Science.gov

Sample records for molecular weight human

  1. Molecular physiology of weight regulation in mice and humans

    PubMed Central

    Leibel, RL

    2009-01-01

    Evolutionary considerations relating to efficiency in reproduction, and survival in hostile environments, suggest that body energy stores are sensed and actively regulated, with stronger physiological and behavioral responses to loss than gain of stored energy. Many physiological studies support this inference, and suggest that a critical axis runs between body fat and the hypothalamus. The molecular cloning of leptin and its receptor—projects based explicitly on the search for elements in this axis—confirmed the existence of this axis and provided important tools with which to understand its molecular physiology. Demonstration of the importance of this soma-brain reciprocal connection in body weight regulation in humans has been pursued using both classical genetic approaches and studies of physiological responses to experimental weight perturbation. This paper reviews the history of the rationale and methodology of the cloning of leptin (Lep) and the leptin receptor (Lepr), and describes some of the clinical investigation characterizing this axis. PMID:19136999

  2. Human neutrophils contain and bind high molecular weight kininogen.

    PubMed Central

    Gustafson, E J; Schmaier, A H; Wachtfogel, Y T; Kaufman, N; Kucich, U; Colman, R W

    1989-01-01

    Because plasma kallikrein activates human neutrophils, and in plasma prekallikrein (PK) circulates complexed with high molecular weight kininogen (HMWK), we determined whether HMWK could mediate kallikrein's association with neutrophils. HMWK antigen (237 +/- 61 ng HMWK/10(8) neutrophils) was present in lysates of washed human neutrophils. Little if any plasma HMWK was tightly bound and nonexchangeable with the neutrophil surface. Human neutrophils were found to possess surface membrane-binding sites for HMWK but no internalization was detected at 37 degrees C. 125I-HMWK binding to neutrophils was dependent upon Zn2+. Binding of 125I-HMWK to neutrophils was specific and 90% reversible. 125I-HMWK binding to neutrophils was saturable with an apparent Kd of 9-18 nM and 40,000-70,000 sites per cell. Upon binding to neutrophils, 125I-HMWK was proteolyzed by human neutrophil elastase (HNE) into lower relative molecular mass derivatives. Furthermore, HMWK found in neutrophils also served as a cofactor for HNE secretion because neutrophils deficient in HMWK have reduced HNE secretion when stimulated in plasma deficient in HMWK or with purified kallikrein. These studies indicate that human neutrophils contain a binding site for HMWK that could serve to localize plasma or neutrophil HMWK on their surface to possibly serve as a receptor for kallikrein and to participate in HNE secretion by this enzyme. Images PMID:2738152

  3. Unstable high molecular weight inverted repetitive DNA in human lymphocytes.

    PubMed Central

    Rogers, J C; Rucinsky, T E

    1982-01-01

    About 1% of newly synthesized DNA from PHA-stimulated human lymphocytes can be isolated as large (up to 90 kilobase pairs) double stranded fragments that resist sequential alkali and heat denaturation steps but are not closed circular. By electron microscopy about 1% have single-strand hairpin loops at one end and therefore present inverted repetitive sequences (IR-DNA). Most of the remainder have a blunt-appearing double-strand terminus at both ends (78%) or one end (18%). Indirect evidence indicates that these also are inverted complementary structures with terminal hairpin loops too small to be visualized: (1) Treatment with either a 5' or 3' single-strand exonuclease generates essentially only fragments with a single strand at one end; (2) with partial denaturation, the number of fragments with identifiable single-strand hairpin loops increases (to about 20%); (3) after S1 nuclease digestion, greater than 95% can be fully heat denatured. Cot analysis indicates that these fragments are derived from dispersed sites throughout the genome. Up to 25% of DNA released from lymphocytes during growth similarly resists denaturation, and released DNA and IR-DNA are both enriched in the same set of repetitive sequences. Thus at least a portion of IR-DNA appears to be unstable. Images PMID:7145706

  4. Citric acid mediates the iron absorption from low molecular weight human milk fractions.

    PubMed

    Palika, Ravindranadh; Mashurabad, Purna Chandra; Kilari, Sreenivasulu; Kasula, Sunanda; Nair, Krishnapillai Madhavan; Raghu, Pullakhandam

    2013-11-20

    Previously, we have demonstrated increased iron absorption from low molecular weight (LMW) human milk whey fractions. In the present study, we investigated the effect of heat denaturation, zinc (a competitor of iron), duodenal cytochrome b (DcytB) antibody neutralization and citrate lyase treatment on LMW human milk fraction (>5 kDa referred as 5kF) induced ferric iron reduction, solubilization, and uptake in Caco-2 cells. Heat denaturation and zinc inhibited the 5kF fraction induced ferric iron reduction. In contrast, zinc but not heat denaturation abrogated the ferric iron solubilization activity. Despite inhibition of ferric iron reduction, iron uptake in Caco-2 cells was similar from both native and heat denatured 5kF fractions. However, iron uptake was higher from native compared to heat denatured 5kF fractions in the cells preincubated with the DcytB antibody. Citrate lyase treatment inhibited the ferric iron reduction, solubilization, and uptake in Caco-2 cells. These findings demonstrate that citric acid present in human milk solubilizes the ferric iron which could be reduced by other heat labile components leading to increased uptake in intestinal cells. PMID:24160751

  5. Anti-inflammatory activity of low molecular weight polysialic acid on human macrophages

    PubMed Central

    Shahraz, Anahita; Kopatz, Jens; Mathy, Rene; Kappler, Joachim; Winter, Dominic; Kapoor, Shoba; Schütza, Vlad; Scheper, Thomas; Gieselmann, Volkmar; Neumann, Harald

    2015-01-01

    Oligosialic and polysialic acid (oligoSia and polySia) of the glycocalyx of neural and immune cells are linear chains, in which the sialic acid monomers are α2.8-glycosidically linked. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a primate-lineage specific receptor of human tissue macrophages and microglia that binds to α2.8-linked oligoSia. Here, we show that soluble low molecular weight polySia with an average degree of polymerization 20 (avDP20) interacts with SIGLEC-11 and acts anti-inflammatory on human THP1 macrophages involving the SIGLEC-11 receptor. Soluble polySia avDP20 inhibited the lipopolysaccharide (LPS)-induced gene transcription and protein expression of tumor necrosis factor-α (Tumor Necrosis Factor Superfamily Member 2, TNFSF2). In addition, polySia avDP20 neutralized the LPS-triggered increase in macrophage phagocytosis, but did not affect basal phagocytosis or endocytosis. Moreover, polySia avDP20 prevented the oxidative burst of human macrophages triggered by neural debris or fibrillary amyloid-β1–42. In a human macrophage-neuron co-culture system, polySia avDP20 also reduced loss of neurites triggered by fibrillary amyloid-β1–42. Thus, treatment with polySia avDP20 might be a new anti-inflammatory therapeutic strategy that also prevents the oxidative burst of macrophages. PMID:26582367

  6. Anti-inflammatory activity of low molecular weight polysialic acid on human macrophages.

    PubMed

    Shahraz, Anahita; Kopatz, Jens; Mathy, Rene; Kappler, Joachim; Winter, Dominic; Kapoor, Shoba; Schütza, Vlad; Scheper, Thomas; Gieselmann, Volkmar; Neumann, Harald

    2015-01-01

    Oligosialic and polysialic acid (oligoSia and polySia) of the glycocalyx of neural and immune cells are linear chains, in which the sialic acid monomers are α2.8-glycosidically linked. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a primate-lineage specific receptor of human tissue macrophages and microglia that binds to α2.8-linked oligoSia. Here, we show that soluble low molecular weight polySia with an average degree of polymerization 20 (avDP20) interacts with SIGLEC-11 and acts anti-inflammatory on human THP1 macrophages involving the SIGLEC-11 receptor. Soluble polySia avDP20 inhibited the lipopolysaccharide (LPS)-induced gene transcription and protein expression of tumor necrosis factor-α (Tumor Necrosis Factor Superfamily Member 2, TNFSF2). In addition, polySia avDP20 neutralized the LPS-triggered increase in macrophage phagocytosis, but did not affect basal phagocytosis or endocytosis. Moreover, polySia avDP20 prevented the oxidative burst of human macrophages triggered by neural debris or fibrillary amyloid-β1-42. In a human macrophage-neuron co-culture system, polySia avDP20 also reduced loss of neurites triggered by fibrillary amyloid-β1-42. Thus, treatment with polySia avDP20 might be a new anti-inflammatory therapeutic strategy that also prevents the oxidative burst of macrophages. PMID:26582367

  7. Three low molecular weight cysteine proteinase inhibitors of human seminal fluid: purification and enzyme kinetic properties.

    PubMed

    Yadav, Vikash Kumar; Chhikara, Nirmal; Gill, Kamaldeep; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2013-08-01

    The cystatins form a superfamily of structurally related proteins with highly conserved structural folds. They are all potent, reversible, competitive inhibitors of cysteine proteinases (CPs). Proteins from this group present differences in proteinase inhibition despite their high level of structural similarities. In this study, three cysteine proteinase inhibitors (CPIs) of low molecular weight were isolated from human seminal fluid (HSF) by affinity chromatography on carboxymethyl (CM)-papain-Sepharose column, purified using various chromatographic procedures and checked for purity on sodium-dodecyl PAGE (SDS-PAGE). Matrix-assisted laser desorption-ionization-time-of flight-mass spectrometry (MALDI-TOF-MS) identified these proteins as cystatin 9, cystatin SN, and SAP-1 (an N-terminal truncated form of cystatin S). All three CPIs suppressed the activity of papain potentially and showed remarkable heat stability. Interestingly SAP-1 also inhibits the activity of trypsin, chymotrypsin, pepsin, and PSA (prostate specific antigen) and acts as a cross-class protease inhibitor in in vitro studies. Using Surface Plasmon Resonance, we have also observed that SAP-1 shows a significant binding with all these proteases. These studies suggest that SAP-1 is a cross-class inhibitor that may regulate activity of various classes of proteases within the reproductive systems. To our knowledge, this is the first report about purification of CPIs from HSF; the identification of such proteins could provide better insights into the physiological processes and offer intimation for further research. PMID:23619703

  8. Cryoprotective effect of low-molecular-weight hyaluronan on human dermal fibroblast monolayers.

    PubMed

    Ujihira, Masanobu; Iwama, Akira; Aoki, Makie; Aoki, Kanako; Omaki, Sayaka; Goto, Erika; Mabuchi, Kiyoshi

    2010-01-01

    The purpose of this study was to assess the availability of low-molecular-weight (low-MW) hyaluronan (HA) as a cryoprotectant for cellular cryopreservation. To clarify whether low-MW HA is cryoprotective, we evaluated the effect of HA concentration (0-5% w/w) in a cryoprotectant solution on cell membrane integrity after freeze-thaw. A test sample was created using human dermal fibroblast monolayers incubated in a culture dish for 24 h (37 degrees C, 5% CO2). Sodium hyaluronate (MW 3 x 10(4)-5 x 10(4)) dissolved in medium served as the cryoprotectant solution. Samples were immersed in the solution for 2 h at 0-4 degrees C. They were frozen at a cooling rate of 3 degrees C/min from 4 to -80 degrees C, cooled further to below -185 degrees C, and then thawed. Cell membrane integrity after thawing was evaluated using a trypan blue exclusion assay. The sample and freezing procedures were repeated in subsequent experiments, while the conditions of the solution immersion with respect to the sample varied. Next, to clarify whether the cryoprotective action of HA is intra- or extracellular, we performed three experiments. The first studied the dependence of membrane integrity after freeze-thaw on preliminary incubation time (0.75-24 h at 37 degrees C) with a sample immersed in the solution (5% w/w HA). In the second, membrane integrity of thawed samples that were initially frozen in a medium instead of solution, by removing extracellular HA following a preliminary 6-h incubation period, were evaluated. Thirdly, we investigated cellular uptake of fluorescein isothiocyanate-labeled HA (MW 10(5), 1% w/w) after a preliminary 6-h incubation period under fluorescent microscopy (without freeze-thaw). The results show that HA had a cryoprotective effect, and that this cryoprotective action was intracellular. Therefore, low- MW HA proves to be a promising cellular cryoprotectant. PMID:20687452

  9. Molecular Weight and Molecular Weight Distributions in Synthetic Polymers.

    ERIC Educational Resources Information Center

    Ward, Thomas Carl

    1981-01-01

    Focuses on molecular weight and molecular weight distributions (MWD) and models for predicting MWD in a pedagogical way. In addition, instrumental methods used to characterize MWD are reviewed with emphasis on physical chemistry of each, including end-group determination, osmometry, light scattering, solution viscosity, fractionation, and…

  10. Characterization of the Modes of Binding between Human Sweet Taste Receptor and Low-Molecular-Weight Sweet Compounds

    PubMed Central

    Nakajima, Ken-ichiro; Tanaka, Takaharu; Abe, Keiko; Misaka, Takumi; Ishiguro, Masaji

    2012-01-01

    One of the most distinctive features of human sweet taste perception is its broad tuning to chemically diverse compounds ranging from low-molecular-weight sweeteners to sweet-tasting proteins. Many reports suggest that the human sweet taste receptor (hT1R2–hT1R3), a heteromeric complex composed of T1R2 and T1R3 subunits belonging to the class C G protein–coupled receptor family, has multiple binding sites for these sweeteners. However, it remains unclear how the same receptor recognizes such diverse structures. Here we aim to characterize the modes of binding between hT1R2–hT1R3 and low-molecular-weight sweet compounds by functional analysis of a series of site-directed mutants and by molecular modeling–based docking simulation at the binding pocket formed on the large extracellular amino-terminal domain (ATD) of hT1R2. We successfully determined the amino acid residues responsible for binding to sweeteners in the cleft of hT1R2 ATD. Our results suggest that individual ligands have sets of specific residues for binding in correspondence with the chemical structures and other residues responsible for interacting with multiple ligands. PMID:22536376

  11. High molecular weight adiponectin reduces apolipoprotein B and E release in human hepatocytes

    SciTech Connect

    Neumeier, Markus; Sigruener, Alexander; Eggenhofer, Elke; Weigert, Johanna; Weiss, Thomas S.; Schaeffler, Andreas; Schlitt, Hans J.; Aslanidis, Charalampos; Piso, Pompiliu; Langmann, Thomas; Schmitz, Gerd; Schoelmerich, Juergen; Buechler, Christa . E-mail: christa.buechler@klinik.uni-regensburg.de

    2007-01-12

    Low circulating levels of high molecular weight adiponectin (HMW-Apm) have been linked to dyslipidaemia and systemic HMW-Apm negatively correlates with very low density lipoprotein (VLDL), apolipoprotein B (ApoB), and ApoE and is positively associated with ApoA-I. Therefore, it was investigated whether HMW-Apm alters the hepatic synthesis of ApoB, ApoE, and ApoA-I or the activity of the hepatic ATP-binding cassette transporter A1 (ABCA1), as the main determinant of plasma HDL. HMW-Apm reduces hepatic ApoB and ApoE release whereas ABCA1 protein, activity and ApoA-I were not altered. Global gene expression analysis revealed that hepatic nuclear factor 4-{alpha} (HNF4-{alpha}) and HNF4-{alpha} regulated genes like ApoB are downregulated by HMW-Apm and this was confirmed at the mRNA and protein level. Therefore it is concluded that HMW-adiponectin may ameliorate dyslipidaemia by reducing the hepatic release of ApoB and ApoE, whereas ABCA1 function and ApoA-I secretion are not influenced.

  12. A large-molecular-weight polyanion, synthesized via ring-opening metathesis polymerization, as a lubricant for human articular cartilage.

    PubMed

    Wathier, Michel; Lakin, Benjamin A; Bansal, Prashant N; Stoddart, Stephanie S; Snyder, Brian D; Grinstaff, Mark W

    2013-04-01

    A large-molecular-weight polyanion is found to possess lubricating properties for cartilage. The polyanion, sodium poly(7-oxanorbornene-2-carboxylate), is synthesized by ring-opening metathesis polymerization of methyl 5-oxanorbornene-2-carboxylate. When dissolved in aqueous solution and applied to the surface of human cartilage it reduces the friction at the interface and acts as a lubricant. Its performance is similar to that of synovial fluid and superior to those of saline and Synvisc in an ex vivo human cartilage plug-on-plug model. The polymer is also not readily degraded by hyaluronidase or cytotoxic to human chondrocytes in vitro. As such, this polymer is a new type of viscosupplement, and the results provide insight into the design requirements for synthesizing highly efficacious synthetic biolubricants. PMID:23496043

  13. Purification of high-molecular-weight subfraction from porcine skin inhibiting proliferation of A431 human carcinoma epidermoid cells.

    PubMed

    Belova, O V; Sergienko, V I; Arion, V Ya; Lukanidina, T A; Moskvina, S N; Zimina, I V; Borisenko, G G; Lutsenko, G V; Grechikhina, M V; Kovaleva, E V; Klyuchnikova, Zh I

    2014-07-01

    Subfraction with a molecular weight >250 kDa isolated from porcine skin and inhibiting the proliferation of A431 human carcinoma epidermoid cells was purified by DEAE 32 anion exchange chromatography with NaCl concentration step-gradient. The effects of the initial subfraction and fractions obtained by separation in DEAE 32 on the proliferation of A431 human carcinoma epidermoid cells were studied in vitro in two tests (MTT and fluorescent test). The more sensitive fluorescent test showed the highest inhibitory activity of fraction No. 2 released from the column at 0.15 M NaCl. One major protein component and a series of minor protein components were detected in this fraction by vertical PAAG-SDS electrophoresis. PMID:25070165

  14. Anti-Inflammatory Activity in the Low Molecular Weight Fraction of Commercial Human Serum Albumin (LMWF5A).

    PubMed

    Thomas, Gregory W; Rael, Leonard T; Mains, Charles W; Slone, Denetta; Carrick, Matthew M; Bar-Or, Raphael; Bar-Or, David

    2016-01-01

    The innate immune system is increasingly being recognized as a critical component in osteoarthritis (OA) pathophysiology. An ex vivo immunoassay utilizing human peripheral blood mononuclear cells (PBMC) was developed in order to assess the OA anti-inflammatory properties of the low molecular weight fraction (<5 kDa) of commercial human serum albumin (LMWF5A). PBMC from various donors were pre-incubated with LMWF5A before LPS stimulation. TNFα release was measured by ELISA in supernatants after an overnight incubation. A ≥ 30% decrease in TNFα release was observed. This anti-inflammatory effect is potentially useful in assessing potency of LMWF5A for the treatment of OA. PMID:25961642

  15. Apparatus for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    2001-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

  16. Comparison of low molecular weight hydroxyethyl starch and human albumin as priming solutions in children undergoing cardiac surgery.

    PubMed

    Miao, Na; Yang, Jing; Du, Zhongtao; Liu, Wei; Ni, Hong; Xing, Jialin; Yang, Xiaofang; Xu, Bo; Hou, Xiaotong

    2014-09-01

    Human albumin is the conventional cardiopulmonary bypass circuit primer. However, it has high manufacturing costs. Crystalloid and colloid solutions have been developed as alternatives, including a new generation of non-ionic hydroxyethyl starch (HES). The efficacy of hydroxyethyl starch with a 130 molecular weight and substitution degree of 0.4 (hydroxyethyl starch 130/0.4) was compared with human albumin for use in cardiopulmonary bypass surgery in American Society of Anesthesiologists' grade I-II pediatric congenital heart disease patients. Efficacy was evaluated by comparing perioperative hemodynamic parameters, including plasma colloid osmotic pressure, renal function, blood loss, allogeneic blood volumes and plasma volume substitution. The hydroxyethyl starch group exhibited significantly higher preoperative colloid osmotic pressure (p<0.01) and significantly lower operative renal function and postoperative allogeneic blood volumes than the human albumin group. No significant differences were observed in serum creatinine, glucose, hematocrit or lactic acid levels (p>0.05). Our results indicate that hydroxyethyl starch may be a viable alternative to human albumin in pediatric patients undergoing relatively simple cardiopulmonary bypass surgeries. PMID:24658707

  17. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling.

    PubMed

    Santiago, Jon-Jon; McNaughton, Leslie J; Koleini, Navid; Ma, Xin; Bestvater, Brian; Nickel, Barbara E; Fandrich, Robert R; Wigle, Jeffrey T; Freed, Darren H; Arora, Rakesh C; Kardami, Elissavet

    2014-01-01

    Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious

  18. Inhibitory effects of low molecular weight polyphenolics from Inonotus obliquus on human DNA topoisomerase activity and cancer cell proliferation.

    PubMed

    Kuriyama, Isoko; Nakajima, Yuki; Nishida, Hiroshi; Konishi, Tetsuya; Takeuchi, Toshifumi; Sugawara, Fumio; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2013-08-01

    Low molecular weight (LMW) polyphenolics containing a polyhydroxylated benzyl moiety are abundant in medicinal plants. In the present study, we report on the activities of seven LMW polyphenolics isolated from Inonotus obliquus, a medicinal mushroom. The isolated compounds included caffeic acid (CA), 3,4-dihydroxybenzalacetone (DBL), gallic acid, syringic acid, protocatechuic acid, 3,4-dihydroxybenzaldehyde and 2,5-dihydroxyterephthalic acid. We analyzed their inhibitory effects on DNA polymerase (pol) and DNA topoisomerase (topo), and their effects on human cancer cell growth. All isolated compounds inhibited human topo II activity; the most potent were DBL and CA, which contain a catechol propanoid moiety. CA and DBL inhibited the activity of human topo I, whereas other compounds had no effect. No compound modulated the activities of 11 mammalian pol species or other DNA metabolic enzymes, including T7 RNA polymerase, mouse IMP dehydrogenase (type II), T4 polynucleotide kinase and bovine deoxyribonuclease I. CA and DBL markedly suppressed the proliferation of human colon HCT116 carcinoma cells with an LD50 of 70.0 and 49.4 µM, respectively, and halted the cell cycle in the G2/M phase. The suppressive effect of these compounds on cancer cell growth correlated with their ability to inhibit topo II. These results suggest that CA- and DBL-dependent decreases in cell proliferation are due to the inhibition of cellular topo II. The mechanism of action of these catechol propanoid compounds and the implication for their use as anticancer agents are discussed. PMID:23799608

  19. Fitzgerald factor (high molecular weight kininogen) clotting activity in human plasma in health and disease in various animal plasmas.

    PubMed

    Saito, H; Goldsmith, G; Waldmann, R

    1976-12-01

    Fitzgerald factor (high molecular weight kininogen) is an agent in normal human plasma that corrects the impaired in vitro surface-mediated plasma reactions of blood coagulation, fibrinolysis, and kinin generation observed in Fitzgerald trait plasma. To assess the possible pathophysiologic role of Fitzgerald factor, its titer was measured by a functional clot-promoting assay. Mean +/- SD in 42 normal adults was 0.99+/-0.25 units/ml, one unit being the activity in 1 ml of normal pooled plasma. No difference in titer was noted between normal men and women, during pregnancy, or after physical exercise. Fitzgerald factor activity was significantly reduced in the plasmas of eight patients with advanced hepatic cirrhosis (0.40+/-0.09 units/ml) and of ten patients with disseminated intravascular coagulation (0.60+/-0.30 units/ml), but was normal in plasmas of patients with other congenital clotting factor deficiencies, nephrotic syndrome, rheumatoid arthritis, systemic lupus erythematosus, or sarcoidosis, or under treatment with warfarin. The plasmas of 21 mammalian species tested appeared to contain Fitzgerald factor activity, but those of two avian, two repitilian, and one amphibian species did not correct the coagulant defect in Fitzgerald trait plasmas. PMID:1000085

  20. Identification of a cDNA for a human high-molecular-weight B-cell growth factor.

    PubMed Central

    Ambrus, J L; Pippin, J; Joseph, A; Xu, C; Blumenthal, D; Tamayo, A; Claypool, K; McCourt, D; Srikiatchatochorn, A; Ford, R J

    1993-01-01

    Proliferation is necessary for many of the phenotypic changes that occur during B-cell maturation. Further differentiation of mature B cells into plasma cells or memory B cells requires additional rounds of proliferation. In this manuscript, we describe a cDNA for a human B-cell growth factor we call high-molecular-weight B-cell growth factor (HMW-BCGF). Purified HMW-BCGF has been shown to induce B-cell proliferation, inhibit immunoglobulin secretion, and selectively expand certain B-cell subpopulations. Studies using antibodies to HMW-BCGF and its receptor have suggested that HMW-BCGF, while produced by T cells and some malignant B cells, acts predominantly on normal and malignant B cells. The HMW-BCGF cDNA was identified by expression cloning using a monoclonal antibody and polyclonal antisera to HMW-BCGF. Protein produced from the cDNA induced B-cell proliferation, inhibited immunoglobulin secretion, and was recognized in immunoblots by anti-HMW-BCGF antibodies. The amino acid sequence of HMW-BCGF deduced from the cDNA predicts a secreted protein of 53 kDa with three potential N-linked glycosylation sites. The identification of this cDNA will allow further studies examining physiologic roles of this cytokine. We propose to call it interleukin 14. Images Fig. 2 Fig. 4 Fig. 6 PMID:8327514

  1. Honokiol, a low molecular weight natural product, prevents inflammatory response and cartilage matrix degradation in human osteoarthritis chondrocytes.

    PubMed

    Chen, Ying Ju; Tsai, Keh Sung; Chan, Ding Cheng; Lan, Kuo Cheng; Chen, Cheng Feng; Yang, Rong Sen; Liu, Shing Hwa

    2014-04-01

    Proinflammatory cytokine interleukin-1β (IL-1β) stimulates several mediators of cartilage degradation and plays an important role in the pathogenesis of osteoarthritis (OA). Honokiol, a low molecular weight natural product isolated from the Magnolia officinalis, has been shown to possess anti-inflammatory effect. Here, we used an in vitro model of cartilage inflammation to investigate the therapeutic potential of honokiol in OA. Human OA chondrocytes were cultured and pretreated with honokiol (2.5-10 µM) with or without IL-1β (10 ng/ml). Nitric oxide (NO) production was quantified by Griess reagent. Prostaglandin (PG)E2 , metalloproteinase-13 (MMP-13), and interleukin-6 (IL-6) productions were quantified by enzyme-linked immunosorbent assay. The expressions of collagen II, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor κB (NF-κB)-related signaling molecules were determined by Western blotting. Our data showed that IL-1β markedly stimulated the expressions of iNOS and COX-2 and the productions of NO, PGE2 , and IL-6, which could be significantly reversed by honokiol. Honokiol could also suppress the IL-1β-triggered activation of IKK/IκBα/NF-κB signaling pathway. Moreover, honokiol significantly inhibited the IL-1β-induced MMP-13 production and collagen II reduction. Taken together, the present study suggests that honokiol may have a chondroprotective effect and may be a potential therapeutic choice in the treatment of OA patients. PMID:24375705

  2. Altered Expression of High Molecular Weight Heat Shock Proteins after OCT4B1 Suppression in Human Tumor Cell Lines

    PubMed Central

    Mirzaei, Mohammad Reza; Kazemi Arababadi, Mohammad; Asadi, Malek Hossein; Mowla, Seyed Javad

    2016-01-01

    Objective OCT4B1, a novel variant of OCT4, is expressed in cancer cell lines and tis- sues. Based on our previous reports, OCT4B1 appears to have a crucial role in regulating apoptosis as well as stress response [heat shock proteins (HSPs)] pathways. The aim of the present study was to determine the effects of OCT4B1 silencing on the expression of high molecular weight HSPs in three different human tumor cell lines. Materials and Methods In this experimental study, OCT4B1 expression was suppressed in AGS (gastric adenocarcinoma), 5637 (bladder tumor) and U-87MG (brain tumor) cell lines using RNAi strategy. Real-time polymerase chain reaction (PCR) array was em- ployed for expression level analysis and the fold changes were calculated using RT2 Pro- filer PCR array data analysis software version 3.5. Results Our data revealed up-regulation of HSPD1 (from HSP60 family) as well as HSPA14, HSPA1L, HSPA4, HSPA5 and HSPA8 (from HSP70 family) following OCT4B1 knock-down in all three cell lines. In contrast, the expression of HSP90AA1 and HSP90AB1 (from HSP90 family) as well as HSPA1B and HSPA6 (from HSP70 family) was down-regulated under similar conditions. Other stress-related genes showed varying ex- pression pattern in the examined tumor cell lines. Conclusion Our data suggest a direct or indirect correlation between the expression of OCT4B1 and HSP90 gene family. However, OCT4B1 expression was not strongly corre- lated with the expression of HSP70 and HSP60 gene families. PMID:26862520

  3. The Molecular Weight Distribution of Polymer Samples

    ERIC Educational Resources Information Center

    Horta, Arturo; Pastoriza, M. Alejandra

    2007-01-01

    Various methods for the determination of the molecular weight distribution (MWD) of different polymer samples are presented. The study shows that the molecular weight averages and distribution of a polymerization completely depend on the characteristics of the reaction itself.

  4. Effect of molecular weight on polymer processability

    SciTech Connect

    Karg, R.F.

    1983-01-01

    Differences in rheological behavior due to the polymer molecular weight and molecular weight distribution have been shown with the MPT. SBR polymers having high molecular weight fractions develop higher stress relaxation time values due to the higher degree of polymer entanglements. Tests conducted at increasing temperatures show the diminishing influence of the polymer entanglements upon stress relaxation time. EPDM polymers show stress relaxation time and head pressure behavior which correlates with mill processability. As anticipated, compounded stock of EPDM have broad molecular weight distribution has higher stress relaxation time values than EPDM compounds with narrow molecular weight distribution.

  5. Ultrahigh molecular weight aromatic siloxane polymers

    NASA Technical Reports Server (NTRS)

    Ludwick, L. M.

    1982-01-01

    The condensation of a diol with a silane in toluene yields a silphenylene-siloxane polymer. The reaction of stiochiometric amounts of the diol and silane produced products with molecular weights in the range 2.0 - 6.0 x 10 to the 5th power. The molecular weight of the product was greatly increased by a multistep technique. The methodology for synthesis of high molecular weight polymers using a two step procedure was refined. Polymers with weight average molecular weights in excess of 1.0 x 10 to the 6th power produced by this method. Two more reactive silanes, bis(pyrrolidinyl)dimethylsilane and bis(gamma butyrolactam)dimethylsilane, are compared with the dimethyleminodimethylsilane in ability to advance the molecular weight of the prepolymer. The polymers produced are characterized by intrinsic viscosity in tetrahydrofuran. Weight and number average molecular weights and polydispersity are determined by gel permeation chromatography.

  6. Human biology of weight maintenance after weight loss.

    PubMed

    Mariman, Edwin C M

    2012-01-01

    One year after losing weight, most people have regained a significant part of the lost weight. As such, weight regain after weight loss has a negative impact on human health. The risk for weight regain is determined by psychosocial and behavioral factors as well as by various physiological and molecular parameters. Here, the latter intrinsic factors are reviewed and assembled into four functional modules, two related to the energy balance and two related to resistance against weight loss. Reported genetic factors do not reveal additional functional processes. The modules form nodes in a network describing the complex interactions of intrinsically determined weight maintenance. This network indicates that after an initial weight loss persons with a high baseline fat mass will most easily succeed in maintaining weight, because they can lose fat without raising stress in adipocytes and at the same time spare fat-free mass. However, continued weight loss and weight maintenance requires extra measures like increased physical activity, limited energy intake and a fat-free sparing composition of the diet. Eventually, this network may help to design novel therapeutic measures based on preventing the return effect of specific plasma factors or by preventing the accumulation of adipocyte cellular stress. PMID:22472972

  7. Effect of molecular weight on polyphenylquinoxaline properties

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    1991-01-01

    A series of polyphenyl quinoxalines with different molecular weight and end-groups were prepared by varying monomer stoichiometry. Thus, 4,4'-oxydibenzil and 3,3'-diaminobenzidine were reacted in a 50/50 mixture of m-cresol and xylenes. Reaction concentration, temperature, and stir rate were studied and found to have an effect on polymer properties. Number and weight average molecular weights were determined and correlated well with viscosity data. Glass transition temperatures were determined and found to vary with molecular weight and end-groups. Mechanical properties of films from polymers with different molecular weights were essentially identical at room temperature but showed significant differences at 232 C. Diamine terminated polymers were found to be much less thermooxidatively stable than benzil terminated polymers when aged at 316 C even though dynamic thermogravimetric analysis revealed only slight differences. Lower molecular weight polymers exhibited better processability than higher molecular weight polymers.

  8. Stent encrustation in feline and human artificial urine: does the low molecular weight composition account for the difference?

    PubMed

    Shafat, M; Rajakumar, K; Syme, H; Buchholz, N; Knight, M M

    2013-11-01

    Anecdotal evidence suggests that the rate of encrustation on JJ stents placed in domesticated cats appears to be decreased as compared to humans. Our study tests the hypothesis that this may be due to specific differences in the chemical composition of human and feline urine. Artificial human and feline urine solutions were used in an in vitro encrustation model where an 80 % stent encrustation could be expected after 7 weeks of incubation. Scanning electron microscopy (SEM) was used to analyse crystal morphology. Energy dispersive X-ray spectrometry (EDS) was used to assess composition weight. The percentage of surface coverage of encrustation on the respective stents was quantified using image J Java plug-in software. No significant difference was observed between both solutions with regard to quality and quantity of stent encrustation. Crystals were formed in both solutions as a mixture of Ca-dihydrate and Ca-monohydrate. The study shows that there is no significant difference in the rate of encrustations on JJ stents incubated in artificial feline or human urine. This suggests that a possible difference in stent encrustation between cats and humans is due to factors other than the inorganic biochemical composition of the urines alone. Keeping in mind a true species difference, analysis of urinary macromolecules and proteins will be the logical next step. PMID:24091871

  9. Soluble high molecular weight polyimide resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Lubowitz, H. R.

    1970-01-01

    High molecular weight polyimide resins have greater than 20 percent /by weight/ solubility in polar organic solvents. They permit fabrication into films, fibers, coatings, reinforced composite, and adhesive product forms. Characterization properties for one typical polyimide resin are given.

  10. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  11. Production of high molecular weight polylactic acid

    SciTech Connect

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  12. Molecular weight determinations of biosolubilized coals

    SciTech Connect

    Linehan, J.C.; Clauss, S.; Bean, R.; Campbell, J.

    1991-05-01

    We have compared several different methods for determining the molecular weight of biosolubilized coals: Aqueous gel permeation Chromatography (GPC), organic GPC, preparative GPC, dynamic laser light scattering (LLS), static LLS, static LLS, mass spectrometry, vapor phase osmometry (VPO) and ultrafiltration. We have found that careful consideration must be given to the molecular weight result obtained from each method. The average molecular weight and the molecular weight distribution were found to be dependent upon many factors, including the technique used; molecular weight standards, pH, and the percentage of sample analyzed. Weight average molecular weights, M{sub w}, obtained for biosolubilized leonardite range from 800,000 daltons for neutral pH aqueous GPC based on polyethylene glycol molecular weight standards to 570 daltons for pH 11.5 buffered aqueous GPC based on a fulvic acid standard. It is clear that the state of association of the biocoal analyte, as well as the interactions of sample with the separation matrix, can have large influence of the observed result, and these must be understood before reliable GPC measurements can be made. Furthermore, a uniform set of molecular weight standards for biodegraded coals is needed. 10 refs., 1 tab.

  13. Effect of High, Medium, and Low Molecular Weight Hyaluronan on Inflammation and Oxidative Stress in an In Vitro Model of Human Nasal Epithelial Cells.

    PubMed

    Albano, Giusy Daniela; Bonanno, Anna; Cavalieri, Luca; Ingrassia, Eleonora; Di Sano, Caterina; Siena, Liboria; Riccobono, Loredana; Gagliardo, Rosalia; Profita, Mirella

    2016-01-01

    IL-17A is involved in the activation of oxidative stress and inflammation in nasal epithelial cells. Hyaluronan (HA) in its high molecular weight form (HMW-HA) shows anti-inflammatory responses in contrast to low and medium molecular weight HA (LMW-HA and MMW-HA). The aim of this study was to investigate the pro- or anti-inflammatory biologic function of HA at different molecular weight in an in vitro model of nasal inflammation IL-17A mediated. We evaluated the ERK1/2 and IκBα phosphorylation, NF-κB signal pathway activation, ROS production, IL-8 and NOX-4 protein, and mRNA levels, in nasal epithelial cells RPMI 2650 stimulated with recombinant human (rh) IL-17A. Furthermore, the cells were treated with HMW-HA, MMW-HA, LMW-HA, and U0126. Our results showed that rhIL-17A increased the ERK1/2, IκBα phosphorylation and NF-κB signal pathway activation, ROS production, IL-8 and NOX-4 proteins, and mRNA levels. The addiction of HMW-HA or U0126 showed a significant downregulatory effect on inflammation due to the rhIL-17A stimulation in nasal epithelial cells. IL-17A is able to generate oxidative stress and inflammation via the activation of ERK1/2/NF-κB pathway in nasal epithelial cells. The HMW-HA might represent a coadjuvant of the classic anti-inflammatory/antioxidative treatment of nasal epithelial cells during IL-17A nasal inflammation. PMID:27212811

  14. Effect of High, Medium, and Low Molecular Weight Hyaluronan on Inflammation and Oxidative Stress in an In Vitro Model of Human Nasal Epithelial Cells

    PubMed Central

    Albano, Giusy Daniela; Bonanno, Anna; Cavalieri, Luca; Ingrassia, Eleonora; Di Sano, Caterina; Siena, Liboria; Riccobono, Loredana; Gagliardo, Rosalia; Profita, Mirella

    2016-01-01

    IL-17A is involved in the activation of oxidative stress and inflammation in nasal epithelial cells. Hyaluronan (HA) in its high molecular weight form (HMW-HA) shows anti-inflammatory responses in contrast to low and medium molecular weight HA (LMW-HA and MMW-HA). The aim of this study was to investigate the pro- or anti-inflammatory biologic function of HA at different molecular weight in an in vitro model of nasal inflammation IL-17A mediated. We evaluated the ERK1/2 and IκBα phosphorylation, NF-κB signal pathway activation, ROS production, IL-8 and NOX-4 protein, and mRNA levels, in nasal epithelial cells RPMI 2650 stimulated with recombinant human (rh) IL-17A. Furthermore, the cells were treated with HMW-HA, MMW-HA, LMW-HA, and U0126. Our results showed that rhIL-17A increased the ERK1/2, IκBα phosphorylation and NF-κB signal pathway activation, ROS production, IL-8 and NOX-4 proteins, and mRNA levels. The addiction of HMW-HA or U0126 showed a significant downregulatory effect on inflammation due to the rhIL-17A stimulation in nasal epithelial cells. IL-17A is able to generate oxidative stress and inflammation via the activation of ERK1/2/NF-κB pathway in nasal epithelial cells. The HMW-HA might represent a coadjuvant of the classic anti-inflammatory/antioxidative treatment of nasal epithelial cells during IL-17A nasal inflammation. PMID:27212811

  15. Microdialysis unit for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    1999-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

  16. Microdialysis unit for molecular weight separation

    SciTech Connect

    Smith, R.D.; Liu, C.

    1999-09-21

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

  17. Structures of Human Cyctochrome P450 2E1: Insights Into the Binding of Inhibitors And Both Small Molecular Weight And Fatty Acid Substrates

    SciTech Connect

    Porubsky, P.R.; Meneely, K.M.; Scott, E.E.

    2009-05-21

    Human microsomal cytochrome P-450 2E1 (CYP2E1) monooxygenates >70 low molecular weight xenobiotic compounds, as well as much larger endogenous fatty acid signaling molecules such as arachidonic acid. In the process, CYP2E1 can generate toxic or carcinogenic compounds, as occurs with acetaminophen overdose, nitrosamines in cigarette smoke, and reactive oxygen species from uncoupled catalysis. Thus, the diverse roles that CYP2E1 has in normal physiology, toxicity, and drug metabolism are related to its ability to metabolize diverse classes of ligands, but the structural basis for this was previously unknown. Structures of human CYP2E1 have been solved to 2.2 {angstrom} for an indazole complex and 2.6 {angstrom} for a 4-methylpyrazole complex. Both inhibitors bind to the heme iron and hydrogen bond to Thr{sup 303} within the active site. Complementing its small molecular weight substrates, the hydrophobic CYP2E1 active site is the smallest yet observed for a human cytochrome P-450. The CYP2E1 active site also has two adjacent voids: one enclosed above the I helix and the other forming a channel to the protein surface. Minor repositioning of the Phe{sup 478} aromatic ring that separates the active site and access channel would allow the carboxylate of fatty acid substrates to interact with conserved {sup 216}QXXNN{sup 220} residues in the access channel while positioning the hydrocarbon terminus in the active site, consistent with experimentally observed {omega}-1 hydroxylation of saturated fatty acids. Thus, these structures provide insights into the ability of CYP2E1 to effectively bind and metabolize both small molecule substrates and fatty acids.

  18. The anti-proliferative effects and mechanisms of low molecular weight scorpion BmK venom peptides on human hepatoma and cervical carcinoma cells in vitro.

    PubMed

    Li, Weiling; Xin, Yi; Chen, Yang; Li, Xinli; Zhang, Cuili; Bai, Jing; Yuan, Jieli

    2014-10-01

    Peptides from scorpion venom have been previously studied for use in the prevention and treatment of various types of cancer in folk medicine. The present study investigated the anti-proliferative effects and mechanisms of the low molecular weight (~3 kDa) BmK scorpion venom peptides (LMWSVP) on human hepatoma (SMMC 7721) and cervical carcinoma (HeLa) cells. The data indicated that LMWSVP inhibited the growth of SMMC 7721 cells, but had no effect on the growth of HeLa cells. SMMC 7721 cells were more sensitive, with a higher affinity, to LMWSVP as compared with HeLa cells. In addition, LMWSVP induced apoptosis of SMMC 7721 cells by upregulating the expression of caspase-3 and downregulating the expression of Bcl-2. These data provide an experimental basis for further purification and application of LMWSVP for use as an anti-tumor drug in clinical trials. PMID:25202371

  19. Low molecular weight hyaluronan mediated CD44 dependent induction of IL-6 and chemokines in human dermal fibroblasts potentiates innate immune response.

    PubMed

    Vistejnova, Lucie; Safrankova, Barbora; Nesporova, Kristina; Slavkovsky, Rastislav; Hermannova, Martina; Hosek, Petr; Velebny, Vladimir; Kubala, Lukas

    2014-12-01

    Complex regulation of the wound healing process involves multiple interactions among stromal tissue cells, inflammatory cells, and the extracellular matrix. Low molecular weight hyaluronan (LMW HA) derived from the degradation of high molecular weight hyaluronan (HMW HA) is suggested to activate cells involved in wound healing through interaction with HA receptors. In particular, receptor CD44 is suggested to mediate cell response to HA of different MW, being the main cell surface HA receptor in stromal tissue and immune cells. However, the response of dermal fibroblasts, the key players in granulation tissue formation within the wound healing process, to LMW HA and their importance for the activation of immune cells is unclear. In this study we show that LMW HA (4.3kDa) induced pro-inflammatory cytokine IL-6 and chemokines IL-8, CXCL1, CXCL2, CXCL6 and CCL8 gene expression in normal human dermal fibroblasts (NHDF) that was further confirmed by increased levels of IL-6 and IL-8 in cell culture supernatants. Conversely, NHDF treated by HMW HA revealed a tendency to decrease the gene expression of these cytokine and chemokines when compared to untreated control. The blockage of CD44 expression by siRNA resulted in the attenuation of IL-6 and chemokines expression in LMW HA treated NHDF suggesting the involvement of CD44 in LMW HA mediated NHDF activation. The importance of pro-inflammatory mediators produced by LMW HA triggered NHDF was evaluated by significant activation of blood leukocytes exhibited as increased production of IL-6 and TNF-α. Conclusively, we demonstrated a pro-inflammatory response of dermal fibroblasts to LMW HA that was transferred to leukocytes indicating the significance of LMW HA in the inflammatory process development during the wound healing process. PMID:25126764

  20. Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000.

    PubMed Central

    Parkos, C A; Allen, R A; Cochrane, C G; Jesaitis, A J

    1987-01-01

    A new method has been developed for purification of cytochrome b from stimulated human granulocytes offering the advantage of high yields from practical quantities of whole blood. Polymorphonuclear leukocytes were treated with diisopropylfluorophosphate, degranulated and disrupted by nitrogen cavitation. Membranes enriched in cytochrome b were prepared by differential centrifugation. Complete solubilization of the cytochrome from the membranes was achieved in octylglucoside after a 1-M salt wash. Wheat germ agglutinin-conjugated Sepharose 4B specifically bound the solubilized cytochrome b and afforded a threefold purification. Eluate from the immobilized wheat germ agglutinin was further enriched by chromatography on immobilized heparin. The final 260-fold purification of the b-type cytochrome with a 20-30% yield was achieved by velocity sedimentation in sucrose density gradients. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the purified preparation revealed two polypeptides of Mr 91,000 and Mr 22,000. Treatment of the 125I-labeled, purified preparation with peptide:N-glycosidase F, which removes N-linked sugars, decreased relative molecular weight of the larger species to approximately 50,000, whereas beta-elimination, which removes O-linked sugars, had little or no effect on the mobility of the Mr-91,000 polypeptide. Neither of the deglycosylation conditions had any effect on electrophoretic mobility of the Mr-22,000 polypeptide. Disuccinimidyl suberate cross-linked the two polypeptides to a new Mr of 120,000-135,000 by SDS-PAGE. Antibody raised to the purified preparation immunoprecipitated spectral activity and, on Western blots, bound to the Mr-22,000 polypeptide but not the Mr-91,000 polypeptide. Western blot analysis of granulocytes from patients with X-linked chronic granulomatous disease revealed a complete absence of the Mr-22,000 polypeptide. These results (a) suggest that the two polypeptides are in close association and are

  1. Characterization of the phosphorylation sites of human high molecular weight neurofilament protein by electrospray ionization tandem mass spectrometry and database searching.

    PubMed

    Jaffe, H; Veeranna; Shetty, K T; Pant, H C

    1998-03-17

    Hyperphosphorylated high molecular weight neurofilament protein (NF-H) exhibits extensive phosphorylation on lysine-serine-proline (KSP) repeats in the C-terminal domain of the molecule. Specific phosphorylation sites in human NF-H were identified by proteolytic digestion and analysis of the resulting digests by a combination of microbore liquid chromatography, electrospray ionization tandem (MS/MS) ion trap mass spectrometry, and database searching. The computer programs utilized (PEPSEARCH and SEQUEST) are capable of identifying peptides and phosphorylation sites from uninterpreted MS/MS spectra, and by use of these methods, 27 phosphopeptides and their phosphorylated residues were identified. On the basis of these phosphopeptides, 38 phosphorylation sites in human NF-H were characterized. These include 33 KSP, lysine-threonine-proline (KTP) or arginine-serine-proline (RSP) sites and four unphosphorylated sites, all of which occur in the KSP repeat domain (residues 502-823); and one threonine phosphorylation site observed in a KVPTPEK motif. Six KSP sites were not characterized because of the failure to isolate and identify corresponding phosphopeptides. Heterogeneity in serine and threonine phosphorylation was observed at three sites or deduced to occur at three sites on the basis of enzyme specificity. As a result of the phosphorylated motifs identified (KSPAKEE, KSPVKEE, KS/TPEKAK, KSPEKEE, KSPVKAE, KSPAEAK, KSPPEAK, KSPEAKT, KSPAEVK, and KVPTPEK), human NF-H tail domain is postulated to be a substrate of proline-directed kinases. The threonine-phosphorylated KVPTPEK motif suggested the existence of a novel proline-directed kinase. PMID:9521714

  2. SEDFIT-MSTAR: Molecular weight and molecular weight distribution analysis of polymers by sedimentation equilibrium in the ultracentrifuge

    PubMed Central

    Schuck, Peter; Gillis, Richard B.; Besong, Tabot M.D.; Almutairi, Fahad; Adams, Gary G.; Rowe, Arthur J.; Harding, Stephen E.

    2014-01-01

    Sedimentation equilibrium (analytical ultracentrifugation) is one of the most inherently suitable methods for the determination of average molecular weights and molecular weight distributions of polymers, because of its absolute basis (no conformation assumptions) and inherent fractionation ability (without the need for columns or membranes and associated assumptions over inertness). With modern instrumentation it is also possible to run up to 21 samples simultaneously in a single run. Its application has been severely hampered because of difficulties in terms of baseline determination (incorporating estimation of the concentration at the air/solution meniscus) and complexity of the analysis procedures. We describe a new method for baseline determination based on a smart-smoothing principle and built into the highly popular platform SEDFIT for the analysis of the sedimentation behavior of natural and synthetic polymer materials. The SEDFIT-MSTAR procedure – which takes only a few minutes to perform - is tested with four synthetic data sets (including a significantly non-ideal system) a naturally occurring protein (human IgG1) and two naturally occurring carbohydrate polymers (pullulan and λ–carrageenan) in terms of (i) weight average molecular weight for the whole distribution of species in the sample (ii) the variation in “point” average molecular weight with local concentration in the ultracentrifuge cell and (iii) molecular weight distribution. PMID:24244936

  3. Effect of a bioabsorbable, super-high molecular weight poly-D,L-lactic acid plate containing recombinant human bone morphogenetic protein-2 for fracture healing

    PubMed Central

    ZHOU, NING-FENG; HUANG, YU-FENG; WANG, JIN-WU

    2015-01-01

    The aim of this study was to investigate the effect of a bioabsorbable, super-high molecular weight poly-D,L-lactic acid (PDLLA) plate exhibiting the sustained release of recombinant human bone morphogenetic protein-2 (rhBMP-2) (PDLLA-rhBMP-2) on the treatment of fracture with internal fixation. A total of 32 New Zealand rabbits were randomly allocated to one of four groups (2, 4, 8 and 12 weeks), and a 2.5-mm middle ulnar osteotomy was performed bilaterally. The right side (experimental side) was fixed internally with PDLLA-rhBMP-2, and the left side (control side) was fixed with a normal PDLLA plate. At 2, 4, 8 and 12 weeks after surgery, the gross pathology of the ulnas was examined and radiographic, histological and computer image analyses were performed. The results demonstrated that the ulna fractures were fixed stably with the two bioactive plates at 2, 4, 8 and 12 weeks after surgery. At the 8-week time-point, 7 rabbits exhibited good healing at the osteotomy site on the experimental side. At 12 weeks after surgery, 8 rabbits exhibited good healing at the osteotomy site on both sides, but the experimental side showed enhanced compatibility between the plates and surrounding tissue, faster bone formation, a greater bone regeneration mass and better medullary canal structure compared with the control side. In conclusion, PPLLA-rhBMP-2 may be effectively used to treat fracture or nonunion at a non-weight-bearing site. PMID:26640559

  4. Biodegradation of high molecular weight polylactic acid

    NASA Astrophysics Data System (ADS)

    Stloukal, Petr; Koutny, Marek; Sedlarik, Vladimir; Kucharczyk, Pavel

    2012-07-01

    Polylactid acid seems to be an appropriate replacement of conventional non-biodegradable synthetic polymer primarily due to comparable mechanical, thermal and processing properties in its high molecular weight form. Biodegradation of high molecular PLA was studied in compost for various forms differing in their specific surface area. The material proved its good biodegradability under composting conditions and all investigated forms showed to be acceptable for industrial composting. Despite expectations, no significant differences in resulting mineralizations were observed for fiber, film and powder sample forms with different specific surface areas. The clearly faster biodegradation was detected only for the thin coating on porous material with high specific surface area.

  5. Ultrahigh Molecular Weight Aromatic Siloxane Polymers

    NASA Technical Reports Server (NTRS)

    Ludwick, L. M.

    1983-01-01

    Silphenylene-siloxane polymers can be prepared by a condensation reaction of a diol 1,4-bis(hydroxydimethylsilyl)benzene and a silane bis(dimethylamino)dimethylsilane. Using a stepwise condensation technique, a polymer (R=CH3) with a molecular weight in excess of 1.0 x 1 million has been produced. The polymer exhibits increased thermal stability, compared to a methyl siloxane polymer without the aromatic phenyl ring in the backbone. The use of bis(dimethylamino)methylvinylsilane should allow for ready crosslinking at the vinyl sites (R=-CH=CH2) introduced into the backbone. However, under the conditions of the reaction system a high molecular weight polymer was not obtained or the polymer underwent a crosslinking process during the synthesis.

  6. Influence of penetration enhancers and molecular weight in antifungals permeation through bovine hoof membranes and prediction of efficacy in human nails.

    PubMed

    Miron, D; Cornelio, R; Troleis, J; Mariath, J; Zimmer, A R; Mayorga, P; Schapoval, E E S

    2014-01-23

    This work aimed to evaluate the effect of different substances on the permeation of geraniol through bovine hoof membranes. Different penetration enhancers were able to increase the permeability up to 25 times compared to control. It was demonstrated that acetilcysteine in association with ascorbic acid increased the permeation, even in acid formulations. In addition, some antifungal drugs were incorporated into a gel formulation of HPMC containing acetylcysteine 5% and ascorbic acid 0.2% and then the permeation coefficient through bovine hoof membranes was evaluated. The relationship between permeability and molecular weight was established for fluconazole, miconazole, terbinafine, butenafine, geraniol and nerol. Geraniol and nerol, the antifungals with lower molecular weight, had the better permeability results. Permeability coefficients for nail plates were estimated and geraniol demonstrated similar or even better efficacy index values against T. rubrum, T. menthagrophytes and M. canis compared with terbinafine and miconazole. PMID:23999034

  7. Low Molecular Weight Fraction of Commercial Human Serum Albumin Induces Morphologic and Transcriptional Changes of Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Bar-Or, David; Thomas, Gregory W; Rael, Leonard T; Gersch, Elizabeth D; Rubinstein, Pablo; Brody, Edward

    2015-08-01

    Osteoarthritis (OA) is the most common chronic disease of the joint; however, the therapeutic options for severe OA are limited. The low molecular weight fraction of commercial 5% human serum albumin (LMWF5A) has been shown to have anti-inflammatory properties that are mediated, in part, by a diketopiperazine that is present in the albumin preparation and that was demonstrated to be safe and effective in reducing pain and improving function when administered intra-articularly in a phase III clinical trial. In the present study, bone marrow-derived mesenchymal stem cells (BMMSCs) exposed to LMWF5A exhibited an elongated phenotype with diffuse intracellular F-actin, pronounced migratory leading edges, and filopodia-like projections. In addition, LMWF5A promoted chondrogenic condensation in "micromass" culture, concurrent with the upregulation of collagen 2α1 mRNA. Furthermore, the transcription of the CXCR4-CXCL12 axis was significantly regulated in a manner conducive to migration and homing. Several transcription factors involved in stem cell differentiation were also found to bind oligonucleotide response element probes following exposure to LMWF5A. Finally, a rapid increase in PRAS40 phosphorylation was observed following treatment, potentially resulting in the activation mTORC1. Proteomic analysis of synovial fluid taken from a preliminary set of patients indicated that at 12 weeks following administration of LMWF5A, a microenvironment exists in the knee conducive to stem cell infiltration, self-renewal, and differentiation, in addition to indications of remodeling with a reduction in inflammation. Taken together, these findings imply that LMWF5A treatment may prime stem cells for both mobilization and chondrogenic differentiation, potentially explaining some of the beneficial effects achieved in clinical trials. PMID:26041739

  8. Low molecular weight poly (2-dimethylamino ethylmethacrylate) polymers with controlled positioned fluorescent labeling: Synthesis, characterization and in vitro interaction with human endothelial cells.

    PubMed

    Flebus, Luca; Lombart, François; Sevrin, Chantal; Defraigne, Jean-Olivier; Peters, Pierre; Parhamifar, Ladan; Molin, Daniel G M; Grandfils, Christian

    2015-01-15

    Poly (2-dimethylamino ethylmethacrylate) (PDMAEMA) is an attractive non-degradable polymer studied as nonviral vector for gene delivery but it can be also adopted for delivery of other biopharmaceutical drugs. As a parenteral carrier, the PDMAEMA free form (FF) might interact with tissues and cells. Few data are available on its selective internalization and efflux from cells, while the majority of studies published have followed the distribution of DNA complexed with PDMAEMA. In order to address polycation safety, the first aim was to synthesize by atom transfer radical polymerisation (ATRP) fluorescent labeled PDMAEMA of low molecular weight (Mw) (below 15 kDa), controlling the position and density of fluorescein. The second goal was to analyze the possible difference in uptake and subcellular distribution of this labeled FF polycation between human umbilical vein endothelial cells (HUVEC) and hCMEC/D3 cells. These two cell lines have been chosen in order to detect selectivity towards the blood-brain barrier (BBB). In both cases, polycation was detected along the plasma membrane followed by progressive migration to the peri-nuclear region, where it overlapped with lysosomal structures. The analysis by fluorescence-activated cell sorting (FACS) of the PDMAEMA uptake by hCMEC/D3 cells showed a significant (p<0.05) inhibition (40%) in presence of 2-dexoxy-D-glucose inhibitor, a result supporting an energy-dependence mechanism(s). Cytotoxicity study showed that low Mw PDMAEMA (10 kDa) lead to a minor cytotoxicity compared to the higher ones. As main conclusion this study highlights the similitude in cell trafficking of FF PDMAEMA and data previously reported for PDMAEMA/DNA complexes. PMID:25448588

  9. Biocompatible composites of ultrahigh molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Suan, T. Nguen; Ivanova, L. P.; Korchagin, M. A.; Chaikina, M. V.; Shilko, S. V.; Pleskachevskiy, Yu. M.

    2015-10-01

    Mechanical and tribotechnical characteristics of biocompatible, antifriction and extrudable composites based on ultrahigh molecular weight polyethylene (UHMWPE) as well as hybrid matrix "UHMWPE + PTFE" with biocompatible hydroxyapatite filler under the dry friction and boundary lubrication were investigated. A comparative analysis of effectiveness of adding the hydroxyapatite to improve the wear resistance of composites based on these two matrices was performed. It is shown that the wear intensity of nanocomposites based on the hybrid matrix is lower than that for the composites based on pure UHMWPE. Possibilities of using the composites of the polymer "UHMWPE-PTFE" mixture as a material for artificial joints implants are discussed.

  10. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    ERIC Educational Resources Information Center

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  11. Determinations of molecular weight and molecular weight distribution of high polymers by the rheological properties

    NASA Technical Reports Server (NTRS)

    Huang, J. Y.; Hou, T. H.; Tiwari, S. N.

    1989-01-01

    Several methods are reviewed by which the molecular weight (MW) and the molecular weight distribution (MWD) of polymeric material were determined from the rheological properties. A poly(arylene ether) polymer with six different molecular weights was used in this investigation. Experimentally measured MW and MWD were conducted by GPC/LALLS (gel permeation chromatography/low angle laser light scattering), and the rheological properties of the melts were measured by a Rheometric System Four rheometer. It was found that qualitative information of the MW and MWD of these polymers could be derived from the viscoelastic properties, with the methods proposed by Zeichner and Patel, and by Dormier et al., by shifting the master curves of the dynamic storage modulus, G', and the loss modulus, G'', along the frequency axis. Efforts were also made to calculate quantitative profiles of MW and MWD for these polymers from their rheological properties. The technique recently proposed by Wu was evaluated. It was found that satisfactory results could only be obtained for polymers with single modal distribution in the molecular weight.

  12. Unexpected Molecular Weight Effect in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Cheng, Shiwang; Holt, Adam P.; Wang, Huiqun; Fan, Fei; Bocharova, Vera; Martin, Halie; Etampawala, Thusitha; White, B. Tyler; Saito, Tomonori; Kang, Nam-Goo; Dadmun, Mark D.; Mays, Jimmy W.; Sokolov, Alexei P.

    2016-01-01

    The properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp contrast to theoretical predictions. Further analyses reveal a reduction in mass density of the interfacial layer with increasing MW, which can elucidate these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.

  13. Unexpected molecular weight effect in polymer nanocomposites

    DOE PAGESBeta

    Cheng, Shiwang; Holt, Adam P.; Wang, Huiqun; Fan, Fei; Bocharova, Vera; Martin, Halie J.; Etampawala, Thusitha N.; White, Benjamin Tyler; Saito, Tomonori; Kang, Nam -Goo; et al

    2016-01-22

    Here, the properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp constrast to theoretical predictions. Further analyses reveal amore » reduction in mass density of the interfacial layer with increasing MW, which can explain these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.« less

  14. Unexpected Molecular Weight Effect in Polymer Nanocomposites.

    PubMed

    Cheng, Shiwang; Holt, Adam P; Wang, Huiqun; Fan, Fei; Bocharova, Vera; Martin, Halie; Etampawala, Thusitha; White, B Tyler; Saito, Tomonori; Kang, Nam-Goo; Dadmun, Mark D; Mays, Jimmy W; Sokolov, Alexei P

    2016-01-22

    The properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp contrast to theoretical predictions. Further analyses reveal a reduction in mass density of the interfacial layer with increasing MW, which can elucidate these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties. PMID:26849618

  15. Development of a Transnasal Delivery System for Recombinant Human Growth Hormone (rhGH): Effects of the Concentration and Molecular Weight of Poly-L-arginine on the Nasal Absorption of rhGH in Rats.

    PubMed

    Kawashima, Ryo; Uchida, Masaki; Yamaki, Tsutomu; Ohtake, Kazuo; Hatanaka, Tomomi; Uchida, Hiroyuki; Ueda, Hideo; Kobayashi, Jun; Morimoto, Yasunori; Natsume, Hideshi

    2016-01-01

    A novel system for delivering recombinant human growth hormone (rhGH) that is noninvasive and has a simple method of administration is strongly desired to improve the compliance of children. The aim of this study was to investigate the potential for the intranasal (i.n.) co-administration of rhGH with poly-L-arginine (PLA) as a novel delivery system by evaluating the effects of the concentration and molecular weight of PLA on the nasal absorption of rhGH. The influence of the formation of insoluble aggregates and a soluble complex in the dosage formulation on nasal rhGH absorption was also evaluated by size-exclusion chromatography and ultrafiltration. PLA enhanced the nasal absorption of rhGH at each concentration and molecular weight examined. Nasal rhGH absorption increased dramatically when the PLA concentration was 1.0 % (w/v) due to the improved solubility of rhGH in the formulation. A delay in rhGH absorption was observed when the molecular weight of PLA was increased. This appeared to be because the increase in molecular weight caused the formation of a soluble complex. It seems that the PLA concentration affects the absorption-enhancing effect on rhGH, while the molecular weight of PLA affects the time when the maximum plasma rhGH concentration was reached (Tmax) of rhGH after i.n. administration, mainly because of the interactions among rhGH, PLA, and additives. Therefore, the transnasal rhGH delivery system using PLA is considered to be a promising alternative to subcutaneous (s.c.) injection if these interactions are sufficiently controlled. PMID:26725528

  16. Rubber molecular weight regulation, in vitro, in plant species that produce high and low molecular weights in vivo.

    PubMed

    Cornish, K; Castillón, J; Scott, D J

    2000-01-01

    In three rubber-producing species, in vitro, the rates of initiation and polymerization and the biopolymer molecular weight produced were affected by the concentration of farnesyl diphosphate (FPP) initiator and isopentenyl diphosphate (IPP) elongation substrate (monomer). Ficus elastica, a low molecular weight-producer in vivo, synthesized rubber polymers approximately twice the molecular weight of those made by Hevea brasiliensis or Parthenium argentatum (which produce high molecular weights in vivo), possibly due to its lower IPP Km. In all species, increasing FPP concentrations increased rubber biosynthetic rate and new molecules initiated but decreased molecular weight by competition with the allylic diphosphate (APP) end of elongating rubber molecules for the APP binding site. Increasing IPP concentrations increased rubber biosynthetic rate and rubber molecular weight, but only when FPP concentrations were below the FPP Km's or where negative cooperativity operated. In conclusion, rubber transferase is not the prime regulator of rubber molecular weight in vivo. PMID:11710193

  17. The Molecular Weight Distribution of Polymer Samples

    NASA Astrophysics Data System (ADS)

    Horta, Arturo; Pastoriza, M. Alejandra

    2007-07-01

    Introductory polymer courses and textbooks discuss the statistical distribution of chain lengths or molecular weight that exists in polymers and connect the averages and breadth of such distribution with the mechanism of the polymerization, for example, with the degree of advancement or stoichiometry in step-growth polymerization or with the existence of transferences or with the type of termination in chain addition polymerization. To determine averages and breadth of the distribution, the polymer has to be separated from the reaction medium and converted into a "sample". In this process, the shorter chains, which are most soluble, may be lost with the result that the sample is not identical to the original polymer. A student exercise is proposed and developed, in which we calculate the difference between "sample" and original polymer. We use standard material given in the introductory courses or textbooks such that the calculation can be performed easily by the students. The results are discussed to ascertain whether the different distribution of the sample may alter the interpretation of the mechanism by which the original polymer was obtained.

  18. Recovery of petroleum with chemically treated high molecular weight polymers

    SciTech Connect

    Gibb, C.L.; Rhudy, J.S.

    1980-11-18

    Plugging of reservoirs with high molecular weight polymers, e.g. Partially hydrolyzed polyacrylamide, is overcome by chemically treating a polymer having an excessively high average molecular weight prior to injection into a reservoir with an oxidizing chemical, e.g. sodium hypochlorite, and thereafter incorporating a reducing chemical, e.g., sodium sulfite, to stop degradation of the polymer when a desired lower average molecular weight and flooding characteristics are attained.

  19. Molecular Weight Effects on the Viscoelastic Response of a Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2000-01-01

    The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC -SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of each material with different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of approximately 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly.

  20. The antithrombotic effect of synthetic low molecular weight human factor Xa inhibitor, DX-9065a, on He-Ne laser-induced thrombosis in rat mesenteric microvessels.

    PubMed

    Yamashita, T; Tsuji, T; Matsuoka, A; Giddings, J C; Yamamoto, J

    1997-01-01

    The effect of a synthetic low molecular weight factor Xa (FXa) inhibitor, DX9065a, on thrombosis in vivo were examined in a rat animal model using a Helium-Neon (He-Ne) laser method. DX-9065a administered either intravenously or orally promoted anti factor Xa activity in a dose dependent manner. Anti Xa activity was maximal immediately after intravenous injection and persisted for approximately 30 minutes. Inhibitory activity was maximal 15-30 minutes after oral administration and persisted for approximately 90 minutes. Similarly DX-9065a inhibited platelet-rich thrombosis formation in mesenteric arterioles and venules. In these instances inhibition was relatively transient after intravenous injection (10-20 minutes), but persisted for more than 3 hours after oral administration. The minimum effective doses of DX-9065a given intravenously and orally were 3.89 mg/kg and 25.9 mg/kg, respectively. The results confirmed that DX-9065a selectively modulates thrombotic mechanisms, and suggest that development of this synthetic FXa antagonist could constitute an effective intravenous and oral antithrombotic agent. PMID:8983124

  1. Molecular weight of aquatic fulvic acids by vapor pressure osmometry

    USGS Publications Warehouse

    Aiken, G.R.; Malcolm, R.L.

    1987-01-01

    The molecular weights of aquatic fulvic acids extracted from five rivers were determined by vapor pressure osmometry with water and tetrahydrofuran as solvents. The values obtained ranged from 500 to 950 dallons, indicating that the molecular weights of aquatic fulvic acids are not as great as has been suggested in some other molecular weight studies. The samples were shown to be relatively monodisperse from radii of gyration measurements determined by small angle x-ray scattering. THF affords greater precision and accuracy than H2O in VPO measurements, and was found to be a suitable solvent for the determination of molecular weight of aquatic fulvic acid because it obviates the dissociation problem. An inverse correlation was observed with these samples between the concentration of Ca++ and Mg++ in the river water and the radii of gyration and molecular weights of the corresponding fulvic acid samples. ?? 1987.

  2. Effects of molecular weight of dextran on the adherence of Streptococcus sanguis to damaged heart valves.

    PubMed Central

    Ramirez-Ronda, C H

    1980-01-01

    Dextran-producing streptococci such as Streptococcus sanguis are the organisms most frequently associated with infective endocarditis in humans. A series of experiments was designed to study how the molecular weight of dextrans affects the adherence of an endocarditis strain of S. sanguis to canine heart valves covered with platelets and fibrin. The data indicated that this adherence was dependent on dextrans of high molecular weight, such as dextran T-2000 or glucans isolated from S. sanguis or S. mutans. The adherence properties of the strain studied were not modified by prior exposure of the bacterial cells of valve leaflets to high-molecular-weight dextrans. Preexposure of bacterial cells or valve leaflets to low-molecular-weight dextrans decreased their adherence. Low-molecular-weight dextrans interfered with adherence of dextran-positive strains to damaged heart valves. PMID:6156909

  3. Isolation of low-molecular-weight heparin/heparan sulfate from marine sources.

    PubMed

    Saravanan, Ramachandran

    2014-01-01

    The glycosaminoglycan (heparin and heparan sulfate) are polyanionic sulfated polysaccharides mostly recognized for its anticoagulant activity. In many countries, low-molecular-weight heparins have replaced the unfractionated heparin, owing to its high bioavailability, half-life, and less adverse effect. The low-molecular-weight heparins differ in mode of preparation (chemical or enzymatic synthesis and chromatography fractionations) and as a consequence in molecular weight distribution, chemical structure, and pharmacological activities. Bovine and porcine body parts are at present used for manufacturing of commercial heparins, and the appearance of mad cow disease and Creutzfeldt-Jakob disease in humans has limited the use of bovine heparin. Consequently, marine organisms come across the new resource for the production of low-molecular-weight heparin and heparan sulfate. The importance of this chapter suggests that the low-molecular-weight heparin and heparan sulfate from marine species could be alternative sources for commercial heparin. PMID:25081076

  4. Evaluation of ultrafiltration for determining molecular weight of fulvic acid

    USGS Publications Warehouse

    Aiken, G.R.

    1984-01-01

    Two commonly used ultrafiltration membranes are evaluated for the determination of molecular weights of humic substances. Polyacrylic acids of Mr 2000 and 5000 and two well-characterized fulvic acids are used as standards. Molecular size characteristics of standards, as determined by small-angle X-ray scattering, are presented. Great care in evaluating molecular weight data obtained by ultrafiltration is needed because of broad nominal cutoffs and membrane-solute interactions.

  5. Size-exclusion chromatography of ultrahigh molecular weight methylcellulose ethers and hydroxypropyl methylcellulose ethers for reliable molecular weight distribution characterization.

    PubMed

    Li, Yongfu; Shen, Hongwei; Lyons, John W; Sammler, Robert L; Brackhagen, Meinolf; Meunier, David M

    2016-03-15

    Size-exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) and differential refractive index (DRI) detectors was employed for determination of the molecular weight distributions (MWD) of methylcellulose ethers (MC) and hydroxypropyl methylcellulose ethers (HPMC) having weight-average molecular weights (Mw) ranging from 20 to more than 1,000kg/mol. In comparison to previous work involving right-angle light scattering (RALS) and a viscometer for MWD characterization of MC and HPMC, MALLS yields more reliable molecular weight for materials having weight-average molecular weights (Mw) exceeding about 300kg/mol. A non-ideal SEC separation was observed for cellulose ethers with Mw>800kg/mol, and was manifested by upward divergence of logM vs. elution volume (EV) at larger elution volume at typical SEC flow rate such as 1.0mL/min. As such, the number-average molecular weight (Mn) determined for the sample was erroneously large and polydispersity (Mw/Mn) was erroneously small. This non-ideality resulting in the late elution of high molecular weight chains could be due to the elongation of polymer chains when experimental conditions yield Deborah numbers (De) exceeding 0.5. Non-idealities were eliminated when sufficiently low flow rates were used. Thus, using carefully selected experimental conditions, SEC coupled with MALLS and DRI can provide reliable MWD characterization of MC and HPMC covering the entire ranges of compositions and molecular weights of commercial interest. PMID:26794765

  6. The low molecular weight fraction of human serum albumin upregulates production of 15d-PGJ2 in Peripheral Blood Mononuclear Cells.

    PubMed

    Thomas, Gregory W; Rael, Leonard T; Hausburg, Melissa; Frederick, Elizabeth D; Mains, Charles W; Slone, Denetta; Carrick, Matthew M; Bar-Or, David

    2016-05-13

    Activation of the innate immune system involves a series of events designed to counteract the initial insult followed by the clearance of debris and promotion of healing. Aberrant regulation can lead to systemic inflammatory response syndrome, multiple organ failure, and chronic inflammation. A better understanding of the innate immune response may help manage complications while allowing for proper immune progression. In this study, the ability of several classes of anti-inflammatory drugs to affect LPS-induced cytokine and prostaglandin release from peripheral blood mononuclear cells (PBMC) was evaluated. PBMC were cultured in the presence of dexamethasone (DEX), ibuprofen (IBU), and the low molecular weight fraction of 5% albumin (LMWF5A) followed by stimulation with LPS. After 24 h, TNFα, PGE2, and 15d-PGJ2 release was determined by ELISA. Distinct immunomodulation patterns emerged following LPS stimulation of PBMC in the presence of said compounds. DEX, a steroid with strong immunosuppressive properties, reduced TNFα, PGE2, and 15d-PGJ2 release. IBU caused significant reduction in prostaglandin release while TNFα release was unchanged. An emerging biologic with known anti-inflammatory properties, LMWF5A, significantly reduced TNFα release while enhancing PGE2 and 15d-PGJ2 release. Incubating LMWF5A together with IBU negated this observed increased prostaglandin release without affecting the suppression of TNFα release. Additionally, LMWF5A caused an increase in COX-2 transcription and translation. LMWF5A exhibited a unique immune modulation pattern in PBMC, disparate from steroid or NSAID administration. This enhancement of prostaglandin release (specifically 15d-PGJ2), in conjunction with a decrease in TNFα release, suggests a switch that favors resolution and decreased inflammation. PMID:27095392

  7. Extracorporeal irradiation of the blood in a rate model for human acute myelocytic leukemia: increased efficacy after combination with cell mobilization by low-molecular-weight dextran sulfate

    SciTech Connect

    Hagenbeek, A.; Martens, A.C.M.

    1981-10-01

    The efficacy of extracorporeal irradiation of the blood (ECIB) in combination with cell mobilization by dextran sulfate (DS; MW 17,000) was investigated in a rat model for human acute myelocytic leukemia. Repeated injections with DS (q* 3 hr) induced a significant increase in the number of peripheral leukemic cells, i.e., up to 4.5 times the original number 6 hr after the first injection. Cell mobilization in combination with ECIB (2 x 8 hr) caused a depletion of the blood compartments and the rapidly exchangeable tissue pool down to 10 to 25% of their original sizes, as determined by measuring the distribution of infused /sup 51/Cr-labeled leukemic cells and organ weights. These size reductions are about two times as great as those in rats treated with ECIB alone. In addition, the slowly exchangeable tissue pools are significantly depleted when DS is added to ECIB treatment. The reduction the total tumor load was about 50%. This, however, is too small to result in a significant different in survival time between treated and nontreated leukemic rats.

  8. Molecular structural studies of human factor VIII.

    PubMed

    McKee, P A; Andersen, J C; Switzer, M E

    1975-01-20

    Neither normal nor hemophilic factor VIII protein enters a 5% sosium dodecyl sulfate gel; on reduction, however, a single 195 000-molecular-weight peptide is observed. Hemophilic and normal factor VIII contain carbohydrate and appear identical in subunit molecular weight, electrical charge, and major antigenic determinants. Thrombin activation and inactivation of factor VIII does not detectably change the subunit molecular weight. Trypsin causes similar activity changes and obviously cleaves the factor VIII subunit. Human plasmin destroys factor VIII procoagulant activity and degrades the factor VIII subunit to 103 000-, 88 000-, and 17 000-molecular-weight peptides. Both normal and hemophilic factor VIII as well as thrombin-inactivated factor VIII support ristocetin-induced platelet aggregation. Purified factor VIII chromatographed on 4% agarose in 1.0 M sodium chloride shows no dissociation of the procoagulant activity from the void volume protein. Gel chromatography on 4% agarose in 0.25 M calcium chloride results in a procoagulant activity peak removed from the void volume protein; both peaks contain protein which does not enter a 5% SDS gel, but on reduction a 195 000-molecular-weight subunit band is observed for each. Both the void volume protein peak and the procoagulant activity peak from the 0.25 M calcium chloride-agarose gel column support ristocetin-induced platelet aggregation. After removal of calcium, a small amount of procoagulant activity is present only in the void volume peak. These data suggest that both the procoagulant and von Willebrand activities are on the same molecule. Thus our previous conclusion remains the same: human factor VIII is a large glycoprotein composed of identical 195 000-molecular-weight subunits jointed by disulfide bonds and is responsible for both antihemophilic and von Willebrand activities in human plasma. PMID:122889

  9. Molecular Weight Determinations of Proteins by Californium Plasma Desorption Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Sundqvist, B.; Roepstorff, Peter; Fohlman, J.; Hedin, A.; Hakansson, P.; Kamensky, I.; Lindberg, M.; Salehpour, M.; Sawe, G.

    1984-11-01

    The plasma desorption mass spectrometry method is used to determine the molecular weights of larger molecules than before, to determine the molecular weights of proteins and peptides in mixtures, and to monitor protein modification reactions. Proteins up to molecular weight 25,000 can now be studied with a mass spectrometric technique. Protein-peptide mixtures that could not be resolved with conventional techniques were successfully analyzed by this technique. The precision of the method is good enough to permit one to follow the different steps in the conversion of porcine insulin to human insulin.

  10. Low molecular weight species in humic and fulvic fractions

    USGS Publications Warehouse

    Wilson, M.A.; Collin, P.J.; Malcolm, R.L.; Perdue, E.M.; Cresswell, P.

    1988-01-01

    Fourier transform solution 1H nuclear magnetic resonance (NMR) spectrometry with homogated water peak irradiation is a useful method for detecting low molecular weight substances in humic extracts. Succinate, acetate, methanol, formate, lactate and some aryl methoxyl compounds have been detected in extracts from a wide range of sources. In view of the controversy over whether low molecular weight substances are contaminants in humic extracts introduced by the concentration procedure, we report that some of these materials are not contaminants since 1H-NMR can be used to follow their formation from higher molecular weight species. ?? 1988.

  11. Free volume model for molecular weights of polymers

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Eftekhari, A.

    1992-01-01

    A free volume model has been developed for determining molecular weights of linear polymers. It is based on the size of free volume cells in two geometries of poly(arylene ether ketone)s. Free volume cell sizes in test samples were measured using positron lifetime spectroscopy. The molecular weights computed from free volume cell sizes are in good agreement with the values measured by gel permeation chromatography, with a low angle laser light scattering photometer as the detector. The model has been further tested on two atactic polystyrene samples, where it predicted the ratio of their molecular weights with reasonable accuracy.

  12. Free volume variation with molecular weight of polymers

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Hinkley, Jeffrey A.; St.clair, Terry L.; Jensen, Brian J.

    1992-01-01

    Free volume measurements were made in several molecular weight fractions of two different geometries of poly(arylene ether ketone)s. Free volumes were measured using positron lifetime spectroscopy. It has been observed that the free volume cell size V(sub f) varies with the molecular weight M of the test samples according to an equation of the form V(sub f) = AM(B), where A and B are constants. The molecular weights computed from the free volume cell sizes are in good agreement with the values measured by gel permeation chromatography.

  13. Do Low Molecular Weight Agents Cause More Severe Asthma than High Molecular Weight Agents?

    PubMed Central

    Meca, Olga; Cruz, María-Jesús; Sánchez-Ortiz, Mónica; González-Barcala, Francisco-Javier; Ojanguren, Iñigo; Munoz, Xavier

    2016-01-01

    Introduction The aim of this study was to analyse whether patients with occupational asthma (OA) caused by low molecular weight (LMW) agents differed from patients with OA caused by high molecular weight (HMW) with regard to risk factors, asthma presentation and severity, and response to various diagnostic tests. Methods Seventy-eight patients with OA diagnosed by positive specific inhalation challenge (SIC) were included. Anthropometric characteristics, atopic status, occupation, latency periods, asthma severity according to the Global Initiative for Asthma (GINA) control classification, lung function tests and SIC results were analysed. Results OA was induced by an HMW agent in 23 patients (29%) and by an LMW agent in 55 (71%). A logistic regression analysis confirmed that patients with OA caused by LMW agents had a significantly higher risk of severity according to the GINA classification after adjusting for potential confounders (OR = 3.579, 95% CI 1.136–11.280; p = 0.029). During the SIC, most patients with OA caused by HMW agents presented an early reaction (82%), while in patients with OA caused by LMW agents the response was mainly late (73%) (p = 0.0001). Similarly, patients with OA caused by LMW agents experienced a greater degree of bronchial hyperresponsiveness, measured as the difference in the methacholine dose-response ratio (DRR) before and after SIC (1.77, range 0–16), compared with patients with OA caused by HMW agents (0.87, range 0–72), (p = 0.024). Conclusions OA caused by LMW agents may be more severe than that caused by HMW agents. The severity of the condition may be determined by the different mechanisms of action of these agents. PMID:27280473

  14. Lipid solubility and molecular weight: whose idea was that.

    PubMed

    Kasting, G B

    2013-01-01

    Gene Cooper was a bright theoretician, a skilled product developer, and a motivational leader who applied his talents to the skin science area early in his career. His work led to the development of finite dose skin absorption models, chemical penetration enhancer technologies and quantitative structure-penetration relationships for chemicals contacting human skin. His ideas regarding the impact of molecular weight and lipid solubility on skin transport catalyzed the later development by Potts and Guy of the first successful skin permeability model. But Gene's most important contribution to the field was as a scientific role model and an inspirational leader who launched the careers of several young scientists, including the author of this article. PMID:23921116

  15. Molecular-Weight-Controlled, End-Capped Polybenzimidazoles

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G., Jr.

    1993-01-01

    Novel molecular-weight-controlled end-capped poly(arylene ether benzimidazole)s (PAEBI's) prepared by nucleophilic displacement reaction of di(hydroxyl)benzimidazole monomers with activated aromatic dihalides. Polymers prepared at various molecular weights by upsetting stoichiometry of monomers and end-capped with monohydroxybenzimidazole. Exhibit favorable physical and mechanical properties, improved solubility in polar aprotic solvents and better compression moldability. Potential applications as adhesives, coatings, films, fibers, membranes, moldings, and composite matrix resins.

  16. Phase Behavior of Binary Blends of High Molecular Weight Diblock Copolymers with a Low Molecular Weight Triblock

    SciTech Connect

    Mickiewicz, Rafal A.; Ntoukas, Eleftherios; Avgeropoulos, Apostolos; Thomas, Edwin L.

    2009-08-26

    Binary blends of four different high molecular weight poly(styrene-b-isoprene) (SI) diblock copolymers with a lower molecular weight poly(styrene-b-isoprene-b-styrene) (SIS) triblock copolymer were prepared, and their morphology was characterized by transmission electron microscopy and ultra-small-angle X-ray scattering. All the neat block copolymers have nearly symmetric composition and exhibit the lamellar morphology. The SI diblock copolymers had number-average molecular weights, Mn, in the range 4.4 x 10{sup 5}--1.3 x 10{sup 6} g/mol and volume fractions of poly(styrene), {Phi}{sub PS}, in the range 0.43--0.49, and the SIS triblock had a molecular weight of Mn 6.2 x 10{sup 4} g/mol with {Phi}{sub PS} = 0.41. The high molecular weight diblock copolymers are very strongly segregating, with interaction parameter values, {chi}N, in the range 470--1410. A morphological phase diagram in the parameter space of molecular weight ratio (R = M{sub n}{sup diblock}/1/2M{sub n}{sup triblock}) and blend composition was constructed, with R values in the range between 14 and 43, which are higher than previously reported. The phase diagram revealed a large miscibility gap for the blends, with macrophase separation into two distinct types of microphase-separated domains for weight fractions of SI, w{sub SI} < 0.9, implying virtually no solubility of the much higher molecular weight diblocks in the lower molecular weight triblock. For certain blend compositions, above R 30, morphological transitions from the lamellar to cylindrical and bicontinuous structures were also observed.

  17. Evaluation of a Viscosity-Molecular Weight Relationship.

    ERIC Educational Resources Information Center

    Mathias, Lon J.

    1983-01-01

    Background information, procedures, and results are provided for a series of graduate/undergraduate polymer experiments. These include synthesis of poly(methylmethacrylate), viscosity experiment (indicating large effect even small amounts of a polymer may have on solution properties), and measurement of weight-average molecular weight by light…

  18. Determinants of body weight regulation in humans.

    PubMed

    Moehlecke, Milene; Canani, Luis Henrique; Silva, Lucas Oliveira Junqueira E; Trindade, Manoel Roberto Maciel; Friedman, Rogerio; Leitão, Cristiane Bauermann

    2016-04-01

    Body weight is regulated by the ability of hypothalamic neurons to orchestrate behavioral, endocrine and autonomic responses via afferent and efferent pathways to the brainstem and the periphery. Weight maintenance requires a balance between energy intake and energy expenditure. Although several components that participate in energy homeostasis have been identified, there is a need to know in more detail their actions as well as their interactions with environmental and psychosocial factors in the development of human obesity. In this review, we examine the role of systemic mediators such as leptin, ghrelin and insulin, which act in the central nervous system by activating or inhibiting neuropeptide Y, Agouti-related peptide protein, melanocortin, transcript related to cocaine and amphetamine, and others. As a result, modifications in energy homeostasis occur through regulation of appetite and energy expenditure. We also examine compensatory changes in the circulating levels of several peripheral hormones after diet-induced weight loss. PMID:26910628

  19. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (mean molecular weight 200-9,500). 172.820 Section 172.820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR...

  20. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (mean molecular weight 200-9,500). 172.820 Section 172.820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR...

  1. Microbial detection with low molecular weight RNA

    NASA Technical Reports Server (NTRS)

    Kourentzi, K. D.; Fox, G. E.; Willson, R. C.

    2001-01-01

    The need to monitor microorganisms in the environment has increased interest in assays based on hybridization probes that target nucleic acids (e.g., rRNA). We report the development of liquid-phase assays for specific bacterial 5S rRNA sequences or similarly sized artificial RNAs (aRNAs) using molecular beacon technology. These beacons fluoresce only in the presence of specific target sequences, rendering as much as a 27-fold fluorescence enhancement. The assays can be used with both crude cell lysates and purified total RNA preparations. Minimal sample preparation (e.g., heating to promote leakage from cells) is sufficient to detect many Gram-negative bacteria. Using this approach it was possible to detect an aRNA-labeled Escherichia coli strain in the presence of a large background of an otherwise identical E. coli strain. Finally, by using a longer wavelength carboxytetramethylrhodamine beacon it was possible to reduce the fraction of the signal due to cellular autofluorescence to below 0.5%.

  2. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.; O'Loughlin, E.

    1994-01-01

    The number- and weight-averaged molecular weights of a number of aquatic fulvic acids, a commercial humic acid, and unfractionated organic matter from four natural water samples were measured by high-pressure size exclusion chromatography (HPSEC). Molecular weights determined in this manner compared favorably with those values reported in the literature. Both recent literature values and our data indicate that these substances are smaller and less polydisperse than previously believed. Moreover, the molecular weights of the organic matter from three of the four natural water samples compared favorably to the fulvic acid samples extracted from similar environments. Bulk spectroscopic properties of the fulvic substances such as molar absorptivity at 280 nm and the E4/E6 ratio were also measured. A strong correlation was observed between molar absorptivity, total aromaticity, and the weight average molecular weights of all the humic substances. This observation suggests that bulk spectroscopic properties can be used to quickly estimate the size of humic substances and their aromatic contents. Both parameters are important with respect to understanding humic substance mobility and their propensity to react with both organic and inorganic pollutants. ?? 1994 American Chemical Society.

  3. Induction of Fc receptors for IgA on murine T cell hybridoma by human monoclonal IgA and by high molecular weight IgA in IgA nephropathy.

    PubMed Central

    Chevailler, A; Monteiro, R C; Daëron, M; Lesavre, P

    1987-01-01

    A reproducible immunocyto-adherence assay has been developed to study the modulation of Fc receptors for IgA (Fc alpha R), using a murine T cell hybridoma (T2D4), which expresses Fc receptors for all known isotypes of secreted immunoglobulins. By using sheep red blood cells coated with the hapten 2-4-6 trinitrophenyl (TNP), as indicator cells, and a murine monoclonal IgA (MOPC 315) antibody with anti-TNP activity, we were able to study the Fc alpha R on T2D4 cells. We found that: (a) murine Fc alpha R can bind human monoclonal IgA, and this binding is isotype specific since it was inhibited by human monoclonal IgA but not by human monoclonal IgG or IgM; (b) the expression of murine Fc alpha R is unducible by human monoclonal IgA, and this effect is isotype specific since it is not observed with human monoclonal IgM or IgG (c) sera from patients with IgA nephropathy can also induce Fc alpha R expression; by contrast, no induction was observed with normal human sera, (d) in one serum from an IgA-nephropathy patient, the inducer factor was characterized by affinity chromatography on anti-IgA-Sepharose and by gel filtration: high molecular weight IgA, probably IgA aggregates or immune complexes were recognized to be responsible for the induction of murine Fc alpha R expression. PMID:3497739

  4. Characterization of glycol chitosan grafted with low molecular weight polyethylenimine as a gene carrier for human adipose-derived mesenchymal stem cells.

    PubMed

    Bae, Yoonhee; Lee, Young Hwa; Lee, Sunray; Han, Jin; Ko, Kyung Soo; Choi, Joon Sig

    2016-11-20

    Mesenchymal stem cells (MSCs) have a great capacity for self-renewal while still maintaining their multipotency, and can differentiate into a variety of cell types. The delivery of genes to a site of injury is a current and interesting field of gene therapy. In the present study, we describe a nonviral gene delivery carrier, glycol chitosan-methyl acrylate-polyethylenimine (GMP) polymer targeted towards human adipose-derived mesenchymal stem cells (AD-MSCs). Transfection efficiency, using luciferase (Luc) and a pDNA encoding enhanced green fluorescent protein (EGFP), along with cytotoxicity assays, were performed in human AD-MSCs. The results show that the transfection efficiency of the GMP polymer was similar to that of PEI25kD, and the cytotoxicity was lower. Moreover, human AD-MSCs were treated with the GMP polymer/pDNA polyplex and its cellular uptake and distribution were analyzed by flow cytometry and confocal microscopy. Furthermore, we performed endosomal escape analysis using LysoTracker Red, and found that the conjugated GMP polymer could escape from the endosome to the cytosol. Human AD-MSCs treated with the GMP polymer maintained their potential for osteogenic differentiation and phenotypic expression of human AD-MSCs based on flow cytometry analysis. The present study demonstrates that the GMP polymer can be used as a potential targeted-delivery carrier for effective gene delivery. PMID:27561509

  5. Rheological investigation of highly filled polymers: Effect of molecular weight

    NASA Astrophysics Data System (ADS)

    Hnatkova, Eva; Hausnerova, Berenika; Hales, Andrew; Jiranek, Lukas; Vera, Juan Miguel Alcon

    2015-04-01

    The paper deals with rheological properties of highly filled polymers used in powder injection molding. Within the experimental framework seven PIM feedstocks based on superalloy Inconel 718 powder were prepared. Each feedstock contains the fixed amount of powder loading and the same composition of binder system consisting of three components: polyethylene glycol (PEG) differing in molecular weight, poly (methyl methacrylate) (PMMA) and stearic acid (SA). The aim is to investigate the influence of PEG's molecular weight on the flow properties of feedstocks. Non-Newtonian indices, representing the shear rate sensitivity of the feedstocks, are obtained from a polynomial fit, and found to vary within measured shear rates range from 0.2 to 0.8. Temperature effect is considered via activation energies, showing decreasing trend with increasing of molecular weight of PEG (except of feedstock containing 1,500 g.mol-1 PEG).

  6. Inhibition of phagocytosis by high molecular weight hyaluronate.

    PubMed Central

    Forrester, J V; Balazs, E A

    1980-01-01

    The effect of sodium hyaluronate on phagocytosis was studied using a sensitive polystyrene latex sphere assay in mouse peritoneal macrophage monolayers. Viscous solutions of high molecular weight hyaluronate (4.6 X 10(5)--2.8 X 10(6)) caused a dose-dependent inhibition of phagocytosis, but low molecular weight hyaluronate (9.0 X 10(4)) was not inhibitory at equivalent viscosity. The inhibitory effect of high molecular weight hyaluronate did not appear to be mediated by the polyanionic charge of the molecule since sulphated glycosaminoglycans with greater charge density (heparin and chondroitin sulphate) were ineffective. In addition, competitive inhibition studies indicated that a direct effect on possible cell surface membrane receptors was unlikely. Instead, physical factors such as steric hindrance by the continuous polymeric network, were considered of more importance. Alternatively, the hydrophilic polysaccharide may have inhibited phagocytosis by providing an unsuitable surface for adhesive contact between the latex beads and the cell surface. PMID:7429537

  7. Existence of both IL-1 alpha and beta in normal human amniotic fluid: unique high molecular weight form of IL-1 beta.

    PubMed Central

    Tamatani, T; Tsunoda, H; Iwasaki, H; Kaneko, M; Hashimoto, T; Onozaki, K

    1988-01-01

    We investigated the possible existence of IL-1 in human amniotic fluid (AF). Since AF from most full-term deliveries appeared to contain an inhibitor(s) for thymocyte proliferation, AFs were fractionated by gel filtration prior to IL-1 assay. IL-1 activities eluted in two peaks at positions of 90,000-60,000 MW and 20,000-15,000 MW. Growth inhibitory activity eluted at the position of 70,000-50,000 MW, and its effect appeared to be non-specific because these fractions inhibited the growth of various cell lines. Using isoelectric focusing (IEF) techniques, pI values of 6.8-7.3 for the higher MW IL-1 as well as 4.9-5.5 and 6.7-7.0 for the lower MW IL-1 were obtained. Antibody against human IL-1 alpha partially neutralized the activity of the lower MW IL-1, though it exhibited little effect on the higher MW IL-1. In contrast, antibody against human IL-1 beta almost completely neutralized the activity of the higher MW IL-1 and partially neutralized the activity of the lower MW IL-1. These results suggest that most of the higher MW IL-1 is beta-type, and the lower MW IL-1 is a mixture of alpha and beta-types. IL-1 beta appeared to exist as a complex (combined with AF components) or as an aggregate of the lower MW IL-1 forms. These findings indicate that both IL-1 alpha and IL-1 beta are present in normal human AF from full-term deliveries, though IL-1 beta exists as a higher MW form aggregated with an unknown molecule. PMID:3264804

  8. Low-molecular-weight fractions of Alcalase hydrolyzed egg ovomucin extract exert anti-inflammatory activity in human dermal fibroblasts through the inhibition of tumor necrosis factor-mediated nuclear factor κB pathway.

    PubMed

    Sun, Xiaohong; Chakrabarti, Subhadeep; Fang, Jun; Yin, Yulong; Wu, Jianping

    2016-07-01

    Ovomucin is a mucin-like protein from egg white with a variety of biological functions. We hypothesized that ovomucin-derived peptides might exert anti-inflammatory activity. The specific objectives were to test the anti-inflammatory activities of different ovomucin hydrolysates and its various fractions in human dermal fibroblasts, and to understand the possible molecular mechanisms. Three ovomucin hydrolysates were prepared and desalted; only the desalted Alcalase hydrolysate showed anti-inflammatory activity. Desalting of ovomucin hydrolysate enriched the proportion of low-molecular-weight (MW) peptides. Indeed, ultrafiltration of this hydrolysate displayed comparable anti-inflammatory activity in dermal fibroblasts, indicating the responsible role of low-MW bioactive peptides in exerting the beneficial biological function. The anti-inflammatory activity of low-MW peptides was regulated through the inhibition of tumor necrosis factor-mediated nuclear factor κ-light-chain-enhancer of activated B cells activity. Our study demonstrated that both peptide composition and MW distribution play important roles in anti-inflammatory activity. The low-MW fractions prepared from ovomucin Alcalase hydrolysate may have potential applications for maintenance of dermal health and treatment of skin diseases. PMID:27333955

  9. Western blotting of high and low molecular weight proteins using heat.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2015-01-01

    A method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 °C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7 % (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5 % gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5 % gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol. PMID:26044007

  10. Influence of Molecular Weight and Degree of Deacetylation of Low Molecular Weight Chitosan on the Bioactivity of Oral Insulin Preparations

    PubMed Central

    Qinna, Nidal A.; Karwi, Qutuba G.; Al-Jbour, Nawzat; Al-Remawi, Mayyas A.; Alhussainy, Tawfiq M.; Al-So’ud, Khaldoun A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    The objective of the present study was to prepare and characterize low molecular weight chitosan (LMWC) with different molecular weight and degrees of deacetylation (DDA) and to optimize their use in oral insulin nano delivery systems. Water in oil nanosized systems containing LMWC-insulin polyelectrolyte complexes were constructed and their ability to reduce blood glucose was assessed in vivo on diabetic rats. Upon acid depolymerization and testing by viscosity method, three molecular weights of LMWC namely, 1.3, 13 and 18 kDa were obtained. As for the DDA, three LMWCs of 55%, 80% and 100% DDA were prepared and characterized by spectroscopic methods for each molecular weight. The obtained LMWCs showed different morphological and in silico patterns. Following complexation of LMWCs with insulin, different aggregation sizes were obtained. Moreover, the in vivo tested formulations showed different activities of blood glucose reduction. The highest glucose reduction was achieved with 1.3 kDa LMWC of 55% DDA. The current study emphasizes the importance of optimizing the molecular weight along with the DDA of the incorporated LMWC in oral insulin delivery preparations in order to ensure the highest performance of such delivery systems. PMID:25826718

  11. Influence of molecular weight and degree of deacetylation of low molecular weight chitosan on the bioactivity of oral insulin preparations.

    PubMed

    Qinna, Nidal A; Karwi, Qutuba G; Al-Jbour, Nawzat; Al-Remawi, Mayyas A; Alhussainy, Tawfiq M; Al-So'ud, Khaldoun A; Al Omari, Mahmoud M H; Badwan, Adnan A

    2015-04-01

    The objective of the present study was to prepare and characterize low molecular weight chitosan (LMWC) with different molecular weight and degrees of deacetylation (DDA) and to optimize their use in oral insulin nano delivery systems. Water in oil nanosized systems containing LMWC-insulin polyelectrolyte complexes were constructed and their ability to reduce blood glucose was assessed in vivo on diabetic rats. Upon acid depolymerization and testing by viscosity method, three molecular weights of LMWC namely, 1.3, 13 and 18 kDa were obtained. As for the DDA, three LMWCs of 55%, 80% and 100% DDA were prepared and characterized by spectroscopic methods for each molecular weight. The obtained LMWCs showed different morphological and in silico patterns. Following complexation of LMWCs with insulin, different aggregation sizes were obtained. Moreover, the in vivo tested formulations showed different activities of blood glucose reduction. The highest glucose reduction was achieved with 1.3 kDa LMWC of 55% DDA. The current study emphasizes the importance of optimizing the molecular weight along with the DDA of the incorporated LMWC in oral insulin delivery preparations in order to ensure the highest performance of such delivery systems. PMID:25826718

  12. RHEOLOGICAL PROPERTIES & MOLECULAR WEIGHT DISTRIBUTIONS OF FOUR PERFLUORINATED THERMOPLASTIC POLYMERS

    SciTech Connect

    Hoffman, D M; Shields, A L

    2009-02-24

    Dynamic viscosity measurements and molecular weight estimates have been made on four commercial, amorphous fluoropolymers with glass transitions (Tg) above 100 C: Teflon AF 1600, Hyflon AD 60, Cytop A and Cytop M. These polymers are of interest as binders for the insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) because of their high density and Tg above ambient, but within a suitable processing range of TATB. As part of this effort, the rheological properties and molecular weight distributions of these polymers were evaluated.

  13. Mean molecular weight and hydrogen abundance of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Samuelson, R. E.; Hanel, R. A.; Kunde, V. G.; Maguire, W. C.

    1981-01-01

    The 200-600/cm continuum opacity in the troposphere and lower stratosphere of Titan is inferred from thermal emission spectra from the Voyager 1 IR spectrometer (IRIS). The surface temperature and mean molecular weight are between 94 and 97 K and between 28.3 and 29.2 AMU, respectively. The mole fraction of molecular hydrogen is 0.002 + or - 0.001, which is equivalent to an abundance of approximately 0.2 + or - 0.1 km amagat.

  14. Low molecular weight phenolics of grape juice and winemaking byproducts: antioxidant activities and inhibition of oxidation of human low-density lipoprotein cholesterol and DNA strand breakage.

    PubMed

    de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Biasoto, Aline Camarão Telles; Shahidi, Fereidoon

    2014-12-17

    Bioactive compounds belonging to phenolic acids, flavonoids, and proanthocyanidins of grape juice and winemaking byproducts were identified and quantified by HPLC-DAD-ESI-MS(n). The concentration of phenolic compounds in different grape cultivars was in the order Tempranillo > Cora > Syrah > Isabel. The insoluble-bound fraction was most prominent, contributing 63 and 79% to the total for Isabel and Tempranillo, respectively. Juice-processing byproducts had a higher content of free than esterified phenolics, but the opposite was noted for winemaking byproducts. Insoluble-bound phenolics were up to 15 and 10 times more effective as antioxidants than those of free and esterified fractions, respectively, as evaluated by the DPPH, ABTS, and H2O2 scavenging activities and reducing power determinations. In general, insoluble-bound phenolics (100 ppm) were more effective in inhibiting copper-induced human LDL-cholesterol oxidation than free and esterified phenolics, exhibiting equal or higher efficacy than catechin. Phenolic extracts from all fractions inhibited peroxyl radical-induced DNA strand breakage. These findings shed further light for future studies and industrial application of grape byproducts, which may focus not only on the soluble phenolics but also on the insoluble-bound fraction. PMID:25417599

  15. The Effect of Low Molecular Weight Heparins on Fracture Healing

    PubMed Central

    Kapetanakis, Stylianos; Nastoulis, Evangelos; Demesticha, Theano; Demetriou, Thespis

    2015-01-01

    Venous Thromboembolism is a serious complication in the trauma patient. The most commonly studied and used anticoagulant treatment in prophylaxis of thrombosis is heparin. The prolonged use of unfractionated heparin has been connected with increased incidence of osteoporotic fractures. Low molecular-weight-heparins (LMWHs) have been the golden rule in antithrombotic therapy during the previous two decades as a way to overcome the major drawbacks of unfractioned heparin. However there are few studies reporting the effects of LMWHs on bone repair after fractures. This review presents the studies about the effects of LMWHs on bone biology (bone cells and bone metabolism) and underlying the mechanisms by which LMWHs may impair fracture healing process. The authors’ research based on literature concluded that there are no facts and statistics for the role of LMWHs on fracture healing process in humans and the main body of evidence of their role comes from in vitro and animal studies. Further large clinical studies designed to compare different types of LMWHs, in different dosages and in different patient or animal models are needed for exploring the effects of LMWHs on fracture healing process. PMID:26161162

  16. The Effect of Low Molecular Weight Heparins on Fracture Healing.

    PubMed

    Kapetanakis, Stylianos; Nastoulis, Evangelos; Demesticha, Theano; Demetriou, Thespis

    2015-01-01

    Venous Thromboembolism is a serious complication in the trauma patient. The most commonly studied and used anticoagulant treatment in prophylaxis of thrombosis is heparin. The prolonged use of unfractionated heparin has been connected with increased incidence of osteoporotic fractures. Low molecular-weight-heparins (LMWHs) have been the golden rule in antithrombotic therapy during the previous two decades as a way to overcome the major drawbacks of unfractioned heparin. However there are few studies reporting the effects of LMWHs on bone repair after fractures. This review presents the studies about the effects of LMWHs on bone biology (bone cells and bone metabolism) and underlying the mechanisms by which LMWHs may impair fracture healing process. The authors' research based on literature concluded that there are no facts and statistics for the role of LMWHs on fracture healing process in humans and the main body of evidence of their role comes from in vitro and animal studies. Further large clinical studies designed to compare different types of LMWHs, in different dosages and in different patient or animal models are needed for exploring the effects of LMWHs on fracture healing process. PMID:26161162

  17. Polyacrylamide molecular weight effects on soil infiltration and erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seal formation at the surface of smectitic soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  18. DETERMINATION OF MOLECULAR WEIGHT CITRUS PECTIN USING ION CHROMATOGRAPHY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective was to investigate the use of ELS as a mass detector coupled with MALLS for determining the molecular weights of pectins and other polysaccharides under changing buffer concentrations using HPLC. This would permit the direct determination of the charge to size ratio of pectin which is imp...

  19. Ultra-High-Molecular-Weight Silphenylene/Siloxane Polymers

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.; Hundley, N. H.; Ludwick, L. M.

    1986-01-01

    Elastomers having molecular weights above 1 million made by twostage polymerization. Two-stage process proves far more successful than synthesis from reactive monomers. Process involves synthesis of silanolterminated prepolymer and subsequent extension of prepolymer chain with additional aminosilane monomer. Multistage method allows chain-extending monomer added in precise amounts between stages.

  20. Preparation of soybean oil polymers with high molecular weight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cationic polymerization of soybean oils was initiated by boron trifluoride diethyl etherate BF3.O(C2H5)2 in supercritical carbon dioxide (scCO2) medium. The resulting polymers had molecular weight ranging from 21,842 to 118,300 g/mol. Nuclear magnetic resonance spectroscopy (NMR) and gel perme...

  1. High-Molecular-Weight Protein (pUL48) of Human Cytomegalovirus Is a Competent Deubiquitinating Protease: Mutant Viruses Altered in Its Active-Site Cysteine or Histidine Are Viable†

    PubMed Central

    Wang, Jianlei; Loveland, Amy N.; Kattenhorn, Lisa M.; Ploegh, Hidde L.; Gibson, Wade

    2006-01-01

    We show here that the high-molecular-weight protein (HMWP or pUL48; 253 kDa) of human cytomegalovirus (HCMV) is a functionally competent deubiquitinating protease (DUB). By using a suicide substrate probe specific for ubiquitin-binding cysteine proteases (DUB probe) to screen lysates of HCMV-infected cells, we found just one infected-cell-specific DUB. Characteristics of this protein, including its large size, expression at late times of infection, presence in extracellular virus particles, and reactivity with an antiserum to the HMWP, identified it as the HMWP. This was confirmed by constructing mutant viruses with substitutions in two of the putative active-site residues, Cys24Ile and His162Ala. HMWP with these mutations either failed to bind the DUB probe (C24I) or had significantly reduced reactivity with it (H162A). More compellingly, the deubiquitinating activity detected in wild-type virus particles was completely abolished in both the C24I and H162A mutants, thereby directly linking HMWP with deubiquitinating enzyme activity. Mutations in these active-site residues were not lethal to virus replication but slowed production of infectious virus relative to wild type and mutations of other conserved residues. Initial studies, by electron microscopy, of cells infected with the mutants revealed no obvious differences at late times of replication in the general appearance of the cells or in the distribution, relative numbers, or appearance of virus particles in the cytoplasm or nucleus. PMID:16731939

  2. An optimal polymerization process for low mean molecular weight HBOC with lower dimer.

    PubMed

    Zhou, Wentao; Li, Shen; Hao, Shasha; Liu, Jiaxin; Wang, Hong; Yang, Chengmin

    2015-06-01

    The new research tried to improve the distribution of molecular weight of Hb-based oxygen carriers (HBOC), a bottleneck of glutaraldehyde (GDA)-polymerization process. The orthogonal experiments were done on the basis of the early study of human placenta Hemoglobin (Hb)-crosslinked-GDA and three factors were selected including the molar ratio of GDA and Hb, Hb concentration, and the rate of the feeding GDA. The optimal match condition of polymerization process prepared for the purpose of lower mean molecular weight, content of super-weight molecule, and the content of dimer. The results showed that the molar ratio of GDA and Hb was the greatest influencing factor on the molecular weight distribution of polymerized-Hb, followed by the Hb concentration, and the last is the rate of feeding GDA. The optimum matching conditions had reached the objective that the mean molecular weight with 155.54 ± 5.79, the content of dimer with 17.23 ± 3.71, and content of super-weight molecule with 0.17 ± 0.09, and the results can be repeated in the 30 times expansion experiments. PMID:25519745

  3. Recent Developments in Low Molecular Weight Complement Inhibitors

    PubMed Central

    Qu, Hongchang; Ricklin, Daniel; Lambris, John D.

    2009-01-01

    As a key part of the innate immune system, complement plays an important role not only in defending invading pathogens but also in many other biological processes. Inappropriate or excessive activation of complement has been linked to many autoimmune, inflammatory, and neurodegenerative diseases, as well as ischemia-reperfusion injury and cancer. A wide array of low molecular weight complement inhibitors has been developed to target various components of the complement cascade. Their efficacy has been demonstrated in numerous in vitro and in vivo experiments. Though none of these inhibitors has reached the market so far, some of them have entered clinical trials and displayed promising results. This review provides a brief overview of the currently developed low molecular weight complement inhibitors, including short peptides and synthetic small molecules, with an emphasis on those targeting components C1 and C3, and the anaphylatoxin receptors. PMID:19800693

  4. High molecular weight tropomyosins regulate osteoclast cytoskeletal morphology.

    PubMed

    Kotadiya, Preeyal; McMichael, Brooke K; Lee, Beth S

    2008-11-01

    Tropomyosins are coiled-coil dimers that bind to the major groove of F-actin and regulate its accessibility to actin-modifying proteins. Although approximately 40 tropomyosin isoforms have been identified in mammals, they can broadly be classified into two groups based on protein size, that is, high molecular weight and low molecular weight isoforms. Osteoclasts, which undergo rounds of polarization and depolarization as they progress through the resorptive cycle, possess an unusual and highly dynamic actin cytoskeleton. To further define some of the actin regulatory proteins involved in osteoclast activity, we previously performed a survey of tropomyosin isoforms in resting and resorbing osteoclasts. Osteoclasts were found to express two closely related tropomyosins of the high molecular weight type, which are not expressed in monocytic and macrophage precursors. These isoforms, Tm-2 and Tm-3, are not strongly associated with actin-rich adhesion structures, but are instead distributed diffusely throughout the cell. In this study, we found that Tm-2/3 expression occurs late in osteoclastogenesis and continues to increase as cells mature. Knockdown of these isoforms via RNA interference results in flattening and increased spreading of osteoclasts, accompanied by diminished motility and altered resorptive capacity. In contrast, overexpression of Tm-2, but not Tm-3, caused morphological changes that include decreased spreading of the cells and induction of actin patches or stress fiber-like actin filaments, also with effects on motility and resorption. Suppression of Tm-2/3 or overexpression of Tm-2 resulted in altered distribution of gelsolin and microfilament barbed ends. These data suggest that high molecular weight tropomyosins are expressed in fusing osteoclasts to regulate the cytoskeletal scaffolding of these large cells, due at least in part by moderating accessibility of gelsolin to these microfilaments. PMID:18674650

  5. Ultra-High-Molecular-Weight Silphenylene/Siloxane Elastomers

    NASA Technical Reports Server (NTRS)

    Hundley, N. H.; Patterson, W. J.

    1989-01-01

    Elastomers enhance thermal and mechancial properties. Capable of performing in extreme thermal/oxidative environments and having molecular weights above 10 to the sixth power prepared and analyzed in laboratory experiments. Made of methylvinylsilphenylene-siloxane terpolymers, new materials amenable to conventional silicone-processing technology. Similarly formulated commercial methyl-vinyl silicones, vulcanized elastomers exhibit enhance thermal/oxidative stability and equivalent or superior mechanical properties.

  6. High molecular weight polysaccharide that binds and inhibits virus

    DOEpatents

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  7. Buckling in polymer monolayers: Molecular-weight dependence

    SciTech Connect

    Srivastava, S.; Basu, J.K.

    2010-11-12

    We present systematic investigations of buckling in Langmuir monolayers of polyvinyl acetate formed at the air-water interface. On compression the polymer monolayers are converted to a continuous membrane with a thickness of {approx}2-3 nm of well-defined periodicity, {lambda}{sub b}. Above a certain surface concentration the membrane undergoes a morphological transition buckling, leading to the formation of striped patterns. The periodicity seems to depend on molecular weight as per the predictions of the gravity-bending buckling formalism of Milner et al. for fluidlike films on water. However anomalously low values of bending rigidity and Young's modulus are obtained using this formalism. Hence we have considered an alternative model of buckling-based solidlike films on viscoelastic substrates. The values of bending rigidity and Young's modulus obtained by this method, although lower than expected, are closer to the bulk values. Remarkably, no buckling is found to occur above a certain molecular weight. We have tried to explain the observed molecular-weight dependence in terms of the variation in isothermal compressive modulus of the monolayers with surface concentration as well as provided possible explanations for the obtained low values of mechanical properties similar to that observed for ultrathin polymer films.

  8. Determination of molecular-weight distribution and average molecular weights of block copolymers by gel-permeation chromatography.

    PubMed

    Nesterov, V V; Kurenbin, O I; Krasikov, V D; Belenkii, B G

    1987-01-01

    The problem of preparation of a block copolymer of precise molecular-weight distribution (MWD) and with heterogeneous composition on the basis of gel-permeation chromatography (GPC) data has been investigated. It has been shown that in MWD calculations the distribution f(p) of the composition p in individual GPC fractions should be taken into account. The type of the f(p) functions can be simultaneously established by an independent method, such as use of adsorption-column or thin-layer chromatography sensitive to the composition of the copolymer. It has also been shown that the actual f(p) may be replaced by a corresponding piecewise distribution, of simple form, without decrease in the precision of calculation of the MWD and average molecular weights of most known block copolymers. PMID:18964273

  9. Comparison of antimicrobial activities of newly obtained low molecular weight scorpion chitosan and medium molecular weight commercial chitosan.

    PubMed

    Kaya, Murat; Asan-Ozusaglam, Meltem; Erdogan, Sevil

    2016-06-01

    In this study the antimicrobial activity of low molecular weight (3.22 kDa) chitosan, obtained for the first time from a species belonging to the Scorpiones, was screened against nine pathogenic microorganisms (seven bacteria and two yeasts) and compared with that of medium molecular weight commercial chitosan (MMWCC). It was observed that the antimicrobial activity of the low molecular weight scorpion chitosan (LMWSC) was specific to bacterial species in general rather than gram-negative or gram-positive bacterial groups. It was also determined that LMWSC had a stronger inhibitory effect than the MMWCC, particularly on the bacterium Listeria monocytogenes and the yeast Candida albicans, which are important pathogens for public health. In addition, it was recorded that the MMWCC had a greater inhibitory effect on Bacillus subtilis than LMWSC. According to the results obtained by the disc diffusion method, the antibacterial activity of both LMWSC and MMWCC against B. subtilis and Salmonella enteritidis was higher than the widely used antibiotic Gentamicin (CN, 10 μg/disc). PMID:26702952

  10. Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    1999-01-01

    Mechanical Testing of an advanced thermoplastic polyimide (LaRC-TM-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength were all determined as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. A critical molecular weight (Mc) was observed to occur at a weight-average molecular weight (Mw) of approx. 22000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Furthermore, inelastic analysis showed that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microstructural images supported these findings.

  11. Molecular modeling of Gly80 and Ser80 variants of human group IID phospholipase A2 and their receptor complexes: potential basis for weight loss in chronic obstructive pulmonary disease.

    PubMed

    Khan, Mohd Imran; Gupta, Ashish Kumar; Kumar, Domada Ratna; Kumar, Manoj; Ethayathulla, Abdul Samarth; Hariprasad, Gururao

    2016-09-01

    Weight loss is a well known systemic manifestation of chronic obstructive pulmonary disease (COPD). A Gly80Ser mutation on human group IID secretory phospholipase A2 (sPLA2) enhances expression of the cytokines that are responsible for weight loss. In this study, we seek to establish a structural correlation of wild type sPLA2 and the Gly80Ser mutation with function. sPLA2 with glycine and serine at the 80th positions and the M-type receptor were modelled. The enzymes were docked to the receptor and molecular dynamics was carried out to 70 ns. Structural analysis revealed the enzymes to comprise three helices (H1-H3), two short helices (SH1 and SH2), and five loops including a calcium binding loop (L1-L5), and to be stabilized by seven disulfide bonds. The overall backbone folds of the two models are very similar, with main chain RMSD of less than 1 Å. The active site within the substrate binding channel shows a catalytic triad of water-His67-Asp112, showing a hydrogen bonded network. Major structural differences between wild type and mutant enzymes were observed locally at the site of the mutation and in their global conformations. These differences include: (1) loop-L3 between H2 and H3, which bears residue Gly80 in the wild type, is in a closed conformation with respect to the channel opening, while in the mutant enzyme it adopts a relatively open conformation; (2) the mutant enzyme is less compact and has higher solvent accessible surface area; and (3) interfacial binding contact surface area is greater, and the quality of interactions with the receptor is better in the mutant enzyme as compared to the wild type. Therefore, the structural differences delineated in this study are potential biophysical factors that could determine the increased potency of the mutant enzyme with macrophage receptor for cytokine secreting function, resulting in exacerbation of cachexia in COPD. PMID:27585677

  12. Impact resistance and fractography in ultra high molecular weight polyethylenes.

    PubMed

    Puértolas, J A; Pascual, F J; Martínez-Morlanes, M J

    2014-02-01

    Highly crosslinked ultra high molecular weight polyethylenes (UHMWPE) stabilized by a remelting process or by the addition of an antioxidant are highly wear resistant and chemically stable. However, these polyethylenes currently used in total joint replacements suffer a loss of mechanical properties, especially in terms of fracture toughness. In this study we analyze the impact behavior of different polyethylenes using an instrumented double notch Izod test. The materials studied are three resins: GUR1050, GUR1020 with 0.1wt% of vitamin E, and MG003 with 0.1wt% of vitamin E. These resins were gamma irradiated at 90kGy, and pre and post-irradiation remelting processes were applied to GUR1050 for two different time periods. Microstructural data were determined by means of differential scanning calorimetry and transmission electron microscopy. Fractography carried out on the impact fracture surfaces and images obtained by scanning electron microscopy after etching indicated the existence of a fringe structure formed by consecutive ductile-brittle and brittle-ductile transitions, which is related to the appearance of discontinuities in the load-deflection curves. A correlation has been made of the macroscopic impact strength results and the molecular chain and microstructural characteristics of these aforementioned materials, with a view to designing future resins with improved impact resistance. The use of UHMWPE resins with low molecular weight or the application of a remelting treatment could contribute to obtain a better impact strength behavior. PMID:24275347

  13. Intramolecular Hydrogen Bonds in Low-Molecular-Weight Polyethylene Glycol.

    PubMed

    Kozlowska, Mariana; Goclon, Jakub; Rodziewicz, Pawel

    2016-04-18

    We used static DFT calculations to analyze, in detail, the intramolecular hydrogen bonds formed in low-molecular-weight polyethylene glycol (PEG) with two to five repeat subunits. Both red-shifted O-H⋅⋅⋅O and blue-shifting C-H⋅⋅⋅O hydrogen bonds, which control the structural flexibility of PEG, were detected. To estimate the strength of these hydrogen bonds, the quantum theory of atoms in molecules was used. Car-Parrinello molecular dynamics simulations were used to mimic the structural rearrangements and hydrogen-bond breaking/formation in the PEG molecule at 300 K. The time evolution of the H⋅⋅⋅O bond length and valence angles of the formed hydrogen bonds were fully analyzed. The characteristic hydrogen-bonding patterns of low-molecular-weight PEG were described with an estimation of their lifetime. The theoretical results obtained, in particular the presence of weak C-H⋅⋅⋅O hydrogen bonds, could serve as an explanation of the PEG structural stability in the experimental investigation. PMID:26864943

  14. [Sequencing of low-molecular-weight DNA in blood plasma of irradiated rats].

    PubMed

    Vasilieva, I N; Bespalov, V G; Zinkin, V N; Podgornaya, O I

    2015-01-01

    Extracellular low-molecular-weight DNA in blood of irradiated rats was sequenced for the first time. The screening of sequences in the DDBJ database displayed homology of various parts of the rodent genome. Sequences of low-molecular-weight DNA in rat's plasma are enriched with G/C pairs and long interspersed elements relative to rat genome. DNA sequences in blood of rats irradiated at the doses of 8 and 100 Gy have marked distinctions. Data of sequencing of extracellular DNA from normal humans and with pathology were analyzed. DNA sequences of irradiated rats differ from the human ones by a wealth of long interspersed elements. This new knowledge lays the foundation for development of minimally invasive technologies of diagnosing the probability of pathology and controlling the adaptive resources of people in extreme environments. PMID:25958466

  15. Diffusion of low molecular weight siloxane from bulk to surface

    SciTech Connect

    Homma, H.; Kuroyagi, T.; Mirley, C.L.; Ronzello, J.; Boggs, S.A.

    1996-12-31

    Silicone-based materials for outdoor insulators have the advantage that low molecular weight (LMW) components migrate through the material and coat the surface, thereby restoring hydrophobicity over a period of hours. By measuring the infrared (IR) absorption of siloxane migrating to the silicone surface through a thin carbon coating, the aspect of the LMW siloxane migration was observed as a real time plot and the time constant of the migration was calculated. According to the time dependence of IR-absorbance, the migration mostly saturated within only 12 hours after the carbon coating was applied. Also, the time constant showed a dependence on the concentration of added filler in the silicone samples.

  16. Conformations of Low-Molecular-Weight Lignin Polymers in Water.

    PubMed

    Petridis, Loukas; Smith, Jeremy C

    2016-02-01

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a critical degree of polymerization, Nc =15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. An implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures. PMID:26763657

  17. Synthesis of high molecular weight PEO using non-metal initiators

    DOEpatents

    Yang, Jin; Sivanandan, Kulandaivelu; Pistorino, Jonathan; Eitouni, Hany Basam

    2015-05-19

    A new synthetic method to prepare high molecular weight poly(ethylene oxide) with a very narrow molecular weight distribution (PDI<1.5) is described. The method involves a metal free initiator system, thus avoiding dangerous, flammable organometallic compounds.

  18. Human Mars Mission: Weights and Mass Properties. Pt. 1

    NASA Technical Reports Server (NTRS)

    Brothers, Bobby

    1999-01-01

    This paper presents a final report on The Human Mars Mission Weights and Measures. The topics included in this report are: 1) Trans-Earth Injection Storage Human Mars Mission (HMM) Chemical Design Reference Mission (DRM) v4.0a Weight Breakout; 2) Ascent Stage HMM Chemical DRM v4.0a Weight Breakout; 3) Descent Stages HMM Chemical DRM v4.0a Weight Breakout; 4) Trans-Mars Injection Stages HMM Chemical DRM v4.0a Weight Breakout; 5) Trans-Earth Injection Stage HMM Solar Electric Propulsion (SEP) DRM v4.0a Weight Breakout; 6) Ascent Stage HMM SEP DRM v4.0a Weight Breakout; 7) Descent Stages HMM SEP DRM v4.0a Weight Breakout; 8) Trans-Mars Injection Stages HMM SEP DRM v4.0a Weight Breakout; 9) Crew Taxi Stage HMM SEP DRM v4.0 Weight Breakout; 10)Trans-Earth Injection Stage HMM Nuclear DRM v4.0a Weight Breakout; 11) Ascent Stage HMM Nuclear DRM v4.0a Weight Breakout; 12) Descent Stages HMM Nuclear DRM v4.0a Weight Breakout; 13) Trans-Mars Injection Stages HMM Nuclear DRM v4.0a Weight Breakout; and 14) HMM Mass Properties Coordinate System.

  19. WeGET: predicting new genes for molecular systems by weighted co-expression.

    PubMed

    Szklarczyk, Radek; Megchelenbrink, Wout; Cizek, Pavel; Ledent, Marie; Velemans, Gonny; Szklarczyk, Damian; Huynen, Martijn A

    2016-01-01

    We have developed the Weighted Gene Expression Tool and database (WeGET, http://weget.cmbi.umcn.nl) for the prediction of new genes of a molecular system by correlated gene expression. WeGET utilizes a compendium of 465 human and 560 murine gene expression datasets that have been collected from multiple tissues under a wide range of experimental conditions. It exploits this abundance of expression data by assigning a high weight to datasets in which the known genes of a molecular system are harmoniously up- and down-regulated. WeGET ranks new candidate genes by calculating their weighted co-expression with that system. A weighted rank is calculated for human genes and their mouse orthologs. Then, an integrated gene rank and p-value is computed using a rank-order statistic. We applied our method to predict novel genes that have a high degree of co-expression with Gene Ontology terms and pathways from KEGG and Reactome. For each query set we provide a list of predicted novel genes, computed weights for transcription datasets used and cell and tissue types that contributed to the final predictions. The performance for each query set is assessed by 10-fold cross-validation. Finally, users can use the WeGET to predict novel genes that co-express with a custom query set. PMID:26582928

  20. WeGET: predicting new genes for molecular systems by weighted co-expression

    PubMed Central

    Szklarczyk, Radek; Megchelenbrink, Wout; Cizek, Pavel; Ledent, Marie; Velemans, Gonny; Szklarczyk, Damian; Huynen, Martijn A.

    2016-01-01

    We have developed the Weighted Gene Expression Tool and database (WeGET, http://weget.cmbi.umcn.nl) for the prediction of new genes of a molecular system by correlated gene expression. WeGET utilizes a compendium of 465 human and 560 murine gene expression datasets that have been collected from multiple tissues under a wide range of experimental conditions. It exploits this abundance of expression data by assigning a high weight to datasets in which the known genes of a molecular system are harmoniously up- and down-regulated. WeGET ranks new candidate genes by calculating their weighted co-expression with that system. A weighted rank is calculated for human genes and their mouse orthologs. Then, an integrated gene rank and p-value is computed using a rank-order statistic. We applied our method to predict novel genes that have a high degree of co-expression with Gene Ontology terms and pathways from KEGG and Reactome. For each query set we provide a list of predicted novel genes, computed weights for transcription datasets used and cell and tissue types that contributed to the final predictions. The performance for each query set is assessed by 10-fold cross-validation. Finally, users can use the WeGET to predict novel genes that co-express with a custom query set. PMID:26582928

  1. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ethylene oxide and water with a mean molecular weight of 200 to 9,500. (2) It contains no more than 0.2... the total ethylene and diethylene glycol content of polyethylene glycols having mean molecular weights... and diethylene glycol content of polyethylene glycols having mean molecular weights below...

  2. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ethylene oxide and water with a mean molecular weight of 200 to 9,500. (2) It contains no more than 0.2... the total ethylene and diethylene glycol content of polyethylene glycols having mean molecular weights... and diethylene glycol content of polyethylene glycols having mean molecular weights below...

  3. Molecular weight characterization of virgin and explanted polyester arterial prostheses.

    PubMed

    Maarek, J M; Guidoin, R; Aubin, M; Prud'homme, R E

    1984-10-01

    The macromolecular properties of 17 virgin commercial arterial prostheses and a series of explanted prostheses, both manufactured from poly(ethylene terephthalate) (PET) yarns, have been studied by gel permeation chromatography (GPC) and by differential scanning calorimetry (DSC). Only small differences were found between the average molecular weights and the degree of crystallinity of the unused reference grafts. A broadening of the DSC curves was observed for the prostheses containing texturized yarns compared with those made solely from flat, untexturized yarns. This broadening may be due to greater heterogeneity of the crystal sizes caused by the texturizing process and to the use of two or more different yarns with dissimilar thermal histories in the same prosthesis. Average molecular weights of the explant series were significantly lower than those of the corresponding reference grafts but almost time independent. The polydispersity index and the degree of crystallinity of the explants remained constant as a function of time. These results are discussed in regard to others available in the literature. PMID:6242474

  4. LARC-TPI 1500 series controlled molecular weight polyimide

    NASA Technical Reports Server (NTRS)

    Progar, Donald; St. Clair, Terry; Burks, Harold; Gautreaux, Carol; Yamaguchi, Akihiro

    1990-01-01

    LARC-TPI, a linear high temperature thermoplastic polyimide, was developed several years ago at NASA Langley Research Center. This material has been commercialized by Mitsui Toatsu Chemicals, Inc., Tokyo, Japan, as a varnish and powder. More recently, a melt-extruded film of a controlled molecular weight of this same polymer has been supplied to NASA Langley Research Center for evaluation. This new form, called LARC-TPI 1500 series, has been prepared in three molecular weights - high, medium and low flow polymers. The subject of this investigation deals with the rheological properties of the high and medium flow powders and the adhesive properties of the medium flow melt-extruded film. Rheological studies indicate that the high and medium flow forms of the polymer fall in the flow range of injection moldable materials. Adhesive data generated on the medium flow extruded film shows this form to be well suited for structural adhesive bonding. The data are as good or better than that for LARC-TPI data of previous studies.

  5. Determination of molecular weight distributions in native and pretreated wood.

    PubMed

    Leskinen, Timo; Kelley, Stephen S; Argyropoulos, Dimitris S

    2015-03-30

    The analysis of native wood components by size-exclusion chromatography (SEC) is challenging. Isolation, derivatization and solubilization of wood polymers is required prior to the analysis. The present approach allowed the determination of molecular weight distributions of the carbohydrates and of lignin in native and processed woods, without preparative component isolation steps. For the first time a component selective SEC analysis of sawdust preparations was made possible by the combination of two selective derivatization methods, namely; ionic liquid assisted benzoylation of the carbohydrate fraction and acetobromination of the lignin in acetic acid media. These were optimized for wood samples. The developed method was thus used to examine changes in softwood samples after degradative mechanical and/or chemical treatments, such as ball milling, steam explosion, green liquor pulping, and chemical oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The methodology can also be applied to examine changes in molecular weight and lignin-carbohydrate linkages that occur during wood-based biorefinery operations, such as pretreatments, and enzymatic saccharification. PMID:25563943

  6. Ice Nucleation by High Molecular Weight Organic Compounds

    NASA Astrophysics Data System (ADS)

    Cantrell, W.

    2003-12-01

    Deep convection in the tropics is frequently associated with biomass burning. Recent work has suggested that the size of ice crystals in the anvils of tropical cumulonimbus clouds may be affected by biomass burning, though the mechanism for such an effect is uncertain (Sherwood, 2002). We will present results of an investigation of the role that high molecular weight organic compounds, known to be produced in biomass burning (Elias et al., 1999), may play in tropical cirrus anvils through heterogeneous nucleation of ice. In particular, we examine the mechanisms underlying heterogeneous nucleation of ice by films of long chain alcohols by studying the interaction of the alcohols and water/ice using temperature controlled, Attenuated Total Reflection - Fourier Transform Infrared spectroscopy. The mechanisms are interpreted in the context of recent criticisms of some aspects of classical nucleation theory (Seeley and Seidler, 2001; Oxtoby, 1998). References V. Elias, B. Simoneit, A. Pereira, J. Cabral, and J. Cardoso, Detection of high molecular weight organic tracers in vegetation smoke samples by high-temperature gas chromatography-mass spectrometry. Environ. Sci. Tecnol., 33, 2369-2376, 1999. D. Oxtoby, Nucleation of first-order phase transitions. Acc. Chem. Res., 31, 91-97, 1998. L. Seeley and G. Seidler, Preactivation in the nucleation of ice by Langmuir films of aliphatic alcohols. J. Chem. Phys., 114, 10464-10470, 2001. S. Sherwood, Aerosols and ice particle size in tropical cumulonimbus. J. Climate, 15, 1051-1063, 2002.

  7. High Molecular Weight Petrogenic and Pyrogenic Hydrocarbons in Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Abrajano, T. A., Jr.; Yan, B.; O'Malley, V.

    2003-12-01

    Geochemistry is ultimately the study of sources, movement, and fate of chemicals in the geosphere at various spatial and temporal scales. Environmental organic geochemistry focuses such studies on organic compounds of toxicological and ecological concern (e.g., Schwarzenbach et al., 1993, 1998; Eganhouse, 1997). This field emphasizes not only those compounds with potential toxicological properties, but also the geological systems accessible to the biological receptors of those hazards. Hence, the examples presented in this chapter focus on hydrocarbons with known health and ecological concern in accessible shallow, primarily aquatic, environments.Modern society depends on oil for energy and a variety of other daily needs, with present mineral oil consumption throughout the 1990s exceeding 3×109 t yr-1 (NRC, 2002). In the USA, e.g., ˜40% of energy consumed and 97% of transportation fuels are derived from oil. In the process of extraction, refinement, transport, use, and waste production, a small but environmentally significant fraction of raw oil materials, processed products, and waste are released inadvertently or purposefully into the environment. Because their presence and concentration in the shallow environments are often the result of human activities, these organic materials are generally referred to as "environmental contaminants." Although such reference connotes some form of toxicological or ecological hazard, specific health or ecological effects of many organic "environmental contaminants" remain to be demonstrated. Some are, in fact, likely innocuous at the levels that they are found in many systems, and simply adds to the milieu of biogenic organic compounds that naturally cycle through the shallow environment. Indeed, virtually all compounds in crude oil and processed petroleum products have been introduced naturally to the shallow environments as oil and gas seepage for millions of years ( NRC, 2002). Even high molecular weight (HMW) polyaromatic

  8. Viscoelastic Behavior of Low Molecular Weight Sulfonated Polystyrene Ionomers

    NASA Astrophysics Data System (ADS)

    Zhao, Hongying

    Ionomers are those hydrophobic polymers having small amounts of bonded ionic groups. The introduction of the ionic groups into polymer chain produces large changes in the physical, mechanical and rheological properties of the parent polymer. Characterization of the effect of the ionic interactions on the rheology is complicated by the difficulty in separating effects due to molecular entanglements and the ionic interactions. In this study, low molecular weight (Mw=4000) sulfonated polystyrene (SPS) was used to study the dynamic and steady shear rheology of SPS ionomers. The polymer chain length used was far below the entanglement molecular weight of polystyrene and effects of molecular entanglements will be absent. Any polymer chain entanglements or lengthening behavior on the melt rheology should be due to the ionic interactions. Random SPS ionomers with two sulfonation levels were examined, 2.5 and 4.8 mol%, which corresponded, respectively, to one and two sulfonate groups per chain on average. The metal counterions was varied across the alkali metal series of the periodic table. Morphology of the ionomer was characterized by using small angle x-ray scattering (SAXS) analysis, and dynamic and steady shear measurements were performed to investigate rheological behavior of the ionomers. Glass transition temperatures of the ionomers increased with increasing ion concentration but were insensitive to cation used. The scattering peak in SAXS indicates the existence of the nanophase separated ionic clusters. The strong ionic nanophase persist up to very high temperatures and is not sensitive to the external stress. Time-temperature superposition (TTS) of G' worked reasonably well while TTS of G" failed for most ionomers. Ionic interactions increased the terminal relaxation time of the melts as much as seven orders of magnitude greater than the unentangled PS melt. The zero shear viscosity and first normal stress coefficients scaled with cq/a, where c was the

  9. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false 4,4â²-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000. 177.1440 Section 177.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for...

  10. Mechanical Properties of LaRC(tm) SI Polymer for a Range of Molecular Weights

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.; Nicholson, Lee M.

    2000-01-01

    Mechanical testing of an advanced polyimide resin (LaRC(tm)-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. Elastic and inelastic properties were characterized as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. The combined analysis of calculated yield stress and notched tensile strength indicated that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microphotographs of the failure surfaces also supported these findings.

  11. Molecular weight degradation and rheological properties of schizophyllan under ultrasonic treatment.

    PubMed

    Zhong, Kui; Zhang, Qi; Tong, Litao; Liu, Liya; Zhou, Xianrong; Zhou, Sumei

    2015-03-01

    Molecular weight degradation effects of schizophyllan (SPG) under ultrasonic treatments were investigated in this study. The degradation product was treated by alcohol fractional precipitation technology, and the molecular weight and rheological properties of ultrasonic-treated SPG (USPG) fractions were evaluated. Average molecular weight of SPG decreased significantly after ultrasonic treatments, and degradation product had more narrow distribution of molecular weight. The molecular weight degradation kinetics of SPG is adequately described by a second-order reaction. USPG fractions with different molecular weight were obtained by fractional precipitation for final alcohol concentration fractions 0-40%, 40-60% and 60-80%, respectively. USPG fractions had near-Newtonian flow behaviors, and USPG₈₀% exhibited viscous responses over the entire accessible frequency range. Therefore, ultrasonic treatment is a viable modification technology for SPG and other polymer materials with high molecular weight. PMID:25263766

  12. Hydrophobic composition based on mixed-molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Gorlenko, Nikolay; Debelova, Natalya; Sarkisov, Yuriy; Volokitin, Gennadiy; Zavyalova, Elena; Lapova, Tatyana

    2016-01-01

    The paper presents investigations of compositions based on low and high molecular weight polyethylene so as to synthesize a hydrophobic composition for moisture protection of timber. X-ray phase analysis and measurements of the tear-off force of hydrophobic coating needed to apply to the timber surface and the limiting wetting angle are carried out to detect the hydrophobic, adhesive, electrophysical, and physicochemical properties of compositions. Kinetic dependencies are given for moisture absorption of timber specimens. It is shown that the preliminary formation of the texture by the surface patterning or its treatment with low-temperature plasma with the following protective coating results in the improvement of hydrophobic properties of the suggested compositions. These compositions can be used in the capacity of water repellents to protect building materials from moisture including restoration works.

  13. Ultra-high molecular weight silphenylene-siloxane polymers

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.; Hundley, N. H.; Ludwick, L. M.

    1984-01-01

    Silphenylene-siloxane copolymers with molecular weights above one million were prepared using a two stage polymerization technique. The technique was successfully scaled up to produce 50 grams of this high polymer in a single run. The reactive monomer approach was also investigated using the following aminosilanes: bis(dimethylamino)dimethylsilane, N,N-bis(pyrrolidinyl)dimethylsilane and N,N-bis(gamma-butyrolactam)dimethylsilane). Thermal analyses were performed in both air and nitrogen. The experimental polymers decomposed at 540 to 562 C, as opposed to 408 to 426 C for commercial silicones. Differential scanning calorimetry showed a glass transition (Tg) at -50 to -55 C for the silphenylene-siloxane copolymer while the commercial silicones had Tg's at -96 to -112 C.

  14. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, Stephen; Benner, W. Henry; Madden, Norman; Searles, William

    1998-01-01

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e.sup.- are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation.

  15. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, S.; Benner, W.H.; Madden, N.M.; Searles, W.

    1998-06-23

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e{sup {minus}} are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation. 14 figs.

  16. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    SciTech Connect

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.

    2000-07-14

    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety of applications such as scavenging of heavy metals.

  17. Diffuse alveolar hemorrhage associated with low molecular weight heparin

    PubMed Central

    Hayashi, Shinichi; Maruoka, Shuichiro; Nakagawa, Yoshiko; Takahashi, Noriaki; Hashimoto, Shu

    2013-01-01

    Diffuse alveolar hemorrhage (DAH) has a varied etiology, including anticoagulation drugs. There is conflicting evidence whether low molecular weight heparin (LMWH) has a low risk of bleeding complications compared to unfractionated heparin. We report here a case of DAH in a 74-year-old woman who was administered enoxaparin, a LMWH, after bilateral total knee arthroplasty. Although congestive heart failure after blood transfusion and fluid infusion could in part be associated with the bleeding, LMWH may be a major cause of DAH since the patient quickly recovered after its cessation. DAH should be of concern when acute respiratory failure with ground-glass shadow develops in both lungs during anticoagulation therapy with LMWH. PMID:25473525

  18. Massive choroidal hemorrhage associated with low molecular weight heparin therapy.

    PubMed

    Neudorfer, M; Leibovitch, I; Goldstein, M; Loewenstein, A

    2002-04-01

    An 84-year-old woman with unstable angina pectoris was treated with subcutaneous enoxaparine (Clexane) for several days before presenting with severe pain and decreased vision in her left eye. The intraocular pressure was 70 mmHg, and fundus examination showed a pigmented choroidal lesion and associated choroidal and retinal detachment. Ultrasonography was consistent with choroidal hemorrhage, and she was diagnosed as having acute glaucoma secondary to massive subchoroidal hemorrhage. Medical control of the intraocular pressure resulted in a significant clinical improvement. Intraocular hemorrhage and angle-closure glaucoma are rare and previously unreported complications in patients treated with low molecular weight heparin. It is important to be aware of this ocular complication as these drugs are so often used. PMID:11943940

  19. Dairy Wastewater Treatment Using Low Molecular Weight Crab Shell Chitosan

    NASA Astrophysics Data System (ADS)

    Geetha Devi, M.; Dumaran, Joefel Jessica; Feroz, S.

    2012-08-01

    The investigation of possible use of low molecular weight crab shell chitosan (MW 20 kDa) in the treatment of dairy waste water was studied. Various experiments have been carried out using batch adsorption technique to study the effects of the process variables, which include contact time, stirring speed, pH and adsorbent dosage. Treated effluent characteristics at optimum condition showed that chitosan can be effectively used as adsorbent in the treatment of dairy wastewater. The optimum conditions for this study were at 150 mg/l of chitosan, pH 5 and 50 min of mixing time with 50 rpm of mixing speed. Chitosan showed the highest performance under these conditions with 79 % COD, 93 % turbidity and 73 % TSS reduction. The result showed that chitosan is an effective coagulant, which can reduce the level of COD, TSS and turbidity in dairy industry wastewater.

  20. [Anaphylactic reactions to low-molecular weight chemicals].

    PubMed

    Nowak, Daria; Panaszek, Bernard

    2015-01-01

    Low-molecular weight chemicals (haptens) include a large group of chemical compounds occurring in work environment, items of everyday use (cleaning products, clothing, footwear, gloves, furniture), jewelry (earrings, bracelets), drugs, especially in cosmetics. They cause type IV hypersensitive reactions. During the induction phase of delayed-type hypersensitivity, haptens form complexes with skin proteins. After internalization through antigen presenting cells, they are bound to MHC class II molecules. Next, they are exposed against specific T-lymphocytes, what triggers activation of Th1 cells mainly. After repeating exposition to that hapten, during effector phase, Th1 induce production of cytokines affecting non-specific inflammatory cells. Usually, it causes contact dermatitis. However, occasionally incidence of immediate generalized reactions after contact with some kinds of haptens is noticed. A question arises, how the hapten does induce symptoms which are typical for anaphylaxis, and what contributes to amplification of this mechanism. It seems that this phenomenon arises from pathomechanism occurring in contact urticaria syndrome in which an anaphylactic reaction may be caused either by contact of sensitized skin with protein antigens, high-molecular weight allergens, or haptens. One of the hypotheses indicates the leading role of basophiles in this process. Their contact with haptens, may cause to release mediators of immediate allergic reaction (histamine, eicosanoids) and to produce cytokines corresponding to Th2 cells profile. Furthermore, Th17 lymphocytes secreting pro-inflammatory interleukin-17 might be engaged into amplifying hypersensitivity into immediate reactions and regulatory T-cells may play role in the process, due to insufficient control of the activity of effector cells. PMID:25661919

  1. Mechanistic information from analysis of molecular weight distributions of starch.

    PubMed

    Castro, Jeffrey V; Dumas, Céline; Chiou, Herbert; Fitzgerald, Melissa A; Gilbert, Robert G

    2005-01-01

    A methodology is developed for interpreting the molecular weight distributions of debranched amylopectin, based on techniques developed for quantitatively and qualitatively finding mechanistic information from the molecular weight distributions of synthetic polymers. If the only events occurring are random chain growth and stoppage (i.e., the rates are independent of degree of polymerization over the range in question), then the number of chains of degree of polymerization N, P(N), is linear in ln P(N) with a negative slope, where the slope gives the ratio of the stoppage and growth rates. This starting point suggests that mechanistic inferences can be made from a plot of lnP against N. Application to capillary electrophoresis data for the P(N) of debranched starch from across the major taxa, from bacteria (Escherichia coli), green algae (Chlamydomonas reinhardtii), mammals (Bos), and flowering plants (Oryza sativa, rice; Zea mays, maize; Triticum aestivum, wheat; Hordeum vulgare, barley; and Solanum tuberosum, potato), gives insights into the biosynthetic pathways, showing the differences and similarities of the alpha-1,4-glucans produced by the various species. Four characteristic regions for storage starch from the higher plants are revealed: (1) an initial increasing region corresponding to the formation of new branches, (2) a linear ln P region with negative slope, indicating random growth and stoppage, (3) a region corresponding to the formation of the crystalline lamellae and subsequent elongation of chains, and (4) a second linear ln P with negative slope region. Each region can be assigned to specific enzymatic processes in starch synthesis, including determining the ranges of degrees of polymerization which are subject to random and nonrandom processes. PMID:16004469

  2. [The low-molecular weight antioxidants of microorganisms].

    PubMed

    Skorokhod, I O; Kurdysh, I K

    2014-01-01

    Support of optimum redox-homeostasis in the cells of microorganisms plays a substantial role in the processes of DNA synthesis, respiration, providing of immune and protective reactions, activity of enzymes, etc. The changes of the redox-status can be accompanied by the increase of the level of reactive oxygen species (ROS) which predetermine the damage of biologically active molecules. Adjusting of ROS concentrations is a very important process in development of microorganisms. Low-molecular antioxidants are effective inhibitors of free-radical processes. The authors of the review present the description of oxidants and consider the ways of origin and consequences of their influence on the living cells. An accent is done on phenomenological description of low-molecular antioxidants. The basic mechanisms of their action are considered. Special attention is given to the question of synergism between these protectors. The detailed study of mechanisms of functioning of low-molecular antioxidants in the cells of microorganisms will allow using these living objects in different spheres of human activity. PMID:25007444

  3. A novel hypotonic sports drink containing a high molecular weight polysaccharide.

    PubMed

    Hao, Limin; Chen, Qiang; Lu, Jike; Li, Zhiyu; Guo, Changjiang; Qian, Ping; Yu, Jianyong; Xing, Xinhui

    2014-05-01

    Carbohydrate consumption during exercise can improve performance and delay the onset of fatigue. The purpose of this study was to develop a novel sports drink powder, Jxdrink, containing the high molecular weight polysaccharide Jxsac. Animal experiments including digestion and exhaustive swimming experiments were conducted to observe the physiological effects of this beverage. Human experiments involved the participation of 10 healthy male athletes completing a 180 km road cycling test. The osmolality of Jxdrink was 170-175 mosmol kg(-1), lower than that of human blood. Jxdrink was found to prolong the exhaustive swimming time in test animals. Moreover, Jxdrink had a relatively high glycemic index that maintained blood glucose levels during human cycling experiments. Thus, Jxdrink was found to effectively delay the onset of fatigue in both human and animal experiments. PMID:24599404

  4. DNA ligase III is the major high molecular weight DNA joining activity in SV40-transformed human fibroblasts: normal levels of DNA ligase III activity in Bloom syndrome cells.

    PubMed Central

    Tomkinson, A E; Starr, R; Schultz, R A

    1993-01-01

    The phenotypes of cultured cell lines established from individuals with Bloom syndrome (BLM), including an elevated spontaneous frequency of sister chromatid exchanges (SCEs), are consistent with a defect in DNA joining. We have investigated the levels of DNA ligase I and DNA ligase III in an SV40-transformed control and BLM fibroblast cell line, as well as clonal derivatives of the BLM cell line complemented or not for the elevated SCE phenotype. No differences in either DNA ligase I or DNA ligase III were detected in extracts from these cell lines. Furthermore, the data indicate that in dividing cultures of SV40-transformed fibroblasts, DNA ligase III contributes > 85% of high molecular weight DNA joining activity. This observation contrasts with previous studies in which DNA ligase I was reported to be the major DNA joining activity in extracts from proliferating mammalian cells. Images PMID:8265359

  5. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9... molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as a... conditions: (a) The additive is an addition polymer of ethylene oxide and water with a mean molecular...

  6. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9... molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as a... conditions: (a) The additive is an addition polymer of ethylene oxide and water with a mean molecular...

  7. Optimization of parameters for coverage of low molecular weight proteins

    PubMed Central

    Müller, Stephan A.; Kohajda, Tibor; Findeiß, Sven; Stadler, Peter F.; Washietl, Stefan; Kellis, Manolis; von Bergen, Martin

    2010-01-01

    Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT

  8. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    PubMed

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-01

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. PMID:27492997

  9. Application of 1H DOSY for Facile Measurement of Polymer Molecular Weights

    PubMed Central

    Li, Weibin; Chung, Hoyong; Daeffler, Christopher; Johnson, Jeremiah A.; Grubbs, Robert H.

    2012-01-01

    To address the practical issues of polymer molecular weight determination, the first accurate polymer weight-average molecular weight determination method in diverse living/controlled polymerization via DOSY (diffusion-ordered NMR spectroscopy) is reported. Based on the linear correlation between the logarithm of diffusion coefficient (log D) and the molecular weights (log Mw), external calibration curves were created to give predictions of molecular weights of narrowly-dispersed polymers. This method was successfully applied to atom transfer radical polymerization (ATRP), reversible addition–fragmentation chain transfer (RAFT), and ring-opening metathesis polymerization (ROMP), with weight-average molecular weights given by this method closely correlated to those obtained from GPC measurement. PMID:23335819

  10. Adsorption of low molecular weight halocarbons by montmorillonite

    SciTech Connect

    Estes, T.J.; Shah, R.V.; Vilker, V.L. )

    1988-04-01

    Montmorillonite clay from Clay Spur, WY, was found to adsorb several low molecular weight, hydrophobic halocarbons from aqueous solution at sub-parts-per-million levels. The halocarbons studied were trichloroethylene, tetrachloroethylene, hexachloroethane, and dibromochloropropane. When the montmorillonite was treated with sodium citrate-bicarbonate-dithionite (CBD), it adsorbed higher levels of halocarbons than the untreated clay. In addition, the CBD-treated clay exhibited a maximum in halocarbon adsorption around pH 4, while untreated clay showed little variation in adsorption over the pH range 2-10. Adsorption of trichloroethylene was inhibited by low concentrations of sodium chloride (0.01 M or greater) in solution. Aging the CBD-treated clay in water decreased its capacity to adsorb trichloroethylene. Desorption studies showed that the sorption of tetrachloroethylene to CBD-treated clay is an irreversible process when compared to sorption by fumed silica. The ability of montmorillonite to adsorb halocarbons and the instability of the clay in water are postulated to involve changes in the oxide surface coating on the clay.

  11. Association between cationic liposomes and low molecular weight hyaluronic acid.

    PubMed

    Gasperini, Antonio A M; Puentes-Martinez, Ximena E; Balbino, Tiago Albertini; Rigoletto, Thais de Paula; Corrêa, Gabriela de Sá Cavalcanti; Cassago, Alexandre; Portugal, Rodrigo Villares; de La Torre, Lucimara Gaziola; Cavalcanti, Leide P

    2015-03-24

    This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential. PMID:25730494

  12. Antiaging activity of low molecular weight peptide from Paphia undulate

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Cai, Bingna; Chen, Hua; Pan, Jianyu; Chen, Deke; Sun, Huili

    2013-05-01

    Low molecular weight peptide (LMWP) was prepared from clam Paphia undulate and its antiaging effect on D-galactose-induced acute aging in rats, aged Kunming mice, ultraviolet-exposed rats, and thermally injured rats was investigated. P. undulate flesh was homogenized and digested using papain under optimal conditions, then subjected to Sephadex G-25 chromatography to isolate the LMWP. Administration of LMWP significantly reversed D-galactose-induced oxidative stress by increasing the activities of glutathione peroxidase (GPx) and catalase (CAT), and by decreasing the level of malondialdehyde (MDA). This process was accompanied by increased collagen synthesis. The LMWP prevented photoaging and promoted dermis recovery and remission of elastic fiber hyperplasia. Furthermore, treatment with the LMWP helped to regenerate elastic fibers and the collagen network, increased superoxide dismutase (SOD) in the serum and significantly decreased MDA. Thermal scald-induced inflammation and edema were also relieved by the LWMP, while wound healing in skin was promoted. These results suggest that the LMWP from P. undulate could serve as a new antiaging substance in cosmetics.

  13. Arterial indications for the low molecular weight heparins

    PubMed Central

    Ageno, Walter; Huisman, Menno V

    2001-01-01

    Antithrombotic treatment is of proven importance in patients with acute coronary syndromes. There is now accumulating evidence from several clinical trials in patients with unstable angina pectoris that the low molecular weight heparins (LMWHs) are at least as effective as unfractionated heparin. The LMWHs are easier to use, with the potential to facilitate long-term outpatient treatment. The results of the trials have actually failed to show any clear advantage, however, of the LMWHs over the standard antiplatelet treatment, despite the evidence of a sustained hypercoagulability. Potentially, the use of higher doses of LMWHs could improve the outcomes, but this is as yet unproven and could be associated with unacceptably increased risk of bleeding. During the acute phase of a stroke, aspirin is the first choice of antithrombotic drug because it reduces the risk of recurrent stroke. LMWH cannot be recommended as an antithrombotic agent for the acute treatment of stroke. Prophylactic use of low dose LMWH for the prevention of venous thromboembolism should be considered in every patient with a stroke. PMID:11806802

  14. Preparation and hemostatic property of low molecular weight silk fibroin.

    PubMed

    Lei, Caihong; Zhu, Hailin; Li, Jingjing; Feng, Xinxing; Chen, Jianyong

    2016-04-01

    Effective hemorrhage control becomes increasingly significant in today's military and civilian trauma, while the topical hemostats currently available in market still have various disadvantages. In this study, three low molecular weight silk fibroins (LMSF) were prepared through hydrolysis of silk fibroin in a ternary solvent system of CaCl2/H2O/EtOH solution at different hydrolysis temperatures. Fourier transform infrared spectroscopy analysis showed that the content of β sheet structure in the LMSF decreased with the increase in hydrolysis temperature. The results of thromboelastographic and activated partial thromboplastin time methods showed that the LMSF hydrolyzed at 50 °C can significantly strengthen the coagulation in blood and activate the intrinsic pathway of coagulation cascade. In the murine hepatic injury model, the LMSF hydrolyzed at 50 °C can promote the blood clotting and decrease the blood loss and bleeding time. Based on these results, it can be suggested that the developed LMSF has the excellent hemostatic effect and may be a promising material in clinical hemostatic application. PMID:26732018

  15. Extraction of high molecular weight DNA from microbial mats.

    PubMed

    Bey, Benjamin S; Fichot, Erin B; Dayama, Gargi; Decho, Alan W; Norman, R Sean

    2010-09-01

    Due to the presence of inhibitors such as extracellular polymeric substances (EPSs) and salts, most microbial mat studies have relied on harsh methods of direct DNA extraction that result in DNA fragments too small for large-insert vector cloning. High molecular weight (HMW) DNA is crucial in functional metagenomic studies, because large fragments present greater access to genes of interest. Here we report improved methodologies for extracting HMW DNA from EPS-rich hypersaline microbial mats. The protocol uses a combination of microbial cell separation with mechanical and chemical methods for DNA extraction and purification followed by precipitation with polyethylene glycol (PEG). The protocol yields >2 µg HMW DNA (>48 kb) per gram of mat sample, with A260:280 ratios >1.7. In addition, 16S rRNA gene analysis using denaturing gradient gel electrophoresis and pyrosequencing showed that this protocol extracts representative DNA from microbial mat communities and results in higher overall calculated diversity indices compared with three other standard methods of DNA extraction. Our results show the importance of validating the DNA extraction methods used in metagenomic studies to ensure optimal recovery of microbial richness. PMID:20854264

  16. Preparation of high-molecular-weight DNA from Drosophila embryos.

    PubMed

    Karpen, Gary H

    2009-07-01

    Standard methods for extracting DNA from cells or organisms (e.g., phenol extraction and ethanol precipitation) produce fragments with an average size of 50-200 kb under optimal conditions. The shearing forces that are applied to DNA in solution during mechanical vortexing or mixing and pipetting produce frequent double-stranded breaks. To prepare high-molecular-weight (HMW) DNA, it is necessary to guard against such damaging forces by performing all extractions and manipulations on DNA that is embedded within a protective matrix. Preparation of HMW DNA from Drosophila embryos is described in detail here because, in our hands, it is the simplest and most reliable protocol and can be used for large- or small-scale preparations. The overall strategy is to purify nuclei, gently embed them in molten agarose, and then extract proteins and perform other enzymatic reactions by transferring the solidified agarose block into the appropriate solutions. Salts, soaps, and enzymes act on the DNA by diffusing through the agarose matrix, while the matrix protects the DNA from shearing forces. PMID:20147219

  17. A low molecular weight proteinase inhibitor produced by T lymphocytes.

    PubMed Central

    Ganea, D; Teodorescu, M; Dray, S

    1986-01-01

    A low molecular weight (MW) proteinase inhibitor, between 6500 and 21,500 MW, appeared in the supernatant of rabbit spleen cells cultured at high density for 24 hr. The inhibitor inhibited the enzymatic activity of trypsin for both a high MW natural substrate, fibrinogen, and for a low MW artificial substrate, Chromozym TRY. The low MW proteinase inhibitor is protein in nature and is different, in terms of specificity for enzymes, MW and sensitivity to different physical or chemical treatments, from aprotinin, a low MW proteinase inhibitor (6500 MW) of bovine origin, and from the soybean trypsin inhibitor, a relatively high MW proteinase inhibitor (21,500 MW). The inhibitor was found in the supernatant of purified T cells but not B cells, and its production was increased in the presence of an optimal concentration of Con A. The possibility that this proteinase inhibitor has a role in the regulation of trypsin-like proteinases involved to the immune response remains to be investigated. Images Figure 4 PMID:2417942

  18. Photochemical Preparation of a Novel Low Molecular Weight Heparin

    PubMed Central

    Higashi, Kyohei; Hosoyama, Saori; Ohno, Asami; Masuko, Sayaka; Yang, Bo; Sterner, Eric; Wang, Zhenyu; Linhardt, Robert J.; Toida, Toshihiko

    2011-01-01

    Commercial low molecular weight heparins (LMWHs) are prepared by several methods including peroxidative cleavage, nitrous acid cleavage, chemical ß-elimination, and enzymatic β-elimination. The disadvantages of these methods are that strong reaction conditions or harsh chemicals are used and these can result in decomposition or modification of saccharide units within the polysaccharide backbone. These side-reactions reduce product quality and yield. Here we show the partial photolysis of unfractionated heparin can be performed in distillated water using titanium dioxide (TiO2). TiO2 is a catalyst that can be easily removed by centrifugation or filtration after the photochemical reaction takes place, resulting in highly pure products. The anticoagulant activity of photodegraded LMWH (pLMWH) is comparable to the most common commercially available LMWHs (i.e., Enoxaparin and Dalteparin). 1H NMR spectra obtained show that pLMWH maintains the same core structure as unfractionated heparin. This photochemical reaction was investigated using liquid chromatography/mass spectrometry (LC/MS) and unlike other processes commonly used to prepare LMWHs, photochemically preparation affords polysaccharide chains of reduced length having both odd and even of saccharide residues. PMID:22205826

  19. Mean Molecular Weight Gradients in Proto-Jupiter

    NASA Astrophysics Data System (ADS)

    Helled, R.; Bodenheimer, P.; Rosenberg, E. D.; Podolak, M.; Lozovsky, M.

    2015-12-01

    The distribution of heavy elements in Jupiter cannot be directly measured, and must be inferred from structure models. Typically, structure models assume that Jupiter is fully convective with the heavy elements being uniformly distributed. However, in the case of layered-convection there is a gradient in the distribution of heavy elements which affects the temperature profile of the planet, and as a result also its derived composition. We simulate the formation of Jupiter and investigate whether mean molecular weight gradients that can lead to layered-convection are created. We show that planetesimal accretion naturally leads to compositional gradients in the region above the core. It is shown that after about 10^5 years the core of Jupiter is hot and is surrounded by layers that consist mostly heavy-elements but also some hydrogen and helium. As a result, Jupiter's core mass is expected to be 2-5 M_Earth with no sharp transition between the core and the envelope. These findings are important for the interpretation of Juno data and for linking giant planet internal structure with origins.

  20. Ultra High Molecular Weight Polyethylene: Mechanics, Morphology, and Clinical Behavior

    PubMed Central

    Sobieraj, MC; Rimnac, CM

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is a semicrystalline polymer that has been used for over four decades as a bearing surface in total joint replacements. The mechanical properties and wear properties of UHMWPE are of interest with respect to the in vivo performance of UHMWPE joint replacement components. The mechanical properties of the polymer are dependent on both its crystalline and amorphous phases. Altering either phase (i.e., changing overall crystallinity, crystalline morphology, or crosslinking the amorphous phase) can affect the mechanical behavior of the material. There is also evidence that the morphology of UHMWPE, and, hence, its mechanical properties evolve with loading. UHMWPE has also been shown to be susceptible to oxidative degradation following gamma radiation sterilization with subsequent loss of mechanical properties. Contemporary UHMWPE sterilization methods have been developed to reduce or eliminate oxidative degradation. Also, crosslinking of UHMWPE has been pursued to improve the wear resistance of UHMWPE joint components. The 1st generation of highly crosslinked UHMWPEs have resulted in clinically reduced wear; however, the mechanical properties of these materials, such as ductility and fracture toughness, are reduced when compared to the virgin material. Therefore, a 2nd generation of highly crosslinked UHMWPEs are being introduced to preserve the wear resistance of the 1st generation while also seeking to provide oxidative stability and improved mechanical properties. PMID:19627849

  1. High molecular weight kininogen binds to unstimulated platelets.

    PubMed Central

    Gustafson, E J; Schutsky, D; Knight, L C; Schmaier, A H

    1986-01-01

    Studies were performed to determine if the unstimulated platelet membrane has a site for high molecular weight kininogen (HMWK) binding. 125I-HMWK bound to unstimulated platelets. Zn++ was required for 125I-HMWK binding to unstimulated platelets and binding was maximal at 50 microM Zn++. Neither Mg++ nor Ca++ substituted for Zn++ in supporting 125I-HMWK binding to unstimulated platelets, and neither ion potentiated binding in the presence of 50 microM zinc. 125I-HMWK competed with equal affinity with HMWK for binding, and excess HMWK inhibited 125I-HMWK-platelet binding. Only HMWK, not prekallikrein, Factor XII, Factor XI, Factor V, fibrinogen, or fibronectin inhibited 125I-HMWK-platelet binding. 125I-HMWK binding to unstimulated platelets was 89% reversible within 10 min with a 50-fold molar excess of HMWK. Unstimulated platelets contained a single set of saturable, high affinity binding sites for 125I-HMWK with an apparent dissociation constant of 0.99 nM +/- 0.35 and 3,313 molecules/platelet +/- 843. These studies indicate that the unstimulated external platelet membrane has a binding site for HMWK that could serve as a surface to modulate contact phase activation. Images PMID:3722381

  2. Weight references for burned human skeletal remains from Portuguese samples.

    PubMed

    Gonçalves, David; Cunha, Eugénia; Thompson, Tim J U

    2013-09-01

    Weight is often one of the few recoverable data when analyzing human cremains but references are still rare, especially for European populations. Mean weights for skeletal remains were thus documented for Portuguese modern cremations of both recently deceased individuals and dry skeletons, and the effect of age, sex, and the intensity of combustion was investigated using both multivariate and univariate statistics. The cremains from fresh cadavers were significantly heavier than the ones from dry skeletons regardless of sex and age cohort (p < 0.001 to p = 0.003). As expected, males were heavier than females and age had a powerful effect in female skeletal weight. The effect of the intensity of combustion in cremains weight was unclear. These weight references may, in some cases, help estimating the minimum number of individuals, the completeness of the skeletal assemblage, and the sex of an unknown individual. PMID:23822840

  3. Gamma-linolenate reduces weight regain in formerly obese humans.

    PubMed

    Schirmer, Marie A; Phinney, Stephen D

    2007-06-01

    The purpose of this study was to determine whether gamma-linolenate (GLA) supplementation would suppress weight regain following major weight loss. Fifty formerly obese humans were randomized into a double-blind study and given either 890 mg/d of GLA (5 g/d borage oil) or 5 g/d olive oil (controls) for 1 y. Body weight and composition and adipose fatty acids of fasting subjects were assessed at 0, 3, 12, and 33 mo. After 12 subjects in each group had completed 1 y of supplementation, weight regain differed between the GLA (2.17 +/- 1.78 kg) and control (8.78 +/- 2.78 kg) groups (P < 0.03). The initial study was terminated, and all remaining subjects were assessed over a 6-wk period. Unblinding revealed weight regains of 1.8 +/- 1.6 kg in the GLA group and 7.6 +/- 2.1 kg in controls for the 13 and 17 subjects, respectively, who completed a minimum of 50 wk in the study. Weight regain did not differ in the remaining 10 GLA and 5 control subjects who completed <50 wk in the study. In a follow-up study, a subgroup from both the original GLA (GLA-GLA, n = 9) and the original control (Control-GLA, n = 14) populations either continued or crossed over to GLA supplementation for an additional 21 mo. Interim weight regains between 15 and 33 mo were 6.48 +/- 1.79 kg and 6.04 +/- 2.52 kg for the GLA-GLA and Control-GLA groups, respectively. Adipose triglyceride GLA levels increased 152% (P < 0.0001) in the GLA group at 12 mo, but did not increase further after 33 mo of GLA administration. In conclusion, GLA reduced weight regain in humans following major weight loss, suggesting a role for essential fatty acids in fuel partitioning in humans prone to obesity. PMID:17513402

  4. Extraction of high molecular weight DNA from microbial mats.

    PubMed

    Bey, Benjamin S; Fichot, Erin B; Norman, R Sean

    2011-01-01

    Successful and accurate analysis and interpretation of metagenomic data is dependent upon the efficient extraction of high-quality, high molecular weight (HMW) community DNA. However, environmental mat samples often pose difficulties to obtaining large concentrations of high-quality, HMW DNA. Hypersaline microbial mats contain high amounts of extracellular polymeric substances (EPS)1 and salts that may inhibit downstream applications of extracted DNA. Direct and harsh methods are often used in DNA extraction from refractory samples. These methods are typically used because the EPS in mats, an adhesive matrix, binds DNA during direct lysis. As a result of harsher extraction methods, DNA becomes fragmented into small sizes. The DNA thus becomes inappropriate for large-insert vector cloning. In order to circumvent these limitations, we report an improved methodology to extract HMW DNA of good quality and quantity from hypersaline microbial mats. We employed an indirect method involving the separation of microbial cells from the background mat matrix through blending and differential centrifugation. A combination of mechanical and chemical procedures was used to extract and purify DNA from the extracted microbial cells. Our protocol yields approximately 2 μg of HMW DNA (35-50 kb) per gram of mat sample, with an A(260/280) ratio of 1.6. Furthermore, amplification of 16S rRNA genes suggests that the protocol is able to minimize or eliminate any inhibitory effects of contaminants. Our results provide an appropriate methodology for the extraction of HMW DNA from microbial mats for functional metagenomic studies and may be applicable to other environmental samples from which DNA extraction is challenging. PMID:21775955

  5. Characterization and analysis of the molecular weight of lignin for biorefining studies

    SciTech Connect

    Tolbert, Allison; Akinosho, Hannah; Khunsupat, Taya Ratayakorn; Naskar, Amit K; Ragauskas, Arthur

    2014-01-01

    The molecular weight of lignin is a fundamental property that infl uences the recalcitrance of biomass and the valorization of lignin. The determination of the molecular weight of lignin in native biomass is dependent on the bioresources used and the isolation and purifi cation procedures employed. The three most commonly employed isolation methods are milled wood lignin (MWL), cellulolytic enzyme lignin (CEL), and enzymatic mild acidolysis lignin (EMAL). Common characterization techniques for determining the molecular weight of lignin will be addressed, with an emphasis on gel permeation chromatography (GPC). This review also examines the mechanisms behind several biological, physical, and chemical pre-treatments and their impact on the molecular weight of lignin. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (D) all vary in magnitude depending on the biomass source, pre-treatment conditions, and isolation method. Additionally, there is a growing body of literature that supports changes in the molecular weight of lignin in response to genetic modifi cations in the lignin biosynthetic pathways. This review summarizes different procedures for obtaining the molecular weight of lignin that have been used in recent years and highlight future opportunities for applications of lignin.

  6. Capture, enrichment, and mass spectrometric detection of low-molecular-weight biomarkers with nanoporous silicon microparticles.

    PubMed

    Tan, Jie; Zhao, Wei-Jie; Yu, Jie-Kai; Ma, Sai; Sailor, Michael J; Wu, Jian-Min

    2012-11-01

    Mining the disease information contained in the low-molecular-weight range of a proteomic profile is becoming of increasing interest in cancer research. This work evaluates the ability of nanoporous silicon microparticles (NPSMPs) to capture, enrich, protect, and detect low-molecular-weight peptides (LMWPs) sieved from a pool of highly abundant plasma proteins. The average pore size and porosity of NPSMPs are controlled by the electrochemical preparation conditions, and the critical parameters for admission or exclusion of protein with a definite molecular weight are determined by reflectometric-interference Fourier transform spectroscopy (RIFTS). Sodium dodecyl sulfate polyacrylamide-gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis of the proteins captured by the NPSMPs show that the chemical nature of the NPSMPs surface and the solution pH also play vital roles in determining the affinity of NPSMPs for target analytes. It is found that carboxyl-terminated porous microparticles with a porosity of 26% (pore diameter around 9.0 nm) specifically fractionate, enrich and protect LMWPs sieved from either simulated samples or human serum samples. Moreover, NPSMPs containing captured peptides can be directly spotted onto a MALDI plate. When placed in a conventional MALDI matrix, laser irradiation of the particles results in the release of the target peptides confined in the nanopores, which are then ionized and detected in the MALDI experiment. As a proof-of-principle test case, mass spectra of NPSMPs prepared using serum from colorectal cancer patients and from control patients can be clearly distinguished by statistical analysis. The work demonstrates the utility of the method for discovery of biomarkers in the untapped LMWP fraction of human serum, which can be of significant value in the early diagnosis and management of diseases. PMID:23184826

  7. Effect of gamma irradiation on the friction and wear of ultrahigh molecular weight polyethylene

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Hady, W. F.; Crugnola, A.

    1981-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against stainless steel 316L in dry air at 23 C is investigated, the results to be used in the development of artificial joints which are to surgically replace diseased human joints. A pin-on-disk sliding friction apparatus is used, a constant sliding speed in the range 0.061-0.27 m/s is maintained, a normal load of 1 kgf is applied with dead weight, and the irradiation dose levels are: 0, 2.5, and 5.0 Mrad. Wear and friction data and conditions for each of the ten tests are summarized, and include: (1) wear volume as a function of the sliding distance for the irradiation levels, (2) incremental wear rate, and (3) coefficient of friction as a function of the sliding distance. It is shown that (1) the friction and wear properties of UHMWPE are not significantly changed by the irradiation doses of 2.5 and 5.0 Mrad, (2) the irradiation increases the amount of insoluble gel as well as the amount of low molecular weight material, and (3) after run-in the wear rate is either steady or gradually decreases as a function of the sliding distance.

  8. High molecular weight insulating polymers can improve the performance of molecular solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Ye; Wen, Wen; Kramer, Edward; Bazan, Guillermo

    2014-03-01

    Solution-processed molecular semiconductors for the fabrication of solar cells have emerged as a competitive alternative to their conjugated polymer counterparts, primarily because such materials systems exhibit no batch-to-batch variability, can be purified to a greater extent and offer precisely defined chemical structures. Highest power conversion efficiencies (PCEs) have been achieved through a combination of molecular design and the application of processing methods that optimize the bulk heterojunction (BHJ) morphology. However, one finds that the methods used for controlling structural order, for example the use of high boiling point solvent additives, have been inspired by examination of the conjugated polymer literature. It stands to reason that a different class of morphology modifiers should be sought that address challenges unique to molecular films, including difficulties in obtaining thicker films and avoiding the dewetting of active photovoltaic layers. Here we show that the addition of small quantities of high molecular weight polystyrene (PS) is a very simple to use and economically viable additive that improves PCE. Remarkably, the PS spontaneously accumulates away from the electrodes as separate domains that do not interfere with charge extraction and collection or with the arrangement of the donor and acceptor domains in the BHJ blend.

  9. Using molecular recognition of beta-cyclodextrin to determine molecular weights of low-molecular-weight explosives by MALDI-TOF mass spectrometry.

    PubMed

    Zhang, Min; Shi, Zhen; Bai, Yinjuan; Gao, Yong; Hu, Rongzu; Zhao, Fenqi

    2006-02-01

    This study presents a novel method for determining the molecular weights of low molecular weight (MW) energetic compounds through their complexes of beta-cyclodextrin (beta-CD) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in a mass range of 500 to 1700 Da, avoiding matrix interference. The MWs of one composite explosive composed of 2,6-DNT, TNT, and RDX, one propellant with unknown components, and 14 single-compound explosives (RDX, HMX, 3,4-DNT, 2,6-DNT, 2,5-DNT, 2,4,6-TNT, TNAZ, DNI, BTTN, NG, TO, NTO, NP, and 662) were measured. The molecular recognition and inclusion behavior of beta-CD to energetic materials (EMs) were investigated. The results show that (1) the established method is sensitive, simple, accurate, and suitable for determining the MWs of low-MW single-compound explosives and energetic components in composite explosives and propellants; and (2) beta-CD has good inclusion and modular recognition abilities to the above EMs. PMID:16406809

  10. Formation of high molecular weight products from benzene during boundary lubrication

    NASA Technical Reports Server (NTRS)

    Morales, W.

    1985-01-01

    High molecular weight products were detected on the wear track of an iron disk at the end of a sliding friction and wear test using benzene as a lubricant. Size exclusion chromagography in conjunction with UV analysis gave evidence that the high molecular weight products are polyphenyl ether type substances. Organic electrochemistry was used to elucidate the possible surface reaction mechanisms.

  11. Synthesis and self-assembly of 1-deoxyglucose derivatives as low molecular weight organogelators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low molecular weight gelators are an important class of molecules. The supramolecular gels formed by carbohydrate derived low molecular weight gelators, are interesting soft materials that show great potential for many applications. Previously, we synthesized a series of methyl 4,6-O-benzylidene-a-D...

  12. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  13. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  14. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (mean molecular weight 200-9... Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene... chapter. (c) The provisions of paragraph (b) of this section are not applicable to polyethylene...

  15. Molecular Weight Determination by an Improved Temperature-Monitored Vapor-Density Method.

    ERIC Educational Resources Information Center

    Grider, Douglas J.; And Others

    1988-01-01

    Recommends determining molecular weights of liquids by use of a thermocouple. Utilizing a mathematical gas equation, the molecular weight can be determined from the measurement of the vapor temperature upon complete evaporation. Lists benefits as reduced time and cost, and improved safety factors. (ML)

  16. A Simple, Inexpensive Molecular Weight Measurement for Water-Soluble Polymers Using Microemulsions.

    ERIC Educational Resources Information Center

    Mathias, Lon J.; Moore, D. Roger

    1985-01-01

    Describes an experiment involving use of a microemulsion and its characteristic thermal phase change to determine molecular weights of polyoxyethylene samples. The experiment provides students with background information on polymers and organized media and with experience in evaluating polymer molecular weight by using a unique property of a…

  17. Effect of resin molecular weight on the resolution of DUV negative photoresists

    NASA Astrophysics Data System (ADS)

    Thackeray, James W.; Orsula, George W.; Denison, Mark

    1994-05-01

    A wide range of molecular weights (3500 to 240000) of poly(p- vinyl)phenol was studied. Polymer dissolution rate vs. molecular weight followed a simple kinetic equation, with the kinetic order m equals2.0. The photospeed of the resist was not strongly affected by the starting resin molecular weight; however, resolution decreased rapidly with increasing Mw. Also, the higher the starting molecular weight, the greater the tendency for the resist to form microbridges between features. The microbridges could be as long as 1.0micrometers for the highest molecular weight resin, Mw equals240000. The lowest molecular weight resins, Mw molecular weight, showed no evidence of microbridging in the higher normality developer. The reason for this difference is that the novolak does not crosslink as effectively as PVP does. Based on extraction experiments, it has been shown that the molecular weight at a sizing dose is 164000 for PVP and 6500 for the novolak. Thus, the novolak must react with the melamine primarily through an intrachain reaction, whereas the PVP- melamine reaction is an interchain reaction. Finally, a mechanism for microbridge formation is discussed.

  18. Low molecular weight proteinuria in Chinese herbs nephropathy.

    PubMed

    Kabanda, A; Jadoul, M; Lauwerys, R; Bernard, A; van Ypersele de Strihou, C

    1995-11-01

    Urinary excretion of five low molecular weight proteins (LMWP) [beta 2-microglobulin (beta 2m), cystatin C (cyst C), Clara cell protein (CC16), retinol-binding protein (RBP) and alpha 1-microglobulin (alpha 1m)], albumin and N-acetyl-beta-D-glucosaminidase (NAG) were quantified in 16 patients who followed a weight reduction program which included Chinese herbs, which have been incriminated in the genesis of Chinese herbs nephropathy (CHN). An additional group of four patients transplanted for CHN were investigated. Urinary data were obtained for comparison purpose in five groups of proteinuric patients: two groups with normal serum creatinine (SCr) and glomerular albuminura [12 patients with diabetes mellitus and microalbuminuria (DN), 10 patients with primary nephrotic syndrome (NS)]; two groups with normal SCr and toxic nephropathy [6 patients with analgesic (AN), 9 patients with cadmium nephropathy (CdN)]; and one group of seven patients with glomerular diseases and increased SCr (GN). Patients were classified according to serum level S beta 2m to take into account the possibility of overflow proteinuria at S beta 2m > or = 5 mg/liter. Three patients (CHN0) with a S beta 2m < 5 mg/liter, had a normal urinary protein pattern including NAG and a normal S beta 2m. Eight patients (CHN1) with a S beta 2m < 5 mg/liter had various abnormalities of their urinary protein pattern. In four of them (CHN1a) only beta 2m, RBP and CC16 were increased while total proteinuria and SCr were normal. In the other four (CHN1b and c) albumin, cyst C, alpha 1m and NAG were also elevated, while total proteinuria and SCr were moderately raised. Five patients (CHN2) with a S beta 2m > or = 5 mg/liter had a markedly increased excretion of all LMWP, albumin and NAG (CHN1 vs. CHN2, P < 0.05) as well as a further increase in total proteinuria and SCr. The urinary LMWP/albumin concentration ratio was strikingly higher in CHN patients than in patients with glomerular albuminuria (CHN1 vs. DN

  19. Molecular chaperone properties of the high molecular weight aggregate from aged lens

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Boyle, D.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The high molecular weight aggregate (HMWA) fraction was isolated from the water soluble proteins of aged bovine lenses. Its composition and ability to inhibit heat-induced denaturation and aggregation were compared with the lower molecular weight, oligomeric fraction of alpha isolated from the same lens. Although the major components of both fractions were the alpha-A and alpha-B chains, the HMWA fraction possessed a decreased ability to protect other proteins against heat-induced denaturation and aggregation. Immunoelectron microscopy of both fractions demonstrated that alpha particles from the HMWA fraction contained increased amounts of beta and gamma crystallins, bound to a central region of the supramolecular complex. Together, these results demonstrate that alpha crystallins found in the HMWA fraction possess a decreased ability to protect against heat-induced denaturation and aggregation, and suggest that at least part of this decrease could be due to the increased presence of beta and gamma crystallins complexed to the putative chaperone receptor site of the alpha particles.

  20. Bioremediation of Mixtures of High Molecular Weight Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Xu, H.; Wu, J.; Shi, X.; Sun, Y.

    2014-12-01

    Although bioremediation has been considered as one of the most promising means to remove polycyclic aromatic hydrocarbons (PAHs) from polluted environments, the efficacy of PAHs bioremediation still remains challenged, especially for high molecular weight PAHs (HMW PAHs) and their mixtures. This study was focused on (a) isolation and characterization of pure strain and mixed microbial communities able to degrade HMW PAHs and (b) further evaluation of the ability of the isolated microbes to degrade HMW PAHs mixtures in the absence and presence of indigenous flora. Fluoranthene, benzo[b]fluoranthene and pyrene were selected as the representative HMW PAHs in this study. A pure bacterial strain, identified as Herbaspirillum chlorophenolicum FA1, was isolated from activated sludge. A mixed bacterial community designated as consortium-4 was isolated from petroleum contaminated soils, containing Pseudomonas sp. FbP1、Enterobacter sp. FbP2、Hydrogenophaga sp. FbP3 and Luteolibacter pohnpeiensis. FbP4. To our knowledge, this is the first study to demonstrate that bacterial strains of Herbaspirillum chlorophenolicum FA1 and Luteolibacter pohnpeiensis. FbP4 can also degrade fluoranthene, benzo[b]fluoranthene and pyrene. Experiment results showed that both strain FA1 and consortium-4 could degrade fluoranthene, benzo[b]fluoranthene and pyrene within a wide range of temperature, pH and initial PAHs concentration. Degradation of HMW PAHs mixtures (binary and ternary) demonstrated the interactive effects that can alter the rate and extent of biodegradation within a mixture. The presence of indigenous flora was found to either increase or decrease the degradation of HMW PAHs, suggesting possible synergistic or competition effects. Biodegradation kinetics of HMW PAHs for sole substrates, binary and ternary systems was evaluated, with the purpose to better characterize and compare the biodegradation process of individual HMW PAH and mixtures of HMW PAHs. Results of this study

  1. Low molecular weight carboxylic acids in oxidizing porphyry copper tailings.

    PubMed

    Dold, Bernhard; Blowes, David W; Dickhout, Ralph; Spangenberg, Jorge E; Pfeifer, Hans-Rudolf

    2005-04-15

    The distribution of low molecular weight carboxylic acids (LMWCA) was investigated in pore water profiles from two porphyry copper tailings impoundments in Chile (Piuquenes at La Andina and Cauquenes at El Teniente mine). The objectives of this study were (1) to determine the distribution of LMWCA, which are interpreted to be the metabolic byproducts of the autotroph microbial community in this low organic carbon system, and (2) to infer the potential role of these acids in cycling of Fe and other elements in the tailings impoundments. The speciation and mobility of iron, and potential for the release of H+ via hydrolysis of the ferric iron, are key factors in the formation of acid mine drainage in sulfidic mine wastes. In the low-pH oxidation zone of the Piuquenes tailings, Fe(III) is the dominant iron species and shows high mobility. LMWCA, which occur mainly between the oxidation front down to 300 cm below the tailings surface at both locations (e.g., max concentrations of 0.12 mmol/L formate, 0.17 mmol/L acetate, and 0.01 mmol/L pyruvate at Piuquenes and 0.14 mmol/L formate, 0.14 mmol/L acetate, and 0.006 mmol/L pyruvate at Cauquenes), are observed at the same location as high Fe concentrations (up to 71.2 mmol/L Fe(II) and 16.1 mmol/L Fe(III), respectively). In this zone, secondary Fe(III) hydroxides are depleted. Our data suggest that LMWCA may influence the mobility of iron in two ways. First, complexation of Fe(III), through formation of bidentate Fe(III)-LMWCA complexes (e.g., pyruvate, oxalate), may enhance the dissolution of Fe(III) (oxy)hydroxides or may prevent precipitation of Fe(III) (oxy)hydroxides. Soluble Fe(III) chelate complexes which may be mobilized downward and convert to Fe(II) by Fe(III) reducing bacteria. Second, monodentate LMWCA (e.g., acetate and formate) can be used by iron-reducing bacteria as electron donors (e.g., Acidophilum spp.), with ferric iron as the electron acceptor. These processes may, in part, explain the low abundances

  2. The influence of polyacid molecular weight on some properties of glass-ionomer cements.

    PubMed

    Wilson, A D; Hill, R G; Warrens, C P; Lewis, B G

    1989-02-01

    The influence of the molecular weight of the poly(acrylic acid) component on some properties of glass-ionomer cement has been investigated. The results can be explained by treatment of glass-ionomer cements as thermoplastic composites. Many of the concepts of polymer science can be applied successfully in a qualitative way to these cements, including the ideas of entanglements and reptation. Molecular weight of the polyacid had a pronounced influence on setting rate, acid erosion rate, toughness, fracture toughness, and wear resistance. The chain length of the polyacid was found to be an important parameter in formulation of a cement, and the higher the molecular weight, the better the properties. However, in practice the molecular weight is limited by viscosity, and some balance has to be achieved among concentration, molecular weight, and viscosity. PMID:2918140

  3. Systematic synthesis of low-molecular weight fucoidan derivatives and their effect on cancer cells.

    PubMed

    Kasai, Akihiro; Arafuka, Shinsuke; Koshiba, Nozomi; Takahashi, Daisuke; Toshima, Kazunobu

    2015-11-14

    Low-molecular weight type I and II fucoidan derivatives with different sulfation patterns were designed and systematically synthesized from the corresponding common key intermediate and their anti-proliferative activities and apoptosis-inducing activities against human breast cancer (MCF-7) and human cervical epithelioid carcinoma (HeLa) cells were evaluated. Our results demonstrated that one of the type II fucoidan derivatives, 9, effectively reduced the number of viable MCF-7 and HeLa cells in a dose-dependent manner without causing cytotoxicity toward normal WI-38 cells, and that the anti-proliferative activity of 9 was comparable to that of fucoidan 2 isolated from Fucus vesiculosus. Moreover, it was found that both 2 and 9 exhibited similar apoptosis-inducing activities through activation of caspase-8 and -9 on MCF-7 and HeLa cells, respectively. PMID:26340595

  4. Optical properties of polycarbonate/styrene-co-acrylonitrile blends: effects of molecular weight of the matrix.

    PubMed

    Yi, Ping; Xiong, Ying; Guo, Shaoyun

    2015-12-01

    In this paper, the effects of the molecular weight of a polycarbonate (PC) matrix on the phase morphology and optical properties of a PC/styrene-co-acrylonitrile (SAN) blend were investigated. A scanning electron microscope is used to analyze the phase morphology of the blends, and Mie scattering theory is used to analyze the changing laws of the optical properties of PC/SAN blends with the increasing of PC molecular weight. Results show that the average particle diameter is not strongly changed with different PC molecular weight because the values of the viscosity ratios are very close to each other. But it is obvious that the number of large particles gradually reduced while small particles (especially d<2  μm) significantly increased with the increasing of PC molecular weight. And the increase in small particles will result in an increase in backward scattering so the transmittance of PC/SAN blends decreases with the increase of PC molecular weight. However, the balance of the scattering coefficients and the number concentration of particles eventually lead to the haze of the blends being very close, despite having different PC molecular weights. Meanwhile, the photographs of scattering patterns indicate that the PC/SAN blends whose component weight ratios are fixed at 70:30 have excellent antiglare properties, despite the changes in molecular weight of the PC matrix. PMID:26836652

  5. Influence of molecular-weight polydispersity on the glass transition of polymers.

    PubMed

    Li, Shu-Jia; Xie, Shi-Jie; Li, Yan-Chun; Qian, Hu-Jun; Lu, Zhong-Yuan

    2016-01-01

    It is well known that the polymer glass transition temperature T_{g} is dependent on molecular weight, but the role of molecular-weight polydispersity on T_{g} is unclear. Using molecular-dynamics simulations, we clarify that for polymers with the same number-average molecular weight, the molecular-weight distribution profile (either in Schulz-Zimm form or in bimodal form) has very little influence on the glass transition temperature T_{g}, the average segment dynamics (monomer motion, bond orientation relaxation, and torsion transition), and the relaxation-time spectrum, which are related to the local nature of the glass transition. By analyzing monomer motions in different chains, we find that the motion distribution of monomers is altered by molecular-weight polydispersity. Molecular-weight polydispersity dramatically enhances the dynamic heterogeneity of monomer diffusive motions after breaking out of the "cage," but it has a weak influence on the dynamic heterogeneity of the short time scales and the transient spatial correlation between temporarily localized monomers. The stringlike cooperative motion is also not influenced by molecular-weight polydispersity, supporting the idea that stringlike collective motion is not strongly correlated with chain connectivity. PMID:26871128

  6. Influence of molecular-weight polydispersity on the glass transition of polymers

    NASA Astrophysics Data System (ADS)

    Li, Shu-Jia; Xie, Shi-Jie; Li, Yan-Chun; Qian, Hu-Jun; Lu, Zhong-Yuan

    2016-01-01

    It is well known that the polymer glass transition temperature Tg is dependent on molecular weight, but the role of molecular-weight polydispersity on Tg is unclear. Using molecular-dynamics simulations, we clarify that for polymers with the same number-average molecular weight, the molecular-weight distribution profile (either in Schulz-Zimm form or in bimodal form) has very little influence on the glass transition temperature Tg, the average segment dynamics (monomer motion, bond orientation relaxation, and torsion transition), and the relaxation-time spectrum, which are related to the local nature of the glass transition. By analyzing monomer motions in different chains, we find that the motion distribution of monomers is altered by molecular-weight polydispersity. Molecular-weight polydispersity dramatically enhances the dynamic heterogeneity of monomer diffusive motions after breaking out of the "cage," but it has a weak influence on the dynamic heterogeneity of the short time scales and the transient spatial correlation between temporarily localized monomers. The stringlike cooperative motion is also not influenced by molecular-weight polydispersity, supporting the idea that stringlike collective motion is not strongly correlated with chain connectivity.

  7. Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments.

    PubMed

    Kim, Jungju; Park, Yongdoo; Tae, Giyoong; Lee, Kyu Back; Hwang, Chang Mo; Hwang, Soon Jung; Kim, In Sook; Noh, Insup; Sun, Kyung

    2009-03-15

    Hyaluronic acid is a natural glycosaminoglycan involved in biological processes. Low-molecular-weight hyaluronic acid (10 and 50 kDa)-based hydrogel was synthesized using derivatized hyaluronic acid. Hyaluronic acid was acrylated by two steps: (1) introduction of an amine group using adipic acid dihydrazide, and (2) acrylation by N-acryloxysuccinimide. Injectable hyaluronic acid-based hydrogel was prepared by using acrylated hyaluronic acid and poly(ethylene glycol) tetra-thiols via Michael-type addition reaction. Mechanical properties of the hydrogel were evaluated by varying the molecular weight of acrylated hyaluronic acid (10 and 50 kDa) and the weight percent of hydrogel. Hydrogel based on 50-kDa hyaluronic acid showed the shortest gelation time and the highest complex modulus. Next, human mesenchymal stem cells were cultured in cell-adhesive RGD peptide-immobilized hydrogels together with bone morphogenic protein-2 (BMP-2). Cells cultured in the RGD/BMP-2-incorporated hydrogels showed proliferation rates higher than that of control or RGD-immobilized hydrogels. Real-time RT-PCR showed that the expression of osteoblast marker genes such as CBFalpha1 and alkaline phosphatase was increased in hyaluronic acid-based hydrogel, and the expression level was dependent on the molecular weight of hyaluronic acid, RGD peptide, and BMP-2. This study indicates that low-molecular-weight hyaluronic acid-based hydrogel can be applied to tissue regeneration as differentiation guidance materials of stem cells. PMID:18384163

  8. Effect of molecular weight distribution on e-beam exposure properties of polystyrene

    NASA Astrophysics Data System (ADS)

    Dey, Ripon Kumar; Cui, Bo

    2013-06-01

    Polystyrene is a negative electron beam resist whose exposure properties can be tuned simply by using different molecular weights (Mw). Most previous studies have used monodisperse polystyrene with a polydispersity index (PDI) of less than 1.1 in order to avoid any uncertainties. Here we show that despite the fact that polystyrene’s sensitivity is inversely proportional to its Mw, no noticeable effect of very broad molecular weight distribution on sensitivity, contrast and achievable resolution is observed. It is thus unnecessary to use the costly monodisperse polystyrene for electron beam lithography. Since the polydispersity is unknown for general purpose polystyrene, we simulated a high PDI polystyrene by mixing in a 1:1 weight ratio two polystyrene samples with Mw of 170 and 900 kg mol-1 for the high Mw range, and 2.5 and 13 kg mol-1 for the low Mw range. The exposure property of the mixture resembles that of a monodisperse polystyrene with similar number averaged molecular weight \\overline{{Mn}}, which indicates that it is \\overline{{Mn}} rather than \\overline{{Mw}} (weight averaged molecular weight) that dominates the exposure properties of polystyrene resist. This also implies that polystyrene of a certain molecular weight can be simulated by a mixture of two polystyrenes having different molecular weights.

  9. Perchlorate-induced combustion of organic matter with variable molecular weights: Implications for Mars missions

    NASA Astrophysics Data System (ADS)

    Sephton, Mark A.; Lewis, James M. T.; Watson, Jonathan S.; Montgomery, Wren; Garnier, Carole

    2014-11-01

    Instruments on the Viking landers and Curiosity rover analyzed samples of Mars and detected carbon dioxide and organic compounds of uncertain origin. Mineral-assisted reactions are leading to uncertainty, particularly those involving perchlorate minerals which thermally decompose to produce chlorine and oxygen which can then react with organic matter to generate organochlorine compounds and carbon dioxide. Although generally considered a problem for interpretation, the release profiles of generated gases can indicate the type of organic matter present. We have performed a set of experiments with perchlorate and organic matter of variable molecular weights. Results indicate that organic susceptibility to thermal degradation and mineral-assisted reactions is related to molecular weight. Low molecular weight organic matter reacts at lower temperatures than its high molecular weight counterparts. The natural occurrence and association of organic matter with differing molecular weights helps to discriminate between contamination (usually low molecular weight organic matter only) and indigenous carbon (commonly low and high molecular weight organic matter together). Our results can be used to provide insights into data returning from Mars.

  10. How does the preparation of rye porridge affect molecular weight distribution of extractable dietary fibers?

    PubMed

    Rakha, Allah; Aman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance. PMID:21686191

  11. How Does the Preparation of Rye Porridge Affect Molecular Weight Distribution of Extractable Dietary Fibers?

    PubMed Central

    Rakha, Allah; Åman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance. PMID:21686191

  12. Physics and gel electrophoresis: using terminal velocity to characterize molecular weight

    NASA Astrophysics Data System (ADS)

    Viney, Christopher; Fenton, Richard A.

    1998-11-01

    Protein molecular weights are commonly characterized by gel electrophoresis. Biology textbooks typically quote an empirical, approximate relationship between migration rate and molecular weight, relying on an inappropriately simplistic model of spherical particles travelling at their terminal velocity through a viscous medium. We show how the model can be modified to derive a physically realistic equation that relates migration rate and molecular weight, and that mirrors experimentally observed behaviour. We suggest that gel electrophoresis provides an interesting interdisciplinary context in which to exercise several basic principles that are encountered through introductory physics courses. Finally, we provide additional examples of practical situations where the concept of terminal velocity can be elaborated and applied.

  13. Effect of sterilization irradiation on friction and wear of ultrahigh-molecular-weight polyethylene

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Hady, W. F.; Crugnola, A.

    1979-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against 316L stainless steel in dry air at 23 C was determined. A pin-on-disk apparatus was used. Experimental conditions included a 1-kilogram load, a 0.061- to 0.27-meter-per-second sliding velocity, and a 32000- to 578000-meter sliding distance. Although sterilization doses of 2.5 and 5.0 megarads greatly altered the average molecular weight and the molecular weight distribution, the friction and wear properties of the polymer were not significantly changed.

  14. High molecular weight first generation PMR polyimides for 343 C applications

    NASA Technical Reports Server (NTRS)

    Malarik, Diane C.; Vannucci, Raymond D.

    1991-01-01

    The effect of molecular weight on 343 C thermo-oxidative stability (TOS), mechanical properties, and processability, of the first generation PMR polyimides was studied. Graphite fiber reinforced PMR-15, PMR-30, PMR-50, and PMR-75 composites (corresponding to formulated molecular weights of 1500, 3000, 5000, and 7500, respectively) were fabricated using a simulated autoclave process. The data reveals that while alternate autoclave cure schedules are required for the high molecular weight resins, low void laminates can be fabricated which have significantly improved TOS over PMR-15, with only a small sacrifice in mechanical properties.

  15. High molecular weight first generation PMR polyimides for 343 C applications

    NASA Technical Reports Server (NTRS)

    Malarik, D. C.; Vannucci, R. D.

    1992-01-01

    The effect of molecular weight on 343 C thermo-oxidative stability (TOS), mechanical properties, and processability, of the first generation PMR polyimides was studied. Graphite fiber reinforced PMR-15, PMR-30, PMR-50, and PMR-75 composites (corresponding to formulated molecular weights of 1500, 3000, 5000, and 7500, respectively) were fabricated using a simulated autoclave process. The data reveal that while alternate autoclave cure schedules are required for the high molecular weight resins, low void laminates can be fabricated which have significantly improved TDS over PMR-15, with only a small sacrifice in mechanical properties.

  16. Effect of PEO molecular weight on the miscibility and dynamics in epoxy/PEO blends.

    PubMed

    Lu, Shoudong; Zhang, Rongchun; Wang, Xiaoliang; Sun, Pingchuan; Lv, Weifeng; Liu, Qingjie; Jia, Ninghong

    2015-11-01

    In this work, the effect of poly(ethylene oxide) (PEO) molecular weight in blends of epoxy (ER) and PEO on the miscibility, inter-chain weak interactions and local dynamics were systematically investigated by multi-frequency temperature modulation DSC and solid-state NMR techniques. We found that the molecular weight (M(w)) of PEO was a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interactions between PEO and ER. A critical PEO molecular weight (M(crit)) around 4.5k was found. PEO was well miscible with ER when the molecular weight was below M(crit), where the chain motion of PEO was restricted due to strong inter-chain hydrogen bonding interactions. However, for the blends with high molecular weight PEO (M(w) > M(crit)), the miscibility between PEO and ER was poor, and most of PEO chains were considerably mobile. Finally, polarization inversion spin exchange at magic angle (PISEMA) solid-state NMR experiment further revealed the different mobility of the PEO in ER/PEO blends with different molecular weight of PEO at molecular level. Based on the DSC and NMR results, a tentative model was proposed to illustrate the miscibility in ER/PEO blends. PMID:26577817

  17. Multiwalled Carbon Nanotube Functionalization with High Molecular Weight Hyaluronan Significantly Reduces Pulmonary Injury.

    PubMed

    Hussain, Salik; Ji, Zhaoxia; Taylor, Alexia J; DeGraff, Laura M; George, Margaret; Tucker, Charles J; Chang, Chong Hyun; Li, Ruibin; Bonner, James C; Garantziotis, Stavros

    2016-08-23

    Commercialization of multiwalled carbon nanotubes (MWCNT)-based applications has been hampered by concerns regarding their lung toxicity potential. Hyaluronic acid (HA) is a ubiquitously found polysaccharide, which is anti-inflammatory in its native high molecular weight form. HA-functionalized smart MWCNTs have shown promise as tumor-targeting drug delivery agents and can enhance bone repair and regeneration. However, it is unclear whether HA functionalization could reduce the pulmonary toxicity potential of MWCNTs. Using in vivo and in vitro approaches, we investigated the effectiveness of MWCNT functionalization with HA in increasing nanotube biocompatibility and reducing lung inflammatory and fibrotic effects. We utilized three-dimensional cultures of differentiated primary human bronchial epithelia to translate findings from rodent assays to humans. We found that HA functionalization increased stability and dispersion of MWCNTs and reduced postexposure lung inflammation, fibrosis, and mucus cell metaplasia compared with nonfunctionalized MWCNTs. Cocultures of fully differentiated bronchial epithelial cells (cultivated at air-liquid interface) and human lung fibroblasts (submerged) displayed significant reduction in injury, oxidative stress, as well as pro-inflammatory gene and protein expression after exposure to HA-functionalized MWCNTs compared with MWCNTs alone. In contrast, neither type of nanotubes stimulated cytokine production in primary human alveolar macrophages. In aggregate, our results demonstrate the effectiveness of HA functionalization as a safer design approach to eliminate MWCNT-induced lung injury and suggest that HA functionalization works by reducing MWCNT-induced epithelial injury. PMID:27459049

  18. Oxidation reaction of high molecular weight carboxylic acids in supercritical water.

    PubMed

    Jin, Fangming; Moriya, Takehiko; Enomoto, Heiji

    2003-07-15

    Stearic acid, being a model compound of high molecular weight carboxylic acids, was oxidized in a batch reactor by changing the oxygen supply with an insufficient oxygen supply at a constant reaction time at 420 degrees C. On the basis of the intermediate products identified by GC/MS, NMR, and HPLC analyses and the free-radical reaction mechanism, the oxidation pathways of high molecular weight carboxylic acids in supercritical water are discussed. The reaction of carboxylic acids in supercritical water proceeds with the consecutive oxidation of higher molecular weight carboxylic acids to lower molecular weight carboxylic acids through several major pathways. The attack of the hydroxyl radical occurs not only at the carbons in alpha-, beta-, gamma-positions to a --COOH group but also at the carbons ((omega-1)-carbon and/or omega-carbon) far in the alkyl chain from a --COOH group, which may lead to the formation of dicarboxylic acids. PMID:12901673

  19. EPDM polymers with intermolecular asymmetrical molecular weight, crystallinity and diene distribution

    SciTech Connect

    Datta, S.; Cheremishinoff, N.P.; Kresge, E.N.

    1993-12-31

    Rapid extrusion of EPDM elastomers require low viscosity and thus low molecular weights for the polymer. Efficient vulcanization of these elastomers requires network perfection and thus high molecular weights for the polymer. The benefits of these apparently mutually exclusive goals is important in uses of EPDM elastomers which require extrusion of profiles which are later cured. This paper shows that by introducing simultaneously asymmetry in the distribution of molecular weights, crystallinity and vulcanizable sites these apparently contradictory goals can be resolved. While these polymers cannot be made from a single Ziegler polymerization catalyst, the authors show the synthesis of these model EPDM polymers by blending polymers with very different molecular weights, ethylene and ENB contents. These blends can be rapidly extruded without melt fracture and can be cured to vulcanizates which have excellent tensile properties.

  20. Bacillus subtilis 168 levansucrase (SacB) activity affects average levan molecular weight.

    PubMed

    Porras-Domínguez, Jaime R; Ávila-Fernández, Ángela; Miranda-Molina, Afonso; Rodríguez-Alegría, María Elena; Munguía, Agustín López

    2015-11-01

    Levan is a fructan polymer that offers a variety of applications in the chemical, health, cosmetic and food industries. Most of the levan applications depend on levan molecular weight, which in turn depends on the source of the synthesizing enzyme and/or on reaction conditions. Here we demonstrate that in the particular case of levansucrase from Bacillus subtilis 168, enzyme concentration is also a factor defining the molecular weight levan distribution. While a bimodal distribution has been reported at the usual enzyme concentrations (1 U/ml equivalent to 0.1 μM levansucrase) we found that a low molecular weight normal distribution is solely obtained al high enzyme concentrations (>5 U/ml equivalent to 0.5 μM levansucrase) while a high normal molecular weight distribution is synthesized at low enzyme doses (0.1 U/ml equivalent to 0.01 μM of levansucrase). PMID:26256357

  1. PolyPEGA with predetermined molecular weights from enzyme-mediated radical polymerization in water.

    PubMed

    Ng, Yeap-Hung; di Lena, Fabio; Chai, Christina L L

    2011-06-14

    The preparation of acrylic polymers with predetermined molecular weights using metalloenzymes as catalysts, ascorbic acid as reducing agent and alkyl halides as initiators is reported. The mechanism of polymerization resembles an ARGET ATRP process. PMID:21552589

  2. Effect of protein molecular weight on the mass transfer in protein mixing

    NASA Astrophysics Data System (ADS)

    Asad, Ahmed; Chai, Chuan; Wu, JiangTao

    2012-03-01

    The mixing of protein solutions with that of precipitating agents is very important in protein crystallization experiments. In this work, the interferometry images were recorded during the mixing of two proteins with different molecular weights: lysozyme of ˜14.6 kDa, trypsin of ˜23.3 kDa and pepsin of ˜34.8 kDa were placed in a Mach-Zehnder interferometer. The protein molecular weight dependence on the competition of the transport process and kinetics at the interface was studied. The concentration profiles of protein solutions were calculated to analyze the mass transfer during the mixing process. It was observed that the mass transfer process is more efficient during the mixing of proteins with higher molecular weights. In addition, the more rapid concentration changes above the interface suggest that convection may dominate the diffusion. The phenomenon of convection is higher in the protein solutions with higher molecular weight.

  3. The effect of maltose on dextran yield and molecular weight distribution.

    PubMed

    Rodrigues, Sueli; Lona, Liliane M F; Franco, Telma T

    2005-11-01

    Dextran synthesis has been studied since the Second World War, when it was used as blood plasma expander. This polysaccharide composed of glucose units is linked by an alpha-1,6-glucosidic bond. Dextransucrase is a bacterial extra cellular enzyme, which promotes the dextran synthesis from sucrose. When, besides sucrose, another substrate (acceptor) is also present in the reactor, oligosaccharides are produced and part of the glucosyl moieties from glucose is consumed to form these acceptor products, decreasing the dextran yield. Although dextran enzymatic synthesis has been extensively studied, there are few published studies regarding its molecular weight distribution. In this work, the effect of maltose on yield and dextran molecular weight synthesized using dextransucrase from Leuconostoc mesenteroides B512F, was investigated. According to the obtained results, maltose is not able to control and reduce dextran molecular weight distribution and synthesis carried out with or without maltose presented the same molecular weight distribution profile. PMID:16163491

  4. Antioxidant activity of low molecular weight alginate produced by thermal treatment.

    PubMed

    Kelishomi, Zahra Habibi; Goliaei, Bahram; Mahdavi, Hossein; Nikoofar, Alireza; Rahimi, Mahmood; Moosavi-Movahedi, Ali Akbar; Mamashli, Fatemeh; Bigdeli, Bahareh

    2016-04-01

    By definition, antioxidants are molecules that inhibit the oxidation of other molecules. Therefore, such compounds have very important clinical roles. In this study alginate polymer was depolymerized by heat treatment. The resulting low molecular weight alginates were investigated by UV-visible spectroscopy, Viscometry, Dynamic light scattering and FT-IR spectroscopy techniques. Antioxidant properties of these heat products were studied by ABTS and superoxide radical scavenging assays. Results showed that heating caused breaks in the polymer chain and so generation of low molecular weight alginates. Antioxidant measurements confirmed antioxidant activity of alginate increased upon a decrease in molecular weight. Therefore, low molecular weight alginate produced by heating could be considered as a stronger antioxidant than alginate polymer. These products could be useful for industrial and biomedical applications. PMID:26593570

  5. Development of Gel-Filter Method for High Enrichment of Low-Molecular Weight Proteins from Serum

    PubMed Central

    Chen, Lingsheng; Zhai, Linhui; Li, Yanchang; Li, Ning; Zhang, Chengpu; Ping, Lingyan; Chang, Lei; Wu, Junzhu; Li, Xiangping; Shi, Deshun; Xu, Ping

    2015-01-01

    The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa) difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2) from 10 μL serum. Among them, 559 (n = 2) proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses. PMID:25723528

  6. Corner rounding in EUV photoresist: tuning through molecular weight, PAG size, and development time

    SciTech Connect

    Anderson, Christopher; Daggett, Joe; Naulleau, Patrick

    2009-12-31

    In this paper, the corner rounding bias of a commercially available extreme ultraviolet photoresist is monitored as molecular weight, photoacid generator (PAG) size, and development time are varied. These experiments show that PAG size influences corner biasing while molecular weight and development time do not. Large PAGs are shown to exhibit less corner biasing, and in some cases, lower corner rounding, than small PAGs. In addition, heavier resist polymers are shown to exhibit less corner rounding than lighter ones.

  7. Permeability of the small intestine to substances of different molecular weight

    PubMed Central

    Loehry, C. A.; Axon, A. T. R.; Hilton, P. J.; Hider, R. C.; Creamer, B.

    1970-01-01

    The permeability of the rabbit small intestine has been studied by measuring the plasma clearances of water-soluble molecules over the molecular weight range 60-33,000. An inverse relationship has been demonstrated between permeability and molecular weight. The significance of these findings in relation to current concepts of the `pore hypotheses' is discussed, and the possible physiological and pathological implications are considered. PMID:5430371

  8. High and low molecular weight hyaluronic acid differentially influence macrophage activation

    PubMed Central

    Rayahin, Jamie E.; Buhrman, Jason S.; Zhang, Yu; Koh, Timothy J.; Gemeinhart, Richard A.

    2015-01-01

    Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs. PMID:26280020

  9. Control of molecular weight of polystyrene using the reverse iodine transfer polymerization (RITP)-emulsion technique.

    PubMed

    Oh, Hyeong Geun; Shin, Hongcheol; Jung, Hyejun; Lee, Byung Hyung; Choe, Soonja

    2011-01-15

    The RITP-emulsion polymerization of styrene in the presence of molecular iodine has been successfully performed using potassium persulfate (KPS) as an initiator and 1-hexadecanesulfonate as an emulsifier under argon atmosphere at 80°C for 7 hrs in the absence of light. The effects of the iodine concentration, molar ratio between KPS and iodine, and solid contents on the molecular weight of polystyrene (PS) were studied. As the iodine concentration increased from 0.05 to 0.504 mmol under the fixed [KPS]/[I(2)] ratio at 4.5, the weight-average molecular weight of PS substantially decreased from 126,120 to 35,690 g/mol, the conversion increased from 85.0% to 95.2%, and the weight-average particle diameter decreased from 159 to 103 nm. In addition, as the ratio of [KPS]/[I(2)] increased from 0.5 to 6.0 at the fixed [I(2)] of 0.504 mmol, the weight-average molecular weight of PS decreased from 72,170 to 30,640 g/mol with high conversion between 81.7% and 96.5%. Moreover, when the styrene solid content increased from 10 to 40 wt.% at the fixed [KPS]/[I(2)] ratio of 4.5, the weight-average molecular weight of PS varied between 33,500 and 37,200 g/mol, the conversion varied between 94.9% and 89.7% and the weight-average diameter varied from 122 to 205 nm. Thus, the control of molecular weight of PS less than 100,000g/mol with high conversion (95%) and particle stability of up to 40 wt.% solid content were easily achieved through the usage of iodine with suitable ratio of [KPS]/[I(2)] in the RITP-emulsion polymerization technique, which is of great industrial importance. PMID:20950818

  10. A low molecular weight antioxidant decreases weight and lowers tumor incidence.

    PubMed

    Mitchell, James B; Xavier, Sandhya; DeLuca, Anne M; Sowers, Anastasia L; Cook, John A; Krishna, Murali C; Hahn, Stephen M; Russo, Angelo

    2003-01-01

    Stable free radical nitroxides are potent antioxidants possessing superoxide dismutase- and catalase-mimetic activity that protect cells and animals against a variety of oxidative insults. Tempol, as a representative nitroxide, was evaluated for its influence on weight maintenance and spontaneous tumor incidence in C3H mice. Tempol administered in either the drinking water or food did not show any untoward effects and prevented animals from becoming obese. Tempol-treated animals' leptin levels were reduced. Long-term treatment with Tempol significantly decreased tumorigenesis when compared to controls (10 vs. 40%, respectively). Selected tissues from Tempol-treated animals exhibited elevated levels of mitochrondrial uncoupling protein-2 (UCP-2) and HSP70. The present data suggest that nitroxides upregulate UCP-2, obviate weight gain, and decrease age-related spontaneous tumor incidence. As a class, nitroxides may provide overall health benefits by contributing to decreased obesity and tumor incidence. PMID:12498984

  11. Low molecular weight protamine as nontoxic heparin/low molecular weight heparin antidote (III): preliminary in vivo evaluation of efficacy and toxicity using a canine model.

    PubMed

    Lee, L M; Chang, L C; Wrobleski, S; Wakefield, T W; Yang, V C

    2001-01-01

    Heparin employed in cardiovascular surgeries often leads to a high incidence of bleeding complications. Protamine employed in heparin reversal, however, can cause severe adverse reactions. In an attempt to address this clinical problem, we developed low molecular weight protamine (LMWP) as a potentially effective and less toxic heparin antagonist. A homogeneous 1880-d peptide fragment, termed LMWP-TDSP5 and containing the amino acid sequence of VSRRRRRRGGRRRR, was derived directly from protamine by enzymatic digestion of protamine with thermolysin. In vitro studies demonstrated that TDSP5 was capable of neutralizing various anticoagulant functions of both heparin and commercial low molecular weight heparin preparations. In addition, TDSP5 exhibited significantly reduced crossreactivity toward mouse sera containing antiprotamine antibodies. TDSP5 showed a decrease in its potential in activating the complement system. All of these findings suggested the possibility of markedly reduced protamine toxicity for TDSP5. In this article, we conducted preliminary in vivo studies to further demonstrate the feasibility and utility of using LMWP as a nontoxic clinical protamine substitute. Dogs were chosen as test animals because they were known to magnify the typical human response to protamine. By using a full spectra of biological and clinical assays for heparin, including the anti-IIa and anti-Xa chromogenic assays and the activated partial, thromboplastin time and TCT clotting assays, TDSP5 showed that it could completely neutralize all these different anticoagulant functions of heparin in dogs. Although administration of protamine in dogs produced a significant reduction in mean arterial blood pressure (-14.9 mm Hg) and elevation in pulmonary artery systolic pressure (+5.0 mm Hg), the use of TDSP5 in dogs did not elicit any statistically significant change in any of the variables measured. Furthermore, the use of LMWP also significantly reduced the protamine

  12. Effect of molecular weight, calcium stearate, and sterilization methods on the wear of ultra high molecular weight polyethylene acetabular cups in a hip joint simulator.

    PubMed

    McKellop, H A; Shen, F W; Campbell, P; Ota, T

    1999-05-01

    Orthopaedic surgeons must currently choose from several types of ultra high molecular weight polyethylene acetabular cups that differ in their material properties and in the methods used for their sterilization. Information on the wear resistance of these different cups may help in the selection process. This study included two separate tests for wear run on a hip simulator to investigate the effect of molecular weight, calcium stearate, and sterilization methods on the wear resistance of ultra high molecular weight polyethylene acetabular cups. Test 1 revealed nearly identical wear rates for acetabular cups with molecular weights in two distinct ranges, as well as for cups with molecular weights in the same range but with or without calcium stearate added. In Test 2, cups that were sterilized in air with gamma irradiation exhibited lower rates of wear than those sterilized with ethylene oxide, presumably due to the crosslinking induced by the irradiation. In addition, cups that were irradiated while packed in a partial vacuum to minimize oxygen absorbed in the surface layer initially showed lower rates of wear than those irradiated in air, with the wear rates becoming similar as wear penetrated the more oxidized surface layer and the more crosslinked subsurface region. Because these tests were run a few months after the irradiation, the potential effects of long-term oxidation of any residual free radicals in the irradiated materials could not be taken into account. After artificial aging to accelerate oxidative degradation of the materials, the wear rates could be markedly different. Analyses performed after wear indicated that the irradiated (i.e., crosslinked) cups exhibited a smaller proportion of, as well as shorter, fibrils in the wear debris and an increased crystallinity and melting temperature and that gamma irradiation in the low-oxygen environment reduced the level of oxidation and increased the level of crosslinking in the surface region of the cups

  13. Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Kingsley, James W.; Marchisio, Pier Paolo; Yi, Hunan; Iraqi, Ahmed; Kinane, Christy J.; Langridge, Sean; Thompson, Richard L.; Cadby, Ashley J.; Pearson, Andrew J.; Lidzey, David G.; Jones, Richard A. L.; Parnell, Andrew J.

    2014-06-01

    We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC71BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC71BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer.

  14. Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics

    PubMed Central

    Kingsley, James W.; Marchisio, Pier Paolo; Yi, Hunan; Iraqi, Ahmed; Kinane, Christy J.; Langridge, Sean; Thompson, Richard L.; Cadby, Ashley J.; Pearson, Andrew J.; Lidzey, David G.; Jones, Richard A. L.; Parnell, Andrew J.

    2014-01-01

    We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC71BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC71BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer. PMID:24924096

  15. Molecular weight dependent vertical composition profiles of PCDTBT:PC₇₁BM blends for organic photovoltaics.

    PubMed

    Kingsley, James W; Marchisio, Pier Paolo; Yi, Hunan; Iraqi, Ahmed; Kinane, Christy J; Langridge, Sean; Thompson, Richard L; Cadby, Ashley J; Pearson, Andrew J; Lidzey, David G; Jones, Richard A L; Parnell, Andrew J

    2014-01-01

    We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC₇₁BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC₇₁BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer. PMID:24924096

  16. Effect of matrix molecular weight on the coarsening mechanism of polymer-grafted gold nanocrystals.

    PubMed

    Jia, Xiaolong; Listak, Jessica; Witherspoon, Velencia; Kalu, E Eric; Yang, Xiaoping; Bockstaller, Michael R

    2010-07-20

    A systematic evaluation of the effect of polymer matrix molecular weight on the coarsening kinetics of uniformly dispersed polystyrene-grafted gold nanoparticles is presented. Particle coarsening is found to proceed via three stages (i.e., atomic-diffusion-based Ostwald ripening (OR), particle-migration-based collision-coalescence, and the subsequent reshaping of particle assemblies). The relative significance of each stage and hence the evolution of particle size and shape have been found to depend sensitively upon time, temperature, and the molecular weight of the host polymer. At temperatures close to the matrix glass-transition temperature, Ostwald ripening has been observed to be dominant on all experimental timescales. With increasing annealing temperature, collision coalescence becomes the dominant mode of coarsening, leading to rapid particle growth. The onset of the latter process is found to be increasingly delayed with increasing molecular weight of the polymer host. Particle coalescence is observed to proceed via two fundamental modes (i.e., diffusion-limited aggregation and growth resulting in the formation of fractal particle clusters and the subsequent recrystallization into more spherical monolithic aggregate structures). Interestingly, particle coarsening in high-molecular-weight matrix polymers is found to proceed significantly faster than predicted on the basis of the bulk polymer viscosity; this acceleration is interpreted to be a consequence of the network characteristics of high-molecular-weight polymers by analogy to the phenomenon of nanoviscosity that has been reported in the context of nanoparticle diffusion within high-molecular-weight polymers. PMID:20575544

  17. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

    NASA Astrophysics Data System (ADS)

    Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro

    2011-02-01

    Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous

  18. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... resins minimum molecular weight 10,000. 177.1440 Section 177.1440 Food and Drugs FOOD AND DRUG...′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000. 4,4′-Isopropylidenediphenol-epichlo-rohydrin resins having a minimum molecular weight of 10,000 may be safely used as articles or components...

  19. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... resins minimum molecular weight 10,000. 177.1440 Section 177.1440 Food and Drugs FOOD AND DRUG... Contact Surfaces § 177.1440 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000. 4,4′-Isopropylidenediphenol-epichlo-rohydrin resins having a minimum molecular weight of...

  20. Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils

    ERIC Educational Resources Information Center

    Maroto, J. A.; Quesada-Perez, M.; Ortiz-Hernandez, A. J.

    2010-01-01

    A new laboratory procedure for the evaluation of the mean molecular weight (mean relative molecular mass) of petroleum oils with high accuracy is described. The density and dynamic viscosity of three commercial petroleum oils are measured at different temperatures. These experimental data are used to calculate the kinematic viscosity as a function…

  1. From oligomers to molecular giants of soybean oil in supercritical carbon dioxide medium: 1. Preparation of polymers with lower molecular weight from soybean oil.

    PubMed

    Liu, Zengshe; Sharma, Brajendra K; Erhan, Sevim Z

    2007-01-01

    Polymers with a low molecular weight derived from soybean oil have been prepared in a supercritical carbon dioxide medium by cationic polymerization. Boron trifluoride diethyl etherate was used as an initiator. Influences of polymerization temperature, amount of initiator, and carbon dioxide pressure on the molecular weight were investigated. It is shown that the higher polymerization temperature favors polymers with relatively higher molecular weights. Larger amounts of initiator also provide polymers with higher molecular weights. Higher pressure favors polymers with relatively higher molecular weights. The applications of these soy-based materials will be in the lubrication and hydraulic fluid areas. PMID:17206812

  2. Determination of molecular weights of humic substances by analytical (UV scanning) ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Reid, Patrick M.; Wilkinson, Alan E.; Tipping, Edward; Jones, Malcolm N.

    1990-01-01

    Samples of peat humic acid (PHA) and surface water humic (WBHA) and fulvic (WBFA) acids have been extracted from Whitray Beck in North Yorkshire, U.K. The molecular weights of the extracts have been investigated by sedimentation equilibrium using an analytical ultracentrifuge equipped with a UV scanning system. The system allows measurements to be made at low concentrations of humic substances, comparable to those existing in natural humic-rich water. A method is described for correcting UV scanning data for changes in the optical properties of the materials with changing molecular weight. Measurements have also been made on reference samples of Suwannee river humic (SRHA) and fulvic (SRFA) acids from the International Humic Substances Society (IHSS). The weight-average molecular weights of the extracted samples range from approximately 2000 to 17000 and follow a series PHA > WBHA > WBFA. Apparent specific volumes of these materials were in a range from 0.45 to 0.58 cm 3 g -1 as measured by digital densimetry. All the samples studied were analysed by gel filtration, but the molecular weights determined by this method based on a globular protein calibration are not in good accord with the absolute determinations by the sedimentation-equilibrium technique. The molecular weight of the SRHA determined by sedimentation equilibrium is in good agreement with that reported by BECKETT (1987) et al., based on flow field-flow fractionation.

  3. Effect of high-speed jet on flow behavior, retrogradation, and molecular weight of rice starch.

    PubMed

    Fu, Zhen; Luo, Shun-Jing; BeMiller, James N; Liu, Wei; Liu, Cheng-Mei

    2015-11-20

    Effects of high-speed jet (HSJ) treatment on flow behavior, retrogradation, and degradation of the molecular structure of indica rice starch were investigated. Decreasing with the number of HSJ treatment passes were the turbidity of pastes (degree of retrogradation), the enthalpy of melting of retrograded rice starch, weight-average molecular weights and weight-average root-mean square radii of gyration of the starch polysaccharides, and the amylopectin peak areas of SEC profiles. The areas of lower-molecular-weight polymers increased. The chain-length distribution was not significantly changed. Pastes of all starch samples exhibited pseudoplastic, shear-thinning behavior. HSJ treatment increased the flow behavior index and decreased the consistency coefficient and viscosity. The data suggested that degradation of amylopectin was mainly involved and that breakdown preferentially occurred in chains between clusters. PMID:26344255

  4. Low molecular weight PEI-appended polyesters as non-viral gene delivery vectors.

    PubMed

    Xun, Miao-Miao; Liu, Yan-Hong; Guo, Qian; Zhang, Ji; Zhang, Qin-Fang; Wu, Wan-Xia; Yu, Xiao-Qi

    2014-05-01

    Routine clinical implementation of human gene therapy requires safe and efficient gene delivery methods. Linear biodegradable polyesters with carbon-carbon double bonds are prepared from unsaturated diacids and diols. Subsequent appending of low molecular weight PEI by Michael addition gives target cationic polymers efficiently. Agarose gel retardation and fluorescence quenching assays show that these materials have good DNA binding ability and can completely retard plasmid DNA at weight ratio of 0.8. The formed polyplexes have appropriate sizes around 275 nm and zeta-potential values about +20-35 mV. The cytotoxicities of these polymers assayed by MTT are much lower than that of 25 kDa PEI. In vitro transfection toward 7402, HEK293 and U-2OS cells show that polymer P1 may give dramatically higher transfection efficiency (TE) than 25 kDa PEI, especially in U-2OS cells, suggesting that such polymer might be promising non-viral gene vectors. PMID:24681389

  5. Slip of polydisperse polymers: Molecular weight distribution above and below the plane of slip

    NASA Astrophysics Data System (ADS)

    Sabzevari, Seyed Mostafa; Strandman, Satu; Wood-Adams, Paula Marie

    2015-04-01

    When strong slip occurs during the drag flow of highly entangled polybutadienes (PBD) in a sliding plate rheometer equipped with stainless steel parallel plates, a thin film of polymer debris remains on the substrate after the slip. This debris is assumed to be formed by the disentanglement process that occurs in strong slip at a distance of about one molecular size from the plate. In order to evaluate the composition of the debris we collected it with tetrahydrofuran and subjected it to gel permeation chromatography. It was found that the molecular weight distribution (MWD) of the debris is significantly different from that of the bulk. Moreover, in mixtures prepared from long and short PBDs with distinctly different molecular weight distributions, the MWD of the debris was found to be richer in low molecular weight components and leaner in the high molecular weight components compared to the bulk. This information is important since it reveals the compositional difference between the bulk and interfacial layer above and below the plane of slip. The difference in MWD is likely a consequence of the strong slip in which some of long chains are pulled away from the surface-adsorbed chains by the flow leaving a debris lean in the high molecular weight component.

  6. Hyaluronic Acid Molecular Weight Determines Lung Clearance and Biodistribution after Instillation.

    PubMed

    Kuehl, Christopher; Zhang, Ti; Kaminskas, Lisa M; Porter, Christopher J H; Davies, Neal M; Forrest, Laird; Berkland, Cory

    2016-06-01

    Hyaluronic acid (HA) has emerged as a versatile polymer for drug delivery. Multiple commercial products utilize HA, it can be obtained in a variety of molecular weights, and it offers chemical handles for cross-linkers, drugs, or imaging agents. Previous studies have investigated multiple administration routes, but the absorption, biodistribution, and pharmacokinetics of HA after delivery to the lung is relatively unknown. Here, pharmacokinetic parameters were investigated by delivering different molecular weights of HA (between 7 and 741 kDa) to the lungs of mice. HA was labeled with either a near-infrared dye or with iodine-125 conjugated to HA using a tyrosine linker. In initial studies, dye-labeled HA was instilled into the lungs and fluorescent images of organs were collected at 1, 8, and 24 h post administration. Data suggested longer lung persistence of higher molecular weight HA, but signal diminished for all molecular weights at 8 h. To better quantitate pharmacokinetic parameters, different molecular weights of iodine-125 labeled HA were instilled and organ radioactivity was determined after 1, 2, 4, 6, and 8 h. The data showed that, after instillation, the lungs contained the highest levels of HA, as expected, followed by the gastrointestinal tract. Smaller molecular weights of HA showed more rapid systemic distribution, while 67 and 215 kDa HA showed longer persistence in the lungs. Lung exposure appeared to be optimum in this size range due to the rapid absorption of <67 kDa HA and the poor lung penetration and mucociliary clearance of viscous solutions of HA > 215 kDa. The versatility of HA molecular weight and conjugation chemistries may, therefore, provide new opportunities to extend pulmonary drug exposure and potentially facilitate access to lymph nodes draining the pulmonary bed. PMID:27157508

  7. Novel High-Molecular Weight Fucosylated Milk Oligosaccharides Identified in Dairy Streams

    PubMed Central

    Mehra, Raj; Barile, Daniela; Marotta, Mariarosaria; Lebrilla, Carlito B.; Chu, Caroline; German, J. Bruce

    2014-01-01

    Oligosaccharides are the third largest component in human milk. This abundance is remarkable because oligosaccharides are not digestible by the newborn, and yet they have been conserved and amplified during evolution. In addition to encouraging the growth of a protective microbiota dominated by bifidobacteria, oligosaccharides have anti-infective activity, preventing pathogens from binding to intestinal cells. Although it would be advantageous adding these valuable molecules to infant milk formula, the technologies to reproduce the variety and complexity of human milk oligosaccharides by enzymatic/organic synthesis are not yet mature. Consequently, there is an enormous interest in alternative sources of these valuable oligosaccharides. Recent research has demonstrated that bovine milk and whey permeate also contain oligosaccharides. Thus, a thorough characterization of oligosaccharides in bovine dairy streams is an important step towards fully assessing their specific functionalities. In this study, bovine milk oligosaccharides (BMOs) were concentrated by membrane filtration from a readily available dairy stream called “mother liquor”, and analyzed by high accuracy MALDI FT-ICR mass spectrometry. The combination of HPLC and accurate mass spectrometry allowed the identification of ideal processing conditions leading to the production of Kg amount of BMO enriched powders. Among the BMOs identified, 18 have high-molecular weight and corresponded in size to the most abundant oligosaccharides present in human milk. Notably 6 oligosaccharides contained fucose, a sugar monomer that is highly abundant in human milk, but is rarely observed in bovine milk. This work shows that dairy streams represent a potential source of complex milk oligosaccharides for commercial development of unique dairy ingredients in functional foods that reproduce the benefits of human milk. PMID:24810963

  8. Unique profile of chicken adiponectin, a predominantly heavy molecular weight multimer, and relationship to visceral adiposity.

    PubMed

    Hendricks, Gilbert L; Hadley, Jill A; Krzysik-Walker, Susan M; Prabhu, K Sandeep; Vasilatos-Younken, Regina; Ramachandran, Ramesh

    2009-07-01

    Adiponectin, a 30-kDa adipokine hormone, circulates as heavy, medium, and light molecular weight isoforms in mammals. Plasma heavy molecular weight (HMW) adiponectin isoform levels are inversely correlated with the incidence of type 2 diabetes in humans. The objectives of the present study were to characterize adiponectin protein and quantify plasma adiponectin levels in chickens, which are naturally hyperglycemic relative to mammals. Using gel filtration column chromatography and Western blot analysis under nonreducing and non-heat-denaturing native conditions, adiponectin in chicken plasma, and adipose tissue is predominantly a multimeric HMW isoform that is larger than 669 kDa mass. Under reducing conditions and heating to 70-100 C, however, a majority of the multimeric adiponectin in chicken plasma and adipose tissue was reduced to oligomeric and/or monomeric forms. Immunoprecipitation and elution under neutral pH preserved the HMW adiponectin multimer, whereas brief exposure to acidic pH led to dissociation of HMW multimer into multiple oligomers. Mass spectrometric analysis of chicken adiponectin revealed the presence of hydroxyproline and differential glycosylation of hydroxylysine residues in the collagenous domain. An enzyme immunoassay was developed and validated for quantifying plasma adiponectin in chickens. Plasma adiponectin levels were found to be significantly lower in 8- compared with 4-wk-old male chickens and inversely related to abdominal fat pad mass. Collectively, our results provide novel evidence that adiponectin in chicken plasma and tissues is predominantly a HMW multimer, suggesting the presence of unique multimerization and stabilization mechanisms in the chicken that favors preponderance of HMW adiponectin over other oligomers. PMID:19299452

  9. Detailed characterization of a high-molecular-weight glycoprotein secreted by lung cancer cells.

    PubMed

    Nonaka, N; Manaka, K; Kobayashi, K; Hirai, H

    1993-09-01

    A cancer-associated, high-molecular-weight glycoprotein antigen (6B3.Ag) recognized by monoclonal antibody 6B3 was purified from culture medium of human large cell lung carcinoma cell line (HLC-2) and characterized biochemically and immunochemically. The 6B3.Ag was purified more than 1,200-fold with a yield of 30% by salting out, precipitation by acidification at pH 4.5, and chromatographies on Sepharose 4B and concanavalin A-Sepharose. The molecular weight of 6B3.Ag is approximately 1,000,000 and the molecule is a homodecamer of 94,000 subunits. The 6B3.Ag is a glycoprotein containing 22.9% sugars, consisting of both N- and O-glycoside chains. The N-terminal 19 amino acids were determined and only 4 out of 19 amino acid residues were different from those of an antigen, L3, secreted by lung carcinoma cell line Calu-1. The serum level of 6B3.Ag was determined in normal adults as well as patients with various diseases by enzyme-linked immunosorbent assay. The mean serum level of 6B3.Ag was 3.1 micrograms/ml, ranging from 1.6 to 6.2 micrograms/ml in 131 healthy adults. When the cut-off value was set at 6.2 micrograms/ml, the incidence of positive values in the sera was elevated not only in malignant diseases such as hepatoma (73%) and leukemia (62%), but also in benign diseases such as chronic hepatitis (42%) and liver cirrhosis (63%). While the incidence of positive values was elevated in advanced liver diseases, namely, chronic hepatitis, liver cirrhosis and hepatoma, the cancer specificity of 6B3.Ag did not appear to be high. PMID:8407567

  10. Molecular biology of human muscle disease

    SciTech Connect

    Dunne, P.W.; Epstein, H.F. )

    1991-01-01

    The molecular revolution that is transforming the entire biomedical field has had far-reaching impact in its application to inherited human muscle disease. The gene for Duchenne muscular dystrophy was one of the first cloned without knowledge of the defective protein product. This success was based upon the availability of key chromosomal aberrations that provided molecular landmarks for the disease locus. Subsequent discoveries regarding the mode of expression for this gene, the structure and localization of its protein product dystrophin, and molecular diagnosis of affected and carrier individuals constitute a paradigm for investigation of human genetics. Finding the gene for myotonic muscular dystrophy is requiring the brute force approach of cloning several million bases of DNA, identifying expressed sequences, and characterizing candidate genes. The gene that causes hypertrophic cardiomyopathy has been found serendipitously to be one of the genetic markers on chromosome 14, the {beta} myosin heavy chain.

  11. Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight

    USGS Publications Warehouse

    Davis, J.A.; Gloor, R.

    1981-01-01

    Dissolved organic compounds in a Swiss lake were fractionated into three molecular size classes by gel exclusion chromatography, and adsorption of each fraction on colloidal alumina was studied as a function of pH. Organic compounds with molecular weight (Mr) greater than 1000 formed strong complexes with the alumina surface, but low molecular weight compounds were weakly adsorbed. Electrophoretic mobility measurements indicated that alumina particles suspended in the original lake water were highly negatively charged because of adsorbed organic matter. Most of the adsorbed organic compounds were in the Mr range 1000 < Mr < 3000. Adsorption of these compounds during the treatment of drinking water by alum coagulation may be responsible for the preferential removal of trihalomethane precursors. Adsorption may also influence the molecular-weight distribution of dissolved organic material in lakes. surface, the present work will focus on the influence of molecular size and pH on the adsorption behavior of dissolved organic material of a Swiss lake. From a geochemical point of view, it is important to know the molecular-weight distribution of adsorbed organic matter so that we may better assess its reactivity with trace elements. The study also serves as a first step in quantifying the role of adsorption in the geochemical cycle of organic carbon in lacustrine environments. For water-treatment practice, we need to determine whether molecular weight fractionation occurs during adsorption by aluminum oxide. Such a fractionation could be significant in the light of recent reports that chloroform and other organochlorine compounds are preferentially produced by particular molecular-weight fractions (25-27). ?? 1981 American Chemical Society.

  12. Weighted directional energy model of human stereo correspondence.

    PubMed

    Prince, S J; Eagle, R A

    2000-01-01

    Previous work [Prince, S. J. D, & Eagle, R. A. (1999). Size-disparity correlation in human binocular depth perception. Proceedings of the Royal Society: Biological Sciences, 266, 1361-1365] has demonstrated that disparity sign discrimination performance in isolated bandpass patterns is supported at disparities much larger than a phase disparity model might predict. One possibility is that this extended performance relies on a separate second-order system [Hess, R. F., & Wilcox, L. M. (1994). Linear and non-linear filtering in stereopsis. Vision Research, 34, 2431-2438]. Here, a 'weighted directional energy' model is developed which explains a large body of crossed versus uncrossed disparity discrimination data with a single mechanism. This model assumes a population of binocular complex cells at every image point with a range of position disparity shifts. These cells sample a local energy function which is weighted so that energy at large disparities is relatively attenuated. Disparity sign is determined by summing and comparing energy at crossed and uncrossed disparities in the presence of noise. The model qualitatively predicts matching data for one-dimensional Gabor stimuli. This scheme also predicts DMax in Gabor stimuli and filtered noise. Moreover, a range of 'non-linear' phenomena, in which disparity is perceived from contrast envelope information alone, can be explained. The weighted directional energy model presents a biologically plausible, parsimonious explanation of matching behaviour in bandpass stimuli for both 'first-order' and 'second-order' stimuli which obviates the need for multiple mechanisms in stereo correspondence. PMID:10738073

  13. Phytochemicals in the Control of Human Appetite and Body Weight

    PubMed Central

    Tucci, Sonia A.

    2010-01-01

    Since obesity has grown to epidemic proportions, its effective management is a very important clinical issue. Despite the great amount of scientific effort that has been put into understanding the mechanisms that lead to overconsumption and overweight, at the moment very few approaches to weight management are effective in the long term. On the other hand, modern society is also affected by the growing incidence of eating disorders on the other side of the spectrum such as anorexia and bulimia nervosa which are equally difficult to treat. This review will try to summarise the main findings available in the literature regarding the effect of plants or plant extracts (phytochemicals) on human appetite and body weight. The majority of plant extracts are not single compounds but rather a mixture of different molecules, therefore their mechanism of action usually targets several systems. In addition, since some cellular receptors tend to be widely distributed, sometimes a single molecule can have a widespread effect. This review will attempt to describe the main phytochemicals that have been suggested to affect the homeostatic mechanisms that influence intake and body weight. Clinical data will be summarised and scientific evidence will be reviewed.

  14. Two-chain high molecular weight kininogen induces endothelial cell apoptosis and inhibits angiogenesis: partial activity within domain 5.

    PubMed

    Zhang, J C; Claffey, K; Sakthivel, R; Darzynkiewicz, Z; Shaw, D E; Leal, J; Wang, Y C; Lu, F M; McCrae, K R

    2000-12-01

    We previously reported that the binding of two-chain high molecular weight kininogen (HKa) to endothelial cells may occur through interactions with endothelial urokinase receptors. Since the binding of urokinase to urokinase receptors activates signaling responses and may stimulate mitogenesis, we assessed the effect of HKa binding on endothelial cell proliferation. Unexpectedly, HKa inhibited proliferation in response to several growth factors, with 50% inhibition caused by approximately 10 nM HKa. This activity was Zn(2+) dependent and not shared by either single-chain high molecular weight kininogen (HK) or low molecular weight kininogen. HKa selectively inhibited the proliferation of human umbilical vein and dermal microvascular endothelial cells, but did not affect that of umbilical vein or human aortic smooth muscle cells, trophoblasts, fibroblasts, or carcinoma cells. Inhibition of endothelial proliferation by HKa was associated with endothelial cell apoptosis and unaffected by antibodies that block the binding of HK or HKa to any of their known endothelial receptors. Recombinant HK domain 5 displayed activity similar to that of HKa. In vivo, HKa inhibited neovascularization of subcutaneously implanted Matrigel plugs, as well as rat corneal angiogenesis. These results demonstrate that HKa is a novel inhibitor of angiogenesis, whose activity is dependent on the unique conformation of the two-chain molecule. PMID:11099478

  15. Low molecular weight squash trypsin inhibitors from Sechium edule seeds.

    PubMed

    Laure, Hélen J; Faça, Vítor M; Izumi, Clarice; Padovan, Júlio C; Greene, Lewis J

    2006-02-01

    Nine chromatographic components containing trypsin inhibitor activity were isolated from Sechium edule seeds by acetone fractionation, gel filtration, affinity chromatography and RP-HPLC in an overall yield of 46% of activity and 0.05% of protein. The components obtained with highest yield of total activity and highest specific activity were sequenced by Edman degradation and their molecular masses determined by mass spectrometry. The inhibitors contained 31, 32 and 27 residues per molecule and their sequences were: SETI-IIa, EDRKCPKILMRCKRDSDCLAKCTCQESGYCG; SETI-IIb, EEDRKCPKILMRCKRDSDCLAKCTCQESGYCG and SETI-V, CPRILMKCKLDTDCFPTCTCRPSGFCG. SETI-IIa and SETI-IIb, which differed by an amino-terminal E in the IIb form, were not separable under the conditions employed. The sequences are consistent with consensus sequences obtained from 37 other inhibitors: CPriI1meCk_DSDCla_C_C_G_CG, where capital letters are invariant amino acid residues and lower case letters are the most preserved in this position. SETI-II and SETI-V form complexes with trypsin with a 1:1 stoichiometry and have dissociation constants of 5.4x10(-11)M and 1.1x10(-9)M, respectively. PMID:16406091

  16. Activated AMPK explains hypolipidemic effects of sulfated low molecular weight guluronate on HepG2 cells.

    PubMed

    Liu, Xin; Hao, Jie-Jie; Zhang, Li-Juan; Zhao, Xia; He, Xiao-Xi; Li, Miao-Miao; Zhao, Xiao-Liang; Wu, Jian-Dong; Qiu, Pei-Ju; Yu, Guang-Li

    2014-10-01

    Low molecular weight and sulfated low molecular weight guluronate (LMG and SLMG) were prepared and hypolipidemic effects were studied in a human hepatocellular carcinoma HepG2 cell line. Both compounds decreased total cholesterol (TC) and triglycerides (TG) and inhibited 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) activity in HepG2 cells. In general, SLMG had greater effects than LMG. Activation of sterol regulatory element-binding protein 2 (SREBP-2), low density lipoprotein receptor (LDLR), AMP-activated protein kinase (AMPK), and AMPK's downstream targets were evidenced by increased phosphorylation of AMPK, HMGCR, and acetyl-CoA-carboxylase (ACC), which decreased HMGRC and ACC activity. We further demonstrated that activated AMPK was linked to down-regulated SREBP-1 and up-regulated cholesterol 7α-hydroxylase (CYP7A1). PMID:25089813

  17. An evaluation of the effects of PEO/PEG molecular weights on extruded alumina rods

    NASA Astrophysics Data System (ADS)

    Bolger, Nancy Beth

    1998-12-01

    Alumina rods were piston extruded from bodies containing polyethylene glycols (PEGs) and polyethylene oxides (PEOs) with molecular weights ranging from 1,300 to 3,800,000 g/mol. A blend of aluminas possessing different particle size distributions was evaluated with regard to its extrusion pressure by varying the amount of PEG/PEO addition. Behavior exhibited by the alumina blend was dependent upon the additive that was used. The higher molecular weight binders with average molecular weight of 200,000 g/mol and 3,350,000 g/mol displayed the most severe behaviors of near dilatant and dilatant respectively. Physical properties of the green and fired states, as well as the binder burnout, were investigated with the changing additions. Correlation between the green and fired strengths and the changing molecular weights were examined. The additive present influenced the surface properties of the rods, which affected the green strengths. The highest average molecular weight polyethylene glycols showed higher green strengths, while the lowest green strengths were observed for the high molecular weight polyethylene oxides. Fired strengths generally ranged from approximately 12,000 psi to 16,000 psi for additive batches. Alumina pellets containing twelve separate combinations of polyethylene glycol with polyethylene oxide were dry pressed. Physical properties of the green and fired states were examined. Statistical analysis was performed upon the data and seven combinations of polyethylene glycol with polyethylene oxide were deemed significant. These combinations in conjunction with the same alumina blend were then piston extruded. The addition of polyethylene glycol reduced the near dilatant behavior exhibited by the 200,000 g/mol average molecular weight polyethylene oxide. Dilatant behavior was completely eliminated from the 3,350,000 g/mol average molecular weight polyethylene oxide batches. Physical properties of the green and fired states were again investigated with

  18. Determination of molecular weights of humic substances by analytical (UV scanning) ultracentrifugation

    SciTech Connect

    Reid, P.M.; Wilkinson, A.E.; Tipping, E.; Jones, M.N. Freshwater Biological Association, Ambleside, Cumbria )

    1990-01-01

    Samples of peat humic acid (PHA) and surface water humic (WBHA) and fulvic (WBFA) acids have been extracted from Whitray Beck in North Yorkshire, U.K. The molecular weights of the extracts have been investigated by sedimentation equilibrium using an analytical ultracentrifuge equipped with a UV scanning system. The system allows measurements to be made at low concentrations of humic substances, comparable to those existing in natural humic-rich water. A method is described for correcting UV scanning data for changes in the optical properties of the materials with changing molecular weight. Measurements have also been made on reference samples of Suwannee river humic (SRHA) and fulvic (SRFA) acids from the International Humic Substances Society (IHSS). The weight-average moleuclar weights of the extracted samples range from approximately 2,000 to 17,000 and follow a series PHA > WBHA > WBFA. Apparent specific volumes of these materials were in a range from 0.45 to 0.58 cm{sup 3} g{sup {minus}1} as measured by digital densimetry. Al the samples studied were analysed by gel filtration, but the molecular weights determined by this method based on a globular protein calibration are not in good accord with the absolute determinations by the sedimentation-equilibrium technique. The molecular weight of the SRHA determined by sedimentation equilibrium is in good agreement with that reported by BECKETT (1987) et al., based on flow field-flow fractionation.

  19. High-molecular-weight polymers for protein crystallization: poly-γ-glutamic acid-based precipitants

    SciTech Connect

    Hu, Ting-Chou; Korczyńska, Justyna; Smith, David K.; Brzozowski, Andrzej Marek

    2008-09-01

    High-molecular-weight poly-γ-glutamic acid-based polymers have been synthesized, tested and adopted for protein crystallization. Protein crystallization has been revolutionized by the introduction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-γ-glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of ∼400 kDa and PGA-HM (high molecular weight) of >1000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here.

  20. Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment.

    PubMed

    Fox, Peter; Makam, Roshan

    2011-10-01

    Soil Aquifer Treatment (SAT) is a process where treated wastewater is purified during transport through unsaturated and saturated zones. Easily biodegradable compounds are rapidly removed in the unsaturated zone and the residual organic carbon is comprised of primarily high molecular weight compounds. This research focuses on flow in the saturated zone where flow conditions are predictable and high molecular weight compounds are degraded. Flow through the saturated zone was investigated with 4 reactors packed with 2 different particle sizes and operated at 4 different flow rates. The objective was to evaluate the kinetics of transformation for high molecular weight organics during SAT. Dextran was used as a model compound to eliminate the complexity associated with studying a mixture of high molecular weight organics. The hydrolysis products of dextran are easily degradable sugars. Batch experiments with media taken from the reactors were used to determine the distribution of microbial activity in the reactors. Zero-order kinetics were observed for the removal of dextran in batch experiments which is consistent with hydrolysis of high molecular weight organics where extracellular enzymes limit the substrate utilization rate. Biomass and microbial activity measurements demonstrated that the biomass was independent of position in the reactors. A Monod based substrate/biomass growth kinetic model predicted the performance of dextran removal in the reactors. The rate limiting step appears to be hydrolysis and the overall rate was not affected by surface area even though greater biomass accumulation occurred as the surface area decreased. PMID:21723581

  1. Antibody response to low-molecular-weight antigens of Aspergillus fumigatus in allergic bronchopulmonary aspergillosis.

    PubMed Central

    Kurup, V P; Greenberger, P A; Fink, J N

    1989-01-01

    Sera from patients with allergic bronchopulmonary aspergillosis (ABPA) or aspergilloma and normal sera were analyzed for specific antibodies by Western (immuno-) blotting with Aspergillus fumigatus antigens transferred electrophoretically onto polyvinylidene difluoride membranes. Western blot analysis demonstrated consistent reactivity of low-molecular-weight A. fumigatus antigens against ABPA sera but not against uncomplicated aspergilloma or normal sera. None of these low-molecular-weight components had any lectin-binding activity. Sera from patients with aspergilloma, however, frequently reacted with high-molecular-weight components of A. fumigatus. The majority of these high-molecular-weight antigenic components demonstrated concanavalin A-binding activity. The low-molecular-weight bands were discernible in Western blots with sera from all ABPA patients irrespective of disease activities, such as relapse, flare, or treatment. Antibodies detected by methods such as immunodiffusion or enzyme-linked immunosorbent assays demonstrated total antibody responses to most or all antigenic components, while Western blots demonstrated the reactivities of the individual components with the specific antibodies. Western blot analysis thus provided more information for immunodiagnosis of ABPA than other methods, especially when only crude antigens were available. Images PMID:2666440

  2. The Role of Molecular Weight and Temperature on the Elastic and Viscoelastic Properties of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2001-01-01

    Mechanical testing of the elastic and viscoelastic response of an advanced thermoplastic polyimide (LaRC-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The notched tensile strength was shown to be a strong function of both molecular weight and temperature, whereas stiffness was only a strong function of temperature. A critical molecular weight was observed to occur at a weight average molecular weight of M, approx. 22,000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Low, molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. Furthermore, low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. At long timescales (less than 1100 hours) physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested. Low molecular weight materials are less influenced by the effects of physical aging.

  3. Application of computer-assisted molecular modeling (CAMM) for immunoassay of low molecular weight food contaminants: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunoassay for low molecular weight food contaminants, such as pesticides, veterinary drugs, and mycotoxins is now a well-established technique which meets the demands for a rapid, reliable, and cost-effective analytical method. However, due to limited understanding of the fundamental aspects of i...

  4. Molecular biology of the human brain

    SciTech Connect

    Jones, E.G.

    1988-01-01

    This book examines new methods of molecular biology that are providing valuable insights into the human brain, the genes that govern its assembly and function, and the many genetic defects that cause neurological diseases such as Alzheimer's, Cri du Chat syndrome, Huntington's disease, and bipolar depression disorder. In addition, the book reviews techniques in molecular neurobiological research, including the use of affinity reagents, chimeric receptors, and site-directed mutagenesis in localizing the ion channel and cholinergic binding site, and the application of somatic cell genetics in isolating specific chromosomes or chromosomal segments.

  5. Bradykinin Release Avoids High Molecular Weight Kininogen Endocytosis

    PubMed Central

    Nascimento, Fabio D.; Souza, Daianne S. P.; Araujo, Mariana S.; Souza, Sinval E. G.; Sampaio, Misako U.; Nader, Helena B.; Tersariol, Ivarne L. S.; Motta, Guacyara

    2015-01-01

    Human H-kininogen (120 kDa) plays a role in many pathophysiological processes and interacts with the cell surface through protein receptors and proteoglycans, which mediate H-kininogen endocytosis. In the present work we demonstrate that H-kininogen containing bradykinin domain is internalized and different endogenous kininogenases are present in CHO-K1 cells. We used CHO-K1 (wild type) and CHO-745 (mutant deficient in proteoglycans biosynthesis) cell lines. H-kininogen endocytosis was studied using confocal microscopy, and its hydrolysis by cell lysate fraction was determined by immunoblotting. Bradykinin release was also measured by radioimmunoassay. H-kininogen interaction with the cell surface of CHO-745 cells resulted in bradykinin release by serine proteases. In CHO-K1 cells, which produce heparan and chondroitin sulfate proteoglycans, internalization of H-kininogen through its bradykinin domain can occur on lipid raft domains/caveolae. Nevertheless bradykinin-free H-kininogen was not internalized by CHO-K1 cells. The H-kininogen present in acidic endosomal vesicles in CHO-K1 was approximately 10-fold higher than the levels in CHO-745. CHO-K1 lysate fractions were assayed at pH 5.5 and intact H-kininogen was totally hydrolyzed into a 62 kDa fragment. By contrast, at an assay pH 7.4, the remained fragments were 115 kDa, 83 kDa, 62 kDa and 48 kDa in size. The antipain-Sepharose chromatography separated endogenous kininogenases from CHO-K1 lysate fraction. No difference was detected in the assays at pH 5.5 or 7.4, but the proteins in the fraction bound to the resin released bradykinin from H-kininogen. However, the proteins in the unbound fraction cleaved intact H-kininogen at other sites but did not release bradykinin. H-kininogen can interact with extravascular cells, and is internalized dependent on its bradykinin domain and cell surface proteoglycans. After internalization, H-kininogen is proteolytically processed by intracellular kininogenases. The present

  6. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    PubMed Central

    Al-Kurdi, Zakieh I.; Chowdhry, Babur Z.; Leharne, Stephen A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC) in a reverse micelle (RM) system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity. PMID:25830681

  7. The development of low-molecular weight hydrogels for applications in cancer therapy

    NASA Astrophysics Data System (ADS)

    Tian, Ran; Chen, Jin; Niu, Runfang

    2014-03-01

    To improve the anti-cancer efficacy and to counteract the side effects of chemotherapy, a variety of drug delivery systems have been invented in past decades, but few of these systems have succeeded in clinical trials due to their respective inherent shortcomings. Recently, low-molecular weight hydrogels of peptides that self-assemble via non-covalent interactions have attracted considerable attention due to their good biocompatibility, low toxicity, inherent biodegradability as well as their convenience of design. Low-molecular weight hydrogels have already shown promise in biomedical applications as diverse as 3D-cell culture, enzyme immobilization, controllable MSC differentiation, wound healing, drug delivery etc. Here we review the recent development in the use of low-molecular weight hydrogels for cancer therapy, which may be helpful in the design of soft materials for drug delivery.

  8. Determination of the presence of hyaluronic acid in preparations containing amino acids: the molecular weight characterization.

    PubMed

    Bellomaria, A; Nepravishta, R; Mazzanti, U; Marchetti, M; Piccioli, P; Paci, M

    2014-10-15

    Several pharmaceutical preparations contain hyaluronic acid in the presence of a large variety of low molecular weight charged molecules like amino acids. In these mixtures, it is particularly difficult to determine the concentration and the molecular weight of the hyaluronic acid fragments. In fact zwitterionic compounds in high concentration behave by masking the hyaluronic acid due to the electrostatic interactions between amino acids and hyaluronic acid. In such conditions the common colorimetric test of the hyaluronic acid determination appears ineffective and in the (1)H NMR spectra the peaks of the polymer disappear completely. By a simple separation procedure the presence of hyaluronic acid was revealed by the DMAB test and (1)H NMR while its average molecular weight in the final product was determined by DOSY NMR spectroscopy alone. The latter determination is very important due to the healthy effects of some sizes of this polymer's fragments. PMID:25078662

  9. [Efficacy of plasma substitutes of different molecular weight in acute haemorrhagic shock in dogs (author's transl)].

    PubMed

    Klose, R; Hartung, H J; Ruffmann, R; Lutz, H

    1979-08-01

    Dogs were bled into haemorrhagic shock. They were then given isovolaemic infusions of dextran 60 and 40 and of hydroxyethyl starch with an average molecular weight of 200,000 and 40,000 respectively with a view of assessing the haemodynamic efficacy of these plasma substitutes. Solutions of high molecular weight hydroxyethyl starch (HES 400) were retained in the circulation for about the same length of time as was dextran 60. HES 40 (molecular weight 40,000) was retained for about 3-4 hours as measured by cardiac output. For normalizing a relative hypovolaemia, e.g. during anaesthesia or in some emergencies, colloidal plasma substitutes which will be retained for only a short time are entirely satisfactory. PMID:91161

  10. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    PubMed

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165