Science.gov

Sample records for molecular structure input

  1. The energy and momentum input of supernova explosions in structured and ionized molecular clouds

    NASA Astrophysics Data System (ADS)

    Walch, Stefanie; Naab, Thorsten

    2015-08-01

    We investigate the early impact of single and binary supernova (SN) explosions on dense gas clouds with three-dimensional, high-resolution, hydrodynamic simulations. The effect of cloud structure, radiative cooling and ionizing radiation from the progenitor stars on the net input of kinetic energy, fkin = Ekin/ESN, thermal energy, ftherm = Etherm/ESN, and gas momentum, fP = P/PSN, to the interstellar medium (ISM) is tested. For clouds with bar{n} = 100cm^{-3}, the momentum generating Sedov and pressure-driven snowplough phases are terminated early (∝0.01 Myr) and radiative cooling limits the coupling to ftherm ˜ 0.01, fkin ˜ 0.05, and fP ˜ 9, significantly lower than for the case without cooling. For pre-ionized clouds, these numbers are only increased by ˜50 per cent, independent of the cloud structure. This only suffices to accelerate ˜5 per cent of the cloud to radial velocities ≳30 km s-1. A second SN might enhance the coupling efficiencies if delayed past the Sedov phase of the first explosion. Such very low coupling efficiencies cast doubts on many subresolution models for SN feedback, which are, in general, validated a posteriori. Ionizing radiation appears not to significantly enhance the coupling of SNe to the surrounding gas as it drives the ISM into inert dense shells and cold clumps, a process which is unresolved in galaxy-scale simulations. Our results indicate that the momentum input of SNe in ionized, structured clouds is larger (more than a factor of 10) than the corresponding momentum yield of the progenitor's stellar winds.

  2. Input File Creation for the Molecular Dynamics Program LAMMPS.

    Energy Science and Technology Software Center (ESTSC)

    2001-05-30

    The program creates an input data file for the molecular dynamics program LAMMPS. The input file created is a liquid mixture between two walls explicitly composed of particles. The liquid molecules are modeled as a bead-spring molecule. The input data file specifies the position and topology of the starting state. The data structure of input allows for dynamic bond creation (cross-linking) within the LAMMPS code.

  3. Input estimation from measured structural response

    SciTech Connect

    Harvey, Dustin; Cross, Elizabeth; Silva, Ramon A; Farrar, Charles R; Bement, Matt

    2009-01-01

    This report will focus on the estimation of unmeasured dynamic inputs to a structure given a numerical model of the structure and measured response acquired at discrete locations. While the estimation of inputs has not received as much attention historically as state estimation, there are many applications where an improved understanding of the immeasurable input to a structure is vital (e.g. validating temporally varying and spatially-varying load models for large structures such as buildings and ships). In this paper, the introduction contains a brief summary of previous input estimation studies. Next, an adjoint-based optimization method is used to estimate dynamic inputs to two experimental structures. The technique is evaluated in simulation and with experimental data both on a cantilever beam and on a three-story frame structure. The performance and limitations of the adjoint-based input estimation technique are discussed.

  4. Minimizing structural vibrations with Input Shaping (TM)

    NASA Technical Reports Server (NTRS)

    Singhose, Bill; Singer, Neil

    1995-01-01

    A new method for commanding machines to move with increased dynamic performance was developed. This method is an enhanced version of input shaping, a patented vibration suppression algorithm. This technique intercepts a command input to a system command that moves the mechanical system with increased performance and reduced residual vibration. This document describes many advanced methods for generating highly optimized shaping sequences which are tuned to particular systems. The shaping sequence is important because it determines the trade off between move/settle time of the system and the insensitivity of the input shaping algorithm to variations or uncertainties in the machine which can be controlled. For example, a system with a 5 Hz resonance that takes 1 second to settle can be improved to settle instantaneously using a 0.2 shaping sequence (thus improving settle time by a factor of 5). This system could vary by plus or minus 15% in its natural frequency and still have no apparent vibration. However, the same system shaped with a 0.3 second shaping sequence could tolerate plus or minus 40% or more variation in natural frequency. This document describes how to generate sequences that maximize performance, sequences that maximize insensitivity, and sequences that trade off between the two. Several software tools are documented and included.

  5. Molecularly Defined Circuitry Reveals Input-Output Segregation in Deep Layers of the Medial Entorhinal Cortex

    PubMed Central

    Sürmeli, Gülşen; Marcu, Daniel Cosmin; McClure, Christina; Garden, Derek L.F.; Pastoll, Hugh; Nolan, Matthew F.

    2015-01-01

    Summary Deep layers of the medial entorhinal cortex are considered to relay signals from the hippocampus to other brain structures, but pathways for routing of signals to and from the deep layers are not well established. Delineating these pathways is important for a circuit level understanding of spatial cognition and memory. We find that neurons in layers 5a and 5b have distinct molecular identities, defined by the transcription factors Etv1 and Ctip2, and divergent targets, with extensive intratelencephalic projections originating in layer 5a, but not 5b. This segregation of outputs is mirrored by the organization of glutamatergic input from stellate cells in layer 2 and from the hippocampus, with both preferentially targeting layer 5b over 5a. Our results suggest a molecular and anatomical organization of input-output computations in deep layers of the MEC, reveal precise translaminar microcircuitry, and identify molecularly defined pathways for spatial signals to influence computation in deep layers. PMID:26606996

  6. Reconstruction of dynamic structural inputs in the presence of noise

    SciTech Connect

    Bateman, V.I.; Solomon, O.M. Jr.

    1986-08-01

    This report describes a technique to reconstruct dynamic structural inputs by deconvolution of measured data. The structure to which this technique has been applied is a mild steel bar (3 in diameter and 60 in. long) with a conical nose which provides some geometric simulation of penetrating structures which are used in field test. The deconvolution technique successfully reconstructs dynamic inputs to the bar with and without additive white noise present in the measured response.

  7. Framework for single input single output nanonetwork-based realistic molecular communication.

    PubMed

    Abd El-Atty, Saied M; Gharsseldien, Zakaria M; Lizos, Konstantinos A

    2015-12-01

    Mobile ad hoc molecular nanonetwork (MAMNET) is a new paradigm for the realisation of future nanonetworks. In MAMNET, transmission of nanoscale information from nanomachine to infostation is based on collision and adhesion. In this study, the authors develop a realistic framework for encompassing the electronic structure of the neurotransmitter in the process of transmitting nanoscale information at a single input single output nanonetwork. Nanonetwork performance is evaluated in terms of average packet delay, throughput and incurred traffic rate. Numerical results demonstrate the influence of the neurotransmitter's electronic structure over the performance of nanonetworks. PMID:26647808

  8. Input clustering and the microscale structure of local circuits

    PubMed Central

    DeBello, William M.; McBride, Thomas J.; Nichols, Grant S.; Pannoni, Katy E.; Sanculi, Daniel; Totten, Douglas J.

    2014-01-01

    The recent development of powerful tools for high-throughput mapping of synaptic networks promises major advances in understanding brain function. One open question is how circuits integrate and store information. Competing models based on random vs. structured connectivity make distinct predictions regarding the dendritic addressing of synaptic inputs. In this article we review recent experimental tests of one of these models, the input clustering hypothesis. Across circuits, brain regions and species, there is growing evidence of a link between synaptic co-activation and dendritic location, although this finding is not universal. The functional implications of input clustering and future challenges are discussed. PMID:25309336

  9. Input Shaping to Reduce Solar Array Structural Vibrations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael J.; Tolson, Robert J.

    1998-01-01

    Structural vibrations induced by actuators can be minimized using input shaping. Input shaping is a feedforward method in which actuator commands are convolved with shaping functions to yield a shaped set of commands. These commands are designed to perform the maneuver while minimizing the residual structural vibration. In this report, input shaping is extended to stepper motor actuators. As a demonstration, an input-shaping technique based on pole-zero cancellation was used to modify the Solar Array Drive Assembly (SADA) actuator commands for the Lewis satellite. A series of impulses were calculated as the ideal SADA output for vibration control. These impulses were then discretized for use by the SADA stepper motor actuator and simulated actuator outputs were used to calculate the structural response. The effectiveness of input shaping is limited by the accuracy of the knowledge of the modal frequencies. Assuming perfect knowledge resulted in significant vibration reduction. Errors of 10% in the modal frequencies caused notably higher levels of vibration. Controller robustness was improved by incorporating additional zeros in the shaping function. The additional zeros did not require increased performance from the actuator. Despite the identification errors, the resulting feedforward controller reduced residual vibrations to the level of the exactly modeled input shaper and well below the baseline cases. These results could be easily applied to many other vibration-sensitive applications involving stepper motor actuators.

  10. Signal delay and input synchronization in passive dendritic structures.

    PubMed

    Agmon-Snir, H; Segev, I

    1993-11-01

    1. A novel approach for analyzing transients in passive structures called "the method of moments" is introduced. It provides, as a special case, an analytic method for calculating the time delay and speed of propagation of electrical signals in any passive dendritic tree without the need for numerical simulations. 2. Total dendritic delay (TD) between two points (y, x) is defined as the difference between the centroid (the center of gravity) of the transient current input, I, at point y[tI(y)] and the centroid of the transient voltage response, V, at point x [tV(x)]. The TD measured at the input points is nonzero and is called the local delay (LD). Propagation delay, PD(y, x), is then defined as TD(y, x)--LD(y) whereas the net dendritic delay, NDD(y, 0), of an input point, y, is defined as TD(y, 0) - LD(0), where 0 is the target point, typically the soma. The signal velocity at a point x0 in the tree, theta(x0), is defined as [1/(dtv(x)/dx)[x = x0. 3. With the use of these definitions, several properties of dendritic delay exist. First, the delay between any two points in a given tree is independent of the properties (shape and duration) of the transient current input. Second, the velocity of the signal at any given point (y) in a given direction from (y) does not depend on the morphology of the tree "behind" the signal, and of the input location. Third, TD(y, x) = TD(x, y), for any two points, x, y. 4. Two additional properties are useful for efficiently calculating delays in arbitrary passive trees. 1) The subtrees connected at the ends of any dendritic segment can each be functionally lumped into an equivalent isopotential R-C compartment. 2) The local delay at any given point (y) in a tree is the mean of the local delays of the separate structures (subtrees) connected at y, weighted by the relative input conductance of the corresponding subtrees. 5. Because the definitions for delays utilize difference between centroids, the local delay and the total delay can

  11. Long-term variation in above and belowground plant inputs alters soil organic matter biogeochemistry at the molecular-level

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Pisani, O.; Lin, L.; Lun, O.; Simpson, A.; Lajtha, K.; Nadelhoffer, K. J.

    2015-12-01

    The long-term fate of soil carbon reserves with global environmental change remains uncertain. Shifts in moisture, altered nutrient cycles, species composition, or rising temperatures may alter the proportions of above and belowground biomass entering soil. However, it is unclear how long-term changes in plant inputs may alter the composition of soil organic matter (SOM) and soil carbon storage. Advanced molecular techniques were used to assess SOM composition in mineral soil horizons (0-10 cm) after 20 years of Detrital Input and Removal Treatment (DIRT) at the Harvard Forest. SOM biomarkers (solvent extraction, base hydrolysis and cupric (II) oxide oxidation) and both solid-state and solution-state nuclear magnetic resonance (NMR) spectroscopy were used to identify changes in SOM composition and stage of degradation. Microbial activity and community composition were assessed using phospholipid fatty acid (PLFA) analysis. Doubling aboveground litter inputs decreased soil carbon content, increased the degradation of labile SOM and enhanced the sequestration of aliphatic compounds in soil. The exclusion of belowground inputs (No roots and No inputs) resulted in a decrease in root-derived components and enhanced the degradation of leaf-derived aliphatic structures (cutin). Cutin-derived SOM has been hypothesized to be recalcitrant but our results show that even this complex biopolymer is susceptible to degradation when inputs entering soil are altered. The PLFA data indicate that changes in soil microbial community structure favored the accelerated processing of specific SOM components with littler manipulation. These results collectively reveal that the quantity and quality of plant litter inputs alters the molecular-level composition of SOM and in some cases, enhances the degradation of recalcitrant SOM. Our study also suggests that increased litterfall is unlikely to enhance soil carbon storage over the long-term in temperate forests.

  12. Combustion inputs into a terrestrial archive over 265 years as evidenced by BPCA molecular markers

    NASA Astrophysics Data System (ADS)

    Hanke, Ulrich M.; Eglinton, Timothy I.; Wiedemeier, Daniel B.; Schmidt, Michael W. I.

    2015-04-01

    Pyrogenic organic matter (PyOM) such as char and soot is produced during the incomplete combustion of biomass and fossil fuel. It is composed of condensed aromatic structures and can resist degradation processes, maybe over long periods of time. Land-use changes, industrial activity and its transport by wind and water affect the fluxes of PyOM from the source to its sedimentary archive. Investigating environmental PyOM with the molecular marker benzene polycarboxylic acid (BPCA) method provides various information about quantity, quality (BPCA distribution pattern) and about its isotopic composition (13C and 14C). Assessing PyOM quality can indicate whether it is mostly combustion condensate (soot) or combustion residue (charcoal) and potentially allow source apportionment. Our study area is the Pettaquamscutt River catchment area (35 km2), Rhode Island, U.S.A. It is located down-wind of industrial areas recording deposition of long-distance atmospheric transport as well as local catchment inputs, both from natural and anthropogenic sources. We investigated 50 samples of a sediment record over a time span of 265 years (1733-1998 AD). Previous investigations provided information on the age of deposition, the content of polycyclic aromatic hydrocarbons (PAH) as well as of the radiocarbon contents of total organic carbon (TOC) and PAH (Lima, 2004). We used the BPCA molecular marker method to quantify and characterize PyOM in the same record. First results show that quantity and quality of PyOM change over 265 years. Our investigation aims at understanding how different sources of PyOM are reflected in terrestrial archives by comparing the results of BPCA with radiocarbon-dated TOC and PAH records. Among other aspects, the PAH record reflects the Great Depression and the 1970s oil embargo in North America. We interpret the BPCA distribution patterns regarding the simultaneous shift of dominant fuels including wood, coal, petroleum and gas. Future work will include

  13. Modeling Recognition Memory Using the Similarity Structure of Natural Input

    ERIC Educational Resources Information Center

    Lacroix, Joyca P. W.; Murre, Jaap M. J.; Postma, Eric O.; van den Herik, H. Jaap

    2006-01-01

    The natural input memory (NAM) model is a new model for recognition memory that operates on natural visual input. A biologically informed perceptual preprocessing method takes local samples (eye fixations) from a natural image and translates these into a feature-vector representation. During recognition, the model compares incoming preprocessed…

  14. Implementation of input command shaping to reduce vibration in flexible space structures

    NASA Technical Reports Server (NTRS)

    Chang, Kenneth W.; Seering, Warren P.; Rappole, B. Whitney

    1992-01-01

    Viewgraphs on implementation of input command shaping to reduce vibration in flexible space structures are presented. Goals of the research are to explore theory of input command shaping to find an efficient algorithm for flexible space structures; to characterize Middeck Active Control Experiment (MACE) test article; and to implement input shaper on the MACE structure and interpret results. Background on input shaping, simulation results, experimental results, and future work are included.

  15. The mammalian molecular clockwork controls rhythmic expression of its own input pathway components.

    PubMed

    Pfeffer, Martina; Müller, Christian M; Mordel, Jérôme; Meissl, Hilmar; Ansari, Nariman; Deller, Thomas; Korf, Horst-Werner; von Gall, Charlotte

    2009-05-13

    The core molecular clockwork in the suprachiasmatic nucleus (SCN) is based on autoregulatory feedback loops of transcriptional activators (CLOCK/NPAS2 and BMAL1) and inhibitors (mPER1-2 and mCRY1-2). To synchronize the phase of the molecular clockwork to the environmental day and night condition, light at dusk and dawn increases mPer expression. However, the signal transduction pathways differ remarkably between the day/night and the night/day transition. Light during early night leads to intracellular Ca(2+) release by neuronal ryanodine receptors (RyRs), resulting in phase delays. Light during late night triggers an increase in guanylyl cyclase activity, resulting in phase advances. To date, it is still unknown how the core molecular clockwork regulates the availability of the respective input pathway components. Therefore, we examined light resetting mechanisms in mice with an impaired molecular clockwork (BMAL1(-/-)) and the corresponding wild type (BMAL1(+/+)) using in situ hybridization, real-time PCR, immunohistochemistry, and a luciferase reporter system. In addition, intracellular calcium concentrations (Ca(2+)(i)) were measured in SCN slices using two-photon microscopy. In the SCN of BMAL1(-/-) mice Ryr mRNA and RyR protein levels were reduced, and light-induced mPer expression was selectively impaired during early night. Transcription assays with NIH3T3 fibroblasts showed that Ryr expression was activated by CLOCK::BMAL1 and inhibited by mCRY1. The Ca(2+)(i) response of SCN cells to the RyR agonist caffeine was reduced in BMAL1(-/-) compared with BMAL1(+/+) mice. Our findings provide the first evidence that the mammalian molecular clockwork influences Ryr expression and thus controls its own photic input pathway components. PMID:19439589

  16. Interactive Modelling of Molecular Structures

    NASA Astrophysics Data System (ADS)

    Rustad, J. R.; Kreylos, O.; Hamann, B.

    2004-12-01

    The "Nanotech Construction Kit" (NCK) [1] is a new project aimed at improving the understanding of molecular structures at a nanometer-scale level by visualization and interactive manipulation. Our very first prototype is a virtual-reality program allowing the construction of silica and carbon structures from scratch by assembling them one atom at a time. In silica crystals or glasses, the basic building block is an SiO4 unit, with the four oxygen atoms arranged around the central silicon atom in the shape of a regular tetrahedron. Two silicate units can connect to each other by their silicon atoms covalently bonding to one shared oxygen atom. Geometrically, this means that two tetrahedra can link at their vertices. Our program is based on geometric representations and uses simple force fields to simulate the interaction of building blocks, such as forming/breaking of bonds and repulsion. Together with stereoscopic visualization and direct manipulation of building blocks using wands or data gloves, this enables users to create realistic and complex molecular models in short amounts of time. The NCK can either be used as a standalone tool, to analyze or experiment with molecular structures, or it can be used in combination with "traditional" molecular dynamics (MD) simulations. In a first step, the NCK can create initial configurations for subsequent MD simulation. In a more evolved setup, the NCK can serve as a visual front-end for an ongoing MD simulation, visualizing changes in simulation state in real time. Additionally, the NCK can be used to change simulation state on-the-fly, to experiment with different simulation conditions, or force certain events, e.g., the forming of a bond, and observe the simulation's reaction. [1] http://graphics.cs.ucdavis.edu/~okreylos/ResDev/NanoTech

  17. Improved input and output couplers for SC acceleration structure

    SciTech Connect

    Solyak, N.; Gonin, I.; Latina, A.; Lunin, A.; Poloubotko, V.; Yakovlev, V.; /Fermilab

    2009-04-01

    Different couplers are described that allow the reduction of both transverse wake potential and RF kick in the SC acceleration structure of ILC. A simple rotation of the couplers reducing the RF kick and transverse wake kick is discussed for both the main linac and bunch compressors, along with possible limitations of this method. Designs of a coupler unit are presented which preserve axial symmetry of the structure, and provide reduced both the RF kick and transverse wake field.

  18. Neural Microstates Govern Perception of Auditory Input without Rhythmic Structure.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2016-01-20

    Human perception fluctuates with the phase of neural oscillations in the presence of environmental rhythmic structure by which neural oscillations become entrained. However, in the absence of predictability afforded by rhythmic structure, we hypothesize that the neural dynamical states associated with optimal psychophysical performance are more complex than what has been described previously for rhythmic stimuli. The current electroencephalography study characterized the brain dynamics associated with optimal detection of gaps embedded in narrow-band acoustic noise stimuli lacking low-frequency rhythmic structure. Optimal gap detection was associated with three spectrotemporally distinct delta-governed neural microstates. Individual microstates were characterized by unique instantaneous combinations of neural phase in the delta, theta, and alpha frequency bands. Critically, gap detection was not predictable from local fluctuations in stimulus acoustics. The current results suggest that, in the absence of rhythmic structure to entrain neural oscillations, good performance hinges on complex neural states that vary from moment to moment. Significance statement: Our ability to hear faint sounds fluctuates together with slow brain activity that synchronizes with environmental rhythms. However, it is so far not known how brain activity at different time scales might interact to influence perception when there is no rhythm with which brain activity can synchronize. Here, we used electroencephalography to measure brain activity while participants listened for short silences that interrupted ongoing noise. We examined brain activity in three different frequency bands: delta, theta, and alpha. Participants' ability to detect gaps depended on different numbers of frequency bands--sometimes one, sometimes two, and sometimes three--at different times. Changes in the number of frequency bands that predict perception are a hallmark of a complex neural system. PMID:26791216

  19. Impact of environmental inputs on reverse-engineering approach to network structures

    PubMed Central

    2009-01-01

    Background Uncovering complex network structures from a biological system is one of the main topic in system biology. The network structures can be inferred by the dynamical Bayesian network or Granger causality, but neither techniques have seriously taken into account the impact of environmental inputs. Results With considerations of natural rhythmic dynamics of biological data, we propose a system biology approach to reveal the impact of environmental inputs on network structures. We first represent the environmental inputs by a harmonic oscillator and combine them with Granger causality to identify environmental inputs and then uncover the causal network structures. We also generalize it to multiple harmonic oscillators to represent various exogenous influences. This system approach is extensively tested with toy models and successfully applied to a real biological network of microarray data of the flowering genes of the model plant Arabidopsis Thaliana. The aim is to identify those genes that are directly affected by the presence of the sunlight and uncover the interactive network structures associating with flowering metabolism. Conclusion We demonstrate that environmental inputs are crucial for correctly inferring network structures. Harmonic causal method is proved to be a powerful technique to detect environment inputs and uncover network structures, especially when the biological data exhibit periodic oscillations. PMID:19961587

  20. Learning structure of sensory inputs with synaptic plasticity leads to interference

    PubMed Central

    Chrol-Cannon, Joseph; Jin, Yaochu

    2015-01-01

    Synaptic plasticity is often explored as a form of unsupervised adaptation in cortical microcircuits to learn the structure of complex sensory inputs and thereby improve performance of classification and prediction. The question of whether the specific structure of the input patterns is encoded in the structure of neural networks has been largely neglected. Existing studies that have analyzed input-specific structural adaptation have used simplified, synthetic inputs in contrast to complex and noisy patterns found in real-world sensory data. In this work, input-specific structural changes are analyzed for three empirically derived models of plasticity applied to three temporal sensory classification tasks that include complex, real-world visual and auditory data. Two forms of spike-timing dependent plasticity (STDP) and the Bienenstock-Cooper-Munro (BCM) plasticity rule are used to adapt the recurrent network structure during the training process before performance is tested on the pattern recognition tasks. It is shown that synaptic adaptation is highly sensitive to specific classes of input pattern. However, plasticity does not improve the performance on sensory pattern recognition tasks, partly due to synaptic interference between consecutively presented input samples. The changes in synaptic strength produced by one stimulus are reversed by the presentation of another, thus largely preventing input-specific synaptic changes from being retained in the structure of the network. To solve the problem of interference, we suggest that models of plasticity be extended to restrict neural activity and synaptic modification to a subset of the neural circuit, which is increasingly found to be the case in experimental neuroscience. PMID:26300769

  1. Properties and molecular identity of NMDA receptors at synaptic and non-synaptic inputs in cerebellar molecular layer interneurons

    PubMed Central

    Bidoret, Céline; Bouvier, Guy; Ayon, Annick; Szapiro, Germán; Casado, Mariano

    2015-01-01

    N-methyl-D-aspartate receptors (NMDARs) in cerebellar molecular layer interneurons (MLIs) are expressed and activated in unusual ways: at parallel fibre (PF) synapses they are only recruited by repetitive stimuli, suggesting an extrasynaptic location, whereas their activation by climbing fibre is purely mediated by spillover. NMDARs are thought to play an important role in plasticity at different levels of the cerebellar circuitry. Evaluation of the location, functional properties and physiological roles of NMDARs will be facilitated by knowledge of the NMDAR isoforms recruited. Here we show that MLI-NMDARs activated by both PF and climbing fibre inputs have similar kinetics and contain GluN2B but not GluN2A subunits. On the other hand, no evidence was found of functional NMDARs in the axons of MLIs. At the PF-Purkinje cell (PF-PC) synapse, the activation of GluN2A-containing NMDARs has been shown to be necessary for the induction of long-term depression (LTD). Our results therefore provide a clear distinction between the NMDARs located on MLIs and those involved in plasticity at PF-PC synapses. PMID:25750623

  2. Learning Complex Grammar in the Virtual Classroom: A Comparison of Processing Instruction, Structured Input, Computerized Visual Input Enhancement, and Traditional Instruction

    ERIC Educational Resources Information Center

    Russell, Victoria

    2012-01-01

    This study investigated the effects of processing instruction (PI) and structured input (SI) on the acquisition of the subjunctive in adjectival clauses by 92 second-semester distance learners of Spanish. Computerized visual input enhancement (VIE) was combined with PI and SI in an attempt to increase the salience of the targeted grammatical form…

  3. Synchronization in neuronal oscillator networks with input heterogeneity and arbitrary network structure

    NASA Astrophysics Data System (ADS)

    Davison, Elizabeth; Dey, Biswadip; Leonard, Naomi

    Mathematical studies of synchronization in networks of neuronal oscillators offer insight into neuronal ensemble behavior in the brain. Systematic means to understand how network structure and external input affect synchronization in network models have the potential to improve methods for treating synchronization-related neurological disorders such as epilepsy and Parkinson's disease. To elucidate the complex relationships between network structure, external input, and synchronization, we investigate synchronous firing patterns in arbitrary networks of neuronal oscillators coupled through gap junctions with heterogeneous external inputs. We first apply a passivity-based Lyapunov analysis to undirected networks of homogeneous FitzHugh-Nagumo (FN) oscillators with homogeneous inputs and derive a sufficient condition on coupling strength that guarantees complete synchronization. In biologically relevant regimes, we employ Gronwall's inequality to obtain a bound tighter than those previously reported. We extend both analyses to a homogeneous FN network with heterogeneous inputs and show how cluster synchronization emerges under conditions on the symmetry of the coupling matrix and external inputs. Our results can be generalized to any network of semi-passive oscillators.

  4. Image inputs in Structure-from-Motion Photogrammetry: optimising image greyscaling

    NASA Astrophysics Data System (ADS)

    O'Connor, James; Smith, Mike J.; James, Mike R.

    2016-04-01

    Structure-from-motion (SfM) photogrammetry is an emerging technology receiving much attention within the geoscience community due to its ease of use and the lack of prior information required to build topographic models from images. However, little consideration is given to image inputs considering image sharpness and contrast both have an effect on the quality of photogrammetric outputs. This task is made more challenging across natural image sequences due to the presence of low-contrast surfaces which are often at oblique angles to input images. As most feature detectors operate on a single image channel, monochrome inputs can be pre-processed for input into SfM workflows and relative accuracy measured. In this contribution we process two sets of imagery from both a real world, close range scenario (Constitution Hill, Aberystwyth) and a controlled dataset in laboratory conditions simulating a UAV flight with convergent viewing geometry. With each, we generate greyscale subsets comprised of weighted combinations of the spectral bands of the input images prior to executing SfM workflows. Output point clouds are measured against high-accuracy terrestrial laser scans in order to assess residual error and compare output solutions. When compared with untreated image inputs into a commonly used commercial package (Agisoft Photoscan Pro) we show minor improvements in the accuracy of photogrammetrically derived products.

  5. A Bayesian approach to model structural error and input variability in groundwater modeling

    NASA Astrophysics Data System (ADS)

    Xu, T.; Valocchi, A. J.; Lin, Y. F. F.; Liang, F.

    2015-12-01

    Effective water resource management typically relies on numerical models to analyze groundwater flow and solute transport processes. Model structural error (due to simplification and/or misrepresentation of the "true" environmental system) and input forcing variability (which commonly arises since some inputs are uncontrolled or estimated with high uncertainty) are ubiquitous in groundwater models. Calibration that overlooks errors in model structure and input data can lead to biased parameter estimates and compromised predictions. We present a fully Bayesian approach for a complete assessment of uncertainty for spatially distributed groundwater models. The approach explicitly recognizes stochastic input and uses data-driven error models based on nonparametric kernel methods to account for model structural error. We employ exploratory data analysis to assist in specifying informative prior for error models to improve identifiability. The inference is facilitated by an efficient sampling algorithm based on DREAM-ZS and a parameter subspace multiple-try strategy to reduce the required number of forward simulations of the groundwater model. We demonstrate the Bayesian approach through a synthetic case study of surface-ground water interaction under changing pumping conditions. It is found that explicit treatment of errors in model structure and input data (groundwater pumping rate) has substantial impact on the posterior distribution of groundwater model parameters. Using error models reduces predictive bias caused by parameter compensation. In addition, input variability increases parametric and predictive uncertainty. The Bayesian approach allows for a comparison among the contributions from various error sources, which could inform future model improvement and data collection efforts on how to best direct resources towards reducing predictive uncertainty.

  6. RATFOR: user's guide. [Preprocessor allowing structured control statements and free form input

    SciTech Connect

    Wampler, B. E.

    1980-06-01

    RATFOR is a preprocessor for Fortran that allows the programmer to use structured control statements and free form input. This manual describes a version of RATFOR developed at Sandia National Laboratories that has a number of enhancements over the original version developed at Bell Laboratories.

  7. Structure parameters in molecular tunneling ionization theory

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; Li, Wei; Zhao, Song-Feng

    2014-04-01

    We extracted the accurate structure parameters in molecular tunneling ionization theory (so called MO-ADK theory) for 22 selected linear molecules including some inner orbitals. The molecular wave functions with the correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials numerically constructed using the modified Leeuwen-Baerends (LBα) model.

  8. Molecular modeling of nucleic acid structure

    PubMed Central

    Galindo-Murillo, Rodrigo; Bergonzo, Christina

    2013-01-01

    This unit is the first in a series of four units covering the analysis of nucleic acid structure by molecular modeling. This unit provides an overview of computer simulation of nucleic acids. Topics include the static structure model, computational graphics and energy models, generation of an initial model, and characterization of the overall three-dimensional structure. PMID:18428873

  9. The Molecular Structure of Penicillin

    NASA Astrophysics Data System (ADS)

    Bentley, Ronald

    2004-10-01

    The chemical structure of penicillin was determined between 1942 and 1945 under conditions of secrecy established by the U.S. and U.K. governments. The evidence was not published in the open literature but as a monograph. This complex volume does not present a structure proof that can be readily comprehended by a student. In this article, a basic structural proof for the penicillin molecule is provided, emphasizing the chemical work. The stereochemistry of penicillin is also described, and various rearrangements are considered on the basis of the accepted β-lactam structure.

  10. Numerical simulations of input and output couplers for linear accelerator structures

    SciTech Connect

    Ng, C.K.; Ko, K.

    1993-04-01

    We present the numerical procedures involved in the design of coupler cavities for accelerator sections for linear colliders. The MAFIA code is used to simulate an X-band accelerator section with a symmetrical double-input coupler at each end. The transmission properties of the structure are calculated in the time domain and the dimensions of the coupler cavities are adjusted until the power coupling is optimized and frequency synchronism is obtained. We compare the performance of the symmetrical double-input design with that of the conventional single-input type by evaluating the field amplitude and phase asymmetries. We also evaluate the peak gradient in the coupler and discuss the implication of pulse rise time on dark current generation.

  11. Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding

    PubMed Central

    Billings, Guy; Piasini, Eugenio; Lőrincz, Andrea; Nusser, Zoltan; Silver, R. Angus

    2014-01-01

    Summary The synaptic connectivity within neuronal networks is thought to determine the information processing they perform, yet network structure-function relationships remain poorly understood. By combining quantitative anatomy of the cerebellar input layer and information theoretic analysis of network models, we investigated how synaptic connectivity affects information transmission and processing. Simplified binary models revealed that the synaptic connectivity within feedforward networks determines the trade-off between information transmission and sparse encoding. Networks with few synaptic connections per neuron and network-activity-dependent threshold were optimal for lossless sparse encoding over the widest range of input activities. Biologically detailed spiking network models with experimentally constrained synaptic conductances and inhibition confirmed our analytical predictions. Our results establish that the synaptic connectivity within the cerebellar input layer enables efficient lossless sparse encoding. Moreover, they provide a functional explanation for why granule cells have approximately four dendrites, a feature that has been evolutionarily conserved since the appearance of fish. PMID:25123311

  12. The Molecular Structure of Penicillin

    ERIC Educational Resources Information Center

    Bentley, Ronald

    2004-01-01

    Overviews of the observations that constitute a structure proof for penicillin, specifically aimed at the general student population, are presented. Melting points and boiling points were criteria of purity and a crucial tool was microanalysis leading to empirical formulas.

  13. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    SciTech Connect

    Sawada, Tsuyoshi; Hasegawa, Tetsuo; Koda, Jin

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  14. Procedure for developing biological input for the design, location, or modification of water-intake structures

    SciTech Connect

    Neitzel, D.A.; McKenzie, D.H.

    1981-12-01

    To minimize adverse impact on aquatic ecosystems resulting from the operation of water intake structures, design engineers must have relevant information on the behavior, physiology and ecology of local fish and shellfish. Identification of stimulus/response relationships and the environmental factors that influence them is the first step in incorporating biological information in the design, location or modification of water intake structures. A procedure is presented in this document for providing biological input to engineers who are designing, locating or modifying a water intake structure. The authors discuss sources of stimuli at water intakes, historical approaches in assessing potential/actual impact and review biological information needed for intake design.

  15. Active control of structurally-coupled sound fields in elastic cylinders by vibrational force inputs

    NASA Technical Reports Server (NTRS)

    Jones, J. D.; Fuller, C. R.

    1990-01-01

    Active control of structurally-coupled sound fields in elastic cylinders is analytically and experimentally studied. The primary (noise) field in the cylinder model is generated by the coupled dynamic response of the shell under loading by a single exterior acoustic source. Control of the interior sound field is achieved by applying vibrational force inputs directly to the shell wall. Action of the point controllers serve to increase the input impedance of select structural modes of the shell which are well-coupled to the interior acoustic cavity, thus substantially reducing sound transmission into the cavity. Spatially-averaged noise reductions in excess of 30 dB are demonstrated for acoustic resonant conditions within the cavity. Twin controller configurations are presented which demonstrate the ability to independently control orthogonal modes of the interior acoustic space. Benefits and drawbacks of this new methodology for noise control are discussed and clearly demonstrated.

  16. Multiple actor-critic structures for continuous-time optimal control using input-output data.

    PubMed

    Song, Ruizhuo; Lewis, Frank; Wei, Qinglai; Zhang, Hua-Guang; Jiang, Zhong-Ping; Levine, Dan

    2015-04-01

    In industrial process control, there may be multiple performance objectives, depending on salient features of the input-output data. Aiming at this situation, this paper proposes multiple actor-critic structures to obtain the optimal control via input-output data for unknown nonlinear systems. The shunting inhibitory artificial neural network (SIANN) is used to classify the input-output data into one of several categories. Different performance measure functions may be defined for disparate categories. The approximate dynamic programming algorithm, which contains model module, critic network, and action network, is used to establish the optimal control in each category. A recurrent neural network (RNN) model is used to reconstruct the unknown system dynamics using input-output data. NNs are used to approximate the critic and action networks, respectively. It is proven that the model error and the closed unknown system are uniformly ultimately bounded. Simulation results demonstrate the performance of the proposed optimal control scheme for the unknown nonlinear system. PMID:25730830

  17. Structures in Molecular Clouds: Modeling

    SciTech Connect

    Kane, J O; Mizuta, A; Pound, M W; Remington, B A; Ryutov, D D

    2006-04-20

    We attempt to predict the observed morphology, column density and velocity gradient of Pillar II of the Eagle Nebula, using Rayleigh Taylor (RT) models in which growth is seeded by an initial perturbation in density or in shape of the illuminated surface, and cometary models in which structure is arises from a initially spherical cloud with a dense core. Attempting to mitigate suppression of RT growth by recombination, we use a large cylindrical model volume containing the illuminating source and the self-consistently evolving ablated outflow and the photon flux field, and use initial clouds with finite lateral extent. An RT model shows no growth, while a cometary model appears to be more successful at reproducing observations.

  18. Minimalist Approach to Complexity: Templating the Assembly of DNA Tile Structures with Sequentially Grown Input Strands.

    PubMed

    Lau, Kai Lin; Sleiman, Hanadi F

    2016-07-26

    Given its highly predictable self-assembly properties, DNA has proven to be an excellent template toward the design of functional materials. Prominent examples include the remarkable complexity provided by DNA origami and single-stranded tile (SST) assemblies, which require hundreds of unique component strands. However, in many cases, the majority of the DNA assembly is purely structural, and only a small "working area" needs to be aperiodic. On the other hand, extended lattices formed by DNA tile motifs require only a few strands; but they suffer from lack of size control and limited periodic patterning. To overcome these limitations, we adopt a templation strategy, where an input strand of DNA dictates the size and patterning of resultant DNA tile structures. To prepare these templating input strands, a sequential growth technique developed in our lab is used, whereby extended DNA strands of defined sequence and length may be generated simply by controlling their order of addition. With these, we demonstrate the periodic patterning of size-controlled double-crossover (DX) and triple-crossover (TX) tile structures, as well as intentionally designed aperiodicity of a DX tile structure. As such, we are able to prepare size-controlled DNA structures featuring aperiodicity only where necessary with exceptional economy and efficiency. PMID:27303951

  19. On the emergence of molecular structure

    SciTech Connect

    Matyus, Edit; Reiher, Markus; Hutter, Juerg; Mueller-Herold, Ulrich

    2011-05-15

    The structure of (a{sup {+-}},a{sup {+-}},b{sup {+-}})-type Coulombic systems is characterized by the effective ground-state density of the a-type particles, computed via nonrelativistic quantum mechanics without introduction of the Born-Oppenheimer approximation. A structural transition is observed when varying the relative mass of the a- and b-type particles, e.g., between atomic H{sup -} and molecular H{sub 2}{sup +}. The particle-density profile indicates a molecular-type behavior for the positronium ion, Ps{sup -}.

  20. Input/Output of ab-initio nuclear structure calculations for improved performance and portability

    SciTech Connect

    Laghave, Nikhil

    2010-01-01

    Many modern scientific applications rely on highly computation intensive calculations. However, most applications do not concentrate as much on the role that input/output operations can play for improved performance and portability. Parallelizing input/output operations of large files can significantly improve the performance of parallel applications where sequential I/O is a bottleneck. A proper choice of I/O library also offers a scope for making input/output operations portable across different architectures. Thus, use of parallel I/O libraries for organizing I/O of large data files offers great scope in improving performance and portability of applications. In particular, sequential I/O has been identified as a bottleneck for the highly scalable MFDn (Many Fermion Dynamics for nuclear structure) code performing ab-initio nuclear structure calculations. We develop interfaces and parallel I/O procedures to use a well-known parallel I/O library in MFDn. As a result, we gain efficient I/O of large datasets along with their portability and ease of use in the down-stream processing. Even situations where the amount of data to be written is not huge, proper use of input/output operations can boost the performance of scientific applications. Application checkpointing offers enormous performance improvement and flexibility by doing a negligible amount of I/O to disk. Checkpointing saves and resumes application state in such a manner that in most cases the application is unaware that there has been an interruption to its execution. This helps in saving large amount of work that has been previously done and continue application execution. This small amount of I/O provides substantial time saving by offering restart/resume capability to applications. The need for checkpointing in optimization code NEWUOA has been identified and checkpoint/restart capability has been implemented in NEWUOA by using simple file I/O.

  1. Effects of pulsed nutrient inputs on phytoplankton assemblage structure and blooms in an enclosed coastal area

    NASA Astrophysics Data System (ADS)

    Spatharis, Sofie; Tsirtsis, George; Danielidis, Daniel B.; Chi, Thang Do; Mouillot, David

    2007-07-01

    The response of phytoplankton assemblage structure to terrestrial nutrient inputs was examined for the Gulf of Kalloni in the Northern Aegean Sea, a productive semi-enclosed coastal marine ecosystem. The study was focused on a typical annual cycle, and emphasis was placed on the comparative analysis between blooms developing after significant nutrient inputs from the watershed, and naturally occurring blooms. Baseline information was collected on a monthly basis from a network of stations located in the oligotrophic open sea and the interior and more productive part of the embayment. Intensive sampling was also carried out along a gradient in the vicinity of a river which was the most important source of freshwater and nutrient input for the Gulf. Phytoplankton assemblage structure was analyzed from 188 samples using diversity indices (Shannon and Average Taxonomic Distinctness), multivariate plotting methods (NMDS), multivariate statistics (PERMANOVA), and canonical correspondence analysis (CCA). Three characteristic assemblages were recognized: (1) an autumn assemblage developed under nutrient depleted conditions, having low diversity due to the dominance of two small diatoms, (2) a winter bloom of the potentially toxic species Pseudo-nitzschia calliantha occurring immediately after a nutrient peak and characterized by very low diversity, and (3) a naturally occurring early summer bloom of centric diatoms with relatively high diversity. The results of the study support the view that moderate nutrient inputs may have a beneficial effect on the functioning of coastal ecosystems, stimulating the taxonomic diversity through the growth of different taxonomic groups and taxa. On the other hand, a sudden pulse of high nutrient concentrations may greatly affect the natural succession of organisms, have a negative effect on the diversity through the dominance of a single species, and can increase the possibility of a harmful algal bloom development.

  2. Theoretical investigation of the molecular structure of the isoquercitrin molecule

    NASA Astrophysics Data System (ADS)

    Cornard, J. P.; Boudet, A. C.; Merlin, J. C.

    1999-09-01

    Isoquercitrin is a glycosilated flavonoid that has received a great deal of attention because of its numerous biological effects. We present a theoretical study on isoquercitrin using both empirical (Molecular Mechanics (MM), with MMX force field) and quantum chemical (AM1 semiempirical method) techniques. The most stable structures of the molecule obtained by MM calculations have been used as input data for the semiempirical treatment. The position and orientation of the glucose moiety with regard to the remainder of the molecule have been investigated. The flexibility of isoquercitrin principally lies in rotations around the inter-ring bond and the sugar link. In order to know the structural modifications generated by the substitution by a sugar, geometrical parameters of quercetin (aglycon) and isoquercitrin have been compared. The good accordance between theoretical and experimental electronic spectra permits to confirm the reliability of the structural model.

  3. How We Teach Molecular Structure to Freshmen.

    ERIC Educational Resources Information Center

    Hurst, Michael O.

    2002-01-01

    Currently molecular structure is taught in general chemistry using three theories, this being based more on historical development rather than logical pedagogy. Electronegativity is taught with a confusing mixture of definitions that do not correspond to modern practice. Valence bond theory and VSEPR are used together in a way that often confuses…

  4. Molecular Structure of Human-Liver Glycogen

    PubMed Central

    Deng, Bin; Sullivan, Mitchell A.; Chen, Cheng; Li, Jialun; Powell, Prudence O.; Hu, Zhenxia; Gilbert, Robert G.

    2016-01-01

    Glycogen is a highly branched glucose polymer which is involved in maintaining blood-sugar homeostasis. Liver glycogen contains large composite α particles made up of linked β particles. Previous studies have shown that the binding which links β particles into α particles is impaired in diabetic mice. The present study reports the first molecular structural characterization of human-liver glycogen from non-diabetic patients, using transmission electron microscopy for morphology and size-exclusion chromatography for the molecular size distribution; the latter is also studied as a function of time during acid hydrolysis in vitro, which is sensitive to certain structural features, particularly glycosidic vs. proteinaceous linkages. The results are compared with those seen in mice and pigs. The molecular structural change during acid hydrolysis is similar in each case, and indicates that the linkage of β into α particles is not glycosidic. This result, and the similar morphology in each case, together imply that human liver glycogen has similar molecular structure to those of mice and pigs. This knowledge will be useful for future diabetes drug targets. PMID:26934359

  5. Molecular Association and Structure of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Giguere, Paul A.

    1983-01-01

    The statement is sometimes made in textbooks that liquid hydrogen peroxide is more strongly associated than water, evidenced by its higher boiling point and greater heat of vaporization. Discusses these and an additional factor (the nearly double molecular mass of the peroxide), focusing on hydrogen bonds and structure of the molecule. (JN)

  6. Effect of spatial input data and landscape heterogeneity on performance and consistency of model structures

    NASA Astrophysics Data System (ADS)

    Euser, Tanja; Winsemius, Hessel; Hrachowitz, Markus; Fenicia, Fabrizio; Gharari, Shervan; Savenije, Huub

    2013-04-01

    The use of flexible hydrological model structures for hypothesis testing requires an objective and diagnostic method to identify whether a rainfall-runoff model structure is suitable for a certain catchment. To determine if a model structure is realistic, i.e. if it captures the relevant runoff processes, both performance and consistency are important. Performance describes the ability of a model structure to mimic a specific part of the hydrological behaviour in a specific catchment. Consistency describes the ability of a model structure to adequately reproduce several hydrological signatures simultaneously. FARM (Framework to Assess the Realism of Model structures can be used to evaluate this performance and consistency, using different hydrological signatures. Results from FARM presented previously are only qualitative and for lumped catchment models, therefore, the research question of this study is: What is the effect if FARM is applied to model structures if some kind of spatial input data or landscape heterogeneity is accounted for? For this study a case study is performed in the Ourthe catchment, a tributary of the Meuse. The effects of incorporating different sources of heterogeneity, such as precipitation and landscape heterogeneity, are tested. These sources of heterogeneity are added stepwise and FARM is used to investigate whether metrics of performance and consistency change. In addition, with FARM it can also be identified how the reproduction of different signatures changes with the incorporation of different sources of heterogeneity. In this way FARM can be used to investigate if accounting for heterogeneity really adds value to a model structure.

  7. Molecular Tracers of Saturated and Polycyclic Aromatic Hydrocarbon Inputs into Central Park Lake, New York City

    PubMed Central

    YAN, BEIZHAN; ABRAJANO, TEOFILO A.; BOPP, RICHARD F.; CHAKY, DAMON A.; BENEDICT, LUCILLE A.; CHILLRUD, STEVEN N.

    2011-01-01

    Saturated hydrocarbons (SH) and polycyclic aromatic hydrocarbons (PAHs) have been quantified in a sediment core obtained from Central Park Lake, New York City. Radionuclides 210Pb and 137Cs were used to assign approximate dates to each individual section in the core. The dating profile based on 210Pb matches very well with the time constraints provided by 137Cs. Radionuclide-derived depositional dates are consistent with temporal information from the petroleum-indicator ratio U/R [the ratio of unresolved complex mixture (UCM) to saturated hydrocarbons in the aliphatic fraction] and the history of fuel use in the NYC area. Ratios of 1,7-dimethylphenanthrane (DMP) to 1,7-DMP plus 2,6-DMP [1,7/(1,7 + 2,6)-DMP], retene to retene plus chrysene [Ret/(Ret + Chy)], and fluoranthene to fluoranthene plus pyrene [Fl/(Fl + Py)] provide additional source discrimination throughout the core. Results show that the ratio U/R is sensitive to petroleum inputs and Ret/(Ret + Chy) is responsive to contributions from softwood combustion, whereas both Fl/(Fl + Py) and 1,7/(1,7 + 2,6)-DMP can be used to discriminate among wood, coal, and petroleum combustion sources. Combined use of these ratios suggests that in New York City, wood combustion dominated 100 years ago, with a shift to coal combustion occurring from the 1900s to the 1950s. Petroleum use began around the 1920s and has dominated since the 1940s. PMID:16201624

  8. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    SciTech Connect

    Zhang, Xuesong; Liang, Faming; Yu, Beibei; Zong, Ziliang

    2011-11-09

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework to incorporate the uncertainties associated with input, model structure, and parameter into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform the BNNs that only consider uncertainties associated with parameter and model structure. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters show that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of different uncertainty sources and including output error into the MCMC framework are expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting.

  9. ATLAS, an integrated structural analysis and design system. Volume 3: User's manual, input and execution data

    NASA Technical Reports Server (NTRS)

    Dreisbach, R. L. (Editor)

    1979-01-01

    The input data and execution control statements for the ATLAS integrated structural analysis and design system are described. It is operational on the Control Data Corporation (CDC) 6600/CYBER computers in a batch mode or in a time-shared mode via interactive graphic or text terminals. ATLAS is a modular system of computer codes with common executive and data base management components. The system provides an extensive set of general-purpose technical programs with analytical capabilities including stiffness, stress, loads, mass, substructuring, strength design, unsteady aerodynamics, vibration, and flutter analyses. The sequence and mode of execution of selected program modules are controlled via a common user-oriented language.

  10. Molecular tracers of saturated and polycyclic aromatic hydrocarbon inputs into Central Park Lake, New York City

    SciTech Connect

    Beizhan Yan; Teofilo A. Abrajano; Richard F. Bopp; Damon A. Chaky; Lucille A. Benedict; Steven N. Chillrud

    2005-09-15

    Saturated hydrocarbons (SH) and polycyclic aromatic hydrocarbons (PAHs) have been quantified in a sediment core obtained from Central Park Lake, New York City. Radionuclides {sup 210}Pb and {sup 137}Cs were used to assign approximate dates to each individual section in the core. The dating profile based on {sup 210}Pb matches very well with the time constraints provided by {sup 137}Cs. Radionuclide-derived depositional dates are consistent with temporal information from the petroleum-indicator ratio U/R (the ratio of unresolved complex mixture (UCM) to saturated hydrocarbons in the aliphatic fraction) and the history of fuel use in the NYC area. Ratios of 1,7-dimethylphenanthrane (DMP) to 1,7-DMP plus 2,6-DMP (1,7/(1,7 + 2,6)-DMP), retene to retene plus chrysene (Ret/(Ret + Chy)), and fluoranthene to fluoranthene plus pyrene (Fl/(Fl + Py))) provide additional source discrimination throughout the core. Results show that the ratio U/R is sensitive to petroleum inputs and Ret/(Ret + Chy) is responsive to contributions from softwood combustion, whereas both Fl/(Fl + Py) and 1,7/(1,7 + 2,6)-DMP can be used to discriminate among wood, coal, and petroleum combustion sources. Combined use of these ratios suggests that in New York City, wood combustion dominated 100 years ago, with a shift to coal combustion occurring from the 1900s to the 1950s. Petroleum use began around the 1920s and has dominated since the 1940s. 33 refs., 3 figs., 2 tabs.

  11. Students' understanding of molecular structure representations

    NASA Astrophysics Data System (ADS)

    Ferk, Vesna; Vrtacnik, Margareta; Blejec, Andrej; Gril, Alenka

    2003-10-01

    The purpose of the investigation was to determine the meanings attached by students to the different kinds of molecular structure representations used in chemistry teaching. The students (n = 124) were from primary (aged 13-14 years) and secondary (aged 17-18 years) schools and a university (aged 21-25 years). A computerised 'Chemical Visualisation Test' was developed and applied. The research indicates that students' appreciation of three-dimensional molecular structures differs according to the kind of representation used. The best results were achieved with the use of concrete, and pseudo-concrete types of representations (e.g. three-dimensional models, their photographs, computer-generated models). However, the use of more abstract types (e.g. schematic representations, stereochemical formula) was less effective. A correlation between students' results on the Chemical Visualisation Test and their educational level, spatial visualisation, and spatial relations skills was shown statistically, but no statistically significant gender differences were observed.

  12. 2004 Reversible Associations in Structure & Molecular Biology

    SciTech Connect

    Edward Eisenstein Nancy Ryan Gray

    2005-03-23

    The Gordon Research Conference (GRC) on 2004 Gordon Research Conference on Reversible Associations in Structure & Molecular Biology was held at Four Points Sheraton, CA, 1/25-30/2004. The Conference was well attended with 82 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students.

  13. 8B structure in Fermionic Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Henninger, K. R.; Neff, T.; Feldmeier, H.

    2015-04-01

    The structure of the light exotic nucleus 8B is investigated in the Fermionic Molecular Dynamics (FMD) model. The decay of 8B is responsible for almost the entire high- energy solar-neutrino flux, making structure calculations of 8B important for determining the solar core temperature. 8B is a proton halo candidate thought to exhibit clustering. FMD uses a wave-packet basis and is well-suited for modelling clustering and halos. For a multiconfiguration treatment we construct the many-body Hilbert space from antisymmetrised angular-momentum projected 8-particle states. First results show formation of a proton halo.

  14. Evaluation of severe accident risks: Quantification of major input parameters. Experts` determination of structural response issues

    SciTech Connect

    Breeding, R.J.; Harper, F.T.; Brown, T.D.; Gregory, J.J.; Payne, A.C.; Gorham, E.D.; Murfin, W.; Amos, C.N.

    1992-03-01

    In support of the Nuclear Regulatory Commission`s (NRC`s) assessment of the risk from severe accidents at commercial nuclear power plants in the US reported in NUREG-1150, the Severe Accident Risk Reduction Program (SAARP) has completed a revised calculation of the risk to the general public from severe accidents at five nuclear power plants: Surry, Sequoyah, Zion, Peach Bottom, and Grand Gulf. The emphasis in this risk analysis was not on determining a ``so-called`` point estimate of risk. Rather, it was to determine the distribution of risk, and to discover the uncertainties that account for the breadth of this distribution. Off-site risk initiation by events, both internal to the power station and external to the power station were assessed. Much of the important input to the logic models was generated by expert panels. This document presents the distributions and the rationale supporting the distributions for the questions posed to the Structural Response Panel.

  15. Vertex centralities in input-output networks reveal the structure of modern economies

    NASA Astrophysics Data System (ADS)

    Blöchl, Florian; Theis, Fabian J.; Vega-Redondo, Fernando; Fisher, Eric O.'N.

    2011-04-01

    Input-output tables describe the flows of goods and services between the sectors of an economy. These tables can be interpreted as weighted directed networks. At the usual level of aggregation, they contain nodes with strong self-loops and are almost completely connected. We derive two measures of node centrality that are well suited for such networks. Both are based on random walks and have interpretations as the propagation of supply shocks through the economy. Random walk centrality reveals the vertices most immediately affected by a shock. Counting betweenness identifies the nodes where a shock lingers longest. The two measures differ in how they treat self-loops. We apply both to data from a wide set of countries and uncover salient characteristics of the structures of these national economies. We further validate our indices by clustering according to sectors’ centralities. This analysis reveals geographical proximity and similar developmental status.

  16. Explorations of molecular structure-property relationships.

    PubMed

    Seybold, P G

    1999-01-01

    The problem of the relationship between the structure of a molecule and its physical, chemical, and biological properties is one of the most fundamental in chemistry. Three molecular structure-property studies are discussed as illustrations of different approaches to this problem. In the first study the carcinogenic activities of polycyclic aromatic hydrocarbons and their derivatives are examined. Molecular orbital calculations of the presumptive activation steps and species for these compounds (based on the "bay region" theory of activation) are seen to yield a surprisingly good guide to the observed carcinogenic activities. Both activation and deactivation steps are considered. The second study reviews structure-property work on the tissue solubilities of halogenated hydrocarbons. Relatively simple structural descriptors give a good account of the solubilities of these compounds in blood, muscle, fat, and liver tissue. With the aid of principal components analysis it is shown that there are two dominant dimensions to this problem, which can be interpreted in terms of solubilities of the compounds in lipid and saline environments. The final study, which examines the boiling points of aliphatic alcohols, illustrates the value of using more than one descriptor set. The (perhaps surprising) conclusion is that a theoretical model can sometimes be more accurate than the data upon which it is based. Moreover, two models are better than one. PMID:10491848

  17. Filamentary structure in the Orion molecular cloud

    NASA Astrophysics Data System (ADS)

    Bally, John; Langer, William D.; Stark, Antony A.; Wilson, Robert W.

    1987-01-01

    A large-scale (C-13)O map (containing 33,000 spectra on a 1-arcmin grid) is presented for the giant molecular cloud located in the southern part of Ori which contains the Ori Nebula, NGC 1977, and the L1641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. The northern portion of the cloud is compressed, dynamically relaxed, and supports massive star formation. In contrast, the southern part of the Ori A cloud is diffuse, exhibits chaotic spatial and velocity structure, and supports only intermediate- to low-mass star formation. This morphology may be the consequence of the formation and evolution of the Ori OB I association centered north of the molecular cloud. The entire cloud, in addition to the 5000-solar-mass filament containing both OMC-1 and OMC-2, exhibits a north-south velocity gradient. Implications of the observed cloud morphology for theories of molecular cloud evolution are discussed.

  18. Filamentary structure in the Orion molecular cloud

    SciTech Connect

    Bally, J.; Stark, A.A.; Wilson, R.W.; Langer, W.D.

    1987-01-01

    A large-scale (C-13)O map (containing 33,000 spectra on a 1-arcmin grid) is presented for the giant molecular cloud located in the southern part of Ori which contains the Ori Nebula, NGC 1977, and the L1641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. The northern portion of the cloud is compressed, dynamically relaxed, and supports massive star formation. In contrast, the southern part of the Ori A cloud is diffuse, exhibits chaotic spatial and velocity structure, and supports only intermediate- to low-mass star formation. This morphology may be the consequence of the formation and evolution of the Ori OB I association centered north of the molecular cloud. The entire cloud, in addition to the 5000-solar-mass filament containing both OMC-1 and OMC-2, exhibits a north-south velocity gradient. Implications of the observed cloud morphology for theories of molecular cloud evolution are discussed. 14 references.

  19. Bacterial community structure is indicative of chemical inputs in the Upper Mississippi River

    PubMed Central

    Staley, Christopher; Gould, Trevor J.; Wang, Ping; Phillips, Jane; Cotner, James B.; Sadowsky, Michael J.

    2014-01-01

    Local and regional associations between bacterial communities and nutrient and chemical concentrations were assessed in the Upper Mississippi River in Minnesota to determine if community structure was associated with discrete types of chemical inputs associated with different land cover. Bacterial communities were characterized by Illumina sequencing of the V6 region of 16S rDNA and compared to >40 chemical and nutrient concentrations. Local bacterial community structure was shaped primarily by associations among bacterial orders. However, order abundances were correlated regionally with nutrient and chemical concentrations, and were also related to major land coverage types. Total organic carbon and total dissolved solids were among the primary abiotic factors associated with local community composition and co-varied with land cover. Escherichia coli concentration was poorly related to community composition or nutrient concentrations. Abundances of 14 bacterial orders were related to land coverage type, and seven showed significant differences in abundance (P ≤ 0.046) between forested or anthropogenically-impacted sites. This study identifies specific bacterial orders that were associated with chemicals and nutrients derived from specific land cover types and may be useful in assessing water quality. Results of this study reveal the need to investigate community dynamics at both the local and regional scales and to identify shifts in taxonomic community structure that may be useful in determining sources of pollution in the Upper Mississippi River. PMID:25339945

  20. The Molecular Structure of cis-FONO

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.; Rice, Julia E.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The molecular structure of cis-FONO has been determined with the CCSD(T) correlation method using an spdf quality basis set. In agreement with previous coupled-cluster calculations but in disagreement with density functional theory, cis-FONO is found to exhibit normal bond distances. The quadratic and cubic force fields of cis-FONO have also been determined in order to evaluate the effect of vibrational averaging on the molecular geometry. Vibrational averaging is found to increase bond distances, as expected, but it does not affect the qualitative nature of the bonding. The CCSD(T)/spdf harmonic frequencies of cis-FONO support our previous assertion that a band observed at 1200 /cm is a combination band (upsilon(sub 3) + upsilon(sub 4)), and not a fundamental.

  1. Spatial structure of the meroplankton community along a Patagonian fjord - The role of changing freshwater inputs

    NASA Astrophysics Data System (ADS)

    Meerhoff, Erika; Tapia, Fabián J.; Castro, Leonardo R.

    2014-12-01

    Freshwater inputs are major drivers of circulation, hydrographic structure, and productivity patterns along estuarine systems. We assessed the degree to which meroplankton community structure in the Baker/Martinez fjord complex (Chilean Patagonia, 47.5°S) responds to spatial and temporal changes in hydrographic conditions driven by seasonal changes in Baker river outflow. Zooplankton and hydrographic measurements were conducted along the fjord in early spring (October) and late summer (February), when river outflow was minimal and maximal, respectively. Major meroplankton groups found on these surveys were larval barnacles, crabs, bivalves and gastropods. There was a clear change in community structure between October and February, explained by a switch in the numerically dominant group from barnacle to bivalve larvae. This change in community structure was related to changes in hydrographic structure along the fjord, which are mainly associated with seasonal changes in the Baker river outflow. A variance partition analysis showed no significant spatial trend that could account for the variation in meroplankton along the Martinez channel, whereas temporal variability and environmental variables accounted for 36.6% and 27.6% of the variance, respectively. When comparing meroplankton among the Baker and Martinez channels in October, changes in environmental variables explained 44.9% of total variance, whereas spatial variability accounted for 23.5%. Early and late-stage barnacle larvae (i.e. nauplii and cyprids) were more abundant in water with lower temperature, and higher dissolved oxygen and chlorophyll-a concentration, whereas bivalve larvae were more strongly associated to warmer waters. The seasonal shift in numerical dominance, from barnacle larvae in early spring to bivalve larvae in late summer, suggests that reproduction of these groups is triggered by substantially different sets of conditions, both in terms of hydrography and food availability. The

  2. Community Engagement Studios: A Structured Approach to Obtaining Meaningful Input From Stakeholders to Inform Research

    PubMed Central

    Joosten, Yvonne A.; Israel, Tiffany L.; Williams, Neely A.; Boone, Leslie R.; Schlundt, David G.; Mouton, Charles P.; Dittus, Robert S.; Bernard, Gordon R.

    2015-01-01

    Problem Engaging communities in research increases its relevance and may speed the translation of discoveries into improved health outcomes. Many researchers lack training to effectively engage stakeholders, whereas academic institutions lack infrastructure to support community engagement. Approach In 2009, the Meharry-Vanderbilt Community-Engaged Research Core began testing new approaches for community engagement, which led to the development of the Community Engagement Studio (CE Studio). This structured program facilitates project-specific input from community and patient stakeholders to enhance research design, implementation, and dissemination. Developers used a team approach to recruit and train stakeholders, prepare researchers to engage with stakeholders, and facilitate an in-person meeting with both. Outcomes The research core has implemented 28 CE Studios that engaged 152 community stakeholders. Participating researchers, representing a broad range of faculty ranks and disciplines, reported that input from stakeholders was valuable and that the CE Studio helped determine project feasibility and enhanced research design and implementation. Stakeholders found the CE Studio to be an acceptable method of engagement and reported a better understanding of research in general. A tool kit was developed to replicate this model and to disseminate this approach. Next Steps The research core will collect data to better understand the impact of CE Studios on research proposal submissions, funding, research outcomes, patient and stakeholder engagement in projects, and dissemination of results. They will also collect data to determine whether CE Studios increase patient-centered approaches in research and whether stakeholders who participate have more trust and willingness to participate in research. PMID:26107879

  3. Large Woody Debris Input and Its Influence on Channel Structure in Agricultural Lands of Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Paula, Felipe Rossetti De; Ferraz, Silvio Frosini De Barros; Gerhard, Pedro; Vettorazzi, Carlos Alberto; Ferreira, Anderson

    2011-10-01

    Riparian forests are important for the structure and functioning of stream ecosystems, providing structural components such as large woody debris (LWD). Changes in these forests will cause modifications in the LWD input to streams, affecting their structure. In order to assess the influence of riparian forests changes in LWD supply, 15 catchments (third and fourth order) with riparian forests at different conservation levels were selected for sampling. In each catchment we quantified the abundance, volume and diameter of LWD in stream channels; the number, area and volume of pools formed by LWD and basal area and tree diameter of riparian forest. We found that riparian forests were at a secondary successional stage with predominantly young trees (diameter at breast height <10 cm) in all studied streams. Results showed that basal area and diameter of riparian forest differed between the stream groups (forested and non-forested), but tree density did not differ between groups. Differences were also observed in LWD abundance, volume, frequency of LWD pools with subunits and area and volume of LWD pools. LWD diameter, LWD that form pools diameter and frequency of LWD pools without subunits did not differ between stream groups. Regression analyses showed that LWD abundance and volume, and frequency of LWD pools (with and without subunits) were positively related with the proportion of riparian forest. LWD diameter was not correlated to riparian tree diameter. The frequency of LWD pools was correlated to the abundance and volume of LWD, but characteristics of these pools (area and volume) were not correlated to the diameter of LWD that formed the pools. These results show that alterations in riparian forest cause modifications in the LWD abundance and volume in the stream channel, affecting mainly the structural complexity of these ecosystems (reduction in the number and structural characteristics of LWD pools). Our results also demonstrate that riparian forest

  4. Local structure of subcellular input retinotopy in an identified visual interneuron

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Gabbiani, Fabrizio; Fabrizio Gabbiani's lab Team

    2015-03-01

    How does the spatial layout of the projections that a neuron receives impact its synaptic integration and computation? What is the mapping topography of subcellular wiring at the single neuron level? The LGMD (lobula giant movement detector) neuron in the locust is an identified neuron that responds preferentially to objects approaching on a collision course. It receives excitatory inputs from the entire visual hemifield through calcium-permeable nicotinic acetylcholine receptors. Previous work showed that the projection from the locust compound eye to the LGMD preserved retinotopy down to the level of a single ommatidium (facet) by employing in vivo widefield calcium imaging. Because widefield imaging relies on global excitation of the preparation and has a relatively low resolution, previous work could not investigate this retinotopic mapping at the level of individual thin dendritic branches. Our current work employs a custom-built two-photon microscope with sub-micron resolution in conjunction with a single-facet stimulation setup that provides visual stimuli to the single ommatidium of locust adequate to explore the local structure of this retinotopy at a finer level. We would thank NIMH for funding this research.

  5. Input-output oriented computation algorithms for the control of large flexible structures

    NASA Technical Reports Server (NTRS)

    Minto, K. D.

    1989-01-01

    An overview is given of work in progress aimed at developing computational algorithms addressing two important aspects in the control of large flexible space structures; namely, the selection and placement of sensors and actuators, and the resulting multivariable control law design problem. The issue of sensor/actuator set selection is particularly crucial to obtaining a satisfactory control design, as clearly a poor choice will inherently limit the degree to which good control can be achieved. With regard to control law design, the researchers are driven by concerns stemming from the practical issues associated with eventual implementation of multivariable control laws, such as reliability, limit protection, multimode operation, sampling rate selection, processor throughput, etc. Naturally, the burden imposed by dealing with these aspects of the problem can be reduced by ensuring that the complexity of the compensator is minimized. Our approach to these problems is based on extensions to input/output oriented techniques that have proven useful in the design of multivariable control systems for aircraft engines. In particular, researchers are exploring the use of relative gain analysis and the condition number as a means of quantifying the process of sensor/actuator selection and placement for shape control of a large space platform.

  6. Structure and Dynamics of Cellulose Molecular Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Howard; Zhang, Xin; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert

    Molecular dissolution of microcrystalline cellulose has been achieved through mixing with ionic liquid 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and organic solvent dimethylformamide (DMF). The mechanism of cellulose dissolution in tertiary mixtures has been investigated by combining quasielastic and small angle neutron scattering (QENS and SANS). As SANS data show that cellulose chains take Gaussian-like conformations in homogenous solutions, which exhibit characteristics of having an upper critical solution temperature, the dynamic signals predominantly from EMIMAc molecules indicate strong association with cellulose in the dissolution state. The mean square displacement quantities support the observation of the stoichiometric 3:1 EMIMAc to cellulose unit molar ratio, which is a necessary criterion for the molecular dissolution of cellulose. Analyses of dynamics structure factors reveal the temperature dependence of a slow and a fast process for EMIMAc's bound to cellulose and in DMF, respectively, as well as a very fast process due possibly to the rotational motion of methyl groups, which persisted to near the absolute zero.

  7. Algorithmic dimensionality reduction for molecular structure analysis

    PubMed Central

    Brown, W. Michael; Martin, Shawn; Pollock, Sara N.; Coutsias, Evangelos A.; Watson, Jean-Paul

    2008-01-01

    Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated algorithms for nonlinear dimensionality reduction for representation of trans, trans-1,2,4-trifluorocyclo-octane conformation—a molecule whose structure can be described on a 2-manifold in a Cartesian coordinate phase space. We describe an efficient approach for a deterministic enumeration of ring conformations. We demonstrate a drastic improvement in dimensionality reduction with the use of nonlinear methods. We discuss the use of dimensionality reduction algorithms for estimating intrinsic dimensionality and the relationship to the Whitney embedding theorem. Additionally, we investigate the influence of the choice of high-dimensional encoding on the reduction. We show for the case studied that, in terms of reconstruction error root mean square deviation, Cartesian coordinate representations and encodings based on interatom distances provide better performance than encodings based on a dihedral angle representation. PMID:18715062

  8. Computing stoichiometric molecular composition from crystal structures

    PubMed Central

    Gražulis, Saulius; Merkys, Andrius; Vaitkus, Antanas; Okulič-Kazarinas, Mykolas

    2015-01-01

    Crystallographic investigations deliver high-accuracy information about positions of atoms in crystal unit cells. For chemists, however, the structure of a molecule is most often of interest. The structure must thus be reconstructed from crystallographic files using symmetry information and chemical properties of atoms. Most existing algorithms faithfully reconstruct separate molecules but not the overall stoichiometry of the complex present in a crystal. Here, an algorithm that can reconstruct stoichiometrically correct multimolecular ensembles is described. This algorithm uses only the crystal symmetry information for determining molecule numbers and their stoichiometric ratios. The algorithm can be used by chemists and crystallographers as a standalone implementation for investigating above-molecular ensembles or as a function implemented in graphical crystal analysis software. The greatest envisaged benefit of the algorithm, however, is for the users of large crystallographic and chemical databases, since it will permit database maintainers to generate stoichiometrically correct chemical representations of crystal structures automatically and to match them against chemical databases, enabling multidisciplinary searches across multiple databases. PMID:26089747

  9. Structural disorder in molecular framework materials.

    PubMed

    Cairns, Andrew B; Goodwin, Andrew L

    2013-06-21

    It is increasingly apparent that many important classes of molecular framework material exhibit a variety of interesting and useful types of structural disorder. This tutorial review summarises a number of recent efforts to understand better both the complex microscopic nature of this disorder and also how it might be implicated in useful functionalities of these materials. We draw on a number of topical examples including topologically-disordered zeolitic imidazolate frameworks (ZIFs), porous aromatic frameworks (PAFs), the phenomena of temperature-, pressure- and desorption-induced amorphisation, partial interpenetration, ferroelectric transition-metal formates, negative thermal expansion in cyanide frameworks, and the mechanics and processing of layered frameworks. We outline the various uses of pair distribution function (PDF) analysis, dielectric spectroscopy, peak-shape analysis of powder diffraction data and single-crystal diffuse scattering measurements as means of characterising disorder in these systems, and we suggest a number of opportunities for future research in the field. PMID:23471316

  10. Plant sex chromosomes: molecular structure and function.

    PubMed

    Jamilena, M; Mariotti, B; Manzano, S

    2008-01-01

    Recent molecular and genomic studies carried out in a number of model dioecious plant species, including Asparagus officinalis, Carica papaya, Silene latifolia, Rumex acetosa and Marchantia polymorpha, have shed light on the molecular structure of both homomorphic and heteromorphic sex chromosomes, and also on the gene functions they have maintained since their evolution from a pair of autosomes. The molecular structure of sex chromosomes in species from different plant families represents the evolutionary pathway followed by sex chromosomes during their evolution. The degree of Y chromosome degeneration that accompanies the suppression of recombination between the Xs and Ys differs among species. The primitive Ys of A. officinalis and C. papaya have only diverged from their homomorphic Xs in a short male-specific and non-recombining region (MSY), while the heteromorphic Ys of S. latifolia, R. acetosa and M. polymorpha have diverged from their respective Xs. As in the Y chromosomes of mammals and Drosophila, the accumulation of repetitive DNA, including both transposable elements and satellite DNA, has played an important role in the divergence and size enlargement of plant Ys, and consequently in reducing gene density. Nevertheless, the degeneration process in plants does not appear to have reached the Y-linked genes. Although a low gene density has been found in the sequenced Y chromosome of M. polymorpha, most of its genes are essential and are expressed in the vegetative and reproductive organs in both male and females. Similarly, most of the Y-linked genes that have been isolated and characterized up to now in S. latifolia are housekeeping genes that have X-linked homologues, and are therefore expressed in both males and females. Only one of them seems to be degenerate with respect to its homologous region in the X. Sequence analysis of larger regions in the homomorphic X and Y chromosomes of papaya and asparagus, and also in the heteromorphic sex chromosomes

  11. Temporal Structure of Receptor Neuron Input to the Olfactory Bulb Imaged in Behaving Rats

    PubMed Central

    Carey, Ryan M.; Verhagen, Justus V.; Wesson, Daniel W.; Pírez, Nicolás; Wachowiak, Matt

    2009-01-01

    The dynamics of sensory input to the nervous system play a critical role in shaping higher-level processing. In the olfactory system, the dynamics of input from olfactory receptor neurons (ORNs) are poorly characterized and depend on multiple factors, including respiration-driven airflow through the nasal cavity, odorant sorption kinetics, receptor–ligand interactions between odorant and receptor, and the electrophysiological properties of ORNs. Here, we provide a detailed characterization of the temporal organization of ORN input to the mammalian olfactory bulb (OB) during natural respiration, using calcium imaging to monitor ORN input to the OB in awake, head-fixed rats expressing odor-guided behaviors. We report several key findings. First, across a population of homotypic ORNs, each inhalation of odorant evokes a burst of action potentials having a rise time of about 80 ms and a duration of about 100 ms. This rise time indicates a relatively slow, progressive increase in ORN activation as odorant flows through the nasal cavity. Second, the dynamics of ORN input differ among glomeruli and for different odorants and concentrations, but remain reliable across successive inhalations. Third, inhalation alone (in the absence of odorant) evokes ORN input to a significant fraction of OB glomeruli. Finally, high-frequency sniffing of odorant strongly reduces the temporal coupling between ORN inputs and the respiratory cycle. These results suggest that the dynamics of sensory input to the olfactory system may play a role in coding odor information and that, in the awake animal, strategies for processing odor information may change as a function of sampling behavior. PMID:19091924

  12. How sensitive is the estimation of renewable water resources on a global scale to input data and model structure?

    NASA Astrophysics Data System (ADS)

    Müller Schmied, Hannes; Eisner, Stephanie; Franz, Daniela; Wattenbach, Martin

    2013-04-01

    Large scale hydrological models and land surface models are applied to simulate the global terrestrial water cycle and to estimate global renewable water resources. In recent years the growing availability of global data sets to force and constrain these models, e.g. remote sensing and reanalysis products, has essentially improved estimates of renewable water resources. However, results still vary significantly between models and/or input data sets highlighting the uncertainty of those estimates. In this study, we will test the sensitivity of simulated renewable water resources to climate and land use data sets and to varying model complexity using the global hydrological model WaterGAP (Water Global Analysis and Prognosis), version 2.2. The model is calibrated against observed discharge records by adjusting one independent parameter, which controls the fraction of total runoff from effective precipitation. The aim is to minimize the discrepancy in simulated long-term annual discharge compared to measured ones. Due to e.g. model structure or input data uncertainty this calibration procedure is not successful in all river basins, i.e. simulated long-term annual discharge still deviates more than +/- 1 % from the observed one. In these cases, correction factors are applied to avoid error propagation to downstream catchments. In this context, we define calibration success as the ability to calibrate with a minimum of correction factors, which is an indicator of the model's ability (including the underlying input data) to reproduce observed long term discharge. In order to assess the impact of different input data sets and modified model structure on calibration success, model calibration was performed in three different experimental setups: (1) WaterGAP was forced with different climate input data sets (WATCH Forcing Data; CRU TS 3.2/GPCC v.6) to evaluate the impact of climate input, especially precipitation; (2) WaterGAP simulations were based on two different global

  13. Why are some verbs learned before other verbs? Effects of input frequency and structure on children's early verb use.

    PubMed

    Naigles, L R; Hoff-Ginsberg, E

    1998-02-01

    This study investigated the extent to which the nature of verb input accounts for the order in which children acquire verbs. We assessed the nature of verb input using a combined sample of the speech of 57 mothers addressing their Stage I children. We assessed the order of verb acquisition using as our database a combined sample of those children's speech 10 weeks later and using as our measure of order of acquisition the frequency of verb occurrence. The first set of analyses established the validity of this measure of acquisition order by comparing it with order of acquisition data obtained from checklist and diary data. The second set of analyses revealed that three properties of the input were significant predictors of the order of acquisition of the 25 verbs that were the focus of this study. The predictive properties of input were the total frequency, final position frequency, and diversity of syntactic environments in which the verbs appeared. These findings suggest that the way verbs appear in input influences their ease of acquisition. More specifically, the effect of syntactic diversity in input provides support for the syntactic bootstrapping account of how children use structural information to learn the meaning of new verbs. PMID:9604570

  14. A new parametrizable model of molecular electronic structure

    NASA Astrophysics Data System (ADS)

    Laikov, Dimitri N.

    2011-10-01

    A new electronic structure model is developed in which the ground state energy of a molecular system is given by a Hartree-Fock-like expression with parametrized one- and two-electron integrals over an extended (minimal + polarization) set of orthogonalized atom-centered basis functions, the variational equations being solved formally within the minimal basis but the effect of polarization functions being included in the spirit of second-order perturbation theory. It is designed to yield good dipole polarizabilities and improved intermolecular potentials with dispersion terms. The molecular integrals include up to three-center one-electron and two-center two-electron terms, all in simple analytical forms. A method to extract the effective one-electron Hamiltonian of nonlocal-exchange Kohn-Sham theory from the coupled-cluster one-electron density matrix is designed and used to get its matrix representation in a molecule-intrinsic minimal basis as an input to the parametrization procedure - making a direct link to the correlated wavefunction theory. The model has been trained for 15 elements (H, Li-F, Na-Cl, 720 parameters) on a set of 5581 molecules (including ions, transition states, and weakly bound complexes) whose first- and second-order properties were computed by the coupled-cluster theory as a reference, and a good agreement is seen. The model looks promising for the study of large molecular systems, it is believed to be an important step forward from the traditional semiempirical models towards higher accuracy at nearly as low a computational cost.

  15. A new parametrizable model of molecular electronic structure.

    PubMed

    Laikov, Dimitri N

    2011-10-01

    A new electronic structure model is developed in which the ground state energy of a molecular system is given by a Hartree-Fock-like expression with parametrized one- and two-electron integrals over an extended (minimal + polarization) set of orthogonalized atom-centered basis functions, the variational equations being solved formally within the minimal basis but the effect of polarization functions being included in the spirit of second-order perturbation theory. It is designed to yield good dipole polarizabilities and improved intermolecular potentials with dispersion terms. The molecular integrals include up to three-center one-electron and two-center two-electron terms, all in simple analytical forms. A method to extract the effective one-electron Hamiltonian of nonlocal-exchange Kohn-Sham theory from the coupled-cluster one-electron density matrix is designed and used to get its matrix representation in a molecule-intrinsic minimal basis as an input to the parametrization procedure--making a direct link to the correlated wavefunction theory. The model has been trained for 15 elements (H, Li-F, Na-Cl, 720 parameters) on a set of 5581 molecules (including ions, transition states, and weakly bound complexes) whose first- and second-order properties were computed by the coupled-cluster theory as a reference, and a good agreement is seen. The model looks promising for the study of large molecular systems, it is believed to be an important step forward from the traditional semiempirical models towards higher accuracy at nearly as low a computational cost. PMID:21992295

  16. The Structure of Linguistic Input to Children. Working Papers of the Language Behavior Research Laboratory, No. 14.

    ERIC Educational Resources Information Center

    Drach, Kerry; And Others

    Four papers are included in this document concerning the structure of linguistic input to children. Dan Slobin's paper, "Questions of Language Development in Cross-Cultural Perspective," suggests that children everywhere acquire basic grammatical competence in the first five or six years of life, regardless of social milieu or linguistic…

  17. Input-based structure-specific proficiency predicts the neural mechanism of adult L2 syntactic processing.

    PubMed

    Deng, Taiping; Zhou, Huixia; Bi, Hong-Yan; Chen, Baoguo

    2015-06-12

    This study used Event-Related Potentials (ERPs) to explore the role of input-based structure-specific proficiency in L2 syntactic processing, using English subject-verb agreement structures as the stimuli. A pre-test/trainings/post-test paradigm of experimental and control groups was employed, and Chinese speakers who learned English as a second language (L2) participated in the experiment. At pre-test, no ERP component related to the subject-verb agreement structures violations was observed in either group. At training session, the experimental group learned the subject-verb agreement structures, while the control group learned other syntactic structures. After two continuously intensive input trainings, at post-test, a significant P600 component related to the subject-verb agreement structures violations was elicited in the experimental group, but not in the control group. These findings suggest that input training improves structure-specific proficiency, which is reflected in the neural mechanism of L2 syntactic processing. PMID:25838243

  18. A Multistate Molecular Switch Based on the 6,8-Rearrangement in Bromo-apigeninidin Operated with pH and Host-Guest Inputs.

    PubMed

    Basílio, Nuno; Cruz, Luís; de Freitas, Victor; Pina, Fernando

    2016-07-28

    The equilibrium between 6- and 8-bromo-apigeninidin is quantitatively displaced toward the formation of the former in the presence of cucurbit[7]uril because of the selective recognition of the 6-bromo isomer by the host. This phenomenon permits us to conceive a unidirectional multistate switch addressed with host-guest inputs and enables the reversible activation and deactivation of the 6-/8-bromo-apigeninidin dynamic molecular multistate through coupled host-guest and pH inputs. PMID:27378215

  19. [Molecular structure of luminal diuretic receptors].

    PubMed

    Gamba, G

    1995-01-01

    Since day to day sodium and water intake is more or less constant, the output by urinary sodium excretion is the key to maintain extracellular fluid volume within physiologic ranges. To achieve this goal, the kidneys ensure that most of the large quantities of filtered sodium are reabsorbed, a function that takes place in the proximal tubule, the loop of Henle and the distal tubule, and then the kidneys adjust the small amount of sodium that is excreted in urine in such a way that sodium balance is maintained. This adjustment occurs in the collecting duct. Three groups of diuretic-sensitive sodium transport mechanisms have been identified in the apical membranes of the distal nephron based on their different sensitivities to diuretics and requirements for chloride and potassium: 1) the sulfamoylbenzoic (or bumetanide)-sensitive Na+:K+:2CI- and Na+:CI- symporters in the thick ascending loop of Henle; 2) the benzothiadiazine (or thiazide)-sensitive Na+:CI- cotransporter in the distal tubule; and 3) the amiloride-sensitive Na+ channel in the collecting tubule. The inhibition of any one of these proteins by diuretics results in increased sodium urinary excretion. Recently, the use of molecular biology techniques, specially the functional expression cloning in Xenopus laevis oocytes, has led to the identification of cDNA's encoding members of the three groups of diuretic-sensitive transport proteins. The present paper reviews the primary structure and some aspects of the relationship between structure and function of these transporters as well as the new protein families emerging from these sequences. It also discusses the future implications of these discoveries on the physiology and pathophysiology of kidney disease and sodium retaining states. PMID:7569367

  20. Filamentary structure in the Orion molecular cloud

    NASA Astrophysics Data System (ADS)

    Bally, J.; Dragovan, M.; Langer, W. D.; Stark, A. A.; Wilson, R. W.

    1986-10-01

    A large scale 13CO map (containing 33,000 spectra) of the giant molecular cloud located in the southern part of Orion is presented which contains the Orion Nebula, NGC1977, and the LI641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. This morphology may result from the effects of star formation in the region or embedded magnetic fields in the cloud. We suggest a simple picture for the evolution of the Orion-A cloud and the formation of the major filament. A rotating proto-cloud (counter rotating with respect to the galaxy) contians a b-field aligned with the galaxtic plane. The northern portion of this cloud collapsed first, perhaps triggered by the pressure of the Ori I OB association. The magnetic field combined with the anisotropic pressure produced by the OB-association breaks the symmetry of the pancake instability, a filament rather than a disc is produced. The growth of instabilities in the filament formed sub-condensations which are recent sites of star formation.

  1. Molecular structure of brown-dwarf disks

    NASA Astrophysics Data System (ADS)

    Wiebe, D. S.; Semenov, D. A.; Henning, T.

    2008-11-01

    We describe typical features of the chemical composition of proto-planetary disks around brown dwarfs. We model the chemical evolution in the disks around a low-mass T Tauri star and a cooler brown dwarf over a time span of 1 Myr using a model for the physical structure of an accretion disk with a vertical temperature gradient and an extensive set of gas-phase chemical reactions. We find that the disks of T Tauri stars are, in general, hotter and denser than the disks of lower-luminosity substellar objects. In addition, they have more pronounced vertical temperature gradients. The atmospheres of the disks around low-mass stars are more strongly ionized by UV and X-ray radiation, while less dense brown-dwarf disks have higher fractional ionizations in their midplanes. Nevertheless, in both cases, most molecules are concentrated in the so-called warm molecular layer between the ionized atmosphere and cold midplane, where grains with ice mantles are abundant.

  2. Filamentary structure in the Orion molecular cloud

    NASA Technical Reports Server (NTRS)

    Bally, J.; Langer, W. D.; Bally, J.; Langer, W. D.; Bally, J.; Langer, W. D.

    1986-01-01

    A large scale 13CO map (containing 33,000 spectra) of the giant molecular cloud located in the southern part of Orion is presented which contains the Orion Nebula, NGC1977, and the LI641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. This morphology may result from the effects of star formation in the region or embedded magnetic fields in the cloud. We suggest a simple picture for the evolution of the Orion-A cloud and the formation of the major filament. A rotating proto-cloud (counter rotating with respect to the galaxy) contians a b-field aligned with the galaxtic plane. The northern protion of this cloud collapsed first, perhaps triggered by the pressure of the Ori I OB association. The magnetic field combined with the anisotropic pressure produced by the OB-association breaks the symmetry of the pancake instability, a filament rather than a disc is produced. The growth of instabilities in the filament formed sub-condensations which are recent sites of star formation.

  3. The Determination of Molecular Structure from Rotational Spectra

    DOE R&D Accomplishments Database

    Laurie, V. W.; Herschbach, D. R.

    1962-07-01

    An analysis is presented concerning the average molecular configuration variations and their effects on molecular structure determinations. It is noted that the isotopic dependence of the zero-point is often primarily governed by the isotopic variation of the average molecular configuration. (J.R.D.)

  4. Combined Influence of Landscape Composition and Nutrient Inputs on Lake Trophic Structure

    EPA Science Inventory

    The concentration of chlorophyll a is a measure of the biological productivity of a lake and is largely (but not exclusively) determined by available nutrients. As nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to...

  5. The Roles of Structured Input Activities in Processing Instruction and the Kinds of Knowledge They Promote

    ERIC Educational Resources Information Center

    Marsden, Emma; Chen, Hsin-Ying

    2011-01-01

    This study aimed to isolate the effects of the two input activities in Processing Instruction: referential activities, which force learners to focus on a form and its meaning, and affective activities, which contain exemplars of the target form and require learners to process sentence meaning. One hundred and twenty 12-year-old Taiwanese learners…

  6. Molecular cloning of chicken aggrecan. Structural analyses.

    PubMed Central

    Chandrasekaran, L; Tanzer, M L

    1992-01-01

    The large, aggregating chondroitin sulphate proteoglycan of cartilage, aggrecan, has served as a generic model of proteoglycan structure. Molecular cloning of aggrecans has further defined their amino acid sequences and domain structures. In this study, we have obtained the complete coding sequence of chicken sternal cartilage aggrecan by a combination of cDNA and genomic DNA sequencing. The composite sequence is 6117 bp in length, encoding 1951 amino acids. Comparison of chicken aggrecan protein primary structure with rat, human and bovine aggrecans has disclosed both similarities and differences. The domains which are most highly conserved at 70-80% identity are the N-terminal domains G1 and G2 and the C-terminal domain G3. The chondroitin sulphate domain of chicken aggrecan is smaller than that of rat and human aggrecans and has very distinctive repeat sequences. It has two separate sections, one comprising 12 consecutive Ser-Gly-Glu repeats of 20 amino acids each, adjacent to the other which has 23 discontinuous Ser-Gly-Glu repeats of 10 amino acids each; this latter region, N-terminal to the former one, appears to be unique to chicken aggrecan. The two regions contain a total of 94 potential chondroitin sulphate attachment sites. Genomic comparison shows that, although chicken exons 11-14 are identical in size to the rat and human exons, chicken exon 10 is the smallest of the three species. This is also reflected in the size of its chondroitin sulphate coding region and in the total number of Ser-Gly pairs. The putative keratan sulphate domain shows 31-45% identity with the other species and lacks the repetitive sequences seen in the others. In summary, while the linear arrangement of specific domains of chicken aggrecan is identical to that in the aggrecans of other species, and while there is considerable identity of three separate domains, chicken aggrecan demonstrates unique features, notably in its chondroitin sulphate domain and its keratan sulphate

  7. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  8. Effects of switchgrass cultivars and intraspecific differences in root structure on soil carbon inputs and accumulation

    SciTech Connect

    Adkins, Jaron; Jastrow, Julie D.; Morris, Geoffrey P.; Six, Johan; de Graaff, Marie-Anne

    2016-01-01

    Switchgrass (Panicum virgatum L), a cellulosic biofuel feedstock, may promote soil C 21 accumulation compared to annual cropping systems by increasing the amount and retention of 22 root-derived soil C inputs. The aim of this study was to assess how different switchgrass 23 cultivars impact soil C inputs and retention, whether these impacts vary with depth, and whether 24 specific root length (SRL) explains these impacts. We collected soil to a depth of 30 cm from six 25 switchgrass cultivars with root systems ranging from high to low SRL. The cultivars (C4 species) 26 were grown for 27 months on soils previously dominated by C3 plants, allowing us to use the 27 natural difference in 13C isotopic signatures between C3 soils and C4 plants to quantify 28 switchgrass-derived C accumulation. The soil was fractionated into coarse particulate organic 29 matter (CPOM), fine particulate organic matter (FPOM), silt, and clay-sized fractions. We 30 measured total C and plant-derived C in all soil fractions across all depths. The study led to two main results: (1) bulk soil C concentrations beneath switchgrass cultivars varied by 40% in the 0-32 10 cm soil depth and by 70% in the 10-20 cm soil depth, and cultivars with high bulk soil C 33 concentrations tended to have relatively high C concentrations in the mineral soil fractions and 34 relatively low C concentrations in the POM fractions; (2) there were significant differences in 35 switchgrass-derived soil C between cultivars at the 0-10 cm depth, where soil C inputs ranged 36 from 1.2 to 3.2 mg C g-1 dry soil. There was also evidence of a positive correlation between SRL 37 and switchgrass-derived C inputs when one outlier data point was removed. These results 38 indicate that switchgrass cultivars differentially impact mechanisms contributing to soil C accumulation.

  9. Molecular clouds and galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Dame, T. M.

    1984-01-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide.

  10. Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy.

    PubMed

    Schuler, Bruno; Meyer, Gerhard; Peña, Diego; Mullins, Oliver C; Gross, Leo

    2015-08-12

    Petroleum is one of the most precious and complex molecular mixtures existing. Because of its chemical complexity, the solid component of crude oil, the asphaltenes, poses an exceptional challenge for structure analysis, with tremendous economic relevance. Here, we combine atomic-resolution imaging using atomic force microscopy and molecular orbital imaging using scanning tunnelling microscopy to study more than 100 asphaltene molecules. The complexity and range of asphaltene polycyclic aromatic hydrocarbons are established in detail. Identifying molecular structures provides a foundation to understand all aspects of petroleum science from colloidal structure and interfacial interactions to petroleum thermodynamics, enabling a first-principles approach to optimize resource utilization. Particularly, the findings contribute to a long-standing debate about asphaltene molecular architecture. Our technique constitutes a paradigm shift for the analysis of complex molecular mixtures, with possible applications in molecular electronics, organic light emitting diodes, and photovoltaic devices. PMID:26170086

  11. Multiple sensitivity profiles to diversity and transition structure in non-stationary input.

    PubMed

    Tobia, Michael J; Iacovella, Vittorio; Hasson, Uri

    2012-04-01

    Recent formalizations suggest that the human brain codes for the degree of order in the environment and utilizes this knowledge to optimize perception and performance in the immediate future. However, the neural bases of how the brain spontaneously codes for order are poorly understood. It has been shown that activity in lateral temporal cortex and the hippocampus is linearly correlated with the order of short visual series under tasks requiring attention to the input and when series order is invariant over time. Here, we examined if sensitivity to order is manifested in both linear and non-linear BOLD response profiles, quantified the degree to which order-sensitive regions operate as a functional network, and evaluated these questions using a paradigm in which performance of the ongoing task could be completed without any attention to the stimulus whose order was manipulated. Participants listened to a 10-minute sequence of tones characterized by non-stationary order, and fMRI identified cortical regions sensitive to time-varying statistical features of this input. Activity in perisylvian regions was negatively correlated with input diversity, quantified via Shannon's Entropy. Activity in ventral premotor, lateral temporal, and insular regions was correlated linearly, parabolically, or via a step-function with the strength of transition constraints in the series, quantified via Markov Entropy. Granger-causality analysis revealed that order-sensitive regions form a functional network, with regions showing non-linear responses to order associated with more afferent connectivity than those showing linear responses. These findings identify networks that spontaneously code and respond to diverse aspects of order via multiple response profiles, and that play a central role in generating and gating predictive neural activity. PMID:22285219

  12. A Survey of Quantitative Descriptions of Molecular Structure

    PubMed Central

    Guha, Rajarshi; Willighagen, Egon

    2013-01-01

    Numerical characterization of molecular structure is a first step in many computational analysis of chemical structure data. These numerical representations, termed descriptors, come in many forms, ranging from simple atom counts and invariants of the molecular graph to distribution of properties, such as charge, across a molecular surface. In this article we first present a broad categorization of descriptors and then describe applications and toolkits that can be employed to evaluate them. We highlight a number of issues surrounding molecular descriptor calculations such as versioning and reproducibility and describe how some toolkits have attempted to address these problems. PMID:23110530

  13. Molecular structural studies of human factor VIII.

    PubMed

    McKee, P A; Andersen, J C; Switzer, M E

    1975-01-20

    Neither normal nor hemophilic factor VIII protein enters a 5% sosium dodecyl sulfate gel; on reduction, however, a single 195 000-molecular-weight peptide is observed. Hemophilic and normal factor VIII contain carbohydrate and appear identical in subunit molecular weight, electrical charge, and major antigenic determinants. Thrombin activation and inactivation of factor VIII does not detectably change the subunit molecular weight. Trypsin causes similar activity changes and obviously cleaves the factor VIII subunit. Human plasmin destroys factor VIII procoagulant activity and degrades the factor VIII subunit to 103 000-, 88 000-, and 17 000-molecular-weight peptides. Both normal and hemophilic factor VIII as well as thrombin-inactivated factor VIII support ristocetin-induced platelet aggregation. Purified factor VIII chromatographed on 4% agarose in 1.0 M sodium chloride shows no dissociation of the procoagulant activity from the void volume protein. Gel chromatography on 4% agarose in 0.25 M calcium chloride results in a procoagulant activity peak removed from the void volume protein; both peaks contain protein which does not enter a 5% SDS gel, but on reduction a 195 000-molecular-weight subunit band is observed for each. Both the void volume protein peak and the procoagulant activity peak from the 0.25 M calcium chloride-agarose gel column support ristocetin-induced platelet aggregation. After removal of calcium, a small amount of procoagulant activity is present only in the void volume peak. These data suggest that both the procoagulant and von Willebrand activities are on the same molecule. Thus our previous conclusion remains the same: human factor VIII is a large glycoprotein composed of identical 195 000-molecular-weight subunits jointed by disulfide bonds and is responsible for both antihemophilic and von Willebrand activities in human plasma. PMID:122889

  14. Evaluating the Relative Effectiveness of Structured-Input and Output-Based Instruction in Foreign Language Learning: Results from an Experimental Study

    ERIC Educational Resources Information Center

    Erlam, Rosemary

    2003-01-01

    This paper reviews studies that have contrasted the effectiveness of structured-input instruction with output-based instruction. It then presents results from a study comparing the relative effects of structured-input and output-based instruction on students' ability to comprehend and produce direct object pronouns in second language French. Three…

  15. Damage identification for large span structure based on multiscale inputs to artificial neural networks.

    PubMed

    Lu, Wei; Teng, Jun; Cui, Yan

    2014-01-01

    In structural health monitoring system, little research on the damage identification from different types of sensors applied to large span structure has been done in the field. In fact, it is significant to estimate the whole structural safety if the multitype sensors or multiscale measurements are used in application of structural health monitoring and the damage identification for large span structure. A methodology to combine the local and global measurements in noisy environments based on artificial neural network is proposed in this paper. For a real large span structure, the capacity of the methodology is validated, including the decision on damage placement, the discussions on the number of the sensors, and the optimal parameters for artificial neural networks. Furthermore, the noisy environments in different levels are simulated to demonstrate the robustness and effectiveness of the proposed approach. PMID:24977207

  16. Damage Identification for Large Span Structure Based on Multiscale Inputs to Artificial Neural Networks

    PubMed Central

    Teng, Jun; Cui, Yan

    2014-01-01

    In structural health monitoring system, little research on the damage identification from different types of sensors applied to large span structure has been done in the field. In fact, it is significant to estimate the whole structural safety if the multitype sensors or multiscale measurements are used in application of structural health monitoring and the damage identification for large span structure. A methodology to combine the local and global measurements in noisy environments based on artificial neural network is proposed in this paper. For a real large span structure, the capacity of the methodology is validated, including the decision on damage placement, the discussions on the number of the sensors, and the optimal parameters for artificial neural networks. Furthermore, the noisy environments in different levels are simulated to demonstrate the robustness and effectiveness of the proposed approach. PMID:24977207

  17. An Integrated Hydrologic Bayesian Multi-Model Combination Framework: Confronting Input, parameter and model structural uncertainty in Hydrologic Prediction

    SciTech Connect

    Ajami, N K; Duan, Q; Sorooshian, S

    2006-05-05

    This paper presents a new technique--Integrated Bayesian Uncertainty Estimator (IBUNE) to account for the major uncertainties of hydrologic rainfall-runoff predictions explicitly. The uncertainties from the input (forcing) data--mainly the precipitation observations and from the model parameters are reduced through a Monte Carlo Markov Chain (MCMC) scheme named Shuffled Complex Evolution Metropolis (SCEM) algorithm which has been extended to include a precipitation error model. Afterwards, the Bayesian Model Averaging (BMA) scheme is employed to further improve the prediction skill and uncertainty estimation using multiple model output. A series of case studies using three rainfall-runoff models to predict the streamflow in the Leaf River basin, Mississippi are used to examine the necessity and usefulness of this technique. The results suggests that ignoring either input forcings error or model structural uncertainty will lead to unrealistic model simulations and their associated uncertainty bounds which does not consistently capture and represent the real-world behavior of the watershed.

  18. Influence of allochtonous carbon input and food-web structure on freshwater biotic communities and sedimentation process

    NASA Astrophysics Data System (ADS)

    Harrault, Loïc; Allard, Béatrice; Mériguet, Jacques; Carmignac, David; Perret, Samuel; Huon, Sylvain; Edeline, Eric; Lacroix, Gérard

    2013-04-01

    Soil erosion in freshwaters induces important changes in lake metabolism. The organic matter and the nutrients supplied by soil inputs can change internal biogeochemical cycles and subsidize the whole food web from basal organisms to top-predators. Since the last two decades, the role of allochthonous organic matter as a basal resource for aquatic food webs in natural and controlled conditions has received a growing attention. We studied the impact of soil on the functioning of pond ecosystems by performing monthly additions of soil in freshwater mesocosms. In addition, the food-web structure was manipulated by addition of omnivorous fish to study interactions between the bottom-up effect of soil addition and the top-down effect of fish. The effects of soil and fish addition on the, the elemental and the biochemical compositions of pelagic compartments and recent sediment, on the biomass of seston and zooplankton and on the sediment rates were studied. Soil inputs had no effect on biomass, stoichiometry and lipid composition of seston and zooplankton but fish growth was enhanced by soil addition. Soil treatment had several (but idiosyncratic) effects on the stoichiometry and on the lipid composition of recent sediment. However, the sedimentation rates and the potential biodegradability of recent sediment were not affected by soil inputs. Fish addition affected chlorophyll-a concentration of the water column, seston biomass, sedimentation rates and stoichiometry of seston, zooplankton and short-term sediment. The lipid composition of recent sediment was also influenced by fish addition. However, fish addition did not change the biodegradability of recent sediment. Finally, we did not observe any significant interaction between soil and fish treatments. Our results suggest that the addition of soil as allochthonous inputs to aquatic ecosystem induced a subsidize of the food web only on fish, probably due to direct foraging on bottom sediment. Nevertheless, this

  19. Structures in Galaxies: Nature versus Nurture. Input from Theory and Simulations

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.

    2010-10-01

    Galaxies, in particular disc galaxies, contain a number of structures and substructures with well defined morphological, photometric and kinematic properties. Considerable theoretical effort has been put into explaining their formation and evolution, both analytically and with numerical simulations. In some theories, structures form during the natural evolution of the galaxy, i.e. they are a result of nature. For others, it is the interaction with other galaxies, or with the intergalactic medium—i.e. nurture—that accounts for a structure. Either way, the existence and properties of these structures reveal important information on the underlying potential of the galaxy, i.e. on the amount and distribution of matter—including the dark matter—in it, and on the evolutionary history of the galaxy. Here, I will briefly review the various formation scenarios and the respective role of nature and nurture in the formation, evolution and properties of the main structures and substructures.

  20. Two worlds collide: Image analysis methods for quantifying structural variation in cluster molecular dynamics

    SciTech Connect

    Steenbergen, K. G.; Gaston, N.

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.

  1. Resolving detailed molecular structures in complex organic mixtures and modeling their secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Goodman-Rendall, Kevin A. S.; Zhuang, Yang R.; Amirav, Aviv; Chan, Arthur W. H.

    2016-03-01

    Characterization of unresolved complex mixtures (UCMs) remains an ongoing challenge towards developing detailed and accurate inputs for modeling secondary organic aerosol (SOA) formation. Traditional techniques based on gas chromatography/electron impact-mass spectrometry induce excessive fragmentation, making it difficult to speciate and quantify isomers precisely. The goal of this study is to identify individual organic isomers by gas chromatography/mass spectrometry with supersonic molecular beam (SMB-GC/MS, also known as GC/MS with Cold EI) and to incorporate speciated isomers into an SOA model that accounts for the specific structures elucidated. Two samples containing atmospherically relevant UCMs are analyzed. The relative isomer distributions exhibit remarkably consistent trends across a wide range of carbon numbers. Constitutional isomers of different alkanes are speciated and individually quantified as linear, branched - for the first time by position of branching - multiply branched, or unsaturated - by degree of ring substitution and number of rings. Relative amounts of exact molecular structures are used as input parameters in an SOA box model to study the effects of molecular structures on SOA yields and volatility evolution. Highly substituted cyclic, mono-substituted cyclic, and linear species have the highest SOA yields while branched alkanes formed the least SOA. The rate of functionalization of a representative UCM is found to be in agreement with current volatility basis set (VBS) parameterizations based on detailed knowledge of composition and known oxidation mechanisms, confirming the validity of VBS parameters currently used in air quality models.

  2. Colour Chemistry, Part I, Principles, Colour, and Molecular Structure

    ERIC Educational Resources Information Center

    Hallas, G.

    1975-01-01

    Discusses various topics in color chemistry, including the electromagnetic spectrum, the absorption and reflection of light, additive and subtractive color mixing, and the molecular structure of simple colored substances. (MLH)

  3. Modeling Polymorphic Molecular Crystals with Electronic Structure Theory.

    PubMed

    Beran, Gregory J O

    2016-05-11

    Interest in molecular crystals has grown thanks to their relevance to pharmaceuticals, organic semiconductor materials, foods, and many other applications. Electronic structure methods have become an increasingly important tool for modeling molecular crystals and polymorphism. This article reviews electronic structure techniques used to model molecular crystals, including periodic density functional theory, periodic second-order Møller-Plesset perturbation theory, fragment-based electronic structure methods, and diffusion Monte Carlo. It also discusses the use of these models for predicting a variety of crystal properties that are relevant to the study of polymorphism, including lattice energies, structures, crystal structure prediction, polymorphism, phase diagrams, vibrational spectroscopies, and nuclear magnetic resonance spectroscopy. Finally, tools for analyzing crystal structures and intermolecular interactions are briefly discussed. PMID:27008426

  4. Damage Characterization Method for Structural Health Management Using Reduced Number of Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, T.; Hochhalter, Jacob D.; Gallegos, Adam M.

    2012-01-01

    The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) tools, technologies, and techniques to enable detection, diagnosis, prognosis, and mitigation in the presence of adverse conditions during flight will provide effective solutions to deal with safety related challenges facing next generation aircraft. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and damage conditions. A major concern in these structures is the growth of undetected damage (cracks) due to fatigue and low velocity foreign impacts that can reach a critical size during flight, resulting in loss of control of the aircraft. Hence, development of efficient methodologies to determine the presence, location, and severity of damage in critical structural components is highly important in developing efficient structural health management systems.

  5. Adaptive modelling of structured molecular representations for toxicity prediction

    NASA Astrophysics Data System (ADS)

    Bertinetto, Carlo; Duce, Celia; Micheli, Alessio; Solaro, Roberto; Tiné, Maria Rosaria

    2012-12-01

    We investigated the possibility of modelling structure-toxicity relationships by direct treatment of the molecular structure (without using descriptors) through an adaptive model able to retain the appropriate structural information. With respect to traditional descriptor-based approaches, this provides a more general and flexible way to tackle prediction problems that is particularly suitable when little or no background knowledge is available. Our method employs a tree-structured molecular representation, which is processed by a recursive neural network (RNN). To explore the realization of RNN modelling in toxicological problems, we employed a data set containing growth impairment concentrations (IGC50) for Tetrahymena pyriformis.

  6. Trigeminal intersubnuclear neurons: morphometry and input-dependent structural plasticity in adult rats.

    PubMed

    Martin, Yasmina B; Negredo, Pilar; Villacorta-Atienza, Jose A; Avendaño, Carlos

    2014-05-01

    Intersubnuclear neurons in the caudal division of the spinal trigeminal nucleus that project to the principal nucleus (Pr5) play an active role in shaping the receptive fields of other neurons, at different levels in the ascending sensory system that processes information originating from the vibrissae. By using retrograde labeling and digital reconstruction, we investigated the morphometry and topology of the dendritic trees of these neurons and the changes induced by long-term experience-dependent plasticity in adult male rats. Primary afferent input was either eliminated by transection of the right infraorbital nerve (IoN), or selectively altered by repeated whisker clipping on the right side. These neurons do not display asymmetries between sides in basic metric and topologic parameters (global number of trees, nodes, spines, or dendritic ends), although neurons on the left tend to have longer terminal segments. Ipsilaterally, both deafferentation (IoN transection) and deprivation (whisker trimming) reduced the density of spines, and the former also caused a global increase in total dendritic length and a relative increase in more complex arbors. Contralaterally, deafferentation reduced more complex dendritic trees, and caused a moderate decline in dendritic length and spatial reach, and a loss of spines in number and density. Deprivation caused a similar, but more profound, effect on spines. Our findings provide original quantitative descriptions of a scarcely known cell population, and show that denervation- or deprivation-derived plasticity is expressed not only by neurons at higher levels of the sensory pathways, but also by neurons in key subcortical circuits for sensory processing. PMID:24178892

  7. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb

    PubMed Central

    Carey, Ryan M.; Sherwood, William Erik; Shipley, Michael T.; Borisyuk, Alla

    2015-01-01

    Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks. PMID:25717156

  8. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb.

    PubMed

    Carey, Ryan M; Sherwood, William Erik; Shipley, Michael T; Borisyuk, Alla; Wachowiak, Matt

    2015-05-01

    Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks. PMID:25717156

  9. Instructional Approach to Molecular Electronic Structure Theory

    ERIC Educational Resources Information Center

    Dykstra, Clifford E.; Schaefer, Henry F.

    1977-01-01

    Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)

  10. Synthesis and molecular structure of gold triarylcorroles.

    PubMed

    Thomas, Kolle E; Alemayehu, Abraham B; Conradie, Jeanet; Beavers, Christine; Ghosh, Abhik

    2011-12-19

    A number of third-row transition-metal corroles have remained elusive as synthetic targets until now, notably osmium, platinum, and gold corroles. Against this backdrop, we present a simple and general synthesis of β-unsubstituted gold(III) triarylcorroles and the first X-ray crystal structure of such a complex. Comparison with analogous copper and silver corrole structures, supplemented by extensive scalar-relativistic, dispersion-corrected density functional theory calculations, suggests that "inherent saddling" may occur for of all coinage metal corroles. The degree of saddling, however, varies considerably among the three metals, decreasing conspicuously along the series Cu > Ag > Au. The structural differences reflect significant differences in metal-corrole bonding, which are also reflected in the electrochemistry and electronic absorption spectra of the complexes. From Cu to Au, the electronic structure changes from noninnocent metal(II)-corrole(•2-) to relatively innocent metal(III)-corrole(3-). PMID:22111600

  11. [The structure of the initial inputs into the metasympathetic nervous system of the rat uterus].

    PubMed

    Kucheriavykh, L E; Skopichev, V G; Nozdrachev, A D

    1999-01-01

    Different populations of sympathetic neurons exerting modulating influence on neurons of nervous plexuses of proper metasympathetic nervous system of the uterus in albino laboratory rats were detected using the method on retrograde transport of fluorescent marker primulin. Following the injection of the marker into uterovaginal plexus, labelled neurons were found as aggregations in caudal mesenterial sympathetic ganglia, ganglia of coeliac plexus, renal ganglia and ganglia of coeliac trunk. The structure of nervous paths of external control of uterus functioning was analysed. PMID:10709194

  12. Multiple-response Bayesian calibration of watershed water quality models with significant input and model structure errors

    NASA Astrophysics Data System (ADS)

    Han, Feng; Zheng, Yi

    2016-02-01

    While watershed water quality (WWQ) models have been widely used to support water quality management, their profound modeling uncertainty remains an unaddressed issue. Data assimilation via Bayesian calibration is a promising solution to the uncertainty, but has been rarely practiced for WWQ modeling. This study applied multiple-response Bayesian calibration (MRBC) to SWAT, a classic WWQ model, using the nitrate pollution in the Newport Bay Watershed (southern California, USA) as the study case. How typical input and model structure errors would impact modeling uncertainty, parameter identification and management decision-making was systematically investigated through both synthetic and real-situation modeling cases. The main study findings include: (1) with an efficient sampling scheme, MRBC is applicable to WWQ modeling in characterizing its parametric and predictive uncertainties; (2) incorporating hydrology responses, which are less susceptible to input and model structure errors than water quality responses, can improve the Bayesian calibration results and benefit potential modeling-based management decisions; and (3) the value of MRBC to modeling-based decision-making essentially depends on pollution severity, management objective and decision maker's risk tolerance.

  13. The optimization of force inputs for active structural acoustic control using a neural network

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Lester, H. C.; Silcox, R. J.

    1992-01-01

    This paper investigates the use of a neural network to determine which force actuators, of a multi-actuator array, are best activated in order to achieve structural-acoustic control. The concept is demonstrated using a cylinder/cavity model on which the control forces, produced by piezoelectric actuators, are applied with the objective of reducing the interior noise. A two-layer neural network is employed and the back propagation solution is compared with the results calculated by a conventional, least-squares optimization analysis. The ability of the neural network to accurately and efficiently control actuator activation for interior noise reduction is demonstrated.

  14. Influence of Input Parameters on the Performance of an Artificial Neural Network Used to Detect Structural Damage

    NASA Astrophysics Data System (ADS)

    Villalba, Jesus Daniel; Gomez, Ivan Dario; Laier, Jose Elias

    2010-09-01

    Structural damage detection is a very important research topic and, currently, there are not specific tools to solve it. A promising tool that can be used is the artificial neural network, ANN, which can deal with hard problems. This paper uses a back propagation ANN with Bayesian regularization training to locate and quantify damage in truss structures. The input parameters corresponded to natural frequencies combined with shape modes, modal flexibilities or modal strain energies. The ANN was trained by considering only simple damage scenarios, random multiple damage scenarios or a combination of them. The results are shown in terms of the percentage of cases in which the ANN trained achieves a determined performance in assessing both the damage extension and the presence of damaged elements. The best performance for the ANN is obtained by using modal strain energies and multiple damage scenarios.

  15. Input shaping filter methods for the control of structurally flexible, long-reach manipulators

    SciTech Connect

    Kwon, Dong-Soo; Hwang, Dong-Hwan; Babcock, S.M.; Burks, B.L.

    1993-11-01

    Within the Environmental Restoration and Waste Management Program of the US Department of Energy, the remediation of single-shell radioactive waste storage tanks is one of the areas that challenge state-of-the-art equipment and methods. Concepts that utilize long-reach manipulators are being seriously considered for this task. Due to high payload capacity and high length-to-cross-section ratio requirements, these long-reach manipulator systems are expected to exhibit significant structural flexibility. To avoid structural vibrations during operation, various types of shaping filter methods have been investigated. A robust notch filtering method and an impulse shaping method were used as simulation benchmarks. In addition to that, two very different approaches have been developed and compared. One new approach, referred to as a ``feedforward simulation filter,`` uses imbedded simulation with complete knowledge of the system dynamics. The other approach, ``fuzzy shaping method,`` employs a fuzzy logic method to modify the joint trajectory from the desired end-position trajectory without precise knowledge of the system dynamics.

  16. Withholding inputs in team contexts: member composition, interaction processes, evaluation structure, and social loafing.

    PubMed

    Price, Kenneth H; Harrison, David A; Gavin, Joanne H

    2006-11-01

    Social loafing was observed as a naturally occurring process in project teams of students working together for 3-4 months. The authors assessed the contributions that member composition (i.e., relational dissimilarity and knowledge, skills, and abilities; KSAs), perceptions of the team's interaction processes (i.e., dispensability and the fairness of the decision-making procedures), and the team's evaluation structure (i.e., identifiability) make toward understanding loafing behavior. Identifiability moderated the impact of dispensability on loafing but not the impact of fairness on loafing. Perceptions of fairness were negatively related to the extent that participants loafed within their team. Specific aspects of relational dissimilarity were positively associated with perceptions of dispensability and negatively associated with perceptions of fairness, whereas KSAs were negatively associated with perceptions of dispensability. PMID:17100491

  17. The computational structural mechanics testbed architecture. Volume 5: The Input-Output Manager DMGASP

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1989-01-01

    This is the fifth of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the command language interpreter (CLIP), and the data manager (GAL). Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 5 describes the low-level data management component of the NICE software. It is intended only for advanced programmers involved in maintenance of the software.

  18. Evidence of sewage input to inner shelf sediments in the NE coast of Brazil obtained by molecular markers distribution.

    PubMed

    Carreira, Renato S; Albergaria-Barbosa, Ana Cecília R; Arguelho, Maria L P M; Garcia, Carlos A B

    2015-01-15

    Coprostanol (5β-cholestan-3β-ol) and other fecal steroids were used as markers to trace the input of sewage to the shelf along the coast of Sergipe and Alagoas States, in NE Brazil. Surface sediment samples in shallow regions (<50 m depth) on the shelf were collected adjacent to four fluvial systems, whose drainage basins exhibit distinct levels of human influence. Highest coprostanol concentrations were observed in the area under influence of the Sergipe River (58.6 ± 74.6 ng g(-)(1); maximum of 184.1 ng g(-)(1)), whereas in the Vaza-Barris (18.9 ± 23.6 ng g(-)(1)) and the Piaui/Real (12.3 ± 6.7 ng g(-)(1)) rivers the levels of coprostanol were near the method's limit of detection. Nearby the São Francisco River, the largest in the NE Brazil, coprostanol was virtually absent. The findings of the present study, supported by coprostanol-based diagnostic ratios, revealed that, when sanitation is lacking in the coastal region, even a small-sized river like the Sergipe River can effectively contribute to the export of sewage-derived organic matter to the inner continental shelf in the studied region. PMID:25467184

  19. Molecular gymnastics: serpin structure, folding and misfolding.

    PubMed

    Whisstock, James C; Bottomley, Stephen P

    2006-12-01

    The native state of serpins represents a long-lived intermediate or metastable structure on the serpin folding pathway. Upon interaction with a protease, the serpin trap is sprung and the molecule continues to fold into a more stable conformation. However, thermodynamic stability can also be achieved through alternative, unproductive folding pathways that result in the formation of inactive conformations. Our increasing understanding of the mechanism of protease inhibition and the dynamics of native serpin structures has begun to reveal how evolution has harnessed the actual process of protein folding (rather than the final folded outcome) to elegantly achieve function. The cost of using metastability for function, however, is an increased propensity for misfolding. PMID:17079131

  20. Molecular Eigensolution Symmetry Analysis and Fine Structure

    PubMed Central

    Harter, William G.; Mitchell, Justin C.

    2013-01-01

    Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041

  1. Complementary molecular information changes our perception of food web structure

    PubMed Central

    Wirta, Helena K.; Hebert, Paul D. N.; Kaartinen, Riikka; Prosser, Sean W.; Várkonyi, Gergely; Roslin, Tomas

    2014-01-01

    How networks of ecological interactions are structured has a major impact on their functioning. However, accurately resolving both the nodes of the webs and the links between them is fraught with difficulties. We ask whether the new resolution conferred by molecular information changes perceptions of network structure. To probe a network of antagonistic interactions in the High Arctic, we use two complementary sources of molecular data: parasitoid DNA sequenced from the tissues of their hosts and host DNA sequenced from the gut of adult parasitoids. The information added by molecular analysis radically changes the properties of interaction structure. Overall, three times as many interaction types were revealed by combining molecular information from parasitoids and hosts with rearing data, versus rearing data alone. At the species level, our results alter the perceived host specificity of parasitoids, the parasitoid load of host species, and the web-wide role of predators with a cryptic lifestyle. As the northernmost network of host–parasitoid interactions quantified, our data point exerts high leverage on global comparisons of food web structure. However, how we view its structure will depend on what information we use: compared with variation among networks quantified at other sites, the properties of our web vary as much or much more depending on the techniques used to reconstruct it. We thus urge ecologists to combine multiple pieces of evidence in assessing the structure of interaction webs, and suggest that current perceptions of interaction structure may be strongly affected by the methods used to construct them. PMID:24449902

  2. Who gets credit for input? Demographic and structural status cues in voice recognition.

    PubMed

    Howell, Taeya M; Harrison, David A; Burris, Ethan R; Detert, James R

    2015-11-01

    The authors investigate the employee features that, alongside overall voice expression, affect supervisors' voice recognition. Drawing primarily from status characteristics and network position theories, the authors propose and find in a study of 693 employees from 89 different credit union units that supervisors are more likely to credit those reporting the same amount of voice if the employees have higher ascribed or assigned (by the organization) status--cued by demographic variables such as majority ethnicity and full-time work hours. Further, supervisors are more likely to recognize voice from employees who have higher achieved status--cued by their centrality in informal social structures. The authors also find that even when certain groups of lower status employees speak up more, they cannot compensate for the negative effect of their demographic membership on voice recognition by their boss. The authors underscore how recognition of employee voice by supervisors matters for employees. It carries (mediates) the effects of voice expression and status onto performance evaluations 1 year later, which means that demographic differences in the assignment of credit for voice can serve as an implicit pathway for discrimination. PMID:25915784

  3. Giant Molecular Cloud Structure and Evolution

    NASA Technical Reports Server (NTRS)

    Hollenbach, David (Technical Monitor); Bodenheimer, P. H.

    2003-01-01

    Bodenheimer and Burkert extended earlier calculations of cloud core models to study collapse and fragmentation. The initial condition for an SPH collapse calculation is the density distribution of a Bonnor-Ebert sphere, with near balance between turbulent plus thermal energy and gravitational energy. The main parameter is the turbulent Mach number. For each Mach number several runs are made, each with a different random realization of the initial turbulent velocity field. The turbulence decays on a dynamical time scale, leading the cloud into collapse. The collapse proceeds isothermally until the density has increased to about 10(exp 13) g cm(exp -3). Then heating is included in the dense regions. The nature of the fragmentation is investigated. About 15 different runs have been performed with Mach numbers ranging from 0.3 to 3.5 (the typical value observed in molecular cloud cores is 0.7). The results show a definite trend of increasing multiplicity with increasing Mach number (M), with the number of fragments approximately proportional to (1 + M). In general, this result agrees with that of Fisher, Klein, and McKee who published three cases with an AMR grid code. However our results show that there is a large spread about this curve. For example, for M=0.3 one case resulted in no fragmentation while a second produced three fragments. Thus it is not only the value of M but also the details of the superposition of the various velocity modes that play a critical role in the formation of binaries. Also, the simulations produce a wide range of separations (10-1000 AU) for the multiple systems, in rough agreement with observations. These results are discussed in two conference proceedings.

  4. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  5. Molecular-structure-based models of chemical inventories using neural networks.

    PubMed

    Wernet, Gregor; Hellweg, Stefanie; Fischer, Ulrich; Papadokonstantakis, Stavros; Hungerbühler, Konrad

    2008-09-01

    Chemical synthesis is a complex and diverse procedure, and production data are often scarce or incomplete. A detailed inventory analysis of all mass and energy flows necessary for the production of chemicals is often costly and time-intensive. Therefore only few chemical inventories exist, even though they are essential for process optimization and the environmental assessment of many products. This paper introduces a newtype of model to provide estimates for inventory data and environmental impacts of chemical production based on the molecular structure of a chemical and without a priori knowledge of the production process. These molecular-structure-based models offer inventory data for users in process design and optimization, screening life cycle assessment (LCA), and supply chain management. They can be applied even if the producer is unknown or the production process is not documented. We assessed the capabilities of linear regression and neural network models for this purpose. All models were generated with a data set of inventory data on 103 chemicals. Different input sets were chosen as ways to transform the chemical structure into a numerical vector of descriptors and the effectiveness of the different input sets was analyzed. The results show that a correctly developed neural network model can perform on an acceptable level for many purposes. The models can assist process developers to improve energy efficiency in all design stages and aid in LCA and supply chain management by filling data gaps. PMID:18800554

  6. Glyphosate input modifies microbial community structure in clear and turbid freshwater systems.

    PubMed

    Pizarro, H; Vera, M S; Vinocur, A; Pérez, G; Ferraro, M; Menéndez Helman, R J; Dos Santos Afonso, M

    2016-03-01

    Since it was commercially introduced in 1974, glyphosate has been one of the most commonly used herbicides in agriculture worldwide, and there is growing concern about its adverse effects on the environment. Assuming that glyphosate may increase the organic turbidity of water bodies, we evaluated the effect of a single application of 2.4 ± 0.1 mg l(-1) of glyphosate (technical grade) on freshwater bacterioplankton and phytoplankton (pico, micro, and nanophytoplankton) and on the physical and chemical properties of the water. We used outdoor experimental mesocosms under clear and oligotrophic (phytoplanktonic chlorophyll a = 2.04 μg l(-1); turbidity = 2.0 NTU) and organic turbid and eutrophic (phytoplanktonic chlorophyll a = 50.3 μg l(-1); turbidity = 16.0 NTU) scenarios. Samplings were conducted at the beginning of the experiment and at 1, 8, 19, and 33 days after glyphosate addition. For both typologies, the herbicide affected the abiotic water properties (with a marked increase in total phosphorus), but it did not affect the structure of micro and nanophytoplankton. In clear waters, glyphosate treatment induced a trend toward higher bacteria and picoeukaryotes abundances, while there was a 2 to 2.5-fold increase in picocyanobacteria number. In turbid waters, without picoeukaryotes at the beginning of the experiment, glyphosate decreased bacteria abundance but increased the number of picocyanobacteria, suggesting a direct favorable effect. Moreover, our results show that the impact of the herbicide was observed in microorganisms from both oligo and eutrophic conditions, indicating that the impact would be independent of the trophic status of the water body. PMID:26552793

  7. Cross-frequency coupling in deep brain structures upon processing the painful sensory inputs.

    PubMed

    Liu, C C; Chien, J H; Kim, J H; Chuang, Y F; Cheng, D T; Anderson, W S; Lenz, F A

    2015-09-10

    Cross-frequency coupling has been shown to be functionally significant in cortical information processing, potentially serving as a mechanism for integrating functionally relevant regions in the brain. In this study, we evaluate the hypothesis that pain-related gamma oscillatory responses are coupled with low-frequency oscillations in the frontal lobe, amygdala and hippocampus, areas known to have roles in pain processing. We delivered painful laser pulses to random locations on the dorsal hand of five patients with uncontrolled epilepsy requiring depth electrode implantation for seizure monitoring. Two blocks of 40 laser stimulations were delivered to each subject and the pain-intensity was controlled at five in a 0-10 scale by adjusting the energy level of the laser pulses. Local-field-potentials (LFPs) were recorded through bilaterally implanted depth electrode contacts to study the oscillatory responses upon processing the painful laser stimulations. Our results show that painful laser stimulations enhanced low-gamma (LH, 40-70 Hz) and high-gamma (HG, 70-110 Hz) oscillatory responses in the amygdala and hippocampal regions on the right hemisphere and these gamma responses were significantly coupled with the phases of theta (4-7 Hz) and alpha (8-1 2 Hz) rhythms during pain processing. Given the roles of these deep brain structures in emotion, these findings suggest that the oscillatory responses in these regions may play a role in integrating the affective component of pain, which may contribute to our understanding of the mechanisms underlying the affective information processing in humans. PMID:26168707

  8. Reverse engineering chemical structures from molecular descriptors : how many solutions?

    SciTech Connect

    Brown, William Michael; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-06-01

    Physical, chemical and biological properties are the ultimate information of interest for chemical compounds. Molecular descriptors that map structural information to activities and properties are obvious candidates for information sharing. In this paper, we consider the feasibility of using molecular descriptors to safely exchange chemical information in such a way that the original chemical structures cannot be reverse engineered. To investigate the safety of sharing such descriptors, we compute the degeneracy (the number of structure matching a descriptor value) of several 2D descriptors, and use various methods to search for and reverse engineer structures. We examine degeneracy in the entire chemical space taking descriptors values from the alkane isomer series and the PubChem database. We further use a stochastic search to retrieve structures matching specific topological index values. Finally, we investigate the safety of exchanging of fragmental descriptors using deterministic enumeration.

  9. Comprehensive Molecular Structure of the Eukaryotic Ribosome

    PubMed Central

    Taylor, Derek J.; Devkota, Batsal; Huang, Andrew D.; Topf, Maya; Narayanan, Eswar; Sali, Andrej; Harvey, Stephen C.; Frank, Joachim

    2009-01-01

    Despite the emergence of a large number of X-ray crystallographic models of the bacterial 70S ribosome over the past decade, an accurate atomic model of the eukaryotic 80S ribosome is still not available. Eukaryotic ribosomes possess more ribosomal proteins and ribosomal RNA than bacterial ribosomes, which are implicated in extra-ribosomal functions in the eukaryotic cells. By combining cryo-EM with RNA and protein homology modeling, we obtained an atomic model of the yeast 80S ribosome complete with all ribosomal RNA expansion segments and all ribosomal proteins for which a structural homolog can be identified. Mutation or deletion of 80S ribosomal proteins can abrogate maturation of the ribosome, leading to several human diseases. We have localized one such protein unique to eukaryotes, rpS19e, whose mutations are associated with Diamond-Blackfan anemia in humans. Additionally, we characterize crucial and novel interactions between the dynamic stalk base of the ribosome with eukaryotic elongation factor 2. PMID:20004163

  10. Local Protein Structure Refinement via Molecular Dynamics Simulations with locPREFMD.

    PubMed

    Feig, Michael

    2016-07-25

    A method for the local refinement of protein structures that targets improvements in local stereochemistry while preserving the overall fold is presented. The method uses force field-based minimization and sampling via molecular dynamics simulations with a modified force field to bring bonds, angles, and torsion angles into an acceptable range for high-resolution protein structures. The method is implemented in the locPREFMD web server and was tested on computational models submitted to CASP11. Using MolProbity scores as the main assessment criterion, the locPREFMD method significantly improves the stereochemical quality of given input models close to the quality expected for experimental structures while maintaining the Cα coordinates of the initial model. PMID:27380201

  11. Molecular structure and elastic properties of thermotropic liquid crystals: Integrated molecular dynamics—Statistical mechanical theory vs molecular field approach

    NASA Astrophysics Data System (ADS)

    Capar, M. Ilk; Nar, A.; Ferrarini, A.; Frezza, E.; Greco, C.; Zakharov, A. V.; Vakulenko, A. A.

    2013-03-01

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  12. Molecular structure and elastic properties of thermotropic liquid crystals: integrated molecular dynamics--statistical mechanical theory vs molecular field approach.

    PubMed

    Ilk Capar, M; Nar, A; Ferrarini, A; Frezza, E; Greco, C; Zakharov, A V; Vakulenko, A A

    2013-03-21

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio

  13. Connecting the density structure of molecular clouds and star formation.

    NASA Astrophysics Data System (ADS)

    Kainulainen, Jouni

    2015-08-01

    In the current paradigm of turbulence-regulated interstellar medium (ISM), star formation rates of entire galaxies are intricately linked to the density structure of the individual molecular clouds in the ISM. This density structure is essentially encapsulated in the probability distribution function of volume densities (rho-PDF), which directly affects the star formation rates predicted by analytic models. Contrasting its fundamental role, the rho-PDF function and its evolution have remained virtually unconstrained by observations. I describe in this contribution our recent progress in attaining observational constraints for the rho-PDFs of molecular clouds. Specifically, I review our first systematic determination of the rho-PDFs in Solar neighborhood molecular clouds. I will also present new evidence of the time evolution of the projected rho-PDFs, i.e., column density PDFs. These results together enable us to build the first observationally constrained link between the evolving density structure of molecular clouds and the star formation within. Finally, I discuss our work to expand the analysis into a Galactic context and to observationally connect the physical processes acting at the scale of molecular clouds with star formation at the scale of galaxies.

  14. Determination of structure parameters in molecular tunnelling ionisation model

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; Zhao, Song-Feng; Zhang, Cai-Rong; Li, Wei; Zhou, Xiao-Xin

    2014-04-01

    We extracted the accurate structure parameters in a molecular tunnelling ionisation model (the so-called MO-ADK model) for 23 selected linear molecules including some inner orbitals. The molecular wave functions with the correct asymptotic behaviour are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials numerically constructed using the modified Leeuwen-Baerends (LBα) model. We show that the orientation-dependent ionisation rate reflects the shape of the ionising orbitals in general. The influences of the Stark shifts of the energy levels on the orientation-dependent ionisation rates of the polar molecules are studied. We also examine the angle-dependent ionisation rates (or probabilities) based on the MO-ADK model by comparing with the molecular strong-field approximation calculations and with recent experimental measurements.

  15. From non-random molecular structure to life and mind

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1989-01-01

    The evolutionary hierarchy molecular structure-->macromolecular structure-->protobiological structure-->biological structure-->biological functions has been traced by experiments. The sequence always moves through protein. Extension of the experiments traces the formation of nucleic acids instructed by proteins. The proteins themselves were, in this picture, instructed by the self-sequencing of precursor amino acids. While the sequence indicated explains the thread of the emergence of life, protein in cellular membrane also provides the only known material basis for the emergence of mind in the context of emergence of life.

  16. [Structure and molecular mechanisms of infection and replication of HIV].

    PubMed

    Sato, Hironori; Ode, Hirotaka; Motomura, Kazushi; Yokoyama, Masaru

    2009-01-01

    Studies on molecular structure and mechanisms of replication of a pathogen are important from both scientific and clinical viewpoints. The replication study allows us to identify key molecules to regulate life cycle of the pathogen and to screen rationally anti-pathogen drugs. The structural study helps understand how the key molecules work at atomic levels and to design adequately the drugs. In this article, we review important findings on structural and replication studies of human immunodeficiency virus (HIV). We also summarize the latest methods for the structural study, mainly focusing on computational simulation technology (in silico analysis). Finally, we summarize briefly standard methods to study replication of viruses. PMID:19177750

  17. Molecular structure of DNA by scanning tunneling microscopy.

    PubMed

    Cricenti, A; Selci, S; Felici, A C; Generosi, R; Gori, E; Djaczenko, W; Chiarotti, G

    1989-09-15

    Uncoated DNA molecules marked with an activated tris(l-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with the use of a high-resolution scanning tunneling microscope (STM). Constant-current and gap-modulated STM images show clear evidence of the helicity of the DNA structure: pitch periodicity ranges from 25 to 35 angstroms, whereas the average diameter is 20 angstroms. Molecular structure within a single helix turn was also observed. PMID:2781279

  18. Molecular Structure of DNA by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Cricenti, A.; Selci, S.; Felici, A. C.; Generosi, R.; Gori, E.; Djaczenko, W.; Chiarotti, G.

    1989-09-01

    Uncoated DNA molecules marked with an activated tris(1-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with the use of a high-resolution scanning tunneling microscope (STM). Constant-current and gap-modulated STM images show clear evidence of the helicity of the DNA structure: pitch periodicity ranges from 25 and 35 angstroms, whereas the average diameter is 20 angstroms. Molecular structure within a single helix turn was also observed.

  19. Relating Soil Organic Matter Dynamics to its Molecular Structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our understanding of the dynamics of soil organic matter (SOM) must be integrated with a sound knowledge of it biochemical complexity. The molecular structure of SOM was determined in 98% sand soils to eliminate the known protective effects of clay on the amount and turnover rate of the SOM constitu...

  20. Intensity Inhomogeneity Correction of Structural MR Images: A Data-Driven Approach to Define Input Algorithm Parameters.

    PubMed

    Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante

    2016-01-01

    Intensity non-uniformity (INU) in magnetic resonance (MR) imaging is a major issue when conducting analyses of brain structural properties. An inaccurate INU correction may result in qualitative and quantitative misinterpretations. Several INU correction methods exist, whose performance largely depend on the specific parameter settings that need to be chosen by the user. Here we addressed the question of how to select the best input parameters for a specific INU correction algorithm. Our investigation was based on the INU correction algorithm implemented in SPM, but this can be in principle extended to any other algorithm requiring the selection of input parameters. We conducted a comprehensive comparison of indirect metrics for the assessment of INU correction performance, namely the coefficient of variation of white matter (CVWM), the coefficient of variation of gray matter (CVGM), and the coefficient of joint variation between white matter and gray matter (CJV). Using simulated MR data, we observed the CJV to be more accurate than CVWM and CVGM, provided that the noise level in the INU-corrected image was controlled by means of spatial smoothing. Based on the CJV, we developed a data-driven approach for selecting INU correction parameters, which could effectively work on actual MR images. To this end, we implemented an enhanced procedure for the definition of white and gray matter masks, based on which the CJV was calculated. Our approach was validated using actual T1-weighted images collected with 1.5 T, 3 T, and 7 T MR scanners. We found that our procedure can reliably assist the selection of valid INU correction algorithm parameters, thereby contributing to an enhanced inhomogeneity correction in MR images. PMID:27014050

  1. Intensity Inhomogeneity Correction of Structural MR Images: A Data-Driven Approach to Define Input Algorithm Parameters

    PubMed Central

    Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante

    2016-01-01

    Intensity non-uniformity (INU) in magnetic resonance (MR) imaging is a major issue when conducting analyses of brain structural properties. An inaccurate INU correction may result in qualitative and quantitative misinterpretations. Several INU correction methods exist, whose performance largely depend on the specific parameter settings that need to be chosen by the user. Here we addressed the question of how to select the best input parameters for a specific INU correction algorithm. Our investigation was based on the INU correction algorithm implemented in SPM, but this can be in principle extended to any other algorithm requiring the selection of input parameters. We conducted a comprehensive comparison of indirect metrics for the assessment of INU correction performance, namely the coefficient of variation of white matter (CVWM), the coefficient of variation of gray matter (CVGM), and the coefficient of joint variation between white matter and gray matter (CJV). Using simulated MR data, we observed the CJV to be more accurate than CVWM and CVGM, provided that the noise level in the INU-corrected image was controlled by means of spatial smoothing. Based on the CJV, we developed a data-driven approach for selecting INU correction parameters, which could effectively work on actual MR images. To this end, we implemented an enhanced procedure for the definition of white and gray matter masks, based on which the CJV was calculated. Our approach was validated using actual T1-weighted images collected with 1.5 T, 3 T, and 7 T MR scanners. We found that our procedure can reliably assist the selection of valid INU correction algorithm parameters, thereby contributing to an enhanced inhomogeneity correction in MR images. PMID:27014050

  2. Design and microwave test of an ultrawideband input/output structure for sheet beam travelling wave tubes.

    PubMed

    Shu, Guoxiang; Wang, Jianxun; Liu, Guo; Yang, Liya; Luo, Yong; Wang, Shafei

    2015-06-01

    Broadband operation is of great importance for the applications of travelling wave tubes such as high-data communication and wideband radar. An input/output (I/O) structure operating with broadband property plays a significant role to achieve these applications. In this paper, a Y-type branch waveguide (YTBW) coupler and its improvements are proposed and utilized to construct an extremely wideband I/O structure to ensure the broadband operation for sheet beam travelling wave tubes (SB-TWTs). Cascaded reflection resonators are utilized to improve the isolation characteristic and transmission efficiency. Furthermore, to minimize the reflectivity of the port connected with the RF circuit, wave-absorbing material (WAM) is loaded in the resonator. Simulation results for the YTBW loaded with WAM predict an excellent performance with a 50.2% relative bandwidth for port reflectivity under -15 dB, transmission up to -1.5 dB, and meanwhile isolation under -20 dB. In addition, the coupler has a relatively compact configuration and the beam tunnel can be widened, which is beneficial for the propagation of the electrons. A Q-band YTBW loaded with two reflection resonators is fabricated and microwave tested. Vector network analyzer (VNA) measured results have an excellent agreement with our simulation, which verify our theoretical analysis and simulation calculation. PMID:26133854

  3. Design and microwave test of an ultrawideband input/output structure for sheet beam travelling wave tubes

    SciTech Connect

    Shu, Guoxiang; Wang, Jianxun; Liu, Guo; Yang, Liya; Luo, Yong; Wang, Shafei

    2015-06-15

    Broadband operation is of great importance for the applications of travelling wave tubes such as high-data communication and wideband radar. An input/output (I/O) structure operating with broadband property plays a significant role to achieve these applications. In this paper, a Y-type branch waveguide (YTBW) coupler and its improvements are proposed and utilized to construct an extremely wideband I/O structure to ensure the broadband operation for sheet beam travelling wave tubes (SB-TWTs). Cascaded reflection resonators are utilized to improve the isolation characteristic and transmission efficiency. Furthermore, to minimize the reflectivity of the port connected with the RF circuit, wave-absorbing material (WAM) is loaded in the resonator. Simulation results for the YTBW loaded with WAM predict an excellent performance with a 50.2% relative bandwidth for port reflectivity under −15 dB, transmission up to −1.5 dB, and meanwhile isolation under −20 dB. In addition, the coupler has a relatively compact configuration and the beam tunnel can be widened, which is beneficial for the propagation of the electrons. A Q-band YTBW loaded with two reflection resonators is fabricated and microwave tested. Vector network analyzer (VNA) measured results have an excellent agreement with our simulation, which verify our theoretical analysis and simulation calculation.

  4. Advanced Structural Determination of Diterpene Esters Using Molecular Modeling and NMR Spectroscopy.

    PubMed

    Nothias-Scaglia, Louis-Félix; Gallard, Jean-François; Dumontet, Vincent; Roussi, Fanny; Costa, Jean; Iorga, Bogdan I; Paolini, Julien; Litaudon, Marc

    2015-10-23

    Three new jatrophane esters (1-3) were isolated from Euphorbia amygdaloides ssp. semiperfoliata, including an unprecedented macrocyclic jatrophane ester bearing a hemiketal substructure, named jatrohemiketal (3). The chemical structures of compounds 1-3 and their relative configurations were determined by spectroscopic analysis. The absolute configuration of compound 3 was determined unambiguously through an original strategy combining NMR spectroscopy and molecular modeling. Conformational search calculations were performed for the four possible diastereomers 3a-3d differing in their C-6 and C-9 stereocenters, and the lowest energy conformer was used as input structure for geometry optimization. The prediction of NMR parameters ((1)H and (13)C chemical shifts and (1)H-(1)H coupling constants) by density functional theory (DFT) calculations allowed identifying the most plausible diastereomer. Finally, the stereostructure of 3 was solved by comparison of the structural features obtained by molecular modeling for 3a-3d with NMR-derived data (the values of dihedral angles deduced from the vicinal proton-proton coupling constants ((3)JHH) and interproton distances determined by ROESY). The methodology described herein provides an efficient way to solve or confirm structural elucidation of new macrocyclic diterpene esters, in particular when no crystal structure is available. PMID:26431312

  5. Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model

    NASA Astrophysics Data System (ADS)

    Song-Feng, Zhao; Fang, Huang; Guo-Li, Wang; Xiao-Xin, Zhou

    2016-03-01

    We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov–Popov–Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  6. Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Huang, Fang; Wang, Guo-Li; Zhou, Xiao-Xin

    2016-03-01

    We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov-Popov-Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  7. Molecular solids of actinide hexacyanoferrate: Structure and bonding

    NASA Astrophysics Data System (ADS)

    Dupouy, G.; Dumas, T.; Fillaux, C.; Guillaumont, D.; Moisy, P.; Den Auwer, C.; Le Naour, C.; Simoni, E.; Fuster, E. G.; Papalardo, R.; Sanchez Marcos, E.; Hennig, C.; Scheinost, A.; Conradson, S. D.; Shuh, D. K.; Tyliszczak, T.

    2010-03-01

    The hexacyanometallate family is well known in transition metal chemistry because the remarkable electronic delocalization along the metal-cyano-metal bond can be tuned in order to design systems that undergo a reversible and controlled change of their physical properties. We have been working for few years on the description of the molecular and electronic structure of materials formed with [Fe(CN)6]n- building blocks and actinide ions (An = Th, U, Np, Pu, Am) and have compared these new materials to those obtained with lanthanide cations at oxidation state +III. In order to evaluate the influence of the actinide coordination polyhedron on the three-dimensional molecular structure, both atomic number and formal oxidation state have been varied : oxidation states +III, +IV. EXAFS at both iron K edge and actinide LIII edge is the dedicated structural probe to obtain structural information on these systems. Data at both edges have been combined to obtain a three-dimensional model. In addition, qualitative electronic information has been gathered with two spectroscopic tools : UV-Near IR spectrophotometry and low energy XANES data that can probe each atom of the structural unit : Fe, C, N and An. Coupling these spectroscopic tools to theoretical calculations will lead in the future to a better description of bonding in these molecular solids. Of primary interest is the actinide cation ability to form ionic — covalent bonding as 5f orbitals are being filled by modification of oxidation state and/or atomic number.

  8. Molecular design for growth of supramolecular membranes with hierarchical structure.

    PubMed

    Zha, R Helen; Velichko, Yuri S; Bitton, Ronit; Stupp, Samuel I

    2016-02-01

    Membranes with hierarchical structure exist in biological systems, and bio-inspired building blocks have been used to grow synthetic analogues in the laboratory through self-assembly. The formation of these synthetic membranes is initiated at the interface of two aqueous solutions, one containing cationic peptide amphiphiles (PA) and the other containing the anionic biopolymer hyaluronic acid (HA). The membrane growth process starts within milliseconds of interface formation and continues over much longer timescales to generate robust membranes with supramolecular PA-HA nanofibers oriented orthogonal to the interface. Computer simulation indicates that formation of these hierarchically structured membranes requires strong interactions between molecular components at early time points in order to generate a diffusion barrier between both solutions. Experimental studies using structurally designed PAs confirm simulation results by showing that only PAs with high ζ potential are able to yield hierarchically structured membranes. Furthermore, the chemical structure of such PAs must incorporate residues that form β-sheets, which facilitates self-assembly of long nanofibers. In contrast, PAs that form low aspect ratio nanostructures interact weakly with HA and yield membranes that exhibit non-fibrous fingering protrusions. Furthermore, experimental results show that increasing HA molecular weight decreases the growth rate of orthogonal nanofibers. This result is supported by simulation results suggesting that the thickness of the interfacial contact layer generated immediately after initiation of self-assembly increases with polymer molecular weight. PMID:26649980

  9. Photoelectron Angular Distribution and Molecular Structure in Multiply Charged Anions

    SciTech Connect

    Xing, Xiaopeng; Wang, Xue B.; Wang, Lai S.

    2009-02-12

    Photoelectrons emitted from multiply charged anions (MCAs) carry information of the intramolecular Coulomb repulsion (ICR), which is dependent on molecular structures. Using photoelectron imaging, we observed the effects of ICR on photoelectron angular distributions (PAD) of the three isomers of benzene dicarboxylate dianions C6H4(CO2)22– (o-, m- and p-BDC2–). Photoelectrons were observed to peak along the laser polarization due to the ICR, but the anisotropy was the largest for p-BDC2–, followed by the m- and o-isomer. The observed anisotropy is related to the direction of the ICR or the detailed molecular structures, suggesting that photoelectron imaging may allow structural information to be obtained for complex multiply charged anions.

  10. Structure factor and rheology of chain molecules from molecular dynamics

    NASA Astrophysics Data System (ADS)

    Castrejón-González, Omar; Castillo-Tejas, Jorge; Manero, Octavio; Alvarado, Juan F. J.

    2013-05-01

    Equilibrium and non-equilibrium molecular dynamics were performed to determine the relationship between the static structure factor, the molecular conformation, and the rheological properties of chain molecules. A spring-monomer model with Finitely Extensible Nonlinear Elastic and Lennard-Jones force field potentials was used to describe chain molecules. The equations of motion were solved for shear flow with SLLOD equations of motion integrated with Verlet's algorithm. A multiple time scale algorithm extended to non-equilibrium situations was used as the integration method. Concentric circular patterns in the structure factor were obtained, indicating an isotropic Newtonian behavior. Under simple shear flow, some peaks in the structure factor were emerged corresponding to an anisotropic pattern as chains aligned along the flow direction. Pure chain molecules and chain molecules in solution displayed shear-thinning regions. Power-law and Carreau-Yasuda models were used to adjust the generated data. Results are in qualitative agreement with rheological and light scattering experiments.

  11. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron

    PubMed Central

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons. PMID:27570482

  12. On calculating the equilibrium structure of molecular crystals.

    SciTech Connect

    Mattsson, Ann Elisabet; Wixom, Ryan R.; Mattsson, Thomas Kjell Rene

    2010-03-01

    The difficulty of calculating the ambient properties of molecular crystals, such as the explosive PETN, has long hampered much needed computational investigations of these materials. One reason for the shortcomings is that the exchange-correlation functionals available for Density Functional Theory (DFT) based calculations do not correctly describe the weak intermolecular van der Waals' forces present in molecular crystals. However, this weak interaction also poses other challenges for the computational schemes used. We will discuss these issues in the context of calculations of lattice constants and structure of PETN with a number of different functionals, and also discuss if these limitations can be circumvented for studies at non-ambient conditions.

  13. Accurate prediction of lattice energies and structures of molecular crystals with molecular quantum chemistry methods.

    PubMed

    Fang, Tao; Li, Wei; Gu, Fangwei; Li, Shuhua

    2015-01-13

    We extend the generalized energy-based fragmentation (GEBF) approach to molecular crystals under periodic boundary conditions (PBC), and we demonstrate the performance of the method for a variety of molecular crystals. With this approach, the lattice energy of a molecular crystal can be obtained from the energies of a series of embedded subsystems, which can be computed with existing advanced molecular quantum chemistry methods. The use of the field compensation method allows the method to take long-range electrostatic interaction of the infinite crystal environment into account and make the method almost translationally invariant. The computational cost of the present method scales linearly with the number of molecules in the unit cell. Illustrative applications demonstrate that the PBC-GEBF method with explicitly correlated quantum chemistry methods is capable of providing accurate descriptions on the lattice energies and structures for various types of molecular crystals. In addition, this approach can be employed to quantify the contributions of various intermolecular interactions to the theoretical lattice energy. Such qualitative understanding is very useful for rational design of molecular crystals. PMID:26574207

  14. MOLVIE: an interactive visualization environment for molecular structures.

    PubMed

    Sun, Huandong; Li, Ming; Xu, Ying

    2003-05-01

    A Molecular visualization interactive environment (MOLVIE), is designed to display three-dimensional (3D) structures of molecules and support the structural analysis and research on proteins. The paper presents the features, design considerations and applications of MOLVIE, especially the new functions used to compare the structures of two molecules and view the partial fragment of a molecule. Being developed in JAVA, MOLVIE is platform-independent. Moreover, it may run on a webpage as an applet for remote users. MOLVIE is available at http://www.cs.ucsb.edu/~mli/Bioinf/software/index.html. PMID:12725967

  15. Molecular spectroscopy and molecular structure - Selected communications presented at the 1st International Turkish Congress on Molecular Spectroscopy (TURCMOS 2013)

    NASA Astrophysics Data System (ADS)

    Durig, James R.; Fausto, Rui; Ünsalan, Ozan; Bayarı, Sevgi; Kuş, Nihal; Ildız, Gülce Ö.

    2016-01-01

    The First International Turkish Congress on Molecular Spectroscopy (TURCMOS 2013) took place at the Harbiye Cultural Center & Museum, Istanbul, Turkey, September 15-20, 2013. The main aim of the congress was to encourage the exchange of scientific ideas and collaborations all around the world, introduce new techniques and instruments, and discuss recent developments in the field of molecular spectroscopy. Among the different subjects covered, particular emphasis was given to the relevance of spectroscopy to elucidate details of the molecular structure and the chemical and physical behavior of systems ranging from simple molecules to complex biochemical molecules. Besides experimental spectroscopic approaches, related computational and theoretical methods were also considered. In this volume, selected contributions presented at the congress were put together.

  16. Synthesis, molecular structure, spectroscopic analysis, thermodynamic parameters and molecular modeling studies of (2-methoxyphenyl)oxalate

    NASA Astrophysics Data System (ADS)

    Şahin, Zarife Sibel; Kantar, Günay Kaya; Şaşmaz, Selami; Büyükgüngör, Orhan

    2015-05-01

    The aim of this study is to find out the molecular characteristic and structural parameters that govern the chemical behavior of a new (2-methoxyphenyl)oxalate compound and to compare predictions made from theory with experimental observations. The title compound, (2-methoxyphenyl)oxalate, (I), (C16H14O6), has been synthesized. The compound has been characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopies and single crystal X-ray diffraction techniques. Optimized molecular structure, harmonic vibrational frequencies, 1H and 13C NMR chemical shifts have been investigated by B3LYP/6-31G(d,p) method using density functional theory (DFT). The calculated results show that the predicted geometry can well reproduce structural parameters. In addition, global chemical reactivity descriptors, molecular electrostatic potential map (MEP), frontier molecular orbitals (FMOs), Mulliken population method and natural population analysis (NPA) and thermodynamic properties have also been studied. The energetic behavior of title compound has been examined in solvent media using polarizable continuum model (PCM).

  17. A dynamic data structure for flexible molecular maintenance and informatics

    PubMed Central

    Bajaj, Chandrajit; Chowdhury, Rezaul Alam; Rasheed, Muhibur

    2011-01-01

    Motivation: We present the ‘Dynamic Packing Grid’ (DPG), a neighborhood data structure for maintaining and manipulating flexible molecules and assemblies, for efficient computation of binding affinities in drug design or in molecular dynamics calculations. Results: DPG can efficiently maintain the molecular surface using only linear space and supports quasi-constant time insertion, deletion and movement (i.e. updates) of atoms or groups of atoms. DPG also supports constant time neighborhood queries from arbitrary points. Our results for maintenance of molecular surface and polarization energy computations using DPG exhibit marked improvement in time and space requirements. Availability: http://www.cs.utexas.edu/~bajaj/cvc/software/DPG.shtml Contact: bajaj@cs.utexas.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21115440

  18. Ab initio molecular crystal structures, spectra, and phase diagrams.

    PubMed

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  19. Molecular structure in soil humic substances: The new view

    SciTech Connect

    Sutton, Rebecca; Sposito, Garrison

    2005-04-21

    A critical examination of published data obtained primarily from recent nuclear magnetic resonance spectroscopy, X-ray absorption near-edge structure spectroscopy, electrospray ionization-mass spectrometry, and pyrolysis studies reveals an evolving new view of the molecular structure of soil humic substances. According to the new view, humic substances are collections of diverse, relatively low molecular mass components forming dynamic associations stabilized by hydrophobic interactions and hydrogen bonds. These associations are capable of organizing into micellar structures in suitable aqueous environments. Humic components display contrasting molecular motional behavior and may be spatially segregated on a scale of nanometers. Within this new structural context, these components comprise any molecules intimately associated with a humic substance, such that they cannot be separated effectively by chemical or physical methods. Thus biomolecules strongly bound within humic fractions are by definition humic components, a conclusion that necessarily calls into question key biogeochemical pathways traditionally thought to be required for the formation of humic substances. Further research is needed to elucidate the intermolecular interactions that link humic components into supramolecular associations and to establish the pathways by which these associations emerge from the degradation of organic litter.

  20. Structural and Molecular Modeling Features of P2X Receptors

    PubMed Central

    Alves, Luiz Anastacio; da Silva, João Herminio Martins; Ferreira, Dinarte Neto Moreira; Fidalgo-Neto, Antonio Augusto; Teixeira, Pedro Celso Nogueira; de Souza, Cristina Alves Magalhães; Caffarena, Ernesto Raúl; de Freitas, Mônica Santos

    2014-01-01

    Currently, adenosine 5′-triphosphate (ATP) is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors. PMID:24637936

  1. Application of machine learning to structural molecular biology.

    PubMed

    Sternberg, M J; King, R D; Lewis, R A; Muggleton, S

    1994-06-29

    A technique of machine learning, inductive logic programming implemented in the program GOLEM, has been applied to three problems in structural molecular biology. These problems are: the prediction of protein secondary structure; the identification of rules governing the arrangement of beta-sheets strands in the tertiary folding of proteins; and the modelling of a quantitative structure activity relationship (QSAR) of a series of drugs. For secondary structure prediction and the QSAR, GOLEM yielded predictions comparable with contemporary approaches including neural networks. Rules for beta-strand arrangement are derived and it is planned to contrast their accuracy with those obtained by human inspection. In all three studies GOLEM discovered rules that provided insight into the stereochemistry of the system. We conclude machine learning used together with human intervention will provide a powerful tool to discover patterns in biological sequences and structures. PMID:7800706

  2. Molecular modeling of nucleic Acid structure: electrostatics and solvation.

    PubMed

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E

    2014-01-01

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit. PMID:25631536

  3. Molecular Modeling of Nucleic Acid Structure: Electrostatics and Solvation

    PubMed Central

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E.

    2014-01-01

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand the structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as means to sample conformational space for a better understanding of the relevance of a given model. From this discussion, the major limitations with modeling, in general, were highlighted. These are the difficult issues in sampling conformational space effectively—the multiple minima or conformational sampling problems—and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These are discussed in detail in this unit. PMID:18428877

  4. Sampling of Stochastic Input Parameters for Rockfall Calculations and for Structural Response Calculations Under Vibratory Ground Motion

    SciTech Connect

    M. Gross

    2004-09-01

    The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall in emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the

  5. Molecular solutes in ionic liquids: a structural perspective.

    PubMed

    Pádua, Agílio A H; Costa Gomes, Margarida F; Canongia Lopes, José N A

    2007-11-01

    Understanding physicochemical properties of ionic liquids is important for their rational use in extractions, reactions, and other applications. Ionic liquids are not simple fluids: their ions are generally asymetric, flexible, with delocalized electrostatic charges, and available in a wide variety. It is difficult to capture their subtle properties with models that are too simplistic. Molecular simulation using atomistic force fields, which describe structures and interactions in detail, is an excellent tool to gain insights into their liquid-state organization, how they solvate different compounds, and what molecular factors determine their properties. The identification of certain ionic liquids as self-organized phases, with aggregated nonpolar and charged domains, provides a new way to interpret the solvation and structure of their mixtures. Many advances are the result of a successful interplay between experiment and modeling, possible in this field where none of the two methodologies had a previous advance. PMID:17661440

  6. Molecular structure by two-dimensional NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Freeman, R.

    Two examples are presented of the use of two-dimensional NMR spectroscopy to solve molecular structure problems. The first is called correlation spectroscopy (COSY) and it allows us to disentangle a complex network of spin-spin couplings. By dispersing the NMR information in two frequency dimensions, it facilitates the analysis of very complex spectra of organic and biochemical molecules, normally too crowded to be tractable. The second application exploits the special properties of multiple-quantum coherence to explore the molecular framework one CC linkage at a time. The natural product panamine is used as a test example; with some supplementary evidence, the structure of this six-ringed heterocyclic molecule is elucidated from the double-quantum filtered two-dimensional spectrum.

  7. Prediction of reactive hazards based on molecular structure.

    PubMed

    Saraf, S R; Rogers, W J; Mannan, M S

    2003-03-17

    There is considerable interest in prediction of reactive hazards based on chemical structure. Calorimetric measurements to determine reactivity can be resource consuming, so computational methods to predict reactivity hazards present an attractive option. This paper reviews some of the commonly employed theoretical hazard evaluation techniques, including the oxygen-balance method, ASTM CHETAH, and calculated adiabatic reaction temperature (CART). It also discusses the development of a study table to correlate and predict calorimetric properties of pure compounds. Quantitative structure-property relationships (QSPR) based on quantum mechanical calculations can be employed to correlate calorimetrically measured onset temperatures, T(o), and energies of reaction, -deltaH, with molecular properties. To test the feasibility of this approach, the QSPR technique is used to correlate differential scanning calorimeter (DSC) data, T(o) and -deltaH, with molecular properties for 19 nitro compounds. PMID:12628775

  8. Molecular modelling of miraculin: Structural analyses and functional hypotheses.

    PubMed

    Paladino, Antonella; Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M

    2008-02-29

    Miraculin is a plant protein that displays the peculiar property of modifying taste by swiching sour into a sweet taste. Its monomer is flavourless at all pH as well as at high concentration; the dimer form elicits its taste-modifying activity at acidic pH; a tetrameric form is also reported as active. Two histidine residues, located in exposed regions, are the main responsible of miraculin activity, as demonstrated by mutagenesis studies. Since structural data of miraculin are not available, we have predicted its three-dimensional structure and simulated both its dimer and tetramer forms by comparative modelling and molecular docking techniques. Finally, molecular dynamics simulations at different pH conditions have indicated that at acidic pH the dimer assumes a widely open conformation, in agreement with the hypotheses coming from other studies. PMID:18158914

  9. Advances in multimodality molecular imaging of bone structure and function

    PubMed Central

    Lambers, Floor M; Kuhn, Gisela; Müller, Ralph

    2012-01-01

    The skeleton is important to the body as a source of minerals and blood cells and provides a structural framework for strength, mobility and the protection of organs. Bone diseases and disorders can have deteriorating effects on the skeleton, but the biological processes underlying anatomical changes in bone diseases occurring in vivo are not well understood, mostly due to the lack of appropriate analysis techniques. Therefore, there is ongoing research in the development of novel in vivo imaging techniques and molecular markers that might help to gain more knowledge of these pathological pathways in animal models and patients. This perspective provides an overview of the latest developments in molecular imaging applied to bone. It emphasizes that multimodality imaging, the combination of multiple imaging techniques encompassing different image modalities, enhances the interpretability of data, and is imperative for the understanding of the biological processes and the associated changes in bone structure and function relationships in vivo. PMID:27127622

  10. Toxicological implications of esterases-From molecular structures to functions

    SciTech Connect

    Satoh, Tetsuo . E-mail: satohbri@peach.ifnet.or.jp

    2005-09-01

    This article reports on a keynote lecture at the 10th International Congress of Toxicology sponsored by the International Union of Toxicology and held on July 2004. Current developments in molecular-based studies into the structure and function of cholinesterases, carboxylesterases, and paraoxonases are described. This article covers mechanisms of regulation of gene expression of the various esterases by developmental factors and xenobiotics, as well as the interplay between physiological and chemical regulation of the enzyme activity.

  11. FilFinder: Filamentary structure in molecular clouds

    NASA Astrophysics Data System (ADS)

    Koch, Eric W.; Rosolowsky, Erik W.

    2016-08-01

    FilFinder extracts and analyzes filamentary structure in molecular clouds. In particular, it is capable of uniformly extracting structure over a large dynamical range in intensity. It returns the main filament properties: local amplitude and background, width, length, orientation and curvature. FilFinder offers additional tools to, for example, create a filament-only image based on the properties of the radial fits. The resulting mask and skeletons may be saved in FITS format, and property tables may be saved as a CSV, FITS or LaTeX table.

  12. Optimization techniques in molecular structure and function elucidation.

    PubMed

    Sahinidis, Nikolaos V

    2009-12-01

    This paper discusses recent optimization approaches to the protein side-chain prediction problem, protein structural alignment, and molecular structure determination from X-ray diffraction measurements. The machinery employed to solve these problems has included algorithms from linear programming, dynamic programming, combinatorial optimization, and mixed-integer nonlinear programming. Many of these problems are purely continuous in nature. Yet, to this date, they have been approached mostly via combinatorial optimization algorithms that are applied to discrete approximations. The main purpose of the paper is to offer an introduction and motivate further systems approaches to these problems. PMID:20160866

  13. Nanoparticle Probes for Structural and Functional Photoacoustic Molecular Tomography

    PubMed Central

    Chen, Haobin; Yuan, Zhen; Wu, Changfeng

    2015-01-01

    Nowadays, nanoparticle probes have received extensive attention largely due to its potential biomedical applications in structural, functional, and molecular imaging. In addition, photoacoustic tomography (PAT), a method based on the photoacoustic effect, is widely recognized as a robust modality to evaluate the structure and function of biological tissues with high optical contrast and high acoustic resolution. The combination of PAT with nanoparticle probes holds promises for detecting and imaging diseased tissues or monitoring their treatments with high sensitivity. This review will introduce the recent advances in the emerging field of nanoparticle probes and their preclinical applications in PAT, as well as relevant perspectives on future development. PMID:26609534

  14. Biogeochemistry and limnology in Antarctic subglacial weathering: molecular evidence of the linkage between subglacial silica input and primary producers in a perennially ice-covered lake

    NASA Astrophysics Data System (ADS)

    Takano, Yoshinori; Kojima, Hisaya; Takeda, Eriko; Yokoyama, Yusuke; Fukui, Manabu

    2015-12-01

    We report a 6,000 years record of subglacial weathering and biogeochemical processes in two perennially ice-covered glacial lakes at Rundvågshetta, on the Soya Coast of Lützow-Holm Bay, East Antarctica. The two lakes, Lake Maruwan Oike and Lake Maruwan-minami, are located in a channel that drains subglacial water from the base of the East Antarctic ice sheet. Greenish-grayish organic-rich laminations in sediment cores from the lakes indicate continuous primary production affected by the inflow of subglacial meltwater containing relict carbon, nitrogen, sulfur, and other essential nutrients. Biogenic silica, amorphous hydrated silica, and DNA-based molecular signatures of sedimentary facies indicate that diatom assemblages are the dominant primary producers, supported by the input of inorganic silicon (Si) from the subglacial inflow. This study highlights the significance of subglacial water-rock interactions during physical and chemical weathering processes and the importance of such interactions for the supply of bioavailable nutrients.

  15. A fluorescent molecularly-imprinted polymer gate with temperature and pH as inputs for detection of alpha-fetoprotein.

    PubMed

    Karfa, Paramita; Roy, Ekta; Patra, Santanu; Kumar, Deepak; Madhuri, Rashmi; Sharma, Prashant K

    2016-04-15

    In this work, we have reported a new approach on the use of stimuli-responsive molecularly imprinted polymer (MIP) for trace level sensing of alpha-fetoprotein (AFP), which is a well know cancer biomarker. The stimuli-responsive MIP is composed of three components, a thermo-responsive monomer, a pH responsive component (tyrosine derivative) and a highly fluorescent vinyl silane modified carbon dot. The synthesized AFP-imprinted polymer possesses excellent selectivity towards their template molecule and dual-stimuli responsive behavior. Along with this, the imprinted polymer was also explored as 'OR' logic gate with two stimuli (pH and temperature) as inputs. However, the non-imprinted polymers did not have such 'OR' gate property, which confirms the role of template binding. The imprinted polymer was also used for estimation of AFP in the concentration range of 3.96-80.0 ng mL(-1), with limit of detection (LOD) 0.42 ng mL(-1). The role of proposed sensor was successfully exploited for analysis of AFP in real human blood plasma, serum and urine sample. PMID:26657588

  16. Parallel molecular computation of modular-multiplication with two same inputs over finite field GF(2(n)) using self-assembly of DNA tiles.

    PubMed

    Li, Yongnan; Xiao, Limin; Ruan, Li

    2014-06-01

    Two major advantages of DNA computing - huge memory capacity and high parallelism - are being explored for large-scale parallel computing, mass data storage and cryptography. Tile assembly model is a highly distributed parallel model of DNA computing. Finite field GF(2(n)) is one of the most commonly used mathematic sets for constructing public-key cryptosystem. It is still an open question that how to implement the basic operations over finite field GF(2(n)) using DNA tiles. This paper proposes how the parallel tile assembly process could be used for computing the modular-square, modular-multiplication with two same inputs, over finite field GF(2(n)). This system could obtain the final result within less steps than another molecular computing system designed in our previous study, because square and reduction are executed simultaneously and the previous system computes reduction after calculating square. Rigorous theoretical proofs are described and specific computing instance is given after defining the basic tiles and the assembly rules. Time complexity of this system is 3n-1 and space complexity is 2n(2). PMID:24534382

  17. The crystal and molecular structure of triethanol-ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Bracuti, A. J.

    1992-12-01

    The liquid propellant used in the 155-mm regenerative liquid propellant gun is XM46. XM46 is a solution of 60 percent hydroxyl ammonium nitrate (HAN), 20 percent triethanolammonium nitrate (TEAN), and 20 percent water. This material exhibits rather unusual liquid properties that have been attributed to its being a 'molten eutectic' of fused salts rather than a normal aqueous solution of two different nitrate salts. A hydrogen-bonded liquid structure for eutectic LP1946 was proposed previously based on the known structures of neat HAN and water and a best-guess estimate of the TEAN structure. To verify this estimate, the molecular structure of neat TEAN was recently determined. This investigation revealed TEAN has very unusual and interesting bifurcated intermolecular and trifurcated intramolecular hydrogen bonding configurations within the crystal. If these hydrogen bonding configurations are retained in aqueous solution, they could be responsible in some part to the observed unusual liquid properties of liquid propellant XM46.

  18. Structure and dynamics of complex liquid water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    S, Indrajith V.; Natesan, Baskaran

    2015-06-01

    We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.

  19. Molecular structures of amyloid and prion fibrils: consensus versus controversy.

    PubMed

    Tycko, Robert; Wickner, Reed B

    2013-07-16

    Many peptides and proteins self-assemble into amyloid fibrils. Examples include mammalian and fungal prion proteins, polypeptides associated with human amyloid diseases, and proteins that may have biologically functional amyloid states. To understand the propensity for polypeptides to form amyloid fibrils and to facilitate rational design of amyloid inhibitors and imaging agents, it is necessary to elucidate the molecular structures of these fibrils. Although fibril structures were largely mysterious 15 years ago, a considerable body of reliable structural information about amyloid fibril structures now exists, with essential contributions from solid state nuclear magnetic resonance (NMR) measurements. This Account reviews results from our laboratories and discusses several structural issues that have been controversial. In many cases, the amino acid sequences of amyloid fibrils do not uniquely determine their molecular structures. Self-propagating, molecular-level polymorphism complicates the structure determination problem and can lead to apparent disagreements between results from different laboratories, particularly when different laboratories study different polymorphs. For 40-residue β-amyloid (Aβ₁₋₄₀) fibrils associated with Alzheimer's disease, we have developed detailed structural models from solid state NMR and electron microscopy data for two polymorphs. These polymorphs have similar peptide conformations, identical in-register parallel β-sheet organizations, but different overall symmetry. Other polymorphs have also been partially characterized by solid state NMR and appear to have similar structures. In contrast, cryo-electron microscopy studies that use significantly different fibril growth conditions have identified structures that appear (at low resolution) to be different from those examined by solid state NMR. Based on solid state NMR and electron paramagnetic resonance (EPR) measurements, the in-register parallel β-sheet organization

  20. STOCK: Structure mapper and online coarse-graining kit for molecular simulations

    SciTech Connect

    Bevc, Staš; Junghans, Christoph; Praprotnik, Matej

    2015-03-15

    We present a web toolkit STructure mapper and Online Coarse-graining Kit for setting up coarse-grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, e.g. all-atom, to low, i.e. coarse-grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse-graining packages, e.g. VOTCA and DL_CGMAP. Our second tool generates effective potentials for coarse-grained simulations preserving the structural properties, e.g. radial distribution functions, of the underlying higher resolution model. The required distribution functions can be provided by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse-grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse-graining web toolkit is available at http://stock.cmm.ki.si.

  1. STOCK: Structure mapper and online coarse-graining kit for molecular simulations

    DOE PAGESBeta

    Bevc, Staš; Junghans, Christoph; Praprotnik, Matej

    2015-03-15

    We present a web toolkit STructure mapper and Online Coarse-graining Kit for setting up coarse-grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, e.g. all-atom, to low, i.e. coarse-grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse-graining packages, e.g. VOTCA and DL_CGMAP. Our second tool generates effective potentials for coarse-grained simulations preserving the structural properties, e.g. radial distribution functions, of the underlying higher resolution model. The required distribution functions can be providedmore » by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse-grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse-graining web toolkit is available at http://stock.cmm.ki.si.« less

  2. A 3D visualization system for molecular structures

    NASA Technical Reports Server (NTRS)

    Green, Terry J.

    1989-01-01

    The properties of molecules derive in part from their structures. Because of the importance of understanding molecular structures various methodologies, ranging from first principles to empirical technique, were developed for computing the structure of molecules. For large molecules such as polymer model compounds, the structural information is difficult to comprehend by examining tabulated data. Therefore, a molecular graphics display system, called MOLDS, was developed to help interpret the data. MOLDS is a menu-driven program developed to run on the LADC SNS computer systems. This program can read a data file generated by the modeling programs or data can be entered using the keyboard. MOLDS has the following capabilities: draws the 3-D representation of a molecule using stick, ball and ball, or space filled model from Cartesian coordinates, draws different perspective views of the molecule; rotates the molecule on the X, Y, Z axis or about some arbitrary line in space, zooms in on a small area of the molecule in order to obtain a better view of a specific region; and makes hard copy representation of molecules on a graphic printer. In addition, MOLDS can be easily updated and readily adapted to run on most computer systems.

  3. Filamentary Structure in Orion and Monoceros Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Lahaise, W. H.; Bhavsar, S. P.

    1994-05-01

    The filamentary structure in 13CO radio maps of the Orion A, Orion B and Monoceros R2 molecular clouds was analyzed using the Minimal Spanning Tree. This represents the first time the MST has been applied to an extended region such as maps of molecular clouds. The method of preparing and analyzing the data is presented. Integrated maps over a range of velocities were examined as well as a velocity cube constructed from individual 0.5 km s-1 wide channel maps. The results show that there is overwhelming objective and statistical evidence that the filamentary structure does exist in all three of these regions. Previous techniques to identify filaments were generally visual, and therefore subjective. The major filaments in Orion A show linear features extending throughout the entire length. The structure in the velocity cube clearly shows the continuous velocity gradient. Orion B cloud shows distinct regions with north to south orientations. The velocity cube contains a number of filaments at greatly differing velocities, with little evidence of large scale velocity gradients. Mon R2 cloud exhibits two main filamentary components, one of which is associated with both bright condensed regions. The velocity structure reveals an overall velocity gradient.

  4. Heat-induced changes to lipid molecular structure in Vimy flaxseed: Spectral intensity and molecular clustering

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang; Damiran, Daalkhaijav

    2011-06-01

    Autoclaving was used to manipulate nutrient utilization and availability. The objectives of this study were to characterize any changes of the functional groups mainly associated with lipid structure in flaxseed ( Linum usitatissimum, cv. Vimy), that occurred on a molecular level during the treatment process using infrared Fourier transform molecular spectroscopy. The parameters included lipid CH 3 asymmetric (ca. 2959 cm -1), CH 2 asymmetric (ca. 2928 cm -1), CH 3 symmetric (ca. 2871 cm -1) and CH 2 symmetric (ca. 2954 cm -1) functional groups, lipid carbonyl C dbnd O ester group (ca. 1745 cm -1), lipid unsaturation group (CH attached to C dbnd C) (ca. 3010 cm -1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Flaxseed samples were kept raw for the control or autoclaved in batches at 120 °C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. Molecular spectral analysis of lipid functional group ratios showed a significant decrease ( P < 0.05) in the CH 2 asymmetric to CH 3 asymmetric stretching band peak intensity ratios for the flaxseed. There were linear and quadratic effects ( P < 0.05) of the treatment time from 0, 20, 40 and 60 min on the ratios of the CH 2 asymmetric to CH 3 asymmetric stretching vibration intensity. Autoclaving had no significant effect ( P > 0.05) on lipid carbonyl C dbnd O ester group and lipid unsaturation group (CH attached to C dbnd C) (with average spectral peak area intensities of 138.3 and 68.8 IR intensity units, respectively). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH 3 and CH 2 asymmetric and symmetric region (ca. 2988-2790 cm -1). The results indicated that autoclaving had an impact to the mid-infrared molecular spectrum of flaxseed to identify heat-induced changes in lipid conformation. A future study

  5. On how to avoid input and structural uncertainties corrupt the inference of hydrological parameters using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Hernández, Mario R.; Francés, Félix

    2015-04-01

    One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the

  6. Parallel ON and OFF cone bipolar inputs establish spatially-coextensive receptive field structure of blue-yellow ganglion cells in primate retina

    PubMed Central

    Crook, Joanna D.; Davenport, Christopher M.; Peterson, Beth B.; Packer, Orin S.; Detwiler, Peter B.; Dacey, Dennis M.

    2009-01-01

    In the primate retina the small bistratified, ‘blue-yellow’ color-opponent ganglion cell receives parallel ON-depolarizing and OFF-hyperpolarizing inputs from short (S) wavelength sensitive and combined long (L) and middle (M) wavelength sensitive cone photoreceptors respectively. However the synaptic pathways that create S vs LM cone-opponent receptive field structure remain controversial. Here we show in the macaque monkey retina in vitro that at photopic light levels, when an identified rod input is excluded, the small bistratified cell displays a spatially coextensive receptive field in which the S-ON-input is in spatial, temporal and chromatic balance with the LM-OFF-input. ON pathway block with L-AP-4, the mGluR6 receptor agonist, abolished the SON response but spared the LM-OFF response. The isolated LM component showed a center-surround receptive field structure consistent with an input from OFF-center, ON-surround ‘diffuse’ cone bipolar cells. Increasing retinal buffering capacity with HEPES attenuated the LM-ON surround component, consistent with a non-GABAergic outer retina feedback mechanism for the bipolar surround. The GABAa/c receptor antagonist picrotoxin and the glycine receptor antagonist strychnine did not affect chromatic balance or the basic coextensive receptive field structure suggesting that the LM-OFF field is not generated by an inner retinal inhibitory pathway. We conclude that the opponent S-ON and LM-OFF responses originate from the excitatory receptive field centers of S-ON and LM-OFF cone bipolar cells and that the LM-OFF- and ON-surrounds of these parallel bipolar inputs largely cancel, explaining the small, spatially coextensive but spectrally antagonistic receptive field structure of the blue-ON ganglion cell. PMID:19571128

  7. Discovering structural alerts for mutagenicity using stable emerging molecular patterns.

    PubMed

    Métivier, Jean-Philippe; Lepailleur, Alban; Buzmakov, Aleksey; Poezevara, Guillaume; Crémilleux, Bruno; Kuznetsov, Sergei O; Le Goff, Jérémie; Napoli, Amedeo; Bureau, Ronan; Cuissart, Bertrand

    2015-05-26

    This study is dedicated to the introduction of a novel method that automatically extracts potential structural alerts from a data set of molecules. These triggering structures can be further used for knowledge discovery and classification purposes. Computation of the structural alerts results from an implementation of a sophisticated workflow that integrates a graph mining tool guided by growth rate and stability. The growth rate is a well-established measurement of contrast between classes. Moreover, the extracted patterns correspond to formal concepts; the most robust patterns, named the stable emerging patterns (SEPs), can then be identified thanks to their stability, a new notion originating from the domain of formal concept analysis. All of these elements are explained in the paper from the point of view of computation. The method was applied to a molecular data set on mutagenicity. The experimental results demonstrate its efficiency: it automatically outputs a manageable number of structural patterns that are strongly related to mutagenicity. Moreover, a part of the resulting structures corresponds to already known structural alerts. Finally, an in-depth chemical analysis relying on these structures demonstrates how the method can initiate promising processes of chemical knowledge discovery. PMID:25871768

  8. The molecular structure of the left-handed supra-molecular helix of eukaryotic polyribosomes

    NASA Astrophysics Data System (ADS)

    Myasnikov, Alexander G.; Afonina, Zhanna A.; Ménétret, Jean-François; Shirokov, Vladimir A.; Spirin, Alexander S.; Klaholz, Bruno P.

    2014-11-01

    During protein synthesis, several ribosomes bind to a single messenger RNA (mRNA) forming large macromolecular assemblies called polyribosomes. Here we report the detailed molecular structure of a 100 MDa eukaryotic poly-ribosome complex derived from cryo electron tomography, sub-tomogram averaging and pseudo-atomic modelling by crystal structure fitting. The structure allowed the visualization of the three functional parts of the polysome assembly, the central core region that forms a rather compact left-handed supra-molecular helix, and the more open regions that harbour the initiation and termination sites at either ends. The helical region forms a continuous mRNA channel where the mRNA strand bridges neighbouring exit and entry sites of the ribosomes and prevents mRNA looping between ribosomes. This structure provides unprecedented insights into protein- and RNA-mediated inter-ribosome contacts that involve conserved sites through 40S subunits and long protruding RNA expansion segments, suggesting a role in stabilizing the overall polyribosomal assembly.

  9. The Filamentary Structure of the Lupus 3 Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Benedettini, Milena

    We present the column density map of the Lupus 3 molecular cloud derived from the Herschel photometric maps. We compared the Herschel continuum maps, tracing the dense and cold dust emission, with the CS (2-1) map observed with the Mopra 22-m antenna, tracing the dense gas. Both the continuum and the CS maps show a well defined filamentary structure, with most of the dense cores being on the filaments. The CS (2-1) line shows a double peak in the central part of the longest filament due to the presence of two distinct gas components along this line of sight. Therefore, what seems a single filament in the Herschel map is actually the overlap of two kinematically distinct filaments. This case clearly shows that kinematical information is essential for the correct interpretation of filaments in molecular clouds.

  10. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  11. Molecular structure and pathophysiological roles of the Mitochondrial Calcium Uniporter.

    PubMed

    Mammucari, Cristina; Raffaello, Anna; Vecellio Reane, Denis; Rizzuto, Rosario

    2016-10-01

    Mitochondrial Ca(2+) uptake regulates a wide array of cell functions, from stimulation of aerobic metabolism and ATP production in physiological settings, to induction of cell death in pathological conditions. The molecular identity of the Mitochondrial Calcium Uniporter (MCU), the highly selective channel responsible for Ca(2+) entry through the IMM, has been described less than five years ago. Since then, research has been conducted to clarify the modulation of its activity, which relies on the dynamic interaction with regulatory proteins, and its contribution to the pathophysiology of organs and tissues. Particular attention has been placed on characterizing the role of MCU in cardiac and skeletal muscles. In this review we summarize the molecular structure and regulation of the MCU complex in addition to its pathophysiological role, with particular attention to striated muscle tissues. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:26968367

  12. Molecular structures of carotenoids as predicted by MNDO-AM1 molecular orbital calculations

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hideki; Yoda, Takeshi; Kobayashi, Takayoshi; Young, Andrew J.

    2002-02-01

    Semi-empirical molecular orbital calculations using AM1 Hamiltonian (MNDO-AM1 method) were performed for a number of biologically important carotenoid molecules, namely all- trans-β-carotene, all- trans-zeaxanthin, and all- trans-violaxanthin (found in higher plants and algae) together with all- trans-canthaxanthin, all- trans-astaxanthin, and all- trans-tunaxanthin in order to predict their stable structures. The molecular structures of all- trans-β-carotene, all- trans-canthaxanthin, and all- trans-astaxanthin predicted based on molecular orbital calculations were compared with those determined by X-ray crystallography. Predicted bond lengths, bond angles, and dihedral angles showed an excellent agreement with those determined experimentally, a fact that validated the present theoretical calculations. Comparison of the bond lengths, bond angles and dihedral angles of the most stable conformer among all the carotenoid molecules showed that the displacements are localized around the substituent groups and hence around the cyclohexene rings. The most stable conformers of all- trans-zeaxanthin and all- trans-violaxanthin gave rise to a torsion angle around the C6-C7 bond to be ±48.7 and -84.8°, respectively. This difference is a key factor in relation to the biological function of these two carotenoids in plants and algae (the xanthophyll cycle). Further analyses by calculating the atomic charges and using enpartment calculations (division of bond energies between component atoms) were performed to ascribe the cause of the different observed torsion angles.

  13. Structural and molecular modeling studies of quinazolinone anticonvulsants.

    PubMed

    Duke, N E; Codding, P W

    1993-08-01

    Studies of derivatives of the anticonvulsant methaqualone led to the discovery that unsaturation in the 2-substituent produced active but less toxic compounds; accordingly, 2-arylethanone derivatives have been developed. The crystal structures of five 2-arylethanone derivatives of methaqualone were determined to probe structure-activity relationships. Although these compounds display different activities, the solid-state and calculated structures are similar: each compound is observed as the neamine tautomer containing an intramolecular hydrogen bond between the ethanone and the amine N atom and the molecular conformations are the same. These studies conclude that recognition of the anticonvulsants arises from specific binding of an ortho substituent on the N(3) phenyl substituent, rather than from binding of a particular conformation or tautomeric form adopted by the compound containing an ortho substituent, and that such recognition is characteristic of a broad range of anticonvulsant drugs. Crystal data: [see text]. PMID:8397980

  14. Lightweight Object Oriented Structure analysis: Tools for building Tools to Analyze Molecular Dynamics Simulations

    PubMed Central

    Romo, Tod D.; Leioatts, Nicholas; Grossfield, Alan

    2014-01-01

    LOOS (Lightweight Object-Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 120 pre-built tools, including suites of tools for analyzing simulation convergence, 3D histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only 4 core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. PMID:25327784

  15. The molecular scale structure of water at interfaces

    NASA Astrophysics Data System (ADS)

    Salmeron, Miquel

    2004-03-01

    The molecular scale structure of water at surfaces and interfaces is an unresolved and fundamental topic in many areas of science and technology, and determines its wetting properties. In our studies of this very interesting topic we used scanning probes (STM, AFM), and electron and vibrational spectroscopies. STM studies on Pd(111) reveal that at low temperature (below 130K) water adsorbs as an intact molecule, forming clusters of dimers, trimers, etc. and finally H-bonded hexagonal structures with a V3xV3R30º periodicity. When the temperature is below 100K the O-H bonds in this structure are nearly parallel to the substrate except at the island edges where they point down towards the substrate or up leaving dangling bonds. Above 130K other structures form with molecules having unsaturated H bonds that point outwards from the surface and forming a superstructure of the V3xV3 structure. We have also studied the formation of dangling bonds in other water interfaces, including ice-vapor and on insulating substrates. On the ice surface, a thin layer exists that contains many H-dangling bonds near 0ºC. The thickness of this layer is less than a nanometer below -1ºC. On the basal plane of mica (an alumino silicate) water forms hexagonal structures with no unsaturated H-bonds and with the molecular dipole pointing on average towards the surface. On subsequent layers below 0ºC, the dipolar orientation persist and gives rise to ferroelectric ice. Above 0ºC however water layers above the first have free, unsaturated H-bonds pointing outwards from the surface as in the liquid form. On alkali halide surfaces water adsorbs preferentially at step edges at low humidity solvating the cations first. At higher humidity both cations and anions are solvated and finally, at deliquescence, when the salt dissolves, the anions segregate preferentially at the surface.

  16. Roles in Modulation of Molecular Structures on Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Gao, H.-J.

    2007-03-01

    We studied the adsorption of organic molecules, their growth behavior, and their physical properties on silver and gold surfaces at the single molecule or sub-molecular scale by using low-temperature scanning tunneling microscopes. Combined with low energy electron diffraction and first-principles density functional theory calculations, the key parameters in modulating molecular structures on metals are analyzed. It is found that the alkyl chains of quinacridone derivatives (QA) determine the orientation of molecular overlayers on an Ag(110) substrate. The interaction of QA and the Ag substrate is primarily due to chemical bonding of oxygen to specific positions at the silver substrate, determining the molecular orientation and preferred adsorption site. However, the intermolecular arrangement can be adjusted via the length of attached alkyl chains. We are thus able to fabricate uniform QA films with very well controlled physical properties. Furthermore, by thermal and chemical control, we are able to self-assemble three dimensional molecular nanostructures, e.g. ordered PTCDA structures exclusively on flat Ag(111) facets, or DMe-DCNQI structures exclusively on stepped Ag(221) facets. It is demonstrated that bonding, the key factor for selectivity, occurs via the end-atoms, while the molecule's mid-region arches away from the substrate. Theoretical results, obtained by high-level theory, are consistent with the experimental observations, which have previously been interpreted in terms of bonding through the mid-region. In collaboration with D.X. Shi, S.X. Du, W. Ji, Z.T. Deng, L. Gao, Institute of Physics, and X. Lin, Chinese Academy of Sciences, China; C. Seidel and H. Fuchs, Universit"at M"unster, Germany; W.A. Hofer, The University of Liverpool, Britain; and S. T. Pantelides, Vanderbilt University, USA. [1] D.X. Shi et al., Phys. Rev. Lett. 96, 226101(2006). [2] S.X. Du et al., Phys. Rev. Lett. 96, 226101(2006). [3] L. Gao et al., Phys. Rev. B 73, 075424(2006).

  17. The interface of protein structure, protein biophysics, and molecular evolution

    PubMed Central

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  18. Quantum Theory of Atomic and Molecular Structures and Interactions

    NASA Astrophysics Data System (ADS)

    Makrides, Constantinos

    This dissertation consists of topics in two related areas of research that together provide quantum mechanical descriptions of atomic and molecular interactions and reactions. The first is the ab initio electronic structure calculation that provides the atomic and molecular interaction potential, including the long-range potential. The second is the quantum theory of interactions that uses such potentials to understand scattering, long-range molecules, and reactions. In ab initio electronic structure calculations, we present results of dynamic polarizabilities for a variety of atoms and molecules, and the long-range dispersion coefficients for a number of atom-atom and atom-molecule cases. We also present results of a potential energy surface for the triatomic lithium-ytterbium-lithium system, aimed at understanding the related chemical reactions. In the quantum theory of interactions, we present a multichannel quantum-defect theory (MQDT) for atomic interactions in a magnetic field. This subject, which is complex especially for atoms with hyperfine structure, is essential for the understanding and the realization of control and tuning of atomic interactions by a magnetic field: a key feature that has popularized cold atom physics in its investigations of few-body and many-body quantum systems. Through the example of LiK, we show how MQDT provides a systematic and an efficient understanding of atomic interaction in a magnetic field, especially magnetic Feshbach resonances in nonzero partial waves.

  19. Kinetic Effects of Aromatic Molecular Structures on Diffusion Flame Extinction

    SciTech Connect

    Won, Sang Hee; Dooley, S.; Dryer, F. L.; Ju, Yiguang

    2011-01-01

    Kinetic effects of aromatic molecular structures for jet fuel surrogates on the extinction of diffusion flames have been investigated experimentally and numerically in the counterflow configuration for toluene, n-propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. Quantitative measurement of OH concentration for aromatic fuels was conducted by directly measuring the quenching rate from the emission lifetimes of OH planar laser induced fluorescence (LIF). The kinetic models for toluene and 1,2,4-trimethylbenzene were validated against the measurements of extinction strain rates and LIF measurements. A semi-detailed n-propylbenzene kinetic model was developed and tested. The experimental results showed that the extinction limits are ranked from highest to lowest as n-propylbenzene, toluene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. The present models for toluene and n-propylbenzene agree reasonably well with the measurements, whereas the model for 1,2,4-trimethylbenzene under-estimates extinction limits. Kinetic pathways of OH production and consumption were analyzed to investigate the impact of fuel fragmentation on OH formation. It was found that, for fuels with different molecular structures, the fuel decomposition pathways and their propagation into the formation of radical pool play an important role to determine the extinction limits of diffusion flames. Furthermore, OH concentrations were found to be representative of the entire radical pool concentration, the balance between chain branching and propagation/termination reactions and the balance between heat production from the reaction zone and heat losses to the fuel and oxidizer sides. Finally, a proposed “OH index,” was defined to demonstrate a linear correlation between extinction strain rate and OH index and fuel mole fraction, suggesting that the diffusion flame extinctions for the tested aromatic fuels can be determined by the capability of a fuel to establish a radical pool

  20. Bohm's Quantum Potential and the Visualization of Molecular Structure

    NASA Technical Reports Server (NTRS)

    Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    David Bohm's ontological interpretation of quantum theory can shed light on otherwise counter-intuitive quantum mechanical phenomena including chemical bonding. In the field of quantum chemistry, Richard Bader has shown that the topology of the Laplacian of the electronic charge density characterizes many features of molecular structure and reactivity. Visual and computational examination suggests that the Laplacian of Bader and the quantum potential of Bohm are morphologically equivalent. It appears that Bohmian mechanics and the quantum potential can make chemistry as clear as they makes physics.

  1. Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions

    PubMed Central

    Haubenreisser, Stefan; Wöste, Thorsten H.; Martínez, Claudio; Ishihara, Kazuaki

    2015-01-01

    Abstract Molecular structures of the most prominent chiral non‐racemic hypervalent iodine(III) reagents to date have been elucidated for the first time. The formation of a chirally induced supramolecular scaffold based on a selective hydrogen‐bonding arrangement provides an explanation for the consistently high asymmetric induction with these reagents. As an exploratory example, their scope as chiral catalysts was extended to the enantioselective dioxygenation of alkenes. A series of terminal styrenes are converted into the corresponding vicinal diacetoxylation products under mild conditions and provide the proof of principle for a truly intermolecular asymmetric alkene oxidation under iodine(I/III) catalysis. PMID:26596513

  2. [Cardiac potassium channels: molecular structure, physiology, pathophysiology and therapeutic implications].

    PubMed

    Mironov, N Iu; Golitsyn, S P

    2013-01-01

    Potassium channels and currents play essential roles in cardiac repolarization. Potassium channel blockade by class III antiarrhythmic drugs prolongs cardiac repolarization and results in termination and prevention of cardiac arrhythmias. Excessive inhomogeneous repolarization prolongation may lead to electrical instability and proarrhythmia (Torsade de Pointes tachycardia). This review focuses on molecular structure, physiology, pathophysiology and therapeutic potential of potassium channels of cardiac conduction system and myocardium providing information on recent findings in pathogenesis of cardiac arrhythmias, including inherited genetic abnormalities, and future perspectives. PMID:24654438

  3. Structural Assembly of Molecular Complexes Based on Residual Dipolar Couplings

    PubMed Central

    Berlin, Konstantin; O’Leary, Dianne P.; Fushman, David

    2010-01-01

    We present and evaluate a rigid-body molecular docking method, called PATIDOCK, that relies solely on the three-dimensional structure of the individual components and the experimentally derived residual dipolar couplings (RDC) for the complex. We show that, given an accurate ab initio predictor of the alignment tensor from a protein structure, it is possible to accurately assemble a protein-protein complex by utilizing the RDC’s sensitivity to molecular shape to guide the docking. The proposed docking method is robust against experimental errors in the RDCs and computationally efficient. We analyze the accuracy and efficiency of this method using experimental or synthetic RDC data for several proteins, as well as synthetic data for a large variety of protein-protein complexes. We also test our method on two protein systems for which the structure of the complex and steric-alignment data are available (Lys48-linked diubiquitin and a complex of ubiquitin and a ubiquitin-associated domain) and analyze the effect of flexible unstructured tails on the outcome of docking. The results demonstrate that it is fundamentally possible to assemble a protein-protein complex based solely on experimental RDC data and the prediction of the alignment tensor from three-dimensional structures. Thus, despite the purely angular nature of residual dipolar couplings, they can be converted into intermolecular distance/translational constraints. Additionally we show a method for combining RDCs with other experimental data, such as ambiguous constraints from interface mapping, to further improve structure characterization of the protein complexes. PMID:20550109

  4. Molecular structural order and anomalies in liquid silica.

    PubMed

    Shell, M Scott; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2002-07-01

    The present investigation examines the relationship between structural order, diffusivity anomalies, and density anomalies in liquid silica by means of molecular dynamics simulations. We use previously defined orientational and translational order parameters to quantify local structural order in atomic configurations. Extensive simulations are performed at different state points to measure structural order, diffusivity, and thermodynamic properties. It is found that silica shares many trends recently reported for water [J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate densities, the distribution of local orientational order is bimodal. At fixed temperature, order parameter extrema occur upon compression: a maximum in orientational order followed by a minimum in translational order. Unlike water, however, silica's translational order parameter minimum is broad, and there is no range of thermodynamic conditions where both parameters are strictly coupled. Furthermore, the temperature-density regime where both structural order parameters decrease upon isothermal compression (the structurally anomalous regime) does not encompass the region of diffusivity anomalies, as was the case for water. PMID:12241346

  5. Structure-Directed Exciton Dynamics in Templated Molecular Nanorings

    PubMed Central

    2015-01-01

    Conjugated polymers with cyclic structures are interesting because their symmetry leads to unique electronic properties. Recent advances in Vernier templating now allow large shape-persistent fully conjugated porphyrin nanorings to be synthesized, exhibiting unique electronic properties. We examine the impact of different conformations on exciton delocalization and emission depolarization in a range of different porphyrin nanoring topologies with comparable spatial extent. Low photoluminescence anisotropy values are found to occur within the first few hundred femtoseconds after pulsed excitation, suggesting ultrafast delocalization of excitons across the nanoring structures. Molecular dynamics simulations show that further polarization memory loss is caused by out-of-plane distortions associated with twisting and bending of the templated nanoring topologies. PMID:25960822

  6. Surfaces of Microparticles in Colloids: Structure and Molecular Adsorption Kinetics

    NASA Astrophysics Data System (ADS)

    Dai, Hai-Lung

    2002-03-01

    Surfaces of micron and sub-micron size particles in liquid solution are probed by second harmonic generation (SHG) facilitated with femtosecond laser pulses. The particles probed include inorganic objects such as carbon black and color pigments, polymeric species like polystyrene beads, and biological systems such as blood cells and ecoli. In the experiments, dye molecules are first adsorbed onto the particle surface to allow generation of second harmonics upon light irradiation. Competition for adsorption between these surface dye molecules and the molecules of interest in the solution is then monitored by the SHG signal to reveal the molecular adsorption kinetics and surface structure. Specifically, surfactant adsorption on polymer surfaces, the structure of carbon black surface, and protein adsorption on biological surfaces, monitored by this technique, will be discussed.

  7. Molecular structure of uranium carbides: isomers of UC3.

    PubMed

    Zalazar, M Fernanda; Rayón, Víctor M; Largo, Antonio

    2013-03-21

    In this article, the most relevant isomers of uranium tricarbide are studied through quantum chemical methods. It is found that the most stable isomer has a fan geometry in which the uranium atom is bonded to a quasilinear C3 unit. Both, a rhombic and a ring CU(C2) structures are found about 104-125 kJ/mol higher in energy. Other possible isomers including linear geometries are located even higher. For each structure, we provide predictions for those molecular properties (vibrational frequencies, IR intensities, dipole moments) that could eventually help in their experimental detection. We also discuss the possible routes for the formation of the different UC3 isomers as well as the bonding situation by means of a topological analysis of the electron density. PMID:23534639

  8. Molecular structure of uranium carbides: Isomers of UC3

    NASA Astrophysics Data System (ADS)

    Zalazar, M. Fernanda; Rayón, Víctor M.; Largo, Antonio

    2013-03-01

    In this article, the most relevant isomers of uranium tricarbide are studied through quantum chemical methods. It is found that the most stable isomer has a fan geometry in which the uranium atom is bonded to a quasilinear C3 unit. Both, a rhombic and a ring CU(C2) structures are found about 104-125 kJ/mol higher in energy. Other possible isomers including linear geometries are located even higher. For each structure, we provide predictions for those molecular properties (vibrational frequencies, IR intensities, dipole moments) that could eventually help in their experimental detection. We also discuss the possible routes for the formation of the different UC3 isomers as well as the bonding situation by means of a topological analysis of the electron density.

  9. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect

    Pan, Jianjun; Cheng, Xiaolin; Monticelli, Luca; Heberle, Frederick A; Kucerka, Norbert; Tieleman, D. Peter; Katsaras, John

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  10. Structure, molecular evolution, and hydrolytic specificities of largemouth bass pepsins.

    PubMed

    Miura, Yoko; Suzuki-Matsubara, Mieko; Kageyama, Takashi; Moriyama, Akihiko

    2016-02-01

    The nucleotide sequences of largemouth bass pepsinogens (PG1, 2 and 3) were determined after molecular cloning of the respective cDNAs. Encoded PG1, 2 and 3 were classified as fish pepsinogens A1, A2 and C, respectively. Molecular evolutionary analyses show that vertebrate pepsinogens are classified into seven monophyletic groups, i.e. pepsinogens A, F, Y (prochymosins), C, B, and fish pepsinogens A and C. Regarding the primary structures, extensive deletion was obvious in S'1 loop residues in fish pepsin A as well as tetrapod pepsin Y. This deletion resulted in a decrease in hydrophobic residues in the S'1 site. Hydrolytic specificities of bass pepsins A1 and A2 were investigated with a pepsin substrate and its variants. Bass pepsins preferred both hydrophobic/aromatic residues and charged residues at the P'1 sites of substrates, showing the dual character of S'1 sites. Thermodynamic analyses of bass pepsin A2 showed that its activation Gibbs energy change (∆G(‡)) was lower than that of porcine pepsin A. Several sites of bass pepsin A2 moiety were found to be under positive selection, and most of them are located on the surface of the molecule, where they are involved in conformational flexibility. The broad S'1 specificity and flexible structure of bass pepsin A2 are thought to cause its high proteolytic activity. PMID:26627128

  11. Molecular studies of the structural ecology of natural occlusal caries.

    PubMed

    Dige, Irene; Grønkjær, Lene; Nyvad, Bente

    2014-01-01

    Microbiological studies of occlusal dental biofilms have hitherto been hampered by inaccessibility to the sampling site and demolition of the original biofilm architecture. This study shows for the first time the spatial distribution of bacterial taxa in vivo at various stages of occlusal caries, applying a molecular methodology involving preparation of embedded hard dental tissue slices for fluorescence in situ hybridization (FISH) and confocal microscopy. Eleven freshly extracted teeth were classified according to their occlusal caries status. The teeth were fixed, embedded, sectioned and decalcified before FISH was performed using oligonucleotide probes for selected abundant species/genera associated with occlusal caries including Streptococcus, Actinomyces, Veillonella, Fusobacterium, Lactobacillus and Bifidobacterium. The sites showed distinct differences in the bacterial composition between different ecological niches in occlusal caries. Biofilm observed along the entrance of fissures showed an inner layer of microorganisms organized in palisades often identified as Actinomyces, covered by a more loosely structured bacterial layer consisting of diverse genera, similar to supragingival biofilm. Biofilm within the fissure proper seemed less metabolically active, as judged by low fluorescence signal intensity and presence of material of non-bacterial origin. Bacterial invasion (often Lactobacillus and Bifidobacterium spp.) into the dentinal tubules was seen only at advanced stages of caries with manifest cavity formation. It is concluded that the molecular methodology represents a valuable supplement to previous methods for the study of microbial ecology in caries by allowing analysis of the structural composition of the undisturbed biofilm in caries lesions in vivo. PMID:24852305

  12. The molecular structure of waxy maize starch nanocrystals.

    PubMed

    Angellier-Coussy, Hélène; Putaux, Jean-Luc; Molina-Boisseau, Sonia; Dufresne, Alain; Bertoft, Eric; Perez, Serge

    2009-08-17

    The insoluble residues obtained by submitting amylopectin-rich native starch granules from waxy maize to a mild acid hydrolysis consist of polydisperse platelet nanocrystals that have retained the allomorphic type of the parent granules. The present investigation is a detailed characterization of their molecular composition. Two major groups of dextrins were found in the nanocrystals and were isolated. Each group was then structurally characterized using beta-amylase and debranching enzymes (isoamylase and pullulanase) in combination with anion-exchange chromatography. The chain lengths of the dextrins in both groups corresponded with the thickness of the crystalline lamellae in the starch granules. Only approximately 62 mol% of the group of smaller dextrins with an average degree of polymerization (DP) 12.2 was linear, whereas the rest consisted of branched dextrins. The group of larger dextrins (DP 31.7) apparently only consisted of branched dextrins, several of which were multiply branched molecules. It was shown that many of the branch linkages were resistant to the action of the debranching enzymes. The distribution of branched molecules in the two populations of dextrins suggested that the nanocrystals possessed a regular and principally homogeneous molecular structure. PMID:19414173

  13. Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data

    PubMed Central

    Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong

    2013-01-01

    Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318

  14. Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point

    ERIC Educational Resources Information Center

    Murphy, Peter M.

    2007-01-01

    A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…

  15. Maintain rigid structures in Verlet based Cartesian molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Tao, Peng; Wu, Xiongwu; Brooks, Bernard R.

    2012-10-01

    An algorithm is presented to maintain rigid structures in Verlet based Cartesian molecular dynamics (MD) simulations. After each unconstrained MD step, the coordinates of selected particles are corrected to maintain rigid structures through an iterative procedure of rotation matrix computation. This algorithm, named as SHAPE and implemented in CHARMM program suite, avoids the calculations of Lagrange multipliers, so that the complexity of computation does not increase with the number of particles in a rigid structure. The implementation of this algorithm does not require significant modification of propagation integrator, and can be plugged into any Cartesian based MD integration scheme. A unique feature of the SHAPE method is that it is interchangeable with SHAKE for any object that can be constrained as a rigid structure using multiple SHAKE constraints. Unlike SHAKE, the SHAPE method can be applied to large linear (with three or more centers) and planar (with four or more centers) rigid bodies. Numerical tests with four model systems including two proteins demonstrate that the accuracy and reliability of the SHAPE method are comparable to the SHAKE method, but with much more applicability and efficiency.

  16. Molecular Modeling and Structural Analysis of Arylesterase of Ancylostoma Duodenale

    PubMed Central

    Panda, Subhamay; Panda, Santamay; Kumari, Leena

    2016-01-01

    Parasitic worm infection of humans is one of the most commonly prevalent helminth infection that has imposed great impact on society and public health in the developing world. The two species of hookworm, namely Ancylostoma duodenale and Necator americanus may be primarily responsible for causing parasitic infections in human beings. The highly prevalent areas for Ancylostoma duodenale infections are mainly India, Middle East, Australia, northern Africa and other parts of the world. The serum arylesterases/paraoxonases are family of enzymes that is involved in the hydrolysis of a number of organophosphorus insecticides to the nontoxic products. The participation of the enzymes in the breakdown of a variety of organophosphate substrates that is generally made up of paraoxon and numerous aromatic carboxylic acid esters (e.g., phenyl acetate), and hence combats the toxic effect of organophosphates. The aim of the present investigation is to evaluate the arylesterases of Ancylostoma duodenale giving special importance to structure generation, validation of the generated models, distribution of secondary structural elements and positive charge distribution over the structure. By the implementation of comparative modeling approach we propose the first molecular model structure of arylesterases of Ancylostoma duodenale.

  17. Evaluation of Various Spectral Inputs for Estimation of Forest Biochemical and Structural Properties from Airborne Imaging Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Homolová, L.; Janoutová, R.; Malenovský, Z.

    2016-06-01

    In this study we evaluated various spectral inputs for retrieval of forest chlorophyll content (Cab) and leaf area index (LAI) from high spectral and spatial resolution airborne imaging spectroscopy data collected for two forest study sites in the Czech Republic (beech forest at Štítná nad Vláří and spruce forest at Bílý Kříž). The retrieval algorithm was based on a machine learning method - support vector regression (SVR). Performance of the four spectral inputs used to train SVR was evaluated: a) all available hyperspectral bands, b) continuum removal (CR) 645 - 710 nm, c) CR 705 - 780 nm, and d) CR 680 - 800 nm. Spectral inputs and corresponding SVR models were first assessed at the level of spectral databases simulated by combined leaf-canopy radiative transfer models PROSPECT and DART. At this stage, SVR models using all spectral inputs provided good performance (RMSE for Cab < 10 μg cm-2 and for LAI < 1.5), with consistently better performance for beech over spruce site. Since application of trained SVRs on airborne hyperspectral images of the spruce site produced unacceptably overestimated values, only the beech site results were analysed. The best performance for the Cab estimation was found for CR bands in range of 645 - 710 nm, whereas CR bands in range of 680 - 800 nm were the most suitable for LAI retrieval. The CR transformation reduced the across-track bidirectional reflectance effect present in airborne images due to large sensor field of view.

  18. Robust integral variable structure controller and pulse-width pulse-frequency modulated input shaper design for flexible spacecraft with mismatched uncertainty/disturbance.

    PubMed

    Hu, Qinglei

    2007-10-01

    This paper presents a dual-stage control system design method for the flexible spacecraft attitude maneuvering control by use of on-off thrusters and active vibration control by input shaper. In this design approach, attitude control system and vibration suppression were designed separately using lower order model. As a stepping stone, an integral variable structure controller with the assumption of knowing the upper bounds of the mismatched lumped perturbation has been designed which ensures exponential convergence of attitude angle and angular velocity in the presence of bounded uncertainty/disturbances. To reconstruct estimates of the system states for use in a full information variable structure control law, an asymptotic variable structure observer is also employed. In addition, the thruster output is modulated in pulse-width pulse-frequency so that the output profile is similar to the continuous control histories. For actively suppressing the induced vibration, the input shaping technique is used to modify the existing command so that less vibration will be caused by the command itself, which only requires information about the vibration frequency and damping of the closed-loop system. The rationale behind this hybrid control scheme is that the integral variable structure controller can achieve good precision pointing, even in the presence of uncertainties/disturbances, whereas the shaped input attenuator is applied to actively suppress the undesirable vibrations excited by the rapid maneuvers. Simulation results for the spacecraft model show precise attitude control and vibration suppression. PMID:17706218

  19. Mathematical analysis of compressive/tensile molecular and nuclear structures

    NASA Astrophysics Data System (ADS)

    Wang, Dayu

    Mathematical analysis in chemistry is a fascinating and critical tool to explain experimental observations. In this dissertation, mathematical methods to present chemical bonding and other structures for many-particle systems are discussed at different levels (molecular, atomic, and nuclear). First, the tetrahedral geometry of single, double, or triple carbon-carbon bonds gives an unsatisfying demonstration of bond lengths, compared to experimental trends. To correct this, Platonic solids and Archimedean solids were evaluated as atoms in covalent carbon or nitrogen bond systems in order to find the best solids for geometric fitting. Pentagonal solids, e.g. the dodecahedron and icosidodecahedron, give the best fit with experimental bond lengths; an ideal pyramidal solid which models covalent bonds was also generated. Second, the macroscopic compression/tension architectural approach was applied to forces at the molecular level, considering atomic interactions as compressive (repulsive) and tensile (attractive) forces. Two particle interactions were considered, followed by a model of the dihydrogen molecule (H2; two protons and two electrons). Dihydrogen was evaluated as two different types of compression/tension structures: a coaxial spring model and a ring model. Using similar methods, covalent diatomic molecules (made up of C, N, O, or F) were evaluated. Finally, the compression/tension model was extended to the nuclear level, based on the observation that nuclei with certain numbers of protons/neutrons (magic numbers) have extra stability compared to other nucleon ratios. A hollow spherical model was developed that combines elements of the classic nuclear shell model and liquid drop model. Nuclear structure and the trend of the "island of stability" for the current and extended periodic table were studied.

  20. Molecular Clouds in the North American and Pelican Nebulae: Structures

    NASA Astrophysics Data System (ADS)

    Zhang, Shaobo; Xu, Ye; Yang, Ji

    2014-03-01

    We present observations of a 4.25 deg2 area toward the North American and Pelican Nebulae in the J = 1-0 transitions of 12CO, 13CO, and C18O. Three molecules show different emission areas with their own distinct structures. These different density tracers reveal several dense clouds with a surface density of over 500 M ⊙ pc-2 and a mean H2 column density of 5.8, 3.4, and 11.9 × 1021 cm-2 for 12CO, 13CO, and C18O, respectively. We obtain a total mass of 5.4 × 104 M ⊙ (12CO), 2.0 × 104 M ⊙ (13CO), and 6.1 × 103 M ⊙ (C18O) in the complex. The distribution of excitation temperature shows two phases of gas: cold gas (~10 K) spreads across the whole cloud; warm gas (>20 K) outlines the edge of the cloud heated by the W80 H II region. The kinetic structure of the cloud indicates an expanding shell surrounding the ionized gas produced by the H II region. There are six discernible regions in the cloud: the Gulf of Mexico, Caribbean Islands and Sea, and Pelican's Beak, Hat, and Neck. The areas of 13CO emission range within 2-10 pc2 with mass of (1-5) × 103 M ⊙ and line width of a few km s-1. The different line properties and signs of star-forming activity indicate they are in different evolutionary stages. Four filamentary structures with complicated velocity features are detected along the dark lane in LDN 935. Furthermore, a total of 611 molecular clumps within the 13CO tracing cloud are identified using the ClumpFind algorithm. The properties of the clumps suggest that most of the clumps are gravitationally bound and at an early stage of evolution with cold and dense molecular gas.

  1. Structure of Lambda Hypernuclei with Antisymmetrized Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Isaka, Masahiro

    2014-09-01

    In this talk, we will discuss the structure change caused by a Λ particle and structure of neutron-rich (n-rich) and sd shell Λ hypernuclei based on the antisymmetrized molecular dynamics (AMD). One of the unique and interesting aspects of hypernuclei is structure change caused by a hyperon(s) as an impurity in nuclei. In light Λ hypernuclei, experimental and theoretical studies have revealed a couple of interesting structure changes such as shrinkage of the inter-cluster distance. In n-rich and sd shell Λ hypernuclei, it is expected that the variety of structure and structure changes will appear in the low energy regions, because n-rich and sd shell nuclei have various structures. For example, the n-rich nucleus 11Be has the parity-inverted ground-state 1/2+, which is inconsistent with the ordinary shell model picture. In sd shell nuclei, it has been discussed that various deformations appear in the ground and low-lying states. For example, 24Mg is a candidate of triaxially deformed nuclei with the presence of the low-lying 2nd 2+ state. To reveal the structure of the corresponding Λ hypernuclei, we have extended the AMD model for hypernuclei (HyperAMD) and applied it to n-rich and sd shell Λ hypernuclei. The AMD model can describe various nuclear structures without assumptions on clustering and symmetry of nuclear deformations. Combined with the generator coordinate method (GCM), the HyperAMD model succeeded to describe the low-lying structure of p-sd shell Λ hypernuclei. In this study, we investigate several n-rich and sd shell Λ hypernuclei such as Λ12Be and Λ25Mg. In this talk, we will discuss the changes of the parity-inverted ground state of 11Be by adding a Λ particle. Furthermore, in Λ25Mg, we will discuss a possibility to identify the nuclear (triaxial) deformation of Mg by using Λ as a probe.

  2. Unveiling the molecular mechanism of brassinosteroids: Insights from structure-based molecular modeling studies.

    PubMed

    Lei, Beilei; Liu, Jiyuan; Yao, Xiaojun

    2015-12-01

    Brassinosteroid (BR) phytohormones play indispensable roles in plant growth and development. Brassinolide (BL) and 24-epibrassinolide (24-epiBL) are the most active ones among the BRs reported thus far. Unfortunately, the extremely low natural content and intricate synthesis process limit their popularization in agricultural production. Earlier reports to discover alternative compounds have resulted in molecules with nearly same scaffold structure and without diversity in chemical space. In the present study, receptors structure based BRs regulation mechanism was analyzed. First, we examined the detailed binding interactions and their dynamic stability between BL and its receptor BRI1 and co-receptor BAK1. Then, the binding modes and binding free energies for 24-epiBL and a series of representative BRs binding with BRI1 and BRI1-BAK1 were carried out by molecular docking, energy minimization and MM-PBSA free energy calculation. The obtained binding structures and energetic results provided vital insights into the structural factors affecting the activity from both receptors and BRs aspects. Subsequently, the obtained knowledge will serve as valuable guidance to build pharmacophore models for rational screening of new scaffold alternative BRs. PMID:26362600

  3. The Structure and Evolution of Self-Gravitating Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Holliman, John Herbert, II

    1995-01-01

    We present a theoretical formalism to evaluate the structure of molecular clouds and to determine precollapse conditions in star-forming regions. Models consist of pressure-bounded, self-gravitating spheres of a single -fluid ideal gas. We treat the case without rotation. The analysis is generalized to consider states in hydrostatic equilibrium maintained by multiple pressure components. Individual pressures vary with density as P_i(r) ~ rho^{gamma {rm p},i}(r), where gamma_{rm p},i is the polytropic index. Evolution depends additionally on whether conduction occurs on a dynamical time scale and on the adiabatic index gammai of each component, which is modified to account for the effects of any thermal coupling to the environment of the cloud. Special attention is given to properly representing the major contributors to dynamical support in molecular clouds: the pressures due to static magnetic fields, Alfven waves, and thermal motions. Straightforward adjustments to the model allow us to treat the intrinsically anisotropic support provided by the static fields. We derive structure equations, as well as perturbation equations for performing a linear stability analysis. The analysis provides insight on the nature of dynamical motions due to collapse from an equilibrium state and estimates the mass of condensed objects that form in such a process. After presenting a set of general results, we describe models of star-forming regions that include the major pressure components. We parameterize the extent of ambipolar diffusion. The analysis contributes to the physical understanding of several key results from observations of these regions. Commonly observed quantities are explicitly cross-referenced with model results. We theoretically determine density and linewidth profiles on scales ranging from that of molecular cloud cores to that of giant molecular clouds (GMCs). The model offers an explanation of the mean pressures in GMCs, which are observed to be high relative

  4. How does the molecular network structure influence PDMS elastomer wettability?

    NASA Astrophysics Data System (ADS)

    Melillo, Matthew; Genzer, Jan

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from medical devices to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - microfluidic devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, end-group chemical functionality, and the extent of dilution of the curing mixture on the mechanical and surface properties of end-linked PDMS networks. The gel and sol fractions, storage and loss moduli, liquid swelling ratios, and water contact angles have all been shown to vary greatly based on the aforementioned variables. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have confirmed theories predicting the relationships between modulus and swelling. Furthermore, we have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient microfluidics and other PDMS-based materials that involve the transport of liquids.

  5. Stochastic Molecular Transport on Microtubule Bundles with Structural Defects

    NASA Astrophysics Data System (ADS)

    Gramlich, M. W.; Tabei, S. M. Ali

    Intracellular transport involves complex coordination of multiple components such as: the cytoskeletal network and molecular motors. Perturbations in this process can amplify over time and space, thereby affecting transport. One little studied component of transport are structural defects in the cytoskeletal network. In this talk we will present a stochastic model of the interaction of the molecular motor, kinesin-1, and a bundled cystoskeletal network of microtubules, and explicitly explore the role of microtubule ends (a type of defect) on long-range transport. We will show how different types of end distributions can ultimately result in the same observed transport behavior for bundles. We compare transport on completely uniform bundles, found in the axon, to completely random bundles, found in dendrites. Because of the un-biased random bundle nature, defects affect transport on dendrite bundles more than on uniform bundles in the axon. Further, defects act as large spatial-scale traps that result in random wait-times which have been assumed in previous models.

  6. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    SciTech Connect

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  7. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    SciTech Connect

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  8. Hydration structure of salt solutions from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-01

    The solvation structures of Na^+, K^+, and Cl^- ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na^+, K^+, and Cl^-, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  9. Electronic Structure and Molecular Dynamics Calculations for KBH4

    NASA Astrophysics Data System (ADS)

    Papaconstantopoulos, Dimitrios; Shabaev, Andrew; Hoang, Khang; Mehl, Michael; Kioussis, Nicholas

    2012-02-01

    In the search for hydrogen storage materials, alkali borohydrides MBH4 (M=Li, Na, K) are especially interesting because of their light weight and the high number of hydrogen atoms per metal atom. Electronic structure calculations can give insights into the properties of these complex hydrides and provide understanding of the structural properties and of the bonding of hydrogen. We have performed first-principles density-functional theory (DFT) and tight-binding (TB) calculations for KBH4 in both the high temperature (HT) and low temperature (LT) phases to understand its electronic and structural properties. Our DFT calculations were carried out using the VASP code. The results were then used as a database to develop a tight-binding Hamiltonian using the NRL-TB method. This approach allowed for computationally efficient calculations of phonon frequencies and elastic constants using the static module of the NRL-TB, and also using the molecular dynamics module to calculate mean-square displacements and formation energies of hydrogen vacancies.

  10. Hydration structure of salt solutions from ab initio molecular dynamics

    SciTech Connect

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-07

    The solvation structures of Na{sup +}, K{sup +}, and Cl{sup -} ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  11. Hydration structure of salt solutions from ab initio molecular dynamics.

    PubMed

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L

    2013-01-01

    The solvation structures of Na(+), K(+), and Cl(-) ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na(+), K(+), and Cl(-), respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed. PMID:23298049

  12. Cluster and Shell Structures in the Fermionic Molecular Dynamics Approach

    NASA Astrophysics Data System (ADS)

    Neff, Thomas; Feldmeier, Hans

    Nuclei in the p- and sd-shell are studied within the Fermionic Molecular Dynamics (FMD) model that uses Gaussian wave packets as single-particle states. Intrinsic many-body basis states are given by Slater determinants which have to be projected on parity, angular momentum and total linear momentum to restore the symmetries of the Hamiltonian. The flexibility of the Gaussian basis allows to economically describe states with shell structures as well as states featuring clustering or halos. The same effective interaction derived from the realistic Argonne V18 interaction in the Unitary Correlation Operator Method (UCOM) framework is used for all nuclei. We discuss the spectrum of 12C with a special emphasis on the structure of the first excited 0+ state, the famous Hoyle state. In the FMD approach the Hoyle state is found to be dominated by dilute α-cluster configurations. Recent measurements of the charge radii of Neon isotopes show an intriguing behaviour. This can be explained in FMD calculations by a structure change from 17Ne and 18Ne which can be essentially considered as an 15O or 16O core plus two protons in s2 or d2 configurations, respectively. For the heavier isotopes we find that the admixture of 3He and 4He cluster configurations in the ground states leads to much larger charge radii than obtained in a mean-field calculation.

  13. Molecular-dynamics study of structure II hydrogen clathrates.

    PubMed

    Alavi, Saman; Ripmeester, J A; Klug, D D

    2005-07-01

    Molecular-dynamics simulations are used to study the stability of structure II hydrogen clathrates with different H2 guest occupancies. Simulations are done at pressures of 2.5 kbars and 1.013 bars and for temperatures ranging from 100 to 250 K. For a structure II unit cell with 136 water molecules, H2 guest molecule occupancies of 0-64 are studied with uniform occupancies among each type of cage. The simulations show that at 100 K and 2.5 kbars, the most stable configurations have single occupancy in the small cages and quadruple occupancy in the large cages. The optimum occupancy for the large cages decreases as the temperature is raised. Double occupancy in the small cages increases the energy of the structures and causes tetragonal distortion in the unit cell. The spatial distribution of the hydrogen guest molecules in the cages is determined by studying the guest-water and guest-guest radial distribution functions at various temperatures. PMID:16050759

  14. Structural and molecular interrogation of intact biological systems.

    PubMed

    Chung, Kwanghun; Wallace, Jenelle; Kim, Sung-Yon; Kalyanasundaram, Sandhiya; Andalman, Aaron S; Davidson, Thomas J; Mirzabekov, Julie J; Zalocusky, Kelly A; Mattis, Joanna; Denisin, Aleksandra K; Pak, Sally; Bernstein, Hannah; Ramakrishnan, Charu; Grosenick, Logan; Gradinaru, Viviana; Deisseroth, Karl

    2013-05-16

    Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using mouse brains, we show intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters. CLARITY also enables intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in non-sectioned tissue, and antibody labelling throughout the intact adult mouse brain. Finally, we show that CLARITY enables fine structural analysis of clinical samples, including non-sectioned human tissue from a neuropsychiatric-disease setting, establishing a path for the transmutation of human tissue into a stable, intact and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease. PMID:23575631

  15. Transmission electron microscopy in molecular structural biology: A historical survey.

    PubMed

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. PMID:25475529

  16. Implications of fire-mediated changes in larch forest structure on leaf litter inputs, organic layer accumulation, and permafrost dynamics

    NASA Astrophysics Data System (ADS)

    Ganzlin, P.; Alexander, H. D.; Petronio, B.; Natali, S.; Davydov, S.

    2012-12-01

    The boreal forest is an expansive biome and stores the majority of the world's above and belowground carbon stocks. These forests are very vulnerable to changes in global climate. As climate warms and dries, boreal forest ecosystems are expected to experience greater fire activity. An increase in fire activity will likely lead to greater consumption of the soil organic layer (SOL), the thick layer of undecomposed mosses and other plant materials lying above the mineral soil. Because the SOL serves as a natural barrier to seed germination, a reduction in SOL depth could increase tree seedling establishment during post-fire succession. This could ultimately lead to stands of greater density, with potentially cascading effects on belowground carbon dynamics due to density-driven changes in understory microenvironment and leaf litter inputs, especially in forests dominated by deciduous species. In permafrost-affected regions, organic soil materials - especially mosses - are important insulators of permafrost and the high content of thermally protected carbon it contains. In order to assess the importance of fire-mediated changes in stand density on permafrost dynamics, we surveyed forests of Cajander Larch (Larix cajander) surrounding the Northeast Science Station in far northeastern Siberia. Two sets of low and high-density stands were selected to establish a natural density gradient in these forests. In each stand we evaluated stand density effects on aboveground biomass, leaf litter inputs, moss abundance, organic layer depth, and permafrost thaw depth. Here we show that the low-density larch stands had significantly higher moss abundance, green moss depth, and organic layer depth. The insulating organic layer was nearly 25% shallower in high-density stands, which was accompanied by a nearly 50% increase in depth of seasonal permafrost thaw. In addition to density, stand biomass and landscape position may also be very important factors in determining litter inputs

  17. Specifications of input motions for seismic analyses of soil-structure systems within a nonlinear analyses framework. Final report

    SciTech Connect

    Moriwaki, Y.; Pyke, R.; Bastick, M.; Udaka, T.

    1981-10-01

    A brief assessment of some rational approaches to specifying input motions within a nonlinear analysis framework is presented. Using a modified STEALTH 1D seismic and SHAKE computer codes, some points discussed in the assessment are illustrated. The cases studied in this project are confined to seismic environments with the wave field to consist of vertically propagating body waves, and the site to be horizontally layered. Under this seismic condition, it is possible to specify the control motion either (a) at an outcrop of the baserock, or a given soil layer at some depth, or (b) at the surface of the site profiled.

  18. The Influence of the Molecular Structure of Cyanine Dye on the Component Composition of Molecular Layers

    NASA Astrophysics Data System (ADS)

    Kaliteevskaya, E. N.; Krutyakova, V. P.; Razumova, T. K.; Starovoitov, A. A.

    2016-03-01

    The formation of the component composition of symmetric cationic cyanine dyes on glass is studied. The absorption spectra of layers of three homologous series of dyes with end heterocyclic groups of different spatial and chemical compositions are measured, and the absorption spectra of monomer components and aggregates are separated. The component compositions of layers of different thicknesses are compared. It is shown that the widening of the absorption spectra of molecular layers against the spectra of ethanol solutions of these compounds is caused mainly by the formation of various monomer stereoisomers and molecular aggregates and their interaction with the substrate surface and the neighborhood. The number of isomer forms and their relative concentrations depend on the layer thickness, the electron donor ability and spatial structure of end groups, and the cation conjugation chain length. The influence of the anion manifests itself only in the concentration ratio of the formed monomers and a small shift of the maxima of their absorption bands. The increase in the number of monomer forms produced in the layer corresponds to the increase in the conjugation chain length. Spatial obstacles created by heterocyclic groups inhibit the formation of definite stereoisomers, which reduces the number of components of the layer.

  19. STUDIES OF RELATIONSHIPS BETWEEN MOLECULAR STRUCTURE AND BIOLOGICAL ACTIVITY BY PATTERN RECOGNITION METHODS

    EPA Science Inventory

    The attempt to rationalize the connections between the molecular structures of organic compounds and their biological activities comprises the field of structure-activity relations (SAR) studies. Correlations between structure and activity are important for the understanding and ...

  20. General theory for multiple input-output perturbations in complex molecular systems. 1. Linear QSPR electronegativity models in physical, organic, and medicinal chemistry.

    PubMed

    González-Díaz, Humberto; Arrasate, Sonia; Gómez-SanJuan, Asier; Sotomayor, Nuria; Lete, Esther; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    In general perturbation methods starts with a known exact solution of a problem and add "small" variation terms in order to approach to a solution for a related problem without known exact solution. Perturbation theory has been widely used in almost all areas of science. Bhor's quantum model, Heisenberg's matrix mechanincs, Feyman diagrams, and Poincare's chaos model or "butterfly effect" in complex systems are examples of perturbation theories. On the other hand, the study of Quantitative Structure-Property Relationships (QSPR) in molecular complex systems is an ideal area for the application of perturbation theory. There are several problems with exact experimental solutions (new chemical reactions, physicochemical properties, drug activity and distribution, metabolic networks, etc.) in public databases like CHEMBL. However, in all these cases, we have an even larger list of related problems without known solutions. We need to know the change in all these properties after a perturbation of initial boundary conditions. It means, when we test large sets of similar, but different, compounds and/or chemical reactions under the slightly different conditions (temperature, time, solvents, enzymes, assays, protein targets, tissues, partition systems, organisms, etc.). However, to the best of our knowledge, there is no QSPR general-purpose perturbation theory to solve this problem. In this work, firstly we review general aspects and applications of both perturbation theory and QSPR models. Secondly, we formulate a general-purpose perturbation theory for multiple-boundary QSPR problems. Last, we develop three new QSPR-Perturbation theory models. The first model classify correctly >100,000 pairs of intra-molecular carbolithiations with 75-95% of Accuracy (Ac), Sensitivity (Sn), and Specificity (Sp). The model predicts probabilities of variations in the yield and enantiomeric excess of reactions due to at least one perturbation in boundary conditions (solvent, temperature

  1. Influence of Heat Input on the Content of Delta Ferrite in the Structure of 304L Stainless Steel GTA Welded Joints

    NASA Astrophysics Data System (ADS)

    Sejč, Pavol; Kubíček, Rastislav

    2011-12-01

    Welding of austenitic stainless steel has its specific issues, even when the weldability is considered good. The main problems of austenitic stainless steel welding are connected with its metallurgical weldability. The amount of the components presented in the structure of stainless steel welded joint affect its properties, therefore the understanding of the behavior of stainless steel during its welding is important for successful processing and allows the fabricators the possibility to manage the resulting issues. This paper is focused on the influence of heat input on the structural changes in GTA welded joints of austenitic stainless steel designated: ASTM SA TP 304L.

  2. Derivatives of Ergot-alkaloids: Molecular structure, physical properties, and structure-activity relationships

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.; Spiteller, Michael

    2012-09-01

    A comprehensive screening of fifteen functionalized Ergot-alkaloids, containing bulk aliphatic cyclic substituents at D-ring of the ergoline molecular skeleton was performed, studying their structure-active relationships and model interactions with α2A-adreno-, serotonin (5HT2A) and dopamine D3 (D3A) receptors. The accounted high affinity to the receptors binding loops and unusual bonding situations, joined with the molecular flexibility of the substituents and the presence of proton accepting/donating functional groups in the studied alkaloids, may contribute to further understanding the mechanisms of biological activity in vivo and in predicting their therapeutic potential in central nervous system (CNS), including those related the Schizophrenia. Since the presented correlation between the molecular structure and properties, was based on the comprehensively theoretical computational and experimental physical study on the successfully isolated derivatives, through using routine synthetic pathways in a relatively high yields, marked these derivatives as 'treasure' for further experimental and theoretical studied in areas such as: (a) pharmacological and clinical testing; (b) molecular-drugs design of novel psychoactive substances; (c) development of the analytical protocols for determination of Ergot-alkaloids through a functionalization of the ergoline-skeleton, and more.

  3. Chitosan Molecular Structure as a Function of N-Acetylation

    SciTech Connect

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  4. Structural and molecular basis of starch viscosity in hexaploid wheat.

    PubMed

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties. PMID:18459791

  5. Structural and electronic properties of Diisopropylammonium bromide molecular ferroelectric crystal

    NASA Astrophysics Data System (ADS)

    Alsaad, A.; Qattan, I. A.; Ahmad, A. A.; Al-Aqtash, N.; Sabirianov, R. F.

    2015-10-01

    We report the results of ab-initio calculations based on Generalized Gradient Approximation (GGA) and hybrid functional (HSE06) of electronic band structure, density of states and partial density of states to get a deep insight into structural and electronic properties of P21 ferroelectric phase of Diisopropylammonium Bromide molecular crystal (DIPAB). We found that the optical band gap of the polar phase of DIPAB is ∼ 5 eV confirming it as a good dielectric. Examination of the density of states and partial density of states reveal that the valence band maximum is mainly composed of bromine 4p orbitals and the conduction band minimum is dominated by carbon 2p, carbon 2s, and nitrogen 2s orbitals. A unique aspect of P21 ferroelectric phase is the permanent dipole within the material. We found that P21 DIPAB has a spontaneous polarization of 22.64 consistent with recent findings which make it good candidate for the creation of ferroelectric tunneling junctions (FTJs) which have the potential to be used as memory devices.

  6. Nuclear structure and reactions in the fermionic molecular dynamics approach

    NASA Astrophysics Data System (ADS)

    Neff, T.; Feldmeier, H.

    2008-05-01

    The Fermionic Molecular Dynamics (FMD) model uses Gaussian wave packets as single-particle states. Intrinsic many-body basis states are constructed as Slater determinants which have to be projected on parity, angular momentum and total linear momentum to restore the symmetries of the Hamiltonian. The flexibility of the Gaussian basis allows to economically describe states with shell structures as well as states featuring clustering or halos. We use an effective interaction that is derived from the realistic Argonne V18 interaction by means of the Unitary Correlation Operator Method (UCOM). A phenomenological momentum-dependent two-body correction simulates contributions from missing three-body forces and three-body correlations. We discuss 12C with a special emphasis on the structure of the excited 0+ and 2+ states. We analyze the degree of α-clustering and confirm, taking inelastic electron scattering data into account, the conjecture that the Hoyle state has to be understood as a loosely bound system of alpha particles. We will also present first results on the application of FMD for the calculation of scattering phase shifts in 3He — 4He.

  7. Molecular Structure and Mobility in Ultrasonically Treated Unfilled Polybutadiene Rubber

    NASA Astrophysics Data System (ADS)

    von Meerwall, E.; Oh, J.-S.; Wagler, T.; Rinaldi, P.; Isayev, A. I.

    2003-10-01

    Ultrasound can change the molecular structure of rubbery polymers in several ways at once, including network formation (crosslinking) and degradation (devulcanization). We have used wide-line proton and spectroscopic 13C transverse NMR relaxation, and the proton pulsed-gradient spin echo method, to examine sonicated unfilled polybutadiene gum rubber. Results correlate well with ultrasound amplitude. The proton T2 relaxation at 70.5 deg. C exhibits three discrete components, due to entangled sol and network; unentangled (light) sol plus dangling chain ends; and oligomer remnants. The 25 deg. C carbon T2 values show no effects of sonication. The diffusivity spectrum of the light sol displays a wide rate distribution, including a fast component from oligomers. Ultrasound exposure increases all diffusion rates, and substantially lowers the relative contribution of the two fastest proton T2 decay components with only small decreases in relaxation times. Ultrasound treatment results in significant isomerization; the cis/trans ratio decreases sharply for samples subjected to the highest amplitudes. The structural implications of these findings will be discussed.

  8. Bonding and structure in dense multi-component molecular mixtures

    SciTech Connect

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D.; Collins, Lee A.

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

  9. Bonding and structure in dense multi-component molecular mixtures

    DOE PAGESBeta

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D.; Collins, Lee A.

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systemsmore » engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.« less

  10. Molecular structure-adsorption study on current textile dyes.

    PubMed

    Örücü, E; Tugcu, G; Saçan, M T

    2014-01-01

    This study was performed to investigate the adsorption of a diverse set of textile dyes onto granulated activated carbon (GAC). The adsorption experiments were carried out in a batch system. The Langmuir and Freundlich isotherm models were applied to experimental data and the isotherm constants were calculated for 33 anthraquinone and azo dyes. The adsorption equilibrium data fitted more adequately to the Langmuir isotherm model than the Freundlich isotherm model. Added to a qualitative analysis of experimental results, multiple linear regression (MLR), support vector regression (SVR) and back propagation neural network (BPNN) methods were used to develop quantitative structure-property relationship (QSPR) models with the novel adsorption data. The data were divided randomly into training and test sets. The predictive ability of all models was evaluated using the test set. Descriptors were selected with a genetic algorithm (GA) using QSARINS software. Results related to QSPR models on the adsorption capacity of GAC showed that molecular structure of dyes was represented by ionization potential based on two-dimensional topological distances, chromophoric features and a property filter index. Comparison of the performance of the models demonstrated the superiority of the BPNN over GA-MLR and SVR models. PMID:25529487