMed Central

    Cayla, Thibaud; Batailler, Brigitte; Le Hir, Rozenn; Revers, Frédéric; Anstead, James A.; Thompson, Gary A.; Grandjean, Olivier; Dinant, Sylvie

    2015-01-01

    The phloem is a complex tissue composed of highly specialized cells with unique subcellular structures and a compact organization that is challenging to study in vivo at cellular resolution. We used confocal scanning laser microscopy and subcellular fluorescent markers in companion cells and sieve elements, for live imaging of the phloem in Arabidopsis leaves. This approach provided a simple framework for identifying phloem cell types unambiguously. It highlighted the compactness of the meshed network of organelles within companion cells. By contrast, within the sieve elements, unknown bodies were observed in association with the PP2-A1:GFP, GFP:RTM1 and RTM2:GFP markers at the cell periphery. The phloem lectin PP2-A1:GFP marker was found in the parietal ground matrix. Its location differed from that of the P-protein filaments, which were visualized with SEOR1:GFP and SEOR2:GFP. PP2-A1:GFP surrounded two types of bodies, one of which was identified as mitochondria. This location suggested that it was embedded within the sieve element clamps, specific structures that may fix the organelles to each another or to the plasma membrane in the sieve tubes. GFP:RTM1 was associated with a class of larger bodies, potentially corresponding to plastids. PP2-A1:GFP was soluble in the cytosol of immature sieve elements. The changes in its subcellular localization during differentiation provide an in vivo blueprint for monitoring this process. The subcellular features obtained with these companion cell and sieve element markers can be used as landmarks for exploring the organization and dynamics of phloem cells in vivo. PMID:25714357

  4. Computational image formation with photon sieves for milli-arcsecond solar imaging

    NASA Astrophysics Data System (ADS)

    Oktem, Figen S.; Kamalabadi, Farzad; Davila, Joseph

    2016-07-01

    A photon sieve is a modification of a Fresnel zone plate in which open zones are replaced by a large number of circular holes. This diffractive imaging element is specially suited to observations at UV and x-ray wavelengths where refractive lenses are not available due to strong absorption of materials, and reflective mirrors are difficult to manufacture with sufficient surface figure accuracy to achieve diffraction-limited resolution. On the other hand, photon sieves enable diffraction-limited imaging with much more relaxed tolerances than conventional imaging technology. In this presentation, we present the capabilities of an instrument concept that is based on computational image formation with photon sieves. The instrument enables high-resolution spectral imaging by distributing the imaging task between a photon sieve system and a computational method. A photon sieve coupled with a moving detector provides measurements from multiple planes. Then computational image formation, which involves deconvolution, is performed in a Bayesian estimation framework to reconstruct the multi-spectral images from these measurements. In addition to diffraction-limited high spatial resolution enabled by photon sieves, this instrument can also achieve higher spectral resolution than the conventional spectral imagers, since the technique offers the possibility of separating nearby spectral components that would not otherwise be possible using wavelength filters. Here, the promising capabilities and the imaging performance are shown for imaging the solar corona at EUV wavelengths. The effectiveness of various potential observing scenarios, the effects of interfering emission lines, and the appropriate form of the cost function for image deconvolution are examined.

  5. MassSieve: panning MS/MS peptide data for proteins.

    PubMed

    Slotta, Douglas J; McFarland, Melinda A; Markey, Sanford P

    2010-08-01

    We present MassSieve, a Java-based platform for visualization and parsimony analysis of single and comparative LC-MS/MS database search engine results. The success of mass spectrometric peptide sequence assignment algorithms has led to the need for a tool to merge and evaluate the increasing data set sizes that result from LC-MS/MS-based shotgun proteomic experiments. MassSieve supports reports from multiple search engines with differing search characteristics, which can increase peptide sequence coverage and/or identify conflicting or ambiguous spectral assignments. PMID:20564260

  6. Chronic recording of regenerating VIIIth nerve axons with a sieve electrode

    NASA Technical Reports Server (NTRS)

    Mensinger, A. F.; Anderson, D. J.; Buchko, C. J.; Johnson, M. A.; Martin, D. C.; Tresco, P. A.; Silver, R. B.; Highstein, S. M.

    2000-01-01

    A micromachined silicon substrate sieve electrode was implanted within transected toadfish (Opsanus tau) otolith nerves. High fidelity, single unit neural activity was recorded from seven alert and unrestrained fish 30 to 60 days after implantation. Fibrous coatings of genetically engineered bioactive protein polymers and nerve guide tubes increased the number of axons regenerating through the electrode pores when compared with controls. Sieve electrodes have potential as permanent interfaces to the nervous system and to bridge missing connections between severed or damaged nerves and muscles. Recorded impulses might also be amplified and used to control prosthetic devices.

  7. Bidirectional Translocation of Sugars in Sieve Tubes of Squash Plants 1

    PubMed Central

    Trip, P.; Gorham, P. R.

    1968-01-01

    Two streams of sugars moving in opposite directions in the petiole of a half-grown leaf were demonstrated by feeding tritiated glucose to a fully grown leaf of a squash plant (Cucurbita melopepo Bailey) and 14CO2 to the half-grown one. Autoradiographic evidence indicates that the movement of both streams occurred within the same sieve tubes. The data do not fit the mass flow theory of translocation which requires unidirectional flow of sugar solution in the lumen of the sieve tube. Images PMID:16656856

  8. Microfluidic sieve using intertwined, free-standing carbon nanotube mesh as active medium

    DOEpatents

    Bakajin, Olgica; Noy, Aleksandr

    2007-11-06

    A microfluidic sieve having a substrate with a microfluidic channel, and a carbon nanotube mesh. The carbon nanotube mesh is formed from a plurality of intertwined free-standing carbon nanotubes which are fixedly attached within the channel for separating, concentrating, and/or filtering molecules flowed through the channel. In one embodiment, the microfluidic sieve is fabricated by providing a substrate having a microfluidic channel, and growing the intertwined free-standing carbon nanotubes from within the channel to produce the carbon nanotube mesh attached within the channel.

  9. The use of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) polymers as spacers for isotachophoresis in sieving gel matrices.

    PubMed

    Bellini, M P; Manchester, K L

    1999-03-01

    The electric field strength gradients generated in isotachophoresis (ITP) may be used for the separation of biomolecules. Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (polyAMPS) polymers of a uniform distribution of molecular mass were synthesized and used as novel spacers in ITP. Since these polymeric spacers are strongly acidic species, their ionic charges remain constant over a wide pH range, so that their ionic mobilities are governed solely by their molecular masses and not by the pH of the milieu. A modification of ITP known as telescope electrophoresis was used to separate a number of acidic dyes of varying ionic mobility, using polyAMPS polymers as spacers. The resolution obtained was superior to that obtained by polyacrylamide gel electrophoresis (PAGE), due to the focusing effect of the electric field strength gradient. Since these novel polymeric spacers are designed to operate within sieving medium, it was decided to test their suitability for the separation of DNA molecules. DNA molecules up to 1000 bp long were successfully resolved, with a similar resolution to that obtained with conventional PAGE. PMID:10036157

  10. Effect of barley roller milling on fractionation of flour using sieving and air classification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Separation of hulls prior to fermentation of barley flour could increase fuel ethanol productivity and the hulls would be an additional coproduct. In a recent study, it was found that the Elusieve process, a combination of sieving and elutriation (air classification) was effective in separating hul...

  11. Separation of fiber from distillers dried grains (DDG) using sieving and elutriation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recently developed a new process that combined sieving and elutriation (upward air flow) to separate fiber from distillers dried grains and solubles (DDGS). The current study was designed to evaluate the elusieve process for the first time using distillers dried grains (DDG) instead of DDGS. Be...

  12. Importance of neutralization sieve analyses when seeking correlates of HIV-1 vaccine efficacy

    PubMed Central

    Montefiori, David C

    2014-01-01

    This commentary describes a rationale for the use of breakthrough viruses from clinical trial participants to assess neutralizing antibodies as a correlate of HIV-1 vaccine efficacy. The rationale is based on principles of a genetic sieve analysis, where the 2 analyses may be cooperative for delineating neutralizing antibodies as a mechanistic correlate of protection. PMID:25424964

  13. Alternative sieving method for extraction of light filth from cheeses: collaborative study.

    PubMed

    Nakashima, M J

    1994-01-01

    A collaborative study was conducted on an alternative sieving method for the extraction of light filth from cheeses. The alternative method was developed that is applicable to broad variety of cheeses. A 225 g test portion is dispersed in a solution of 5.7% HCl, Igepal CO-730, and Igepal DM-710. Digested cheese is wet-sieved on a No. 230 sieve. The residue is treated with Tergitol Anionic 4, transferred to 1% sodium lauryl sulfate solution, heated, and maintained at 65 degrees-75 degrees C for 10 min. The residue is washed with these 2 surfactants a maximum of 4 times until it is reduced to an amount that is filterable. The residue is filtered and the filter papers are examined microscopically at a magnification of ca 30x. Average recoveries by 9 collaborators for 3 spike levels of rat hairs (5, 10, and 15) were 80, 68, and 81%, respectively; for insect fragments (5, 15, and 30) recoveries were 97, 90, and 92%, respectively. The alternative sieving method for extraction of light filth from cheeses has been adopted first action by AOAC INTERNATIONAL. PMID:7950417

  14. Structure-Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    SciTech Connect

    Lydon, Megan E; Unocic, Kinga A; Jones, Christopher W; Nair, Sankar

    2012-01-01

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO{sub x}H{sub y} nanostructures is presented. These characteristics are correlated with the suitability of such materials in the fabrication of LTA/Matrimid mixed-matrix membranes (MMMs) for CO{sub 2}/CH{sub 4} separations. The four functionalization methods studied in this work produce surface nanostructures that may appear superficially similar under SEM observation but in fact differ considerably in shape, size, surface coverage, surface area/roughness, degree of attachment to the zeolite surface, and degree of zeolite pore blocking. The evaluation of these characteristics by a combination of TEM, HRTEM, N{sub 2} physisorption, multiscale compositional analysis (XPS, EDX, and ICP-AES elemental analysis), and diffraction (ED and XRD) allows improved understanding of the origin of disparate gas permeation properties observed in MMMs made with four types of surface-modified zeolite LTA materials, as well as a rational selection of the method expected to result in the best enhancement of the desired properties (in the present case, CO{sub 2}/CH{sub 4} selectivity increase without sacrificing permeability). A method based on ion exchange of the LTA with Mg{sup 2+}, followed by base-induced precipitation and growth of MgOxHy nanostructures, deemed 'ion exchange functionalization' here, offers modified particles with the best overall characteristics resulting in the most effective MMMs. LTA/Matrimid MMMs containing ion exchange functionalized particles had a considerably higher CO{sub 2}/CH{sub 4} selectivity (40) than could be obtained with the other functionalization techniques (30), while maintaining a CO{sub 2} permeability of 10 barrers. A parallel study on pure silica MFI surface nanostructures is also presented to compare and contrast with the zeolite LTA case.

  15. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOEpatents

    Pence, Dallas T.; Thomas, Thomas R.

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  16. Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve

    PubMed Central

    Fritz, Melanie; Vanselow, Jens; Sauer, Nadja; Lamer, Stephanie; Goos, Carina; Siegel, T. Nicolai; Subota, Ines; Schlosser, Andreas; Carrington, Mark; Kramer, Susanne

    2015-01-01

    RNP granules are ribonucleoprotein assemblies that regulate the post-transcriptional fate of mRNAs in all eukaryotes. Their exact function remains poorly understood, one reason for this is that RNP granule purification has not yet been achieved. We have exploited a unique feature of trypanosomes to prepare a cellular fraction highly enriched in starvation stress granules. First, granules remain trapped within the cage-like, subpellicular microtubule array of the trypanosome cytoskeleton while soluble proteins are washed away. Second, the microtubules are depolymerized and the granules are released. RNA sequencing combined with single molecule mRNA FISH identified the short and highly abundant mRNAs encoding ribosomal mRNAs as being excluded from granules. By mass spectrometry we have identified 463 stress granule candidate proteins. For 17/49 proteins tested by eYFP tagging we have confirmed the localization to granules, including one phosphatase, one methyltransferase and two proteins with a function in trypanosome life-cycle regulation. The novel method presented here enables the unbiased identification of novel RNP granule components, paving the way towards an understanding of RNP granule function. PMID:26187993

  17. Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve.

    PubMed

    Fritz, Melanie; Vanselow, Jens; Sauer, Nadja; Lamer, Stephanie; Goos, Carina; Siegel, T Nicolai; Subota, Ines; Schlosser, Andreas; Carrington, Mark; Kramer, Susanne

    2015-09-18

    RNP granules are ribonucleoprotein assemblies that regulate the post-transcriptional fate of mRNAs in all eukaryotes. Their exact function remains poorly understood, one reason for this is that RNP granule purification has not yet been achieved. We have exploited a unique feature of trypanosomes to prepare a cellular fraction highly enriched in starvation stress granules. First, granules remain trapped within the cage-like, subpellicular microtubule array of the trypanosome cytoskeleton while soluble proteins are washed away. Second, the microtubules are depolymerized and the granules are released. RNA sequencing combined with single molecule mRNA FISH identified the short and highly abundant mRNAs encoding ribosomal mRNAs as being excluded from granules. By mass spectrometry we have identified 463 stress granule candidate proteins. For 17/49 proteins tested by eYFP tagging we have confirmed the localization to granules, including one phosphatase, one methyltransferase and two proteins with a function in trypanosome life-cycle regulation. The novel method presented here enables the unbiased identification of novel RNP granule components, paving the way towards an understanding of RNP granule function. PMID:26187993

  18. Adsorption of CO 2, CH 4 and N 2 on ordered mesoporous silica molecular sieve

    NASA Astrophysics Data System (ADS)

    Liu, Xiuwu; Li, Jingwen; Zhou, Li; Huang, Desheng; Zhou, Yaping

    2005-11-01

    Five samples of ordered mesoporous silica SBA-15 were synthesized. Its pore size was in the range 5-9 nm, and the specific surface area was in the range 500-900 m 2/g, which was controlled by the temperature and time of aging on crystallization. Adsorption isotherms of CO 2, CH 4 and N 2 on the samples were collected at 298 K, and the adsorption rates of the gases were also compared for different pressures. It was concluded that SBA-15 with the textural property studied was a good adsorbent for the separation of carbon dioxide from its mixture with methane and nitrogen.

  19. Microwave-assisted fast vapor-phase transport synthesis of MnAPO-5 molecular sieves

    SciTech Connect

    Shao Hui; Yao Jianfeng; Ke Xuebin; Zhang Lixiong Xu Nanping

    2009-04-02

    MnAPO-5 was prepared by a microwave-assisted vapor-phase transport method at 180 deg. C in short times. The products were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectra, UV-vis spectroscopic measurement, NH{sub 3}-temperature-programmed desorption and esterification reaction. It was found that dry gels prepared with aluminum isopropoxide, phosphoric acid and manganese acetate could be transferred to MnAPO-5 in the vapors of triethylamine and water by the microwave-assisted vapor-phase transport method at 180 deg. C for less than 30 min. The crystallization time was greatly reduced by the microwave heating compared with the conventional heating. The resulting MnAPO-5 exhibited much smaller particle sizes, higher surface areas and slightly higher catalytic activity in the esterification of acetic acid and butyl alcohol than those prepared by the conventional vapor-phase transport method and hydrothermal synthesis.

  20. Catalytic properties of molecular sieves MCM41 type doped with heteropolyacids for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Popa, A.; Sasca, V.; Halasz, J.

    2008-12-01

    Keggin type heteropolyacids (HPAs) have been used in acid-catalysed reactions as well as oxidation reactions both in the heterogeneous and homogeneous systems. In order to be more effective for catalytic reactions, HPAs are usually impregnated on different porous materials with high surface area. The structure and texture of H 3PMo 12O 40 and H 4PVMo 11O 40 supported on Al-MCM41 and Fe-MCM41 were studied by XRD, low-temperature nitrogen adsorption and thermal analysis. Catalytic properties of prepared samples were studied by using a reactant pulse method at different temperatures. The ethanol conversion proceeds by two main pathways: an oxidehydrogenation reaction on redox catalytic centers, and a dehydration reaction on acidic centers, respectively. The favourable effect of HPAs deposition on Al-MCM41 and Fe-MCM41 supports for oxidehydrogenation pathway to acetaldehyde results from the examination of apparent activation energies Ea and reaction rate values. An evidenced decreasing of Ea was obtained for acetaldehyde formation in the case of Fe-MCM41-supported HPM (25 kJ/mole) comparatively with pure HPM (56.6 kJ/mole). For all reaction temperatures, the reaction rates of acetaldehyde formation are with one order of magnitude higher for supported samples than unsupported ones.

  1. Synthesis of highly stable metal-containing extra-large-pore molecular sieves.

    PubMed

    Martínez-Franco, Raquel; Paris, Cecilia; Moliner, Manuel; Corma, Avelino

    2016-02-28

    The isomorphic substitution of two different metals (Mg and Co) within the framework of the ITQ-51 zeotype (IFO structure) using bulky aromatic proton sponges as organic structure-directing agents (OSDAs) has allowed the synthesis of different stable metal-containing extra-large-pore zeotypes with high pore accessibility and acidity. These metal-containing extra-large-pore zeolites, named MgITQ-51 and CoITQ-51, have been characterized by different techniques, such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, UV-Vis spectroscopy, temperature programmed desorption of ammonia and Fourier transform infrared spectroscopy, to study their physico-chemical properties. The characterization confirms the preferential insertion of Mg and Co atoms within the crystalline structure of the ITQ-51 zeotype, providing high Brønsted acidity, and allowing their use as efficient heterogeneous acid catalysts in industrially relevant reactions involving bulky organic molecules. PMID:26755759

  2. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan; Gao, Ruimin; Zhao, Jianshe; Wang, Junlong

    2015-05-01

    M2(PcAN)2 (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M2(PcAN)2-W-HZSM-5) or the M2(PcTN)2 doping W-HZSM-5 (M2(PcTN)2/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu2(PcAN)2-W-HZSM-5 and Cu2(PcTN)2/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV-Vis and calcination temperature was obtained by TG-DSC for Cu2(PcTN)2/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N2 adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed.

  3. Preparation, characterization, and catalytic performance of Ta-HMS mesoporous molecular sieve

    NASA Astrophysics Data System (ADS)

    Li, Xuefeng; Zhang, Like; Gao, Huanxin; Chen, Qingling

    2016-08-01

    Various Ta-HMS (hexagonal mesoporous silica) samples with different Ta content were hydrothermally prepared and characterized by XRD, N2-adsorption, ICP-AES, FTIR, and UV-Vis spectroscopy. The catalytic performance of the samples was also evaluated in the epoxidation of cyclohexene with cumene hydroperoxide as oxidant. The regularity of mesoporous structure decreases while more extraframe Ta ions are formed with increasing the Ta content. Ta-HMS with Ta/Si ratio of 0.015 shows the highest conversion and selectivity in the studied epoxidation reaction. The catalyst can be used for three times without significant activity loss.

  4. Textural and structural properties and surface acidity characterization of mesoporous silica-zirconia molecular sieves

    NASA Astrophysics Data System (ADS)

    Rodríguez-Castellón, E.; Jiménez-López, A.; Maireles-Torres, P.; Jones, D. J.; Rozière, J.; Trombetta, M.; Busca, G.; Lenarda, M.; Storaro, L.

    2003-11-01

    Homogeneous mesoporous zirconium-containing MCM-41 type silica were prepared by supramolecular templating and their textural and structural properties were studied using powder X-ray diffraction, N 2 porosimetry, atomic force microscopy, EXAFS, XPS, and UV-VIS-NIR diffuse reflectance spectroscopy. Their acid properties were also studied by using IR spectroscopy and by the use of catalytic tests such as the decomposition of isopropanol and the isomerization of 1-butene. The materials prepared show a good degree of crystallinity with a regular ordering of the pores into a hexagonal arrangement and high thermal stability. The specific surface area of the prepared materials decreases as the zirconium content rises. Zirconium atoms are in coordination 7 to 8 and located at the surface of the pores such that a high proportion of the oxygen atoms bonded to zirconium corresponds to surface non-condensed oxygen atoms. Both facts are responsible for the acid properties of the solids that show weak Brønsted and medium strong Lewis acidity.

  5. Optimization of Manganese Reduction in Biotreated POME onto 3A Molecular Sieve and Clinoptilolite Zeolites.

    PubMed

    Jami, Mohammed S; Rosli, Nurul-Shafiqah; Amosa, Mutiu K

    2016-06-01

    Availability of quality-certified water is pertinent to the production of food and pharmaceutical products. Adverse effects of manganese content of water on the corrosion of vessels and reactors necessitate that process water is scrutinized for allowable concentration levels before being applied in the production processes. In this research, optimization of the adsorption process conditions germane to the removal of manganese from biotreated palm oil mill effluent (BPOME) using zeolite 3A subsequent to a comparative adsorption with clinoptilolite was studied. A face-centered central composite design (FCCCD) of the response surface methodology (RSM) was adopted for the study. Analysis of variance (ANOVA) for response surface quadratic model revealed that the model was significant with dosage and agitation speed connoting the main significant process factors for the optimization. R(2) of 0.9478 yielded by the model was in agreement with predicted R(2). Langmuir and pseudo-second-order suggest the adsorption mechanism involved monolayer adsorption and cation exchanging. PMID:26556067

  6. Molecular sieve adsorbents and membranes for applications in the production of renewable fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Ranjan, Rajiv

    Metal organic frameworks (MOF), a new class of porous materials, have emerged as promising candidate for gas storage, separation membrane and chemical sensors. We used secondary growth method to grow microporous metal organic framework (MMOF) films on porous alumina supports. Examination of the film using SEM and XRD showed that the crystals were well inter-grown and preferentially oriented. Gas permeation study showed that membranes were defect free and moderate selectivity was achieved for H2/N2 gas pairs. The next project had to do with ethanol production from lignocellulosic biomass as an alternate energy source. However, toxic inhibitors produced from the hydrolysis of biomass decrease ethanol yield during the fermentation process. We demonstrated the use of zeolites for the pretreatment of hydrolyzate in order to remove inhibitors like 5-Hydroxymethylfurfuraldehyde (HMF) and furfural from aqueous solution. Zeolites exhibit preferential adsorption of the inhibitors and in effect improve the ethanol yield during fermentation. Ideal Adsorbed Solution Theory (IAST) was also used to predict adsorption isotherms for HMF-furfural mixtures using single component adsorption data. We also studied production of HMF, a potential substitute as a building block for plastic and chemical production, from renewable biomass resources. Catalytic dehydration of fructose for HMF production faces problems like low conversion and yield. Dimethyl sulfoxide (DMSO) can be used as the solvent as well as the catalyst resulting in high HMF yield. We studied a reaction-separation system for this dehydration reaction where the product (HMF) could be recovered by selective adsorption on solid adsorbents from the reaction mixture.

  7. Catalytic cracking of HDPE wastes to liquid fuel in the presence of siliceous mesoporous molecular sieves

    NASA Astrophysics Data System (ADS)

    Ramli, Anita; Majid, Noor Diana Abdul; Yusup, Suzana

    2014-10-01

    A siliceous gel was synthesized at 80°C and aged for 5 days at 120°C before it was dried at 120°C for 16 hours and calcined at 500 and 700°C. The calcined Na-Si-MMS samples were then undergone ion exchange with ammonia solution to form NH4- Si - MMS . All samples were characterized for their physicochemical properties using nitrogen (N2) adsorption-desorption isotherm for surface area and porosity; and temperature programme desorption of ammonia (TPD-NH3) for determination of acidity. The catalytic activity of all samples was tested in pyrolysis of high density polyethylene (HDPE) waste at catalyst to HDPE ratio of 0.2. The organic liquid product (OLP) collected was analysed using gas chromatography (GC). Results show that presence of Na-Si-MMS calcined at 500°C promotes the formation of gasoline-like product while presence of Na-Si-MMS calcined at 700°C promotes the formation of both diesel-like and kerosene-like products. On the other hand, presence of all NH4-Si-MMS catalysts promotes the formation of gasoline-like product. These show that the activation process of Si-MMS has a significant effect on the production of fuel-like product from pyrolysis of HDPE.

  8. LOW TEMPERATURE VOC COMBUSTION OVER MANGANESE, COBALT AND ZINC ALPO4 MOLECULAR SIEVES

    SciTech Connect

    Rosemarie Szostak

    2003-03-06

    The objective of this project was to prepare microporous aluminophosphates containing magnesium, manganese, cobalt and zinc (MeAPOs) and to evaluate their performance as oxidation catalysts for the removal of low levels of volatile organic compounds (VOCs) from gas streams. The tasks to be accomplished were as follows: (1) To develop reliable synthesis methods for metal aluminophosphates containing manganese, cobalt and zinc in their framework; (2) To characterize these materials for crystallinity, phase purity, the location and nature of the incorporated metal in the framework; and (3) To evaluate the materials for their catalytic activities in the oxidation of volatile organic environmental pollutants.

  9. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    SciTech Connect

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan; Gao, Ruimin; Zhao, Jianshe; Wang, Junlong

    2015-05-15

    M{sub 2}(PcAN){sub 2} (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M{sub 2}(PcAN){sub 2}–W-HZSM-5) or the M{sub 2}(PcTN){sub 2} doping W-HZSM-5 (M{sub 2}(PcTN){sub 2}/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 and Cu{sub 2}(PcTN){sub 2}/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV–Vis and calcination temperature was obtained by TG-DSC for Cu{sub 2}(PcTN){sub 2}/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N{sub 2} adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. - Graphical abstract: The ODS reaction schematic shows the reaction mechanism of ultra-deep desulfurization. The sulfur compounds are oxidized to their corresponding sulfoxides or sulfones through the use of oxygen and catalysts. The reaction process of ultra-deep desulfurization. - Highlights: • A kind of novel catalyst for deep desulfurization was synthesized. • Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 exhibits excellent catalytic performance for desulfurization. • The reaction conditions that affect desulfurization efficiency are investigated. • The reaction process of model sulfur compounds is proposed.

  10. Structural charge transfer in the aluminophosphate molecular sieves by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zanjanchi, M. A.; Rashidi, M. K.

    1999-05-01

    Influence of water adsorption in AlPO-5, SAPO-5, AlPO-11 and SAPO-11 has been studied with UV diffuse reflectance spectroscopy. The observed UV absorption spectra in the as-synthesized, template free and hydrated materials are related to the charge transfer processes between aluminum and oxygen atoms of the aluminophosphate and water molecules. As-synthesised materials show two distinct and well-defined bands at about 220 and 260-280 nm correlated to framework aluminum and organic templates, respectively. Upon calcination, the band of occluded template disappears and the band assigned to the framework aluminum shifts at about 240 nm. When the calcined samples are completely hydrated, broadening of the aluminum charge transfer band is observed. This is due to coordination of water molecules to the part of the framework aluminum. Broadening occurs more in AlPO-5 possibly because of higher water capacity and homogenity with respect to SAPO-5.

  11. IR spectroscopic study of hydroxyl groups of molecular sieves in the fundamental and combination tone regions

    NASA Astrophysics Data System (ADS)

    Löffler, E.; Zscherpel, U.; Peuker, Ch.; Staudte, B.

    1993-03-01

    The fundamental and combination vibrations of hydroxyl groups in zeolites (Y, ZSM-5) and silicoaluminophosphates (SAPO-5, -17, -34) are investigated. The influence of adsorbed molecules (C 6F 6, n-hexane) on the combination vibrations is also studied. Finally, remarks on quantitative evaluation of DRIFT spectra of NaHZSM-5 containing different amounts of bridging OH groups are given.

  12. OHMS**: Phytoplasmas dictate changes in sieve-element ultrastructure to accommodate their requirements for nutrition, multiplication and translocation

    PubMed Central

    Musetti, Rita; Pagliari, Laura; Buxa, Stefanie V.; Degola, Francesca; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; van Bel, Aart J. E.

    2016-01-01

    ABSTRACT Phytoplasmas are among the most recently discovered plant pathogenic microorganisms so, many traits of the interactions with host plants and insect vectors are still unclear and need to be investigated. At now, it is impossible to determine the precise sequences leading to the onset of the relationship with the plant host cell. It is still unclear how phytoplasmas, located in the phloem sieve elements, exploit host cell to draw nutrition for their metabolism, growth and multiplication. In this work, basing on microscopical observations, we give insight about the structural interactions established by phytoplasmas and the sieve element plasma membrane, cytoskeleton, sieve endoplasmic reticulum, speculating about a possible functional role. PMID:26795235

  13. Sieve-based relation extraction of gene regulatory networks from biological literature

    PubMed Central

    2015-01-01

    Background Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. Results We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice

  14. Sieve estimation in a Markov illness-death process under dual censoring.

    PubMed

    Boruvka, Audrey; Cook, Richard J

    2016-04-01

    Semiparametric methods are well established for the analysis of a progressive Markov illness-death process observed up to a noninformative right censoring time. However, often the intermediate and terminal events are censored in different ways, leading to a dual censoring scheme. In such settings, unbiased estimation of the cumulative transition intensity functions cannot be achieved without some degree of smoothing. To overcome this problem, we develop a sieve maximum likelihood approach for inference on the hazard ratio. A simulation study shows that the sieve estimator offers improved finite-sample performance over common imputation-based alternatives and is robust to some forms of dependent censoring. The proposed method is illustrated using data from cancer trials. PMID:26598559

  15. Chip-based optical microscopy for imaging membrane sieve plates of liver scavenger cells

    NASA Astrophysics Data System (ADS)

    Helle, Øystein I.; Øie, Cristina I.; McCourt, Peter; Ahluwalia, Balpreet S.

    2015-08-01

    The evanescent field on top of optical waveguides is used to image membrane network and sieve-plates of liver endothelial cells. In waveguide excitation, the evanescent field is dominant only near the surface (~100-150 nm) providing a default optical sectioning by illuminating fluorophores in close proximity to the surface and thus benefiting higher signal-to-noise ratio. The sieve plates of liver sinusoidal endothelial cells are present on the cell membrane, thus near-field waveguide chip-based microscopy configuration is preferred over epi-fluorescence. The waveguide chip is compatible with optical fiber components allowing easy multiplexing to different wavelengths. In this paper, we will discuss the challenges and opportunities provided by integrated optical microscopy for imaging cell membranes.

  16. Boolean information sieves: a local-to-global approach to quantum information

    NASA Astrophysics Data System (ADS)

    Zafiris, Elias

    2010-11-01

    We propose a sheaf-theoretic framework for the representation of a quantum observable structure in terms of Boolean information sieves. The algebraic representation of a quantum observable structure in the relational local terms of sheaf theory effectuates a semantic transition from the axiomatic set-theoretic context of orthocomplemented partially ordered sets, a la Birkhoff and Von Neumann, to the categorical topos-theoretic context of Boolean information sieves, a la Grothendieck. The representation schema is based on the existence of a categorical adjunction, which is used as a theoretical platform for the development of a functorial formulation of information transfer, between quantum observables and Boolean localisation devices in typical quantum measurement situations. We also establish precise criteria of integrability and invariance of quantum information transfer by cohomological means.

  17. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  18. Chemical Reactivity of Formaldehyde in FeAlP0{sub 4} Sieve

    SciTech Connect

    Yeom, Young-Hoon; Ulagappan, Nagappan; Frei, Heinz

    2001-03-12

    Formaldehyde gas loaded into framework Fe aluminophosphate sieve (FeAlP O4-5) at 250 K was found to react with adsorbed H2O, CH3OH, H2O2, or lattice OH groups to yield the corresponding addition product, namely CH2(OH)2, CH3OCH2OH, HO 2CH2OH, or POCH2OH, respectively. Reactions were monitored in situ by static FT-IR spectroscopy, and assignments are based on experiments with CD2=0 and CD3OD. Most efficient was the reaction with H2O2 as indicated by the fact that HO2CH2OH was formed at the exclusion of CH2(OH)2 and POCH2OH when adsorbing formaldehyde onto a sieve loaded with H2O2 and H2O. Methoxymethanol, methanediol, and POCH2OH were stable at 250 K, but dissociated above 0 degrees C under release of formaldehyde. Hydromethyl hydroperoxide disproportionates to formic acid and water. Under 355 nm irradiation in FeAlPO4 sieve, HO2CH2OH was found to undergo efficient photofragmentation.

  19. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation.

    PubMed

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as (3)He/(4)He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as (3)He/(4)He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high (3)He/(4)He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  20. Impact of fine mesh sieve primary treatment on nitrogen removal in moving bed biofilm reactors.

    PubMed

    Rusten, B; Razafimanantsoa, V A; Andriamiarinjaka, M A; Otis, C L; Sahu, A K; Bilstad, T

    2016-01-01

    The purpose of this project was to investigate the effect of selective particle removal during primary treatment on nitrogen removal in moving bed biofilm reactors (MBBRs). Two small MBBR pilot plants were operated in parallel, where one train treated 2 mm screened municipal wastewater and the other train treated wastewater that had passed through a Salsnes Filter SF1000 rotating belt sieve (RBS) with a 33 µs sieve cloth. The SF1000 was operated without a filter mat on the belt. The tests confirmed that, for the wastewater characteristics at the test plant, Salsnes Filter primary treatment with a 33 µs RBS and no filter mat produced a primary effluent that was close to optimum. Removal of organic matter with the 33 µs sieve had no negative effect on the denitrification process. Nitrification rates improved by 10-15% in the train with 33 µs RBS primary treatment. Mass balance calculations showed that without RBS primary treatment, the oxygen demand in the biological system was 36% higher. Other studies have shown that the sludge produced by RBS primary treatment is beneficial for biogas production and will also significantly improve sludge dewatering of the combined primary and biological sludge. PMID:26819389

  1. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    PubMed Central

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  2. In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control?

    PubMed

    Knoblauch, Jan; Tepler Drobnitch, Sarah; Peters, Winfried S; Knoblauch, Michael

    2016-08-01

    Kelps, brown algae (Phaeophyceae) of the order Laminariales, possess sieve tubes for the symplasmic long-distance transport of photoassimilates that are evolutionarily unrelated but structurally similar to the tubes in the phloem of vascular plants. We visualized sieve tube structure and wound responses in fully functional, intact Bull Kelp (Nereocystis luetkeana [K. Mertens] Postels & Ruprecht 1840). In injured tubes, apparent slime plugs formed but were unlikely to cause sieve tube occlusion as they assembled at the downstream side of sieve plates. Cell walls expanded massively in the radial direction, reducing the volume of the wounded sieve elements by up to 90%. Ultrastructural examination showed that a layer of the immediate cell wall characterized by circumferential cellulose fibrils was responsible for swelling and suggested that alginates, abundant gelatinous polymers of the cell wall matrix, were involved. Wall swelling was rapid, reversible and depended on intracellular pressure, as demonstrated by pressure-injection of silicon oil. Our results revive the concept of turgor generation and buffering by swelling cell walls, which had fallen into oblivion over the last century. Because sieve tube transport is pressure-driven and controlled physically by tube diameter, a regulatory role of wall swelling in photoassimilate distribution is implied in kelps. PMID:26991892

  3. Quality Control of Trichinella Testing at the Slaughterhouse Laboratory: Evaluation of the Use of a 400-Micrometer-Mesh-Size Sieve in the Magnetic Stirrer Method.

    PubMed

    Franssen, Frits; van Andel, Esther; Swart, Arno; van der Giessen, Joke

    2016-02-01

    The performance of a 400-μm-mesh-size sieve (sieve400) has not previously been compared with that of a 180-μm-mesh-size sieve (sieve180). Using pork samples spiked with 0 to 10 Trichinella muscle larvae and an artificial digestion method, sieve performance was evaluated for control of Trichinella in meat-producing animals. The use of a sieve400 resulted in 12% lower larval counts, 147% more debris, and 28% longer counting times compared with the use of a sieve180. Although no false-negative results were obtained, prolonged counting times with the sieve400 may have an impact on performance in a high-throughput environment such as a slaughterhouse laboratory. Based on our results, the sieve180 remains the sieve of choice for Trichinella control in meat in slaughterhouse laboratories, according to the European Union reference method (European Commission regulation 2075/2005). Furthermore, the results of the present study contribute to the discussion of harmonization of meat inspection requirements among countries. PMID:26818995

  4. On-line preconcentration of sodium dodecyl sulfate-protein complexes using electrokinetic supercharging method with a prefilled water plug in capillary sieving electrophoresis.

    PubMed

    Liu, Jing; Kang, Mingchao; Liu, Zhen

    2011-09-01

    An electrokinetic supercharging (EKS) method with a prefilled water plug at the head column of capillary was developed for on-line preconcentration of sodium dodecyl sulfate (SDS)-protein complexes in capillary sieving electrophoresis (CSE). Conventional EKS is a combination of electrokinetic injection with transient isotachophoresis (tr-ITP). The capillary is first filled with background electrolyte, then an appropriate amount of a leading electrolyte is filled and electro-injection is carried out for certain duration. After that, terminating electrolyte is filled, and tr-ITP is subsequently initiated, followed by capillary electrophoresis (CE) separation. In this work, the performance of EKS was evaluated by integrating multiple sub-methods step by step, and a water plug containing polymer was introduced before electrokinetic injection in order to further improve the concentration effect. The positive effects of the sub-methods were verified, including molecular sieving effect of polymer, field enhanced sample injection (FESI) with and without a water plug, and transient isotachophoretic electrophoresis-based FESI. It was observed that analyte discrimination usually encountered in conventional electrokinetic injection was eliminated due to the similar charge to mass ratios of SDS-protein complexes. Based on these results, a hybrid on-line preconcentration method, EKS with injecting a water plug containing polymer before sample electrokinetic injection, was proposed and used to indiscriminately preconcentrate SDS-protein complexes, which provided a sensitivity enhancement factor of more than 1000. It was very suitable for the analysis of low-abundance proteins, providing the information of their molecular mass. PMID:22233073

  5. Cryogenic separation of oxygen-argon mixture in natural air samples for isotopic and molecular ratios

    NASA Astrophysics Data System (ADS)

    Habeeb Rahman, Keedakkadan; Abe, Osamu

    2014-05-01

    The discovery of mass independent isotope fractionation in oxygen during the formation of ozone in the stratosphere has initiated a wide application in isotope geochemistry field. Separation of oxygen-argon mixture has become the foundation of high precision analysis of Δ17O and δ(O2/Ar) for geochemical applications. Here we present precise and simplified cryogenic separation of argon oxygen mixture from the atmospheric and dissolved air using 30/60 mesh 5A molecular sieve zeolite. A pioneer study of this method was conducted by Thiemens and Meagher in 1984. The column which is made of glass tube contains about 1.1 grams of molecular sieve zeolite and both ends of column was filled with glass wools. The experimental set up was tested for different combination of molecular sieves and slurry temperatures. We found the most efficient condition for the separation was at a column temperature of -103°C. For complete transfer of O2 and Ar mixture usually takes in 15-20 minutes time. The isotopic ratios of oxygen were analyzed using mass spectrometer (Thermo Fischer Delta Plus) relative to reference oxygen-argon mixture at 3V of m/z 32 for both sample and reference side. The signals of m/z 28, 32, and 40 were measured by dynamically to determine oxygen -argon ratio and to check nitrogen contamination. Repeated measurements of atmospheric air yielded a reproducibility (SE n=80) of 0.006, 0.004 and 0.19‰ for δ17O, δ18O and δO2/Ar respectively. The isotopic and molecular fractionation of argon- oxygen mixture during gas adsorption and desorption while using molecular sieve under liquid nitrogen temperature was studied. We have established a linear relationship governing the effect of 13X and 5A molecular sieves on molecular fractionation. And suggested the use of single 1/8" pellet 13X molecular sieve provided a negligible fractionation.

  6. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    SciTech Connect

    Enokida, Y.; Tanada, Y.; Hirabayashi, D.; Sawada, K.

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged application is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)

  7. Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements

    PubMed Central

    Buxa, Stefanie V.; Degola, Francesca; Polizzotto, Rachele; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; di Toppi, Luigi Sanità; van Bel, Aart J. E.; Musetti, Rita

    2015-01-01

    Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by ‘Candidatus Phytoplasma solani,’ the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes. PMID:26347766

  8. Increasing the sludge energy potential of wastewater treatment plants by introducing fine mesh sieves for primary treatment.

    PubMed

    Paulsrud, Bjarne; Rusten, Bjørn; Aas, Bjørn

    2014-01-01

    The objective of this study was to compare some basic characteristics of sludge from fine mesh sieves (sieve sludge) with sludge from primary clarifiers (primary sludge) regarding their energy potential with a focus on anaerobic digestion and/or incineration. Nineteen samples of sludge from fine mesh sieve plants (most of them without fine screens and grit chambers as pre-treatment) and 10 samples of primary sludge were analysed for the content of dry solids (DS), volatile solids (VS), chemical oxygen demand (COD), calorific value and methane potential. The results demonstrated that the sieve sludges have significantly higher VS content and higher methane potential than primary sludges, clearly indicating an increased sludge energy potential if fine mesh sieves are used for primary treatment instead of primary clarifiers at wastewater treatment plants with anaerobic digesters. If the sludges from primary treatment are to be incinerated or used as fuel in cement kilns, there is no significant difference in energy potential (given as calorific values) for the two types of primary treatment. PMID:24552728

  9. Analysis of proteins in biological samples by capillary sieving electrophoresis with postcolumn derivatization/laser-induced fluorescence detection.

    PubMed

    Kaneta, Takashi; Ogura, Takehito; Imasaka, Totaro

    2011-04-01

    Previously, we have demonstrated postcolumn derivatization of proteins separated by capillary sieving electrophoresis (CSE), in which naphthalene-2,3-dicarbaldehyde was employed as a fluorogenic labeling reagent. Standard proteins separated by CSE were reacted with naphthalene-2,3-dicarbaldehyde in the presence of 2-mercaptoethanol (2-ME) which plays a role of a reducing agent in the derivatization reaction. To improve the sensitivity, we attempted the use of ethanethiol instead of 2-ME. Ethanethiol showed 1.4- to 4.5-fold lower limits of detection for proteins than 2-ME. Furthermore, we found that 8-aminopyrene-1,3,6-trisulfonate (APTS) is a good marker for relative electrophoretic mobilities of proteins in CSE. Since APTS is a fluorescent and trivalent anion, it generates strong fluorescence and migrates faster than any of the proteins. Therefore, we employed APTS as a marker to obtain the relative electrophoretic mobilities of proteins. The present method was applied to the analyses of proteins in biological samples. Human Ewing's family tumor cell line 'RDES' was used as a sample. The cultured cells were lysed with a buffer containing Tris-HCl, NaCl, sodium dodecyl sulfate, and 2-ME. After denaturation, the lysate was directly introduced into the capillary. Several peaks, which would correspond to proteins with molecular mass ranging from 10 to 93 kDa, were found in the cell lysate. In addition, we measured a milk sample by the CSE with postcolumn derivatization. The electropherogram showed five major peaks which corresponded to α-lactalbumin, β-lactoglobulin, κ-casein, bovine serum albumin, and mixture of α- and β-casein. PMID:21449073

  10. Involvement of the sieve element cytoskeleton in electrical responses to cold shocks.

    PubMed

    Hafke, Jens B; Ehlers, Katrin; Föller, Jens; Höll, Sabina-Roxana; Becker, Stefanie; van Bel, Aart J E

    2013-06-01

    This study dealt with the visualization of the sieve element (SE) cytoskeleton and its involvement in electrical responses to local cold shocks, exemplifying the role of the cytoskeleton in Ca(2+)-triggered signal cascades in SEs. High-affinity fluorescent phalloidin as well as immunocytochemistry using anti-actin antibodies demonstrated a fully developed parietal actin meshwork in SEs. The involvement of the cytoskeleton in electrical responses and forisome conformation changes as indicators of Ca(2+) influx was investigated by the application of cold shocks in the presence of diverse actin disruptors (latrunculin A and cytochalasin D). Under control conditions, cold shocks elicited a graded initial voltage transient, ΔV1, reduced by external La(3+) in keeping with the involvement of Ca(2+) channels, and a second voltage transient, ΔV2. Cytochalasin D had no effect on ΔV1, while ΔV1 was significantly reduced with 500 nm latrunculin A. Forisome dispersion was triggered by cold shocks of 4°C or greater, which was indicative of an all-or-none behavior. Forisome dispersion was suppressed by incubation with latrunculin A. In conclusion, the cytoskeleton controls cold shock-induced Ca(2+) influx into SEs, leading to forisome dispersion and sieve plate occlusion in fava bean (Vicia faba). PMID:23624858

  11. Morphine Biosynthesis in Opium Poppy Involves Two Cell Types: Sieve Elements and Laticifers[W][OPEN

    PubMed Central

    Onoyovwe, Akpevwe; Hagel, Jillian M.; Chen, Xue; Khan, Morgan F.; Schriemer, David C.; Facchini, Peter J.

    2013-01-01

    Immunofluorescence labeling and shotgun proteomics were used to establish the cell type–specific localization of morphine biosynthesis in opium poppy (Papaver somniferum). Polyclonal antibodies for each of six enzymes involved in converting (R)-reticuline to morphine detected corresponding antigens in sieve elements of the phloem, as described previously for all upstream enzymes transforming (S)-norcoclaurine to (S)-reticuline. Validated shotgun proteomics performed on whole-stem and latex total protein extracts generated 2031 and 830 distinct protein families, respectively. Proteins corresponding to nine morphine biosynthetic enzymes were represented in the whole stem, whereas only four of the final five pathway enzymes were detected in the latex. Salutaridine synthase was detected in the whole stem, but not in the latex subproteome. The final three enzymes converting thebaine to morphine were among the most abundant active latex proteins despite a limited occurrence in laticifers suggested by immunofluorescence labeling. Multiple charge isoforms of two key O-demethylases in the latex were revealed by two-dimensional immunoblot analysis. Salutaridine biosynthesis appears to occur only in sieve elements, whereas conversion of thebaine to morphine is predominant in adjacent laticifers, which contain morphine-rich latex. Complementary use of immunofluorescence labeling and shotgun proteomics has substantially resolved the cellular localization of morphine biosynthesis in opium poppy. PMID:24104569

  12. Direct hydrothermal synthesis of ternary Li-Mn-O oxide ion-sieves.

    PubMed

    Zhang, Qin-Hui; Sun, Shu-Ying; Li, Shao-Peng; Yin, Xian-Sheng; Yu, Jian-Guo

    2009-04-01

    Spinel-type ternary LiMn(2)O(4) oxide precursor was synthesized by direct hydrothermal synthesis of Mn(NO(3))(2), LiOH, and H(2)O(2) at 383 K for 8 h, a better technique for controlling the nanocrystalline structure with well-defined pore size distribution and high surface area than the traditional solid state reaction method. The final low-dimensional MnO(2) nanorod ion-sieve with a lithium ion selective adsorption property was further prepared by an acid treatment process to completely extract lithium ions from the Li-Mn-O lattice. The effects of hydrothermal reaction conditions on the nanostructure, chemical stability, and ion-exchange property of the LiMn(2)O(4) precursor and MnO(2) ion-sieve were systematically examined via powder X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), and lithium ion selective adsorption measurements. The results show that this new kind of low-dimensional MnO(2) nanorod can be used for lithium extraction from aqueous environments, including brine, seawater, and waste water. PMID:19426343

  13. Method for Determining the Activation Energy Distribution Function of Complex Reactions by Sieving and Thermogravimetric Measurements.

    PubMed

    Bufalo, Gennaro; Ambrosone, Luigi

    2016-01-14

    A method for studying the kinetics of thermal degradation of complex compounds is suggested. Although the method is applicable to any matrix whose grain size can be measured, herein we focus our investigation on thermogravimetric analysis, under a nitrogen atmosphere, of ground soft wheat and ground maize. The thermogravimetric curves reveal that there are two well-distinct jumps of mass loss. They correspond to volatilization, which is in the temperature range 298-433 K, and decomposition regions go from 450 to 1073 K. Thermal degradation is schematized as a reaction in the solid state whose kinetics is analyzed separately in each of the two regions. By means of a sieving analysis different size fractions of the material are separated and studied. A quasi-Newton fitting algorithm is used to obtain the grain size distribution as best fit to experimental data. The individual fractions are thermogravimetrically analyzed for deriving the functional relationship between activation energy of the degradation reactions and the particle size. Such functional relationship turns out to be crucial to evaluate the moments of the activation energy distribution, which is unknown in terms of the distribution calculated by sieve analysis. From the knowledge of moments one can reconstruct the reaction conversion. The method is applied first to the volatilization region, then to the decomposition region. The comparison with the experimental data reveals that the method reproduces the experimental conversion with an accuracy of 5-10% in the volatilization region and of 3-5% in the decomposition region. PMID:26671287

  14. Remembering the SIEV X: who cares for the bodies of the stateless, lost at sea?

    PubMed

    Gibbings, Beth

    2010-02-01

    The SIEV X was a tiny fishing vessel traveling from Indonesia to Australia in 2001, carrying around four hundred people seeking asylum after fleeing from the warfare and persecution predominantly in Iraq and Afghanistan. Many were women and children trying to enter Australia to join fathers and husbands already granted refugee status but not allowed to bring in family members because of new Australian laws on "Temporary Protection Visas". Of these, 353 drowned when the boat sank in international waters. The conservative Australian government denied responsibility, using the event in an election campaign to play on fears about illegal entry and border defense in the Islamophobic climate in the aftermath of 9/11. Yet many everyday Australians eventually became involved in a collaborative design process to create a memorial to those asylum seekers. This article discusses the debates around memorials for those lost at sea, and particularly for those who might be portrayed as enemies or "illegal immigrants" whose coming threatens national borders. It identifies the conditions under which the campaign to commemorate those who died on the SIEV X moved from being a minority interest to become a cause so widely supported by Australians across the country that the memorial was eventually erected in the heart of the national capital. PMID:20503912

  15. Combining sieving and washing, a way to treat MSWI boiler fly ash.

    PubMed

    De Boom, Aurore; Degrez, Marc

    2015-05-01

    Municipal Solid Waste Incineration (MSWI) fly ashes contain some compounds that could be extracted and valorised. A process based on wet sieving and washing steps has been developed aiming to reach this objective. Such unique combination in MSWI fly ash treatment led to a non-hazardous fraction from incineration fly ashes. More specifically, MSWI Boiler Fly Ash (BFA) was separately sampled and treated. The BFA finer particles (13wt%) were found to be more contaminated in Pb and Zn than the coarser fractions. After three washing steps, the coarser fractions presented leaching concentrations acceptable to landfill for non-hazardous materials so that an eventual subsequent valorisation may be foreseen. At the contrary, too much Pb leached from the finest particles and this fraction should be further treated. Wet sieving and washing permit thus to reduce the leachability of MSWI BFA and to concentrate the Pb and Zn contamination in a small (in particle size and volume) fraction. Such combination would therefore constitute a straightforward and efficient basis to valorise coarse particles from MSWI fly ashes. PMID:25736808

  16. Molecular dynamics computer simulation of permeation in solids

    SciTech Connect

    Pohl, P.I.; Heffelfinger, G.S.; Fisler, D.K.; Ford, D.M.

    1997-12-31

    In this work the authors simulate permeation of gases and cations in solid models using molecular mechanics and a dual control volume grand canonical molecular dynamics technique. The molecular sieving nature of microporous zeolites are discussed and compared with that for amorphous silica made by sol-gel methods. One mesoporous and one microporous membrane model are tested with Lennard-Jones gases corresponding to He, H{sub 2}, Ar and CH{sub 4}. The mesoporous membrane model clearly follows a Knudsen diffusion mechanism, while the microporous model having a hard-sphere cutoff pore diameter of {approximately}3.4 {angstrom} demonstrates molecular sieving of the methane ({sigma} = 3.8 {angstrom}) but anomalous behavior for Ar ({sigma} = 3.4 {angstrom}). Preliminary results of Ca{sup +} diffusion in calcite and He/H{sub 2} diffusion in polyisobutylene are also presented.

  17. Improving the accuracy of sediment-associated constituent concentrations in whole storm water samples by wet-sieving

    USGS Publications Warehouse

    Selbig, W.R.; Bannerman, R.; Bowman, G.

    2007-01-01

    Sand-sized particles (>63 ??m) in whole storm water samples collected from urban runoff have the potential to produce data with substantial bias and/or poor precision both during sample splitting and laboratory analysis. New techniques were evaluated in an effort to overcome some of the limitations associated with sample splitting and analyzing whole storm water samples containing sand-sized particles. Wet-sieving separates sand-sized particles from a whole storm water sample. Once separated, both the sieved solids and the remaining aqueous (water suspension of particles less than 63 ??m) samples were analyzed for total recoverable metals using a modification of USEPA Method 200.7. The modified version digests the entire sample, rather than an aliquot, of the sample. Using a total recoverable acid digestion on the entire contents of the sieved solid and aqueous samples improved the accuracy of the derived sediment-associated constituent concentrations. Concentration values of sieved solid and aqueous samples can later be summed to determine an event mean concentration. ?? ASA, CSSA, SSSA.

  18. NHEXAS PHASE I MARYLAND STUDY--STANDARD OPERATING PROCEDURE FOR SIEVING AND DIVISION OF DUST AND SOIL SAMPLES (L05)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedure for sieving samples of house dust and soil. The procedure is applicable to house dust samples taken using the HVS3 dust sampler, and to soil samples. Keywords: dust; soil.

    The National Human Exposure Assessment Survey (NHE...

  19. Tocopherols and tocotrienols in barley oil prepared from germ and other fractions from scarification and sieving of hulless barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two cultivars of hulless barley (Doyce and Merlin), were scarified to abrade the outer layers of the kernels (germ, pericarp, and aleurone). The resulting scarification fines fractions were then separated into four particle size subfractions using sieves. Each of the size subfractions was then extr...

  20. Accuracy of micro powder dosing via a vibratory sieve-chute system.

    PubMed

    Besenhard, M O; Faulhammer, E; Fathollahi, S; Reif, G; Calzolari, V; Biserni, S; Ferrari, A; Lawrence, S M; Llusa, M; Khinast, J G

    2015-08-01

    This paper describes a powder dosing system with a vibratory sieve mounted on a chute that doses particles into a capsule. Vertical vibration occurred with a broad range of frequencies and amplitudes. During dosing events, the fill weight was accurately recorded via a capacitance sensor, covering the capsules and making it possible to analyze filling characteristics, that is, the fill rates and their robustness. The range of frequencies and amplitudes was screened for settings that facilitated reasonable (no blocking, no spilling) fill rates for three lactose powders. The filling characteristics were studied within this operating space. The results reveal similar operating spaces for all investigated powders. The fill rate robustness varied distinctly in the operating space, which is of prime importance for selecting the settings for continuous feeding applications. In addition, we present accurate dosing studies utilizing the knowledge about the filling characteristics of each powder. PMID:26044188

  1. Recovery of macroinvertebrates by screening in the field: a comparison between coarse (1.18 mm) and fine (0.60 mm) mesh sieves

    USGS Publications Warehouse

    Dukerschein, J.T.; Gent, R.; Sauer, J.

    1996-01-01

    We evaluated the potential loss of target benthic macroinvertebrates from coarse-mesh field wash down of samples through a 1.18-mm mesh sieve nested on a 0.60-mm mesh sieve. Visible target organisms (midges, mayflies, and fingernail clams) in the 1.18-mm mesh sieve were removed from the sample and enumerated in the field. The entire contents of both sieves were preserved for subsequent laboratory enumeration under 4X magnification. Percent recoveries from each treatment were based on total intact organisms found in all sieves. Percent recovery for fingernail clams found in the field (31%) was lower than for mayflies (79%) and midges (88%). Laboratory enumeration of organisms retained by the 1.18-mm sieve yielded additional fingernail clams (to total 74% recovered in the field and lab), mayflies (to total 89%), and midges (to total 91%). If the 1.18-mm sieve is used alone in the field, it is adequate to monitor mayflies, midges >1 cm, and adult fingernail clams greater than or equal to 5.0 mm shell length.

  2. Molecular modification of proanthocyanidins.

    PubMed

    Huo, Qing; Kong, Xiangye; Yang, Xiaofang; Wang, Yue; Ma, Lingling; Luo, Min; Xu, Diandou

    2016-07-01

    Regioselective enzymatic acylation of proanthocyanidin is proposed and investigated as a method by which to improve the solubility of proanthocyanidins in the oil phase and maintain its oxidation resistance. Experimental results indicate that butanol functions as the best solvent in the studied reaction, in which Lipase Novozym435 is used as biological catalyst enzyme and the molar ratio of lauric acid to proanthocyanidins is 4:1. To increase the esterification conversion, we propose the addition of molecular sieve at 5 h. The product was separated by TLC, and results indicate an optimal solvent ratio of ethyl acetate: petroleum ether: acetic acid = 2:3:0.5. This condition can effectively separate the ester and proanthocyanidins, achieving an esterification yield of 60.9%. PMID:27459598

  3. What is the role played by organic matter fractions from different sieve-size particles in the development of soil water repellency? A case study using analytical pyrolysis.

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; González-Pérez, José A.; González-Vila, Francisco J.; Zavala, Lorena M.; Jordán, Antonio; Jiménez-González, Marco A.

    2014-05-01

    size fraction and SOM content. The most severe WR was detected in QS for all sieve size fractions, followed by the finer fractions form PA, PP and HH samples, which that also shows the highest SOM content, ranging between 20.9% (PP) and 46.9% (QS). Coarser soil fractions (1-2 mm) under PA, PP and HH showed the highest long-chain-even C numbered fatty acids (LCE-FA) in the order PP>PA>HH. No fatty acids were detected neither in sieve fractions 0.25-1, 0.05-0.25 and <0.05 mm from HH samples nor in PA and PP (0.25-1 mm samples). A significant relation was observed between SOM content and severity of soil WR in QS samples and finer fractions of other samples, which is in agreement with previous findings (GOrdillo-Rivero et al., 2013; Jordán et al., 2011). In contrast, 1-2 mm sieve fractions from PP, PA and HH soils showed high severity of soil WR and relatively low SOM contents. This could be explained by a low degree of evolution of organic residues with higher alkane/alkene CPI values and to the presence of a higher diversity of fatty acid structures. These results suggest that soil WR appears as a consequence of lipid compounds in soil. Some similarities were found in the organic molecular assemblages in PA and PP samples, suggesting a fingerprint of pine residues in PA samples, resulting from ancient pine forests. This finding may be also explained by the existence of exogenous organic inputs associated to fine soil particles from border areas of pine forests. REFERENCES de la Rosa, J.M., González-Pérez, J.A., González-Vila, F.J., Knicker, H., Araújo, M.F. 2011. Characterization of wildfire effects on soil organic matter using analytical pyrolysis. Geoderma 191, 24-30. González-Pérez, J.A., González-Vila, F.J., Arias, M.E., Rodríguez, J., de la Rosa, J.M., Marañón, T., Clemente, L. 2011. Geochemical and ecological significance of soil lipids under Rhododendron ponticum stands. Environmental Chemistry Letters 9, 453-464. Gordillo-Rivero, A.J., Garc

  4. What is the role played by organic matter fractions from different sieve-size particles in the development of soil water repellency? A case study using analytical pyrolysis.

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; González-Pérez, José A.; González-Vila, Francisco J.; Zavala, Lorena M.; Jordán, Antonio; Jiménez-González, Marco A.

    2014-05-01

    size fraction and SOM content. The most severe WR was detected in QS for all sieve size fractions, followed by the finer fractions form PA, PP and HH samples, which that also shows the highest SOM content, ranging between 20.9% (PP) and 46.9% (QS). Coarser soil fractions (1-2 mm) under PA, PP and HH showed the highest long-chain-even C numbered fatty acids (LCE-FA) in the order PP>PA>HH. No fatty acids were detected neither in sieve fractions 0.25-1, 0.05-0.25 and <0.05 mm from HH samples nor in PA and PP (0.25-1 mm samples). A significant relation was observed between SOM content and severity of soil WR in QS samples and finer fractions of other samples, which is in agreement with previous findings (GOrdillo-Rivero et al., 2013; Jordán et al., 2011). In contrast, 1-2 mm sieve fractions from PP, PA and HH soils showed high severity of soil WR and relatively low SOM contents. This could be explained by a low degree of evolution of organic residues with higher alkane/alkene CPI values and to the presence of a higher diversity of fatty acid structures. These results suggest that soil WR appears as a consequence of lipid compounds in soil. Some similarities were found in the organic molecular assemblages in PA and PP samples, suggesting a fingerprint of pine residues in PA samples, resulting from ancient pine forests. This finding may be also explained by the existence of exogenous organic inputs associated to fine soil particles from border areas of pine forests. REFERENCES de la Rosa, J.M., González-Pérez, J.A., González-Vila, F.J., Knicker, H., Araújo, M.F. 2011. Characterization of wildfire effects on soil organic matter using analytical pyrolysis. Geoderma 191, 24-30. González-Pérez, J.A., González-Vila, F.J., Arias, M.E., Rodríguez, J., de la Rosa, J.M., Marañón, T., Clemente, L. 2011. Geochemical and ecological significance of soil lipids under Rhododendron ponticum stands. Environmental Chemistry Letters 9, 453-464. Gordillo-Rivero, A.J., Garc

  5. Fabrication of multi-layer polymeric micro-sieve having narrow slot pores with conventional ultraviolet-lithography and micro-fabrication techniques

    PubMed Central

    Ebrahimi Warkiani, Majid; Lou, Chao-Ping; Gong, Hai-Qing

    2011-01-01

    Fast detection of waterborne pathogens is important for securing the hygiene of drinking water. Detection of pathogens in water at low concentrations and minute quantities demands rapid and efficient enrichment methods in order to improve the signal-to-noise ratio of bio-sensors. We propose and demonstrate a low cost and rapid method to fabricate a multi-layer polymeric micro-sieve using conventional lithography techniques. The micro-fabricated micro-sieves are made of several layers of SU-8 photoresist using multiple coating and exposure steps and a single developing process. The obtained micro-sieves have good mechanical properties, smooth surfaces, high porosity (≈40%), and narrow pore size distribution (coefficient of variation < 3.33%). Sample loading and back-flushing using the multi-layer micro-sieve resulted in more than 90% recovery of pathogens, which showed improved performance than current commercial filters. PMID:22662051

  6. Particle Size (Sieving) and Enthalpy (Acid Calorimetry) Analysis of Single-Pull K East Basin Floor and Pit Sludges

    SciTech Connect

    PR Bredt; CH Delegard; AJ Schmidt; KL Silvers; BM Thornton; S Gano

    2000-12-22

    This report presents the results of particle size analyses and calorimetry testing performed on selected single-pull sludge samples collected from the Hanford K East Basin between December 1998 and June 1999. The samples were collected as isolated cores predominantly from areas that had not been previously sampled (e.g., North Loadout Pit, Dummy Elevator Pit, Tech View Pit), or from areas in which the sludge composition had been altered since the last sampling (e.g., Weasel Pit). Particle size analyses were performed by washing wet sludge samples through a series of four sieves with openings of 250, 500, 1410, and 4000 {micro}m. The loaded sieves were weighed before and after drying to obtain wet and dry particle size distributions. Knowledge of the particle size distribution is needed to design and predict the performance of the systems that will be used to retrieve, transport, and recover sludge. Also, sieving provides an opportunity to observe the components in the sludge. For example, during sieving of the sludge sample from the North Loadout Pit, significant quantities of organic ion exchange beads were observed. The uranium metal content and the particle size of the uranium metal in the K Basin sludge will largely determine the chemical reactivity of the sludge. In turn, the designs for the sludge handling and storage systems must be compatible with the reactivity of the sludge. Therefore, acid calorimetry was performed to estimate the uranium metal content of the sludge. For this testing, sludge samples were dissolved in nitric acid within a calibrated adiabatic calorimeter. The resulting dissolution enthalpy data were then used to discriminate between metallic uranium ({minus}3750 J/g in nitric acid) and uranium oxide ({minus}394 J/g in nitric acid). Results from this testing showed that the single-pull sludge samples contained little or no uranium metal.

  7. SANDY: A Matlab tool to estimate the sediment size distribution from a sieve analysis

    NASA Astrophysics Data System (ADS)

    Ruiz-Martínez, Gabriel; Rivillas-Ospina, Germán Daniel; Mariño-Tapia, Ismael; Posada-Vanegas, Gregorio

    2016-07-01

    This paper presents a new computational tool called SANDY© which calculates the sediment size distribution and its textural parameters from a sieved sediment sample using Matlab®. The tool has been developed for professionals involved in the study of sediment transport along coastal margins, estuaries, rivers and desert dunes. The algorithm uses several types of statistical analyses to obtain the main textural characteristics of the sediment sample (D50, mean, sorting, skewness and kurtosis). SANDY© includes the method of moments (geometric, arithmetic and logarithmic approaches) and graphical methods (geometric, arithmetic and mixed approaches). In addition, it provides graphs of the sediment size distribution and its classification. The computational tool automatically exports all the graphs as enhanced metafile images and the final report is also exported as a plain text file. Parameters related to bed roughness such as Nikuradse and roughness length are also computed. Theoretical depositional environments are established by a discriminant function analysis. Using the uniformity coefficient the hydraulic conductivity of the sand as well as the porosity and void ratio of the sediment sample are obtained. The maximum relative density related to sand compaction is also computed. The Matlab® routine can compute one or several samples. SANDY© is a useful tool for estimating the sediment textural parameters which are the basis for studies of sediment transport.

  8. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    NASA Astrophysics Data System (ADS)

    Liu, Minmin; Hou, Li-an; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-01

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  9. Postcolumn derivatization of proteins in capillary sieving electrophoresis/laser-induced fluorescence detection.

    PubMed

    Kaneta, Takashi; Yamamoto, Daisuke; Imasaka, Totaro

    2009-11-01

    The separation methods for proteins with high resolution and sensitivity are absolutely important in the field of biological sciences. Capillary sieving electrophoresis (CSE) is an excellent separation technique for DNA and proteins with high resolution, while LIF permits the most sensitive detection in CSE. Therefore, proteins have to be labeled with fluorescent or fluorogenic reagent to produce fluorescent derivatives. Both precolumn and oncolumn derivatization have been employed for the labeling of proteins in CSE. However, there is no report on the postcolumn derivatization due to the limitation in the use of a standard migration buffer, despite it being a promising method for sensitive detection of proteins. Here, we show a novel postcolumn derivatization method for protein separation by CSE, using a tertiary amine as a buffer component in the running buffer. Tris, which is commonly used as a base in CSE separation buffers, was substituted by tertiary amines, 2-(diethylamino)ethanol and triethanolamine. A buffer solution containing 2-(diethylamino)ethanol or triethanolamine can be used for the CSE separation followed by the postcolumn derivatization of proteins, since both reagents are unreactive toward a fluorogenic labeling reagent, naphthalene-2,3-dicarbaldehyde. Thus, LIF detection using the postcolumn derivatization permits significant reduction in the LOD (by a factor of 2.4-28) of proteins, compared with conventional absorbance detection. PMID:19862753

  10. Use of weather radar for flood forecasting in the Sieve River Basin: A sensitivity analysis

    SciTech Connect

    Pessoa, M.L.; Bras, R.L.; Williams, E.R. )

    1993-03-01

    Weather radar, in combination with a distributed rainfall-runoff model, promises to significantly improve real-time flood forecasting. This paper investigates the value of radar-derived precipitation in forecasting streamflow in the Sieve River basin, near Florence, Italy. The basin is modeled with a distributed rainfall-runoff model that exploits topographic information available from digital elevation maps. The sensitivity of the flood forecast to various properties of the radar-derived rainfall is studied. It is found that use of the proper radar reflectivity-rainfall intensity (Z-R) relationship is the most crucial factor in obtaining correct flood hydrographs. Errors resulting from spatially averaging radar rainfall are acceptable, but the use of discrete point information (i.e. raingage) can lead to serious problems. Reducing the resolution of the 5-min radar signal by temporally averaging over 15 and 30 min does not lead to major errors. Using 3-bit radar data (rather than the usual 8-bit data) to represent intensities results in significant operational savings without serious problems in hydrograph accuracy. 24 refs., 28 figs., 2 tabs.

  11. New correlation for sieve-tray point efficiency, entrainment, and section efficiency

    SciTech Connect

    Bennett, D.L.; Watson, D.N.; Wiescinski, M.A.

    1997-06-01

    A comprehensive composite database for distillation sieve-tray efficiency is used to develop point efficiency and entrainment correlations based on a model that considers the fluid on the distillation tray to be contained in a liquid-continuous region near the tray deck and a vapor-continuous region on top of the liquid-continuous region. This model allows estimates of the portion of the mass transfer resistance that occurs on the liquid side and vapor side of the interface. For most cases, most of the mass transfer occurs within the liquid-continuous region. The liquid side resistance is often significant. The entrainment correlation is consistent with the work of bennett et al., which relates entrainment to the ratios of the liquid to vapor density and the forth height to the tray spacing. A simple liquid continuous-only mass-transfer model containing only four empirical parameters correlates the point efficiency data to within 6.4%. Despite a twofold change in vapor Schmidt number, no dependency on vapor Schmidt number is seen. Important dimensionless groupings are the Reynolds number based on the hole velocity, effective froth density, ratio of the liquid inventory to the perforation diameter, and fraction of the tray area perforated. Mathematically simple and accurate methods allow the prediction of the section efficiency for trays operating in cross or parallel flow. They address vapor and liquid mixing, entrainment and a criterion to avoid significant degradation of the tray efficiency due to weeping.

  12. [Determination of osteopontin at trace levels by non-gel sieving capillary electrophoresis].

    PubMed

    Zhao, Jingshan; Wen, Jinkun; Han, Mei

    2005-09-01

    A method of non-gel sieving capillary electrophoresis (NGSCE) was established to determine osteopontin at trace levels. The capillary used was uncoated fused silica with a size of 57 cm x 75 microm i. d. and an effective length of 50 cm. The electrode buffer was a 150 mmol/L boric acid-borate buffer containing 30 g/L polyethylene glycol 20000 (pH 10.0). Other conditions were as follows: separation voltage 23 kV; detection wavelength 214 nm; pressure of injecting sample 3.4 kPa (0.5 psi) x 5 s; and column temperature 25 degrees C. The NGSCE method had excellent linearity with correlation coefficient of 0. 996, and reproducibility with the relative standard deviation of migration time of osteopontin less than 5% . The recovery was 95% and better, the sensitivity was 0. 079 g/L. Osteopontin secreted by vascular smooth muscle cells was determined by the NGSCE method at different times after serum withdrawal, and the results were in agreement with those of Western blot method. The results indicate that NGSCE is a simple and rapid method of determining osteopontin at trace levels. This method only needs a micro-amount of sample and is easily automated. PMID:16350797

  13. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash

    PubMed Central

    Liu, Minmin; Hou, Li-an; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-01-01

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin–Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics. PMID:23687400

  14. HydrogeoSieveXL: an Excel-based tool to estimate hydraulic conductivity from grain-size analysis

    NASA Astrophysics Data System (ADS)

    Devlin, J. F.

    2015-04-01

    For over a century, hydrogeologists have estimated hydraulic conductivity (K) from grain-size distribution curves. The benefits of the practice are simplicity, cost, and a means of identifying spatial variations in K. Many techniques have been developed over the years, but all suffer from similar shortcomings: no accounting of heterogeneity within samples (i.e., aquifer structure is lost), loss of grain packing characteristics, and failure to account for the effects of overburden pressure on K. In addition, K estimates can vary by an order of magnitude between the various methods, and it is not generally possible to identify the best method for a given sample. The drawbacks are serious, but the advantages have seen the use of grain-size distribution curves for K estimation continue, often using a single selected method to estimate K in a given project. In most cases, this restriction results from convenience. It is proposed here that extending the analysis to include several methods would be beneficial since it would provide a better indication of the range of K that might apply. To overcome the convenience limitation, an Excel-based spreadsheet program, HydrogeoSieveXL, is introduced here. HydrogeoSieveXL is a freely available program that calculates K from grain-size distribution curves using 15 different methods. HydrogeoSieveXL was found to calculate K values essentially identical to those reported in the literature, using the published grain-size distribution curves.

  15. Effect of sample area and sieve size on benthic macrofaunal community condition assessments in California enclosed bays and estuaries.

    PubMed

    Hammerstrom, Kamille K; Ranasinghe, J Ananda; Weisberg, Stephen B; Oliver, John S; Fairey, W Russell; Slattery, Peter N; Oakden, James M

    2012-10-01

    Benthic macrofauna are used extensively for environmental assessment, but the area sampled and sieve sizes used to capture animals often differ among studies. Here, we sampled 80 sites using 3 different sized sampling areas (0.1, 0.05, 0.0071 m(2)) and sieved those sediments through each of 2 screen sizes (0.5, 1 mm) to evaluate their effect on number of individuals, number of species, dominance, nonmetric multidimensional scaling (MDS) ordination, and benthic community condition indices that are used to assess sediment quality in California. Sample area had little effect on abundance but substantially affected numbers of species, which are not easily scaled to a standard area. Sieve size had a substantial effect on both measures, with the 1-mm screen capturing only 74% of the species and 68% of the individuals collected in the 0.5-mm screen. These differences, though, had little effect on the ability to differentiate samples along gradients in ordination space. Benthic indices generally ranked sample condition in the same order regardless of gear, although the absolute scoring of condition was affected by gear type. The largest differences in condition assessment were observed for the 0.0071-m(2) gear. Benthic indices based on numbers of species were more affected than those based on relative abundance, primarily because we were unable to scale species number to a common area as we did for abundance. PMID:20938972

  16. A tale of two neglected systems—structure and function of the thin- and thick-walled sieve tubes in monocotyledonous leaves

    PubMed Central

    Botha, C. E. J.

    2013-01-01

    There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However, there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate, and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled) and late (thick-walled) sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma (VP) cells, whilst the late metaphloem, contains thick-walled sieve tubes (TSTs) that lack companion cells. TSTs are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube (ST) -companion cell complexes, TSTs are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the STs. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5–7 million years old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer. PMID:23964280

  17. The use of molecular sieves to simulate hot lesions in (18)F-fluorodeoxyglucose--positron emission tomography imaging.

    PubMed

    Matheoud, R; Secco, C; Ridone, S; Inglese, E; Brambilla, M

    2008-04-21

    We investigated the use of a kind of zeolite, the Bowie chabazite, to produce radioactive sources of different shapes, dimensions and activity concentrations that can be used for lesion simulation in positron emission tomography (PET) imaging. The (18)F-fluorodeoxyglucose ((18)F-FDG) uptake of a group of 12 zeolites was studied as a function of their weight (120-1,520 mg) and of the activity concentration of the (18)F-FDG solution (1-37 MBq ml(-1)), using a multiple linear regression model. The reproducibility, homogeneity and stability over time of the (18)F-FDG uptake were assessed. The fit of the regression model is good (r(2) = 0.83). This relation allows the production of zeolites of a desired (18)F-FDG activity using knowledge of the concentration of the soaking solution and the weight of the zeolite. The reproducibility of the (18)F-FDG uptake after heating the zeolites is elevated (CV% = 3.68). The almost complete regeneration of the zeolites allows us to reuse them in successive experiments. The stability of the (18)F-FDG uptake on zeolites is far from ideal. When placed in a saline solution the 'activated' zeolites release the (18)F-FDG with an effective half-time of 53 min. The sealing of the zeolites in plastic film bags has been demonstrated to be effective in preventing any release of (18)F-FDG. These features, together with their variable dimensions and shapes, make them ideal (18)F-FDG sources with a fixed target-to-background ratio that can be placed anywhere in a phantom to study lesion detectability in PET imaging. PMID:18379022

  18. Tritium test of cryogenic molecular sieve bed for He GDC gas cleanup by 60 SLM test loop

    SciTech Connect

    Enoeda, Mikio; Kawamura, Yoshinori; Okuno, Kenji

    1996-12-31

    This work presents demonstrative test results of CMSB by simulated helium glow discharge exhaust gas condition in 60 l/min of flow rate. This work focused on H{sub 2} and HT adsorption and regeneration performance of CMSB and optimum regeneration procedure, so that the operation cycle time becomes smaller. Test results showed consistency with bench-scale experiments. Obtained engineering data are applicable for the design of the CMSB process for ITER He GDC gas cleanup. As the results of this work, it was demonstrated that CMSB process could clean up 54.3 SLM of He stream with H{sub 2}(400) ppm+HT(0.5 ppm). Regeneration performance in various total pressure were obtained and evaluated by the calculation and clarified necessary information for determining the optimum regeneration procedure of CMSB which allow continuous operation in the shorter period of operation cycle (adsorption and regeneration). 6 refs., 5 figs., 1 tab.

  19. Insights of the Crystallization Process of Molecular Sieve AlPO4-5 Prepared by Solvent-Free Synthesis.

    PubMed

    Sheng, Na; Chu, Yueying; Xin, Shaohui; Wang, Qiang; Yi, Xianfeng; Feng, Zhaochi; Meng, Xiangju; Liu, Xiaolong; Deng, Feng; Xiao, Feng-Shou

    2016-05-18

    Crystallization of AlPO4-5 with AFI structure under solvent-free conditions has been investigated. Attention was mainly focused on the characterization of the intermediate phases formed at the early stages during the crystallization. The development in the long-range ordering of the solid phases as a function of crystallization time was monitored by XRD, SEM, IR, UV-Raman, and MAS NMR techniques. Particularly, the UV-Raman spectroscopy was employed to obtain the information on the formation process of the framework. J-HMQC (27)Al/(31)P double-resonance NMR experiments were used to identify the P-O-Al bonded species in the intermediate phases. For the first time the P-O-Al bonded species in the intermediate phases can be correctly described through using this advanced NMR technique. The crystallization under solvent-free conditions appears to follow the pathway: The initial amorphous raw material is converted to an intermediate phase which has four-/six-membered ring species, then gradually transformed into crystalline AlPO4-5. This observation is not consistent with the common idea that the intermediate phase is the semicrystalline intermediates with a three-dimensional structure. PMID:27116300

  20. Nanocomposite prepared from ZnS nanoparticles and molecular sieves nanoparticles by ion exchange method: characterization and its photocatalytic activity.

    PubMed

    Pourahmad, Afshin

    2013-02-15

    In this article, we have reported synthesis of ZnS/MCM-41 nanocomposite and its photocatalytic activity. The photocatalytic activity was evaluated using basic blue 9 or methylene blue (MB) as model pollutant under UV light irradiation. The catalyst is characterized by transmission electron microscopy (TEM), UV-vis diffused reflectance spectra (UV-vis DRS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The effect of ZnS, MCM-41 support and different wt% of ZnS over the support on the photocatalytic degradation and influence of parameters such as ZnS loading, catalyst a mount, pH and initial concentration of dye on degradation are evaluated. The degradation reaction follows pseudo-first order kinetics. The effect of dosage of photocatalyst was studied in the range 0.02-5 g/L. It was seen that 0.4 g/L of photocatalyst is an optimum value for the dosage of photocatalyst. The degradation efficiency was decreased in dye concentration above 3.2 ppm for dye. In the best conditions, the degradation efficiency was obtained 0.32 ppm for methylene blue. PMID:23261613

  1. Low temperature H2S removal with 3-D structural mesoporous molecular sieves supported ZnO from gas stream.

    PubMed

    Li, L; Sun, T H; Shu, C H; Zhang, H B

    2016-07-01

    A series of 3-dimensional (3-D) structural mesoporous silica materials, SBA-16, MCM-48 and KIT-6, was synthesized and supported with different ZnO loadings (10, 20, 30, and 40wt%) by the incipient wetness method to evaluate the performances on H2S removal at room temperature. These materials were characterized by N2 adsorption, XRD, and TEM to investigate their textural properties. All the ZnO-loaded adsorbents exhibited the H2S removal capacity of bellow 0.1 ppmv. With the best ZnO loading percentage of 30wt% on MCM-48 and KIT-6, 20wt% on SBA-16 according to the results of breakthrough test, further increasing ZnO loading caused the decrease of the adsorption capacity due to the agglomeration of ZnO. Besides, the H2S adsorption capacities of the supports materials varied in the order of KIT-6>MCM-48>SBA-16, which was influenced primarily by their pore volume and pore size. With the largest pores in these 3-D arrangement materials, KIT-6 showed the best performance of supported material for ZnO, due to its retained superior physical properties as well as large pore diameter to allow faster gas-solid interaction and huge pore volume to disperse ZnO on the surface of it. PMID:26970044

  2. Effect of structure of the redox molecular sieve TS-1 on the oxidation of phenol, crotyl alcohol and norbornylene.

    PubMed

    Kerton, Owain J; McMorn, Paul; Bethell, Donald; King, Frank; Hancock, Frederick; Burrows, Andrew; Kiely, Christopher J; Ellwood, Simon; Hutchings, Graham

    2005-07-01

    A range of crystalline TS-1 samples with different morphologies as well as the corresponding TS-1 precursor structures have been synthesised using hydrothermal crystallisation. The materials have been characterised using powder X-ray diffraction, IR and Raman spectroscopy and electron microscopy. The materials were used as catalysts for the oxidation of crotyl alcohol, phenol and norbornylene and, in particular, the reactivity of the precursor structures was contrasted with crystalline TS-1. The oxidation of crotyl alcohol, selected as a relatively non-reactive substituted alkene, did not require the TS-1 structure for reactivity and TS-1 precursor structures are active, although crystalline TS-1 was found to be more reactive than the precursor structures. In contrast, phenol hydroxylation is only catalysed by crystalline TS-1. The reaction of phenol is observed to occur only on the exterior surface of large TS-1 crystallites. With smaller crystallites of TS-1, i.e. the size range of interest for catalysis, the rapid subsequent reaction of hydroquinone makes it difficult to determine whether reaction occurs solely on the exterior of the crystallites or at sites within the porous structure. Hence it is suggested that this reaction has limited scope as a probe reaction for the reactivity of sites within the crystallites. It is, however, feasible that phenol hydroxylation is a viable probe reaction for TS-1 type structural units. Norbornylene was studied as an example of a reactant too large to enter the internal pore structure of TS-1 and hence only reaction at pore mouths and external surface sites was possible. Larger TS-1 crystallites were more active for this substrate than suggested by surface area considerations. The results are discussed in terms of the selection of model reactions for the study of TS-1 catalysts. PMID:16189579

  3. Zeolite-supported metal complexes of rhodium and of ruthenium: a general synthesis method influenced by molecular sieving effects.

    PubMed

    Ogino, Isao; Chen, Cong-Yan; Gates, Bruce C

    2010-09-28

    A general method for synthesis of supported metal complexes having a high degree of uniformity is presented, whereby organometallic precursors incorporating acetylacetonate (C(5)H(7)O(2)(-), acac) ligands react with zeolites incorporating OH groups near Al sites. The method is illustrated by the reactions of Rh(acac)(CO)(2) and of cis-Ru(acac)(2)(eta(2)-C(2)H(4))(2) with zeolites slurried in n-pentane at room temperature. The zeolites were H-Beta, H-SSZ-42, H-Mordenite, and HZSM-5. Infrared (IR) and extended X-ray absorption fine structure spectra of the zeolites incorporating rhodium complexes indicate the formation of Rh(CO)(2)(+) bonded near Al sites; similar results have been reported for the formation of zeolite-supported Rh(eta(2)-C(2)H(4))(2)(+) from Rh(acac)(eta(2)-C(2)H(4))(2). IR spectra of the supported rhodium gem-dicarbonyls include sharp, well-resolved nu(CO) bands, demonstrating that the sites surrounding each metal complex are nearly equivalent. The frequencies of the nu(CO) bands show how the composition of the zeolite influences the bonding of the supported species, demonstrating subtle differences in the roles of the zeolite as ligands. When the zeolite has pore openings larger than the critical diameter of the precursor organometallic compound, the latter undergoes facile transport into the interior of the zeolite, so that a uniform distribution of the supported species results, but when the precursors barely fit through the zeolite apertures, the mass transport resistance is significant and the supported metal complexes are concentrated near the pore mouths. PMID:20454735

  4. Photocatalytic Degradation of Di-n-Butyl Phthalate by N-Doped Ti/13X/MCM-41 Molecular Sieve.

    PubMed

    Tao, Hong; Nguyen, Nhat-Thien; Heil, Xiao-Hui; Liang, Xiao; Chang, Chang-Tang

    2015-07-01

    Di-n-butyl phthalate (DBP) is a type of phthalate ester, and has been classified as an environmental endocrine disruptor. It causes serious harm to the environment and humans and it is found widely in air, waste water, rivers and soil. In recent years, an increasing number of studies examined the removal of DBP. Photocatalytic degradation has been of particular interest because of its efficient and thorough advantages and is the focus of this study. Here we use a composite material of N-Ti/13X/MCM-41, synthesized, using 13X and tetraethyl orthosilicate as raw material, CTAB as structural template, tetrabutyl titanate and urea under hydrothermal conditions. The optimized experimental conditions, such as, Si/Al (molar ratio), pH value, crystallization time, calcination temperature and N/Ti (molar ratio), were tested using photodegradation experiments of DBP. The samples were characterized by XRD, TEM, FT-IR, N2 adsorption-desorption. Experimental results reveal the surface area of the N-Ti/13X/MCM-41 to be 664 m2 g(-1) and the average pore sizes to be 2.79 nm. TEM micrographs showed the N-Ti/13X/MCM-41 consists of aggregates of spherical particles, similar to the shapes associated with standard MCM-41 synthesized under basic conditions. Photocatalytic degradation experimental results revealed that optimal synthesis of the composite material occurs when Si/Al = 15, pH = 9.0, crystallization time is 48 hours, calcination temperature is 350 °C and the N/Ti ratios is 2.0. Under such conditions, the degradation efficiency of DBP more was found to be more than 90%. PMID:26373152

  5. Charge-selective gate of arrayed MWCNTs for ultra high-efficient biomolecule enrichment by nano-electrostatic sieving (NES).

    PubMed

    Wu, Jen-Kuei; Wu, Yi-Shiuan; Yang, Chung-Shi; Tseng, Fan-Gang

    2013-05-15

    We report a rapid and highly-efficient biomolecule preconcentrating device based on nano-electrostatic sieving (NES) mechanism that is facilitated by multi-nanofluidic channels operated in parallel. The opening of these nanochannels is regulated by tunable charges that are generated on arrayed multi-walled carbon nanotubes (MWCNTs) gate. The NES device is fabricated by standard photolithography and plasma-enhanced chemical vapor deposition (PECVD) techniques, followed by subsequent deposition of parylene (poly(p-xylylene))-C on vertically grown MWCNTs in order to obtain arrayed multi-nanochannels with mean pore sizes that are comparable to the thickness of an electrical double layer (EDL). The enrichment efficiency for charged analytes is dependent on electrostatic repulsion, which is regulated by the distribution of the local electric field on the MWCNTs gate. The NES device exhibits polarity selectivity on the analytes and performs efficient collection and separation of biomolecules by probing the surface charge density dependence on the applied gate field. A tunable gate of the parylene-MWCNT nanochannels was used as size sieving devices for nano-scale biomolecules. The experimental results for the collection of FITC-labeled bovine serum albumin (BSA, 0.033nM) were as high as nearly 10(6) fold after only 45min. These data are attributed to the in-parallel molecule sieving process as conducted by the many nanochannels formed among the MWCNTs. This device allows uncharged polar molecules, such as water, to rapidly pass through thus enable highly efficient bio-molecule concentration for the application to ultra-high sensitive biosensing. PMID:23391690

  6. Comprehensive Sieve Analysis of Breakthrough HIV-1 Sequences in the RV144 Vaccine Efficacy Trial

    PubMed Central

    Edlefsen, Paul T.; Rolland, Morgane; Hertz, Tomer; Tovanabutra, Sodsai; Gartland, Andrew J.; deCamp, Allan C.; Magaret, Craig A.; Ahmed, Hasan; Gottardo, Raphael; Juraska, Michal; McCoy, Connor; Larsen, Brendan B.; Sanders-Buell, Eric; Carrico, Chris; Menis, Sergey; Bose, Meera; Arroyo, Miguel A.; O’Connell, Robert J.; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Rerks-Ngarm, Supachai; Robb, Merlin L.; Kirys, Tatsiana; Georgiev, Ivelin S.; Kwong, Peter D.; Scheffler, Konrad; Pond, Sergei L. Kosakovsky; Carlson, Jonathan M.; Michael, Nelson L.; Schief, William R.; Mullins, James I.; Kim, Jerome H.; Gilbert, Peter B.

    2015-01-01

    The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE) of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients). A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or “signatures” and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro). The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021). In particular, site 317 in the third variable loop (V3) overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1) more than did non-signature sites (mean = 0.9) (p < 0.0001), suggesting functional and/or structural relevance of the signature sites. Since signature sites were not preferentially restricted to the vaccine immunogens and because most of the associations were insignificant following correction for multiple testing, we predict that few of the genetic differences are strongly linked to the RV144 vaccine-induced immune pressure. In addition to presenting results of the first complete-genome analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine efficacy

  7. Trend analysis of Trichinella in a red fox population from a low endemic area using a validated artificial digestion and sequential sieving technique.

    PubMed

    Franssen, Frits; Deksne, Gunita; Esíte, Zanda; Havelaar, Arie; Swart, Arno; van der Giessen, Joke

    2014-01-01

    Freezing of fox carcasses to minimize professional hazard of infection with Echinococcus multilocularis is recommended in endemic areas, but this could influence the detection of Trichinella larvae in the same host species. A method based on artificial digestion of frozen fox muscle, combined with larva isolation by a sequential sieving method (SSM), was validated using naturally infected foxes from Latvia. The validated SSM was used to detect dead Trichinella muscle larvae (ML) in frozen muscle samples of 369 red foxes from the Netherlands, of which one fox was positive (0.067 larvae per gram). This result was compared with historical Trichinella findings in Dutch red foxes. Molecular analysis using 5S PCR showed that both T. britovi and T. nativa were present in the Latvian foxes, without mixed infections. Of 96 non-frozen T. britovi ML, 94% was successfully sequenced, whereas this was the case for only 8.3% of 72 frozen T. britovi ML. The single Trichinella sp. larva that was recovered from the positive Dutch fox did not yield PCR product, probably due to severe freeze-damage. In conclusion, the SSM presented in this study is a fast and effective method to detect dead Trichinella larvae in frozen meat. We showed that the Trichinella prevalence in Dutch red fox was 0.27% (95% CI 0.065-1.5%), in contrast to 3.9% in the same study area fifteen years ago. Moreover, this study demonstrated that the efficacy of 5S PCR for identification of Trichinella britovi single larvae from frozen meat is not more than 8.3%. PMID:25431178

  8. Molecular Comb Development

    SciTech Connect

    Ferrell, T.L.; Thundat, G.T.; Witkowski, C.E., III

    2007-07-17

    This CRADA was developed to enable ORNL to assist Protein Discovery, Inc. to develop a novel biomolecular separation system based on an ORNL patent application 'Photoelectrochemical Molecular Comb' by Thundat, Ferrell, and Brown. The Molecular Comb concept is based on creating light-induced charge carriers at a semiconductor-liquid interface, which is kept at a potential control such that a depletion layer is formed in the semiconductor. Focusing light from a low-power illumination source creates electron-hole pairs, which get separated in the depletion layer. The light-induced charge carriers reaching the surface attract oppositely charged biomolecules present in the solution. The solution is a buffer solution with very small concentrations of biomolecules. As the focused light is moved across the surface of the semiconductor-liquid interface, the accumulated biomolecules follow the light beam. A thin layer of gel or other similar material on the surface of the semiconductor can act as a sieving medium for separating the biomolecules according to their sizes.

  9. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process.

    PubMed

    Liao, Xiaoyong; Li, You; Yan, Xiulan

    2016-03-01

    Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing. Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: <0.1, 2-0.1, and >2mm. With increased contact time, the concentration of heavy metals in the leachate was significantly decreased for small particles, probably because of adsorption by the clay soil component. For the different particle sizes, the removal efficiencies for Pb and Cd were 75%-87%, and 61%-77% for Zn and Cu, although the extent of removal was decreased for As and Cr at <45%. The highest efficiency by washing for Pb, Cd, Zn, and As was from the soil particles >2mm, although good metal removal efficiencies were also achieved in the small particle size fractions. Through SEM-EDS observations and correlation analysis, the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe, Mn, and Ca contents of the soil fractions. The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient, and practical remediation parameters were also recommended. PMID:26969066

  10. Similar Intracellular Location and Stimulus Reactivity, but Differential Mobility of Tailless (Vicia faba) and Tailed Forisomes (Phaseolus vulgaris) in Intact Sieve Tubes

    PubMed Central

    van Bel, Aart J. E.

    2015-01-01

    Sieve elements of legumes contain forisomes—fusiform protein bodies that are responsible for sieve-tube occlusion in response to damage or wound signals. Earlier work described the existence of tailless and tailed forisomes. This study intended to quantify and compare location and position of tailless (in Vicia faba) and tailed (in Phaseolus vulgaris) forisomes inside sieve elements and to assess their reactivity and potential mobility in response to a remote stimulus. Location (distribution within sieve elements) and position (forisome tip contacts) of more than altogether 2000 forisomes were screened in 500 intact plants by laser scanning confocal microscopy in the transmission mode. Furthermore, we studied the dispersion of forisomes at different locations in different positions and their positional behaviour in response to distant heat shocks. Forisome distribution turned out to be species-specific, whereas forisome positions at various locations were largely similar in bushbean (Phaseolus) and broadbean (Vicia). In general, the tailless forisomes had higher dispersion rates in response to heat shocks than the tailed forisomes and forisomes at the downstream (basal) end dispersed more frequently than those at the upstream end (apical). In contrast to the tailless forisomes that only oscillate in response to heat shocks, downstream-located tailed forisomes can cover considerable distances within sieve elements. This displacement was prevented by gentle rubbing of the leaf (priming) before the heat shock. Movement of these forisomes was also prohibited by Latrunculin A, an inhibitor of actin polymerization. The apparently active mobility of tailed forisomes gives credence to the idea that at least the latter forisomes are not free-floating, but connected to other sieve-element structures. PMID:26624625

  11. Similar Intracellular Location and Stimulus Reactivity, but Differential Mobility of Tailless (Vicia faba) and Tailed Forisomes (Phaseolus vulgaris) in Intact Sieve Tubes.

    PubMed

    Furch, Alexandra C U; Buxa, Stefanie V; van Bel, Aart J E

    2015-01-01

    Sieve elements of legumes contain forisomes-fusiform protein bodies that are responsible for sieve-tube occlusion in response to damage or wound signals. Earlier work described the existence of tailless and tailed forisomes. This study intended to quantify and compare location and position of tailless (in Vicia faba) and tailed (in Phaseolus vulgaris) forisomes inside sieve elements and to assess their reactivity and potential mobility in response to a remote stimulus. Location (distribution within sieve elements) and position (forisome tip contacts) of more than altogether 2000 forisomes were screened in 500 intact plants by laser scanning confocal microscopy in the transmission mode. Furthermore, we studied the dispersion of forisomes at different locations in different positions and their positional behaviour in response to distant heat shocks. Forisome distribution turned out to be species-specific, whereas forisome positions at various locations were largely similar in bushbean (Phaseolus) and broadbean (Vicia). In general, the tailless forisomes had higher dispersion rates in response to heat shocks than the tailed forisomes and forisomes at the downstream (basal) end dispersed more frequently than those at the upstream end (apical). In contrast to the tailless forisomes that only oscillate in response to heat shocks, downstream-located tailed forisomes can cover considerable distances within sieve elements. This displacement was prevented by gentle rubbing of the leaf (priming) before the heat shock. Movement of these forisomes was also prohibited by Latrunculin A, an inhibitor of actin polymerization. The apparently active mobility of tailed forisomes gives credence to the idea that at least the latter forisomes are not free-floating, but connected to other sieve-element structures. PMID:26624625

  12. Microfluidic Western Blotting of Low-Molecular-Mass Proteins

    PubMed Central

    2015-01-01

    We describe a microfluidic Western blot assay (μWestern) using a Tris tricine discontinuous buffer system suitable for analyses of a wide molecular mass range (6.5–116 kDa). The Tris tricine μWestern is completed in an enclosed, straight glass microfluidic channel housing a photopatterned polyacrylamide gel that incorporates a photoactive benzophenone methacrylamide monomer. Upon brief ultraviolet (UV) light exposure, the hydrogel toggles from molecular sieving for size-based separation to a covalent immobilization scaffold for in situ antibody probing. Electrophoresis controls all assay stages, affording purely electronic operation with no pumps or valves needed for fluid control. Electrophoretic introduction of antibody into and along the molecular sieving gel requires that the probe must traverse through (i) a discontinuous gel interface central to the transient isotachophoresis used to achieve high-performance separations and (ii) the full axial length of the separation gel. In-channel antibody probing of small molecular mass species is especially challenging, since the gel must effectively sieve small proteins while permitting effective probing with large-molecular-mass antibodies. To create a well-controlled gel interface, we introduce a fabrication method that relies on a hydrostatic pressure mismatch between the buffer and polymer precursor solution to eliminate the interfacial pore-size control issues that arise when a polymerizing polymer abuts a nonpolymerizing polymer solution. Combined with a new swept antibody probe plug delivery scheme, the Tris tricine μWestern blot enables 40% higher separation resolution as compared to a Tris glycine system, destacking of proteins down to 6.5 kDa, and a 100-fold better signal-to-noise ratio (SNR) for small pore gels, expanding the range of applicable biological targets. PMID:25268977

  13. Microfluidic Western blotting of low-molecular-mass proteins.

    PubMed

    Gerver, Rachel E; Herr, Amy E

    2014-11-01

    We describe a microfluidic Western blot assay (μWestern) using a Tris tricine discontinuous buffer system suitable for analyses of a wide molecular mass range (6.5-116 kDa). The Tris tricine μWestern is completed in an enclosed, straight glass microfluidic channel housing a photopatterned polyacrylamide gel that incorporates a photoactive benzophenone methacrylamide monomer. Upon brief ultraviolet (UV) light exposure, the hydrogel toggles from molecular sieving for size-based separation to a covalent immobilization scaffold for in situ antibody probing. Electrophoresis controls all assay stages, affording purely electronic operation with no pumps or valves needed for fluid control. Electrophoretic introduction of antibody into and along the molecular sieving gel requires that the probe must traverse through (i) a discontinuous gel interface central to the transient isotachophoresis used to achieve high-performance separations and (ii) the full axial length of the separation gel. In-channel antibody probing of small molecular mass species is especially challenging, since the gel must effectively sieve small proteins while permitting effective probing with large-molecular-mass antibodies. To create a well-controlled gel interface, we introduce a fabrication method that relies on a hydrostatic pressure mismatch between the buffer and polymer precursor solution to eliminate the interfacial pore-size control issues that arise when a polymerizing polymer abuts a nonpolymerizing polymer solution. Combined with a new swept antibody probe plug delivery scheme, the Tris tricine μWestern blot enables 40% higher separation resolution as compared to a Tris glycine system, destacking of proteins down to 6.5 kDa, and a 100-fold better signal-to-noise ratio (SNR) for small pore gels, expanding the range of applicable biological targets. PMID:25268977

  14. Combined microscopy and molecular analyses show phloem occlusions and cell wall modifications in tomato leaves in response to 'Candidatus Phytoplasma solani'.

    PubMed

    Marco, F DE; Pagliari, L; Degola, F; Buxa, S V; Loschi, A; Dinant, S; Hir, R LE; Morin, H; Santi, S; Musetti, R

    2016-08-01

    Callose deposition, phloem-protein conformational changes and cell wall thickening are calcium-mediated occlusions occurring in the plant sieve elements in response to different biotic and abiotic stresses. However, the significance of these structures in plant-phytoplasma interactions requires in-depth investigations. We adopted a novel integrated approach, based on the combined use of microscopic and molecular analyses, to investigate the structural modifications induced in tomato leaf tissues in presence of phytoplasmas, focusing on vascular bundles and on the occlusion structures. Phloem hyperplasia and string-like arrangement of xylem vessels were found in infected vascular tissue. The diverse occlusion structures were differentially modulated in the phloem in response to phytoplasma infection. Callose amount was higher in midribs from infected plants than in healthy ones. Callose was observed at sieve plates but not at pore-plasmodesma units. A putative callose synthase gene encoding a protein with high similarity to Arabidopsis CalS7, responsible for callose deposition at sieve plates, was upregulated in symptomatic leaves, indicating a modulation in the response to stolbur infection. P-proteins showed configuration changes in infected sieve elements, exhibiting condensation of the filaments. The transcripts for a putative P-protein 2 and a sieve element occlusion-related protein were localized in the phloem but only the first one was modulated in the infected tissues. PMID:27197728

  15. REE Sorption Study of Sieved -50 +100 mesh Media #1 in Brine #1 with Different Starting pH's at 70C

    SciTech Connect

    Gary Garland

    2015-07-21

    This dataset described shaker table experiments ran with sieved -50 +100 mesh media #1 in brine #1 that have 2ppm each of the 7 REE metals at different starting pH's of 3.5, 4.5, and 5.5. The experimental conditions are 2g media to 150mL of REE solution, at 70C.

  16. Comparison of radioactive transmission and mechanical properties of Portland cement and a modified cement with trommel sieve waste

    SciTech Connect

    Boncukcuoglu, Recep . E-mail: rboncuk@yahoo.com; Icelli, Orhan; Erzeneoglu, Salih; Muhtar Kocakerim, M.

    2005-06-01

    In this study, it was aimed to stabilize trommel sieve waste (TSW) occurring during manufacture of borax from tincal. The effects of TSW added on the mechanical properties and radioactive transmission of modified cement prepared by adding TSW to clinker was investigated. The properties which TSW as additive caused the cement to gain were tested and compared with normal Portland cement. Measurements have been made to determine variation of mass attenuation coefficients of TSW and cement by using an extremely narrow-collimated-beam transmission method in the energy range 15.746-40.930 keV with X-ray transmission method. The characteristic K{alpha} and K{beta} X-rays of the different elements (Zr, Mo, Ag, In, Sb, Ba and Pr) passed through TSW and cement were detected with a high-resolution Si(Li) detector. Results are presented and discussed in this paper.

  17. A combined vacuum crushing and sieving (CVCS) system designed to determine noble gas paleotemperatures from stalagmite samples

    NASA Astrophysics Data System (ADS)

    Vogel, Nadia; Brennwald, Matthias S.; Fleitmann, Dominik; Wieler, Rainer; Maden, Colin; Süsli, Andreas; Kipfer, Rolf

    2013-07-01

    This paper presents a novel extraction device for water and noble gases from speleothem samples for noble gas paleotemperature determination. The "combined vacuum crushing and sieving (CVCS) system" was designed to reduce the atmospheric noble gas contents from air inclusions in speleothem samples by up to 2 orders of magnitude without adsorbing atmospheric noble gases onto the freshly produced grain surfaces, a process that had often hampered noble gas temperature (NGT) determination in the past. We also present the results from first performance tests of the CVCS system processing stalagmite samples grown at a known temperature. This temperature is reliably reproduced by the NGTs derived from Ar, Kr, and Xe extracted from the samples. The CVCS system is, therefore, suitable for routine determinations of accurate NGTs. In combination with stalagmite dating, these NGTs will allow reconstructing past regional temperature evolutions, and also support the interpretation of the often complex stable isotope records preserved in the stalagmites' calcite.

  18. Single order soft X-ray diffraction with quasi-random radius pinhole array spectroscopic photon sieves

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang-Qiang; Wei, Lai; Yang, Zu-Hua; Qian, Feng; Fan, Quan-Ping; Zhang, Bo; Gu, Yu-Qiu; Cao, Lei-Feng

    2014-04-01

    A novel single order diffraction grating in the soft X-ray region, called quasi-random radius pinhole array spectroscopic photon sieves (QRSPS), is proposed in this paper. This new grating is composed of pinholes on a substrate, whose radii are quasi-random, while their centers are regular. Analysis proves that its transmittance function across the grating bar is similar to that of sinusoidal transmission gratings. Simulation results show that the QRSPS can suppress higher-order diffraction effectively. And the QRSPS would still retain its characteristic of single order diffraction when we take the effect of X-ray penetration into account. These properties indicate that the QRSPS can be used in the soft X-ray spectra measurement.

  19. Sieve-based coreference resolution enhances semi-supervised learning model for chemical-induced disease relation extraction

    PubMed Central

    Le, Hoang-Quynh; Tran, Mai-Vu; Dang, Thanh Hai; Ha, Quang-Thuy; Collier, Nigel

    2016-01-01

    The BioCreative V chemical-disease relation (CDR) track was proposed to accelerate the progress of text mining in facilitating integrative understanding of chemicals, diseases and their relations. In this article, we describe an extension of our system (namely UET-CAM) that participated in the BioCreative V CDR. The original UET-CAM system’s performance was ranked fourth among 18 participating systems by the BioCreative CDR track committee. In the Disease Named Entity Recognition and Normalization (DNER) phase, our system employed joint inference (decoding) with a perceptron-based named entity recognizer (NER) and a back-off model with Semantic Supervised Indexing and Skip-gram for named entity normalization. In the chemical-induced disease (CID) relation extraction phase, we proposed a pipeline that includes a coreference resolution module and a Support Vector Machine relation extraction model. The former module utilized a multi-pass sieve to extend entity recall. In this article, the UET-CAM system was improved by adding a ‘silver’ CID corpus to train the prediction model. This silver standard corpus of more than 50 thousand sentences was automatically built based on the Comparative Toxicogenomics Database (CTD) database. We evaluated our method on the CDR test set. Results showed that our system could reach the state of the art performance with F1 of 82.44 for the DNER task and 58.90 for the CID task. Analysis demonstrated substantial benefits of both the multi-pass sieve coreference resolution method (F1 + 4.13%) and the silver CID corpus (F1 +7.3%). Database URL: SilverCID–The silver-standard corpus for CID relation extraction is freely online available at: https://zenodo.org/record/34530 (doi:10.5281/zenodo.34530).

  20. Kinetic modelling of molecular hydrogen transport in microporous carbon materials.

    SciTech Connect

    Hankel, M.; Zhang, H.; Nguyen, T. X.; Bhatia, S. K.; Gray, S. K.; Smith, S. C.

    2011-01-01

    The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H{sub 2}/D{sub 2} and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D{sub 2} transport is dramatically favored over H{sub 2}. However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients - implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H{sub 2}/D{sub 2} in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage

  1. A bracket approach to improve the stability and gas sorption performance of a metal-organic framework via in situ incorporating the size-matching molecular building blocks.

    PubMed

    Chen, Di-Ming; Tian, Jia-Yue; Liu, Chun-Sen; Du, Miao

    2016-06-28

    Incorporating the in situ formed size-matching molecular building blocks (MBBs) into the open channels will remarkably improve the robustness and gas sorption performance of an evacuated metal-organic framework. As a result, such MBBs can transfer the open metal sites from the framework walls to the channel centers and separate the large channels into multiple smaller voids, leading to a molecular sieving effect and high-performance gas-separation of the modified material. PMID:27301546

  2. A Plasma Membrane-Anchored Fluorescent Protein Fusion Illuminates Sieve Element Plasma Membranes in Arabidopsis and Tobacco1[W][OA

    PubMed Central

    Thompson, Matthew V.; Wolniak, Stephen M.

    2008-01-01

    Rapid acquisition of quantitative anatomical data from the sieve tubes of angiosperm phloem has been confounded by their small size, their distance from organ surfaces, and the time-consuming nature of traditional methods, such as transmission electron microscopy. To improve access to these cells, for which good anatomical data are critical, a monomeric yellow fluorescent protein (mCitrine) was N-terminally fused to a small (approximately 6 kD) membrane protein (AtRCI2A) and stably expressed in Arabidopsis thaliana (Columbia-0 ecotype) and Nicotiana tabacum (‘Samsun’) under the control of a companion cell-specific promoter (AtSUC2p). The construct, called by its abbreviation SUmCR, yielded stable sieve element (SE) plasma membrane fluorescence labeling, even after plastic (methacrylate) embedding. In conjunction with wide-field fluorescence measurements of sieve pore number and position using aniline blue-stained callose, mCitrine-labeled material was used to calculate rough estimates of sieve tube-specific conductivity for both species. The SUmCR construct also revealed a hitherto unknown expression domain of the AtSUC2 Suc-H+ symporter in the epidermis of the cell division zone of developing root tips. The success of this construct in targeting plasma membrane-anchored fluorescent proteins to SEs could be attributable to the small size of AtRCI2A or to the presence of other signals innate to AtRCI2A that permit the protein to be trafficked to SEs. The construct provides a hitherto unique entrée into companion cell-to-SE protein targeting, as well as a new tool for studying whole-plant phloem anatomy and architecture. PMID:18223149

  3. Comparison between a spray column and a sieve tray column operating as liquid-liquid heat exchangers

    SciTech Connect

    Keller, A.; Jacobs, H.R.; Boehm, R.F.

    1980-12-01

    The performance of a spray column and a sieve tray column was compared as a liquid-liquid heat exchanger. In carrying out these studies a 15.2 cm (6.0 in.) diameter column, 183 cm (6.0 ft) tall was utilized. The performance of the spray column as a heat exchanger was shown to correlate with the model of Letan-Kehat which has as a basis that the heat transfer is dominated by the wakeshedding characteristics of the drops over much of the column length. This model defines several hydrodynamic zones along the column of which the wake formation zone at the bottom appears to have the most efficient heat transfer. The column was also operated with four perforated plates spaced two column diameters apart in order to take advantage of the wake formation zone heat transfer. The plates induce coalescence of the dispersed phase and reformation of the drops, and thus cause a repetition of the wake formation zone. It is shown that the overall volumetric heat transfer coefficient in a perforated plate column is increased by a minimum of eleven percent over that in a spray column. A hydrodynamic model that predicts the performance of a perforated plate column is suggested.

  4. Microautophagy involves programmed cell semi-death of sieve elements in developing caryopsis of Triticum aestivum L.

    PubMed

    Yang, Wenli; Cai, Jingtong; Zhou, Zhuqing; Zhou, Guangsheng; Mei, Fangzhu; Wang, Likai

    2015-12-01

    Differentiation of sieve elements (SEs) involves programmed cell semi-death, in which a small amount of organelles is retained. However, the mechanisms by which a large amount of SE cytoplasm is degraded and the specific proteases involved are not clear. In this study, we confirmed that the degradation of cytoplasm outside of the vacuole was mediated by microautophagy of the vacuole, and that the tonoplast selectively fused with the plasma membrane after most of the cytoplasm in the vacuoles was degraded. The integration of space enclosed a small amount of cytoplasm. Therefore, that fraction of the cytoplasm was preserved. At the same time, the cytosol was weakly acidic during membrane fusion because part of the tonoplast was ruptured. We also demonstrated that wheat aspartic protease (WAP1) and proteases including cathepsin B activity (PICA) were involved in programmed cell semi-death of SEs. PICA showed strongest activity before mass of the cytoplasm was degraded, which might contribute toward SE stability. We found that WAP1 mainly degraded the cytoplasm. Therefore, programmed cell semi-death of SEs might result from the joint action of vacuoles and multiple proteases. PMID:26146941

  5. Accumulation and conversion of sugars by developing wheat grains. VII. Effect of changes in sieve tube and endosperm cavity sap concentrations on the grain filling rate. [Triticum aestivum

    SciTech Connect

    Fisher, D.B.; Gifford, R.M.

    1987-06-01

    The extent to which wheat grain growth is dependent on transport pool solute concentration was investigated by the use of illumination and partial grain removal to vary solute concentrations in the sieve tube and endosperm cavity saps of the wheat ear (Triticum aestivum L.). Short-term grain growth rates were estimated indirectly from the product of phloem area, sieve tube sap concentration, and /sup 32/P translocation velocity. On a per grain basis, calculated rates of mass transport through the peduncle were fairly constant over a substantial range in other transport parameters (i.e. velocity, concentration, phloem area, and grain number). The rates were about 40% higher than expected; this probably reflects some unavoidable bias on faster-moving tracer in the velocity estimates. Sieve tube sap concentration increased in all experiments (by 20 to 64%), with a concomitant decline in velocity (to as low as 8% of the initial value). Endosperm cavity sucrose concentration also increased in all experiments, but cavity sap osmolality and total amino acid concentration remained nearly constant. No evidence was found for an increase in the rate of mass transport per grain through the peduncle in response to the treatments. This apparent unresponsiveness of grain growth rate to increased cavity sap sucrose concentration conflicts with earlier in vitro endosperm studies showing that sucrose uptake increased with increasing external sucrose concentration up to 150 to 200 millimolar.

  6. Quantification of Plasmodesmatal Endoplasmic Reticulum Coupling between Sieve Elements and Companion Cells Using Fluorescence Redistribution after Photobleaching1[W

    PubMed Central

    Martens, Helle J.; Roberts, Alison G.; Oparka, Karl J.; Schulz, Alexander

    2006-01-01

    Transgenic tobacco (Nicotiana tabacum) was studied to localize the activity of phloem loading during development and to establish whether the endoplasmic reticulum (ER) of the companion cell (CC) and the sieve element (SE) reticulum is continuous by using a SUC2 promoter-green fluorescent protein (GFP) construct targeted to the CC-ER. Expression of GFP marked the collection phloem in source leaves and cotyledons as expected, but also the transport phloem in stems, petioles, midveins of sink leaves, nonphotosynthetic flower parts, roots, and newly germinated seedlings, suggesting that sucrose retrieval along the pathway is an integral component of phloem function. GFP fluorescence was limited to CCs where it was visualized as a well-developed ER network in close proximity to the plasma membrane. ER coupling between CC and SEs was tested in wild-type tobacco using an ER-specific fluorochrome and fluorescence redistribution after photobleaching (FRAP), and showed that the ER is continuous via pore-plasmodesma units. ER coupling between CC and SE was quantified by determining the mobile fraction and half-life of fluorescence redistribution and compared with that of other cell types. In all tissues, fluorescence recovered slowly when it was rate limited by plasmodesmata, contrasting with fast intracellular FRAP. FRAP was unaffected by treatment with cytochalasin D. The highest degree of ER coupling was measured between CC and SE. Intimate ER coupling is consistent with a possible role for ER in membrane protein and signal exchange between CC and SE. However, a complete lack of GFP transfer between CC and SE indicated that the intraluminal pore-plasmodesma contact has a size exclusion limit below 27 kD. PMID:16905664

  7. Comparative analysis of the digestibility of sewage fine sieved fraction and hygiene paper produced from virgin fibers and recycled fibers.

    PubMed

    Ghasimi, Dara S M; Zandvoort, Marcel H; Adriaanse, Michiel; van Lier, Jules B; de Kreuk, Merle

    2016-07-01

    Sewage fine sieved fraction (FSF) is a heterogeneous substrate consisting of mainly toilet paper fibers sequestered from municipal raw sewage by a fine screen. In earlier studies, a maximum biodegradation of 62% and 57% of the sewage FSF was found under thermophilic (55°C) and mesophilic (35°C) conditions, respectively. In order to research this limited biodegradability of sewage FSF, this study investigates the biodegradation of different types of cellulosic fibers-based hygiene papers including virgin fibers based toilet paper (VTP), recycled fiber based toilet paper (RTP), virgin pulp for paper production (VPPP) as a raw material, as well as microcrystalline cellulose (MCC) as a kind of fiberless reference material. The anaerobic biodegradation or digestibility tests were conducted under thermophilic and mesophilic conditions. Results of the experiments showed different biomethane potential (BMP) values for each tested cellulose fiber-based substrate, which might be associated with the physical characteristics of the fibers, type of pulping, presence of lignin encrusted fibers, and/or the presence of additive chemicals and refractory compounds. Higher hydrolysis rates (Kh), higher specific methane production rates (SMPR) and shorter required incubation times to achieve 90% of the BMP (t90%CH4), were achieved under thermophilic conditions for all examined substrates compared to the mesophilic ones. Furthermore, the biodegradability of all employed cellulose fiber-based substrates was in the same range, 38-45%, under both conditions and less than the observed FSF biodegradability, i.e. 57-62%. MCC achieved the highest BMP and biodegradability, 86-91%, among all cellulosic substrates. PMID:27172811

  8. A new sieving matrix for DNA sequencing, genotyping and mutation detection and high-throughput genotyping with a 96-capillary array system

    SciTech Connect

    Gao, David

    1999-11-08

    Capillary electrophoresis has been widely accepted as a fast separation technique in DNA analysis. In this dissertation, a new sieving matrix is described for DNA analysis, especially DNA sequencing, genetic typing and mutation detection. A high-throughput 96 capillary array electrophoresis system was also demonstrated for simultaneous multiple genotyping. The authors first evaluated the influence of different capillary coatings on the performance of DNA sequencing. A bare capillary was compared with a DB-wax, an FC-coated and a polyvinylpyrrolidone dynamically coated capillary with PEO as sieving matrix. It was found that covalently-coated capillaries had no better performance than bare capillaries while PVP coating provided excellent and reproducible results. The authors also developed a new sieving Matrix for DNA separation based on commercially available poly(vinylpyrrolidone) (PVP). This sieving matrix has a very low viscosity and an excellent self-coating effect. Successful separations were achieved in uncoated capillaries. Sequencing of M13mp18 showed good resolution up to 500 bases in treated PVP solution. Temperature gradient capillary electrophoresis and PVP solution was applied to mutation detection. A heteroduplex sample and a homoduplex reference were injected during a pair of continuous runs. A temperature gradient of 10 C with a ramp of 0.7 C/min was swept throughout the capillary. Detection was accomplished by laser induced fluorescence detection. Mutation detection was performed by comparing the pattern changes between the homoduplex and the heteroduplex samples. High throughput, high detection rate and easy operation were achieved in this system. They further demonstrated fast and reliable genotyping based on CTTv STR system by multiple-capillary array electrophoresis. The PCR products from individuals were mixed with pooled allelic ladder as an absolute standard and coinjected with a 96-vial tray. Simultaneous one-color laser-induced fluorescence

  9. A different perspective to the effective atomic number (Zeff) for some boron compounds and trommel sieve waste (TSW) with a new computer program ZXCOM

    NASA Astrophysics Data System (ADS)

    Yalçın, Zeynel; İçelli, Orhan; Okutan, Mustafa; Boncukçuoğlu, Recep; Artun, Ozan; Orak, Salim

    2012-09-01

    In this study, the effective atomic number (Zeff)has been calculated for some boron compounds, such as concentrate colemanite, tincal, ulexite, boric acid, probertite and TSW (Trommel Sieve Waste) by means of ZXCOM at incident beam energy (E0=59.543 keV) and scattering angle (θ=35°). We present and discuss the (Zeff) obtained by Rayleigh/Compton (R/C) ratio and evaluated for the purpose of radiation shielding which contains boron compounds, which are commonly used as shield materials.

  10. Cystathionine-Gamma-Lyase Gene Deletion Protects Mice against Inflammation and Liver Sieve Injury following Polymicrobial Sepsis

    PubMed Central

    Gaddam, Ravinder Reddy; Fraser, Robin; Badiei, Alireza; Chambers, Stephen; Cogger, Victoria C; Le Couteur, David G; Ishii, Isao; Bhatia, Madhav

    2016-01-01

    Background Hydrogen sulfide (H2S), produced by the activity of cystathionine-gamma-lyase (CSE), is a key mediator of inflammation in sepsis. The liver sinusoidal endothelial cells (LSECs) are important target and mediator of sepsis. The aim of this study was to investigate the role of CSE-derived H2S on inflammation and LSECs fenestrae in caecal-ligation and puncture (CLP)-induced sepsis using CSE KO mice. Methods Sepsis was induced by CLP, and mice (C57BL/6J, male) were sacrificed after 8 hours. Liver, lung, and blood were collected and processed to measure CSE expression, H2S synthesis, MPO activity, NF-κB p65, ERK1/2, and cytokines/chemokines levels. Diameter, frequency, porosity and gap area of the liver sieve were calculated from scanning electron micrographs of the LSECs. Results An increased CSE expression and H2S synthesizing activity in the liver and lung of wild-type mice following CLP-induced sepsis. This was associated with an increased liver and lung MPO activity, and increased liver and lung and plasma levels of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, and the chemokines MCP-1 and MIP-2α. Conversely, CSE KO mice had less liver and lung injury and reduced inflammation following CLP-induced sepsis as evidenced by decreased levels of H2S synthesizing activity, MPO activity, and pro-inflammatory cytokines/chemokines production. Extracellular-regulated kinase (ERK1/2) and nuclear factor-κB p65 (NF-κB) became significantly activated after the CLP in WT mice but not in CSE KO mice. In addition, CLP-induced damage to the LSECs, as indicated by increased defenestration and gaps formation in the LSECs compared to WT sham control. CSE KO mice showed decreased defenestration and gaps formation following sepsis. Conclusions Mice with CSE (an H2S synthesising enzyme) gene deletion are less susceptible to CLP-induced sepsis and associated inflammatory response through ERK1/2-NF-κB p65 pathway as evidenced by reduced inflammation, tissue damage

  11. Plugging the Energy Sieve

    ERIC Educational Resources Information Center

    Rubin, Milton D.

    1974-01-01

    Attempts to show the feasibility of an energy conservation policy based on a greatly improved efficiency of use of energy. Considers efficiency in the industrial, residential, commercial, and transporation sectors. (GS)

  12. Generalized Fibonacci photon sieves

    NASA Astrophysics Data System (ADS)

    Ke, Jie; Zhang, Junyong

    2015-08-01

    We propose a family of zone plates which are produced by the generalized Fibonacci sequences and their axial focusing properties are analyzed in detail. Compared with traditional Fresnel zone plates, the generalized Fibonacci zone plates present two axial foci with equal intensity. Besides, we propose an approach to adjust the axial locations of the two foci by means of different optical path difference, and further give the deterministic ratio of the two focal distances which attributes to their own generalized Fibonacci sequences. The generalized Fibonacci zone plates may allow for new applications in micro and nanophotonics.

  13. Batteries: Sieving the ions

    NASA Astrophysics Data System (ADS)

    Serre, Christian

    2016-07-01

    The major obstacle in the development of Li–S batteries is the undesired dissolution of polysulfide intermediates produced during electrochemical reactions. Now, a metal–organic framework-based separator is shown to mitigate the problem, leading to stable long cycles.

  14. Tomato ovary-to-fruit transition is characterized by a spatial shift of mRNAs for cell wall invertase and its inhibitor with the encoded proteins localized to sieve elements.

    PubMed

    Palmer, William M; Ru, Lei; Jin, Ye; Patrick, John W; Ruan, Yong-Ling

    2015-02-01

    Central to understanding fruit development is to elucidate the processes mediating a successful transition from pre-pollination ovaries to newly set fruit, a key step in establishing fruit yield potential. In tomato, cell wall invertase (CWIN) LIN5 and its inhibitor INH1 are essential for fruit growth. However, the molecular and cellular basis by which they exert their roles in ovary-to-fruit transition remains unknown. To address this issue, we conducted a study focusing on ovaries and fruitlets at 2 days before and 2 days after anthesis, respectively. In situ hybridization analyses revealed that LIN5 and INH1 exhibited a dispersed expression in ovaries compared with their phloem-specific expression in fruitlets. Remarkably, LIN5 and INH1 proteins were immunologically co-localized to cell walls of sieve elements (SEs) in ovaries immediately prior to anthesis and in young fruitlets, but were undetectable in provascular bundles of younger ovaries. A burst in CWIN activity occurred during ovary-to-fruit transition. Interestingly, the ovaries, but not the fruitlets, exhibited high expression of a defective invertase, SldeCWIN1, an ortholog of which is known to enhance inhibition of INH on CWIN activity in tobacco. Imaging of a fluorescent symplasmic tracer indicated an apoplasmic phloem unloading pathway operated in ovaries, contrary to the previously observed symplasmic unloading pathway in fruit pericarp. These new data indicate that (1) a phloem-specific patterning of the CWIN and INH mRNAs is induced during ovary-to-fruit transition, and (2) LIN5 protein functions specifically in walls of SEs and increases its activity during ovary-to-fruit transition, probably to facilitate phloem unloading and to generate a glucose signal positively regulating cell division, hence fruit set. PMID:25680776

  15. Amine-modified SBA-15 and MCF mesoporous molecular sieves as promising sorbents for natural antioxidant. Modeling of caffeic acid adsorption.

    PubMed

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2016-04-01

    This work presents a detailed study of caffeic acid adsorption on mesoporous SBA-15 and MCF silicas functionalized with (3-aminopropyl)triethoxysilane (APTES) and 3-[2-(aminoethylamino)propyl]trimethoxysilane (AEAPTMS). Synthesized mesoporous adsorbents were characterized using different analytical techniques such as N2 sorption, XRD, TEM, SEM and FT-IR. The adsorption studies of caffeic acid were conducted in various organic solvents. Moreover, the effect of water content in 2-propanol-water mixture on adsorption efficiency was investigated. The experimental data were best fitted to the Langmuir equation, followed by the Temkin, Dubinin-Radushkevich and Freundlich models. The maximum adsorption capacity values calculated from the Langmuir model demonstrated that SBA-15 and MCF silicas modified with AEAPTMS revealed better adsorption properties toward caffeic acid (192.3 and 161.3mg/g, respectively) as compared to the materials modified with APTES (125.0 and 113.6 mg/g, respectively). The obtained results indicate that both SBA-15 and MCF silicas functionalized with AEAPTMS and APTES are promising materials for the entrapment of caffeic acid. PMID:26838867

  16. Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air.

    PubMed

    Nguyen Dinh, M T; Giraudon, J-M; Vandenbroucke, A M; Morent, R; De Geyter, N; Lamonier, J-F

    2016-08-15

    The total oxidation of trichloroethylene (TCE) in air at low relative humidity (RH=10%) in the presence of CO2 (520ppmv) was investigated in function of energy density using an atmospheric pressure negative DC luminescent glow discharge combined with a cryptomelane catalyst positioned downstream of the plasma reactor at a temperature of 150°C. When using Non-Thermal Plasma (NTP) alone, it is found a low COx (x=1-2) yield in agreement with the detection of gaseous polychlorinated by-products in the outlet stream as well as ozone which is an harmful pollutant. Introduction of cryptomelane enhanced trichloroethylene removal, totally inhibited plasma ozone formation and increased significantly the COx yield. The improved performances of the hybrid system were mainly ascribed to the total destruction of plasma generated ozone on cryptomelane surface to produce active oxygen species. Consequently these active oxygen species greatly enhanced the abatement of the plasma non-reacted TCE and completely destroyed the hazardous plasma generated polychlorinated intermediates. The facile redox of Mn species associated with oxygen vacancies and mobility as well as the textural properties of the catalyst might also contribute as a whole to the efficiency of the process. PMID:27107238

  17. Preparation and characterization of L-Leucine-modified amphiprotic bifunctional mesoporous SBA-15 molecular sieve as a drug carrier for ribavirin

    NASA Astrophysics Data System (ADS)

    Xu, Zhigang; Ji, Yongsheng; Guan, Min; Huang, Huayu; Zhao, Chuande; Zhang, Haixia

    2010-03-01

    In this study, an amphiphilic bifunctional mesoporous SBA-15 material (AMPBIF-SBA-15) was synthesized through post-synthesis method as a drug carrier. Ribavirin was selected as the model drug and whose release from both unmodified and functionalized SBA-15 was evaluated in four media solutions with different pH or ionic strength. The release process indicated that AMPBIF-SBA-15 was a pH-sensitive drug carrier, which showed a phased low-release effect to ribavirin in the simulated body fluid (PBS, pH 7.4) solution. The materials were further characterized by Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption measurements and elemental analysis. This study provided a novel drug carrier for ribavirin to improve curative effect of ribavirin.

  18. Carbogenic molecular sieves for reaction and separation by design: A novel approach to shape selective super base, super acid and catalytic membranes. Final report

    SciTech Connect

    Foley, Henry C.

    2002-03-18

    This report details the findings of three years of research plus one year of a no-cost extension. Primary results are the work with supported nanoporous carbon membranes for separation and reaction as well as with cesium-nanoporous carbon catalysts. The work resulted in 17 plus 2 papers (2 are in progress) and partial or full support for five Ph.D. students. Two patents were filed based on this research.

  19. 129Xe NMR of xenon adsorbed on the molecular sieves AlPO 4-5, SAPO-5, MAPO-5, and SAPO-37

    NASA Astrophysics Data System (ADS)

    Chen, Q. J.; Springuel-Huet, M. A.; Fraissard, J.

    1989-06-01

    The solids NaY, SAPO-37, ALPO 4-5, SAPO-5 and MAPO-5 have been studied at 26°C by 129 NMR with adsorbed xenon used as a probe. The equal values of the chemical shifts of NaY and SAPO-37 show that this technique can be used both on zeolites and AlPO 4 or their derivatives. The chemical shifts of AlPO 4-5, SAPO-5 and MAPO-5 are identical at 26°C. The difference with respect to the value determined from the structure cannot therefore be explained by the difference in chemical composition leading to specific Xe-solid interactions.

  20. Permeance of H2 through porous graphene from molecular dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Hongjun; Dai, Sheng; Jiang, De-en

    2013-12-01

    A recent experiment (Koenig et al., 2012 [15]) demonstrated the capability of porous graphene as one-atom-thin membrane to separate gases by molecular sieving. A quantitative connection between the measured leak rate and the simulated gas permeance has yet to be established. Using H2 as a model gas, here we determine its permeance through porous graphene from molecular dynamics (MD) simulations. Trajectories are used to directly obtain H2 flux, pressure drop across the graphene membrane, and subsequently, H2 permeance. The permeance is determined to be on the order of 105 GPU (gas permeance unit) for pressure driving forces ranging from 2 to 163 atm. By relating to the experimental leak rate, we then use the permeation data to estimate the pore density in the experimentally created porous graphene.

  1. A SIEVE M-THEOREM FOR BUNDLED PARAMETERS IN SEMIPARAMETRIC MODELS, WITH APPLICATION TO THE EFFICIENT ESTIMATION IN A LINEAR MODEL FOR CENSORED DATA.

    PubMed

    Ding, Ying; Nan, Bin

    2011-01-01

    In many semiparametric models that are parameterized by two types of parameters - a Euclidean parameter of interest and an infinite-dimensional nuisance parameter, the two parameters are bundled together, i.e., the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the unspecified error distribution function involves the regression coefficients. Motivated by developing an efficient estimating method for the regression parameters, we propose a general sieve M-theorem for bundled parameters and apply the theorem to deriving the asymptotic theory for the sieve maximum likelihood estimation in the linear regression model for censored survival data. The numerical implementation of the proposed estimating method can be achieved through the conventional gradient-based search algorithms such as the Newton-Raphson algorithm. We show that the proposed estimator is consistent and asymptotically normal and achieves the semiparametric efficiency bound. Simulation studies demonstrate that the proposed method performs well in practical settings and yields more efficient estimates than existing estimating equation based methods. Illustration with a real data example is also provided. PMID:24436500

  2. Magnetismo Molecular (Molecular Magentism)

    SciTech Connect

    Reis, Mario S; Moreira Dos Santos, Antonio F

    2010-07-01

    The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.

  3. Molecular Plasmonics.

    PubMed

    Wilson, Andrew J; Willets, Katherine A

    2016-06-12

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics. PMID:27049633

  4. The Sucrose Transporter StSUT1 Localizes to Sieve Elements in Potato Tuber Phloem and Influences Tuber Physiology and Development1[w

    PubMed Central

    Kühn, Christina; Hajirezaei, Mohammad-Reza; Fernie, Alisdair R.; Roessner-Tunali, Ute; Czechowski, Tomasz; Hirner, Brigitte; Frommer, Wolf B.

    2003-01-01

    The sucrose (Suc) H+-cotransporter StSUT1 from potato (Solanum tuberosum), which is essential for long-distance transport of Suc and assumed to play a role in phloem loading in mature leaves, was found to be expressed in sink tubers. To answer the question of whether SUT1 serves a function in phloem unloading in tubers, the promoter was fused to gusA and expression was analyzed in transgenic potato. SUT1 expression was unexpectedly detected not in tuber parenchyma but in the phloem of sink tubers. Immunolocalization demonstrated that StSUT1 protein was present only in sieve elements of sink tubers, cells normally involved in export of Suc from the phloem to supply developing tubers, raising the question of the role of SUT1 in tubers. SUT1 expression was inhibited by antisense in transgenic potato plants using a class I patatin promoter B33, which is primarily expressed in the phloem of developing tubers. Reduced SUT1 expression in tubers did not affect aboveground organs but led to reduced fresh weight accumulation during early stages of tuber development, indicating that in this phase SUT1 plays an important role for sugar transport. Changes in Suc- and starch-modifying enzyme activities and metabolite profiles are consistent with the developmental switch in unloading mechanisms. Altogether, the findings may suggest a role of SUT1 in retrieval of Suc from the apoplasm, thereby regulating the osmotic potential in the extracellular space, or a direct role in phloem unloading acting as a phloem exporter transferring Suc from the sieve elements into the apoplasm. PMID:12529519

  5. Molecular dynamics

    SciTech Connect

    Ladd, A.J.C.

    1988-08-01

    The basic methodology of equilibrium molecular dynamics is described. Examples from the literature are used to illustrate how molecular dynamics has been used to resolve theoretical controversies, provide data to test theories, and occasionally to discover new phenomena. The emphasis is on the application of molecular dynamics to an understanding of the microscopic physics underlying the transport properties of simple fluids. 98 refs., 4 figs.

  6. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.

    PubMed

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald

    2014-09-01

    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. PMID:24446756

  7. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  8. Mars Molecular and Isotopic Analysis Research Study

    NASA Technical Reports Server (NTRS)

    Manning, Heidi L. K.

    1998-01-01

    Recently, the Martian atmosphere and surface constituents have become of great interest. The Viking in situ gas chromatograph mass spectrometer experiment contributed greatly to our knowledge of the composition of the Martian atmosphere. However, important questions remain such as the abundance of water on Mars. The Viking experiment employed solid reagents to enhance their carbon measurements. Techniques of chemical conversion using simple solid reagents have advanced considerably in the past 20 years. In this investigation we researched the advancements in techniques to reversibly adsorb and desorb water and focused on the techniques potentially useful for the temperatures and pressures on the Martian surface. During the granting period from June 15, 1998 to August 14, 1998, a literature study of the material appropriate for use in a chemical conversion device and the availability of these materials were undertaken. The focus of this investigation was searching for methods and materials potentially useful in enhancing the measurements of water. Three different methods were considered for the means to extract water from a given gas sample. These methods included adsorption in a desiccant, adsorption on a clean metal surface, and adsorption in a carbon molecular sieve or zeolite. Each method was evaluated with feasibility and reversibility in mind. By far the simplest and perhaps cheapest way to remove water from a gaseous sample is by means of a bulk desiccant. Desiccants are commercially available from many companies including those that supply chemicals. The main feature of a desiccant is its ability to rapidly bind or absorb water from the atmosphere. Calcium chloride, for example, is frequently incorporated into drying tubes by organic chemists when reactions require the absence of water. Other desiccants include sodium hydroxide, calcium hydride, and commercial products such as Drierite, available from Aldrich Chemical. The disadvantage to most desiccants is

  9. Molecular engineering of porous silica using aryl templates

    DOEpatents

    Loy, D.A.; Shea, K.J.

    1994-06-14

    A process is described for manipulating the porosity of silica using a series of organic template groups covalently incorporated into the silicate matrix. The templates in the bridged polysilsesquioxanes are selectively removed from the material by oxidation with oxygen plasma or other means, leaving engineered voids or pores. The size of these pores is dependent upon the length or size of the template or spacer. The size of the templates is measured in terms of Si-Si distances which range from about 0.67 nm to 1.08 nm. Changes introduced by the loss of the templates result in a narrow range of micropores (i.e. <2 nm). Both aryl and alkyl template groups are used as spacers. Novel microporous silica materials useful as molecular sieves, desiccants, and catalyst supports are produced. 3 figs.

  10. Preparation of Robust, Thin Zeolite Membrane Sheet for Molecular Separation

    SciTech Connect

    Liu, Wei; Zhang, Jian; Canfield, Nathan L.; Saraf, Laxmikant V.

    2011-10-19

    This paper reports a feasibility study on the preparation of zeolite membrane films on a thin, porous metal support sheet (50-{micro}m thick). Zeolite sodium A (NaA) and silicalite zeolite frameworks are chosen to represent synthesis of respective hydrophilic-type and hydrophobic-type zeolite membranes on this new support. It is found that a dense, continuous inter-grown zeolite crystal layer at a thickness less than 2 {micro}m can be directly deposited on such a support by using direct and secondary growth techniques. The resulting membrane shows excellent adhesion on the metal sheet. Molecular-sieving functions of the prepared membranes are characterized with ethanol/water separation, CO2 separation, and air dehumidification. The results show great potential to make flexible metal-foil-like zeolite membranes for a range of energy conversion and environmental applications.

  11. Molecular Descriptors

    NASA Astrophysics Data System (ADS)

    Consonni, Viviana; Todeschini, Roberto

    In the last decades, several scientific researches have been focused on studying how to encompass and convert - by a theoretical pathway - the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities, or other experimental properties. Molecular descriptors are formally mathematical representations of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. They play a fundamental role in chemistry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxicology, health research, and quality control. Evidence of the interest of the scientific community in the molecular descriptors is provided by the huge number of descriptors proposed up today: more than 5000 descriptors derived from different theories and approaches are defined in the literature and most of them can be calculated by means of dedicated software applications. Molecular descriptors are of outstanding importance in the research fields of quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs), where they are the independent chemical information used to predict the properties of interest. Along with the definition of appropriate molecular descriptors, the molecular structure representation and the mathematical tools for deriving and assessing models are other fundamental components of the QSAR/QSPR approach. The remarkable progress during the last few years in chemometrics and chemoinformatics has led to new strategies for finding mathematical meaningful relationships between the molecular structure and biological activities, physico-chemical, toxicological, and environmental properties of chemicals. Different approaches for deriving molecular descriptors here reviewed and some of the most relevant descriptors are presented in

  12. Molecular Haeckel.

    PubMed

    Elinson, Richard P; Kezmoh, Lorren

    2010-07-01

    More than a century ago, Ernst Haeckel created embryo drawings to illustrate the morphological similarity of vertebrate early embryos. These drawings have been both widely presented and frequently criticized. At the same time that the idea of morphological similarity was recently attacked, there has been a growing realization of molecular similarities in the development of tissues and organs. We have surveyed genes expressed in vertebrate embryos, and we have used them to construct drawings that we call Molecular Haeckels. The Molecular Haeckels emphasize that, based on gene expression, there is a greater similarity among vertebrate embryos than even Haeckel might have imagined. PMID:20549737

  13. Molecular printing

    PubMed Central

    Braunschweig, Adam B.; Huo, Fengwei; Mirkin, Chad A.

    2014-01-01

    Molecular printing techniques, which involve the direct transfer of molecules to a substrate with submicrometre resolution, have been extensively developed over the past decade and have enabled many applications. Arrays of features on this scale have been used to direct materials assembly, in nanoelectronics, and as tools for genetic analysis and disease detection. The past decade has witnessed the maturation of molecular printing led by two synergistic technologies: dip-pen nanolithography and soft lithography. Both are characterized by material and substrate flexibility, but dip-pen nanolithography has unlimited pattern design whereas soft lithography has limited pattern flexibility but is low in cost and has high throughput. Advances in DPN tip arrays and inking methods have increased the throughput and enabled applications such as multiplexed arrays. A new approach to molecular printing, polymer-pen lithography, achieves low-cost, high-throughput and pattern flexibility. This Perspective discusses the evolution and future directions of molecular printing. PMID:21378889

  14. Molecular Astrophysics

    NASA Astrophysics Data System (ADS)

    Hartquist, T. W.

    2005-07-01

    Part I. Molecular Clouds and the Distribution of Molecules in the Milky Way and Other Galaxies: 1. Molecular clouds in the Milky Way P. Friberg and A. Hjalmarson; 2. Molecules in galaxies L. Blitz; Part II. Diffuse Molecular Clouds: 3. Diffuse cloud chemistry E. F. Van Dishoeck; 4. Observations of velocity and density structure in diffuse clouds W. D. Langer; 5. Shock chemistry in diffuse clouds T. W. Hartquist, D. R. Flower and G. Pineau des Forets; Part III. Quiescent Dense Clouds: 6. Chemical modelling of quiescent dense interstellar clouds T. J. Millar; 7. Interstellar grain chemistry V. Buch; 8. Large molecules and small grains in astrophysics S. H. Lepp; Part IV. Studies of Molecular Processes: 9. Molecular photoabsorption processes K. P. Kirby; 10. Interstellar ion chemistry: laboratory studies D. Smith, N. G. Adams and E. E. Ferguson; 11. Theoretical considerations on some collisional processes D. R. Bates; 12. Collisional excitation processes E. Roueff; 13. Neutral reactions at Low and High Temperatures M. M. Graff; Part V. Atomic Species in Dense Clouds: 14. Observations of atomic species in dense clouds G. J. Melnick; 15. Ultraviolet radiation in molecular clouds W. G. Roberge; 16. Cosmic ray induced photodissociation and photoionization of interstellar molecules R. Gredel; 17. Chemistry in the molecular cloud Barnard 5 S. B. Charnley and D. A. Williams; 18. Molecular cloud structure, motions, and evolution P. C. Myers; Part VI. H in Regions of Massive Star Formation: 19. Infrared observations of line emission from molecular hydrogen T. R. Geballe; 20. Shocks in dense molecular clouds D. F. Chernoff and C. F. McKee; 21. Dissociative shocks D. A. Neufeld; 22. Infrared molecular hydrogen emission from interstellar photodissociation regions A. Sternberg; Part VII. Molecules Near Stars and in Stellar Ejecta: 23. Masers J. M. Moran; 24. Chemistry in the circumstellar envelopes around mass-losing red giants M. Jura; 25. Atoms and molecules in supernova 1987a R

  15. Molecular Spintronics using Molecular Nanomagnets

    NASA Astrophysics Data System (ADS)

    Wernsdorfer, Wolfgang

    2009-03-01

    A revolution in electronics is in view, with the contemporary evolution of two novel disciplines, spintronics and molecular electronics. A fundamental link between these two fields can be established using molecular magnetic materials and, in particular, single-molecule magnets [1], which combine the classic macroscale properties of a magnet with the quantum properties of a nanoscale entity. The resulting field, molecular spintronics aims at manipulating spins and charges in electronic devices containing one or more molecules. In this context, we want to fabricate, characterize and study molecular devices (molecular spin-transistor, molecular spin-valve and spin filter, molecular double-dot devices, carbon nanotube nano-SQUIDs, etc.) in order to read and manipulate the spin states of the molecule and to perform basic quantum operations. The talk will discuss this--still largely unexplored--field and present our the first important results [2,3].[4pt] [1] L. Bogani & W. Wernsdorfer, Nature Mat. 7, 179 (2008).[0pt] [2] J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarcuhu, M. Monthioux, Nature Nanotech. 1, 53-59 (2006).[0pt] [3] N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, F. Balestro, Nature 453, 633 (2008).

  16. Molecular fountain.

    SciTech Connect

    Strecker, Kevin E.; Chandler, David W.

    2009-09-01

    A molecular fountain directs slowly moving molecules against gravity to further slow them to translational energies that they can be trapped and studied. If the molecules are initially slow enough they will return some time later to the position from which they were launched. Because this round trip time can be on the order of a second a single molecule can be observed for times sufficient to perform Hz level spectroscopy. The goal of this LDRD proposal was to construct a novel Molecular Fountain apparatus capable of producing dilute samples of molecules at near zero temperatures in well-defined user-selectable, quantum states. The slowly moving molecules used in this research are produced by the previously developed Kinematic Cooling technique, which uses a crossed atomic and molecular beam apparatus to generate single rotational level molecular samples moving slowly in the laboratory reference frame. The Kinematic Cooling technique produces cold molecules from a supersonic molecular beam via single collisions with a supersonic atomic beam. A single collision of an atom with a molecule occurring at the correct energy and relative velocity can cause a small fraction of the molecules to move very slowly vertically against gravity in the laboratory. These slowly moving molecules are captured by an electrostatic hexapole guiding field that both orients and focuses the molecules. The molecules are focused into the ionization region of a time-of-flight mass spectrometer and are ionized by laser radiation. The new molecular fountain apparatus was built utilizing a new design for molecular beam apparatus that has allowed us to miniaturize the apparatus. This new design minimizes the volumes and surface area of the machine allowing smaller pumps to maintain the necessary background pressures needed for these experiments.

  17. Multistep mineral fouling growth on a cation-exchange membrane ruled by gradual sieving effects of magnesium and carbonate ions and its delay by pulsed modes of electrodialysis.

    PubMed

    Cifuentes-Araya, Nicolás; Pourcelly, Gérald; Bazinet, Laurent

    2012-04-15

    The aim of this study was to reveal the mechanisms ruling a fouling growth on both sides of a CMX-SB cation-exchange membrane (CEM), run after run during three consecutive electrodialysis (ED) treatments. A model solution containing a high magnesium/calcium ratio (2/5) was demineralized under two different pulsed electric field (PEF) on-duty ratios and dc current. The results showed a series of mechanisms ruling a multilayer mineral fouling growth and its delay by PEFs. The nature of the fouling layer, during a first run, depended on the diluate pH-value evolutions and the ion migration rates through the membrane. A subsequent multilayer fouling growth during consecutive treatments was ruled by the already formed mineral layers, where gradual sieving effects inverted the migration rates and led to a multistep crystal growth. Calcium carbonate grew on the diluate side of CEM, starting from its amorphous phase to then crystallize in a coexisting presence of aragonite and calcite. Amorphous magnesium hydroxide appeared on CEM apparently through fouling dehydration ruled by the mineral layers themselves and by overlimiting current regimes. A delayed fouling growth was observed for PEF ratio 0.3. A long pause lapse during pulse modes was demonstrated as an important parameter for fouling mitigation. PMID:22326231

  18. Chemical composition, effective atomic number and electron density study of trommel sieve waste (TSW), Portland cement, lime, pointing and their admixtures with TSW in different proportions.

    PubMed

    Kurudirek, Murat; Aygun, Murat; Erzeneoğlu, Salih Zeki

    2010-06-01

    The trommel sieve waste (TSW) which forms during the boron ore production is considered to be a promising building material with its use as an admixture with Portland cement and is considered to be an alternative radiation shielding material, also. Thus, having knowledge on the chemical composition and radiation interaction properties of TSW as compared to other building materials is of importance. In the present study, chemical compositions of the materials used have been determined using a wavelength dispersive X-ray fluorescence spectrometer (WDXRFS). Also, TSW, some commonly used building materials (Portland cement, lime and pointing) and their admixtures with TSW have been investigated in terms of total mass attenuation coefficients (mu/rho), photon interaction cross sections (sigma(t)), effective atomic numbers (Z(eff)) and effective electron densities (N(e)) by using X-rays at 22.1, 25keV and gamma-rays at 88keV photon energies. Possible conclusions were drawn with respect to the variations in photon energy and chemical composition. PMID:20080413

  19. Recovery and characterization of Balanites aegyptiaca Del. kernel proteins. Effect of defatting, air classification, wet sieving and aqueous ethanol treatment on solubility, digestibility, amino acid composition and sapogenin content.

    PubMed

    Mohamed, A M; Wolf, W; Spiess, W E

    2000-02-01

    In order to find alternative protein sources in African regions where protein deficiency in nutrition is prevailing, solubility, in-vitro digestibility, amino acid composition and chemical score of Balanites aegyptiaca Del. kernel proteins were investigated as a function of different processing steps including defatting, air classification, wet sieving and aqueous ethanol treatment. Air classification delivered a fine fraction of 58.1% of the total protein. Applying a wet sieving process, a protein concentrate of 72.9% protein content was achieved but the recovery was very low (35.6%). However, in case of isoelectric precipitation followed by aqueous ethanol treatment both protein content (78.2%) and recovery (53.7%) were high. Data concerning the chemical score revealed, that lysine content of the defatted kernel flour amounted to 74.2% of the recommended FAO/WHO standard level. In-vitro protein digestibility was found to be higher than of legume proteins. The digestible protein of the full fat flour, defatted flour, air classified and wet sieved fine fractions and protein concentrate were 91.9, 93.7, 82.0, 86.4 and 94.2%, respectively. The sapogenin content per 100 g protein of the investigated protein preparations was significantly lower (46% to 62%) than of the initial material (oilcake). PMID:10702992

  20. Sieving di-branched from mono-branched and linear alkanes using ZIF-8: experimental proof and theoretical explanation.

    PubMed

    Ferreira, Alexandre F P; Mittelmeijer-Hazeleger, Marjo C; Granato, Miguel Angelo; Martins, Vanessa F Duarte; Rodrigues, Alírio E; Rothenberg, Gadi

    2013-06-14

    We study the adsorption equilibrium isotherms and differential heats of adsorption of hexane isomers on the zeolitic imidazolate framework ZIF-8. The studies are carried out at 373 K using a manometric set-up combined with a micro-calorimeter. We see that the Langmuir model describes well the isotherms for all four isomers (n-hexane, 2-methylpentane, 2,2-dimethylbutane and 2,3-dimethylbutane). The linear and mono-branched isomers adsorb well, but 2,2-dimethylbutane is totally excluded. Plotting the differential heat of adsorption against the loading shows an initial plateau for n-hexane and 2-methylpentane. This is followed by a slow rise, indicating adsorbate-adsorbate interactions. For the di-branched isomers the differential heat of adsorption decreases with loading. To gain further insight, we ran molecular simulations using the grand-canonical Monte Carlo approach. Comparing the simulation and the experimental results shows that the ZIF framework model requires blocking of the cages, since 2,2-dimethylbutane cannot fit through the sodalite-type windows. Practically speaking, this means that ZIF-8 is a highly promising candidate for enhancing gasoline octane numbers at 373 K, as it can separate 2,2-dimethylbutane and 2,3-dimethylbutane from 2-methylpentane. Our results prove the potential of ZIF-8 as a new adsorbent that can be employed in the upgrade of the Total Isomerization Process for the production of high octane number gasoline, by blending di-branched alkanes in the gasoline. PMID:23640581

  1. Molecular Electronics

    NASA Astrophysics Data System (ADS)

    Petty, Michael

    The prospects of using organic materials in electronics and optoelectronics applications have attracted scientists and technologists since the 1970s. This field has become known as molecular electronics. Some successes have already been achieved, for example the liquid-crystal display. Other products such as organic light-emitting displays, chemical sensors and plastic transistors are developing fast. There is also a keen interest in exploiting technologies at the molecular scale that might eventually replace silicon devices. This chapter provides some of the background physics and chemistry to the interdisciplinary subject of molecular electronics. A review of some of the possible application areas for organic materials is presented and some speculation is provided regarding future directions.

  2. Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Wright, John D.

    1995-02-01

    This book describes the chemical and physical structure of molecular crystals, their optical and electronic properties, and the reactions between neighboring molecules in crystals. In the second edition, the author has taken into account research that has undergone extremely rapid development since the first edition was published in 1987. For instance, he gives extensive coverage to the applications of molecular materials in high-technology devices (e.g. optical communications, laser printers, photocopiers, liquid crystal displays, solar cells, and more). There is also an entirely new chapter on the recently discovered Buckminsterfullerene carbon molecule (C60) and organic non-linear optic materials.

  3. Molecular simulations and experimental studies of zeolites

    NASA Astrophysics Data System (ADS)

    Moloy, Eric C.

    Zeolites are microporous aluminosilicate tetrahedral framework materials that have symmetric cages and channels with open-diameters between 0.2 and 2.0 nm. Zeolites are used extensively in the petrochemical industries for both their microporosity and their catalytic properties. The role of water is paramount to the formation, structure, and stability of these materials. Zeolites frequently have extra-framework cations, and as a result, are important ion-exchange materials. Zeolites also play important roles as molecular sieves and catalysts. For all that is known about zeolites, much remains a mystery. How, for example, can the well established metastability of these structures be explained? What is the role of water with respect to the formation, stabilization, and dynamical properties? This dissertation addresses these questions mainly from a modeling perspective, but also with some experimental work as well. The first discussion addresses a special class of zeolites: pure-silica zeolites. Experimental enthalpy of formation data are combined with molecular modeling to address zeolitic metastability. Molecular modeling is used to calculate internal surface areas, and a linear relationship between formation enthalpy and internal surface areas is clearly established, producing an internal surface energy of approximately 93 mJ/m2. Nitrate bearing sodalite and cancrinite have formed under the caustic chemical conditions of some nuclear waste processing centers in the United States. These phases have fouled expensive process equipment, and are the primary constituents of the resilient heels in the bottom of storage tanks. Molecular modeling, including molecular mechanics, molecular dynamics, and density functional theory, is used to simulate these materials with respect to structure and dynamical properties. Some new, very interesting results are extracted from the simulation of anhydrous Na6[Si6Al 6O24] sodalite---most importantly, the identification of two distinct

  4. Molecular gastronomy

    NASA Astrophysics Data System (ADS)

    This, Hervé

    2005-01-01

    For centuries, cooks have been applying recipes without looking for the mechanisms of the culinary transformations. A scientific discipline that explores these changes from raw ingredients to eating the final dish, is developing into its own field, termed molecular gastronomy. Here, one of the founders of the discipline discusses its aims and importance.

  5. Digester performance and microbial community changes in thermophilic and mesophilic sequencing batch reactors fed with the fine sieved fraction of municipal sewage.

    PubMed

    Ghasimi, Dara S M; Tao, Yu; de Kreuk, Merle; Abbas, Ben; Zandvoort, Marcel H; van Lier, Jules B

    2015-12-15

    This study investigates the start-up and operation of bench-scale mesophilic (35 °C) and thermophilic (55 °C) anaerobic sequencing batch reactor (SBR) digesters treating the fine sieved fraction (FSF) from raw municipal sewage. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter equipped with a 350 micron mesh. For the given wastewater, the major component of FSF was toilet paper, which is estimated to be 10-14 kg per year per average person in the western European countries. A seven months adaptation time was allowed for the thermophilic and mesophilic digesters in order to adapt to FSF as the sole substrate with varying dry solids content of 10-25%. Different SBR cycle durations (14, 9 and 2 days) were applied for both temperature conditions to study methane production rates, volatile fatty acids (VFAs) dynamics, lag phases, as well as changes in microbial communities. The prevailing sludge in the two digesters consisted of very different bacterial and archaeal communities, with OP9 lineage and Methanothermobacter being pre-dominant in the thermophilic digester and Bacteroides and Methanosaeta dominating the mesophilic one. Eventually, decreasing the SBR cycle period, thus increasing the FSF load, resulted in improved digester performances, particularly with regard to the thermophilic digester, i.e. shortened lag phases following the batch feedings, and reduced VFA peaks. Over time, the thermophilic digester outperformed the mesophilic one with 15% increased volatile solids (VS) destruction, irrespective to lower species diversity found at high temperature. PMID:25976021

  6. Thermal and hydraulic performance tests of a sieve-tray direct-contact heat exchanger vaporizing pure and mixed-hydrocarbon Rankine-cycle working fluids

    SciTech Connect

    Mines, G.L.; Demuth, O.J.; Wiggins, D.J.

    1983-08-01

    Experiments investigating a sieve-tray direct-contact heat exchanger were conducted at the Raft River Geothermal Test Site in southeastern Idaho using the 60-kW Mobile Heat Cycle Research Facility operating in the thermal loop mode (without a turbine). Isobutane, propane, and several hydrocarbon mixtures were heated and boiled in the direct-contact column, which is approx. 12 in. in diameter and 19-1/2 ft. high, using the energy from a 280/sup 0/F geothermal resource. Using pure fluids, isobutane or propane, the column operated much as intended, with 17 trays used for preheating and one or two accomplishing the boiling. For the pure fluids, individual tray efficiencies were found to be 70% or higher for preheating, and close to 100% for boiling; column pinch points were projected to be well under 1/sup 0/F with some runs reaching values as low as approx. 0.02/sup 0/F. Maximum geofluid throughputs for the isobutane tests corresponded roughly to the terminal rise velocity of a 1/32 in. working fluid droplet in geofluid. Boiling was found to occur in as many as 12 trays for the mixtures having the highest concentrations of the minor component, with overall efficiencies in the boiling section estimated on the order of 25 or 30%. Preheating tray efficiencies appeared to be fairly independent of working fluid, with pinch points ranging from as low as approx. 0.03/sup 0/F for a 0.95 isobutane/0.05 hexane mixture to approx. 2.3/sup 0/F for a 0.85 isobutane/0.05 hexane mixture. Column operation was noticeably less stable for the mixtures than for the pure fluids, with maximum throughputs dropping to as low as 40 to 50% of those for the pure fluids.

  7. Molecular astrophysics

    NASA Astrophysics Data System (ADS)

    Herzberg, G.

    1989-01-01

    A brief history of Molecular Astrophysics is presented. The first molecules in space were identified in the 1920s in comets followed soon after by those in planetary atmospheres. The recent identification by MCKELLAR of the dimer of H 2, that is, (H 2) 2 in the atmosphere of Jupiter as well as the discovery, by DROSSART, MAILLARD, WATSON and others, of the H 3+ ion in the auroral zone of Jupiter are described. In this laboratory there is a continuing interest in interstellar molecules. Several molecules and molecular ions were observed by collaboration of laboratory spectroscopists and astronomers. Only the most recent ones are discussed. Also a few of the molecules not yet observed but likely to be observed are mentioned.

  8. Molecular Thermometry

    PubMed Central

    McCabe, Kevin M.; Hernandez, Mark

    2010-01-01

    Conventional temperature measurements rely on material responses to heat, which can be detected visually. When Galileo developed an air expansion based device to detect temperature changes, Santorio, a contemporary physician, added a scale to create the first thermometer. With this instrument, patients’ temperatures could be measured, recorded and related to changing health conditions. Today, advances in materials science and bioengineering provide new ways to report temperature at the molecular level in real time. In this review the scientific foundations and history of thermometry underpin a discussion of the discoveries emerging from the field of molecular thermometry. Intracellular nanogels and heat sensing biomolecules have been shown to accurately report temperature changes at the nano-scale. Various systems will soon provide the ability to accurately measure temperature changes at the tissue, cellular, and even sub-cellular level, allowing for detection and monitoring of very small changes in local temperature. In the clinic this will lead to enhanced detection of tumors and localized infection, and accurate and precise monitoring of hyperthermia based therapies. Some nanomaterial systems have even demonstrated a theranostic capacity for heat-sensitive, local delivery of chemotherapeutics. Just as early thermometry moved into the clinic, so too will these molecular thermometers. PMID:20139796

  9. Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-06-01

    Molecular modeling has trickled down from the realm of pharmaceutical and research laboratories into the realm of undergraduate chemistry instruction. It has opened avenues for the visualization of chemical concepts that previously were difficult or impossible to convey. I am sure that many of you have developed exercises using the various molecular modeling tools. It is the desire of this Journal to become an avenue for you to share these exercises among your colleagues. It is to this end that Ron Starkey has agreed to edit such a column and to publish not only the description of such exercises, but also the software documents they use. The WWW is the obvious medium to distribute this combination and so accepted submissions will appear online as a feature of JCE Internet. Typical molecular modeling exercise: finding conformation energies. Molecular Modeling Exercises and Experiments is the latest feature column of JCE Internet, joining Conceptual Questions and Challenge Problems, Hal's Picks, and Mathcad in the Chemistry Curriculum. JCE Internet continues to seek submissions in these areas of interest and submissions of general interest. If you have developed materials and would like to submit them, please see our Guide to Submissions for more information. The Chemical Education Resource Shelf, Equipment Buyers Guide, and WWW Site Review would also like to hear about chemistry textbooks and software, equipment, and WWW sites, respectively. Please consult JCE Internet Features to learn more about these resources at JCE Online. Email Announcements Would you like to be informed by email when the latest issue of the Journal is available online? when a new JCE Software title is shipping? when a new JCE Internet article has been published or is available for Open Review? when your subscription is about to expire? A new feature of JCE Online makes this possible. Visit our Guestbook to learn how. When

  10. Molecular clocks.

    PubMed

    Lee, Michael S Y; Ho, Simon Y W

    2016-05-23

    In the 1960s, several groups of scientists, including Emile Zuckerkandl and Linus Pauling, had noted that proteins experience amino acid replacements at a surprisingly consistent rate across very different species. This presumed single, uniform rate of genetic evolution was subsequently described using the term 'molecular clock'. Biologists quickly realised that such a universal pacemaker could be used as a yardstick for measuring the timescale of evolutionary divergences: estimating the rate of amino acid exchanges per unit of time and applying it to protein differences across a range of organisms would allow deduction of the divergence times of their respective lineages (Figure 1). PMID:27218841

  11. Molecular Mechanics

    PubMed Central

    Vanommeslaeghe, Kenno; Guvench, Olgun; MacKerell, Alexander D.

    2014-01-01

    Molecular Mechanics (MM) force fields are the methods of choice for protein simulations, which are essential in the study of conformational flexibility. Given the importance of protein flexibility in drug binding, MM is involved in most if not all Computational Structure-Based Drug Discovery (CSBDD) projects. This section introduces the reader to the fundamentals of MM, with a special emphasis on how the target data used in the parametrization of force fields determine their strengths and weaknesses. Variations and recent developments such as polarizable force fields are discussed. The section ends with a brief overview of common force fields in CSBDD. PMID:23947650

  12. Molecular replacement.

    PubMed

    Toth, Eric A

    2007-01-01

    As more protein structures are solved, the likelihood that current structural investigations will involve proteins for which there exists no homologous structure continually decreases. The extraction of phase information from diffraction experiments is one of several great barriers that crystallographers must overcome on the path to structure solution. One means to overcome this obstacle, the technique of molecular replacement, uses the structural similarity between proteins with similar sequences to give a good first estimate of the phases for the diffraction data of the protein of interest. The programs that execute this technique currently come in many flavors, from traditional Patterson-based methods, to stochastic searches in greater than three dimensions, to maximum likelihood-enhanced molecular replacement, each possessing unique advantages that can shake loose a recalcitrant solution. As crystallographers aim to solve larger macromolecular complexes that more faithfully depict the actors in cellular events, having existing phase information for parts of those biological machines will reinforce the technological advancements in data collection and structure solution that have already produced mammoth structures like the ribosome, yielding an ever-clearer picture of the inner workings of biology. PMID:17172763

  13. Capture, enrichment, and mass spectrometric detection of low-molecular-weight biomarkers with nanoporous silicon microparticles.

    PubMed

    Tan, Jie; Zhao, Wei-Jie; Yu, Jie-Kai; Ma, Sai; Sailor, Michael J; Wu, Jian-Min

    2012-11-01

    Mining the disease information contained in the low-molecular-weight range of a proteomic profile is becoming of increasing interest in cancer research. This work evaluates the ability of nanoporous silicon microparticles (NPSMPs) to capture, enrich, protect, and detect low-molecular-weight peptides (LMWPs) sieved from a pool of highly abundant plasma proteins. The average pore size and porosity of NPSMPs are controlled by the electrochemical preparation conditions, and the critical parameters for admission or exclusion of protein with a definite molecular weight are determined by reflectometric-interference Fourier transform spectroscopy (RIFTS). Sodium dodecyl sulfate polyacrylamide-gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis of the proteins captured by the NPSMPs show that the chemical nature of the NPSMPs surface and the solution pH also play vital roles in determining the affinity of NPSMPs for target analytes. It is found that carboxyl-terminated porous microparticles with a porosity of 26% (pore diameter around 9.0 nm) specifically fractionate, enrich and protect LMWPs sieved from either simulated samples or human serum samples. Moreover, NPSMPs containing captured peptides can be directly spotted onto a MALDI plate. When placed in a conventional MALDI matrix, laser irradiation of the particles results in the release of the target peptides confined in the nanopores, which are then ionized and detected in the MALDI experiment. As a proof-of-principle test case, mass spectra of NPSMPs prepared using serum from colorectal cancer patients and from control patients can be clearly distinguished by statistical analysis. The work demonstrates the utility of the method for discovery of biomarkers in the untapped LMWP fraction of human serum, which can be of significant value in the early diagnosis and management of diseases. PMID:23184826

  14. FieldChopper, a new tool for automatic model generation and virtual screening based on molecular fields.

    PubMed

    Kalliokoski, Tuomo; Ronkko, Toni; Poso, Antti

    2008-06-01

    Algorithms were developed for ligand-based virtual screening of molecular databases. FieldChopper (FC) is based on the discretization of the electrostatic and van der Waals field into three classes. A model is built from a set of superimposed active molecules. The similarity of the compounds in the database to the model is then calculated using matrices that define scores for comparing field values of different categories. The method was validated using 12 publicly available data sets by comparing the method to the electrostatic similarity comparison program EON. The results suggest that FC is competitive with more complex descriptors and could be used as a molecular sieve in virtual screening experiments when multiple active ligands are known. PMID:18489083

  15. Numerical investigation of molecular nano-array in potential-energy profile for a single dsDNA.

    PubMed

    Alishahi, Marzieh; Kamali, Reza; Abouali, Omid

    2016-04-01

    A Rigorous numerical investigation on dsDNA translocation in quasi-2-dimensional nano-array filter is performed using Molecular Dynamics (MD) method. Various dsDNA molecules with different sizes are chosen in order to model Ogston sieving in a nano-array filter. The radius of gyration of dsDNA molecule is less than the characteristic length of the shallow region in nano-array. The dsDNA molecule is assumed to be in the 0.05M NaCl electrolyte. MD shows acceptable results for potential-energy profile for nano-array filter. According to the MD outcomes, the dsDNA electrophoretic mobility decreases almost linearly with dsDNA size and show the same trend as Ogston sieving for gel electrophoresis. In addition, different shapes for nano-array filter are studied for a unique dsDNA molecule. It is concluded that steeping the nano-array wall can cause the retardation of dsDNA translocation and decreases dsDNA electrophoretic mobility. PMID:27125679

  16. The molecular matching problem

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1993-01-01

    Molecular chemistry contains many difficult optimization problems that have begun to attract the attention of optimizers in the Operations Research community. Problems including protein folding, molecular conformation, molecular similarity, and molecular matching have been addressed. Minimum energy conformations for simple molecular structures such as water clusters, Lennard-Jones microclusters, and short polypeptides have dominated the literature to date. However, a variety of interesting problems exist and we focus here on a molecular structure matching (MSM) problem.

  17. Synthesis and physicochemical properties of Zr-MCM-41 mesoporous molecular sieves and Pt/H{sub 3}PW{sub 12}O{sub 40}/Zr-MCM-41 catalysts

    SciTech Connect

    Chen, L.F. Wang, J.A.; Norena, L.E.; Aguilar, J.; Navarrete, J.; Salas, P.; Montoya, J.A.; Del Angel, P.

    2007-10-15

    For the first time, modifications of the surface and framework of Si-MCM-41 by depositing a heteropolyacid on the surface and by introducing foreign Zr{sup 4+} ions into the framework are investigated. The Zr-modified Si-MCM-41 mesoporous materials (hereafter referred as WSZn, n=Si/Zr=25, 15, 8, 4) were synthesized through a surfactant-templated preparation approach, using low-cost fumed silica as the Si precursor. After impregnation with 25 wt% of H{sub 3}PW{sub 12}O{sub 40}, the surface Broensted acidity of the Pt/H{sub 3}PW{sub 12}O{sub 40}/WSZn catalysts was greatly enhanced by 2-10 times relative to the bare WSZn support. Two kinds of supported heteropolyacids were formed: (i) bulk-like heteropolyacid crystals with unchanged Keggin structures, and (ii) highly dispersed heteropolyacid with distorted Keggin units. The formation of various kinds of heteropolyacid structures is closely related to the interaction between the heteropolyanions and the hydroxyl groups in the host support. - Graphical abstract: Modifications of the surface and framework of Si-MCM-41 by depositing a heteropolyacid on the surface and by introducing foreign Zr{sup 4+} ions into the framework are investigated. Broensted acidity of the Pt/H{sub 3}PW{sub 12}O{sub 40}/Zr-MCM-41 catalysts was greatly enhanced by 2-10 times relative to the bare Zr-MCM-41 support.

  18. Molecular implementation of molecular shift register memories

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor); Onuchic, Jose N. (Inventor)

    1991-01-01

    An electronic shift register memory (20) at the molecular level is described. The memory elements are based on a chain of electron transfer molecules (22) and the information is shifted by photoinduced (26) electron transfer reactions. Thus, multi-step sequences of charge transfer reactions are used to move charge with high efficiency down a molecular chain. The device integrates compositions of the invention onto a VLSI substrate (36), providing an example of a molecular electronic device which may be fabricated. Three energy level schemes, molecular implementation of these schemes, optical excitation strategies, charge amplification strategies, and error correction strategies are described.

  19. A magnetic mesoporous nanocomposite modified with a ruthenium complex for site-specific molecular oxygen sensing: Construction and characterization

    NASA Astrophysics Data System (ADS)

    Yu-qing, Zhao; Xi, Chen; De-jun, Wan

    2015-08-01

    In this paper, we constructed a core-shell structured organic-inorganic hybrid composite, where superparamagnetic ferroferric oxide and silica molecular sieve MCM-41 were used as the inner core and the outer shell, respectively. A Ru(II) complex was covalently grafted into these MCM-41 tunnels. Electron microscopy images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis were applied to confirm this Ru(II)-functionalized hybrid composite. Emission of this composite decreased with increasing O2 concentrations, which made itself an O2 sensing system. High selectivity (12.2), linear working curve (linearity = 0.99) and short response time (12 s) were obtained from this composite.

  20. Progress in molecular SIMS

    SciTech Connect

    Borman, S.

    1987-04-15

    A review of sputtering and molecular ion emission is presented. New derivatization techniques have produced lower detection limits for molecular secondary ion mass spectrometry (SIMS). Spectra of representative organic compounds are presented.

  1. Molecular electronics: Observation of molecular rectification

    SciTech Connect

    Waldeck, D.H.; Beratan, D.N. )

    1993-07-30

    The authors review some experiments in molecular rectification and their implication for commercial uses of molecular electronic devices. Two of the cases involve rectification by single molecules which consist of an electron donor on one side, an electron acceptor on the other side, and a bridge in between, coupled to electrodes. The third case involves rectification at a graphite electrode derivatized with a Cu phthalocyanine derivative, and probed with a Pt/Ir scanning tunneling microscope tip. Some potential applications of molecular devices are in high-density memory storage of holographic memory devices, neural networks, cellular automata, and chemical and biochemical sensors.

  2. Molecular Research in Aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular research and biotechnology have long been fields of study with applications useful to aquaculture and other animal sciences. Molecular Research in Aquaculture looks to provide an understanding of molecular research and its applications to the aquaculture industry in a format that allows in...

  3. Molecular Graphics and Chemistry.

    ERIC Educational Resources Information Center

    Weber, Jacques; And Others

    1992-01-01

    Explains molecular graphics, i.e., the application of computer graphics techniques to investigate molecular structure, function, and interaction. Structural models and molecular surfaces are discussed, and a theoretical model that can be used for the evaluation of intermolecular interaction energies for organometallics is described. (45…

  4. Molecular electrostatic potentials by systematic molecular fragmentation

    SciTech Connect

    Reid, David M.; Collins, Michael A.

    2013-11-14

    A simple method is presented for estimating the molecular electrostatic potential in and around molecules using systematic molecular fragmentation. This approach estimates the potential directly from the electron density. The accuracy of the method is established for a set of organic molecules and ions. The utility of the approach is demonstrated by estimating the binding energy of a water molecule in an internal cavity in the protein ubiquitin.

  5. Engineering molecular machines

    NASA Astrophysics Data System (ADS)

    Erman, Burak

    2016-04-01

    Biological molecular motors use chemical energy, mostly in the form of ATP hydrolysis, and convert it to mechanical energy. Correlated thermal fluctuations are essential for the function of a molecular machine and it is the hydrolysis of ATP that modifies the correlated fluctuations of the system. Correlations are consequences of the molecular architecture of the protein. The idea that synthetic molecular machines may be constructed by designing the proper molecular architecture is challenging. In their paper, Sarkar et al (2016 New J. Phys. 18 043006) propose a synthetic molecular motor based on the coarse grained elastic network model of proteins and show by numerical simulations that motor function is realized, ranging from deterministic to thermal, depending on temperature. This work opens up a new range of possibilities of molecular architecture based engine design.

  6. Removal of fly-ash and dust particulate matters from syngas produced by gasification of coal by using a multi-stage dual-flow sieve plate wet scrubber.

    PubMed

    Kurella, Swamy; Meikap, Bhim Charan

    2016-08-23

    In this work, fly-ash water scrubbing experiments were conducted in a three-stage lab-scale dual-flow sieve plate scrubber to observe the performance of scrubber in fly-ash removal at different operating conditions by varying the liquid rate, gas rate and inlet fly-ash loading. The percentage of fly-ash removal efficiency increases with increase in inlet fly-ash loading, gas flow rate and liquid flow rate, and height of the scrubber; 98.55% maximum percentage of fly-ash removal efficiency (ηFA) is achieved at 19.36 × 10(-4) Nm(3)/s gas flow rate (QG) and 48.183 × 10(-6) m(3)/s liquid flow rate (QL) at 25 × 10(-3) kg/Nm(3) inlet fly-ash loading (CFA,i). A model has also been developed for the prediction of fly-ash removal efficiency of the column using the experimental results. The predicted values calculated using the correlation matched well with the experimental results. Deviations observed between the experimental and the predicted values were less than 20%. PMID:27230635

  7. Standardized molecular typing.

    PubMed

    Müller, F M; Lischewski, A; Harmsen, D; Hacker, J

    1999-01-01

    Molecular typing methods are useful tools in molecular mycology. The results of these biotyping procedures may help to identify pathogenic strains in order to detect sources of nosocomial infection and for the investigation of epidemiological relationships. With respect to the facultative pathogen, Candida albicans, various methods such as pulse-field gel electrophoresis (PFGE), restriction fragment length polymorphism (RFLP), DNA fingerprinting methods and hybridization with repetitive DNA elements have been described as useful tools in molecular epidemiology. The previously described hybridization method with the Candida albicans specific CARE-2 probe and subsequent rehybridization with a molecular size marker is a standardized reproducible typing method for comparison of results obtained in different laboratories. In a larger epidemiological study conducted at the University Hospital of Würzburg analysing clinical C. albicans isolates, we were able to describe relationships between sequential patient isolates. These findings demonstrate that standardized molecular typing methods are a powerful tool in molecular mycology studies. PMID:10865907

  8. Molecularly imprinted porous beads for the selective removal of copper ions.

    PubMed

    Younis, M Rizwan; Bajwa, Sadia Z; Lieberzeit, Peter A; Khan, Waheed S; Mujahid, Adnan; Ihsan, Ayesha; Rehman, Asma

    2016-02-01

    In the present work, novel molecularly imprinted polymer porous beads for the selective separation of copper ions have been synthesized by combining two material-structuring techniques, namely, molecular imprinting and oil-in-water-in-oil emulsion polymerization. This method produces monodisperse spherical beads with an average diameter of ∼2-3 mm, in contrast to adsorbents produced in the traditional way of grinding and sieving. Field-emission scanning electron microscopy indicates that the beads are porous in nature with interconnected pores of about 25-50 μm. Brunner-Emmett-Teller analysis shows that the ion-imprinted beads possess a high surface area (8.05 m(2) /g), and the total pore volume is determined to be 0.00823 cm(3) /g. As a result of the highly porous nature and ion-imprinting, the beads exhibit a superior adsorption capacity (84 mg/g) towards copper than the non-imprinted material (22 mg/g). Furthermore, selectivity studies indicate that imprinted beads show splendid recognizing ability, that is, nearly fourfold greater selective binding for Cu(2+) in comparison to the other bivalent ions such as Mn(2+) , Ni(2+) , Co(2+) , and Ca(2+) . The imprinted composite beads prepared in this study possess uniform porous morphology and may open up new possibilities for the selective removal of copper ions from waste water/contaminated matrices. PMID:26632078

  9. Molecular simulation study of the surface barrier effect. Dilute gas limit

    SciTech Connect

    Ford, D.M.; Glandt, E.D.

    1995-07-20

    The mass transfer resistance associated with penetrating the mouth of a very small pore is evaluated using classical molecular dynamics simulation techniques. The effects of temperature, pore size, and thermal motion of the adsorbent atoms are studied for a slit pore mouth model. Adsorption followed by surface diffusion to the pore mouth makes a significant contribution to the mass transfer when the temperature is low or, equivalently, when the adsorptive potential is strong. Thermal vibrations of the adsorbent atoms have little effect on the adsorption/surface diffusion mechanisms but cause fluctuations in the effective pore mouth area which can significantly affect transport rates. Perhaps the most important observation is that when the pore size approaches the kinetic diameter of the gas molecules, changes of a few percent in the pore size cause order-of-magnitude changes in the resistance. Therefore, it is possible that the surface barrier effect observed in zeolites and carbon molecular sieves is governed by highly localized (single atomic layer) structural details. 19 refs., 7 figs., 1 tab.

  10. Polydimethysiloxane Modified Silica Nanochannel Membrane for Hydrophobicity-Based Molecular Filtration and Detection.

    PubMed

    Lin, Xingyu; Zhang, Bowen; Yang, Qian; Yan, Fei; Hua, Xin; Su, Bin

    2016-08-01

    We report in this work the fabrication of ultrathin silica nanochannel membranes inhomogeneously modified by polydimethysiloxane (PDMS), designated as PDMS-SNM, for hydrophobicity-based molecular filtration and detection. The modification was accomplished by spatially selective evaporation of hydrophobic PDMS oligomers onto the top surface of the membrane and orifice of silica nanochannels. Thanks to this hydrophobic ultrathin layer and beneath ultrasmall channels (2-3 nm in diameter), only small hydrophobic molecules are able to transport through the PDMS-SNM, whereas hydrophilic and large ones are remarkably inhibited. We first employed this PDMS-SNM as the molecular sieving matrix for selective electrochemical detection of hydrophobic organophosphates (OPs) in milk samples without pretreatment. The PDMS-SNM modified electrode displayed an excellent analytical performance and antifouling/anti-interference ability. We also prepared the free-standing PDMS-SNM consisting of perforated channels, which could filtrate molecules based on their hydrophobicity with an excellent selectivity. As demonstrated, 2,4,6-trinitrotoluene and dopamine could be separated with a selectivity coefficient as high as 335. Moreover, because of the inhomogeneous nanochannel structure and ultrasmall thickness, a remarkably high flux of hydrophobic molecules across the PDMS-SNM was obtained, which was 3-4 orders of magnitude higher than that reported previously. PMID:27414252

  11. Atomic and molecular supernovae

    SciTech Connect

    Liu, W.

    1997-12-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  12. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  13. Molecular Typing and Differentiation

    EPA Science Inventory

    In this chapter, general background and bench protocols are provided for a number of molecular typing techniques in common use today. Methods for the molecular typing and differentiation of microorganisms began to be widely adopted following the development of the polymerase chai...

  14. Molecular Beacons in Diagnostics

    PubMed Central

    Kramer, Fred Russell

    2012-01-01

    Recent technical advances have begun to realize the potential of molecular beacons to test for diverse infections in clinical diagnostic laboratories. These include the ability to test for, and quantify, multiple pathogens in the same clinical sample, and to detect antibiotic resistant strains within hours. The design principles of molecular beacons have also spawned a variety of allied technologies. PMID:22619695

  15. Molecular biology of development

    SciTech Connect

    Davidson, E.H.; Firtel, R.A.

    1984-01-01

    This book is a compilation of papers presented at a symposium on the molecular biology of development. Topics discussed include: cytoplasmic localizations and pattern formations, gene expression during oogenesis and early development, developmental expression of gene families molecular aspects of plant development and transformation in whole organisms and cells.

  16. The dependency of solute diffusion on molecular weight and shape in intact bone

    PubMed Central

    Li, Wen; You, Lidan; Schaffler, Mitchell B.; Wang, Liyun

    2009-01-01

    Solute transport through the bone lacunar-canalicular system (LCS) is essential for osteocyte survival and function, but quantitative data on the diffusivity of various biological molecules in the LCS are scarce. Using our recently developed approach based on fluorescence recovery after photobleaching (FRAP), diffusion coefficients of five exogenous fluorescent tracers (sodium fluorescein, dextran-3k, dextran-10k, parvalbumin, and ovalbumin) were measured in murine tibiae in situ. These tracers were chosen to test the dependency of solute diffusion on molecular weight (376–43,000 Da) and shape (linear vs. globular). Among the five tracers, no fluorescence recovery (and thus mobility) was detected for dextran-10k and the diffusion coefficients (DLCS) of the other four tracers were 295±46, 128±32, 157±88, 65±21 µm2s−1 in the LCS, respectively. Overall, the rate of solute diffusion in the bone LCS showed strong dependency on molecular size and shape. Diffusivity decreased with increasing molecular weight for both linear and globular molecules, with the linear molecules decreasing at a faster rate. Compared with free diffusion (Dfree) in aqueous solutions, the relative diffusivities (DLCS/Dfree) of the four tracers were not significantly different for sodium fluorescein, dextran-3k, parvalbumin, and ovalbumin (55±8.6%, 68.1±17.0%, 79.7±44.7%, 61.0±19.6%, respectively). This result did not agree with the homogenous molecular sieve model proposed for the osteocytic pericellular matrix structure. Instead, a heterogeneous porous model of the pericellular matrix may account for the observed solute transport in the LCS. In summary, the present study provides quantitative data on diffusion of various nutrients and signaling molecules in the LCS that are important for bone metabolism and mechanotrusduction. PMID:19647808

  17. Analyzing adsorption characteristics of CO2, N2 and H2O in MCM-41 silica by molecular simulation

    NASA Astrophysics Data System (ADS)

    Chang, Shing-Cheng; Chien, Shih-Yao; Chen, Chieh-Li; Chen, Cha'o.-Kuang

    2015-03-01

    The adsorption characteristics of carbon dioxide, nitrogen and water molecules in MCM-41 mesoporous molecular sieve have been investigated by the molecular simulation. We evaluate the pressure-adsorption isotherms and adsorption density profiles under variant gas pressure, operating temperature and mesopore radius of MCM-41 by the grand canonical Monte Carlo simulation. According to the calculated adsorption energy distributions, the adsorption mechanisms of gas in MCM-41 are mainly divided into three types, namely "surface adsorption" on the pore wall, "multilayer adsorption" on the adsorbed gas molecules and "molecular self-aggregation" near the pore center. In addition, the adsorption characteristics of water molecules in MCM-41 are found to be quite different from those of carbon dioxide and nitrogen due to the hydrogen bonds effect. The results indicate that the MCM-41 is practicable in engineering application for the capture, storage, and re-use of water molecules, since it is temperature-sensitive and can achieve significant adsorption loadings within a small range of pressure values via the capillary condensation phenomena.

  18. EDITORIAL: Molecular Imaging Technology

    NASA Astrophysics Data System (ADS)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  19. Fragment oriented molecular shapes.

    PubMed

    Hain, Ethan; Camacho, Carlos J; Koes, David Ryan

    2016-05-01

    Molecular shape is an important concept in drug design and virtual screening. Shape similarity typically uses either alignment methods, which dynamically optimize molecular poses with respect to the query molecular shape, or feature vector methods, which are computationally less demanding but less accurate. The computational cost of alignment can be reduced by pre-aligning shapes, as is done with the Volumetric-Aligned Molecular Shapes (VAMS) method. Here, we introduce and evaluate fragment oriented molecular shapes (FOMS), where shapes are aligned based on molecular fragments. FOMS enables the use of shape constraints, a novel method for precisely specifying molecular shape queries that provides the ability to perform partial shape matching and supports search algorithms that function on an interactive time scale. When evaluated using the challenging Maximum Unbiased Validation dataset, shape constraints were able to extract significantly enriched subsets of compounds for the majority of targets, and FOMS matched or exceeded the performance of both VAMS and an optimizing alignment method of shape similarity search. PMID:27085751

  20. Magnetomotive Molecular Nanoprobes

    PubMed Central

    John, Renu; Boppart, Stephen A.

    2012-01-01

    Tremendous developments in the field of biomedical imaging in the past two decades have resulted in the transformation of anatomical imaging to molecular-specific imaging. The main approaches towards imaging at a molecular level are the development of high resolution imaging modalities with high penetration depths and increased sensitivity, and the development of molecular probes with high specificity. The development of novel molecular contrast agents and their success in molecular optical imaging modalities have lead to the emergence of molecular optical imaging as a more versatile and capable technique for providing morphological, spatial, and functional information at the molecular level with high sensitivity and precision, compared to other imaging modalities. In this review, we discuss a new class of dynamic contrast agents called magnetomotive molecular nanoprobes for molecular-specific imaging. Magnetomotive agents are superparamagnetic nanoparticles, typically iron-oxide, that are physically displaced by the application of a small modulating external magnetic field. Dynamic phase-sensitive position measurements are performed using any high resolution imaging modality, including optical coherence tomography (OCT), ultrasonography, or magnetic resonance imaging (MRI). The dynamics of the magnetomotive agents can be used to extract the biomechanical tissue properties in which the nanoparticles are bound, and the agents can be used to deliver therapy via magnetomotive displacements to modulate or disrupt cell function, or hyperthermia to kill cells. These agents can be targeted via conjugation to antibodies, and in vivo targeted imaging has been shown in a carcinogen-induced rat mammary tumor model. The iron-oxide nanoparticles also exhibit negative T2 contrast in MRI, and modulations can produce ultrasound imaging contrast for multimodal imaging applications. PMID:21517766

  1. Potential molecular wires and molecular alligator clips

    NASA Astrophysics Data System (ADS)

    Schumm, Jeffry S.; Pearson, Darren L.; Jones, LeRoy, II; Hara, Ryuichiro; Tour, James M.

    1996-12-01

    The synthesis of oligo(2-ethylphenylene-ethynylene)s, oligo(2-(0957-4484/7/4/023/img1-ethylheptyl)phenylene-ethynylene)s, and oligo(3-ethylthiophene-ethynylene)s is described via an iterative divergent convergent approach. Synthesized were the monomer, dimer, tetramer, octamer and 16-mer of the oligo(3-ethylthiophene-ethynylene)s and oligo(2-0957-4484/7/4/023/img1-ethylheptyl)phenylene-ethynylene)s. The 16-mers are 100 Å and 128 Å long, respectively. At each stage in the iteration, the length of the framework doubles. Only three sets of reaction conditions are needed for the entire iterative synthetic sequence; an iodination, a protodesilylation, and a Pd/Cu-catalyzed cross coupling. The oligomers were characterized spectroscopically and by mass spectrometry. The optical properties are presented which show the stage of optical absorbance saturation. The size exclusion chromatography values for the number average weights, relative to polystyrene, illustrate the tremendous differences in the hydrodynamic volume of these rigid rod oligomers versus the random coils of polystyrene. These differences become quite apparent at the octamer stage. The preparation of thiol-protected end groups is described. These may serve as molecular alligator clips for adhesion to gold surfaces. These oligomers may act as molecular wires in molecular electronic devices and they also serve as useful models for understanding related bulk polymers.

  2. Accelerated molecular dynamics methods

    SciTech Connect

    Perez, Danny

    2011-01-04

    The molecular dynamics method, although extremely powerful for materials simulations, is limited to times scales of roughly one microsecond or less. On longer time scales, dynamical evolution typically consists of infrequent events, which are usually activated processes. This course is focused on understanding infrequent-event dynamics, on methods for characterizing infrequent-event mechanisms and rate constants, and on methods for simulating long time scales in infrequent-event systems, emphasizing the recently developed accelerated molecular dynamics methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics). Some familiarity with basic statistical mechanics and molecular dynamics methods will be assumed.

  3. Molecularly Imprinted Membranes

    PubMed Central

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  4. [Molecular diagnosis of mycobacteria].

    PubMed

    Kessler, Harald H

    2003-01-01

    Tuberculosis is one of the leading infectious diseases in the world. Using conventional methods, the isolation, identification, and drug susceptibility testing of Mycobacterium tuberculosis and other clinically important mycobacteria can take several weeks. During the past several years, molecular methods have been developed for direct detection, species identification, and drug susceptibility testing of mycobacteria. These methods can potentially reduce the diagnostic time from weeks to hours. For direct detection of Mycobacterium tuberculosis from clinical specimens, several molecular assays are commercially available today. They have been shown useful for the routine diagnostic laboratory. DNA probes and polymerase chain reaction-based sequencing have been widely used to identify mycobacterial species. Molecular methods have also been applied for the detection of mutations that confer drug resistance in mycobacteria. All in all, the future of clinical mycobacteriology appears to be heading toward direct detection, species identification and drug resistance determination using molecular methods. PMID:13677254

  5. Nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W.G. . Dept. of Applied Science Lawrence Livermore National Lab., CA )

    1990-11-01

    The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.

  6. Molecular photoionization dynamics

    SciTech Connect

    Dehmer, Joseph L.

    1982-05-01

    This program seeks to develop both physical insight and quantitative characterization of molecular photoionization processes. Progress is briefly described, and some publications resulting from the research are listed. (WHK)

  7. Appendix II. Molecular Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of crop evolution, origins, and conservation entails the assessment of genetic variability with and between populations and species at different genetic, evolutionary, and taxonomic hierarchical levels. Molecular biology has greatly increased the amount of data and computational intensity...

  8. Are there molecular signatures?

    SciTech Connect

    Bennett, W.P.

    1995-10-01

    This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.

  9. Mistakes and Molecular Evolution.

    ERIC Educational Resources Information Center

    Trevors, J. T.

    1998-01-01

    Examines the role mistakes play in the molecular evolution of bacteria. Discusses the interacting physical, chemical, and biological factors that cause changes in DNA and play a role in prokaryotic evolution. (DDR)

  10. Ontologies for molecular biology.

    PubMed

    Schulze-Kremer, S

    1998-01-01

    Molecular biology has a communication problem. There are many databases using their own labels and categories for storing data objects and some using identical labels and categories but with a different meaning. A prominent example is the concept "gene" which is used with different semantics by major international genomic databases. Ontologies are one means to provide a semantic repository to systematically order relevant concepts in molecular biology and to bridge the different notions in various databases by explicitly specifying the meaning of and relation between the fundamental concepts in an application domain. Here, the upper level and a database branch of a prospective ontology for molecular biology (OMB) is presented and compared to other ontologies with respect to suitability for molecular biology (http:/(/)igd.rz-berlin.mpg.de/approximately www/oe/mbo.html). PMID:9697223

  11. Atomic & Molecular Interactions

    SciTech Connect

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  12. THE DARK MOLECULAR GAS

    SciTech Connect

    Wolfire, Mark G.; Hollenbach, David; McKee, Christopher F. E-mail: dhollenbach@seti.or

    2010-06-20

    The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H{sub 2} mass. However, a significant H{sub 2} mass may lie outside the CO region, in the outer regions of the molecular cloud where the gas-phase carbon resides in C or C{sup +}. Here, H{sub 2} self-shields or is shielded by dust from UV photodissociation, whereas CO is photodissociated. This H{sub 2} gas is 'dark' in molecular transitions because of the absence of CO and other trace molecules, and because H{sub 2} emits so weakly at temperatures 10 K molecular component. This component has been indirectly observed through other tracers of mass such as gamma rays produced in cosmic-ray collisions with the gas and far-infrared/submillimeter wavelength dust continuum radiation. In this paper, we theoretically model this dark mass and find that the fraction of the molecular mass in this dark component is remarkably constant ({approx}0.3 for average visual extinction through the cloud A-bar{sub V{approx_equal}}8) and insensitive to the incident ultraviolet radiation field strength, the internal density distribution, and the mass of the molecular cloud as long as A-bar{sub V}, or equivalently, the product of the average hydrogen nucleus column and the metallicity through the cloud, is constant. We also find that the dark mass fraction increases with decreasing A-bar{sub V}, since relatively more molecular H{sub 2} material lies outside the CO region in this case.

  13. Molecular Electronic Shift Registers

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  14. Introductory molecular genetics

    SciTech Connect

    Edwards-Moulds, J.

    1986-01-01

    This book begins with an overview of the current principles of genetics and molecular genetics. Over this foundation, it adds detailed and specialized information: a description of the translation, transcription, expression and regulation of DNA and RNA; a description of the manipulation of genetic material via promoters, enhancers, and gene splicing; and a description of cloning techniques, especially those for blood group genes. The last chapter looks to the impact of molecular genetics on transfusion medicine.

  15. Workshop on Molecular Evolution

    NASA Technical Reports Server (NTRS)

    Cummings, Michael P.

    2004-01-01

    Molecular evolution has become the nexus of many areas of biological research. It both brings together and enriches such areas as biochemistry, molecular biology, microbiology, population genetics, systematics, developmental biology, genomics, bioinformatics, in vitro evolution, and molecular ecology. The Workshop provides an important contribution to these fields in that it promotes interdisciplinary research and interaction, and thus provides a glue that sticks together disparate fields. Due to the wide range of fields addressed by the study of molecular evolution, it is difficult to offer a comprehensive course in a university setting. It is rare for a single institution to maintain expertise in all necessary areas. In contrast, the Workshop is uniquely able to provide necessary breadth and depth by utilizing a large number of faculty with appropriate expertise. Furthermore, the flexible nature of the Workshop allows for rapid adaptation to changes in the dynamic field of molecular evolution. For example, the 2003 Workshop included recently emergent research areas of molecular evolution of development and genomics.

  16. Molecular classification of gliomas.

    PubMed

    Masui, Kenta; Mischel, Paul S; Reifenberger, Guido

    2016-01-01

    The identification of distinct genetic and epigenetic profiles in different types of gliomas has revealed novel diagnostic, prognostic, and predictive molecular biomarkers for refinement of glioma classification and improved prediction of therapy response and outcome. Therefore, the new (2016) World Health Organization (WHO) classification of tumors of the central nervous system breaks with the traditional principle of diagnosis based on histologic criteria only and incorporates molecular markers. This will involve a multilayered approach combining histologic features and molecular information in an "integrated diagnosis". We review the current state of diagnostic molecular markers for gliomas, focusing on isocitrate dehydrogenase 1 or 2 (IDH1/IDH2) gene mutation, α-thalassemia/mental retardation syndrome X-linked (ATRX) gene mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutation in adult tumors, as well as v-raf murine sarcoma viral oncogene homolog B1 (BRAF) and H3 histone family 3A (H3F3A) aberrations in pediatric gliomas. We also outline prognostic and predictive molecular markers, including O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and discuss the potential clinical relevance of biologic glioblastoma subtypes defined by integration of multiomics data. Commonly used methods for individual marker detection as well as novel large-scale DNA methylation profiling and next-generation sequencing approaches are discussed. Finally, we illustrate how advances in molecular diagnostics affect novel strategies of targeted therapy, thereby raising new challenges and identifying new leads for personalized treatment of glioma patients. PMID:26948350

  17. Nanotechnology Review: Molecular Electronics to Molecular Motors

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Reviewing the status of current approaches and future projections, as already published in scientific journals and books, the talk will summarize the direction in which computational and experimental nanotechnologies are progressing. Examples of nanotechnological approaches to the concepts of design and simulation of carbon nanotube based molecular electronic and mechanical devices will be presented. The concepts of nanotube based gears and motors will be discussed. The above is a non-technical review talk which covers long term precompetitive basic research in already published material that has been presented before many US scientific meeting audiences.

  18. Artificial Molecular Machines.

    PubMed

    Balzani; Credi; Raymo; Stoddart

    2000-10-01

    The miniaturization of components used in the construction of working devices is being pursued currently by the large-downward (top-down) fabrication. This approach, however, which obliges solid-state physicists and electronic engineers to manipulate progressively smaller and smaller pieces of matter, has its intrinsic limitations. An alternative approach is a small-upward (bottom-up) one, starting from the smallest compositions of matter that have distinct shapes and unique properties-namely molecules. In the context of this particular challenge, chemists have been extending the concept of a macroscopic machine to the molecular level. A molecular-level machine can be defined as an assembly of a distinct number of molecular components that are designed to perform machinelike movements (output) as a result of an appropriate external stimulation (input). In common with their macroscopic counterparts, a molecular machine is characterized by 1) the kind of energy input supplied to make it work, 2) the nature of the movements of its component parts, 3) the way in which its operation can be monitored and controlled, 4) the ability to make it repeat its operation in a cyclic fashion, 5) the timescale needed to complete a full cycle of movements, and 6) the purpose of its operation. Undoubtedly, the best energy inputs to make molecular machines work are photons or electrons. Indeed, with appropriately chosen photochemically and electrochemically driven reactions, it is possible to design and synthesize molecular machines that do work. Moreover, the dramatic increase in our fundamental understanding of self-assembly and self-organizational processes in chemical synthesis has aided and abetted the construction of artificial molecular machines through the development of new methods of noncovalent synthesis and the emergence of supramolecular assistance to covalent synthesis as a uniquely powerful synthetic tool. The aim of this review is to present a unified view of the field

  19. CO{sub 2} Capture from Flue Gas Using Solid Molecular Basket Sorbents

    SciTech Connect

    Fillerup, Eric; Zhang, Zhonghua; Peduzzi, Emanuela; Wang, Dongxiang; Guo, Jiahua; Ma, Xiaoliang; Wang, Xiaoxing; Song, Chunshan

    2012-08-31

    The objective of this project is to develop a new generation of solid, regenerable polymeric molecular basket sorbent (MBS) for more cost-efficient capture and separation of CO{sub 2} from flue gas of coal-fired power plants. The primary goal is to develop a cost-effective MBS sorbent with better thermal stability. To improve the cost-effectiveness of MBS, we have explored commercially available and inexpensive support to replace the more expensive mesoporous molecular sieves like MCM-41 and SBA- 15. In addition, we have developed some advanced sorbent materials with 3D pore structure such as hexagonal mesoporous silica (HMS) to improve the CO{sub 2} working capacity of MBS, which can also reduce the cost for the whole CO{sub 2} capture process. During the project duration, the concern regarding the desorption rate of MBS sorbents has been raised, because lower desorption rate increases the desorption time for complete regeneration of the sorbent which in turn leads to a lower working capacity if the regeneration time is limited. Thus, the improvement in the thermal stability of MBS became a vital task for later part of this project. The improvement in the thermal stability was performed via increasing the polymer density either using higher molecular weight PEI or PEI cross-linking with an organic compound. Moreover, we have used the computational approach to estimate the interaction of CO{sub 2} with different MBSs for the fundamental understanding of CO{sub 2} sorption, which may benefit the development, design and modification of the sorbents and the process.

  20. Giant Molecular Magnetocapacitance

    SciTech Connect

    Wu, Yuning; Zhang, Xiaoguang; Cheng, Hai-Ping

    2013-01-01

    Capacitance of a nanoscale system is usually thought of having two contributions, a classical electrostatic contribution and a quantum contribution dependent on the density of states and/or molecular orbitals close to the Fermi energy. In this letter we demonstrate that in molecular nano-magnets and other magnetic nanoscale systems, the quantum part of the capacitance becomes spin-dependent, and is tunable by an external magnetic field. This molecular magnetocapacitance can be realized using single molecule nano-magnets and/or other nano-structures that have antiferromagnetic ground states. As a proof of principle, first-principles calculation of the nano-magnet [Mn3O(sao)3(O2CMe)(H2O)(py)3] shows that the charging energy of the high-spin state is 260 meV lower than that of the low-spin state, yielding a 6% difference in capacitance. A magnetic field of ~40T can switch the spin state, thus changing the molecular capacitance. A smaller switching field may be achieved using nanostructures with a larger moment. Molecular magnetocapacitance may lead to revolutionary device designs, e.g., by exploiting the Coulomb blockade magnetoresistance whereby a small change in capacitance can lead to a huge change in resistance.

  1. Molecular weight of dissolved organic matter-napropamide complex transported through soil columns.

    PubMed

    Williams, C F; Letey, J; Farmer, W J

    2002-01-01

    Soil-derived dissolved organic matter (DOM) has been shown to form stable complexes with the herbicide napropamide [2-(alpha-naphthoxy-N,N-diethylpropionamide] capable of enhancing the transport of napropamide through soil columns. Two soils, one containing sewage sludge-derived organic matter (SS) and the other having only natural organic matter (NoSS) were treated with napropamide and allowed to dry to promote complex formation. Soil columns were prepared by packing a 10-cm layer of untreated, dry, sieved soil followed by an overlying 5-cm layer of napropamide-treated soil. Columns were irrigated and the effluent collected and placed in dialysis chambers. After equilibration napropamide concentrations were determined on both sides of the membrane and complex and quantified based on the amount of napropamide unable to cross the membrane. it was found that for the SS soil 7% and for the NoSS 2.4% of the applied napropamide underwent facilitated transport. In addition, most of the complex transported through the columns had a molecular weight between 500 and 1000 Daltons (Da). The solutions from the SS soil were also found to have formed at least two distinct complexes that were resolved after passing through the untreated soil layer. The results obtained were in agreement with other published results and the techniques used offer a way to separate and concentrate DOM complexes from column effluents for further characterization. PMID:11931454

  2. Applications of Molecular Imaging

    PubMed Central

    Galbán, Craig; Galbán, Stefanie; Van Dort, Marcian; Luker, Gary D.; Bhojani, Mahaveer S.; Rehemtualla, Alnawaz; Ross, Brian D.

    2015-01-01

    Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response and new therapy development is steadily growing and has already significantly impacted clinical management of cancer. In this chapter we will overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging) (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g, single photon emission computed tomography (SPECT) and positron emission tomography (PET)). We will review the use of molecular reporters of biological processes (e.g. apoptosis and protein kinase activity) for high throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology. PMID:21075334

  3. Stueckelberg and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Lacki, Jan

    The first period of E. C. G. Stueckelberg's scientific career was marked by important contributions he made to molecular physics.1 After publishing his thesis in 1927 in Basel [1] Stueckelberg joined the prestigious Palmer Physical Laboratory in Princeton where he worked under the guidance of Karl Taylor Compton, brother of Arthur Holly Compton. Stueckelberg owed this position devoted several papers to problems of molecular physics. Stueckelberg had the benefit at Princeton of exchanges with other gifted members of the Palmer Physical Laboratory, Philip M. Morse and E. U. Condon among others.3 to a recommendation by A. Sommerfeld.2 In this stimulating environment, he devoted several papers to problems of molecular physics. Stueckelberg had the benefit at Princeton of exchanges with other gifted members of the Palmer Physical Laboratory, Philip M. Morse and E. U. Condon among others.3

  4. Primate molecular divergence dates.

    PubMed

    Steiper, Michael E; Young, Nathan M

    2006-11-01

    With genomic data, alignments can be assembled that greatly increase the number of informative sites for analysis of molecular divergence dates. Here, we present an estimate of the molecular divergence dates for all of the major primate groups. These date estimates are based on a Bayesian analysis of approximately 59.8 kbp of genomic data from 13 primates and 6 mammalian outgroups, using a range of paleontologically supported calibration estimates. Results support a Cretaceous last common ancestor of extant primates (approximately 77 mya), an Eocene divergence between platyrrhine and catarrhine primates (approximately 43 mya), an Oligocene origin of apes and Old World monkeys (approximately 31 mya), and an early Miocene (approximately 18 mya) divergence of Asian and African great apes. These dates are examined in the context of other molecular clock studies. PMID:16815047

  5. Molecular psychiatry of zebrafish.

    PubMed

    Stewart, A M; Ullmann, J F P; Norton, W H J; Parker, M O; Brennan, C H; Gerlai, R; Kalueff, A V

    2015-02-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research. PMID:25349164

  6. Porous Organic Molecular Materials

    SciTech Connect

    Tian, Jian; Thallapally, Praveen K.; McGrail, B. Peter

    2012-01-01

    Most nanoporous materials with molecular-scale pores are extended frameworks composed of directional covalent or coordination bonding, such as porous metal-organic frameworks and organic network polymers. By contrast, nanoporous materials comprised of discrete organic molecules, between which there are only weak non-covalent interactions, are seldom encountered. Indeed, most organic molecules pack efficiently in the solid state to minimize the void volume, leading to non-porous materials. In recent years, a significant number of nanoporous organic molecular materials, which may be either crystalline or amorphous, have been confirmed by the studies of gas adsorption and they are surveyed in this Highlight. In addition, the possible advantages of porous organic molecular materials over porous networks are discussed.

  7. Molecular Rotors as Switches

    PubMed Central

    Xue, Mei; Wang, Kang L.

    2012-01-01

    The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene) monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V) revealed a temperature-dependent negative differential resistance (NDR) associated with the device. The analysis of the device I–V characteristics suggests the source of the

  8. Molecular subgroups of medulloblastoma

    PubMed Central

    Northcott, Paul A; Dubuc, Adrian M; Pfister, Stefan; Taylor, Michael D

    2014-01-01

    Recent efforts at stratifying medulloblastomas based on their molecular features have revolutionized our understanding of this morbidity. Collective efforts by multiple independent groups have subdivided medulloblastoma from a single disease into four distinct molecular subgroups characterized by disparate transcriptional signatures, mutational spectra, copy number profiles and, most importantly, clinical features. We present a summary of recent studies that have contributed to our understanding of the core medulloblastoma subgroups, focusing largely on clinically relevant discoveries that have already, and will continue to, shape research. PMID:22853794

  9. Molecular Umbrella Transport

    PubMed Central

    Mehiri, Mohamed; Chen, Wen-Hua; Janout, Vaclav; Regen, Steven L.

    2009-01-01

    The ability of a series of molecular umbrellas, derived from cholic acid, L-lysine, spermidine and Cascade Blue, to cross fluid liposomal membranes made from 1-palmitoyl-2-oleyol-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) (95/5, mol/mol) has been determined. In sharp contrast to the clasic “size/lipophilicity” rule of membrane transport, those molecular umbrellas that were larger in size and less lipophilic crossed these liposomal membranes more readily. The likely origin for this unusual behavior is briefly discussed. PMID:19140686

  10. Circumstellar radio molecular lines

    NASA Technical Reports Server (NTRS)

    NGUYEN-QUANG-RIEU

    1987-01-01

    Radio molecular lines appear to be useful probes into the stellar environment. Silicon oxide masers provide information on the physical conditions in the immediate vicinity of the stellar photosphere. Valuable information on the physics operating in the envelope of IRC + 10216 was recently obtained by high sensitivity observations and detailed theoretical analyses. Infrared speckle interferometry in the molecular lines and in the continuum is helpful in the investigation of the inner region of the envelope. These techniques are discussed in terms of late-type star mass loss.

  11. Synthetic mechanochemical molecular swimmer.

    PubMed

    Golestanian, Ramin

    2010-07-01

    A minimal design for a molecular swimmer is proposed that is based on a mechanochemical propulsion mechanism. Conformational changes are induced by electrostatic actuation when specific parts of the molecule temporarily acquire net charges through catalyzed chemical reactions involving ionic components. The mechanochemical cycle is designed such that the resulting conformational changes would be sufficient for achieving low Reynolds number propulsion. The system is analyzed within the recently developed framework of stochastic swimmers to take account of the noisy environment at the molecular scale. The swimming velocity of the device is found to depend on the concentration of the fuel molecule according to the Michaelis-Menten rule in enzymatic reactions. PMID:20867483

  12. Molecular Pathology Informatics.

    PubMed

    Roy, Somak

    2015-06-01

    Molecular informatics (MI) is an evolving discipline that will support the dynamic landscape of molecular pathology and personalized medicine. MI provides a fertile ground for development of clinical solutions to bridge the gap between clinical informatics and bioinformatics. Rapid adoption of next generation sequencing (NGS) in the clinical arena has triggered major endeavors in MI that are expected to bring a paradigm shift in the practice of pathology. This brief review presents a broad overview of various aspects of MI, particularly in the context of NGS based testing. PMID:26065793

  13. Substructured multibody molecular dynamics.

    SciTech Connect

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  14. Molecular Engineering of DNA: Molecular Beacons

    PubMed Central

    Tang, Zhiwen; Yang, Chaoyong James; Kim, Youngmi; Fang, Xiaohong; Li, Wei; Wu, Yanrong; Medley, Colin D.; Cao, Zehui; Li, Jun; Colon, Patrick; Lin, Hui

    2009-01-01

    Molecular beacons (MBs) are specifically designed DNA hairpin structures that are widely used as fluorescent probes. Applications of MBs range from genetic screening, biosensor development, biochip construction, and the detection of single-nucleotide polymorphisms to mRNA monitoring in living cells. The inherent signal-transduction mechanism of MBs enables the analysis of target oligonucleotides without the separation of unbound probes. The MB stem–loop structure holds the fluorescence-donor and fluorescence-acceptor moieties in close proximity to one another, which results in resonant energy transfer. A spontaneous conformation change occurs upon hybridization to separate the two moieties and restore the fluorescence of the donor. Recent research has focused on the improvement of probe composition, intracellular gene quantitation, protein–DNA interaction studies, and protein recognition. PMID:19065690

  15. Biophysics of molecular gastronomy.

    PubMed

    Brenner, Michael P; Sörensen, Pia M

    2015-03-26

    Chefs and scientists exploring biophysical processes have given rise to molecular gastronomy. In this Commentary, we describe how a scientific understanding of recipes and techniques facilitates the development of new textures and expands the flavor palette. The new dishes that result engage our senses in unexpected ways. PAPERCLIP. PMID:25815978

  16. [Ortho-molecular nutrition].

    PubMed

    Martínez Bradshaw, Alejandro

    2005-03-01

    Ortho-molecular nutrition contemplates the deficiency of certain nutrients, not their deprivation, as the generator of short-term and long-term pathologies. By means of supplying these nutrients, an organism recovers. This method consists in building up an organism's functions by following the guides and indications provided by the organism itself. PMID:15871343

  17. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  18. Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.

    2005-01-01

    A symposium on atomic and molecular physics was held on November 18, 2005 at Goddard Space Flight Center. There were a number of talks through the day on various topics such as threshold law of ionization, scattering of electrons from atoms and molecules, muonic physics, positron physics, Rydberg states etc. The conference was attended by a number of physicists from all over the world.

  19. Molecular Detection of Sarcocystis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When people eat undercooked beef or pork containing viable Sarcocystis hominis or Sarcocystis suihominis, they can contract acute gastro-intestinal infections that culminate, about two weeks later, with the excretion of parasites infectious for cattle or swine, respectively. Molecular methods can p...

  20. Molecular contributions to conservation

    USGS Publications Warehouse

    Haig, Susan M.

    1998-01-01

    Recent advances in molecular technology have opened a new chapter in species conservation efforts, as well as population biology. DNA sequencing, MHC (major histocompatibility complex), minisatellite, microsatellite, and RAPD (random amplified polymorphic DNA) procedures allow for identification of parentage, more distant relatives, founders to new populations, unidentified individuals, population structure, effective population size, population-specific markers, etc. PCR (polymerase chain reaction) amplification of mitochondrial DNA, nuclear DNA, ribosomal DNA, chloroplast DNA, and other systems provide for more sophisticated analyses of metapopulation structure, hybridization events, and delineation of species, subspecies, and races, all of which aid in setting species recovery priorities. Each technique can be powerful in its own right but is most credible when used in conjunction with other molecular techniques and, most importantly, with ecological and demographic data collected from the field. Surprisingly few taxa of concern have been assayed with any molecular technique. Thus, rather than showcasing exhaustive details from a few well-known examples, this paper attempts to present a broad range of cases in which molecular techniques have been used to provide insight into conservation efforts.

  1. Molecular ion photofragment spectroscopy

    SciTech Connect

    Bustamente, S.W.

    1983-11-01

    A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O/sub 2//sup +/(/sup 4/..pi../sub u/) metastable state which is found to consist of two main components: the /sup 4/..pi../sub 5/2/ and /sup 4/..pi../sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the /sup 4/..pi../sub 3/2/ and /sup 4/..pi../sub 1/2/ spin components having a short lifetime (approx. 6 ms).

  2. Caroviologens: Towards molecular wires

    NASA Astrophysics Data System (ADS)

    Blanchard-Desce, M.; Arrhenius, T. S.; Dvolaïtzky, M.; Kugimiya, S.-I.; Lazrak, T.; Lehn, J.-M.

    1992-07-01

    Bispyridinium conjugated polyenes of different lengths and charges have been synthesized. Since they combine the features of carotenoids and of viologens, they have been termed caroviologens. Such molecules, possessing an extended conjugated chain fitted with polar electroactive endgroups, and having a length sufficient to span a lipid membrane could function as transmembrane electron channels, i.e., as molecular wires.

  3. Molecular Models in Biology

    ERIC Educational Resources Information Center

    Goodman, Richard E.

    1970-01-01

    Describes types of molecular models (ball-and-stick, framework, and space-filling) and evaluates commercially available kits. Gives instructions for constructive models from polystyrene balls and pipe-cleaners. Models are useful for class demonstrations although not sufficiently accurate for research use. Illustrations show biologically important…

  4. Making Molecular Borromean Rings

    ERIC Educational Resources Information Center

    Pentecost, Cari D.; Tangchaivang, Nichol; Cantrill, Stuart J.; Chichak, Kelly S.; Peters, Andrea J.; Stoddart, Fraser J.

    2007-01-01

    A procedure that requires seven 4-hour blocks of time to allow undergraduate students to prepare the molecular Borromean rings (BRs) on a gram-scale in 90% yield is described. The experiment would serve as a nice capstone project to culminate any comprehensive organic laboratory course and expose students to fundamental concepts, symmetry point…

  5. Gymnastics of molecular chaperones.

    PubMed

    Mayer, Matthias P

    2010-08-13

    Molecular chaperones assist folding processes and conformational changes in many proteins. In order to do so, they progress through complex conformational cycles themselves. In this review, I discuss the diverse conformational dynamics of the ATP-dependent chaperones of the Hsp60, Hsp70, Hsp90, and Hsp100 families. PMID:20705236

  6. Molecular Stiffness of Selectins*

    PubMed Central

    Sarangapani, Krishna K.; Marshall, Bryan T.; McEver, Rodger P.; Zhu, Cheng

    2011-01-01

    During inflammation, selectin-ligand interactions provide forces for circulating leukocytes to adhere to vascular surfaces, which stretch the interacting molecules, suggesting that mechanical properties may be pertinent to their biological function. From mechanical measurements with atomic force microscopy, we analyzed the molecular characteristics of selectins complexed with ligands and antibodies. Respective stiffness of L-, E-, and P-selectins (4.2, 1.4, and 0.85 piconewton/nm) correlated inversely with the number (2, 6, and 9) of consensus repeats in the selectin structures that acted as springs in series to dominate their compliance. After reconstitution into a lipid bilayer, purified membrane P-selectin remained a dimer, capable of forming dimeric bonds with P-selectin glycoprotein ligand (PSGL)-1, endoglycan-Ig, and a dimeric form of a glycosulfopeptide modeled after the N terminus of PSGL-1. By comparison, purified membrane L- and E-selectin formed only monomeric bonds under identical conditions. Ligands and antibodies were much less stretchable than selectins. The length of endoglycan-Ig was found to be 51 ± 12 nm. These results provide a comprehensive characterization of the molecular stiffness of selectins and illustrate how mechanical measurements can be utilized for molecular analysis, e.g. evaluating the multimericity of selectins and determining the molecular length of endoglycan. PMID:21216951

  7. Soybean Molecular Genetic Diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A history of the various DNA marker types used in the assessment of molecular genetic diversity in soybean [Glycine max (L.) Merr.] is followed by a description of a number of studies on the assessment of genetic diversity. These studies include a review of reports on 1) the quantification and comp...

  8. Reading the Molecular Clock.

    ERIC Educational Resources Information Center

    McKean, Kevin

    1983-01-01

    Suggesting that the evolutionary record may be written in proteins and genes, discusses research in which species are compared by immunology, DNA, and radioimmunoassay. Molecular studies show that DNA from humans and chimps is 98 percent identical, a degree of similarity usually occurring only among animals of the same genus. (JN)

  9. A simple method to prepare modified polyethersulfone membrane with improved hydrophilic surface by one-pot: The effect of hydrophobic segment length and molecular weight of copolymers.

    PubMed

    Ran, Fen; Li, Jie; Lu, Yi; Wang, Lingren; Nie, Shengqiang; Song, Haiming; Zhao, Lei; Sun, Shudong; Zhao, Changsheng

    2014-04-01

    A simple method to prepare modified polyethersulfone (PES) membrane by one-pot is provided, and the method includes three steps: polymerization of vinyl pyrrolidone (VP), copolymerization of methyl methacrylate (MMA) and blending with PES. The effect of the PMMA segment length and molecular weight of the copolymer (PVP-b-PMMA-b-PVP, as an additive) on the structures and properties of the modified membranes was investigated. Activated partial thromboplastin time (APTT) tests indicated that with the increase of the poly(methyl methacrylate) (PMMA) segment length in the chains of the copolymers and with the increase of the molecular weight of the copolymers, the APTTs of the modified membranes increased to some extent, since less of the additives were lost during liquid-liquid phase separation process. Therefore, the copolymer was designed and prepared with appropriate ratio of poly(vinyl pyrrolidone) (PVP) to MMA and with appropriate molecular weight for better membrane performance. When the copolymer was blended in the membrane, the water permeance, protein anti-fouling property and sieving coefficients for PEG-12000 increased obviously. The simple, credible and feasible method had the potential to be used for the modification of membranes with improved blood compatibility, ultrafiltration and antifouling properties of biomaterials and for practical production. PMID:24582224

  10. The biofilm property and its correlationship with high-molecular-weight polyacrylamide degradation in a water injection pipeline of Daqing oilfield.

    PubMed

    Li, Cai-Yun; Zhang, Dong; Li, Xiao-Xiao; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong

    2016-03-01

    Biofilms increase dragging force for liquid transportation, cause power consumption, and result in equipment corrosion in polymer-flooding oilfields. To reveal the responsible microorganisms for biofilm formation and stability of high-molecular-weight polyacrylamide (PAM), a biofilm, developed on the sieve of a piston plunger pump in a water transport and injection pipeline with partial hydrolyzed polyacrylamide (HPAM) in Daqing Oilfield, was collected and analyzed by molecular microbiology, chemical and physical methods. Diverse bacterial groups (11 families) were detected in the biofilm, including Pseudomonadaceae, Rhodocyclaceae, Desulfobulbaceae, Alcaligenaceae, Comamonadaceae, Oxalobacteraceae, Bacteriovoracaceae, Campylobacteraceae, Flavobacteriaceae, Clostridiales Incertae Sedis XIII and Moraxellaceae. Three archaeal orders of methanogens including Methanomicrobiales, Methanosarcinales and Thermoplasmatales were also detected separately. HPAM was degraded into lower molecular weight polymers and organic fragments with its amide groups hydrolyzed into carboxylic groups by the microorganisms. The microenvironment of the biofilm contained diverse bacterial and archaeal communities, correlating with the extracellular polymeric substance (EPS) and HPAM biodegradation. The results are helpful to provide information for biofilm control in oil fields. PMID:26595898

  11. Some Stereochemical Principles from Polymers: Molecular Symmetry and Molecular Flexibility

    ERIC Educational Resources Information Center

    Price, Charles C.

    1973-01-01

    Discusses the use of the properties of polyethylene, polypropylene, polyisobutylene, and their three epoxides to illustrate the relationships of entropy to molecular properties and the concepts of molecular chirality, geometry, and flexibility. (CC)

  12. Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification

    NASA Astrophysics Data System (ADS)

    Lin, Shangchao; Buehler, Markus J.

    2013-11-01

    Two-dimensional carbon materials such as the 2D nanoweb-like graphyne membrane are promising as molecular sieves for energy and environmental applications. Based on the application of water purification - the removal of contaminants from wastewater and seawater - here we use molecular dynamics (MD) simulations to investigate the interplay between mechanical forces, filtration mechanisms, and overall performance for graphyne membranes with different pore sizes. We carry out biaxial tensile tests and verify the superior mechanical robustness and tolerance of graphyne membranes against possible deformations from the membrane installation process. A possible ultimate stress in excess of 15 GPa and an ultimate strain of 1.2-2.7% are determined. We also demonstrate their excellent filtration performance with barrier-free water permeation and perfect rejection of the representative contaminants considered here, including divalent heavy metal salts (copper sulfate), hydrophobic organic chemicals (benzene and carbon tetrachloride), and inorganic monovalent salts (sodium chloride). We find that graphtriyne, with an effective pore diameter of 3.8 Å, exhibits an optimal purification performance, because the contaminant rejection rate is more sensitive to pore size than water permeability. In addition, we find that the hydrophobic graphyne membranes exhibit higher rejection rates for hydrophilic contaminants compared to the hydrophobic ones. This size exclusion effect is a result of the larger hydrated radii of hydrophilic species due to stronger interactions between them and water molecules. Finally, we find that the maximum deformation of graphtriyne at the ultimate strain before material failure has only a minor impact on its filtration performance. One of the advantages of using graphyne for water purification is that no chemical functionalization or defects need to be introduced, which maintains the structural integrity of the membrane, and possibly, the long-term device

  13. Molecular symmetry with quaternions.

    PubMed

    Fritzer, H P

    2001-09-01

    A new and relatively simple version of the quaternion calculus is offered which is especially suitable for applications in molecular symmetry and structure. After introducing the real quaternion algebra and its classical matrix representation in the group SO(4) the relations with vectors in 3-space and the connection with the rotation group SO(3) through automorphism properties of the algebra are discussed. The correlation of the unit quaternions with both the Cayley-Klein and the Euler parameters through the group SU(2) is presented. Besides rotations the extension of quaternions to other important symmetry operations, reflections and the spatial inversion, is given. Finally, the power of the quaternion calculus for molecular symmetry problems is revealed by treating some examples applied to icosahedral symmetry. PMID:11666072

  14. Carbyne: The Molecular Approach.

    PubMed

    Tykwinski, Rik R

    2015-12-01

    For the last 60+ years, the synthesis and study of cumulenes and polyynes have been the focus of a small, but dedicated, group of researchers. Many of the remarkable electronic, optical, and structural properties of cumulenes and polyynes had already been identified in the earliest reports. The molecular lengths achievable by the initial syntheses were, unfortunately, somewhat limited by synthetic methods available. For the past 15 years, we have worked toward expanding on the synthesis of cumulenes and polyynes through the development of new methods and stabilization motifs. As new compounds have become available, homologous series of cumulenes and polyynes have then been examined as a function of molecular length. While we are not yet there, we would like to eventually provide a general description of the sp-carbon allotrope carbyne, and this account presents some of our efforts toward this goal. PMID:26200096

  15. An Artificial Molecular Transporter

    PubMed Central

    Schäfer, Christian; Ragazzon, Giulio; Colasson, Benoit; La Rosa, Marcello; Silvi, Serena

    2015-01-01

    Abstract The transport of substrates is one of the main tasks of biomolecular machines in living organisms. We report a synthetic small‐molecule system designed to catch, displace, and release molecular cargo in solution under external control. The system consists of a bistable rotaxane that behaves as an acid–base controlled molecular shuttle, whose ring component bears a tether ending with a nitrile group. The latter can be coordinated to a ruthenium complex that acts as the load, and dissociated upon irradiation with visible light. The cargo loading/unloading and ring transfer/return processes are reversible and can be controlled independently. The robust coordination bond ensures that the cargo remains attached to the device while the transport takes place. PMID:27308223

  16. Interactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Schroeder, Daniel V.

    2015-03-01

    Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.

  17. Molecular inversion probe assay.

    PubMed

    Absalan, Farnaz; Ronaghi, Mostafa

    2007-01-01

    We have described molecular inversion probe technologies for large-scale genetic analyses. This technique provides a comprehensive and powerful tool for the analysis of genetic variation and enables affordable, large-scale studies that will help uncover the genetic basis of complex disease and explain the individual variation in response to therapeutics. Major applications of the molecular inversion probes (MIP) technologies include targeted genotyping from focused regions to whole-genome studies, and allele quantification of genomic rearrangements. The MIP technology (used in the HapMap project) provides an efficient, scalable, and affordable way to score polymorphisms in case/control populations for genetic studies. The MIP technology provides the highest commercially available multiplexing levels and assay conversion rates for targeted genotyping. This enables more informative, genome-wide studies with either the functional (direct detection) approach or the indirect detection approach. PMID:18025701

  18. Welding Molecular Crystals.

    PubMed

    Adolf, Cyril R R; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2015-12-16

    Both for fundamental and applied sciences, the design of complex molecular systems in the crystalline phase with strict control of order and periodicity at both microscopic and macroscopic levels is of prime importance for development of new solid-state materials and devices. The design and fabrication of complex crystalline systems as networks of crystals displaying task-specific properties is a step toward smart materials. Here we report on isostructural and almost isometric molecular crystals of different colors, their use for fabrication of core-shell crystals, and their welding by 3D epitaxial growth into networks of crystals as single-crystalline entities. Welding of crystals by self-assembly processes into macroscopic networks of crystals is a powerful strategy for the design of hierarchically organized periodic complex architectures composed of different subdomains displaying targeted characteristics. Crystal welding may be regarded as a first step toward the design of new hierarchically organized complex crystalline systems. PMID:26581391

  19. FORT Molecular Ecology Laboratory

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Stevens, P.D.

    2011-01-01

    The mission of the U.S. Geological Survey (USGS) at the Fort Collins Science Center Molecular Ecology Laboratory is to use the tools and concepts of molecular genetics to address a variety of complex management questions and conservation issues facing the management of the Nation's fish and wildlife resources. Together with our partners, we design and implement studies to document genetic diversity and the distribution of genetic variation among individuals, populations, and species. Information from these studies is used to support wildlife-management planning and conservation actions. Current and past studies have provided information to assess taxonomic boundaries, inform listing decisions made under the Endangered Species Act, identify unique or genetically depauperate populations, estimate population size or survival rates, develop management or recovery plans, breed wildlife in captivity, relocate wildlife from one location to another, and assess the effects of environmental change.

  20. An artificial molecular pump.

    PubMed

    Cheng, Chuyang; McGonigal, Paul R; Schneebeli, Severin T; Li, Hao; Vermeulen, Nicolaas A; Ke, Chenfeng; Stoddart, J Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration. PMID:25984834