Science.gov

Sample records for molecularly imprinted polypyrrole

  1. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    PubMed Central

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  2. Electropolymerized molecularly imprinted polypyrrole film for sensing of clofibric acid.

    PubMed

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6-8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  3. Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: study of imprinting parameters.

    PubMed

    Turco, Antonio; Corvaglia, Stefania; Mazzotta, Elisabetta

    2015-01-15

    The present work describes the development of a simple and cost-effective electrochemical sensor for sulfadimethoxine (SDM) based on molecularly imprinted overoxidized polypyrrole (PPy). An all electrochemical approach is used for sensor fabrication and application consisting in molecularly imprinted polymer (MIP) galvanostatic deposition on a gold electrode and its overoxidation under different experimental conditions and in SDM amperometric detection. Several parameters influencing the imprinting effect are critically discussed and evaluated. A key role of the electrolyte used in electropolymerization (tetrabuthylammonium perchlorate and lithium perchlorate) has emerged demonstrating its effect on sensing performances of imprinted PPy and, related to this, on its morphology, as highlighted by atomic force microscopy (AFM). The effect of different overoxidation conditions in removing template is evaluated by analyzing MIP films before and after the treatment by X-ray photoelectron spectroscopy (XPS) also evidencing the correlation between MIP chemical structure and its rebinding ability. MIP-template interaction is verified also by Fourier Transform Infrared (FT-IR) spectroscopy. Under the selected optimal conditions, MIP sensor shows a linear range from 0.15 to 3.7 mM SDM, a limit of detection of 70 μM, a highly reproducible response (RSD 4.2%) and a good selectivity in the presence of structurally related molecules. SDM was determined in milk samples spiked at two concentration levels: 0.2 mM and 0.4 mM obtaining a satisfactory recovery of (97±3)% and (96±8)%, respectively. PMID:25104433

  4. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    PubMed

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. PMID:26095144

  5. Voltammetric Determination of Flunixin on Molecularly Imprinted Polypyrrole Modified Glassy Carbon Electrode

    PubMed Central

    Radi, Abd-Elgawad; Abd El-Ghany, Nadia; Wahdan, Tarek

    2016-01-01

    A novel electrochemical sensing approach, based on electropolymerization of a molecularly imprinted polypyrrole (MIPpy) film onto a glassy carbon electrode (GCE) surface, was developed for the detection of flunixin (FXN). The sensing conditions and the performance of the constructed sensor were assessed by cyclic, differential pulse and (DPV) square wave voltammetry (SWV). The sensor exhibited high sensitivity, with linear responses in the range of 5.0 to 50.0 µM with detection limits of 1.5 and 1.0 µM for DPV and SWV, respectively. In addition, the sensor showed high selectivity towards FXN in comparison to other interferents. The sensor was successfully utilized for the direct determination of FXN in buffalo raw milk samples. PMID:27242945

  6. Electrochemical Preparation of a Molecularly Imprinted Polypyrrole-modified Pencil Graphite Electrode for Determination of Ascorbic Acid

    PubMed Central

    Özcan, Levent; Şahin, Mutlu; Şahin, Yücel

    2008-01-01

    A molecularly imprinted polymer (MIP) polypyrrole (PPy)-based film was fabricated for the determination of ascorbic acid. The film was prepared by incorporation of a template molecule (ascorbic acid) during the electropolymerization of pyrrole onto a pencil graphite electrode (PGE) in aqueous solution using a cyclic voltammetry method. The performance of the imprinted and non-imprinted (NIP) films was evaluated by differential pulse voltammetry (DPV). The effect of pH, monomer and template concentrations, electropolymerization cycles and interferents on the performance of the MIP electrode was investigated and optimized. The molecularly imprinted film exhibited a high selectivity and sensitivity toward ascorbic acid. The DPV peak current showed a linear dependence on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 0.25 to 7.0 mM of ascorbic acid with a correlation coefficient of 0.9946. The detection limit (3σ) was determined as 7.4×10−5 M (S/N=3). The molecularly-imprinted polypyrrole-modified pencil graphite electrode showed a stable and reproducible response, without any influence of interferents commonly existing in pharmaceutical samples. The proposed method is simple and quick. The PPy electrodes have a low response time, good mechanical stability and are disposable simple to construct.

  7. Nanostructure conducting molecularly imprinted polypyrrole film as a selective sorbent for benzoate ion and its application in spectrophotometric analysis of beverage samples.

    PubMed

    Manbohi, Ahmad; Shamaeli, Ehsan; Alizadeh, Naader

    2014-07-15

    The benzoate anion was selectively extracted by electrochemically controlled solid-phase microextraction (EC-SPME) using a electro-synthesised nanostructure conducting molecularly imprinted polypyrrole (CMIP) film that imprinted for benzoate ions (template ion). The sorbent behaviors of CMIP were characterised using spectrophotometry analysis. The effect of pH, uptake and released times and potentials, template ion concentration, and interference were investigated, and experimental conditions optimised. The film exhibited excellent selectivity in the presence of potential interference from anions including salicylate, sorbate, citrate, phosphate, acetate and chloride ions. The calibration graph was linear (R(2)⩾ 0.993) in the range 1.1 × 10(-5)-5.5 × 10(-4) mol L(-1) and detection limit was 5.2 × 10(-6) mol L(-1). The relative standard deviation was less than 4.5% (n=3). The CMIP film, as a solid-phase micro-extraction absorbent, was applied for the selective clean up and quantification of benzoate in beverage samples using the EC-SPME-spectrophotometric method. The results were in agreement with those obtained using HPLC analysis. This method has a good selectivity and mechanical stability and is disposable simple to construct. However, HPLC method is more selective for determination of benzoate in some food products which have interference compounds such as vanilla and flavoring agents. PMID:24594173

  8. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions.

    PubMed

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang

    2015-08-30

    A novel molecularly imprinted polymer (MIP)-coated magnetic TiO2 nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC-MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, "green" and low-cost degradation of CR in industrial printing and dyeing wastewater. PMID:25867589

  9. Molecularly Imprinted Membranes

    PubMed Central

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  10. Electrochemical preparation of a molecularly imprinted polypyrrole modified pencil graphite electrode for the determination of phenothiazine in model and real biological samples.

    PubMed

    Nezhadali, Azizollah; Rouki, Zohreh; Nezhadali, Mohammad

    2015-11-01

    A sensitive electrochemical sensor for determination of phenothiazine (PTZ) was introduced based on molecularly imprinted polymer (MIP) film. A computational study was performed to evaluate the template-monomer geometry and interaction energy in the prepolymerization mixture. The electrode was prepared during electropolymerization of pyrrole (Py) on a pencil graphite electrode (PGE) by cyclic voltammetry (CV) technique. The quantitative measurements were performed using differential pulse voltammetry (DPV) in Britton-Robinson (BR) buffer solutions using 60% (v/v) acetonitrile-water (ACN/H2O) binary solvent. The effect of important parameters like pH, monomer concentration, number of cycles, etc on the efficiency of MIP electrode was optimized and the calibration curve was plotted at optimal conditions. Two dynamic linear ranges of 1-300 µmol L(-1) and 0.5-10 mmol L(-1) were observed. The detection limit (based on S/N=3) of PTZ was obtained 3×10(-7) mol L(-1). The MIP/PGE has been successfully applied as a selective sensor for fast and accurate determination of PTZ in some model and real biological samples. PMID:26452848

  11. Molecularly imprinted polymers for mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecularly imprinted polymers (MIPs) are a class of synthetic receptors capable of selective recognition of analytes. Recent developments in imprinting technology have made it possible to apply this technology in a range of applications, including mycotoxin detection. Structure-activity relations...

  12. Conducting molecular composites of polypyrrole with electroactive polymeric dopantions

    SciTech Connect

    Cameron, D.A.; Reynolds, J.R.

    1996-10-01

    Polypyrrole is one of the most widely used and studied electroactive polymers due to its good conductivity and stability in air. A variety of low molecular weight and polymeric ions have been used as charge compensating dopants in conductive polypyrrole in its oxidized state. In this work we report the electro-polymerization of polypyrrole films incorporating electroactive N-substituted polyaniline polyelectrolytes as dopant ions.

  13. Astrobiological Molecularly Imprinted Polymer Sensors

    NASA Astrophysics Data System (ADS)

    Izenberg, N. R.; Murray, G. M.; van Houten, K. A.; Hofstra, A. A.

    2005-12-01

    Development of Molecularly Imprinted Polymer (MIP) sensors for astrobiology is intended to provide a new class of microlaboratory sensors compatible with other life or biomarker detection. Molecular imprinting is a process for making selective binding sites in synthetic polymers. The process may be approached by designing the recognition site or by simply choosing monomers that may have favorable interactions with the imprinting molecule. We are working to apply this methodology to astrobiology for development of a reliable, low cost, low mass, low power consumption sensor technology for quantitative in-situ analysis of biochemistry, biomarkers, and other indicators of astrobiological importance. Specific goals of the project are: 1) To develop a general methodology and specific methods for MIP-based sensor construction. The overall methodology will guide procedures for design and testing of any desired sensor. Specific methods will be applied to key families and specific species of astrobiological interest, i.e., alkanes (and Polycyclic aromatic hydrocarbons - PAHs), amino acids, steroids, and hopanes; 2) To construct and characterize the general family and specific species sensors. We will test for accuracy, precision, interferences, and limitations of the sensor against blanks, standards, and known terrestrial biological environment samples. Additional testing will determine sturdiness and longevity of sensors after exposure to transit conditions (launch and space environment), and at potential target environments (pressure, temperature, pH, etc.); and 3) To construct and demonstrate the combination of multiple sensors into a viable prototype instrument, and roadmap the expansion of potential instrument capabilities and exploration of the ultimate environmental limitations of the technology, and the necessary changes and additions to create a mission-ready instrument. Initial work has resulted successful detection of aqueous alanine (D and L) with simple MIP

  14. Electrochemical Molecular Imprinted Sensors Based on Electrospun Nanofiber and Determination of Ascorbic Acid.

    PubMed

    Zhai, Yunyun; Wang, Dandan; Liu, Haiqing; Zeng, Yanbo; Yin, Zhengzhi; Li, Lei

    2015-01-01

    In this study, electrochemical molecularly imprinted sensors were fabricated and used for the determination of ascorbic acid (AA). Nanofiber membranes of cellulose acetate (CA)/multi-walled carbon nanotubes (MWCNTs)/polyvinylpyrrolidone (PVP) (CA/MWCNTs/PVP) were prepared by electrospinning technique. After being transferred to a glass carbon electrode (GC), the nanofiber interface was further polymerized with pyrrole through electrochemical cyclic voltammetry (CV) technique. Meanwhile, target molecules (such as AA) were embedded into the polypyrrole through the hydrogen bond. The effects of monomer concentration (pyrrole), the number of scan cycles and scan rates of polymerization were optimized. Differential pulse voltammetry (DPV) tests indicated that the oxidation current of AA (the selected target) were higher than that of the structural analogues, which illustrated the selective recognition of AA by molecularly imprinted sensors. Simultaneously, the molecularly imprinted sensors had larger oxidation current of AA than non-imprinted sensors in the processes of rebinding. The electrochemical measurements showed that the molecularly imprinted sensors demonstrated good identification behavior for the detection of AA with a linear range of 10.0 - 1000 μM, a low detection limit down to 3 μM (S/N = 3), and a recovery rate range from 94.0 to 108.8%. Therefore, the electrochemical molecularly imprinted sensors can be used for the recognition and detection of AA without any time-consuming elution. The method presented here demonstrates the great potential for electrospun nanofibers and MWCNTs to construct electrochemical sensors. PMID:26256603

  15. Molecularly Imprinted Polymers: Present and Future Prospective

    PubMed Central

    Vasapollo, Giuseppe; Sole, Roberta Del; Mergola, Lucia; Lazzoi, Maria Rosaria; Scardino, Anna; Scorrano, Sonia; Mele, Giuseppe

    2011-01-01

    Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented. PMID:22016636

  16. Plastic Antibodies: Molecular Recognition with Imprinted Polymers

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Furmanski, Brian; Shimizu, Ken D.

    2005-01-01

    Synthetic polymers are prepared and tested in a study for their molecular recognition properties of an adenine derivative, ethyl adenine-9-acetate (EA9A), within two laboratory periods. The procedure introduces undergraduate chemistry students to noncovalent molecular imprinting as well as the analytical techniques for assessing their recognition…

  17. Molecularly imprinted polymers for biomedical and biotechnological applications

    NASA Astrophysics Data System (ADS)

    Dmitrienko, E. V.; Pyshnaya, I. A.; Martyanov, O. N.; Pyshnyi, D. V.

    2016-05-01

    This survey covers main advances in the preparation and application of molecularly imprinted polymers which are capable of specific recognition of biologically active compounds. The principles underlying the production of highly efficient and template-specific molecularly imprinted polymers are discussed. The focus is on the imprinting of highly structured macromolecular and supramolecular templates. The existing and potential applications of molecularly imprinted polymers in various fields of chemistry and molecular biology are considered. The bibliography includes 261 references.

  18. Studies on molecular recognition of thymidines with molecularly imprinted polymers

    NASA Astrophysics Data System (ADS)

    Chen, Zhen-He; Luo, Ai-Qin; Sun, Li-Quan

    2009-07-01

    Molecularly imprinted polymers (MIPs) with excellent molecular recognition ability have been used in chemical sensors, chromatographic separation and biochemical analyses. Thymidine is an important part of DNA for biomolecular recognition and the intermediate of many medicines. The polymers imprinted with the template of thymidine and 5'-Otosylthymidine have been prepared, using a non-proton solvent, acetonitrile as the porogen. Direct imprinting with thymidine could not form strong molecular interaction sites in this system. Relative MIPs were obtained by bulk polymerization and their adsorption capacities were investigated. The adsorption capacities of MIP (P2) and nonimprinted polymer (P20) for thymidine are 0.120 mg•g-1and 0.103 mg•g-1, respectively. The imprinting factor is 1.17. As 5'-O-tosylthymidine is more soluble than thymidine moiety in acetonitrile and give rise to more sites of molecular recognition. The results demonstrated that the imprinted polymers were able to bind and recognize thymidine moderately in acetonitrile. MIPs imprinted with 5'-O-tosylthymidine like nature enzymes displayed some recognition ability to its analogues. The insoluble derivatives in the non-proton solvent can be an effective template to prepare efficient imprinting recognition sites.

  19. [Spectroscopic Study of Salbutamol Molecularly Imprinted Polymers].

    PubMed

    Ren, Hui-peng; Guan, Yu-yu; Dai, Rong-hua; Liu, Guo-yan; Chai, Chun-yan

    2016-02-01

    In order to solve the problem of on-site rapid detection of salbutamol residues in feed and animal products, and develop a new method of fast detection of salbutamol on the basis of the molecular imprinting technology, this article uses the salbutamol (SAL) working as template molecule, methacrylic acid (MAA) working as functional monomer. On this basis, a new type of core-shell type salbutamol molecularly imprinted polymers were prepared with colloidal gold particles as triggering core. Superficial characteristics of the MIPs and the related compounds were investigated by ultraviolet (UV) spectra and infrared (IR) spectra, Raman spectra, Scanning electron microscopy (SEM) respectively. The results indicated that a stable hydrogen bonding complex has been formed between the carboxyl groups of SAL and MA with a matching ratio of 1:1. The complex can be easily eluted by the reagent containing hydrogen bonding. The chemical binding constant K reaches -0.245 x 10⁶ L² · mol⁻². The possible binding sites of the hydrogen bonding was formed between the hydrogen atoms of -COOH in MA and the oxygen atoms of C==O in SAL. IR and Raman spectrum showed that, compared with MA, a significant red shift of -OH absorption peak was manifested in MIPs, which proved that SAL as template molecule occurred a specific bond between MA. Red shift of stretching vibration absorption peak of C==O was also detected in the un-eluted MIPs and obvious energy loss happened, which demonstrated a possible binding sites is SAL intramolecular of C==O atom of oxygen. If the hydrogen atoms of -COOH in MA wanted to generate hydrogen bond. However, the shapes of absorption peak of other functional groups including C==C, C==O, and -OH were very similar both in MIPs and NIPs. Specific cavities were formed after the template molecules in MIPs were removed. It was proved by the adsorption experiment that the specific sites in these cavities highly match with the chemical and space structure of SAL

  20. Nanoscale molecularly imprinted polymers and method thereof

    DOEpatents

    Hart, Bradley R.; Talley, Chad E.

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  1. Computationally Designed Molecularly Imprinted Materials

    NASA Astrophysics Data System (ADS)

    Pavel, Dumitru; Lagowski, Jolanta; Faid, Karim

    2004-03-01

    Molecular dynamics simulations were carried out for different molecular systems in order to predict the binding affinities, binding energies, binding distances and the active site groups between the simulated molecular systems and different bio-ligands (theophylline and its derivatives), which have been designed and minimized using molecular simulation techniques. The first simulated molecular systems consisted of a ligand and functional monomer, such as methacrylic acid and its derivatives. For each pair of molecular systems, (10 monomers with a ligand and 10 monomers without a ligand) a total energy difference was calculated in order to estimate the binding energy between a ligand and the corresponding monomers. The analysis of the simulated functional monomers with ligands indicates that the functional group of monomers interacting with ligands tends to be either COOH or CH2=CH. The distances between the ligand and monomer, in the most stable cases as indicated above, are between 2.0-4.5 Å. The second simulated molecular systems consisted of a ligand and a polymer. The polymers were obtained from monomers that were simulated above. And similar to monomer study, for each pair of molecular systems, (polymer with a ligand and polymer without a ligand) a total energy difference was calculated in order to estimate the binding energy between ligand and the corresponding polymer. The binding distance between the active site of a polymer and a ligand will also be discussed.

  2. Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification.

    PubMed

    Andaç, Müge; Galaev, Igor Yu; Denizli, Adil

    2016-05-15

    The publications in macro-molecularly imprinted polymers have increased drastically in recent years with the development of water-based polymer systems. The macroporous structure of cryogels has allowed the use of these materials within different applications, particularly in affinity purification and molecular imprinting based methods. Due to their high selectivity, specificity, efficient mass transfer and good reproducibility, molecularly imprinted cryogels (MICs) have become attractive for researchers in the separation and purification of proteins. In this review, the recent developments in affinity based cryogels and molecularly imprinted cryogels in protein purification are reviewed comprehensively. PMID:26454622

  3. Molecular imprint of dust evolution

    NASA Astrophysics Data System (ADS)

    Akimkin, Vitaly; Zhukovska, Svitlana; Wiebe, Dmitri; Semenov, Dmitry; Pavlyuchenkov, Yaroslav; Vasyunin, Anton; Birnstiel, Til; Henning, Thomas

    2013-07-01

    Evolution of sub-micron grains is an essential process during early stages of planet formation. The dust growth and sedimentation to the midplane affect a spectral energy distribution. At the same time dust evolution can alter significantly the distribution of gas that is a factor of 100 more massive than dust and can be traced with molecular line observations. We present simulations of protoplanetary disk structure with grain evolution using the ANDES code ("AccretioN disk with Dust Evolution and Sedimentation"). ANDES comprises (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain chemical network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. Such a set of physical processes allows us to assess the impact of dust evolution on the gas component, which is primarily related to radiation field and total available surface for chemical reactions. Considering cases of (i) evolved dust (2 Myr of grain coagulation, fragmentation and sedimentation) and (ii) pristine dust (well- mixed 0.1 micron grains), we found a sufficient changes in disk physical and chemical structure caused by the dust evolution. Due to higher transparency of the evolved disk model UV-shielded molecular layer is shifted closer to the midplane. The presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO, while the depletion is still effective in adjacent upper layers. Molecular concentrations of many species are enhanced in the disk model with dust evolution (CO2, NH2CN, HNO, H2O, HCOOH, HCN, CO) which provides an opportunity to use these molecules as tracers of dust evolution.

  4. A Combined Molecular Dynamics and Experimental Study of Doped Polypyrrole.

    PubMed

    Fonner, John M; Schmidt, Christine E; Ren, Pengyu

    2010-10-01

    Polypyrrole (PPy) is a biocompatible, electrically conductive polymer that has great potential for battery, sensor, and neural implant applications. Its amorphous structure and insolubility, however, limit the experimental techniques available to study its structure and properties at the atomic level. Previous theoretical studies of PPy in bulk are also scarce. Using ab initio calculations, we have constructed a molecular mechanics force field of chloride-doped PPy (PPyCl) and undoped PPy. This model has been designed to integrate into the OPLS force field, and parameters are available for the Gromacs and TINKER software packages. Molecular dynamics (MD) simulations of bulk PPy and PPyCl have been performed using this force field, and the effects of chain packing and electrostatic scaling on the bulk polymer density have been investigated. The density of flotation of PPyCl films has been measured experimentally. Amorphous X-ray diffraction of PPyCl was obtained and correlated with atomic structures sampled from MD simulations. The force field reported here is foundational for bridging the gap between experimental measurements and theoretical calculations for PPy based materials. PMID:21052521

  5. A Combined Molecular Dynamics and Experimental Study of Doped Polypyrrole

    PubMed Central

    Fonner, John M.; Schmidt, Christine E.; Ren, Pengyu

    2010-01-01

    Polypyrrole (PPy) is a biocompatible, electrically conductive polymer that has great potential for battery, sensor, and neural implant applications. Its amorphous structure and insolubility, however, limit the experimental techniques available to study its structure and properties at the atomic level. Previous theoretical studies of PPy in bulk are also scarce. Using ab initio calculations, we have constructed a molecular mechanics force field of chloride-doped PPy (PPyCl) and undoped PPy. This model has been designed to integrate into the OPLS force field, and parameters are available for the Gromacs and TINKER software packages. Molecular dynamics (MD) simulations of bulk PPy and PPyCl have been performed using this force field, and the effects of chain packing and electrostatic scaling on the bulk polymer density have been investigated. The density of flotation of PPyCl films has been measured experimentally. Amorphous X-ray diffraction of PPyCl was obtained and correlated with atomic structures sampled from MD simulations. The force field reported here is foundational for bridging the gap between experimental measurements and theoretical calculations for PPy based materials. PMID:21052521

  6. Design of molecularly imprinted conducting polymer protein-sensing films via substrate-dopant binding.

    PubMed

    Komarova, Elena; Aldissi, Matt; Bogomolova, Anastasia

    2015-02-21

    Addressing the challenge of protein biosensing using molecularly imprinted polymers (MIP), we have developed and tested a novel approach to creating sensing conducive polymer films imprinted with a protein substrate, ricin toxin chain A (RTA). Our approach for creating MIP protein sensing films is based on a concept of substrate-guided dopant immobilization with subsequent conducting polymer film formation. In this proof-of-concept work we have tested three macromolecular dopants with strong protein affinity, Ponceau S, Coomassie BB R250 and ι-Carrageenan. The films were formed using sequential interactions of the substrate, dopant and pyrrole, followed by electrochemical polymerization. The films were formed on gold array electrodes allowing for extensive data acquisition. The thickness of the films was optimized to allow for efficient substrate extraction, which was removed by a combination of protease and detergent treatment. The MIP films were tested for substrate rebinding using electrochemical impedance spectroscopy (EIS). The presence of macromolecular dopants was essential for MIP film specificity. Out of three dopants tested, RTA-imprinted polypyrrole films doped with Coomassie BB performed with highest specificity towards detection of RTA with a level of detection (LOD) of 0.1 ng ml(-1). PMID:25574520

  7. Protein crystallization facilitated by molecularly imprinted polymers

    PubMed Central

    Saridakis, Emmanuel; Khurshid, Sahir; Govada, Lata; Phan, Quan; Hawkins, Daniel; Crichlow, Gregg V.; Lolis, Elias; Reddy, Subrayal M.; Chayen, Naomi E.

    2011-01-01

    We present a previously undescribed initiative and its application, namely the design of molecularly imprinted polymers (MIPs) for producing protein crystals that are essential for determining high-resolution 3D structures of proteins. MIPs, also referred to as “smart materials,” are made to contain cavities capable of rebinding protein; thus the fingerprint of the protein created on the polymer allows it to serve as an ideal template for crystal formation. We have shown that six different MIPs induced crystallization of nine proteins, yielding crystals in conditions that do not give crystals otherwise. The incorporation of MIPs in screening experiments gave rise to crystalline hits in 8–10% of the trials for three target proteins. These hits would have been missed using other known nucleants. MIPs also facilitated the formation of large single crystals at metastable conditions for seven proteins. Moreover, the presence of MIPs has led to faster formation of crystals in all cases where crystals would appear eventually and to major improvement in diffraction in some cases. The MIPs were effective for their cognate proteins and also for other proteins, with size compatibility being a likely criterion for efficacy. Atomic force microscopy (AFM) measurements demonstrated specific affinity between the MIP cavities and a protein-functionalized AFM tip, corroborating our hypothesis that due to the recognition of proteins by the cavities, MIPs can act as nucleation-inducing substrates (nucleants) by harnessing the proteins themselves as templates. PMID:21690356

  8. Chemical microsensors with molecularly imprinted sensitive layers

    NASA Astrophysics Data System (ADS)

    Dickert, Franz L.; Greibl, Wolfgang; Sikorski, Renatus; Tortschanoff, Matthias; Weber, K.; Bulst, W. E.; Fischerauer, G.

    1998-12-01

    The bottleneck in the development of chemical sensors is the design of the coatings for chemical recognition of the analyte. One pronounced method is to tailor supramolecular cavities for different analytes. Polyfunctional linkers or the embedding of these materials in a polymeric matrix can improve stability and response time of the sensor. An even more favorable method to synthesize chemically sensitive layers is realized by molecular imprinting, since a rigid polymer can be generated directly on the transducer of interest and may be included in its production process. The analyte of interest acts as a template during the polymerization process and is evaporated or extracted by suitable solvents. Due to the cavities formed this polymer enriches analyte molecules, which can be detected by mass- sensitive devices such as QMB or SAW resonators or by optical measurements. This procedure allows both the detection of polycyclic aromatic hydrocarbons (PAHs) with fluorescence or mass sensitive devices. If the print PAHs are varied the polymers are tuned to the desired analyte. The enrichment of solvent vapors or other uncolored specimen by the layer can also be followed by the embedding of carbenium ions used as optical labels.

  9. Molecular crowding-based imprinted monolithic column for capillary electrochromatography.

    PubMed

    Zong, Hai-Yan; Liu, Xiao; Liu, Zhao-Sheng; Huang, Yan-Ping

    2015-03-01

    Molecular crowding is a new approach to stabilizing binding sites and improving molecular recognition. In this work, the concept was applied to the preparation of imprinted monolithic columns for CEC. The imprinted monolithic column was synthesized using a mixture of d-zopiclone (d-ZOP)(template), methacrylic acid, ethylene glycol dimethacrylate, and poly(methyl methacrylate) (PMMA) (molecular crowding agent). The resulting PMMA-based imprinted capillary was able to separate ZOP enantiomers in CEC mode. The resolution of enantiomer separation achieved on the d-ZOP-imprinted monolithic column was up to 2.09. Some polymerization factors, such as template-monomer molar ratio, functional monomer-cross-linker molar ratio and the composition of the porogen, on the imprinting effect of resulting molecularly imprinted polymer (MIP) monolithic column were systematically investigated. Chromatographic parameters, including pH values, the content of acetonitrile and the salt concentration on chiral separation were also studied. The results indicated the addition of PMMA resulted in MIPs with superior retention properties and excellent selectivity for d-ZOP, as compared to the MIPs prepared without addition of the crowding-inducing agent. The results revealed that molecular crowding is an effective method for the preparation of a highly efficient MIP stationary phase for chiral separation in CEC. PMID:25404035

  10. Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci.

    PubMed

    Eggermann, Thomas; Perez de Nanclares, Guiomar; Maher, Eamonn R; Temple, I Karen; Tümer, Zeynep; Monk, David; Mackay, Deborah J G; Grønskov, Karen; Riccio, Andrea; Linglart, Agnès; Netchine, Irène

    2015-01-01

    Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical impacts upon growth, development and metabolism. Thus, detailed and systematic analysis of IDs can not only identify unifying principles of molecular epigenetics in health and disease, but also support personalisation of diagnosis and management for individual patients and families. PMID:26583054

  11. Molecularly Imprinted Polymer Based Sensor for the Detection of Theophylline

    NASA Astrophysics Data System (ADS)

    Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.; del Valle, Manel

    2011-11-01

    A molecularly imprinted polymer (MIP) impedance-based sensor was employed to detect theophylline in distilled water. To evaluate its sensibility, impedance measurements were carried out in a diluted solution of theophylline (1 mM) and distilled water using MIP and NIP (reference non-imprinted polymer) sensors. MIP showed higher sensitivity to theophylline than the NIP. This feature shows their suitability for developing an electronic tongue system for determination of methylxanthines.

  12. Characterization of the Binding Properties of Molecularly Imprinted Polymers.

    PubMed

    Ansell, Richard J

    2015-01-01

    The defining characteristic of the binding sites of any particular molecularly imprinted material is heterogeneity: that is, they are not all identical. Nonetheless, it is useful to study their fundamental binding properties, and to obtain average properties. In particular, it has been instructive to compare the binding properties of imprinted and non-imprinted materials. This chapter begins by considering the origins of this site heterogeneity. Next, the properties of interest of imprinted binding sites are described in brief: affinity, selectivity, and kinetics. The binding/adsorption isotherm, the graph of concentration of analyte bound to a MIP versus concentration of free analyte at equilibrium, over a range of total concentrations, is described in some detail. Following this, the techniques for studying the imprinted sites are described (batch-binding assays, radioligand binding assays, zonal chromatography, frontal chromatography, calorimetry, and others). Thereafter, the parameters that influence affinity, selectivity and kinetics are discussed (solvent, modifiers of organic solvents, pH of aqueous solvents, temperature). Finally, mathematical attempts to fit the adsorption isotherms for imprinted materials, so as to obtain information about the range of binding affinities characterizing the imprinted sites, are summarized. PMID:25796622

  13. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    PubMed Central

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  14. Rapid preparation of molecularly imprinted polymer by frontal polymerization.

    PubMed

    Zhong, Dan-Dan; Liu, Xin; Pang, Qian-Qian; Huang, Yan-Ping; Liu, Zhao-Sheng

    2013-04-01

    Frontal polymerization was successfully applied, for the first time, to obtain molecularly imprinted polymers (MIPs). The method provides a solvent-free polymerization mode, and the reaction can be completed in 30 min. By this approach, MIPs were synthesized using a mixture of levofloxacin (template), methacrylic acid, and divinylbenzene. The effect of template concentration and the amount of comonomer on the imprinting effect of the resulting MIPs was investigated. The textural and morphological parameters of the MIP particles were also characterized by mercury intrusion porosimetry, nitrogen adsorption isotherms, and scanning electron microscopy, providing evidence concerning median pore diameter, pore volumes, and pore size distributions. The levofloxacin-imprinted polymer formed in frontal polymerization mode showed high selectivity, with an imprinting factor of 5.78. The results suggest that frontal polymerization provides an alternative means to prepare MIPs that are difficult to synthesize and may open up new perspectives in the field of MIPs. PMID:23392405

  15. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects

    PubMed Central

    Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun

    2015-01-01

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers’ desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed. PMID:26262607

  16. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects.

    PubMed

    Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun

    2015-01-01

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers' desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed. PMID:26262607

  17. [Spectroscopic study of diazepam molecularly imprinted polymers and initiative application to conductimetric sensor based on molecularly imprinted films].

    PubMed

    Liu, Xiao-fang; Li, Feng; Yao, Bing; Wang, Li; Liu, Guo-yan; Chai, Chun-yan

    2010-08-01

    The molecularly imprinted polymers were synthesized using diazepam as the template and molecularly imprinted films (MIF) prepared on screen printed electrodes (SPE). The binding mechanism and recognition characteristics of the molecularly imprinted polymers were studied by ultraviolet (UV) spectra and infrared (IR) spectra. In addition, a conductimetric sensor for diazepam was established preliminarily based on diazepam MIF modified SPE. The results of UV spectra indicated that template molecules and functional monomers had formed 1:2 hydrogen bonding complexes; the results of IR spectra showed that there were some functional groups in the molecularly imprinted polymers which could interact with the template molecules. The molecularly imprinted polymers manifested highly recognition to diazepam. The response of the conductimetric sensor to the concentration of diazepam displayed a linear correlation over a range of 0.04 to 0.62 mg x L(-1) with a detection limit of 0.008 mg x L(-1). The sensor is suitable for on-the-spot detection of diazepam. PMID:20939345

  18. Molecularly imprinted cryogels for carbonic anhydrase purification from bovine erythrocyte.

    PubMed

    Uygun, Murat; Karagözler, A Alev; Denizli, Adil

    2014-04-01

    Molecularly imprinted PHEMAH cryogels were synthesized and used for purification of carbonic anhydrase from bovine erythrocyte. Cryogels were prepared with free radical cryopolymerization of 2-hydroxyethyl methacrylate and methacryloylamido histidine and characterized by swelling degree, macroporosity, FTIR, SEM, surface area and elemental analysis. Maximum carbonic anhydrase adsorption of molecularly imprinted PHEMAH cryogel was found to be 3.16 mg/g. Selectivity of the molecularly imprinted cryogel was investigated using albumin, hemoglobin, IgG, γ-globulin, and lysozyme as competitor proteins and selectivity ratios were found to be 15.26, 60.05, 21.88, 17.61, and 17.42, respectively. Carbonic anhydrase purity was demonstrated by SDS-PAGE and zymogram results. PMID:24528406

  19. Virtual Screening of Receptor Sites for Molecularly Imprinted Polymers.

    PubMed

    Bates, Ferdia; Cela-Pérez, María Concepción; Karim, Kal; Piletsky, Sergey; López-Vilariño, José Manuel

    2016-08-01

    Molecularly Imprinted Polymers (MIPs) are highly advantageous in the field of analytical chemistry. However, interference from secondary molecules can also impede capture of a target by a MIP receptor. This greatly complicates the design process and often requires extensive laboratory screening which is time consuming, costly, and creates substantial waste products. Herein, is presented a new technique for screening of "virtually imprinted receptors" for rebinding of the molecular template as well as secondary structures, correlating the virtual predictions with experimentally acquired data in three case studies. This novel technique is particularly applicable to the evaluation and prediction of MIP receptor specificity and efficiency in complex aqueous systems. PMID:27076379

  20. Supramolecular recognition of estrogens via molecularly imprinted polymers

    PubMed Central

    Ričanyová, Júlia; Gadzała-Kopciuch, Renata; Szumski, Michał

    2010-01-01

    The isolation and preconcentration of estrogens from new types of biological samples (acellular and protein-free simulated body fluid) by molecularly imprinted solid-phase extraction has been described. In this technique, supramolecular receptors, namely molecularly imprinted polymers (MIPs) are used as a sorbent material. The recognition sites of MIPs were prepared by non-covalent multiple interactions and formed with the target 17β-estradiol as a template molecule. High-performance liquid chromatography with spectroscopic UV, selective, and a sensitive electrochemical CoulArray detector was used for the determination of 17β-estradiol, estrone, and estriol in simulated body fluid which mimicked human plasma. PMID:20549493

  1. Advancements of molecularly imprinted polymers in the food safety field.

    PubMed

    Wang, Peilong; Sun, Xiaohua; Su, Xiaoou; Wang, Tie

    2016-06-01

    Molecularly imprinted technology (MIT) has been widely employed to produce stable, robust and cheap molecularly imprinted polymer (MIP) materials that possess selective binding sites for recognition of target analytes in food, such as pesticides, veterinary drugs, mycotoxins, illegal drugs and so on. Because of high selectivity and specificity, MIPs have drawn great attention in the food safety field. In this review, the recent developments of MIPs in various applications for food safety, including sample preparation, chromatographic separation, sensing, immunoassay etc., have been summarized. We particularly discuss the advancements and limitations in these applications, as well as attempts carried out for their improvement. PMID:26937495

  2. Holographic molecularly imprinted polymers for label-free chemical sensing.

    PubMed

    Fuchs, Yannick; Soppera, Olivier; Mayes, Andrew G; Haupt, Karsten

    2013-01-25

    Holographic molecularly imprinted polymer films for the use in chemical sensors are obtained in one step through photopolymerization with interfering laser beams. This results in hierarchical structuring at four length scales: micrometer-scale patterning of millimeter- to centimeter- size polymer objects with holographic optical properties, exhibiting nanometer-scale porosity and specific molecular recognition properties at the molecular scale through self-assembly. Specific binding of the target analyte testosterone is measured by diffraction analysis. PMID:23080512

  3. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    PubMed

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. PMID:26520251

  4. PREPARATION AND CHARACTERIZATION OF MOLECULARLY IMPRINTED ELECTROPOLYMERIZED CARBON ELECTRODES

    EPA Science Inventory

    Molecularly imprinted polymers (MIP) selective for fluorescein, rhodamine or 2,4-dichlorophenoxyacetic acid (2,4-D) were electropolymerized onto graphite electrodes using an aqueous solution equimolar in resorsinol/ortho-phenylenediamine and in the presence of the template mole...

  5. Production of abiotic receptors by molecular imprinting of proteins

    SciTech Connect

    Braco, L.; Dabulis, K.; Klibanov, A.M. )

    1990-01-01

    When a protein is dissolved in a concentrated aqueous solution of a multifunctional organic compound, freeze-dried, and washed with an anhydrous organic solvent to remove the ligand, the resultant imprinted protein preparation binds up to 30-fold more of the template compound in anhydrous solvents that the nonimprinted protein in the same solvent (and both proteins in water). These artificial receptors exhibit marked ligand selectivity as well as stability in anhydrous media. This phenomenon of molecular imprinting, demonstrated for several unrelated proteins and ligands, may be helpful in the development of unique bioadsorbents and, potentially, new biocatalysts.

  6. Improvement of DNA recognition through molecular imprinting: hybrid oligomer imprinted polymeric nanoparticles (oligoMIP NPs).

    PubMed

    Brahmbhatt, H; Poma, A; Pendergraff, H M; Watts, J K; Turner, N W

    2016-02-01

    High affinity and specific binding are cardinal properties of nucleic acids in relation to their biological function and their role in biotechnology. To this end, structural preorganization of oligonucleotides can significantly improve their binding performance, and numerous examples of this can be found in Nature as well as in artificial systems. Here we describe the production and characterization of hybrid DNA-polymer nanoparticles (oligoMIP NPs) as a system in which we have preorganized the oligonucleotide binding by molecular imprinting technology. Molecularly imprinted polymers (MIPs) are cost-effective "smart" polymeric materials capable of antibody-like detection, but characterized by superior robustness and the ability to work in extreme environmental conditions. Especially in the nanoparticle format, MIPs are dubbed as one of the most suitable alternatives to biological antibodies due to their selective molecular recognition properties, improved binding kinetics as well as size and dispersibility. Nonetheless, there have been very few attempts at DNA imprinting in the past due to structural complexity associated with these templates. By introducing modified thymine bases into the oligonucleotide sequences, which allow establishing covalent bonds between the DNA and the polymer, we demonstrate that such hybrid oligoMIP NPs specifically recognize their target DNA, and that the unique strategy of incorporating the complementary DNA strands as "preorganized selective monomers" improves the recognition properties without affecting the NPs physical properties such as size, shape or dispersibility. PMID:26509192

  7. Uniform-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer.

    PubMed

    Haginaka, J; Takehira, H; Hosoya, K; Tanaka, N

    1999-07-23

    A uniform-sized molecularly imprinted polymer (MIP) for (S)-naproxen selectively modified with hydrophilic external layer has been prepared. First, the molecularly imprinted polymer for (S)-naproxen was prepared using 4-vinylpyridine and ethylene glycol dimethacrylate (EDMA) as a functional monomer and cross-linker, respectively, by a multi-step swelling and thermal polymerization method. Next, a 1:1 mixture of glycerol monomethacrylate (GMMA) and glycerol dimethacrylate (GDMA) was used for hydrophilic surface modification, and it was added directly to the molecularly imprinted polymer for (S)-naproxen 4 h after the start of molecular imprinting. The retention factors of all solutes tested were decreased with the surface modified molecularly imprinted polymer, compared with the unmodified molecularly imprinted polymer. However, chiral recognition of racemic naproxen was attained with the surface modified molecularly imprinted polymer as well as the unmodified molecularly imprinted polymer. Further, bovine serum albumin was completely recovered from the surface modified molecularly imprinted polymer. These results revealed that the chiral recognition sites of (S)-naproxen remained unchanged with hydrophilic surface modification, and that the molecularly imprinted polymer for (S)-naproxen was selectively modified with hydrophilic external layer. Preliminary results reveal that the surface modified molecularly imprinted polymer could be applicable to direct serum injection assays of (S)-naproxen. PMID:10457431

  8. Determination of fusaric acid in maize using molecularly imprinted SPE clean-up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new liquid chromatography method to detect fusaric acid in maize is reported based on molecularly imprinted polymer solid phase extraction clean-up (MISPE) using mimic-templated molecularly-imprinted polymers. Picolinic acid was used as a toxin analog for imprinting polymers during a thermolytic s...

  9. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    NASA Astrophysics Data System (ADS)

    Kan, Xianwen; Geng, Zhirong; Zhao, Yao; Wang, Zhilin; Zhu, Jun-Jie

    2009-04-01

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe3O4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  10. Molecularly Imprinted Polymers: Thermodynamic and Kinetic Considerations on the Specific Sorption and Molecular Recognition

    PubMed Central

    Li, Songjun; Huang, Xing; Zheng, Mingxia; Li, Wuke; Tong, Kejun

    2008-01-01

    This article presents a work aiming at thermodynamically and kinetically interpreting the specific sorption and recognition by a molecularly imprinted polymer. Using Boc-L-Phe-OH as a template, the imprinted material was prepared. The result indicates that the prepared polymer can well discriminate the imprint species from its analogue (Boc-D-Phe-OH), so as to adsorb more for the former but less for the latter. Kinetic analysis indicates that this specific sorption, in nature, can be a result of a preferential promotion. The imprint within the polymer causes a larger adsorption rate for the template than for the analogue. Thermodynamic study also implies that the molecular induction from the specific imprint to the template is larger than to the analogue, which thus makes the polymer capable of preferentially alluring the template to bind.

  11. Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting

    DOEpatents

    Sasaki, Darryl Y.; Brinker, C. Jeffrey; Ashley, Carol S.; Daitch, Charles E.; Shea, Kenneth J.; Rush, Daniel J.

    2000-01-01

    A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.

  12. [Molecularly imprinted polymers in electro analysis of proteins].

    PubMed

    Shumyantseva, V V; Bulko, T V; Baychorov, I Kh; Archakov, A I

    2015-01-01

    In the review the main approaches to creation of recognition materials capable of competing with biological specific receptors, (polymeric analogs of antibodies or molecularly imprinted polymers, MIP) for the electro analysis of functionally significant proteins such as a myoglobin, troponin T, albumin, human ferritin, calmodulin are considered. The main types of monomers for MIP fabrication, and methods for MIP/protein interactions, such as a surface plasmon resonance (SPR), nanogravimetry with use of the quartz crystal resonator (QCM), spectral and electrochemical methods are discussed. Experimental data on electrochemical registration of a myoglobin using MIP/electrode are presented. For a development of electrochemical sensor systems based on MIPs, o-phenylenediamine (1,2-diaminobenzene was used as a monomer. It was shown that the imprinting factor Imax(MIP)/Imax(NIP), calculated as a myoglobin signal ratio when embedding in MIP to a myoglobin signal when embedding in the polymer received without molecular template (NIP) corresponds 2-4. PMID:26215409

  13. Molecularly imprinted polymer based enantioselective sensing devices: a review.

    PubMed

    Tiwari, Mahavir Prasad; Prasad, Amrita

    2015-01-01

    Chiral recognition is the fundamental property of many biological molecules and is a quite important field in pharmaceutical analysis because of the pharmacologically different activities of enantiomers in living systems. Enantio-differentiating signal of the sensor requires specific interaction between the chiral compounds (one or a mixture of enantiomers) in question and the selector. This type of interaction is controlled normally by at least three binding centers, whose mutual arrangement and interacting characteristics with one of the enantiomers effectively control the selectivity of recognition. Molecular imprinting technology provides a unique opportunity for the creation of three-dimensional cavities with tailored recognition properties. Over the past decade, this field has expanded considerably across the variety of disciplines, leading to novel transduction approaches and many potential applications. The state-of-art of molecularly imprinted polymer-based chiral recognition might set an exotic trend toward the development of chiral sensors. The objective of this review is to provide comprehensive knowledge and information to all researchers who are interested in exploiting molecular imprinting technology toward the rational design of chiral sensors operating on different transduction principles, ranging from electrochemical to piezoelectric, being used for the detection of chiral compounds as they pose significant impact on the understanding of the origin of life and all processes that occur in living organisms. PMID:25467446

  14. Computational design and multivariate optimization of an electrochemical metoprolol sensor based on molecular imprinting in combination with carbon nanotubes.

    PubMed

    Nezhadali, Azizollah; Mojarrab, Maliheh

    2016-06-14

    This work describes the development of an electrochemical sensor based on a new molecularly imprinted polymer for detection of metoprolol (MTP) at ultra-trace level. The polypyrrole (PPy) was electrochemically synthesized on the tip of a pencil graphite electrode (PGE) which modified whit functionalized multi-walled carbon nanotubes (MWCNTs). The fabrication process of the sensor was characterized by cyclic voltammetry (CV) and the measurement process was carried out by differential pulse voltammetry (DPV). A computational approach was used to screening functional monomers and polymerization solvent for rational design of molecularly imprinted polymer (MIP). Based on computational results, pyrrole and water were selected as functional monomer and polymerization solvent, respectively. Several significant parameters controlling the performance of the MIP sensor were examined and optimized using multivariate optimization methods such as Plackett-Burman design (PBD) and central composite design (CCD). Under the selected optimal conditions, MIP sensor was showed a linear range from 0.06 to 490 μmol L(-1) MTP, a limit of detection of 2.88 nmol L(-1), a highly reproducible response (RSD 3.9%) and a good selectivity in the presence of structurally related molecules. Furthermore, the applicability of the method was successfully tested with determination of MTP in real samples (tablet, and serum). PMID:27181648

  15. Fluorescence measurements of activity associated with a molecularly imprinted polymer imprinted to dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Anderson, John; Pestov, Dmitry; Fischer, Robert L.; Webb, Stanley; Tepper, Gary C.

    2004-03-01

    Steady state and lifetime fluorescence measurements were acquired to measure the binding activity associated with molecularly imprinted polymer (MIP) microparticles imprinted to dipicolinic acid. Dipicolinic acid is a unique compound associated with the sporulation phase of spore-forming bacteria (e.g., genus Bacillus and Clostridium). Vinylic monomers were polymerized in a dimethylformamide solution containing the dipicolinic acid as a template. The resulting MIP was then pulverized and size selected into small microscale particles. Samplers were adapted incorporating the MIP particles within a dialyzer (500 MW). Tests were run on replicate samples of biologically active cultures representing both stationary phase and sporulation post fermentation products in standard media. The permeability of the membrane permitted diffusion of lighter molecular weight constituents from media effluents to enter the dialyzer chamber and contact the MIP. Extractions of the media were measured using steady state and lifetime fluorescence. Results showed dramatic steady state fluorescence changes as a function of excitation, emission and intensity and an estimated lifetime of 5.8 ns.

  16. Caffeine electrochemical sensor using imprinted film as recognition element based on polypyrrole, sol-gel, and gold nanoparticles hybrid nanocomposite modified pencil graphite electrode.

    PubMed

    Rezaei, Behzad; Khalili Boroujeni, Malihe; Ensafi, Ali A

    2014-10-15

    In the present study, a novel sensitive and selective nanocomposite imprinted electrochemical sensor for the indirect determination of caffeine has been prepared. The imprinted sensor was fabricated on the surface of pencil graphite electrode (PGE) via one-step electropolymerization of the imprinted polymer composed of conductive polymer, sol-gel, gold nanoparticles (AuNPs), and caffeine. Due to such combination like the thin film of molecularly imprinted polymer (MIP) with specific binding sites, the sensor responded quickly to caffeine. AuNPs were introduced for the enhancement of electrical response by facilitating charge transfer processes of [Fe(CN)6](3-)/[Fe(CN)6](4-) which was used as an electrochemical active probe. The fabrication process of the sensor was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Several important parameters controlling the performance of the sensor were investigated and optimized. The imprinted sensor has the advantages of high porous surface structure, inexpensive, disposable, excellent stability, good reproducibility and repeatability. The linear ranges of the MIP sensor were in the range from 2.0 to 50.0 and 50.0 to 1000.0 nmol L(-1), with the limit of detection (LOD) of 0.9 nmol L(-1) (S/N=3). Furthermore, the proposed method was successfully intended for the determination of caffeine in real samples (urine, plasma, tablet, green tea, energy and soda drink). PMID:24769451

  17. Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins.

    PubMed

    Szumski, Michał; Grzywiński, Damian; Prus, Wojciech; Buszewski, Bogusław

    2014-10-17

    Monolithic molecularly imprinted polymers extraction columns have been prepared in fused-silica capillaries by UV or thermal polymerization in a two-step process. First, a poly-(trimethylolpropane trimethacrylate) (polyTRIM) core monolith was synthesized either by UV or thermal polymerization. Then it was grafted with the mixture of methacrylic acid (MAA) as a functional monomer, ethylene dimethacrylate (EDMA) as a cross-linking agent, 5,7-dimethoxycoumarin (DMC) as an aflatoxin-mimicking template, toluene as a porogen solvent and 2,2-azobis-(2-methylpropionitrile) (AIBN) as an initiator of the polymerization reaction. Different thermal condition of the photografting and different concentrations of the grafting mixture were tested during polymerization. The extraction capillary columns were evaluated in the terms of their hydrodynamic and chromatographic properties. Retention coefficients for aflatoxin B1 and DMC were used for assessment of the selectivity and imprinting factor. The obtained results indicate that the temperature of photografting and concentration of the grafting mixture are key parameters that determine the quality of the prepared MIPs. From the MIP columns characterized by the highest permeability the column of the highest imprinting factor was applied for isolation of aflatoxins B1, B2, G1 and G2 from the model aqueous sample followed by on-line chromatographic separation. The process was performed using a micro-MISPE-microLC-LIF system of a novel design, which allowed for detection of the eluates from the sample preparation part as well as from the chromatographic separation. PMID:25218633

  18. Molecularly imprinted silica-silver nanowires for tryptophan recognition

    NASA Astrophysics Data System (ADS)

    Díaz-Faes López, T.; Díaz-García, M. E.; Badía-Laíño, R.

    2014-10-01

    We report on silver nanowires (AgNWs) coated with molecularly imprinted silica (MIP SiO2) for recognition of tryptophan (Trp). The use of AgNWs as a template confers an imprinted material with adequate mechanical strength and with a capability of recognizing Trp due to its nanomorphology when compared to spherical microparticles with a similar surface-to-volume ratio. Studies on adsorption isotherms showed the MIP-SiO2-AgNWs to exhibit homogeneous affinity sites with narrow affinity distribution. This suggests that the synthesized material behaves as a 1D nanomaterial with a large area and small thickness with very similar affinity sites. Trp release from MIP-SiO2-AgNWs was demonstrated to be dominated by the diffusion rate of Trp as controlled by the specific interactions with the imprinted silica shell. Considering these results and the lack of toxicity of silica sol-gel materials, the material offers potential in the field of drug or pharmaceutical controlled delivery, but also in optoelectronic devices, electrodes and sensors.

  19. Nicotine molecularly imprinted polymer: synergy of coordination and hydrogen bonding.

    PubMed

    Huynh, Tan-Phat; B K C, Chandra; Sosnowska, Marta; Sobczak, Janusz W; Nesterov, Vladimir N; D'Souza, Francis; Kutner, Wlodzimierz

    2015-02-15

    Two new bis(2,2'-bithienyl)methane derivatives, one with the zinc phthalocyanine substituent (ZnPc-S16) and the other with the 2-hydroxyethyl substituent (EtOH-S4), were synthesized to serve as functional monomers for biomimetic recognition of nicotine (Nic) by molecular imprinting. Formation of a pre-polymerization complex of the Nic template with ZnPc-S16 and EtOH-S4 was confirmed by both the high negative Gibbs free energy gain, ΔG = -115.95 kJ/mol, calculated using the density functional theory at the B3LYP/3-21G* level, and the high stability constant, Ks = 4.67 × 10(5) M(-1), determined by UV-vis titration in chloroform. A solution of this complex was used to deposit a Nic-templated molecularly imprinted polymer (MIP-Nic) film on an Au electrode of a quartz crystal resonator of EQCM by potentiodynamic electropolymerization. The imprinting factor was as high as ~9.9. Complexation of the Nic molecules by the MIP cavities was monitored with X-ray photoelectron spectroscopy (XPS), as manifested by a negative shift of the binding energy of the Zn 2p3/2 electron of ZnPc-S16 after Nic templating. For sensing applications, simultaneous chronoamperometry (CA) and piezoelectric microgravimetry (PM) measurements were performed under flow-injection analysis conditions. The limit of detection of the CA and PM chemosensing was as low as 40 and 12 µM, respectively. Among them, the CA chemosensing was more selective to the cotinine and myosmine interferences due to the 1.10 V vs. Ag/AgCl discriminating potential of nicotine electro-oxidation applied. Differences in selectivity to the analyte and interferences were interpreted by modeling complexation of Nic and, separately, each of the interferences with a "frozen" MIP-Nic molecular cavity. PMID:25441415

  20. From 3D to 2D: A Review of the Molecular Imprinting of Proteins

    PubMed Central

    Turner, Nicholas W.; Jeans, Christopher W.; Brain, Keith R.; Allender, Christopher J.; Hlady, Vladimir; Britt, David W.

    2008-01-01

    Molecular imprinting is a generic technology that allows for the introduction of sites of specific molecular affinity into otherwise homogeneous polymeric matrices. Commonly this technique has been shown to be effective when targeting small molecules of molecular weight <1500, while extending the technique to larger molecules such as proteins has proven difficult. A number of key inherent problems in protein imprinting have been identified, including permanent entrapment, poor mass transfer, denaturation, and heterogeneity in binding pocket affinity, which have been addressed using a variety of approaches. This review focuses on protein imprinting in its various forms, ranging from conventional bulk techniques to novel thin film and monolayer surface imprinting approaches. PMID:17137293

  1. Sol-gel-based molecularly imprinted xerogel for capillary microextraction.

    PubMed

    Bagheri, Habib; Piri-Moghadam, Hamed

    2012-09-01

    A novel molecularly imprinted xerogel (MIX) based on organically modified silica (ORMOSIL) was successfully prepared for on-line capillary microextraction (CME) coupled with high-performance liquid chromatography (HPLC). The sol-gel-based xerogel was prepared using only one precursor and exhibited extensive selectivity towards triazines along with significant thermal and chemical stability. Atrazine was selected as a model template molecule and 3-(trimethoxysilyl)propylmethacrylate (TMSPMA) as a precursor in which the propylmethacrylate moiety was responsible for van der Waals, dipole-dipole, and hydrogen-bond interactions with the template. This moiety plays a key role in creation of selective sites while methoxysilyl groups in TMSPMA acted as crosslinkers between the template and the propylmethacrylate moiety. Moreover, a non-imprinted xerogel (NIX) was also prepared in the absence of the template for evaluating the extraction efficiency of the prepared MIX. Then, the prepared imprinted and non-imprinted xerogels were used for extraction of three selected analytes of triazines class including atrazine, ametryn, and terbutryn, which have rather similar structures. The extraction efficiency of the prepared xerogel for atrazine, the template molecule, was found to be ten times greater than the efficiency achieved by the non-imprinted one. In the meantime, the extraction efficiency ratio of MIX to NIX for ametryn and terbutryn was also rather significant (eight times). Moreover, other compounds from different classes including dicamba, mecoprop, and estriol were also analyzed to evaluate the selectivity of the prepared MIX towards triazines. The ratio of enrichment factors (EF) of MIX to NIX for atrazine, ametryn, terbutryn, dicamba, mecoprop, and estriol were about 10, 8, 8, 2, 2, and 3, respectively. The linearity for the analytes was in the range of 5-700 μg L(-1). Limit of detection was in the range of 1-5 μg L(-1) and the RSD% values (n = 5) were all below 6

  2. [Preparation and evaluation of novel mesoporous molecular sieve of baicalin surface molecularly imprinted polymers].

    PubMed

    Gu, Xia-li; He, Hong-liang; Shi, Li-ying; Gao, Yan-kun; Chen, Li-na

    2015-05-01

    Taking mesoporous molecular sieve MCM-41 as a substrate, baicalin (BA) as template, acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, ethanol as solvent, under thermal polymerization initiator of azobis isobutyronitrilo (AIBN) , a kind of selective recognition of baicalin surface molecularly imprinted polymer was synthesized. The surface morphologies and characteristics of the MIPs were characterized by infrared spectroscopy (IR) and transmission electron microscope (TEM). The adsorption properties of polymer microsphere for the template were tested by the dynamic adsorption equilibrium experiments and static adsorption equilibrium experiments. The experiment showed that the imprinting process was successfully and the well-ordered one-dimensional pore structure of MCM-41 was still preserved. Furthermore, molecularly imprinted polymers had higher selective ability for BA, then provided a new method for the efficient separation and enrichment of baicalin active ingredients from medicinal plants Scutellaria baicalensis. PMID:26323135

  3. Enhanced adsorption of atrazine from aqueous solution by molecularly imprinted TiO2 film

    NASA Astrophysics Data System (ADS)

    Zhang, Chunjing; Yan, Jinlong; Zhang, Chunxiao; Yang, Zhengpeng

    2012-07-01

    TiO2 film imprinted by atrazine molecule at the surface of quartz crystal was prepared using molecular imprinting and surface sol-gel process. The molecularly imprinted TiO2 film was characterized by scanning electron microscopy and cyclic voltammetry, and the atrazine adsorption was investigated by quartz crystal microbalance (QCM) technique. In comparison with non-imprinted TiO2 film, the molecularly imprinted TiO2 film exhibits high selectivity for atrazine, better reversibility and a much higher adsorption capacity for the target molecule, the adsorption equilibrium constant estimated from the in situ frequency measurement is about 6.7 × 104 M-1, which is thirteen times higher than that obtained on non-imprinted TiO2 film.

  4. Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography.

    PubMed

    Gomez, Laura Piedad Chia; Spangenberg, Arnaud; Ton, Xuan-Anh; Fuchs, Yannick; Bokeloh, Frank; Malval, Jean-Pierre; Tse Sum Bui, Bernadette; Thuau, Damien; Ayela, Cédric; Haupt, Karsten; Soppera, Olivier

    2016-07-01

    Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor. PMID:27145145

  5. Fluorescent monomers: "bricks" that make a molecularly imprinted polymer "bright".

    PubMed

    Wan, Wei; Wagner, Sabine; Rurack, Knut

    2016-03-01

    Molecularly imprinted polymers (MIPs) are potent and established recognition phases in separation and enrichment applications. Because of their robustness, versatility and format adaptability, they also constitute very promising sensing phases, especially when the active sensing element is directly integrated into the MIP. Fluorescent MIPs incorporating fluorescent monomers are perhaps the best developed and most successful approach here. This article reviews the state of the art in this field, discussing the pros and cons of the use of fluorescent dye and probe derivatives as such monomers, the different molecular interaction forces for template complexation, signalling modes and a variety of related approaches that have been realized over the years, including Förster resonance energy transfer processes, covalent imprinting, postmodification attachment of fluorescent units and conjugated polymers as MIPs; other measurement schemes and sensing chemistries that use MIPs and fluorescence interrogation to solve analytical problems (fluorescent competitive assays, fluorescent analytes, etc.) are not covered here. Throughout the article, photophysical processes are discussed to facilitate understanding of the effects that can occur when one is planning for a fluorescence response to happen in a constrained polymer matrix. The article concludes with a concise assessment of the suitability of the different formats for sensor realization. PMID:26613794

  6. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.

    PubMed

    Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E

    2015-07-01

    Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world. PMID:26008649

  7. Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors.

    PubMed

    Huang, Yan; Zhu, Minshen; Pei, Zengxia; Huang, Yang; Geng, Huiyuan; Zhi, Chunyi

    2016-01-27

    The cycling stability of flexible supercapacitors with conducting polymers as electrodes is limited by the structural breakdown arising from repetitive counterion flow during charging/discharging. Supercapacitors made of facilely electropolymerized polypyrrole (e-PPy) have ultrahigh capacitance retentions of more than 97, 91, and 86% after 15000, 50000, and 100000 charging/discharging cycles, respectively, and can sustain more than 230000 charging/discharging cycles with still approximately half of the initial capacitance retained. To the best of our knowledge, such excellent long-term cycling stability was never reported. The fully controllable electropolymerization shows superiority in molecular ordering, favoring uniform stress distribution and charge transfer. Being left at ambient conditions for even 8 months, e-PPy supercapacitors completely retain the good electrochemical performance. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics. PMID:26741145

  8. Affinity sensor based on immobilized molecular imprinted synthetic recognition elements.

    PubMed

    Lenain, Pieterjan; De Saeger, Sarah; Mattiasson, Bo; Hedström, Martin

    2015-07-15

    An affinity sensor based on capacitive transduction was developed to detect a model compound, metergoline, in a continuous flow system. This system simulates the monitoring of low-molecular weight organic compounds in natural flowing waters, i.e. rivers and streams. During operation in such scenarios, control of the experimental parameters is not possible, which poses a true analytical challenge. A two-step approach was used to produce a sensor for metergoline. Submicron spherical molecularly imprinted polymers, used as recognition elements, were obtained through emulsion polymerization and subsequently coupled to the sensor surface by electropolymerization. This way, a robust and reusable sensor was obtained that regenerated spontaneously under the natural conditions in a river. Small organic compounds could be analyzed in water without manipulating the binding or regeneration conditions, thereby offering a viable tool for on-site application. PMID:25703726

  9. Molecularly imprinted solid phase extraction of fluconazole from pharmaceutical formulations.

    PubMed

    Manzoor, S; Buffon, R; Rossi, A V

    2015-03-01

    This work encompasses a direct and coherent strategy to synthesise a molecularly imprinted polymer (MIP) capable of extracting fluconazole from its sample. The MIP was successfully prepared from methacrylic acid (functional monomer), ethyleneglycoldimethacrylate (crosslinker) and acetonitrile (porogenic solvent) in the presence of fluconazole as the template molecule through a non-covalent approach. The non-imprinted polymer (NIP) was prepared following the same synthetic scheme, but in the absence of the template. The data obtained from scanning electronic microscopy, infrared spectroscopy, thermogravimetric and nitrogen Brunauer-Emmett-Teller plot helped to elucidate the structural as well as the morphological characteristics of the MIP and NIP. The application of MIP as a sorbent was demonstrated by packing it in solid phase extraction cartridges to extract fluconazole from commercial capsule samples through an offline analytical procedure. The quantification of fluconazole was accomplished through UPLC-MS, which resulted in LOD≤1.63×10(-10) mM. Furthermore, a high percentage recovery of 91±10% (n=9) was obtained. The ability of the MIP for selective recognition of fluconazole was evaluated by comparison with the structural analogues, miconazole, tioconazole and secnidazole, resulting in percentage recoveries of 51, 35 and 32%, respectively. PMID:25618633

  10. New molecular imprinted voltammetric sensor for determination of ochratoxin A.

    PubMed

    Yola, Mehmet Lütfi; Gupta, Vinod Kumar; Atar, Necip

    2016-04-01

    In this report, a novel molecular imprinted voltammetric sensor based on silver nanoparticles (AgNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) modified glassy carbon electrode (GCE) was presented for determination of ochrattoxin A (OCH). The developed surfaces were characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. OCH imprinted GCE was prepared via electropolymerization process of 100mM phenol as monomer in the presence of phosphate buffer solution (pH6.0) containing 25 mM OCH. The linearity range and the detection limit of the method were calculated as 5.0 × 10(-11) - 1.5 × 10(-9)M and 1.6 × 10(-11) M, respectively. The voltammetric sensor was applied to grape juice and wine samples with good selectivity and recovery. The stability of the voltammetric sensor was also reported. PMID:26838863

  11. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    NASA Astrophysics Data System (ADS)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10-12-1.0 × 10-10 M and 2.0 × 10-13 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  12. Molecularly imprinted hydrogels as functional active packaging materials.

    PubMed

    Benito-Peña, Elena; González-Vallejo, Victoria; Rico-Yuste, Alberto; Barbosa-Pereira, Letricia; Cruz, José Manuel; Bilbao, Ainhoa; Alvarez-Lorenzo, Carmen; Moreno-Bondi, María Cruz

    2016-01-01

    This paper describes the synthesis of novel molecularly imprinted hydrogels (MIHs) for the natural antioxidant ferulic acid (FA), and their application as packaging materials to prevent lipid oxidation of butter. A library of MIHs was synthesized using a synthetic surrogate of FA, 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HFA), as template molecule, ethyleneglycol dimethacrylate (EDMA) as cross-linker, and 1-allylpiperazine (1-ALPP) or 2-(dimethylamino)ethyl methacrylate (DMAEMA), in combination with 2-hydroxyethyl methacrylate (HEMA) as functional monomers, at different molar concentrations. The DMAEMA/HEMA-based MIHs showed the greatest FA loading capacity, while the 1-ALLP/HEMA-based polymers exhibited the highest imprinting effect. During cold storage, FA-loaded MIHs protected butter from oxidation and led to TBARs values that were approximately half those of butter stored without protection and 25% less than those recorded for butter covered with hydrogels without FA, potentially extending the shelf life of butter. Active packaging is a new field of application for MIHs with great potential in the food industry. PMID:26213001

  13. Volatile phenols depletion in red wine using molecular imprinted polymers.

    PubMed

    Teixeira, Rafaela; Dopico-García, Sonia; Andrade, Paula B; Valentão, Patrícia; López-Vilariño, José M; González-Rodríguez, Victoria; Cela-Pérez, Concepción; Silva, Luís R

    2015-12-01

    Wines can be modified by microorganisms during the ageing process, by producing off-flavours like volatile phenols (VP), leading to their deterioration, with great economic losses. The development of methods to recover wines affected by unwanted VP became an important target. Molecular imprinted polymers (MIPs) are synthetic materials with artificially-generated recognition sites for selective extraction of organic compounds from different matrices. In this work, two MIPs to remove unwanted VP from wines were developed and their effects were evaluated. Volatile compounds were determined by GC-FID and GC-IT/MS and phenolic compounds (non-coloured and anthocyanins) by HPLC-DAD. The treatment with MIP-4EG and MIP-4EP significantly reduced the content of 4-ethylguaiacol and 4-ethylphenol, respectively. Nevertheless, the changes observed in wine non-coloured and coloured phenolics and sensorial analysis indicate that their specificity and selectivity regarding off-flavours still needs to be improved. PMID:26604347

  14. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM

    PubMed Central

    Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A.

    2016-01-01

    Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity. PMID:27376287

  15. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM.

    PubMed

    Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A

    2016-01-01

    Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity. PMID:27376287

  16. Molecularly Imprinted Polymers for Ochratoxin A Extraction and Analysis

    PubMed Central

    Yu, Jorn C. C.; Lai, Edward P. C.

    2010-01-01

    Molecularly imprinted polymers (MIPs) are considered as polymeric materials that mimic the functionality of antibodies. MIPs have been utilized for a wide variety of applications in chromatography, solid phase extraction, immunoassays, and sensor recognition. In this article, recent advances of MIPs for the extraction and analysis of ochratoxins are discussed. Selection of functional monomers to bind ochratoxin A (OTA) with high affinities, optimization of extraction procedures, and limitations of MIPs are compared from different reports. The most relevant examples in the literature are described to clearly show how useful these materials are. Strategies on MIP preparation and schemes of analytical methods are also reviewed in order to suggest the next step that would make better use of MIPs in the field of ochratoxin research. The review ends by outlining the remaining issues and impediments. PMID:22069649

  17. Synthesis, characterization and adsorption behavior of molecularly imprinted nanospheres for erythromycin using precipitation polymerization.

    PubMed

    Kou, Xing; Lei, Jiandu; Geng, Liyuan; Deng, Hongquan; Jiang, Qiying; Zhang, Guifeng; Ma, Guanghui; Su, Zhiguo

    2012-09-01

    Preparation of uniform size molecularly imprinted nanospheres for erythromycin with good selectivity and high binding capacity by precipitation polymerization were presented, in which erythromycin, methacrylic acid and ethylene glycol dimethacrylate are used as template molecule, functional monomer and cross-linker, respectively. The synthesis conditions of molecularly imprinted nanospheres were optimized and the optimal molar ratio of erythromycin to functional monomer is 1:3. The molecularly imprinted polymers were characterized by scanning electron microscope, laser particle size analyzer and BET, respectively. The results suggested that molecularly imprinted nanospheres for erythromycin exhibited spherical shape and good monodispersity. Selectivity analysis indicated that the imprinted nanospheres could specifically recognize erythromycin from its structure analogues. Furthermore, adsorption kinetics and adsorption isotherm of the imprinted nanospheres were employed to investigate the binding characteristics of the imprinted nanospheres. The results showed that the imprinted nanospheres have high adsorption capacity for erythromycin, and the maximum theoretical static binding capacity is up to 267.0188 mg g(-1). PMID:23035481

  18. Removal of Toxic Mercury from Petroleum Oil by Newly Synthesized Molecularly-Imprinted Polymer

    PubMed Central

    Khairi, Nor Ain Shahera; Yusof, Nor Azah; Abdullah, Abdul Halim; Mohammad, Faruq

    2015-01-01

    In recent years, molecularly-imprinted polymers (MIPs) have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II) imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it) with methacrylic acid (MAA), 2-hydroxyl ethyl methacrylate (HEMA), methanol and ethylene glycol dimethacrylate (EGDMA) as the monomer, co-monomer solvent (porogen) and cross-linker, respectively. Thus, the formed Hg(II) imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer, Emmett and Teller (BET) and thermal gravimetric analysis (TGA). The separation and preconcentration characteristics of Hg(II) imprinted polymer were investigated by solid phase extraction (SPE) procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II) imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II) imprinted beads with 87.54% removal of Hg(II) ions within the first 5 min. The results of the study therefore confirm that the Hg(II) imprinted polymer can be used multiple times without significantly losing its adsorption capacity. PMID:26006226

  19. Removal of toxic mercury from petroleum oil by newly synthesized molecularly-imprinted polymer.

    PubMed

    Khairi, Nor Ain Shahera; Yusof, Nor Azah; Abdullah, Abdul Halim; Mohammad, Faruq

    2015-01-01

    In recent years, molecularly-imprinted polymers (MIPs) have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II) imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it) with methacrylic acid (MAA), 2-hydroxyl ethyl methacrylate (HEMA), methanol and ethylene glycol dimethacrylate (EGDMA) as the monomer, co-monomer solvent (porogen) and cross-linker, respectively. Thus, the formed Hg(II) imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer, Emmett and Teller (BET) and thermal gravimetric analysis (TGA). The separation and preconcentration characteristics of Hg(II) imprinted polymer were investigated by solid phase extraction (SPE) procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II) imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II) imprinted beads with 87.54% removal of Hg(II) ions within the first 5 min. The results of the study therefore confirm that the Hg(II) imprinted polymer can be used multiple times without significantly losing its adsorption capacity. PMID:26006226

  20. Synthesis of molecularly imprinted polymer nanoparticles for the fast and highly selective adsorption of sunset yellow.

    PubMed

    Zhang, Yu; Xie, Zhihai; Teng, Xiaoxiao; Fan, Jin

    2016-04-01

    Novel molecularly imprinted polymer nanoparticles were synthesized by precipitation polymerization with sunset yellow as the template and [2-(methacryloyloxy)ethyl] trimethylammonium chloride as the functional monomer. The molecularly imprinted polymer nanoparticles were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and their specific surface area and thermal stability were measured. The molecularly imprinted polymer nanoparticles had a high adsorption capacity in wide pH range (pH 1-8) for sunset yellow. The adsorption equilibrium only needed 5 min, and the quantitative desorption was very fast (1 min) by using 10.0 mol/L HCl as the eluant. The maximum adsorption capacity of the molecularly imprinted polymer nanoparticles for sunset yellow was 144.6 mg/g. The adsorption isotherm and kinetic were well consistent with Langmuir adsorption model and pseudo-second-order kinetic model, respectively. The relative selectivity coefficients of the molecularly imprinted polymer nanoparticles for tartrazine and carmine were 9.766 and 12.64, respectively. The prepared molecularly imprinted polymer nanoparticles were repeatedly used and regenerated ten times without significant absorption capacity decrease. PMID:26899416

  1. Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers.

    PubMed

    Lv, Yongqin; Qin, Yating; Svec, Frantisek; Tan, Tianwei

    2016-06-15

    Molecularly imprinted plasmonic nanosensor has been prepared via the rational design of an ultrathin polymer layer on the surface of gold nanorods imprinted with the target protein. This nanosensor enabled selective fishing-out of the target protein biomarker even from a complex real sample such as human serum. Sensitive SERS detection of the protein biomarkers with a strong Raman enhancement was achieved by formation of protein imprinted gold nanorods aggregates, stacking of protein imprinted gold nanorods onto a glass plate, or self-assembly of protein imprinted gold nanorods into close-packed array. High specificity and sensitivity of this method were demonstrated with a detection limit of at least 10(-8)mol/L for the target protein. This could provide a promising alternative for the currently used immunoassays and fluorescence detection, and offer an ultrasensitive, non-destructive, and label-free technique for clinical diagnosis applications. PMID:26874111

  2. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein.

    PubMed

    Liu, Yanjin; Wang, Yuzhi; Dai, Qingzhou; Zhou, Yigang

    2016-09-14

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Qmax) and dissociation constant (KL) were analyzed by Langmuir isotherms (R(2) = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. PMID:27566352

  3. Low-Density Lipoprotein Sensor Based on Molecularly Imprinted Polymer.

    PubMed

    Chunta, Suticha; Suedee, Roongnapa; Lieberzeit, Peter A

    2016-01-19

    Increased level of low-density lipoprotein (LDL) strongly correlates with incidence of coronary heart disease. We synthesized novel molecularly imprinted polymers (MIP) as biomimetic specific receptors to establish rapid analysis of LDL levels. For that purpose the ratios of monomers acrylic acid (AA), methacrylic acid (MAA), and N-vinylpyrrolidone (VP), respectively, were screened on 10 MHz dual-electrode quartz crystal microbalances (QCM). Mixing MAA and VP in the ratio 3:2 (m/m) revealed linear sensor characteristic to LDL cholesterol (LDL-C) from 4 to 400 mg/dL or 0.10-10.34 mmol/L in 100 mM phosphate-buffered saline (PBS) without significant interference: high-density lipoprotein (HDL) yields 4-6% of the LDL signal, very-low-density-lipoprotein (VLDL) yields 1-3%, and human serum albumin (HSA) yields 0-2%. The LDL-MIP sensor reveals analytical accuracy of 95-96% at the 95% confidence interval with precision at 6-15%, respectively. Human serum diluted 1:2 with PBS buffer was analyzed by LDL-MIP sensors to demonstrate applicability to real-life samples. The sensor responses are excellently correlated to the results of the standard technique, namely, a homogeneous enzymatic assay (R(2) = 0.97). This demonstrates that the system can be successfully applied to human serum samples for determining LDL concentrations. PMID:26643785

  4. Monoclonal Behavior of Molecularly Imprinted Polymer Nanoparticles in Capillary Electrochromatography

    PubMed Central

    Priego-Capote, Feliciano; Ye, Lei; Shakil, Sadia; Shamsi, Shahab A.; Nilsson, Staffan

    2009-01-01

    A new approach based on miniemulsion polymerization is demonstrated for synthesis of molecularly imprinted nanoparticles (MIP-NP; 30–150 nm) with “monoclonal” binding behavior. The performance of the MIP nanoparticles is characterized with partial filling capillary electro-chromatography, for the analysis of rac-propranolol, where (S)-propranolol is used as a template. In contrast to previous HPLC and CEC methods based on the use of MIPs, there is no apparent tailing for the enantiomer peaks, and baseline separation with 25 000–60 000 plate number is achieved. These effects are attributed to reduction of the MIP site heterogeneity by means of peripheral location of the core cross-linked NP and to MIP-binding sites with the same ordered radial orientation. This new MIP approach is based on the substitution of the functional monomers with a surfactant monomer, sodium N-undecenoyl glycinate (SUG) for improved inclusion in the MIP-NP structure and to the use of a miniemulsion in the MIP-NP synthesis. The feasibility of working primarily with aqueous electrolytes (10 mM phosphate with a 20% acetonitrile at pH 7) is attributable to the micellar character of the MIP-NPs, provided by the inclusion of the SUG monomers in the structure. To our knowledge this is the first example of “monoclonal” MIP-NPs incorporated in CEC separations of drug enantiomers. PMID:18336010

  5. Solid phase extraction of food contaminants using molecular imprinted polymers.

    PubMed

    Baggiani, Claudio; Anfossi, Laura; Giovannoli, Cristina

    2007-05-15

    Food contamination from natural or anthropogenic sources poses severe risks to human health. It is now largely accepted that continuous exposure to low doses of toxic chemicals can be related to several chronic diseases, including some type of cancer and serious hormonal dysfunctions. Contemporary analytical methods have the sensitivity required for contamination detection and quantification, but direct application of these methods on food samples can be rarely performed. In fact, the matrix introduces severe disturbances, and analysis can be performed only after some clean-up and preconcentration steps. Current sample pre-treatment methods, mostly based on the solid phase extraction technique, are very fast and inexpensive but show a lack of selectivity, while methods based on immunoaffinity extraction are very selective but expensive and not suitable for harsh environments. Thus, inexpensive, rapid and selective clean-up methods, relaying on "intelligent" materials are needed. Recent years have seen a significant increase of the "molecularly imprinted solid phase extraction" (MISPE) technique in the food contaminant analysis. In fact, this technique seems to be particularly suitable for extractive applications where analyte selectivity in the presence of very complex and structured matrices represents the main problem. In this review, several applications of MISPE in food contamination analysis will be discussed, with particular emphasis on the extraction of pesticides, drugs residua, mycotoxins and environmental contaminants. PMID:17456421

  6. Determination of clenbuterol in pork and potable water samples by molecularly imprinted polymer through the use of covalent imprinting method.

    PubMed

    Tang, Yiwei; Lan, Jianxing; Gao, Xue; Liu, Xiuying; Zhang, Defu; Wei, Liqiao; Gao, Ziyuan; Li, Jianrong

    2016-01-01

    A novel molecularly imprinted polymer (MIP) for efficient separation and concentration of clenbuterol (CLB) was synthesized by covalent imprinting approach using CLB derivative as functional monomer. The MIPs synthesized were characterized by scanning electron microscope, nitrogen adsorption analysis, Fourier transform infrared spectrometer, and thermo-gravimetric analysis. The binding experimental results showed that the MIPs synthesized had fast adsorption kinetic (20 min at 25 mg L(-1)), high adsorption capacity and specific recognition ability for the analyte. In addition, the MIPs synthesized were successfully used as solid-phase sorbent for CLB sample preparation to be analyzed by high performance liquid chromatography with ultraviolet detector. Under optimized experimental conditions, the linear range of the calibration curve was 5-80 μg L(-1) (R(2) = 0.9938). The proposed method was also applied to the analysis of CLB in pork and potable water samples. PMID:26213061

  7. Molecularly imprinted porous beads for the selective removal of copper ions.

    PubMed

    Younis, M Rizwan; Bajwa, Sadia Z; Lieberzeit, Peter A; Khan, Waheed S; Mujahid, Adnan; Ihsan, Ayesha; Rehman, Asma

    2016-02-01

    In the present work, novel molecularly imprinted polymer porous beads for the selective separation of copper ions have been synthesized by combining two material-structuring techniques, namely, molecular imprinting and oil-in-water-in-oil emulsion polymerization. This method produces monodisperse spherical beads with an average diameter of ∼2-3 mm, in contrast to adsorbents produced in the traditional way of grinding and sieving. Field-emission scanning electron microscopy indicates that the beads are porous in nature with interconnected pores of about 25-50 μm. Brunner-Emmett-Teller analysis shows that the ion-imprinted beads possess a high surface area (8.05 m(2) /g), and the total pore volume is determined to be 0.00823 cm(3) /g. As a result of the highly porous nature and ion-imprinting, the beads exhibit a superior adsorption capacity (84 mg/g) towards copper than the non-imprinted material (22 mg/g). Furthermore, selectivity studies indicate that imprinted beads show splendid recognizing ability, that is, nearly fourfold greater selective binding for Cu(2+) in comparison to the other bivalent ions such as Mn(2+) , Ni(2+) , Co(2+) , and Ca(2+) . The imprinted composite beads prepared in this study possess uniform porous morphology and may open up new possibilities for the selective removal of copper ions from waste water/contaminated matrices. PMID:26632078

  8. Chiral recognition in adrenergic receptor binding mimics prepared by molecular imprinting.

    PubMed

    Ramström, O; Yu, C; Mosbach, K

    1996-01-01

    Molecularly imprinted polymers were prepared against the adrenomimetic agents ephedrine and pseudoephedrine. These compounds each incorporate two chiral centres. The polymers were evaluated with respect to enantiodiscrimination of various adrenergic ligands. The selectivity of the polymeric binding sites for the imprinted molecules was very high, and it was found that binding of both the enantiomeric and diastereomeric isomers of the imprint species were effectively obstructed, it was found that these polymers could selectively recognize the enantiomers of the endogenous adrenergic ligand epinephrine as well as several beta-adrenergic blockers. These observations suggest that these polymers effectively mimic the recognition patterns exhibited by natural adrenergic receptors. PMID:9174958

  9. A Novel Methodology for Metal Ion Separation Based on Molecularly Imprinting

    SciTech Connect

    Zuo, Xiaobin; Mosha, Donnati; Hassan, Mansour M.; Givens, Richard S.; Busch, Daryle H.

    2004-03-31

    The siderophore-based extraction of iron from the soil by bacteria is proposed as a model for a new separation methodology labeled the soil poutice, a molecular device that would selectively retrieve the complex of a targeted metal ion. In this report we described the synthesis and characterization of molecularly imprinted polymers and their application in the specific recognition of macrocyclic metal complexes. The imprinting is based on non-covalent interactions such as hydrogen bonding, electrostatic attractions and minor metal-ligand coordination. Good rebinding capacity for the imprinting metal complex was observed in acetonitrile as well as in water. The polymers are resistant to strong acids and oxidizing agents and showed an increase of rebinding capacity during cycles of reuse. The imprinting procedure, combined with the previously known selective chelation of macrocyclic ligands, supports the feasibility of a new methodology that can be used to extract waste metal ions effectively and selectively from soils and ground water.

  10. Preparation and characterization of monodisperse molecularly imprinted polymers for the recognition and enrichment of oleanolic acid.

    PubMed

    Tang, Zonggui; Liu, Changbin; Wang, Jing; Li, Hongmin; Ji, Yong; Wang, Guohong; Lu, Chunxia

    2016-04-01

    Monodisperse molecularly imprinted polymers for oleanolic acid were successfully prepared by a precipitation polymerization method using oleanolic acid as a template, methacrylic acid as a functional monomer, and divinylbenzene/ethylene glycol dimethacrylate as a crosslinker in a mixture of acetonitrile and ethanol (3:1, v/v). The imprinted polymers and nonimprinted polymers were characterized by using scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The resulting imprinted polymers had average diameters of 3.15 μm and monodispersity values of 1.024. The results clearly demonstrate that use of ethanol as a cosolvent is indeed exceedingly effective in promoting the dissolution of oleanolic acid and in obtaining uniform microspheres. Molecular recognition properties and binding capability to oleanolic acid were evaluated by adsorption testing, which indicated that the imprinted polymers displayed optimal binding performance with a maximum adsorption capacity of 17.3 mg/g and a binding saturation time of 80 min. Meanwhile, the produced imprinted polymers exhibited higher selectivity to oleanolic acid than that for ursolic acid and rhein. Herein, the studies can provide theoretical and experimental references for the oleanolic acid molecular imprinted system. PMID:27106769

  11. Synthesis and Evaluation of Molecularly Imprinted Silica Gel for 2-Hydroxybenzoic Acid in Aqueous Solution

    PubMed Central

    Abdul Raof, Siti Farhana; Mohamad, Sharifah; Abas, Mhd Radzi

    2013-01-01

    A molecularly imprinted silica gel sorbent for selective removal of 2-Hydroxybenzoic acid (2-HA) was prepared by a surface imprinting technique with a sol-gel process. The 2-HA molecularly imprinted silica gel (2-HA-MISG) sorbent was evaluated by various parameters, including the influence of pH, static, kinetic adsorption and selectivity experiments. The optimum adsorption capacity to the 2-HA appeared to be around pH 2 by the polymer. Morevoer, the imprinted sorbent displayed fast uptake kinetics, obtained within 20 min. The adsorption capacity of the 2-HA-MISG (76.2 mg g−1) was higher than that of the non-imprinted silica gel (NISG) (42.58 mg g−1). This indicates that the 2-HA-MISG offers a higher affinity for 2-HA than the NISG. The polymer displays good selectivity and exhibits good reusability. Experimental results show the potential of molecularly imprinted silica sorbent for selective removal of 2-HA. PMID:23493059

  12. Molecularly imprinted polymers-curcuminoids and its application for solid phase extraction

    NASA Astrophysics Data System (ADS)

    Wulandari, Meyliana; Amran, M. B.; Lopez, A. B. Descalzo; Urraca, J. L.; Moreno-Bondi, M. C.

    2014-03-01

    Molecularly Imprinted Polymers (MIPs) for the selective recognition properties of curcumin (CUR), a cancer chemopreventive agent were obtained by a non-covalent imprinting approach with bisdemetoxycurcumin (BDMC) as the template molecule. The double bond of BDMC has been reduced in order not to be involved in polymerization and make the template molecules easy to be eluted. Several functional monomers have been evaluated to maximize the interactions with the template molecule during polymerization. MIPs prepared by bulk of N-(2-aminoethyl) metacrylamid hydrochlorideas functional monomer, ethylene glycol dimethacrylate as crosslinker, 2,2'-azobis (2'4-dimethyl valeronitril) as initiator and acetonitrile as porogen. Non-imprinted polymer (NIP) have been also synthesized for reference purposes. UV-vis spectroscopy has been used to predict the template to functional monomer ratio which indicates the formation of 2:1 complexes between monomer and curcumin and the association constants (K11 = 2529 μM and K12 = 1960.75 μM in acetonitrile). The capacity and imprinting factor have been evaluated as stationary phases in high-pressure liquid chromatography to CUR and BDMC. The binding properties and the homogeneity of the binding sites of the different polymers have been studied by Freundlich isotherm modeling and weight average affinity and number of binding sites. One of the foremost applications of molecular imprinting has been in molecularly imprinted solid phase extraction and it has the ability to separate and preconcentrate between closely related compounds in curcuminoids.

  13. Preparation and evaluation of a novel molecularly imprinted polymer coating for selective extraction of indomethacin from biological samples by electrochemically controlled in-tube solid phase microextraction.

    PubMed

    Asiabi, Hamid; Yamini, Yadollah; Seidi, Shahram; Ghahramanifard, Fazel

    2016-03-24

    In the present work, an automated on-line electrochemically controlled in-tube solid-phase microextraction (EC-in-tube SPME) coupled with HPLC-UV was developed for the selective extraction and preconcentration of indomethacin as a model analyte in biological samples. Applying an electrical potential can improve the extraction efficiency and provide more convenient manipulation of different properties of the extraction system including selectivity, clean-up, rate, and efficiency. For more enhancement of the selectivity and applicability of this method, a novel molecularly imprinted polymer coated tube was prepared and applied for extraction of indomethacin. For this purpose, nanostructured copolymer coating consisting of polypyrrole doped with ethylene glycol dimethacrylate was prepared on the inner surface of a stainless-steel tube by electrochemical synthesis. The characteristics and application of the tubes were investigated. Electron microscopy provided a cross linked porous surface and the average thickness of the MIP coating was 45 μm. Compared with the non-imprinted polymer coated tubes, the special selectivity for indomethacin was discovered with the molecularly imprinted coated tube. Moreover, stable and reproducible responses were obtained without being considerably influenced by interferences commonly existing in biological samples. Under the optimal conditions, the limits of detection were in the range of 0.07-2.0 μg L(-1) in different matrices. This method showed good linearity for indomethacin in the range of 0.1-200 μg L(-1), with coefficients of determination better than 0.996. The inter- and intra-assay precisions (RSD%, n = 3) were respectively in the range of 3.5-8.4% and 2.3-7.6% at three concentration levels of 7, 70 and 150 μg L(-1). The results showed that the proposed method can be successfully applied for selective analysis of indomethacin in biological samples. PMID:26944991

  14. Determination of glyphosate in foodstuff by one novel chemiluminescence-molecular imprinting sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Peini; Yan, Mei; Zhang, Congcong; Peng, Ruixue; Ma, Dongsheng; Yu, Jinghua

    2011-05-01

    A novel chemiluminescence (CL) sensor for the determination of glyphosate (GLY) was made up based on molecularly imprinted polymer (MIP). The molecularly imprinted microspheres (MIMs) with a small dimension which possess extremely high surface-to-volume ratio were synthesized using precipitation polymerization with GLY as template. And then the MIMs were modified on glass sheets, which were placed at the bottom of wells of microplate as the recognizer. Subsequently, a highly selective and high throughput chemiluminescence (CL)-molecular imprinting (MI) sensor for detection of GLY was achieved. Influencing factors were investigated and optimized in detail. The method can perform 96 independent measurements sequentially in 10 min and the limit of detection (LOD) for GLY was 0.046 μg mL -1. The relative standard deviation (RSD) for 11 parallel measurements of GLY was 4.68%. The results show that CL-MI sensor can become a useful analytical technology for quick molecular recognition.

  15. Removal of iron by chelation with molecularly imprinted supermacroporous cryogel.

    PubMed

    Çimen, Duygu; Göktürk, Ilgım; Yılmaz, Fatma

    2016-06-01

    Iron chelation therapy can be used for the selective removal of Fe(3+) ions from spiked human plasma by ion imprinting. N-Methacryloyl-(L)-glutamic acid (MAGA) was chosen as the chelating monomer. In the first step, MAGA was complexed with the Fe(3+) ions to prepare the precomplex, and then the ion-imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-glutamic acid) [PHEMAGA-Fe(3+)] cryogel column was prepared by cryo-polymerization under a semi-frozen temperature of - 12°C for 24 h. Subsequently, the template, of Fe(3+) ions was removed from the matrix by using 0.1 M EDTA solution. The values for the specific surface area of the imprinted PHEMAGA-Fe(3+) and non-imprinted PHEMAGA cryogel were 45.74 and 7.52 m(2)/g respectively, with a pore size in the range of 50-200 μm in diameter. The maximum Fe(3+) adsorption capacity was 19.8 μmol Fe(3+)/g cryogel from aqueous solutions and 12.28 μmol Fe(3+)/g cryogel from spiked human plasma. The relative selectivity coefficients of ion-imprinted cryogel for Fe(3+)/Ni(2+) and Fe(3+)/Cd(2+) were 1.6 and 4.2-fold greater than the non-imprinted matrix, respectively. It means that the PHEMAGA-Fe(3+) cryogel possesses high selectivity to Fe(3+) ions, and could be used many times without significantly decreasing the adsorption capacity. PMID:25727711

  16. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting.

    PubMed

    Cieplak, Maciej; Szwabinska, Katarzyna; Sosnowska, Marta; Chandra, Bikram K C; Borowicz, Pawel; Noworyta, Krzysztof; D'Souza, Francis; Kutner, Wlodzimierz

    2015-12-15

    We devised and prepared a conducting molecularly imprinted polymer (MIP) for human serum albumin (HSA) determination using semi-covalent imprinting. The bis(2,2'-bithien-5-yl)methane units constituted the MIP backbone. This MIP was deposited as a thin film on an Au electrode by oxidative potentiodynamic electropolymerization to fabricate an electrochemical chemosensor. The HSA template imprinting, and then its releasing from the MIP was confirmed by the differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), XPS, and PM-IRRAS measurements as well as by AFM imaging. Semi-covalent imprinting provided a very well defined locations of recognition sites in the MIP molecular cavities. These sites populated the imprinted cavities or the MIP surface only. The DPV and EIS response of the MIP film coated electrode to the HSA analyte was linear in the range of 0.8 to 20 and 4 to 80 µg/mL HSA, respectively, with the limit of detection of 16.6 and 800 ng/mL, respectively. The impressively high imprinting factor reached, exceeding 20, strongly confirmed that semi-covalent imprinting resulted in formation of a large number of very well defined molecular cavities with high affinity to the HSA molecules. The MIP selectivity against low-(molecular weight) interferences, common for physiological fluids, such as blood and urea, was very high. There was no response to the presence of these interferences at concentrations encountered in the samples analyzed. Moreover, the chemosensor selectivity to the myoglobin and cytochrome c interferences was excellent while that to lysozyme was slightly lower but still high. The chemosensor was useful for determination of abnormal HSA concentration in a control blood serum. PMID:26258876

  17. Molecular imprinted polymer for solid-phase extraction of flavonol aglycones from Moringa oleifera extracts.

    PubMed

    Pakade, Vusumzi; Cukrowska, Ewa; Lindahl, Sofia; Turner, Charlotta; Chimuka, Luke

    2013-02-01

    Molecular imprinted polymer produced using quercetin as the imprinting compound was applied for the extraction of flavonol aglycones (quercetin and kaempferol) from Moringa oleifera methanolic extracts obtained using heated reflux extraction method. Identification and quantification of these flavonols in the Moringa extracts was achieved using high performance liquid chromatography with ultra violet detection. Breakthrough volume and retention capacity of molecular imprinted polymer SPE was investigated using a mixture of myricetin, quercetin and kaempferol. The calculated theoretical number of plates was found to be 14, 50 and 8 for myricetin, quercetin and kaempferol, respectively. Calculated adsorption capacities were 2.0, 3.4 and 3.7 μmol/g for myricetin, quercetin and kaempferol, respectively. No myricetin was observed in Moringa methanol extracts. Recoveries of quercetin and kaempferol from Moringa methanol extracts of leaves and flowers ranged from 77 to 85% and 75 to 86%, respectively, demonstrating the feasibility of using the developed molecularly imprinted SPE method for quantitative clean-up of both of these flavonoids. Using heated reflux extraction combined with molecularly imprinted SPE, quercetin concentrations of 975 ± 58 and 845 ± 32 mg/kg were determined in Moringa leaves and flowers, respectively. However, the concentrations of kaempferol found in leaves and flowers were 2100 ± 176 and 2802 ± 157 mg/kg, respectively. PMID:23255435

  18. A quantitative method evaluating the selective adsorption of molecularly imprinted polymer.

    PubMed

    Zhang, Z B; Hu, J Y

    2012-01-01

    Adsorption isotherms of 4 estrogenic compounds, estrone, 17β-estradiol, 17α-ethinylestradiol and Bisphenol A, using molecularly imprinted polymer were studied. The isotherms can be simulated by Langmuir model. According to the adsorption isotherms and the template's mass balance, an experimental concept, selective adsorption ratio, SAR, was proposed to assess how many template molecules extracted out of MIP could create selective binding sites. The SAR of the molecularly imprinted polymer was 74.3% for E2. This concept could be used to evaluate quantitatively the selective adsorption. PMID:22423989

  19. Mimicking Biological Delivery Through Feedback-Controlled Drug Release Systems Based on Molecular Imprinting

    PubMed Central

    Kryscio, David R.; Peppas, Nicholas A.

    2015-01-01

    Intelligent drug delivery systems (DDS) are able to rapidly detect a biological event and respond appropriately by releasing a therapeutic agent; thus, they are advantageous over their conventional counterparts. Molecular imprinting is a promising area that generates a polymeric network which can selectively recognize a desired analyte. This field has been studied for a variety of applications over a long period of time, but only recently has it been investigated for biomedical and pharmaceutical applications. Recent work in the area of molecularly imprinted polymers in drug delivery highlights the potential of these recognitive networks as environmentally responsive DDS that can ultimately lead to feedback controlled recognitive release systems. PMID:26500352

  20. Man-tailored biomimetic sensor of molecularly imprinted materials for the potentiometric measurement of oxytetracycline.

    PubMed

    Moreira, Felismina T C; Kamel, Ayman H; Guerreiro, Joana R L; Sales, M Goreti F

    2010-10-15

    A novel biomimetic sensor for the potentiometric transduction of oxytetracycline is presented. The artificial host was imprinted in methacrylic acid and/or acrylamide based polymers. Different amounts of molecularly imprinted and non-imprinted polymers were dispersed in different plasticizing solvents and entrapped in a poly(vinyl chloride) matrix. Only molecularly imprinted based sensors allowed a potentiometric transduction, suggesting the existence of host-guest interactions. These sensors exhibited a near-Nernstian response in steady state evaluations; slopes and detection limits ranged 42-63 mV/decade and 2.5-31.3 μg/mL, respectively. Sensors were independent from the pH of test solutions within 2-5. Good selectivity was observed towards glycine, ciprofloxacin, creatinine, acid nalidixic, sulfadiazine, cysteine, hydroxylamine and lactose. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ±0.7%), fast response, good sensitivity (65 mV/decade), wide linear range (5.0×10(-5) to 1.0×10(-2) mol/L), low detection limit (19.8 μg/mL), and a stable baseline for a 5×10(-3) M citrate buffer (pH 2.5) carrier. The sensors were successfully applied to the analysis of drugs and urine. This work confirms the possibility of using molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction. PMID:20688507

  1. Molecularly imprinted shells from polymer and xerogel matrices on polystyrene colloidal spheres.

    PubMed

    Guan, Guijian; Liu, Renyong; Mei, Qingsong; Zhang, Zhongping

    2012-04-10

    We have devised a facile and general methodology for the synthesis of various molecularly imprinted shells at the surface of polystyrene (PS) colloidal spheres to recognize the explosive compound 2,4,6-trinitrotoluene (TNT). PS spheres with surface-functionalized carboxyl-group layers could direct a selective imprinting polymerization on their surface through the hydrogen-bonding interactions between surface carboxyl groups and amino monomers. Meanwhile, homogeneous polymerization in the solution phase was completely prevented by stepwise polymerization. The overall process led to the formation of monodisperse molecularly imprinted core-shell microspheres, and was very successful in the preparation of organic polymer and inorganic xerogel shells. Furthermore, greater capacity and faster binding kinetics towards target species were achieved, because surface-imprinted sites ensured the complete removal of templates, good accessibility to target molecules, and low mass-transfer resistance. The results reported herein, concerning the production of high-quality molecularly imprinted products, could also form the basis for the formulation of a new strategy for the fabrication of various functional coating layers on colloidal spheres with potential applications in the fields of separations and chemical sensing. PMID:22392767

  2. Highly sensitive and doubly orientated selective molecularly imprinted electrochemical sensor for Cu(2.).

    PubMed

    Li, Jianping; Zhang, Lianming; Wei, Ge; Zhang, Yun; Zeng, Ying

    2015-07-15

    Studies on molecularly imprinted electrochemical sensors for metal ions determination have been widely reported. However, the sensitivity and selectivity of the sensors needs to be improved urgently. In the current work, a novel molecularly imprinted electrochemical sensor was originally developed for selective determination of ultratrace Cu(2+) by combining the metal-ligand chelate orientated recognition with enzyme amplification effect. The detection relied on a competition reaction between Cu(2+)-glycine (Cu-Gly) and horse radish peroxidase (HRP)-labeled Cu-Gly on the imprinted polymer membrane modified electrode. The sensitivity of this sensor was promoted by enzyme amplification. Selectivity was improved by the double-specificity derived from ligand-to-metal ion and metal-ligand chelate orientated recognition of 3D imprinted cavities. This technique was quantitatively sensitive to Cu(2+) concentrations ranging from 0.5nmol/L to 30nmol/L, with a detection limit of 42.4pmol/L. which was lower than those in most of the reported methods. The allowable amounts of interference ions were higher when it compared to other common molecularly imprinted sensors. Moreover, the results of assaying several real samples have proven its feasibility for practical applications. PMID:25771304

  3. Preparation and characterization of erythromycin molecularly imprinted polymers based on distillation-precipitation polymerization.

    PubMed

    Liu, Jiang; Li, Le; Tang, Hui; Zhao, Feilang; Ye, Bang-Ce; Li, Yingchun; Yao, Jun

    2015-09-01

    Erythromycin-imprinted polymers with excellent recognition properties were prepared by an innovative strategy called distillation-precipitation polymerization. The interaction between erythromycin and methacrylic acid was studied by ultraviolet absorption spectroscopy, and the as-prepared materials were characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. Moreover, their binding performances were evaluated in detail by static, kinetic and selective sorption tests. It was found that the molecularly imprinted polymers afforded good morphology, monodispersity, and high adsorption capacity when the fraction of the monomers was 7 vol% in the whole reaction system, and the adsorption data for imprinted polymers correlated well with the Langmuir model. The maximum capacity of the imprinted and the non-imprinted polymers for adsorbing erythromycin is 44.03 and 19.95 mg/g, respectively. The kinetic studies revealed that the adsorption process fitted a pseudo-second-order kinetic model. Furthermore, the imprinted polymers display higher affinity toward erythromycin, compared with its analogue roxithromycin. PMID:26118901

  4. A novel strategy to improve the sensitivity of antibiotics determination based on bioelectrocatalysis at molecularly imprinted polymer film electrodes.

    PubMed

    Lian, Wenjing; Liu, Shuang; Wang, Lei; Liu, Hongyun

    2015-11-15

    A new strategy for the sensitive detection of kanamycin (KA) and other antibiotics based on molecularly imprinted polymer (MIP) and bioelectrocatalysis was developed in the present study. The KA-polypyrrole MIP films were electropolymerized on the surface of pyrolytic graphite (PG) electrodes, with pyrrole (PY) serving as the monomer and KA as the template. Because KA is electro-inactive, electroactive K3[Fe(CN)6] was used as the probe in the cyclic voltammetric (CV) measurements. The difference of the CV reduction peaks of K3[Fe(CN)6] at electrodes between the MIP films after KA removal and KA-rebinding MIP films could thus be used to determine KA quantitatively. When horseradish peroxidase (HRP) and H2O2 were added into the testing solution, the detection sensitivity of the system was greatly amplified because the electrochemical reduction of H2O2 could be catalyzed by HRP and mediated by K3[Fe(CN)6]. With the bioelectrocatalysis amplification, the limit of detection (LOD) for KA fell as low as 28 nM, approximately two orders of magnitude lower than that for the MIP films in the absence of enzymatic catalysis. The strategy demonstrated the generality. Not only KA but also other antibiotics, such as oxytetracycline (OTC), could be determined by this method. More significantly, in addition to the K3[Fe(CN)6]-HRP-H2O2 system, other bioelectrocatalysis systems, such as Fc(COOH)2-GOD-glucose (Fc(COOH)2=ferrocenedicarboxylic acid, GOD=glucose oxidase), could also be used to amplify the CV signal and realize the sensitive detection of KA for the MIP film system, thereby illustrating the great potential and prospects of the strategy. PMID:26079673

  5. Molecularly imprinted polymers with synthetic dummy templates for the preparation of capsaicin and dihydrocapsaicin from chili peppers.

    PubMed

    Ma, Xiuli; Ji, Wenhua; Chen, Lingxiao; Wang, Xiao; Liu, Jianhua; Wang, Xueyong

    2015-01-01

    In this work, dummy molecularly imprinted polymers with high selectivity and affinity to capsaicin and dihydrocapsaicin are designed using N-vanillylnonanamide as a dummy template. The performance of dummy molecularly imprinted polymers and nonimprinted polymers was evaluated using adsorption isotherms, adsorption kinetics, and selective recognition capacity. Dummy molecularly imprinted polymers were found to exhibit good site accessibility, taking just 20 min to achieve adsorption equilibrium; they were also highly selective toward capsaicin and dihydrocapsaicin. We successfully used dummy molecularly imprinted polymers as a specific sorbent for selectively enriching capsaicin and dihydrocapsaicin from chili pepper samples. In a scaled-up experiment, the selective recovery of capsaicinoids was calculated to be 77.8% using solid-phase extraction. To the best of our knowledge, this is the first example of the use of N-vanillylnonanamide as a dummy template in molecularly imprinted polymers to simultaneously enrich capsaicin and dihydrocapsaicin. PMID:25348490

  6. Experimental mixture design as a tool for the synthesis of antimicrobial selective molecularly imprinted monodisperse microbeads.

    PubMed

    Benito-Peña, Elena; Navarro-Villoslada, Fernando; Carrasco, Sergio; Jockusch, Steffen; Ottaviani, M Francesca; Moreno-Bondi, Maria C

    2015-05-27

    The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads. PMID:25942541

  7. Determination of ractopamine in pork using a magnetic molecularly imprinted polymer as adsorbent followed by HPLC.

    PubMed

    Tang, Yiwei; Gao, Jingwen; Liu, Xiuying; Lan, Jianxing; Gao, Xue; Ma, Yong; Li, Min; Li, Jianrong

    2016-06-15

    A new magnetic molecularly imprinted polymers (MMIPs) for separation and concentration of ractopamine (RAC) were prepared using surface molecular imprinting technique with methacryloyl chloride as functional monomer and RAC as template. The MMIPs were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and vibrating sample magnetometer. The results of re-binding experiments indicated that the MMIPs had fast adsorption kinetics and could reach binding equilibrium within 20 min, and the adsorption capacity of the MMIPs was 2.87-fold higher than that of the corresponding non-imprinted polymer. The selectivity of the MMIPs was evaluated according to its recognition to RAC and its analogues. The synthesized MMIPs were successfully applied to extraction, followed by high performance liquid chromatography to determine RAC in real food samples. Spiked recoveries ranged from 73.60% to 94.5%, with relative standard deviations of <11.17%. PMID:26868550

  8. Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits.

    PubMed

    Li, Jing-Wen; Wang, Yu-Long; Yan, Shan; Li, Xiu-Juan; Pan, Si-Yi

    2016-02-01

    Calixarene was used as a functional monomer to fabricate a molecularly imprinted polymer (MIP) by sol-gel technique for solid-phase microextraction (SPME) of parathion-methyl and its structural analogs. The MIP-coated fiber possessed excellent thermal and chemical stability as well as high extraction capacity. Its selectivity and possible recognition mechanism were investigated. The similarities in molecular shape and functional group play a key role in the selective recognition of the imprinted material. Any changes to the structure of the template would decrease the imprinting factor. A comparison of MIP-SPME was made with liquid-liquid extraction coupled with gas chromatography for the determination of organophosphorus pesticides (OPPs) in fruits. Much lower limits of detection and better recoveries were achieved by SPME in spiked apple and pineapple samples. The experiment demonstrates that the proposed method using the calixarene MIP fiber was more suitable for selective determination of trace OPPs in those fruit samples. PMID:26304345

  9. Synthesis and properties of core-shell magnetic molecular imprinted polymers

    NASA Astrophysics Data System (ADS)

    Chang, Limin; Chen, Shaona; Li, Xin

    2012-06-01

    A general fabricating protocol for the preparation of core-shell magnetic molecularly imprinted polymers (MIPs) for chlorinated phenols recognition is described. In this protocol, Fe3O4 magnetic nanoparticles were first prepared using the chemical co-precipitation method. Then, the obtained magnetic nanoparticles were coated with a silica shell through modified Stöber method. Finally, MIP films were coated onto the surface of silica-modified magnetic nanoparticles by surface molecular imprinting technique. The resultant polymers showed a high saturation magnetization value (31.350 emu g-1), and short response time (30 s). Meanwhile, the as-synthesized magnetic MIPs showed an excellent recognition and selection properties toward imprinted molecule over structurally related compounds.

  10. State-of-the-art applications of cyclodextrins as functional monomers in molecular imprinting techniques: a review.

    PubMed

    Lay, Sovichea; Ni, Xiaofeng; Yu, Haining; Shen, Shengrong

    2016-06-01

    As a versatile tool in separation science, cyclodextrins and their derivatives, known as emerging functional monomers, have been used extensively in molecular imprinting techniques. The attributes of cyclodextrins and their derivatives are widely known to form host-guest inclusion complex processes between the polymer and template. The exploitation of the imprinting technique could produce a product of molecularly imprinted polymers, which are very robust with long-term stability, reliability, cost-efficiency, and selectivity. Hence, molecularly imprinted polymers have gained popularity in chemical separation and analysis. Molecularly imprinted polymers containing either cyclodextrin or its derivatives demonstrate superior binding effects for a target molecule. As noted in the previous studies, the functional monomers of cyclodextrins and their derivatives have been used in molecular imprinting for selective separation with a wide range of chemical compounds, including steroidals, amino acids, polysaccharides, drugs, plant hormones, proteins, pesticides, and plastic additives. Therefore, the main goal of this review is to illustrate the exotic applications of imprinting techniques employing cyclodextrins and their derivatives as single or binary functional monomers in synthesizing molecularly imprinted polymers in areas of separation science by reviewing some of the latest studies reported in the literature. PMID:27324352

  11. Synthesis of molecularly imprinted polymer with 7-chloroethyl-theophylline-immobilized silica gel as template and its molecular recognition function

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhui; Tong, Aijun; Li, Longdi

    2004-01-01

    By reaction of 7-chloroethyl-theophylline with aminopropylsilanized silica gel we synthesized a 7-chloroethyl-theophylline-immobilized silica gel as template molecule and prepared a molecularly imprinted polymer (MIP-Si), which had special recognition sites to 7-chloroethyl-theophylline. A conventional molecularly imprinted polymer (MIP) using 7-chloroethyl-theophylline as template was also prepared for comparison. Binding abilities to 7-chloroethyl-theophylline and its structural analogs revealed that the MIP-Si shows much higher binding speed and much more binding capacity than the MIP does.

  12. Molecular dynamics approaches to the design and synthesis of PCB targeting molecularly imprinted polymers: interference to monomer-template interactions in imprinting of 1,2,3-trichlorobenzene.

    PubMed

    Cleland, Dougal; Olsson, Gustaf D; Karlsson, Björn C G; Nicholls, Ian A; McCluskey, Adam

    2014-02-01

    The interactions between each component of the pre-polymerisation mixtures used in the synthesis of molecularly imprinted polymers (MIP) specific for 1,2,3,4,5-pentachlorobenzene (1) and 1,2,3-trichlorobenzene (2) were examined in four molecular dynamics simulations. These simulations revealed that the relative frequency of functional monomer-template (FM-T) interactions was consistent with results obtained by the synthesis and evaluation of the actual MIPs. The higher frequency of 1 interaction with trimethylstyrene (TMS; 54.7%) than 1 interaction with pentafluorostyrene (PFS; 44.7%) correlated with a higher imprinting factor (IF) of 2.1 vs. 1.7 for each functional monomer respectively. The higher frequency of PFS interactions with 2 (29.6%) than TMS interactions with 2 (1.9%) also correlated well with the observed differences in IF (3.7) of 2 MIPs imprinted using PFS as the FM than the IF (2.8) of 2 MIPs imprinted using TMS as the FM. The TMS-1 interaction dominated the molecular simulation due to high interaction energies, but the weaker TMS-2 resulted in low interaction maintenance, and thus lower IF values. Examination of the other pre-polymerisation mixture components revealed that the low levels of TMS-2 interaction was, in part, due to interference caused by the cross linker (CL) ethyleneglycol dimethylacrylate (EGDMA) interactions with TMS. The main reason was, however, attributed to MeOH interactions with TMS in both a hydrogen bond and perpendicular configuration. This positioned a MeOH directly above the π-orbital of all TMS for an average of 63.8% of MD2 creating significant interference to π-π stacking interactions between 2 and TMS. These findings are consistent with the deviation from the 'normal' molecularly imprinted polymer synthesis ratio of 1 : 4 : 20 (T : FM : CL) of 20 : 1 : 29 and 15 : 6 : 29 observed with 2 and TMS and PFS respectively. Our molecular dynamics simulations correctly predicted the high level

  13. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.

    PubMed

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-05-15

    A successful approach for the fabrication and characterization of an optical fiber sensor for the detection of profenofos based on surface plasmon resonance (SPR) and molecular imprinting is introduced. Molecular imprinting technology is used for the creation of three dimensional binding sites having complementary shape and size of the specific template molecule over a polymer for the recognition of the same. Binding of template molecule with molecularly imprinted polymer (MIP) layer results in the change in the dielectric nature of the sensing surface (polymer) and is identified by SPR technique. Spectral interrogation method is used for the characterization of the sensing probe. The operating profenofos concentration range of the sensor is from 10(-4) to 10(-1)µg/L. A red shift of 18.7 nm in resonance wavelength is recorded for this profenofos concentration range. The maximum sensitivity of the sensor is 12.7 nm/log (µg/L) at 10(-4)µg/L profenofos concentration. Limit of detection (LOD) of the sensor is found to be 2.5×10(-6)µg/L. Selectivity measurements predict the probe highly selective for the profenofos molecule. Besides high sensitivity due to SPR technique and selectivity due to molecular imprinting, proposed sensor has numerous other advantages like immunity to electromagnetic interference, fast response, low cost and capability of online monitoring and remote sensing of analyte due to the fabrication of the probe on optical fiber. PMID:26706813

  14. Designing and preparation of cytisine alkaloid surface-imprinted material and its molecular recognition characteristics

    NASA Astrophysics Data System (ADS)

    Gao, Baojiao; Bi, Concon; Fan, Li

    2015-03-01

    Based on molecular design, a cytisine surface-imprinted material was prepared using the new surface-imprinting technique of "pre-graft polymerizing and post-imprinting". The graft-polymerization of glycidyl methacrylate (GMA) on the surfaces of micron-sized silica gel particles was first performed with a surface-initiating system, preparing the grafted particles PGMA/SiO2. Subsequently, a polymer reaction, the ring-opening reaction of the epoxy groups of the grafted PGMA, was conducted with sodium 2,4-diaminobenzene sulfonate (SAS) as reagent, resulting in the functional grafted particles SAS-PGMA/SiO2. The adsorption of cytisine on SAS-PGMA/SiO2 particles reached saturation via strong electrostatic interaction between the sulfonate groups of SAS-PGMA/SiO2 particles and the protonated N atoms in cytisine molecule. Finally, cytisine surface-imprinting was successfully carried out with glutaraldehyde as crosslinker, obtaining cytisine surface-imprinted material MIP-SASP/SiO2. The binding and recognition characteristics of MIP-SASP/SiO2 towards cytisine were investigated in depth. The experimental results show that there is strong electrostatic interaction between particles and cytisine molecules, and on this basis, cytisine surface-imprinting can be smoothly performed. The surface-imprinted MIP-SASP/SiO2 has special recognition selectivity and excellent binding affinity for cytisine, and the selectivity coefficients of MIP-SASP/SiO2 particles for cytisine relative to matrine and oxymatrine, which were used as two contrast alkaloids, are 9.5 and 6.5, respectively.

  15. Recognition of dengue virus protein using epitope-mediated molecularly imprinted film.

    PubMed

    Tai, Dar-Fu; Lin, Chung-Yin; Wu, Tzong-Zeng; Chen, Li-Kuang

    2005-08-15

    Molecularly imprinted film was fabricated in the presence of a pentadecapeptide onto a quartz crystal microbalance (QCM) chip. This 15-mer peptide has been known as the linear epitope of the dengue virus NS1 protein. Imprinting resulted in an increased polymer affinity toward the corresponding templates but also to the virus protein. Direct detection of the dengue virus protein was achieved quantitatively. The QCM chip response to the NS1 protein was obtained using epitope-mediated imprinting demonstrating a comparable frequency shift in chips immobilized with monoclonal antibodies. The binding effect was further enhanced and confirmed using a monoclonal antibody to form a sandwich with the MIP-NS1 protein complex on the chip. No pretreatment was required. PMID:16097751

  16. Selective extraction and concentration of mebendazole in seawater samples using molecularly imprinted polymer as sorbent.

    PubMed

    Lian, Ziru; Liang, Zhenlin; Wang, Jiangtao

    2015-02-15

    A high selective pre-treatment method for the extraction and analysis of mebendazole in environmental water samples was developed based on molecularly imprinted solid-phase extraction (MISPE). The mebendazole imprinted polymers were synthesized in acetonitrile using methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross-linker respectively. The imprinted materials showed high adsorption ability for mebendazole and were applied as special solid-phase extraction sorbents for selective separation of mebendazole. An off-line MISPE procedure was developed for the purification and enrichment of mebendazole from natural seawater samples prior to high-performance liquid chromatography analysis. The recoveries of spiked seawater on the MISPE cartridges were from 83.0% to 90.6%, and the values of the relative standard deviation were in the range of 2.78-4.13% (n=3). The satisfied results showed that this pre-treatment methodology for extracting mebendazole in seawater was simple and effective. PMID:25547616

  17. Preparation of electrochemical sensor for lead(II) based on molecularly imprinted film

    NASA Astrophysics Data System (ADS)

    Wang, Zhihua; Qin, Yaxin; Wang, Chu; Sun, Lijun; Lu, Xiaole; Lu, Xiaoquan

    2012-01-01

    A high selective voltammetric sensor for Pb2+ was introduced. The feasibility of utilizing strong interactions between Schiff bases and metal ion to prepare the molecularly imprinted polymers (MIPs) electrochemical sensor for Pb2+ in aqueous solutions was studied. Some parameters affecting sensor response were optimized and then a calibration curve was plotted. A dynamic linear range of 3.00 × 10-7 to 5.00 × 10-5 mol/L was obtained. The redox process of Pb2+ on the imprinted electrode is controlled by surface reaction. The stability and the life of imprinted membrane were improved by storing into diluted Pb2+ ion solution. The proposed method was applied to determination of Pb2+ in the Yellow River.

  18. A Cascade-Reaction Nanoreactor Composed of a Bifunctional Molecularly Imprinted Polymer that Contains Pt Nanoparticles.

    PubMed

    Wang, Jiao; Zhu, Maiyong; Shen, Xiaojuan; Li, Songjun

    2015-05-11

    This study was aimed at addressing the present challenge of cascade reactions, namely, how to furnish the catalysts with desired and hierarchical catalytic ability. This issue was addressed by constructing a cascade-reaction nanoreactor made of a bifunctional molecularly imprinted polymer containing acidic catalytic sites and Pt nanoparticles. The acidic catalytic sites within the imprinted polymer allowed one specified reaction, whereas the encapsulated Pt nanoparticles were responsible for another coupled reaction. To that end, the unique imprinted polymer was fabricated by using two well-coupled templates, that is, 4-nitrophenyl acetate and 4-nitrophenol. The catalytic hydrolysis of the former compound at the acidic catalytic sites led to the formation of the latter compound, which was further reduced by the encapsulated Pt nanoparticles to 4-aminophenol. Therefore, this nanoreactor demonstrated a catalytic-cascade ability. This protocol opens up the opportunity to develop functional catalysts for complicated chemical processes. PMID:25846700

  19. A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice.

    PubMed

    Atar, Necip; Eren, Tanju; Yola, Mehmet Lütfi

    2015-10-01

    A novel and sensitive molecular imprinted surface plasmon resonance (SPR) biosensor was developed for selective determination of citrinin (CIT) in red yeast rice. Firstly, the gold surface of SPR chip was modified with allyl mercaptane. Then, CIT-imprinted poly(2-hydroxyethyl methacrylate-methacryloylamidoglutamic acid) (p(HEMA-MAGA)) film was generated on the gold surface modified with allyl mercaptane. The unmodified and imprinted surfaces were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM) and contact angle measurements. The linearity range and the detection limit were obtained as 0.005-1.0 ng/mL and 0.0017 ng/mL, respectively. The SPR biosensor was applied to determination of CIT in red yeast rice sample. PMID:25872420

  20. Quality control of automotive engine oils with mass-sensitive chemical sensors--QCMs and molecularly imprinted polymers.

    PubMed

    Dickert, F L; Forth, P; Lieberzeit, P A; Voigt, G

    2000-04-01

    Molecularly imprinted polyurethanes were used as sensor materials for monitoring the degradation of automotive engine oils. Imprinting with characteristic oils permits the analysis of these complex mixtures without accurately knowing their composition. Mass-sensitive quartz crystal microbalances (QCMs) coated with such layers exhibit mass effects in addition to frequency shifts caused by viscosity, which can be compensated by an uncoated quartz or a non-imprint layer. Incorporation of degradation products into the imprinted coatings is a bulk phenomenon, which is proven by variation of the sensor layer height. Therefore, the resulting sensor effects are determined by the degradation products in the oil. PMID:11227411

  1. Stoichiometric molecularly imprinted polymers for the recognition of anti-cancer pro-drug tegafur.

    PubMed

    Mattos Dos Santos, Paula; Hall, Andrew J; Manesiotis, Panagiotis

    2016-05-15

    Molecularly imprinted polymers (MIPs) targeting tegafur, an anti-cancer 5-fluorouracil pro-drug, have been prepared by stoichiometric imprinting using 2,6-bis(acrylamido)pyridine (BAAPy) as the functional monomer. Solution association between tegafur and BAAPy was studied by (1)H NMR titration, which confirmed the formation of 1:1 complexes with an affinity constant of 574±15M(-1) in CDCl3. Evaluation of the synthesised materials by HPLC and equilibrium rebinding experiments revealed high selectivity of the imprinted polymer for the pro-drug vs. 5-fluorouracil and other competing analytes, with maximum imprinting factors of 25.3 and a binding capacity of 45.1μmolg(-1). The synthesised imprinted polymer was employed in solid-phase extraction of the pro-drug using an optimised protocol that included a simple wash with the porogen used in the preparation of the material. Tegafur recoveries of up to 96% were achieved from aqueous samples and 92% from urine samples spiked with the template and three competing analytes. The results demonstrate the potential of the prepared polymers in the pre-concentration of tegafur from biological samples, which could be an invaluable tool in the monitoring of patient compliance and drug uptake and excretion. PMID:26711233

  2. "Smart" molecularly imprinted monoliths for the selective capture and easy release of proteins.

    PubMed

    Wen, Liyin; Tan, Xinyi; Sun, Qi; Svec, Frantisek; Lv, Yongqin

    2016-08-01

    A new thermally switchable molecularly imprinted monolith for the selective capture and release of proteins has been designed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith reacted with ethylenediamine followed by functionalization with 2-bromoisobutyryl bromide to introduce the initiator for atom transfer radical polymerization. Subsequently, a protein-imprinted poly(N-isopropylacrylamide) layer was grafted onto the surface of the monolithic matrix by atom transfer radical polymerization. Scanning electron microscopy and energy-dispersive X-ray spectroscopy of the cross-sections of imprinted monoliths confirmed the formation of dense poly(N-isopropylacrylamide) brushes on the pore surface. The imprinted monolith exhibited high specificity and selectivity toward its template protein myoglobin over competing proteins and a remarkably large maximum adsorption capacity of 1641 mg/g. Moreover, this "smart" imprinted monolith featured thermally responsive characteristics that enabled selective capture and easy release of proteins triggered only by change in temperature with water as the mobile phase and avoided use of stronger organic solvents or change in ionic strength and pH. PMID:27352958

  3. Room temperature ionic liquid-mediated molecularly imprinted polymer monolith for the selective recognition of quinolones in pork samples.

    PubMed

    Sun, Xiangli; He, Jia; Cai, Guorui; Lin, Anqing; Zheng, Wenjie; Liu, Xuan; Chen, Langxing; He, Xiwen; Zhang, Yukui

    2010-12-01

    A novel molecularly imprinted polymer monolith was prepared by the room temperature ionic liquid-mediated in situ molecular imprinting technique, using norfloxacin (NOR) as the template, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker. The optimal synthesis conditions and recognition properties of NOR-imprinted monolithic column were investigated. The results indicated that the imprinted monoliths exhibited good ability of selective recognition against the template and its structural analog. Using the fabricated material as solid-phase extraction sorbent, a sample pre-treatment procedure of molecularly imprinted solid-phase extraction coupling with HPLC was developed for determination of trace quinolone residues in animal tissues samples. The recoveries ranging from 78.16 to 93.50% for eight quinolones antibiotics such as marbofloxacin, NOR, ciprofloxacin, danofloxacin, difloxacin, oxolinic acid, flumequine and enrofloxacin were obtained. PMID:21082676

  4. Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection

    NASA Astrophysics Data System (ADS)

    Dong, He; Tong, Ai-jun; Li, Long-di

    2003-01-01

    Recognition of five steroid compounds, β-estradiol, ethynylestradiol, estradiolbenzoate, testosterone and methyltestosterone were studied using a synthesized molecularly imprinted polymer (MIP). When β-estradiol was used as the template molecule, the polymer was synthesized with methacrylic acid (MAA) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the cross linking agent through non-covalent interactions. It is found that the kind of porogen solvent and the polymerization conditions greatly affected the binding ability of a MIP to a certain molecule. Releasing of the template was performed by continuous extraction with methanol containing 10% acetic acid in a Soxhlet extractor. Our results indicated that such carefully synthesized MIP showed specific affinity toward β-estradiol in the adsorption process.

  5. Enantioseparation and amperometric detection of chiral compounds by in situ molecular imprinting on the microchannel wall.

    PubMed

    Qu, Ping; Lei, Jianping; Ouyang, Ruizhuo; Ju, Huangxian

    2009-12-01

    The molecular imprinting technique was first introduced into the microchannel of a microfluidic device to form in situ the imprinted polymer for fast enantioseparation of chiral compounds. The molecularly imprinted polymer (MIP) was in situ chemically polymerized on the microchannel wall using acrylamide as the functional monomer and ethylene glycol dimethacrylate as the cross-linker, and characterized by scanning electron microscopy, atomic force microscopy, and infrared spectroscopy. Under the optimized conditions, such as optimal preparation of MIP, composition and pH of mobile phase, and separation voltage, the model enantiomers, tert-butoxycarbonyl-D-tryptophan (Boc-D-Trp) and Boc-L-Trp, could be baseline separated within 75 s. The linear ranges for amperometric detection of the enantiomers using carbon fiber microdisk electrode at +1.2 V (vs Ag/AgCl) were from 75 to 4000 microM and 400 to 4000 microM with the detection limits of 20 and 140 microM, respectively. The MIP-microchip electrophoresis provided a powerful protocol for separation and detection of Boc-Trp enantiomers within a short analytical time. The molecular imprinting on microchannel wall opens a promising avenue for fast enantioscreening of chiral compounds. PMID:19883060

  6. Exploiting β-cyclodextrin in molecular imprinting for achieving recognition of benzylparaben in aqueous media.

    PubMed

    Asman, Saliza; Mohamad, Sharifah; Sarih, Norazilawati Muhamad

    2015-01-01

    The molecularly imprinted polymer (MIP) based on methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) monomer was synthesized for the purpose of selective recognition of benzylparaben (BzP). The MAA-β-CD monomer was produced by bridging a methacrylic acid (MAA) and β-cyclodextrin (β-CD) using toluene-2,4-diisocyanate (TDI) by reacting the -OH group of MAA and one of the primary -OH groups of β-CD. This monomer comprised of triple interactions that included an inclusion complex, π-π interaction, and hydrogen bonding. To demonstrate β-CD performance in MIPs, two MIPs were prepared; molecularly imprinted polymer-methacrylic acid functionalized β-cyclodextrin, MIP(MAA-β-CD), and molecularly imprinted polymer-methacrylic acid, MIP(MAA); both prepared by a reversible addition fragmentation chain transfer polymerization (RAFT) in the bulk polymerization process. Both MIPs were characterized using the Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Brunauer-Emmett-Teller (BET). The presence of β-CD not only influenced the morphological structure, it also affected the specific surface area, average pore diameter, and total pore volume of the MIP. The rebinding of the imprinting effect was evaluated in binding experiments, which proved that the β-CD contributed significantly to the enhancement of the recognition affinity and selective adsorption of the MIP. PMID:25667978

  7. Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid.

    PubMed

    Wang, Xuan; Mu, Zhongde; Liu, Ran; Pu, Yuepu; Yin, Lihong

    2013-12-15

    A novel sensor for the rapid and label-free detection of imidacloprid was developed based on the combination of a colloidal crystal templating method and a molecular imprinting technique. The molecular imprinted photonic hydrogel film was prepared with methacrylic acid as monomers, ethylene glycol dimethylacrylate as cross-linkers and imidacloprid as imprinting template molecules. When the colloidal crystal template and the molecularly imprinted template was removed, the resulted MIPH film possessed a highly ordered three-dimensional macroporous structure with nanocavities. The response of the MIPH film to imidacloprid in aqueous solution can be detected through a readable Bragg diffraction red shift. When the concentration of imidacloprid increased from 10(-13) to 10(-7) g/mL, the Bragg diffraction peak shifted from 551 to 589 nm, while there were no obvious peak shifts for thiamethoxam and acetamiprid. This sensor which comprises of no label techniques and expensive instruments has potential application for the detection of trace imidacloprid. PMID:23993570

  8. Exploiting β-Cyclodextrin in Molecular Imprinting for Achieving Recognition of Benzylparaben in Aqueous Media

    PubMed Central

    Asman, Saliza; Mohamad, Sharifah; Muhamad Sarih, Norazilawati

    2015-01-01

    The molecularly imprinted polymer (MIP) based on methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) monomer was synthesized for the purpose of selective recognition of benzylparaben (BzP). The MAA-β-CD monomer was produced by bridging a methacrylic acid (MAA) and β-cyclodextrin (β-CD) using toluene-2,4-diisocyanate (TDI) by reacting the –OH group of MAA and one of the primary –OH groups of β-CD. This monomer comprised of triple interactions that included an inclusion complex, π–π interaction, and hydrogen bonding. To demonstrate β-CD performance in MIPs, two MIPs were prepared; molecularly imprinted polymer-methacrylic acid functionalized β-cyclodextrin, MIP(MAA-β-CD), and molecularly imprinted polymer-methacrylic acid, MIP(MAA); both prepared by a reversible addition fragmentation chain transfer polymerization (RAFT) in the bulk polymerization process. Both MIPs were characterized using the Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Brunauer-Emmett-Teller (BET). The presence of β-CD not only influenced the morphological structure, it also affected the specific surface area, average pore diameter, and total pore volume of the MIP. The rebinding of the imprinting effect was evaluated in binding experiments, which proved that the β-CD contributed significantly to the enhancement of the recognition affinity and selective adsorption of the MIP. PMID:25667978

  9. Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting.

    PubMed

    Gupta, Banshi D; Shrivastav, Anand M; Usha, Sruthi P

    2016-01-01

    Molecular imprinting is earning worldwide attention from researchers in the field of sensing and diagnostic applications, due to its properties of inevitable specific affinity for the template molecule. The fabrication of complementary template imprints allows this technique to achieve high selectivity for the analyte to be sensed. Sensors incorporating this technique along with surface plasmon or localized surface plasmon resonance (SPR/LSPR) provide highly sensitive real time detection with quick response times. Unfolding these techniques with optical fiber provide the additional advantages of miniaturized probes with ease of handling, online monitoring and remote sensing. In this review a summary of optical fiber sensors using the combined approaches of molecularly imprinted polymer (MIP) and the SPR/LSPR technique is discussed. An overview of the fundamentals of SPR/LSPR implementation on optical fiber is provided. The review also covers the molecular imprinting technology (MIT) with its elementary study, synthesis procedures and its applications for chemical and biological anlayte detection with different sensing methods. In conclusion, we explore the advantages, challenges and the future perspectives of developing highly sensitive and selective methods for the detection of analytes utilizing MIT with the SPR/LSPR phenomenon on optical fiber platforms. PMID:27589746

  10. Molecularly imprinted polymeric stir bar: Preparation and application for the determination of naftopidil in plasma and urine samples.

    PubMed

    Peng, Jun; Xiao, Deli; He, Hua; Zhao, Hongyan; Wang, Cuixia; Shi, Tian; Shi, Kexin

    2016-01-01

    In this study, molecularly imprinting technology and stir bar absorption technology were combined to develop a microextraction approach based on a molecularly imprinted polymeric stir bar. The molecularly imprinted polymer stir bar has a high performance, is specific, economical, and simple to prepare. The obtained naftopidil-imprinted polymer-coated bars could simultaneously agitate and adsorb naftopidil in the sample solution. The ratio of template/monomer/cross-linker and conditions of template removal were optimized to prepare a stir bar with highly efficient adsorption. Fourier transform infrared spectroscopy, scanning electron microscopy, selectivity, and extraction capacity experiments showed that the molecularly imprinted polymer stir bar was prepared successfully. To utilize the molecularly imprinted polymer stir bar for the determination of naftopidil in complex body fluid matrices, the extraction time, stirring speed, eluent, and elution time were optimized. The limits of detection of naftopidil in plasma and urine sample were 7.5 and 4.0 ng/mL, respectively, and the recoveries were in the range of 90-112%. The within-run precision and between-run precision were acceptable (relative standard deviation <7%). These data demonstrated that the molecularly imprinted polymeric stir bar based microextraction with high-performance liquid chromatography was a convenient, rapid, efficient, and specific method for the precise determination of trace naftopidil in clinical analysis. PMID:26541792

  11. Polymeric Colloidal Nanostructures Fabricated via Highly Controlled Convective Assembly and Their Use for Molecular Imprinting.

    PubMed

    Yang, Jin Chul; Park, Jin Young

    2016-03-23

    In this work, the formation of various polystyrene (PS) colloidal structures on striped PS patterns is demonstrated based on a simple and novel convective assembly method that controls the electrostatic interactions between the PS colloidal particles and sodium dodecyl sulfate (SDS). Under the optimal conditions (different withdrawal speeds, channel dimensions, suspension concentrations, etc.), highly ordered structures such as highly close-packed, zigzag, and linear colloidal aggregates are observed. In addition, these colloidal arrangements are used for development of molecularly imprinted polymer (MIP) sensors with highly improved sensing properties. Using PDMS replicas, three hemispherical poly(methacrylic acid-ethylene glycol dimethacrylate) (poly(MAA-EGDMA)) MIP films, including planar MIP and non-imprinted polymer (NIP) films, are photopolymerized for detection of trace atrazine in an aqueous solution. From gravimetric quartz crystal microbalance (QCM) measurements, a non-close-packed MIP film exhibits highest sensing response (Δf = 932 Hz) to atrazine detection among hemispherical MIP films and shows 6.5-fold higher sensing response than the planar MIP film. In addition, the sensitivity of the MIP sensor is equivalent to -119 Hz/(mol L(-1)). From the ratio of slopes of the calibration curves for the hemispherical MIP and NIP films, the imprinting factor (If) is as high as 11.0. The hemispherical MIP film also shows excellent selectivity in comparison with the sensing responses of other analogous herbicides. As a result, this molecular surface imprinting using PS colloidal arrays is highly efficient for herbicide detection. PMID:26938141

  12. Molecularly imprinted upconversion nanoparticles for highly selective and sensitive sensing of Cytochrome c.

    PubMed

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Liu, Cuicui; Huang, Xuan; Wang, Shuo

    2015-12-15

    A novel method combined the high selectivity of molecular imprinting technology with the strong fluorescence property of upconversion nanoparticles (UCNPs) for sensing of Cytochrome c (Cyt c) was proposed. The molecularly imprinted material-coated upconversion nanoparticles (UCNPs@MIP) were obtained by in situ coating Cyt c imprinted materials to the surface of the carboxyl modified UCNPs through sol-gel technique. The structure and component of the prepared UCNPs@MIP was investigated by transmission electron microscopy (TEM), power X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDXA) and X-ray photoelectron spectroscopic (XPS). The TEM showed the diameter of UCNPs was 40 nm, and thickness of MIP was 5-10nm. The fluorescence intensity of UCNPs@MIP reduced gradually with the increase of Cyt c concentration. Under optimum conditions, the imprinting factor is 3.19, and the UCNPs@MIP showed selective recognition for Cyt c among other proteins such as bovine serum albumin (BSA) and Lysozyme (Lyz). Therefore, this new method for sensing protein is very promising for future applications. PMID:26176210

  13. Computational investigation of stoichiometric effects, binding site heterogeneities, and selectivities of molecularly imprinted polymers.

    PubMed

    Terracina, Jacob J; Bergkvist, Magnus; Sharfstein, Susan T

    2016-06-01

    A series of quantum mechanical (QM) computational optimizations of molecularly imprinted polymer (MIP) systems were used to determine optimal monomer-to-target ratios. Imidazole- and xanthine-derived target molecules were studied. The investigation included both small-scale models (3-7 molecules) and larger-scale models (15-35 molecules). The optimal ratios differed between the small and larger scales. For the larger models containing multiple targets, binding-site surface area analysis was used to quantify the heterogeneity of these sites. The more fully surrounded sites had greater binding energies. No discretization of binding modes was seen, furthering arguments for continuous affinity distribution models. Molecular mechanical (MM) docking was then used to measure the selectivities of the QM-optimized binding sites. Selectivity was also shown to improve as binding sites become more fully encased by the monomers. For internal sites, docking consistently showed selectivity favoring the molecules that had been imprinted via QM geometry optimizations. The computationally imprinted sites were shown to exhibit size-, shape-, and polarity-based selectivity. Here we present a novel approach to investigate the selectivity and heterogeneity of imprinted polymer binding sites, by applying the rapid orientation screening of MM docking to the highly accurate QM-optimized geometries. Modeling schemes were designed such that no computing clusters or other specialized modeling equipment would be required. Improving the in silico analysis of MIP system properties will ultimately allow for the production of more sensitive and selective polymers. PMID:27207254

  14. Adsorption and recognition characteristics of surface molecularly imprinted polymethacrylic acid/silica toward genistein.

    PubMed

    Zhang, Yanyan; Gao, Baojiao; An, Fuqiang; Xu, Zeqing; Zhang, Tingting

    2014-09-12

    In this paper, on the basis of surface-initiated graft polymerization, a new surface molecular imprinting technique is established by molecular design. And molecularly imprinted polymer MIP-PMAA/SiO2 is successfully prepared with genistein as template. The adsorption and recognition characteristics of MIP-PMAA/SiO2 for genistein are studied in depth by using static method, dynamic method and competitive adsorption experiment. The experimental results show that MIP-PMAA/SiO2 possesses very strong adsorption affinity and specific recognition for genistein. The saturated adsorption capacity could reach to 0.36mmolg(-1). The selectivity coefficients relative to quercetin and rutin are 5.4 and 11.8, respectively. Besides, MIP-PMAA/SiO2 is regenerated easily and exhibits excellent reusability. PMID:25085816

  15. Optical sensing of phenylalanine in urine via extraction with magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles

    NASA Astrophysics Data System (ADS)

    Hsu, Chung-Yi; Lee, Mei-Hwa; Thomas, James L.; Shih, Ching-Ping; Hung, Tzu-Lin; Whang, Thou-Jen; Lin, Hung-Yin

    2015-07-01

    Incorporation of superparamagnetic nanoparticles into molecularly imprinted polymers (MIPs) is useful for both bioseparations and for concentration and sensing of biomedically relevant target molecules in physiological fluids, through the application of a magnetic field. In this study, we combined the separation and concentration of a target (phenylalanine) in urine, using magnetic molecularly imprinted polymeric composite nanoparticles, with optical sensing, to improve assay sensitivity. This target is important as a catecholamine precursor, and as an important amino acid constituent of proteins. Poly(ethylene-co-vinyl alcohol)s were imprinted with target molecules, and showed a high imprinting effectiveness (target binding compared with binding to non-imprinted polymer particles.) Fluorescence spectrophotometry was used to measure binding of the target, and also binding of possible interfering compounds. These measurements suggest that functional groups on phenylalanine dominate the selectivity of the synthesized MIPs. Finally, the composite nanoparticles were used to separate and sense the target molecule in urine by Raman scattering microscopy.

  16. Potentiometric Sensors Based on Surface Molecular Imprinting: Detection of Cancer Biomarkers and Viruses

    SciTech Connect

    Wang, Y.; Zhang, Z; Jain, V; Yi, J; Mueller, S; Sokolov, J; Liu, Z; Levon, K; Rigas, B; Rafailovich, M

    2010-01-01

    The continuing discovery of cancer biomarkers necessitates improved methods for their detection. Molecular imprinting using artificial materials provides an alternative to the detection of a wide range of substances. We applied surface molecular imprinting using self-assembled monolayers to design sensing elements for the detection of cancer biomarkers and other proteins. These elements consist of a gold-coated silicon chip onto which hydroxyl-terminated alkanethiol molecules and template biomolecule are co-adsorbed, where the thiol molecules are chemically bound to the metal substrate and self-assembled into highly ordered monolayers, the biomolecules can be removed, creating the foot-print cavities in the monolayer matrix for this kind of template molecules. Re-adsorption of the biomolecules to the sensing chip changes its potential, which can be measured potentiometrically. We applied this method to the detection of carcinoembryonic antigen (CEA) in both solutions of purified CEA and in the culture medium of a CEA-producing human colon cancer cell line. The CEA assay, validated also against a standard immunoassay, was both sensitive (detection range 2.5-250 ng/mL) and specific (no cross-reactivity with hemoglobin; no response by a non-imprinted sensor). Similar results were obtained for human amylase. In addition, we detected virions of poliovirus in a specific manner (no cross-reactivity to adenovirus, no response by a non-imprinted sensor). Our findings demonstrate the application of the principles of molecular imprinting to the development of a new method for the detection of protein cancer biomarkers and to protein-based macromolecular structures such as the capsid of a virion. This approach has the potential of generating a general assay methodology that could be highly sensitive, specific, simple and likely inexpensive.

  17. Molecularly imprinted polymer grafted to porous polyethylene frits: a new selective solid-phase extraction format.

    PubMed

    Barahona, Francisco; Turiel, Esther; Martín-Esteban, Antonio

    2011-10-01

    In this paper, a novel format for selective solid-phase extraction based on a molecularly imprinted polymer (MIP) is described. A small amount of MIP has been synthesized within the pores of commercial polyethylene (PE) frits and attached to its surface using benzophenone (BP), a photo-initiator capable to start the polymerisation from the surface of the support material. Key properties affecting the obtainment of a proper polymeric layer, such as polymerisation time and kind of cross-linker were optimised. The developed imprinted material has been applied as a selective sorbent for cleaning extracts of thiabendazole (TBZ), as model compound, from citrus samples. The use of different solvents for loading the analyte in the imprinted frits was investigated, as well as the binding capacity of the imprinted polymer. Imprinted frits showed good selectivity when loads were performed using toluene and a linear relationship was obtained for the target analyte up to 1000 ng of loaded analyte. Prepared composite material was applied to the SPE of TBZ in real samples extracts, showing an impressive clean-up ability. Calibrations showed good linearity in the concentration range of 0.05-5.00 μg g(-1), referred to the original solid sample, and the regression coefficients obtained were greater than 0.996. The calculated detection limit was 0.016 μg g(-1), low enough to satisfactory analysis of TBZ in real samples. RSDs at different spiking levels ranged below 15% in all the cases and imprinted frits were reusable without loss in their performance. PMID:21855075

  18. Preparation of molecularly imprinted polymers using anacardic acid monomers derived from cashew nut shell liquid.

    PubMed

    Philip, Joseph Y N; Buchweishaija, Joseph; Mkayula, Lupituko L; Ye, Lei

    2007-10-31

    The objective of this work was to use monomers from cashew ( Anacardium occidentale L.) nut shells to develop molecularly imprinted polymers. Cashew nut shell liquid (CNSL) is a cheap and renewable agro byproduct consisting of versatile monomers. Solvent-extracted CNSL contains over 80% anacardic acid (AnAc) with more than 90% degree of unsaturation in its C 15 side chain. From AnAc monomer, anacardanyl acrylate (AnAcr) and anacardanyl methacrylate (AnMcr) monomers were synthesized and their chemical structures were characterized by Fourier transform IR and NMR. Different imprinted bulk polymers based on AnAc, AnAcr, and AnMcr functional monomers have been prepared. In the present study, each functional monomer was separately copolymerized in toluene with ethylene glycol dimethacrylate and divinylbenzene as cross-linkers, using racemic propranolol as a model template. While the AnAc based polymer revealed a meager rebinding ability, the imprinted polymers made from AnAcr and AnMcr displayed highly specific propranolol binding. At a polymer concentration of 2 mg/mL, AnAcr and AnMcr based imprinted polymers were able to bind over 50% of trace propranolol (initial concentration 1.2 nM). Under the same condition propranolol uptake by the two nonimprinted control polymers was less than 20%. Chiral recognition properties of these polymers were further confirmed using tritium-labeled (S)-propranolol as a tracer in displacement experiments, suggesting that the apparent affinity of the imprinted chiral sites for the correct enantiomer is at least 10 times that of the mismatched (R)-propranolol. Moreover, cross reactivity studies of these polymers showed that the (S)-imprinted sites have higher cross-reactivity toward (R, S)-metoprolol than (R)-propranolol and (R)-timolol. PMID:17927136

  19. Biopolymeric receptor for peptide recognition by molecular imprinting approach--synthesis, characterization and application.

    PubMed

    Singh, Lav Kumar; Singh, Monika; Singh, Meenakshi

    2014-12-01

    The present work is focused on the development of a biocompatible zwitterionic hydrogel for various applications in analytical chemistry. Biopolymer chitosan was derivatized to obtain a series of zwitterionic hydrogel samples. Free amino groups hanging on the biopolymeric chain were reacted with γ-butyrolactone to quaternize the N-centers of polymeric chain. N,N-methylene-bis-acrylamide acts as a crosslinker via Michael-type addition in the subsequent step and facilitated gelation of betainized chitosan. These biopolymeric hydrogel samples were fully characterized by FTIR, (1)H NMR, (13)C NMR spectra, SEM and XRD. Hydrogels were further characterized for their swelling behavior at varying parameters. The extent of swelling was perceived to be dictated by solvent composition such as pH, ionic strength and temperature. This valuable polymeric format is herein chosen to design an artificial receptor for dipeptide 'carnosine', which has adequate societal significance to be analytically determined, by molecular imprinting. Electrostatic interactions along with complementary H-bonding and other hydrophobic interactions inducing additional synergetic effect between the template (carnosine) and the imprinted polymer led to the formation of imprinted sites. The MIP was able to selectively and specifically take up carnosine from aqueous solution quantitatively. Thus prepared MIPs were characterized by FTIR spectroscopy, SEM providing evidence for the quality and quantity of imprinted gels. The binding studies showed that the MIP illustrated good recognition for carnosine as compared to non-imprinted polymers (NIPs). Detection limit was estimated as 3.3 μg mL(-1). Meanwhile, selectivity experiments demonstrated that imprinted gel had a high affinity to carnosine in the presence of close structural analogues (interferrants). PMID:25491843

  20. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water.

    PubMed

    Wang, Jixiang; Qiu, Hao; Shen, Hongqiang; Pan, Jianming; Dai, Xiaohui; Yan, Yongsheng; Pan, Guoqing; Sellergren, Börje

    2016-11-15

    Molecularly imprinted fluorescent polymers have shown great promise in biological or chemical separations and detections, due to their high stability, selectivity and sensitivity. In this work, molecularly imprinted fluorescent hollow nanoparticles, which could rapidly and efficiently detect λ-cyhalothrin (a toxic insecticide) in water samples, was reported. The molecularly imprinted fluorescent sensor showed excellent sensitivity (the limit of detection low to 10.26nM), rapid detection rate (quantitative detection of λ-cyhalothrin within 8min), regeneration ability (maintaining good fluorescence properties after 8 cycling operation) and appreciable selectivity over several structural analogs. Moreover, the fluorescent sensor was further used to detect λ-cyhalothrin in real samples form the Beijing-Hangzhou Grand Canal Water. Despite the relatively complex components of the environmental water, the molecularly imprinted fluorescent hollow nanosensor still showed good recovery, clearly demonstrating the potential value of this smart sensor nanomaterial in environmental monitoring. PMID:27208472

  1. Water-compatible molecularly imprinted polymers for selective solid phase extraction of dencichine from the aqueous extract of Panax notoginseng.

    PubMed

    Ji, Wenhua; Xie, Hongkai; Zhou, Jie; Wang, Xiao; Ma, Xiuli; Huang, Luqi

    2016-01-01

    Specific molecularly imprinted polymers for dencichine were developed for the first time in this study by the bulk polymerization using phenylpyruvic acid and dl-tyrosine as multi-templates. The photographs confirmed that molecularly imprinted polymers prepared using N,N'-methylene diacrylamide as cross-linker and glycol dimethyl ether as porogen displayed excellent hydrophilicity. Selectivity, adsorption isotherm and adsorption kinetics were investigated. The sample loading-washing-eluting solvent was optimized to evaluate the property of molecularly imprinted solid phase extract. Compared with LC/WCX-SPE, water-compatible molecularly imprinted solid phase extraction displayed more excellent specific adsorption performance. The extracted dencichine from Panax notoginseng with the purity of 98.5% and the average recovery of 85.6% (n=3) was obtained. PMID:26680322

  2. The Application of Template Selectophores for the Preparation of Molecularly Imprinted Polymers.

    PubMed

    Danylec, Basil; Schwarz, Lachlan J; Harris, Simon J; Boysen, Reinhard I; Hearn, Milton T W

    2015-01-01

    Molecularly imprinted polymers are versatile materials with wide application scope for the detection, capture and separation of specific compounds present in complex feed stocks. A major challenge associated with their preparation has been the need to sacrifice one mole equivalent of the template molecule to generate the complementary polymer cavities that selectively bind the target molecule. Moreover, template molecules can often be difficult to synthesise, expensive or lack stability. In this study, we describe a new approach, directed at the use of synthetic selectophores, chosen as readily prepared and low cost structural analogues with recognition groups in similar three-dimensional arrangements as found in the target molecule. To validate the approach, a comparative study of selectophores related to the polyphenolic compound (E)-resveratrol has been undertaken using traditional and green chemical synthetic approaches. These molecular mimic compounds were employed as polymer templates and also as binding analytes to interrogate the recognition sites associated with the molecularly imprinted polymers. Importantly, the study confirms that the use of selectophores has the potential to confer practical advantages, including access to more efficient methods for selection and preparation of suitable template molecules with a broader range of molecular diversity, as well as delivering imprinted polymers capable of recognizing the target compound and structurally related products. PMID:26404229

  3. Synthesis and computational investigation of molecularly imprinted nanospheres for selective recognition of alpha-tocopherol succinate

    PubMed Central

    Piacham, Theeraphon; Nantasenamat, Chanin; Isarankura-Na-Ayudhya, Chartchalerm; Prachayasittikul, Virapong

    2013-01-01

    Molecularly imprinted polymers (MIPs) are macromolecular matrices that can mimic the functional properties of antibodies, receptors and enzymes while possessing higher durability. As such, these polymers are interesting materials for applications in biomimetic sensor, drug synthesis, drug delivery and separation. In this study, we prepared MIPs and molecularly imprinted nanospheres (MINs) as receptors with specific recognition properties toward tocopherol succinate (TPS) in comparison to tocopherol (TP) and tocopherol nicotinate (TPN). MIPs were synthesized using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as crosslinking agent and dichloromethane or acetronitrile as porogenic solvent under thermal-induced polymerization condition. Results indicated that imprinted polymers of TPS-MIP, TP-MIP and TPN-MIP all bound specifically to their template molecules at 2 folds greater than the non-imprinted polymers. The calculated binding capacity of all MIP was approximately 2 mg per gram of polymer when using the optimal rebinding solvent EtOH:H2O (3:2, v/v). Furthermore, the MINs toward TPS and TP were prepared by precipitation polymerization that yielded particles that are 200-400 nm in size. The binding capacities of MINs to their templates were greater than that of the non-imprinted nanospheres when using the optimal rebinding solvent EtOH:H2O (4:1, v/v). Computer simulation was performed to provide mechanistic insights on the binding modalities of template-monomer complexes. In conclusion, we had successful prepared MIPs and MINs for binding specifically to TP and TPS. Such MIPs and MINs have great potential for industrial and medical applications, particularly for the selective separation of TP and TPS. PMID:26622214

  4. Electroanalysis of myoglobin based on electropolymerized molecularly imprinted polymer poly-o-phenylenediamine and carbon nanotubes/screen printed electrode.

    PubMed

    Shumyantseva, V V; Bulko, T V; Sigolaeva, L V; Kuzikov, A V; Archakov, A I

    2016-05-01

    Electroanalysis of myoglobin as a marker of acute myocardial infarction by means of screenprinted electrodes modified with multiwalled carbon nanotubes and polymeric artificial antibodies is developed. Plastic antibodies to myoglobin (molecularly imprinted polymers, MIPs) based on o-phenylenediamine were produced by electropolymerization. Molecular imprinting technology in biosensor analysis was used as alternative to natural receptors (namely, antibodies) and demonstrated high sensitivity (1.5 × 10(-2) A/nmol of myoglobin) and selectivity. PMID:27417724

  5. Molecularly imprinted adsorbents for selective separation and/or concentration of environmental pollutants.

    PubMed

    Kubo, Takuya; Hosoya, Ken; Otsuka, Koji

    2014-01-01

    This review describes the development of molecularly imprinted materials for selective separation and/or concentration of environmental pollutants, the quantitative concentration of which is usually difficult to determine because of their low level of concentration and existence of a large number of contaminants in environmental water. The fragment imprinting technique allowed for the selective separation of endocrine disrupters and halogenated aromatic compounds, including bisphenol A, and chlorinated/brominated aromatic compounds by the specific structural recognition based on the breeds, position, and number of the substituents. Also, the interval immobilization technique provided the specific materials enabling selective concentration based on the interval recognition of ionic functional groups in the targeting compounds, so that the effective determinations were achieved for natural toxins and pharmaceuticals in environmental water. Additionally, a selective photodegradation of toxins and a stimulus responsible hydrogel by the similar molecular recognition ability were successfully carried out. We have summarized these techniques including our recent studies. PMID:24420250

  6. Removal of carbamazepine and clofibric acid from water using double templates-molecularly imprinted polymers.

    PubMed

    Dai, Chao-meng; Zhang, Juan; Zhang, Ya-lei; Zhou, Xue-fei; Duan, Yan-ping; Liu, Shu-guang

    2013-08-01

    A novel double templates-molecularly imprinted polymer (MIP) was prepared by precipitation polymerization using carbamazepine (CBZ) and clofibric acid (CA) as the double templates molecular and 2-vinylpyridine as functional monomer. The equilibrium data of MIP was well described by the Freundlich isotherm model. Two kinetic models were adopted to describe the experimental data, and the pseudo second-order model well-described adsorption of CBZ and CA on the MIP. Adsorption experimental results showed that the MIP had good selectivity and adsorption capacity for CBZ and CA in the presence of competitive compounds compared with non-imprinted polymer, commercial powdered activated carbon, and C18 adsorbents. The feasibility of removing CBZ and CA from water by the MIP was demonstrated using tap water, lake water, and river water. PMID:23436062

  7. Surface plasmon resonance based optical fiber riboflavin sensor by using molecularly imprinted gel

    NASA Astrophysics Data System (ADS)

    Verma, Roli; Gupta, Banshi D.

    2013-05-01

    We report the fabrication and characterization of surface plasmon resonance (SPR) based optical fiber riboflavin/vitamin B2 sensor using combination of colloidal crystal templating and molecularly imprinted gel. The sensor works on spectral interrogation method. The operating range of the sensor lies from 0 μg/ml to 320 μg/ml, the suitable amount of intakes of riboflavin recommended for different age group. The SPR spectra show blue shift with increasing concentration of riboflavin, which is due to the interaction of riboflavin molecule over specific binding sites caused by molecular imprinting. The present sensor has many advantageous features such as fast response, small probe size, low cost and can be used for remote/online monitoring.

  8. Molecularly Imprinted Polymer Coated Quantum Dots for Multiplexed Cell Targeting and Imaging.

    PubMed

    Panagiotopoulou, Maria; Salinas, Yolanda; Beyazit, Selim; Kunath, Stephanie; Duma, Luminita; Prost, Elise; Mayes, Andrew G; Resmini, Marina; Tse Sum Bui, Bernadette; Haupt, Karsten

    2016-07-11

    Advanced tools for cell imaging are of great interest for the detection, localization, and quantification of molecular biomarkers of cancer or infection. We describe a novel photopolymerization method to coat quantum dots (QDs) with polymer shells, in particular, molecularly imprinted polymers (MIPs), by using the visible light emitted from QDs excited by UV light. Fluorescent core-shell particles specifically recognizing glucuronic acid (GlcA) or N-acetylneuraminic acid (NANA) were prepared. Simultaneous multiplexed labeling of human keratinocytes with green QDs conjugated with MIP-GlcA and red QDs conjugated with MIP-NANA was demonstrated by fluorescence imaging. The specificity of binding was verified with a non-imprinted control polymer and by enzymatic cleavage of the terminal GlcA and NANA moieties. The coating strategy is potentially a generic method for the functionalization of QDs to address a much wider range of biocompatibility and biorecognition issues. PMID:27238424

  9. Computational simulation and preparation of fluorescent magnetic molecularly imprinted silica nanospheres for ciprofloxacin or norfloxacin sensing.

    PubMed

    Gao, Bo; He, Xin-Ping; Jiang, Yang; Wei, Jia-Tong; Suo, Hui; Zhao, Chun

    2014-12-01

    A magnetic molecularly imprinted fluorescent sensor for the sensitive and convenient determination of ciprofloxacin or norfloxacin in human urine was synthesized and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, ultraviolet/visible spectroscopy, and fluorescence spectroscopy. Both cadmium telluride quantum dots and ferroferric oxide nanoparticles are introduced into the polymer for the rapid separation and detection of the target molecules. The synthesized molecularly imprinted polymers were applied to detect ciprofloxacin or its structural analog norfloxacin in human urine with the detection limit 130 ng/mL. A computational study was developed to evaluate the template-monomer geometry and interaction energy in the polymerization mixture to determine the reaction molar ratio of the template and monomer molecules. PMID:25311209

  10. Magnetic molecularly imprinted polymers for spectrophotometric quantification of curcumin in food.

    PubMed

    Liu, Xiuying; Zhu, Lijie; Gao, Xue; Wang, Yuxin; Lu, Haixia; Tang, Yiwei; Li, Jianrong

    2016-07-01

    Herein, we present a simple and rapid method for monitoring curcumin in food samples using a magnetic molecularly imprinted technique combined with ultraviolet-visible (UV-Vis) spectrophotometry. Magnetic molecularly imprinted polymers (mag-MIPs) were first synthesized by fabricating MIPs on to the surface of Fe3O4 nanobeads using curcumin as a template and methacrylic acid as a functional monomer. The obtained mag-MIPs were evaluated in detail with different techniques (such as binding isotherm, Scatchard analysis, and selectivity) and various adsorption experiments. Finally, mag-MIPs were constructed and UV-Vis spectrophotometry was used to quantify curcumin under optimized conditions. Good recoveries between 79.37% and 88.89% were obtained with the limits of detection and quantification of 1.31 and 4.38μg/mL, respectively. PMID:26920299

  11. Preparation and Application of Novel Magnetic Molecularly Imprinted Composites for Recognition of Sulfadimethoxine in Feed Samples.

    PubMed

    Feng, Min; Li, Hengye; Zhang, Lin; Zhang, Jingyou; Dai, Jianping; Wang, Xiaojin; Zhang, Lingli; Wei, Yunji

    2016-01-01

    Novel magnetic molecularly imprinted composites were prepared through a facile method using sulfadimethoxine (SDM) as template. The inorganic magnetic nanoparticles were linked with the organic molecularly imprinted polymer (MIP) through irreversibly covalent bond. So, the resulted composites showed excellent stability and reusability under acidic elution conditions. The magnetic MIP composites showed good selectivity, high binding capacity and excellent kinetics toward SDM. Adopting the magnetic MIP composites as extraction material, an off-line magnetic solid-phase extraction (SPE)/high performance liquid chromatography (HPLC) method was established. The calibration curve was linear in the range of 0.05 - 15 mg kg(-1) (r(2) = 0.9976). The LOD and LOQ were 0.016 and 0.052 mg kg(-1), respectively, while the recoveries were in the range of 89.3 - 107.0%. These novel magnetic MIP composites may become a powerful tool for the extraction of template from complex samples with good efficiency. PMID:27169650

  12. Molecularly imprinted polymer sensors for detection in the gas, liquid, and vapor phase.

    PubMed

    Jenkins, Amanda L; Ellzy, Michael W; Buettner, Leonard C

    2012-06-01

    Fast, reliable, and inexpensive analytical techniques for detection of airborne chemical warfare agents are desperately needed. Recent advances in the field of molecularly imprinted polymers have created synthetic nanomaterials that can sensitively and selectively detect these materials in aqueous environments, but thus far, they have not been demonstrated to work for detection of vapors. The imprinted polymers function by mimicking the function of biological receptors. They can provide high sensitivity and selectivity but, unlike their biological counterparts, maintain excellent thermal and mechanical stability. The traditional imprinted polymer approach is further enhanced in this work by the addition of a luminescent europium that has been introduced into the polymers to provide enhanced chemical affinity as well as a method for signal transduction to indicate the binding event. The europium in these polymers is so sensitive to the bound target; it can distinguish between species differing by a single methyl group. The imprinted polymer technology is fiber optic-based making it inexpensive and easily integratable with commercially available miniature fiber optic spectrometer technologies to provide a shoebox size device. In this work, we will describe efforts to apply these sensors for detection of airborne materials and vapors. Successful application of this technology will provide accurate low level vapor detection of chemical agents or pesticides with little to no false positives. PMID:22641530

  13. Nanometric thin polymeric films based on molecularly imprinted technology: towards electrochemical sensing applications.

    PubMed

    Ginzburg-Turgeman, Roni; Mandler, Daniel

    2010-09-28

    A new approach for assembling selective electrodes based on molecularly imprinted polymers (MIPs) is presented. The approach is based on the radical polymerization of a mixture of methacrylic acid (MAA) and ethyleneglycol dimethacrylate (EGDMA) in the presence of an initiator, benzoyl peroxide (BPO) and an activator, N,N'-dimethyl-p-toluidine (DMpT) at room temperature and atmospheric pressure. To form nanometric thin polymeric films the polymerization solution was spin-coated in the course of polymerization. The different physical and chemical parameters that affected the properties of the films, such as the spinning rate and the EGDMA:MAA ratio, were studied and optimized. A variety of techniques, e.g., rheoscopy, SEM, AFM, profilometry and electrochemistry, were used to characterize the films and the polymerization process. By optimizing the conditions very thin and reproducible films could be prepared and imprinted. The electrochemical behavior of the films showed that they were permeable to water-soluble electroactive species providing that either polyethylene glycol or template species were added to the polymerization mixture. Finally, we demonstrated that films imprinted with ferrocenylmethyl alcohol (Fc-MeOH) successfully extracted the imprinted species after their removal from MIPs. PMID:20668737

  14. Interactions of bupivacaine with a molecularly imprinted polymer in a monolithic format studied by NMR.

    PubMed

    Courtois, Julien; Fischer, Gerd; Schauff, Siri; Albert, Klaus; Irgum, Knut

    2006-01-15

    A trimethylolpropane trimethacrylate-based monolith of dimensions carefully chosen to fit exactly in a standard 4-mm solid-state CP/MAS NMR rotor was photopolymerized and subsequently molecularly imprinted with bupivacaine using a grafting protocol with methacrylic acid and ethylene dimethacrylate as monomers. As no crushing or grinding of the monolith was necessary, additional unspecific surface area was not created. This procedure ascertains that differences observed between imprinted and nonimprinted polymers are due only to graft imprinted surfaces and give therefore better results in NMR spectroscopy due to less unspecific interactions between analyte and monolith. This improves the comparability to chromatographic evaluations where uncrushed monolithic columns are also used. To track interactions between analyte and stationary phase, the saturation transfer difference (STD) technique was applied on the polymer in the suspended state using the same solvent as in the chromatographic evaluation. This relatively new NMR method has to our knowledge not been used on chromatographic materials before. By using STD NMR on pristine monoliths, it was possible to measure large differences between the imprinted or nonimprinted polymers and the analyte indicating significant differences in the interaction mechanisms. These could be directly correlated with retention differences observed in chromatographic evaluations. PMID:16408943

  15. Synthesis of porous molecularly imprinted polymers for selective adsorption of glutathione

    NASA Astrophysics Data System (ADS)

    Song, Renyuan; Hu, Xiaoling; Guan, Ping; Li, Ji; Qian, Liwei; Wang, Chaoli; Wang, Qiaoli

    2015-03-01

    An effective approach overcome the classical deficiencies of biomolecules molecularly imprinted polymers (MIPs), that is, low binding capacity and slow mass transfer rate, is proposed. With glutathione (GSH) as target molecule, porous imprinted layers were fabricated according to our newly developed method the introduction of a mixture of acetontrile and dimethylsulfoxide as porogen in surface-initiated polymerization systems. The resultant MIPs particles exhibited a large surface area could remarkably improve the imprinting effect in relation to a significantly increased imprinting factor and mass transfer rate, compared to the MIPs prepared by using aqueous solution as solvent. The batch static binding tests were carried out to evaluate the adsorption kinetics, adsorption isotherms and selective recognition of the MIPs particles. The binding behavior followed the pseudo-second order kinetic model, revealing that the process was chemically carried out. Two binding isotherm models were applied to analyze equilibrium data, obtaining the best description by Langmuir isotherm model. In addition, the selective of separation and extraction of GSH from a mixture of GSH and its structural analogs could be achieved on the MIPs solid-phase extraction cartridge, indicating that the possibility for the separation and enrichment of the template from complicated matrices.

  16. Synthesis of surface nano-molecularly imprinted polymers for sensitive baicalin detection from biological samples

    PubMed Central

    Gu, Xiaoli; He, Hongliang; Wang, Chong-Zhi; Gao, Yankun; Zhang, Hongjuan; Hong, Junli; Du, Shuhu; Chen, Lina; Yuan, Chun-Su

    2015-01-01

    Surface molecularly imprinted polymers (MIP@SBA-15) imprinted on the surface of hybrid nanostructured organic/inorganic materials (SBA-15) were prepared for the selective extraction and detection of baicalin (BA) from biological samples. The surface morphologies and characteristics of the imprinted and non-imprinted polymers were characterized by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo–gravimetric analysis (TGA) and nitrogen adsorption–desorption isotherms. The results indicated that the polymers were successfully grafted on the surface of SBA-15 and possessed a highly ordered mesoporous structure. In binding tests, MIP@SBA-15 reached saturated adsorption within 80 min and exhibited significant specific recognition toward BA with large adsorption capacity. Meanwhile, the prepared MIP@SBA-15 was used as a selective sorbent for solid-phase extraction of BA from biological samples. Recoveries of BA from the liver and spleen ranged from 90.6% to 90.9% with RSD < 3.7%. All these results reveal that this method is simple, rapid and sensitive for effectively extracting and detecting trace BA in biological samples. PMID:26257892

  17. Differential fluorescence from molecularly imprinted polymers containing europium ions as a transducer element

    NASA Astrophysics Data System (ADS)

    Pestov, Dmitry; Anderson, John; Tepper, Gary

    2006-10-01

    Molecularly imprinted polymers (MIPs) have the potential to provide a unique combination of high chemical selectivity and environmental stability and are, therefore, being widely studied in chemical sensor applications. Optical interrogation of the MIP-chemical interaction is very convenient for the detection of fluorescent compounds, but is problematic for the detection of non-fluorescent species. Doping MIPs with Eu3+ is one approach that can facilitate the optical detection of non-fluorescent species. Eu3+ has absorption in the near UV and the doped MIP can, therefore, be excited with a commercially available laser diode at 375nm. In the present paper MIPs doped with Eu3+ and imprinted to methyl salicylate (MES), a chemical warfare agent simulant, were prepared in the form of a thin film on a quartz substrate. Non-imprinted (Blank) polymer films were also prepared using the same imprinting procedure, but without introducing the MES template. Both polymers were tested to MES and the structurally similar compound methyl 3,5-dimethylbenzoate (DMB) in hexane. For MES, the fluorescence intensity of the MIP was significantly stronger than for the Blank, while for the methyl 3,5-dimethylbenzoate, the Blank polymer exhibited the stronger fluorescence signal. A portable chemical sensor employing differential fluorescence from MIP/Blank polymer pairs is under development and allows target discrimination without the need for spectroscopic analysis of the emission spectra.

  18. Preparation of a novel drug sensor using a molecular imprinted polymer approach

    NASA Astrophysics Data System (ADS)

    Wren, Stephen P.; Nguyen, T. Hien; Gascoine, Paul; Lacey, Dick; Sun, Tong; Grattan, Kenneth T. V.

    2013-05-01

    A chemical sensor for the detection of cocaine has been developed, based on a molecularly imprinted polymer (MIP) containing a fluorescein moiety as the signalling group. The fluorescent MIP was formed and covalently attached to the distal end of an optical fibre. The sensor exhibited an increase in fluorescence intensity in response to cocaine in an aqueous acetonitrile mixture. Selectivity for cocaine over codeine has been demonstrated.

  19. Dummy molecularly imprinted mesoporous silica prepared by hybrid imprinting method for solid-phase extraction of bisphenol A.

    PubMed

    Yu, Dan; Hu, Xiaolei; Wei, Shoutai; Wang, Qiang; He, Chiyang; Liu, Shaorong

    2015-05-29

    A novel hybrid dummy imprinting strategy was developed to prepare a mesoporous silica for the solid-phase extraction (SPE) of bisphenol A (BPA). A new covalent template-monomer complex (BPAF-Si) was first synthesized with 2,2-bis(4-hydroxyphenyl)hexafluoropropane (BPAF) as the template. The imprinted silica was obtained through the gelation of BPAF-Si with tetraethoxysilane and the subsequent removal of template by thermal cleavage, and then it was characterized by FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. Results showed that the new silica had micron-level particle size and ordered mesoporous structure. The static binding test verified that the imprinted silica had much higher recognition ability for BPA than the non-imprinted silica. The imprinted silica also showed high extraction efficiencies and high enrichment factor for SPE of BPA. Using the imprinted silica, a SPE-HPLC-UV method was developed and successfully applied for detecting BPA in BPA-spiked tap water and lake water samples with a recovery of 99-105%, a RSD of 2.7-5.0% and a limit of detection (S/N=3) of 0.3ng/mL. The new imprinted silica avoided the interference of the residual template molecules and reduced the non-specific binding sites, and therefore it can be utilized as a good sorbent for SPE of BPA in environmental water samples. PMID:25892637

  20. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques.

    PubMed

    Hammond, G Denise; Vojta, Adam L; Grant, Sheila A; Hunt, Heather K

    2016-01-01

    The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 10⁶. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring. PMID:27314397

  1. Configuration control on the shape memory stiffness of molecularly imprinted polymer for specific uptake of creatinine

    NASA Astrophysics Data System (ADS)

    Ang, Qian Yee; Zolkeflay, Muhammad Helmi; Low, Siew Chun

    2016-04-01

    In this study, sol-gel processing was proposed to prepare a creatinine (Cre)-imprinted molecularly imprinted polymer (MIP). The intermolecular interaction constituted by the cross-linkers, i.e., 2-acrylamido-2-methylpropane-sulfonic acid (AMPS) and aluminium ion (Al3+), was studied and compared in order to form a confined matrix that promises the effectiveness of molecular imprinting. In view of the shape recognition, the hydrogen bonded Cre-AMPS did not demonstrate good recognition of Cre, with Cre binding found only at 5.70 ± 0.15 mg g-1 of MIP. Whilst, MIP cross-linked using Al3+ was able to attain an excellent Cre adsorption capacity of 19.48 ± 0.64 mg g-1 of MIP via the stronger ionic interaction of Cre-Al3+. Based on the Scatchard analysis, a higher Cre concentration in testing solution required greater driving force to resolve the binding resistance of Cre molecules, so as to have a precise Cre binding with shape factor. The molecular recognition ability of Cre-MIP in present work was shape-specific for Cre as compared to its structural analogue, 2-pyrrolidinone (2-pyr), by an ideal selectivity coefficient of 6.57 ± 0.10. In overall, this study has come up with a practical approach on the preparation of MIP for the detection of renal dysfunction by point-of-care Cre testing.

  2. Molecularly imprinted polymer microspheres for optical measurement of ultra trace nonfluorescent cyhalothrin in honey.

    PubMed

    Gao, Lin; Li, Xiuying; Zhang, Qi; Dai, Jiangdong; Wei, Xiao; Song, Zhilong; Yan, Yongsheng; Li, Chunxiang

    2014-08-01

    In this study, we first present a general protocol for making fluorescent molecularly imprinted polymer microspheres via precipitation polymerisation. We first prepared the fluorescent molecularly imprinted polymer microspheres upon copolymerisation of acrylamide with a small quantity of allyl fluorescein in the presence of cyhalothrin to form recognition sites without doping. The as-synthesised microspheres exhibited spherical shape, high fluorescence intensity and highly selective recognition. Under optical conditions, polymer microspheres were successfully applied to selectively and sensitively detect cyhalothrin, and a linear relationship could be obtained covering the lower concentration range of 0-1.0nM with a correlation coefficient of 0.9936 described by the Stern-Volmer equation. A lower limit of detection was found to be 0.004nM. The results of practical detection suggested that the developed method was satisfactory for determination of cyhalothrin in honey samples. This study therefore demonstrated the potential of molecularly imprinted polymers for detection of cyhalothrin in food. PMID:24629930

  3. Development and application of novel clonazepam molecularly imprinted coatings for stir bar sorptive extraction.

    PubMed

    Li, Xiaoxu; Mei, Xiaoliang; Xu, Lei; Shen, Xin; Zhu, Wanying; Hong, Junli; Zhou, Xuemin

    2016-04-15

    The molecularly imprinted magnetic stir bar coatings were created based on graft-functional Fe3O4 nanoparticles with magnetic field-induced self-assembly. The magnetic complex including clonazepam as template, the graft-functional Fe3O4 nanoparticles and methacrylic acid as monomers was pre-assembled through π-π interaction and hydrogen bonding, then was directionally adsorbed on the surface of magnetic stir bar under the magnetic induction. The molecularly imprinted coating with well-ordered structure was generated by one-step copolymerization based on the cross linking of ethylene glycol dimethacrylate. The molecularly imprinted coating with multiple recognition sites could be manufactured and applied in polar solvents, and showed superior selectivity and fast binding kinetics for benzodiazepines. The analytes in herbal health foods, treated by stir bar sorptive extraction, were determined by HPLC-UV. Good linearity was observed in the range of 0.01-2 μg mL(-1). The content of clonazepam in the herbal health foods was found to be 44 ng g(-1), and the average recoveries were 89.8-103.3% with a relative standard deviation (RSD) <6.5%, demonstrating the successful application in real sample analysis. PMID:26851451

  4. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques

    PubMed Central

    Hammond, G. Denise; Vojta, Adam L.; Grant, Sheila A.; Hunt, Heather K.

    2016-01-01

    The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 106. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring. PMID:27314397

  5. Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering.

    PubMed

    Brüggemann, O

    2001-08-01

    Molecular imprinting is a way of creating polymers bearing artificial receptors. It allows the fabrication of highly selective plastics by polymerizing monomers in the presence of a template. This technique primarily had been developed for the generation of biomimetic materials to be used in chromatographic separation, in extraction approaches and in sensors and assays. Beyond these applications, in the past few years molecular imprinting has become a tool for producing new kinds of catalysts. For catalytic applications, the template must be chosen, so that it is structurally comparable with the transition state (a transition state analogue, TSA) of a reaction, or with the product or substrate. The advantage of using these polymeric catalysts is obvious: the backbone withstands more aggressive conditions than a bio material could ever survive. Results are presented showing the applicability of a molecularly imprinted catalyst in different kinds of chemical reactors. It is demonstrated that the catalysts can be utilized not only in batch but also in continuously driven reactors and that their performance can be improved by means of chemical reaction engineering. PMID:11429307

  6. Rationally designed molecularly imprinted polymers for selective extraction of methocarbamol from human plasma.

    PubMed

    Gholivand, Mohammad Bagher; Khodadadian, Mehdi

    2011-09-15

    Molecularly imprinted polymers (MIPs) with high selectivity toward methocarbamol have been computationally designed and synthesized based on the general non-covalent molecular imprinting approach. A virtual library consisting of 18 functional monomers was built and possible interactions between the template and functional monomers were investigated using a semiempirical approach. The monomers with the highest binding scores were then considered for additional calculations using a more accurate quantum mechanical (QM) calculation exploiting the density functional theory (DFT) at B3LYP/6-31G(d,p) level. The cosmo polarizable continuum model (CPCM) was also used to simulate the polymerization solvent. On the basis of computational results, acrylic acid (AA) and tetrahydrofuran (THF) were found to be the best choices of functional monomer and polymerization solvent, respectively. MIPs were then synthesized by the precipitation polymerization method and used as selective adsorbents to develop a molecularly imprinted solid-phase extraction (MISPE) procedure before quantitative analysis. After MISPE the drug could be determined either by differential pulse voltammetry (DPV), on a glassy carbon electrode modified with multiwalled-carbon nanotubes (GC/MWNT), or high performance chromatography (HPLC) with UV detection. A comparative study between MISPE-DPV and MISPE-HPLC-UV was performed. The MISPE-DPV was more sensitive but both techniques showed similar accuracy and precision. PMID:21807239

  7. Electropolymerized molecular imprinting on glassy carbon electrode for voltammetric detection of dopamine in biological samples.

    PubMed

    Kiss, Laszlo; David, Vasile; David, Iulia Gabriela; Lazăr, Paul; Mihailciuc, Constantin; Stamatin, Ioan; Ciobanu, Adela; Ştefănescu, Cristian Dragoş; Nagy, Livia; Nagy, Géza; Ciucu, Anton Alexandru

    2016-11-01

    A simple and reliable method for preparing a selective dopamine (DA) sensor based on a molecularly imprinted polymer of ethacridine was proposed. The molecularly imprinted polymer electrode was prepared through electrodepositing polyethacridine-dopamine film on the glassy carbon electrode and then removing DA from the film via chemical induced elution. The molecular imprinted sensor was tested by cyclic voltammetry as well as by differential pulse voltammetry (DPV) to verify the changes in oxidative currents of DA. In optimized DPV conditions the oxidation peak current was well-proportional to the concentration of DA in the range from 2.0×10(-8)M up to 1×10(-6)M. The limit of detection (3σ) of DA was found to be as low as 4.4nM, by the proposed sensor that could be considered a sensitive marker of DA depletion in Parkinson's disease. Good reproducibility with relative standard deviation of 1.4% and long term stability within two weeks were also observed. The modified sensor was validated for the analysis of DA in deproteinized human serum samples using differential pulse voltammetric technique. PMID:27591643

  8. Molecularly Imprinted Composite Membranes for Selective Detection of 2-Deoxyadenosine in Urine Samples

    PubMed Central

    Scorrano, Sonia; Mergola, Lucia; Di Bello, Maria Pia; Lazzoi, Maria Rosaria; Vasapollo, Giuseppe; Del Sole, Roberta

    2015-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. In this work, a novel molecularly imprinted polymer composite membrane (MIM) was synthesized and employed for the selective detection in urine samples of 2-deoxyadenosine (2-dA), an important tumoral marker. By thermal polymerization, the 2-dA-MIM was cross-linked on the surface of a polyvinylidene-difluoride (PVDF) membrane. By characterization techniques, the linking of the imprinted polymer on the surface of the membrane was found. Batch-wise guest binding experiments confirmed the absorption capacity of the synthesized membrane towards the template molecule. Subsequently, a time-course of 2-dA retention on membrane was performed and the best minimum time (30 min) to bind the molecule was established. HPLC analysis was also performed to carry out a rapid detection of target molecule in urine sample with a recovery capacity of 85%. The experiments indicated that the MIM was highly selective and can be used for revealing the presence of 2-dA in urine samples. PMID:26086824

  9. A molecularly imprinted polymer (MIP)-coated microbeam MEMS sensor for chemical detection

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Li, Lily; Hiller, Tobias; Turner, Kimberly L.

    2015-05-01

    Recently, microcantilever-based technology has emerged as a viable sensing platform due to its many advantages such as small size, high sensitivity, and low cost. However, microcantilevers lack the inherent ability to selectively identify hazardous chemicals (e.g., explosives, chemical warfare agents). The key to overcoming this challenge is to functionalize the top surface of the microcantilever with a receptor material (e.g., a polymer coating) so that selective binding between the cantilever and analyte of interest takes place. Molecularly imprinted polymers (MIPs) can be utilized as artificial recognition elements for target chemical analytes of interest. Molecular imprinting involves arranging polymerizable functional monomers around a template molecule followed by polymerization and template removal. The selectivity for the target analyte is based on the spatial orientation of the binding site and covalent or noncovalent interactions between the functional monomer and the analyte. In this work, thin films of sol-gel-derived xerogels molecularly imprinted for TNT and dimethyl methylphosphonate (DMMP), a chemical warfare agent stimulant, have demonstrated selectivity and stability in combination with a fixed-fixed beam microelectromechanical systems (MEMS)-based gas sensor. The sensor was characterized by parametric bifurcation noise-based tracking.

  10. Ion-exchange molecularly imprinted polymer for the extraction of negatively charged acesulfame from wastewater samples.

    PubMed

    Zarejousheghani, Mashaalah; Schrader, Steffi; Möder, Monika; Lorenz, Pierre; Borsdorf, Helko

    2015-09-11

    Acesulfame is a known indicator that is used to identify the introduction of domestic wastewater into water systems. It is negatively charged and highly water-soluble at environmental pH values. In this study, a molecularly imprinted polymer (MIP) was synthesized for negatively charged acesulfame and successfully applied for the selective solid phase extraction (SPE) of acesulfame from influent and effluent wastewater samples. (Vinylbenzyl)trimethylammonium chloride (VBTA) was used as a novel phase transfer reagent, which enhanced the solubility of negatively charged acesulfame in the organic solvent (porogen) and served as a functional monomer in MIP synthesis. Different molecularly imprinted polymers were synthesized to optimize the extraction capability of acesulfame. The different materials were evaluated using equilibrium rebinding experiments, selectivity experiments and scanning electron microscopy (SEM). The most efficient MIP was used in a molecularly imprinted-solid phase extraction (MISPE) protocol to extract acesulfame from wastewater samples. Using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) analysis, detection and quantification limits were achieved at 0.12μgL(-1) and 0.35μgL(-1), respectively. Certain cross selectivity for the chemical compounds containing negatively charged sulfonamide functional group was observed during selectivity experiments. PMID:26256920

  11. Preparation and evaluation of molecularly imprinted polymer liquid chromatography column for the separation of Cathine enantiomers

    PubMed Central

    Balamurugan, Krishnamoorthy; Gokulakrishnan, Kannan; Prakasam, Tangirala

    2011-01-01

    In this study molecular imprinting technology was employed to prepare a specific affinity sorbent for the resolution of Cathine, a chiral drug product. The molecularly imprinted polymer (MIP) was prepared by non-covalent molecular imprinting with either (+) or (−)-Cathine (threo-2-amino-1-hydroxy-1-phenyl propane; norpseudoephedrine) as the template. Methacrylic acid and ethylene glycol di-methacrylate were copolymerized in the presence of the template molecule. The bulk polymerization was carried out in chloroform with 2,2′-azobisisobutyronitrile as the initiator, at 5 °C and under UV radiation. The resulting MIP was ground into powders, which were slurry packed into analytical columns. After removal of template molecules, the MIP-packed columns were found to be effective for the resolution of (±)-Cathine racemates. The separation factor for the enantiomers ranged between 1.5 and 2.4 when the column was packed with MIP prepared with (+)-Cathine as the template. A separation factor ranging from 1.6 to 2.9 could be achieved from the column packed with MIP, prepared with (−)-Cathine as the template. Although the separation factor was higher with that previously obtained from reversed-phase column chromatography following derivatization with a chiral agent, elution peaks were broader due to the heterogeneity of binding sites on MIP particles and the possible non-specific interaction. PMID:23960776

  12. Determination of domoic acid in shellfish extracted by molecularly imprinted polymers.

    PubMed

    Lin, Zhengzhong; Wang, Dan; Peng, Aihong; Huang, Zhiyong; Lin, Yuhui

    2016-08-01

    A selective sample cleanup method using molecularly imprinted polymers was developed for the separation of domoic acid (a shellfish toxin) from shellfish samples. The molecularly imprinted polymers for domoic acid was prepared by emulsion polymerization using 1,3,5-pentanetricarboxylic acid as the template molecule, 4-vinyl pyridine as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, and Span80/Tween-80 (1:1 v/v) as the composite emulsifiers. The molecularly imprinted polymer showed high affinity to domoic acid with a dissociation constant of 13.5 μg/mL and apparent maximum adsorption capacity of 1249 μg/g. They were used as a selective sorbent for the detection of domoic acid from seafood samples coupled with high-performance liquid chromatography. The detection limit of 0.17 μg/g was lower than the maximum level permitted by several authorities. The mean recoveries of domoic acid from clam samples were 93.0-98.7%. It was demonstrated that the proposed method could be applied to the determination of domoic acid from shellfish samples. PMID:27311699

  13. Clinical spectrum and molecular diagnosis of Angelman and Prader-Willi syndrome patients with an imprinting mutation

    SciTech Connect

    Saitoh, S.; Cassidy, S.B.; Conroy, J.M.

    1997-01-20

    Recent studies have identified a new class of Prader-Willi syndrome (PWS) and Angelman syndrome (AS) patients who have biparental inheritance, but neither the typical deletion nor uniparental disomy (UPD) or translocation. However, these patients have uniparental DNA methylation throughout 15q11-q13, and thus appear to have a mutation in the imprinting process for this region. Here we describe detailed clinical findings of five AS imprinting mutation patients (three families) and two PWS imprinting mutation patients (one new family). All these patients have essentially the classical clinical phenotype for the respective syndrome, except that the incidence of microcephaly is lower in imprinting mutation AS patients than in deletion AS patients. Furthermore, imprinting mutation AS and PWS patients do not typically have hypopigmentation, which is commonly found in patients with the usual large deletion. Molecular diagnosis of these cases is initially achieved by DNA methylation analyses of the DN34/ZNF127, PW71 (D15S63), and SNRPN loci. The latter two probes have clear advantages in the simple molecular diagnostic analysis of PWS and AS patients with an imprinting mutation, as has been found for typical deletion or UPD PWS and AS cases. With the recent finding of inherited microdeletions in PWS and AS imprinting mutation families, our studies define a new class of these two syndromes. The clinical and molecular identification of these PWS and AS patients has important genetic counseling consequences. 49 refs., 4 figs., 3 tabs.

  14. Surface molecularly imprinted silica for selective solid-phase extraction of biochanin A, daidzein and genistein from urine samples.

    PubMed

    Chrzanowska, Anna M; Poliwoda, Anna; Wieczorek, Piotr P

    2015-05-01

    Selective molecularly imprinted silica polymer (SiO2MIP) for extraction of biochanin A, daidzein and genistein was synthesized using the surface molecular imprinting technique with the silica gel as a support. Biochanin A (BCA) was used as a template, 3-aminopropyltriethoxysilane (APTES) as a functional monomer, and tetraethoxysilicane (TEOS) as a cross-linker. Non-imprinted polymer with the sol-gel process (SiO2NIP) was also prepared for comparison. The synthesized polymers were characterized by Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM) and a standard Brunauer-Emett-Teller (BET) and Barret-Joyner-Halenda (BJH) analysis. The obtained results indicated the structural differences between imprinted and non-imprinted polymers. Finally, the SiO2MIP and SiO2NIP were adopted as the adsorbents of solid phase extraction for isolation and preconcentration of biochanin A and its structural analogues-daidzein and genistein from aqueous and urine samples. The performance analysis revealed that SiO2MIP displayed better affinity to the three investigated isoflavones compared with SiO2NIP. The recoveries of spiked samples for studied analytes ranged from 65.7% to 102.6% for molecularly imprinted silica polymer and 8.9-16.0% for non-imprinted sorbents. PMID:25817705

  15. SOFT-MI: a novel microfabrication technique integrating soft-lithography and molecular imprinting for tissue engineering applications.

    PubMed

    Vozzi, Giovanni; Morelli, Ilaria; Vozzi, Federico; Andreoni, Chiara; Salsedo, Elisabetta; Morachioli, Annagiulia; Giusti, Paolo; Ciardelli, Gianluca

    2010-08-01

    An innovative approach has been employed for the realization of bioactive scaffolds able to mimic the in vivo cellular microenvironment for tissue engineering applications. This method is based on the combination of molecular imprinting and soft-lithography technology to enhance cellular adhesion and to guide cell growth and proliferation due to presence of highly specific recognition sites of selected biomolecules on a well-defined polymeric microstructure. In this article polymethylmethacrylate (PMMA) scaffolds have been realized by using poly(dimethylsiloxane) (PDMS) microstructured molds imprinted with FITC-albumin and TRITC-lectin. In addition gelatin, an adhesion protein, was employed for the molecular imprinting of polymeric scaffolds for cellular tests. The most innovative aspect of this research was the molecular imprinting of whole cells for the development of substrates able to enhance the cell adhesion processes. PMID:20564617

  16. Imprints of Molecular Clouds in Radio Continuum Images

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.

    2012-11-01

    We show radio continuum images of several molecular complexes in the inner Galaxy and report the presence of dark features that coincide with dense molecular clouds. Unlike infrared dark clouds, these features which we call "radio dark clouds" are produced by a deficiency in radio continuum emission from molecular clouds that are embedded in a bath of UV radiation field or synchrotron emitting cosmic-ray particles. The contribution of the continuum emission along different path lengths results in dark features that trace embedded molecular clouds. The new technique of identifying cold clouds can place constraints on the depth and the magnetic field of molecular clouds when compared to those of the surrounding hot plasma radiating at radio wavelengths. The study of five molecular complexes in the inner Galaxy, Sgr A, Sgr B2, radio Arc, the Snake filament, and G359.75-0.13 demonstrates an anti-correlation between the distributions of radio continuum and molecular line and dust emission. Radio dark clouds are identified in Green Bank Telescope maps and Very Large Array images taken with uniform sampling of uv coverage. The level at which the continuum flux is suppressed in these sources suggests that the depth of the molecular cloud is similar to the size of the continuum emission within a factor of two. These examples suggest that high-resolution, high-dynamic-range continuum images can be powerful probes of interacting molecular clouds with massive stars and supernova remnants in regions where the kinematic distance estimates are ambiguous as well as in the nuclei of active galaxies.

  17. Novel surface dummy molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol A from water samples.

    PubMed

    Hu, Xiaolei; Wu, Xiao; Yang, Fanfan; Wang, Qiang; He, Chiyang; Liu, Shaorong

    2016-02-01

    A novel surface molecularly imprinted silica composite was prepared by a dummy-template imprinting strategy for the solid-phase extraction (SPE) of bisphenol A (BPA). 2,2-Bis(4-hydroxyphenyl) hexafluoropropane (BPAF) was chosen as the template molecule, and a hybrid technique was used for imprinting procedure. The imprinted silica was characterized by FT-IR spectroscopy, scanning electron microscope, thermo-gravimetric analysis, and nitrogen adsorption-desorption isotherms. The static binding test verified that the imprinted silica had much higher recognition ability for BPA than the non-imprinted silica, and the kinetic adsorption test presented the fast binding kinetics of the surface imprinted silica for BPA. When used as a SPE sorbent, the imprinted silica showed high extraction efficiencies and high enrichment factor for BPA. Based on the imprinted silica, a SPE-HPLC-UV method was developed and successfully applied to the detection of BPA in BPA-spiked lake water, tap water and drinking water samples with a high recovery of 97.3-106.0%, a RSD of 1.2-3.8% (n=3) and a limit of detection (S/N=3) of 0.3 ng/mL. The analysis results of a certified BPA sample also demonstrated the reliability of present method. The new surface dummy molecularly imprinted silica completely avoided the interference of the residual template molecules and greatly improved the binding kinetic of the target molecules. Therefore, it can be used as a good sorbent for SPE of BPA in environmental water samples. PMID:26653420

  18. Binding behaviour of molecularly imprinted polymers prepared by a hierarchical approach in mesoporous silica beads of varying porosity.

    PubMed

    Baggiani, Claudio; Baravalle, Patrizia; Giovannoli, Cristina; Anfossi, Laura; Passini, Cinzia; Giraudi, Gianfranco

    2011-04-01

    One of the most interesting methods for preparing molecularly imprinted polymers with controlled morphology consists in filling the pores of silica beads with an imprinting mixture, polymerizing it and dissolving the support, leaving porous imprinted beads that are the "negative image" of the silica beads. The main advantage of such an approach consists in the easy preparation of spherical imprinted polymeric particles with narrow diameter and pore size distribution, particularly indicated for chromatographic applications. In this approach it has been shown that the resulting morphology of polymeric beads depends essentially on the porosity and surface properties of the silica beads that act as microreactors for the thermopolymerization process. Anyway, it is not yet clear if the porosity of the silica beads influences the binding properties of the resulting imprinted beads. In this paper, we report the effect of different porosities of the starting mesoporous silica beads on the resulting binding properties of imprinted polymers with molecular recognition properties towards the fungicide carbendazim. The morphological properties of the imprinted beads prepared through this hierarchical approach were measured by nitrogen adsorption porosimetry and compared with a reference imprinted material prepared by bulk polymerization. The chromatographic behaviour of HPLC columns packed with the imprinted materials were examined by eluting increasing amounts of carbendazim and extracting the binding parameters through a peak profiling approach. The experimental results obtained show that the resulting binding properties of the imprinted beads are strongly affected by the polymerization approach used but not by the initial porosity of the silica beads, with the sole exception of the binding site density, which appears to be inversely proportional to them. PMID:21349526

  19. Molecularly imprinted polymer for specific extraction of hypericin from Hypericum perforatum L. herbal extract.

    PubMed

    Li, Zhaozhou; Qin, Cuili; Li, Daomin; Hou, Yuze; Li, Songbiao; Sun, Junjie

    2014-09-01

    The molecularly imprinted polymers (MIPs) were prepared by an oxidation-reduction polymerization system using a non-covalent molecularly imprinting strategy with hypericin as the template, acrylamide as the functional monomer and pentaerythritol triacrylate as the cross-linker in the porogen of acetone. The UV spectrum revealed that a cooperative hydrogen-bonding complex between hypericin and acrylamide might be formed at the ratio of 1:6 in the prepolymerized system. Two classes of the binding sites were produced in the resulting hypericin-imprinted polymer with the dissociation constants of 16.61μgL(-1) and 69.35μgL(-1), and the affinity binding sites of 456.53μgg(-1) and 603.06μgg(-1), respectively. The synthesized MIPs were characterized by scanning electron microscope, thermogravimetric and differential thermal analysis. High-performance liquid chromatography was used to investigate the adsorption and recognition properties of the MIPs. Selective binding of the template molecule was demonstrated in comparison to the analog pseudohypericin. After the Hypericum perforatum L. plant being air dried and finely ground, an extract was prepared by shaking the powder in a methanol-water solution (80:20, v/v), vacuum filtration though a Büchner funnel, liquid-liquid extraction with ethyl ether and ethyl acetate, and evaporating on a rotary evaporator until dry. With the sorbents of the optimized MIPs, a molecularly imprinted solid-phase extraction (MISPE) procedure was developed for enrichment and separation of hypericin from the Hypericum extract in the presence of interfering substances. The selective extraction of hypericin from herbal medicine was achieved with the recovery of 82.30%. The results showed that MISPE can be a useful tool for specific isolation and effective clean-up of target compounds from natural products. PMID:24946147

  20. [Preparation and applications of 4-methyl imidazole magnetic surface molecularly imprinted polymers].

    PubMed

    Qi, Yuxia; Zhao, Lijuan; Ma, Meihua; Wei, Chanling; Li, Ya; Li, Wenjing; Gong, Bolin

    2015-12-01

    The magnetic surface molecularly imprinted polymers (MIPs) with specific recognition of 4-methyl imidazole (4-MI) were prepared by using 4-MI as template molecule, methacrylic acid (MAA) as functional monomer and Fe3O4 as magnetic fluid. The polymers were characterized by of Fourier transform infrared spectrometer (FT-IR) analysis, X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results demonstrated that an imprinted polymer layer was successfully coated onto the surface of modified Fe3O4 nanomaterials, resulting in a narrow diameter distribution and good magnetic responsibility. The ultraviolet (UV) spectrophotometry was used to demonstrate the interaction between 4-MI and MAA. It was found that one 4-MI molecule was entrapped by one MAA molecule, which was the main existing form of subject and object. By UV spectrophotometric method to study the adsorption performance of magnetic molecularly imprinted polymers, the specific adsorption equilibrium and selectivity were evaluated by batch rebinding studies. The Scatchard analysis showed that there were two kinds of binding sites in the Fe3O4 @ (4-MI-MIP). The corresponding maximum adsorption capacities of 4-MI onto Fe3O4 @ (4-MI-MIP) were 40.31 mg/g and 23.07 mg/g, and the dissociation constants were 64.85 mg/L and 30.41 mg/L, respectively. The kinetic experimental data were correlated with second-order kinetic model. The magnetic molecularly imprinted polymers were used for the adsorption of 4-methyl imidazole in environmental water samples, and good results were obtained. PMID:27097456

  1. Carbon paste electrode modified with duplex molecularly imprinted polymer hybrid film for metronidazole detection.

    PubMed

    Xiao, Ni; Deng, Jian; Cheng, Jianlin; Ju, Saiqin; Zhao, Haiqing; Xie, Jin; Qian, Duo; He, Jun

    2016-07-15

    A novel electrochemical sensor based on duplex molecularly imprinted polymer (DMIP) hybrid film modified carbon paste electrode (CPE) has been developed for highly sensitive and selective determination of metronidazole (MNZ). A conductive poly(anilinomethyltriethoxysilane) film is firstly electrodeposited on the surface of a CPE, and then a molecularly imprinted polysiloxane (MIPS) membrane is covalently covered on the film via sol-gel process. The as-constructed DMIP hybrid film, combining the advantages of MIPS and conducting MIP, can make feasible the direct and efficient signal transformation between the target analyte and the transducer, as well as enhance the imprinting recognition capability, mass transfer efficiency and the detection sensitivity. Under optimized conditions, the reduction peak currents of MNZ are linear to MNZ concentrations in the range from 4.0×10(-7) to 2.0×10(-4) molL(-1) with a detection limit of 9.1×10(-8)molL(-1). The RSD values vary from 2.9% to 4.7% for intra-day and from 3.4% to 4.2% for inter-day precision. The DMIP-based sensor has been successfully applied for the determination of MNZ in biological and pharmaceutical samples. The accuracy and reliability of the method is further confirmed by high performance liquid chromatography. PMID:26921552

  2. Photoresponsive hollow molecularly imprinted polymer for the determination of trace bisphenol A in water.

    PubMed

    Gong, Cheng-Bin; Yang, Yu-Zhu; Yang, Yue-Hong; Zheng, An-Xun; Liu, Song; Tang, Qian

    2016-11-01

    A photoresponsive hollow molecularly imprinted polymer (PHMIP) was fabricated for photoresponsive recognition and determination of trace bisphenol A (BPA) in aqueous media using a water-soluble azo compound as the functional monomer. The PHMIP was prepared on sacrificial silica microspheres by surface imprinting and subsequent removal of the silica core. The PHMIP displayed photocontrolled recognition for BPA. SEM, TEM, FT-IR, TGA and N2 adsorption-desorption analyses confirmed successful formation of the hollow structure. The PHMIP displayed higher binding capacity, a larger specific area, and faster mass transfer rate than its corresponding surface molecularly imprinted polymer. The PHMIP was used to determine trace BPA in real samples with a limit of detection of 0.5ppm. For samples spiked at 0-10ppm, the BPA recoveries were in the range of 93.0%-99.0%. This PHMIP-based method provides convenient and inexpensive detection method for trace BPA in environmental samples. This method is especially suitable for determining materials that do not possess specific spectroscopic or luminescent properties. PMID:27478978

  3. Fullerene derived molecularly imprinted polymer for chemosensing of adenosine-5'-triphosphate (ATP).

    PubMed

    Sharma, Piyush S; Dabrowski, Marcin; Noworyta, Krzysztof; Huynh, Tan-Phat; Kc, Chandra B; Sobczak, Janusz W; Pieta, Piotr; D'Souza, Francis; Kutner, Wlodzimierz

    2014-09-24

    For molecular imprinting of oxidatively electroactive analytes by electropolymerization, we used herein reductively electroactive functional monomers. As a proof of concept, we applied C60 fullerene adducts as such for the first time. For that, we derivatized C60 to bear either an uracil or an amide, or a carboxy addend for recognition of the adenosine-5'-triphosphate (ATP) oxidizable analyte with the ATP-templated molecularly imprinted polymer (MIP-ATP). Accordingly, the ATP complex with all of the functional monomers formed in solution was potentiodynamically electropolymerized to deposit an MIP-ATP film either on an Au electrode of the quartz crystal resonator or on a Pt disk electrode for the piezoelectric microgravimetry (PM) or capacitive impedimetry (CI) determination of ATP, respectively, under the flow-injection analysis (FIA) conditions. The apparent imprinting factor for ATP was ∼4.0. After extraction of the ATP template, analytical performance of the resulting chemosensors, including detectability, sensitivity, and selectivity, was characterized. The limit of detection was 0.3 and 0.03mM ATP for the PM and CI chemosensor, respectively. The MIP-ATP film discriminated structural analogues of ATP quite well. The Langmuir, Freundlich, and Langmuir-Freundlich isotherms were fitted to the experimental data of the ATP sorption and sorption stability constants appeared to be nearly independent of the adopted sorption model. PMID:25172817

  4. Molecularly imprinted polymers as the extracted sorbents of clenbuterol ahead of liquid chromatographic determination*

    PubMed Central

    Lay, Sovichea; Yu, Hai-ning; Hu, Bao-xiang; Shen, Sheng-rong

    2016-01-01

    A pre-treatment methodology for clenbuterol hydrochloride (CLEN) isolation and enrichment in a complex matrix environment was developed through exploiting molecularly imprinted polymers (MIPs). CLEN-imprinted polymers were synthesized by the combined use of ally-β-cyclodextrin (ally-β-CD) and methacrylic acid (MAA), allyl-β-CD and acrylonitrile (AN), and allyl-β-CD and methyl methacrylate (MMA) as the binary functional monomers. MAA-linked allyl-β-CD MIPs (M-MAA) were characterized by Fourier transform-infrared (FT-IR) spectroscopy and a scanning electron microscope (SEM). Based upon the results, M-MAA polymers generally proved to be an excellent selective extraction compared to its references: AN-linked allyl-β-CD MIPs (M-AN) and MMA-linked allyl-β-CD MIPs (M-MMA). M-MAA polymers were eventually chosen to run through a molecularly imprinted solid-phase extraction (MISPE) micro-column to enrich CLEN residues spiked in pig livers. A high recovery was achieved, ranging from 91.03% to 96.76% with relative standard deviation (RSD) ≤4.45%. PMID:27256680

  5. A norepinephrine coated magnetic molecularly imprinted polymer for simultaneous multiple chiral recognition.

    PubMed

    Chen, Juan; Liang, Ru-Ping; Wang, Xiao-Ni; Qiu, Jian-Ding

    2015-08-28

    A newly designed molecularly imprinted polymer (MIP) material was developed and successfully used as recognition element for enantioselective recognition by microchip electrophoresis. In this work, molecularly imprinted polymers were facilely prepared employing Fe3O4 nanoparticles (NPs) as the supporting substrate and norepinephrine as the functional monomer in the presence of template molecule in a weak alkaline solution. After extracting the embedded template molecules, the produced imprinted Fe3O4@polynorepinephrine (MIP-Fe3O4@PNE) NPs have cavities complementary to three dimensional shape of template molecules favoring high binding capacity and magnetism property for easy manipulation. The MIP-Fe3O4@PNE NPs prepared with l-tryptophan, l-valine, l-threonine, Gly-l-Phe, S-(-)-ofloxacin or S-(-)-binaphthol as template molecules were packed in the polydimethylsiloxane microchannel via magnetic field as novel stationary phase to successful enantioseparation of corresponding target analysts. The MIP-Fe3O4@PNE NPs-based microchip electrophoresis system exhibited strong recognition ability, excellent high-performance, admirable reproducibility and stability, which provided a powerful protocol for separation enantiomers within a short analytical time and opened up an avenue for multiplex chiral compound assay in various systems. PMID:26206627

  6. Development of andrographolide molecularly imprinted polymer for solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Yin, Xiaoying; Liu, Qingshan; Jiang, Yifan; Luo, Yongming

    2011-06-01

    A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C 18-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata ( Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9 ± 0.6 μmol/g and 12.1 ± 0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n = 5) and 96.0% and 104.2% (RSD 2.9-3.7%, n = 5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment.

  7. Molecularly imprinted polymer microspheres for solid-phase extraction of protocatechuic acid in Rhizoma homalomenae.

    PubMed

    Chen, Fang-Fang; Wang, Guo-Ying; Shi, Yan-Ping

    2011-10-01

    Molecularly imprinted polymers (MIPs) had been prepared by precipitation polymerization method using acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, acetonitrile as the porogen solvent and protocatechuic acid (PA), one of phenolic acids, as the template molecule. The MIPs were characterized by scanning electron microscopy and Fourier transform infrared, and their performance relative to non-imprinted polymers was assessed by equilibrium binding experiments. Six structurally similar phenolic acids, including p-hydroxybenzoic acid, gallic acid, salicylic acid, syringic acid, vanillic acid, ferulic acid were selected to assess the selectivity and recognition capability of the MIPs. The MIPs were applied to extract PA from the traditional Chinese medicines as a solid-phase extraction sorbent. The resultant cartridge showed that the MIPs have a good extraction performance and were able to selectively extract almost 82% of PA from the extract of Rhizoma homalomenae. Thus, the proposed molecularly imprinted-solid phase extraction-high performance liquid chromatography method can be successfully used to extract and analyse PA in traditional Chinese medicines. PMID:21809445

  8. Molecular Imprinting of Silica Nanoparticle Surfaces via Reversible Addition-Fragmentation Polymerization for Optical Biosensing Applications

    NASA Astrophysics Data System (ADS)

    Oluz, Zehra; Nayab, Sana; Kursun, Talya Tugana; Caykara, Tuncer; Yameen, Basit; Duran, Hatice

    Azo initiator modified surface of silica nanoparticles were coated via reversible addition-fragmentation polymerization (RAFT) of methacrylic acid and ethylene glycol dimethacrylate using 2-phenylprop 2-yl dithobenzoate as chain transfer agent. Using L-phenylalanine anilide as template during polymerization led molecularly imprinted nanoparticles. RAFT polymerization offers an efficient control of grafting process, while molecularly imprinted polymers shows enhanced capacity as sensor. L-phenylalanine anilide imprinted silica particles were characterized by X-Ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM). Performances of the particles were followed by surface plasmon resonance spectroscopy (SPR) after coating the final product on gold deposited glass substrate against four different analogous of analyte molecules: D-henylalanine anilide, L-tyrosine, L-tryptophan and L-phenylalanine. Characterizations indicated that silica particles coated with polymer layer do contain binding sites for L-phenylalanine anilide, and are highly selective for the molecule of interest. This project was supported by TUBITAK (Project No:112M804).

  9. Molecularly imprinted polymers as the extracted sorbents of clenbuterol ahead of liquid chromatographic determination.

    PubMed

    Lay, Sovichea; Yu, Hai-Ning; Hu, Bao-Xiang; Shen, Sheng-Rong

    2016-06-01

    A pre-treatment methodology for clenbuterol hydrochloride (CLEN) isolation and enrichment in a complex matrix environment was developed through exploiting molecularly imprinted polymers (MIPs). CLEN-imprinted polymers were synthesized by the combined use of ally-β-cyclodextrin (ally-β-CD) and methacrylic acid (MAA), allyl-β-CD and acrylonitrile (AN), and allyl-β-CD and methyl methacrylate (MMA) as the binary functional monomers. MAA-linked allyl-β-CD MIPs (M-MAA) were characterized by Fourier transform-infrared (FT-IR) spectroscopy and a scanning electron microscope (SEM). Based upon the results, M-MAA polymers generally proved to be an excellent selective extraction compared to its references: AN-linked allyl-β-CD MIPs (M-AN) and MMA-linked allyl-β-CD MIPs (M-MMA). M-MAA polymers were eventually chosen to run through a molecularly imprinted solid-phase extraction (MISPE) micro-column to enrich CLEN residues spiked in pig livers. A high recovery was achieved, ranging from 91.03% to 96.76% with relative standard deviation (RSD) ≤4.45%. PMID:27256680

  10. Fluorescent molecularly imprinted polymer based on Navicula sp. frustules for optical detection of lysozyme.

    PubMed

    Lim, Guat Wei; Lim, Jit Kang; Ahmad, Abdul Latif; Chan, Derek Juinn Chieh

    2016-03-01

    The direct correlation between disease and lysozyme (LYZ) levels in human body fluids makes the sensitive and convenient detection of LYZ the focus of scientific research. Fluorescent molecularly imprinted polymer has emerged as a new alternative for LYZ detection in order to resolve the limitation of immunoassays, which are expensive, unstable, require complex preparation, and are time consuming. In this study, a novel fluorescence molecularly imprinted polymer based on Navicula sp. frustules (FITC-MIP) has been synthesized via post-imprinting treatment for LYZ detection. Navicula sp. frustules were used as supported material because of their unique properties of moderate surface area, reproducibility, and biocompatibility, to address the drawbacks of nanoparticle core material with low adsorption capacity. The FITC acts as recognition signal and optical readout, whereas MIP provides LYZ selectivity. The synthesized FITC-MIP showed a response time as short as 5 min depending on the concentration of LYZ. It is found that the LYZ template can significantly quench the fluorescence intensity of FITC-MIP linearly within a concentration range of 0 to 0.025 mg mL(-1), which is well described by Stern-Volmer equation. The FITC-MIP can selectively and sensitively detect down to 0.0015 mg mL(-1) of LYZ concentration. The excellent sensing performance of FITC-MIP suggests that FITC-MIP is a potential biosensor in clinical diagnosis applications. PMID:26842746

  11. In situ synthesis of molecularly imprinted polymers on glass microspheres in a column.

    PubMed

    Zhuang, Yan; Luo, Hongpeng; Duan, Deliang; Chen, Lirong; Xu, Xiaojie

    2007-10-01

    A facile method to fabricate molecularly imprinted polymers (MIPs) on glass microspheres in a column was developed. The column was prepacked with glass microspheres, and then the prepolymerization mixture was injected into the interstitial volume of the column. The polymerization took place in situ and the column could be directly used for high-performance liquid chromatography after the template had been removed. The template consumption was reduced greatly because the prepolymerization mixture just filled the interstitial volume between the glass microspheres in the column. The MIPs obtained exhibited better kinetic properties, higher efficiency, and low back pressure of the column. Emodin imprinted polymers were prepared by this method and were used for solid-phase extraction. PMID:17786412

  12. Expanding Cancer Detection Using Molecular Imprinting for a Novel Point-of-Care Diagnostic Device

    NASA Astrophysics Data System (ADS)

    Yu, Yingjie; Rafailovich, Miriam; Wang, Yantian; Ranjbaran, Alina; Wang, Tom; Nam, David

    2012-02-01

    We propose the use of a potentiometric biosensor that incorporates the efficient and specific molecular imprinting (MI) method with a self-assembled monolayer (SAM). We first tested the biosensor using carcinoembryonic antigen, CEA, a biomarker associated with pancreatic cancer. No change in detection efficiency was observed when detection was performed in the presence of 100% serum albumin, indicating that the sensor is able to discriminate for the template analyte even in concentrated solution of similar substances. Computer simulations of the protein structure were performed in order to estimate the changes in morphology and determine the sensitivity of the biosensor to conformational changes in the proteins. We found that even small changes in PH can generate rotation of the surface functional groups, without significant change in the morphology. Yet, the results show that only when the detection and imprinting conditions are similar, robust signals occurs. Hence we concluded that both morphology and surface chemistry play a role in the recognition.

  13. Preliminary investigations into surface molecularly imprinted nanoparticles for Helicobacter pylori eradication

    PubMed Central

    Han, Jiaying; Sun, Yinjing; Hou, Jiapeng; Wang, Yuyan; Liu, Yu; Xie, Cao; Lu, Weiyue; Pan, Jun

    2015-01-01

    This paper reports investigations into the preparation and characterization of surface molecularly imprinted nanoparticles (SMINs) designed to adhere to Helicobacter pylori (H. pylori). Imprinted nanoparticles were prepared by the inverse microemulsion polymerization method. A fraction of Lpp20, an outer membrane protein of H. pylori known as NQA, was chosen as template and modified with myristic acid to facilitate its localization on the surface of the nanoparticles. The interaction between these SMINs with the template NQA were evaluated using surface plasmon resonance (SPR), change in zeta potential and fluorescence polarization (FP). The results were highly consistent in demonstrating a preferential recognition of the template NQA for SMINs compared with the control nanoparticles. In vitro experiments also indicate that such SMINs are able to adhere to H. pylori and may be useful for H. pylori eradication. PMID:26713273

  14. Sequential molecularly imprinted solid-phase extraction methods for the analysis of resveratrol and other polyphenols.

    PubMed

    Schwarz, Lachlan J; Danylec, Basil; Harris, Simon J; Boysen, Reinhard I; Hearn, Milton T W

    2016-03-18

    Molecularly imprinted polymers (MIPs) templated with either the phytoalexin, (E)-resveratrol, or its structural analog, 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide, have been used in tandem for the sequential extraction of (E)-resveratrol from aqueous peanut meal extracts in high purity and in near quantitative yields. Re-processing of the (E)-resveratrol-depleted peanut meal extract with the 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide imprinted MIP yielded additional polyphenolic components, identified as A-type procyanidins. Tandem liquid chromatography-electrospray ionization mass spectrometry confirmed the identity and purity of the isolated products. This study documents the advantages of tandem approaches with MIPs for the solid phase extraction and analysis of multiple bioactive compounds present in complex biomass waste streams. PMID:26905880

  15. Titania-based molecularly imprinted polymer for sulfonic acid dyes prepared by sol-gel method.

    PubMed

    Li, Man; Li, Rong; Tan, Jin; Jiang, Zi-Tao

    2013-03-30

    A novel titania-based molecularly imprinted polymer (MIP) was synthesized through sol-gel process with sunset yellow (Sun) as template, without use of functional monomer. MIP was used as a solid-phase extraction material for the isolation and enrichment of sulfonic acid dyes in beverages. The results showed that MIP exhibited better selectivity, higher recovery and adsorption capacity for the sulfonic acid dyes compared to the non-imprinted polymer (NIP). MIP presented highest extraction selectivity to Sun when pH less than or equal to 3. The adsorption capacity was 485.9 mg g(-1), which was larger than that of NIP (384.7 mg g(-1)). The better clean-up ability demonstrated the capability of MIP for the isolation and enrichment of sulfonic acid dyes in complicated food samples. The mean recoveries for the sulfonic acid dyes on MIP were from 81.9% to 97.2% in spiked soft drink. PMID:23598213

  16. Guided folding takes a start from the molecular imprinting of structured epitopes.

    PubMed

    Cenci, L; Guella, G; Andreetto, E; Ambrosi, E; Anesi, A; Bossi, A M

    2016-08-25

    A biomimetic route towards assisted folding was explored. Molecularly imprinted polymeric nanoparticles (MIP NPs), i.e. biomimetics with entailed molecular recognition properties made by a template assisted synthesis, were prepared to target a structured epitope: the cystine containing peptide CC9ox, which corresponds to the apical portion of the β-hairpin hormone Hepcidin-25. The structural selection was achieved by the MIP NPs; moreover, the MIP NPs demonstrated favouring the folding of the linear random peptide (CC9red) into the structured one (CC9ox), anticipating the future role of the MIP NPs as in situ nanomachines to counteract folding defects. PMID:27524659

  17. Development of a molecularly imprinted solid-phase extraction sorbent for the selective extraction of telmisartan from human urine.

    PubMed

    Yılmaz, Hüma; Basan, Hasan

    2015-05-01

    A novel molecularly imprinted solid-phase extraction with spectrofluorimetry method has been developed for the selective extraction of telmisartan from human urine. Molecularly imprinted polymers were prepared by a noncovalent imprinting approach through UV-radical polymerization using telmisartan as a template molecule, 2-dimethylamino ethyl methacrylate as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, N,N-azobisisobutyronitrile as an initiator, chloroform as a porogen. Molecularly imprinted polymers and nonimprinted control polymer sorbents were dry-packed into solid-phase extraction cartridges, and eluates from cartridges were analyzed using a spectrofluorimeter. Limit of detection and limit of quantitation values were 11.0 and 36.0 ng/mL, respectively. A very high imprinting factor (16.1) was achieved and recovery values for the telmisartan spiked in human urine were in the range of 76.1-79.1%. In addition, relatively low within-day (0.14-1.6%) and between-day (0.11-1.31%) precision values were obtained. Valsartan was used to evaluate the selectivity of sorbent as well. As a result, a sensitive, selective, and simple molecularly imprinted solid-phase extraction with spectrofluorimetry method has been developed and successfully applied to the direct determination telmisartan in human urine. PMID:25755138

  18. Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT.

    PubMed

    Graham, Amy L; Carlson, Catherine A; Edmiston, Paul L

    2002-01-15

    Molecularly imprinting sol-gel materials for DDT using both a noncovalent and a covalent approach was examined. A nonpolar porous sol-gel network was created through the use of the bridged polysilsesquioxane, bis-(trimethoxysilylethyl)benzene (BTEB), as the principal sol-gel component. Noncovalent molecular imprinting was deemed unsuccessful, presumably because of the lack of strong intermolecular interactions that can be established between the DDT and the sol-gel precursor. A covalent imprinting strategy was employed by generating a sacrificial spacer through the reaction of two 3-isocyanatopropyltriethoxysilanes with one of two different template molecules: 4,4'-ethylenedianiline (EDA) or 4,4'-ethylidenebisphenol (EBP). After formation of the sol-gel, the bonds linking the spacer template to the matrix were cleaved in a manner that generated a pocket of the appropriate size bordered by amine groups that could aid in the binding of DDT through weak hydrogen bonding interactions. Experiments indicated that DDT could be bound selectively by such an approch. To generate a sensor, an environmentally sensitive fluorescent probe, 7-nitrobenz-2-oxa-1,3-diazole, (NBD) located adjacent to the DDT binding site was used to transduce the binding of analyte. EDA-imprinted sol-gels, deposited as films on glass microscope slides, were shown to quantitatively detect DDT in water to a limit-of-detection of 50 ppt with a response time of <60 s. Repeat measurements could be made with the same sensing films after rinsing with acetone between each measurement. The EDA sensing material was selective for DDT and other structurally similar molecules. However, the sensing film design was limited by the relatively minor changes in fluorescence intensity upon binding DDT. This situation may be remedied by an alternative methodology that can facilitate attachment of the NBD fluorophore in an optimal position proximal to the binding pocket. PMID:11811423

  19. Morphology and kinetic modeling of molecularly imprinted organosilanol polymer matrix for specific uptake of creatinine.

    PubMed

    Ang, Qian Yee; Low, Siew Chun

    2015-09-01

    Molecular imprinting is an emerging technique to create imprinted polymers that can be applied in affinity-based separation, in particular, biomimetic sensors. In this study, the matrix of siloxane bonds prepared from the polycondensation of hydrolyzed tetraethoxysilane (TEOS) was employed as the inorganic monomer for the formation of a creatinine (Cre)-based molecularly imprinted polymer (MIP). Doped aluminium ion (Al(3+)) was used as the functional cross-linker that generated Lewis acid sites in the confined silica matrix to interact with Cre via sharing of lone pair electrons. Surface morphologies and pore characteristics of the synthesized MIP were determined by field emission scanning electron microscopy (FESEM) and Brunauer-Emmet-Teller (BET) analyses, respectively. The imprinting efficiency of MIPs was then evaluated through the adsorption of Cre with regard to molar ratios of Al(3+). A Cre adsorption capacity of up to 17.40 mg Cre g(-1) MIP was obtained and adsorption selectivity of Cre to its analogues creatine (Cr) and N-hydroxysuccinimide (N-hyd) were found to be 3.90 ± 0.61 and 4.17 ± 3.09, respectively. Of all the studied MIP systems, chemisorption was predicted as the rate-limiting step in the binding of Cre. The pseudo-second-order chemical reaction kinetic provides the best correlation of the experimental data. Furthermore, the equilibrium adsorption capacity of MIP fit well with a Freundlich isotherm (R (2) = 0.98) in which the heterogeneous surface was defined. PMID:26163132

  20. The preparation of magnetic molecularly imprinted nanoparticles for the recognition of bovine hemoglobin.

    PubMed

    Zhang, Min; Wang, Yuzhi; Jia, Xiaoping; He, Meizhi; Xu, Minli; Yang, Shan; Zhang, Cenjin

    2014-03-01

    The protein imprinted technique combining surface imprinting and nano-sized supports materials is an attractive strategy for protein recognition and rapid separation. In this work, we imprinted bovine hemoglobin (BHb) on magnetic nanoparticles. With itaconic acid (IA) and acrylamide (AAm) as the monomers, the experiment was carried out in aqueous media via surface-imprinting technique. The effects of initial concentration and adsorption time over the adsorption capacity of both imprinted and non-imprinted nanoparticles were analyzed. The maximum adsorption capability of imprinted nanoparticles was found to be 77.6 mg g(-1), which was 3.1-4.3 times higher than that of the non-imprinted nanoparticles prepared at the same conditions. This resulted in the successful formation of imprinting cavities. Moreover, in selective adsorption experiment and competitive batch rebinding test, imprinted nanoparticles exhibited a high specific recognition of the template protein over the non-imprinted protein. PMID:24468385

  1. Determination of tetracyclines in food samples by molecularly imprinted monolithic column coupling with high performance liquid chromatography.

    PubMed

    Sun, Xiangli; He, Xiwen; Zhang, Yukui; Chen, Langxing

    2009-08-15

    A novel solid phase extraction (SPE) method for determination of tetracyclines (TCs) in milk and honey samples by molecularly imprinted monolithic column was developed. Using tetracycline (TC) as the template, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, methanol as the solvent, cyclohexanol and dodecanol as the mixed porogenic solvents, a TC imprinted monolithic column was prepared by in situ molecular imprinting technique for the first time, and the optimal synthesis conditions and the selectivity of TC imprinted monolithic column were investigated. The interfering substances in food samples and TCs can be separated successfully on imprinted column. Molecularly imprinted solid phase extraction (MISPE) coupling with C18 column was used to determinate the TCs in milk and honey. The recoveries of this method for six tetracyclines antibiotics such as tetracycline (TC), oxytetracycline (OTC), minocycline (MINO), chlortetracycline (CTC), metacycline (MTC) and doxycycline (DTC) were investigated, and high recoveries of 73.3-90.6% from milk samples and 62.6-82.3% from honey samples were obtained. A method for determination of TCs at low concentration level in milk and honey samples was successfully developed by using the monolithic column as the precolumn for solid phase extraction of six TCs compounds. PMID:19576466

  2. Tailoring molecularly imprinted polymer beads for alternariol recognition and analysis by a screening with mycotoxin surrogates.

    PubMed

    Abou-Hany, Rahma A G; Urraca, Javier L; Descalzo, Ana B; Gómez-Arribas, Lidia N; Moreno-Bondi, María C; Orellana, Guillermo

    2015-12-18

    Molecularly imprinted porous polymer microspheres have been prepared for selective binding of alternariol (AOH), a phenolic mycotoxin produced by Alternaria fungi. In order to lead the synthesis of recognition materials, four original AOH surrogates have been designed, prepared and characterized. They bear different number of phenol groups in various positions and different degree of O-methylation on the dibenzo[b,d]pyran-6-one skeleton. A comprehensive library of mixtures of basic, acidic or neutral monomers, with divinylbenzene or ethyleneglycol dimethacrylate as cross-linkers, were polymerized at a small scale in the presence of the four molecular mimics of the toxin molecule. This polymer screening has allowed selection of the optimal composition of the microbeads (N-(2-aminoethyl)methacrylamide, EAMA, and ethylene glycol dimethacrylate). The latter are able to bind AOH in water-acetonitrile (80:20, v/v) with an affinity constant of 109±10mM(-1) and a total number of binding sites of 35±2μmolg(-1), being alternariol monomethylether the only competitor species. Moreover, (1)H NMR titrations have unveiled a 1:2 surrogate-to-EAMA stoichiometry, the exact interaction sites and a binding constant of 1.5×10(4)M(-2). A molecularly imprinted solid phase extraction (MISPE) method has been optimized for selective isolation of the mycotoxin from aqueous samples upon a discriminating wash with 3mL of acetonitrile/water (20:80, v/v) followed by determination by HPLC with fluorescence detection. The method has been applied, in combination to ultrasound-assisted extraction, to the analysis of AOH in tomato samples fortified with the mycotoxin at five concentration levels (33-110μgkg(-1)), with recoveries in the range of 81-103% (RSD n=6). To the best of our knowledge, this is the first imprinted material capable of molecularly recognizing this widespread food contaminant. PMID:26632518

  3. Oxytetracycline recovery from aqueous media using computationally designed molecularly imprinted polymers.

    PubMed

    Rodríguez-Dorado, Rosalía; Carro, Antonia M; Chianella, Iva; Karim, Kal; Concheiro, Angel; Lorenzo, Rosa A; Piletsky, Sergey; Alvarez-Lorenzo, Carmen

    2016-09-01

    Polymers for recovery/removal of the antimicrobial agent oxytetracycline (OTC) from aqueous media were developed with use of computational design and molecular imprinting. 2-Hydroxyethyl methacrylate, 2-acrylamide-2-methylpropane sulfonic acid (AMPS), and mixtures of the two were chosen according to their predicted affinity for OTC and evaluated as functional monomers in molecularly imprinted polymers and nonimprinted polymers. Two levels of AMPS were tested. After bulk polymerization, the polymers were crushed into particles (200-1000 μm). Pressurized liquid extraction was implemented for template removal with a low amount of methanol (less than 20 mL in each extraction) and a few extractions (12-18 for each polymer) in a short period (20 min per extraction). Particle size distribution, microporous structure, and capacity to rebind OTC from aqueous media were evaluated. Adsorption isotherms obtained from OTC solutions (30-110 mg L(-1)) revealed that the polymers prepared with AMPS had the highest affinity for OTC. The uptake capacity depended on the ionic strength as follows: purified water > saline solution (0.9 % NaCl) > seawater (3.5 % NaCl). Polymer particles containing AMPS as a functional monomer showed a remarkable ability to clean water contaminated with OTC. The usefulness of the stationary phase developed for molecularly imprinted solid-phase extraction was also demonstrated. Graphical Abstract Selection of functional monomers by molecular modeling renders polymer networks suitable for removal of pollutants from contaminated aqueous environments, under either dynamic or static conditions. PMID:27488280

  4. Molecularly Imprinted Polymer Microspheres Containing Photoswitchable Spiropyran-Based Binding Sites

    PubMed Central

    2013-01-01

    A versatile approach for the preparation of photoswitchable molecularly imprinted polymers (MIPs) is proposed where the selective recognition and the photoresponsive function are assumed by two different monomers. As a proof of concept, MIP microspheres were synthesized by precipitation polymerization for recognizing terbutylazine, a triazine-type herbicide. Formation of the selective binding sites was based upon H-bonding interactions between the template and the functional monomer methacrylic acid, whereas a polymerizable spiropyran unit was incorporated into the polymer matrix to provide light-controllable characteristics. A trifunctional monomer, trimethylolpropane trimethacrylate, was used as a cross-linker. The imprinted particles exhibited considerable morphological differences compared to their nonimprinted counterparts as observed by scanning electron microscopy. The imprinting effect was confirmed by equilibrium rebinding studies. The photoresponsiveness of the polymer particles was visualized by fluorescence microscopy and further characterized by spectroscopy. The template binding behavior could be regulated by alternating UV and visible light illumination when analyte release and uptake was observed, respectively. Binding isotherms fitted by the Freundlich model revealed the photomodulation of the number of binding sites and their average affinity. This facile synthetic approach may give an attractive starting point to endow currently existing highly selective MIPs with photoswitchable properties, thereby extending the scope of spiropyran-based photoresponsive smart materials. PMID:23961698

  5. Molecularly imprinted polymer doped with Hectorite for selective recognition of sinomenine hydrochloride.

    PubMed

    Zhang, W; Fu, H L; Li, X Y; Zhang, H; Wang, N; Li, W; Zhang, X X

    2016-01-01

    In this work, a new and facile method was introduced to prepare molecularly imprinted polymers (MIPs) based on nano clay hectorite (Hec) for sinomenine hydrochloride (SM) analysis. Hec was firstly dissolved in distilled water in order to swell adequately, followed by a common precipitation polymerization with SM as the template, methacrylic acid as monomer, ethylene glycol dimethacrylate as a crosslinker and 2,2-azobisisobutyronitrile as an initiator. Hec@SM-MIPs were characterized by Fourier transform infrared spectrometer, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The maximum binding capacity of Hec@SM-MIPs, SM-MIPs and non-imprinted polymers (NIPs) (Hec@NIPs) was 57.4, 16.8 and 11.6 mg/g, respectively. The reason for this result may be that Hec@SM-MIPs have more binding sites and imprinted cavities for template molecule. Equilibrium data were described by the Langmuir and Freundlich isotherm models. The results showed that the Hec@SM-MIPs adsorption data correlated better with the Langmuir equation than the Freundlich equation under the studied concentration range. In vitro drug release experiment, Hec@SM-MIPs have a better ability to control SM release than SM-MIPs. Therefore, Hec@SM-MIPs were successfully applied to extraction of SM and used as the materials for drug delivery system. PMID:26614052

  6. Capillary electrophoresis characterization of molecularly imprinted polymer particles in fast binding with 17β-estradiol.

    PubMed

    DeMaleki, Zack; Lai, Edward P C; Dabek-Zlotorzynska, Ewa

    2010-09-01

    Molecularly imprinted polymer (MIP) submicron particles were synthesized, using either ethylene glycol dimethacrylate or trimethylolpropane trimethacrylate as a cross-linker, specifically for recognition of 17β-estradiol (E2). HPLC with fluorescence detection (HPLC-FD) results showed that 90(±5)% of E2 bound onto these particles after 2 min of incubation, and 96(±3)% after long equilibrium. The binding capacity was 8(±3) μmol/g for MIP particles prepared using ethylene glycol dimethacrylate, and 33-43(±8) μmol/g for using trimethylolpropane trimethacrylate. CE separation of MIP and non-imprinted polymer particles was successful when 50 mM borate buffer (pH 8.5) containing 0.005% w/v EOTrol™ LN in reverse polarity (-30 kV) was used. The electrophoretic mobilities of MIP and non-imprinted polymer particles, together with dynamic light scattering measurement of particle sizes, allowed for an estimation of their surface charges. Automated injection of E2 and particles in mixture set a lower limit of 20(±1) s on incubation time for the study of fast binding kinetics. The presence of E2 and bisphenol A (BPA) together tested the selectivity of MIP particles, when the two compounds competed for available binding cavities or sites. Addition of E2 after BPA confirmed E2 occupation of the specific binding cavities, via displacement of BPA. PMID:20658488

  7. [Preparation and characterization of core-shell structural magnetic molecularly imprinted polymers for nafcillin].

    PubMed

    Chen, Langxing; Liu, Yuxing; He, Xiwen; Zhang, Yukui

    2015-05-01

    The uniform core-shell nanostructured magnetic molecularly imprinted polymers (MIPs) were synthesized using antibiotic nafcillin as a template. In this protocol, the magnetite nanoparticles (NPs) were synthesized by the solvothermal reaction firstly. Subsequently, the vinyl groups were grated onto silica-modified Fe3O4 surface by 3-methacryloyloxypropyltrimethoxysilane via sol-gel method. Finally, the nafcillin-MIPs film was formed on the surface of Fe3O4 @ SiO2 by the copolymerization of vinyl end group with functional monomer, methacrylic acid, cross-linking agent, ethylene glycol dimethacrylate, the initiator azo-bis-isobutyronitrile and template molecule. The morphological and magnetic characteristics of the MIPs were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometer. The obtained spherical magnetic MIPs with diameters of about 320 nm had good monodispersity. The static binding experiment was carried out to evaluate the properties of magnetic MIPs and non imprinted polymers (NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity to template and good selectivity. The imprinting factor and the maximum adsorption capacity of Fe3O4 @ MIPs to nafcillin were 2.46 and 50.7 mg/g, respectively. It is expected that the prepared magnetic MIPs could be used for the enrichment of nafcillin in complex samples. PMID:26387205

  8. High-capacity magnetic hollow porous molecularly imprinted polymers for specific extraction of protocatechuic acid.

    PubMed

    Li, Hui; Hu, Xin; Zhang, Yuping; Shi, Shuyun; Jiang, Xinyu; Chen, Xiaoqin

    2015-07-24

    Magnetic hollow porous molecularly imprinted polymers (HPMIPs) with high binding capacity, fast mass transfer, and easy magnetic separation have been fabricated for the first time. In this method, HPMIPs was firstly synthesized using protocatechuic acid (PCA) as template, 4-vinylpyridine (4-VP) as functional monomer, glycidilmethacrylate (GMA) as co-monomer, and MCM-48 as sacrificial support. After that, epoxide ring of GMA was opened for chemisorbing Fe3O4 nanoparticles to prepare magnetic HPMIPs. The results of characterization indicated that magnetic HPMIPs exhibited large surface area (548m(2)/g) with hollow porous structure and magnetic sensitivity (magnetic saturation at 2.9emu/g). The following adsorption characteristics investigation exhibited surprisingly higher adsorption capacity (37.7mg/g), and faster kinetic binding (25min) than any previously reported PCA imprinted MIPs by traditional or surface imprinting technology. The equilibrium data fitted well to Langmuir equation and the adsorption process could be described by pseudo-second order model. The selective recognition experiments also demonstrated the high selectivity of magnetic HPMIPs towards PCA over analogues. The results of the real sample analysis confirmed the superiority of the proposed magnetic HPMIPs for selective and efficient enrichment of trace PCA from complex matrices. PMID:26044378

  9. New molecularly-imprinted polymer for carnitine and its application as ionophore in potentiometric selective membranes.

    PubMed

    Moret, Joséphine; Moreira, Felismina T C; Almeida, Sofia A A; Sales, M Goreti F

    2014-10-01

    Carnitine (CRT) is a biological metabolite found in urine that contributes in assessingseveral disease conditions, including cancer. Novel quick screening procedures for CRT are therefore fundamental. This work proposes a novel potentiometric device where molecularly imprinted polymers (MIPs) were used as ionophores. The host-tailored sites were imprinted on a polymeric network assembled by radical polymerization of methacrylic acid (MAA) and trimethylpropane trimethacrylate (TRIM). Non-imprinted polymers (NIPs) were produced as control by removing the template from the reaction media. The selective membrane was prepared by dispersing MIP or NIP particles in plasticizer and poly(vinyl chloride), PVC, and casting this mixture over a solid contact support made of graphite. The composition of the selective membrane was investigated with regard to kind/amount of sensory material (MIP or NIP), and the need for a lipophilic additive. Overall, MIP sensors with additive exhibited the best performance, with near-Nernstian response down to ~1×10(-4)mol L(-1), at pH5, and a detection limit of ~8×10(-5)mol L(-1). Suitable selectivity was found for all membranes, assessed by the matched potential method against some of the most common species in urine (urea, sodium, creatinine, sulfate, fructose and hemoglobin). CRT selective membranes including MIP materials were applied successfully to the potentiometric determination of CRT in urine samples. PMID:25175239

  10. Preparation of molecularly imprinted solid phase extraction using bensulfuron-methyl imprinted polymer and clean-up for the sulfonylurea-herbicides in soybean.

    PubMed

    Tang, Kaijie; Chen, Shangwei; Gu, Xiaohong; Wang, Haijun; Dai, Jun; Tang, Jian

    2008-04-28

    A pre-treatment methodology based on the molecularly imprinted solid phase extraction (MI-SPE) procedure was developed for the determination of bensulfuron-methyl (BSM), tribenuron-methyl (TBM), metsulfuron-methyl (MSM) and nicosulfuron (NS) in soybean samples. A molecular imprinted polymer (MIP) was prepared by precipitation polymerization using BSM as the template molecule, alpha-methacrylic acid (MAA) as the functional monomer, trimethylolpropane trimethacrylate (TRIM) as the cross-linker and dichloromethane as the porogen. The binding behaviors of the template BSM and its analogues on the MIP were evaluated by high performance liquid chromatography (HPLC). Then, solid phase extraction (SPE) with a BSM molecularly imprinted polymer (BSM-MIP) as adsorbent was investigated and the optimum loading, washing, and eluting conditions for MI-SPE of the selected BSM, MSM, TBM, and NS were established. The optimized MI-SPE procedure was used to extract the sulfonylureas and a high recovery was obtained in the soybean samples. PMID:18405688

  11. Dopaminergic receptor-ligand binding assays based on molecularly imprinted polymers on quartz crystal microbalance sensors.

    PubMed

    Naklua, Wanpen; Suedee, Roongnapa; Lieberzeit, Peter A

    2016-07-15

    Molecularly imprinted polymers (MIPs) have been successfully applied as selective materials for assessing the binding activity of agonist and antagonist of dopamine D1 receptor (D1R) by using quartz crystal microbalance (QCM). In this study, D1R derived from rat hypothalamus was used as a template and thus self-organized on stamps. Those were pressed into an oligomer film consisting of acrylic acid: N-vinylpyrrolidone: N,N'-(1,2-dihydroxyethylene) bis-acrylamide in a ratio of 2:3:12 spin coated onto a dual electrode QCM. Such we obtained one D1R-MIP-QCM electrode, whereas the other electrode carried the non-imprinted control polymer (NIP) that had remained untreated. Successful imprinting of D1R was confirmed by AFM. The polymer can re-incorporate D1R leading to frequency responses of 100-1200Hz in a concentration range of 5.9-47.2µM. In a further step such frequency changes proved inherently useful for examining the binding properties of test ligands to D1R. The resulting mass-sensitive measurements revealed Kd of dopamine∙HCl, haloperidol, and (+)-SCH23390 at 0.874, 25.6, and 0.004nM, respectively. These results correlate well with the values determined in radio ligand binding assays. Our experiments revealed that D1R-MIP sensors are useful for estimating the strength of ligand binding to the active single site. Therefore, we have developed a biomimetic surface imprinting strategy for QCM studies of D1R-ligand binding and presented a new method to ligand binding assay for D1R. PMID:26926593

  12. Optimisation and production of a molecular-imprinted-polymer for the electrochemical determination of triacetone triperoxide (TATP)

    NASA Astrophysics Data System (ADS)

    Mamo, S. K.; Gonzalez-Rodriguez, J.

    2014-10-01

    Triacetone triperoxide (TATP) explosive is one of the most common components of improvised explosive devices which can be prepared from commercially readily available reagents with easier synthetic procedure that is available over the internet. Molecularly imprinted polymer electrochemical sensors can offer highly selective determination of several classes of compounds from wide range of sample matrices in parts per billion levels. Highly sensitive and selective molecularly imprinted polymer electrochemical sensor has been developed for determination of TATP in acetonitrile. Molecular imprinting has been performed via electro-polymerization on to glassy carbon, gold, silver and platinum electrode surface by cyclic voltammetry from a solution of pyrrole functional monomer, TATP template, and LiClO4 supporting electrolyte. Quantitative differential pulse voltammetric measurements of TATP, with LiClO4 supporting electrolyte, were performed using the molecularly imprinted polymer modified and bare glassy carbon electrodes in a potential range of -2.0V to +1.0 V (vs. Ag/AgCl). Three-factor two-level factorial design has been used to optimize the monomer concentration at 0.1 mol L-1, template concentration at 100 mmol L-1, and the number of cyclic voltammetry scan cycles to 10 cycles, using differential pulse voltammetric current intensity as response variable. The molecularly imprinted polymer modified glassy carbon electrode demonstrated superior selectivity for TATP in the presence of PETN, RDX, HMX, and TNT.

  13. Molecular Imprint of Enzyme Active Site by Camel Nanobodies

    PubMed Central

    Li, Jiang-Wei; Xia, Lijie; Su, Youhong; Liu, Hongchun; Xia, Xueqing; Lu, Qinxia; Yang, Chunjin; Reheman, Kalbinur

    2012-01-01

    Screening of inhibitory Ab1 antibodies is a critical step for producing catalytic antibodies in the anti-idiotypic approach. However, the incompatible surface of the active site of the enzyme and the antigen-binding site of heterotetrameric conventional antibodies become the limiting step. Because camelid-derived nanobodies possess the potential to preferentially bind to the active site of enzymes due to their small size and long CDR3, we have developed a novel approach to produce antibodies with alliinase activities by exploiting the molecular mimicry of camel nanobodies. By screening the camelid-derived variable region of the heavy chain cDNA phage display library with alliinase, we obtained an inhibitory nanobody VHHA4 that recognizes the active site. Further screening with VHHA4 from the same variable domain of the heavy chain of a heavy-chain antibody library led to a higher incidence of anti-idiotypic Ab2 abzymes with alliinase activities. One of the abzymes, VHHC10, showed the highest activity that can be inhibited by Ab1 VHHA4 and alliinase competitive inhibitor penicillamine and significantly suppressed the B16 tumor cell growth in the presence of alliin in vitro. The results highlight the feasibility of producing abzymes via anti-idiotypic nanobody approach. PMID:22374998

  14. Determination of theophylline in serum by molecularly imprinted solid-phase extraction with pulsed elution.

    PubMed

    Mullett, W M; Lai, E P

    1998-09-01

    The technique of molecular imprinting is used to produce an extensively cross-linked poly(methacrylic acid-co-ethylene dimethacrylate) material that contains theophylline as a print molecule. After Soxhlet extraction of the theophylline, binding sites are formed in the polymer with complementary size, shape, and positioning of chemical functionalities. The molecularly imprinted polymer's (MIP) high theophylline selectivity, chemical stability, and physically robust nature make it an ideal stationary-phase material in columns for HPLC separation of theophylline from other structurally related drug compounds. Mobile-phase tests confirm that a retention mechanism typical of normal-phase chromatography governs the separation, and selectivity of the MIP column can be controlled by a combination of the mobile phase and the sample solvent. Under optimal conditions, the MIP column functions like a solid-phase sorbent for theophylline extraction. Rapid elution of the bound theophylline can be accomplished in a pulsed format through injection of 20 μL of a solvent that has the proper polarity and protic nature to disrupt the electrostatic interactions and hydrogen bonding between theophylline and binding sites. A concentration detection limit of 120 ng/mL is obtained using direct UV absorption detection at 270 nm, which corresponds to a mass detection limit of 2.4 ng. This new technique, molecularly imprinted solid-phase extraction with pulsed elution (MISPE-PE), permits on-line preconcentration of theophylline from a large volume of dilute sample solution. Using a sample volume of 300 μL, a 40 ng/mL standard solution produces a detectable peak signal. Application of MISPE-PE in serum analysis further demonstrates the high capability of the MIP column to selectively isolate theophylline from other matrix components for fast, accurate determination. PMID:21644709

  15. Synthesis of Water-Dispersible Molecularly Imprinted Electroactive Nanoparticles for the Sensitive and Selective Paracetamol Detection.

    PubMed

    Luo, Jing; Ma, Qiang; Wei, Wei; Zhu, Ye; Liu, Ren; Liu, Xiaoya

    2016-08-17

    A novel kind of water-dispersible molecularly imprinted electroactive nanoparticles was prepared combining macromolecular self-assembly with molecularly imprinting technique employing paracetamol (PCM) as template molecule. An amphiphilic electroactive copolymer (P(NVC-EHA-AA), PNEA) containing carbazole group was first synthesized through a one-pot free radical copolymerization. The coassembly of the electroactive copolymers with the template molecules (PCM) in aqueous solution generated nanoparticles embedded with PCM, leading to the formation of molecularly imprinted electroactive nanoparticles (MIENPs). A robust MIP film was formed on the surface of electrode by electrodeposition of MIENPs and subsequent electropolymerization of the carbazole units in MIENPs. After the extraction of PCM molecules, a MIP sensor was successfully constructed. It should be noted that electropolymerization of the electroactive units in MIENPs creates cross-conjugated polymer network, which not only locks the recognition sites but also significantly accelerates the electron transfer and thus enhances the response signal of the MIP sensor. These advantages endowed the MIP sensor with good selectivity and high sensitivity for PCM detection. The MIP sensor could recognize PCM from its possible interfering substances with good selectivity. Under the optimal conditions, two linear ranges from 1 μM to 0.1 mM and 0.1 to 10 mM with a detection limit of 0.3 μM were obtained for PCM detection. The MIP sensor also showed good stability and repeatability, which has been successfully used to analyze PCM in tablets and human urine samples with satisfactory results. PMID:27463123

  16. Designing and preparation of novel alkaloid-imprinted membrane with grafting type and its molecular recognition characteristic and permselectivity.

    PubMed

    Gao, Baojiao; Zhang, Liqin; Li, Yanbin

    2016-09-01

    A novel polysulfone-based molecularly imprinted membrane (MIM) with graft type (designated as GMIM) was successfully prepared by a combination of film-forming method of immersion-precipitation phase transformation with molecule surface-imprinting technique. The porous asymmetry membrane of chloromethylated polysulfone (CMPSF) was first prepared by a phase inversion method, and then the CMPSF membrane was amination-modified with ethanediamine as reagent, resulting aminated polysulfone membrane AMPSF, on whose surface primary amino groups were contained. Then the graft-polymerization of methacrylic acid (MAA) was realized by initiating of the surface-initiating system of -NH2/S2O8(-), obtaining the grafted membrane PSF-g-PMAA. After PSF-g-PMAA membrane adsorbed matrine, the crosslinking reaction of the grafted PMAA was allowed to be carried out with ethylene glycol diglycidyl ether (EGDE) as crosslinker, resulting in the matrine imprinted membrane with graft type, GMIM. The binding characteristics of the imprinted membrane GMIM, the permeability and separation property for matrine were investigated in depth. The experimental results show that the imprinted membrane consists of a thin imprinted layer, a thin skin layer containing channels at nanoscale and a support layer with macroporous structure. The imprinted membrane GMIM has specific recognition selectivity and excellent binding affinity for matrine, and its selectivity coefficient for matrine relative to cytisine is 4.85. More importantly, the imprinted membrane can produce good "gate effect" because of its own structure characteristic, so that it has fine permselectivity for the template, matrine molecule. The separation coefficient of the imprinted membrane GMIM for matrine relative to cytisine as a contrast reaches up to 5.9, displaying the excellent performance of a selectively permeable membrane. PMID:27207062

  17. Effect of minimizing amount of template by addition of macromolecular crowding agent on preparation of molecularly imprinted monolith.

    PubMed

    Sun, Guang-Ying; Zhong, Dan-Dan; Li, Xiang-Jie; Luo, Yu-Qing; Ba, Hang; Liu, Zhao-Sheng; Aisa, Haji Akber

    2015-09-01

    One of the main challenges in the preparation of molecularly imprinted polymers (MIPs) is the substantial initial amount of template needed because of the requirement of high load capacities for most applications. A new strategy of macromolecular crowding was suggested to solve this problem by reducing the amount of template in the polymerization recipe. In a ternary porogenic system of polystyrene (PS) (crowding agent), tetrahydrofuran, and toluene, an imprinted monolithic column with high porosity and good permeability was synthesized using a mixture of ellagic acid (template), acrylamide, and ethylene glycol dimethacrylate. The effect of polymerization factors, including monomer-template molar ratio and the molecular weight and concentration of PS, on the imprinting effect of the resulting MIP monoliths was systematically investigated. At a high ratio of monomer-template (120:1), the greatest imprinting factor of 32.4 was obtained on the MIP monolith with the aid of macromolecular crowding agent. The PS-based imprinted monolith had imprinting even at the extremely high ratio of functional monomer to template of 1510:1. Furthermore, an off-line solid-phase extraction based on the ground MIP was conducted, and the purification recovery of ellagic acid from pomegranate-rind extract was up to 80 %. In conclusion, this approach based on macromolecular crowding is simple, and is especially valuable for those applications of MIP preparation for which a rare template is used. PMID:26210545

  18. Preparation and characterization of a molecularly imprinted monolithic column for pressure-assisted CEC separation of nitroimidazole drugs.

    PubMed

    Liao, Sulan; Wang, Xiaochun; Lin, Xucong; Xie, Zenghong

    2010-08-01

    A polymethacrylate-based molecularly imprinted monolithic column bearing mixed functional monomers, using non-covalent imprinting approach, was designed for the rapid separation of nitroimidazole compounds. The new monolithic column has been prepared via simple in situ polymerization of 2-hydroxyethyl methacrylate, dimethylaminoethyl methacrylate and ethylene dimethacrylate, using (S)-ornidazole ((S)-ONZ) as template in a binary porogenic mixture consisting of toluene and dodecanol. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of monomers as well as the composition of the porogenic solvent. The column performance was evaluated in pressure-assisted CEC mode. Separation conditions such as pH, voltage, amount of organic modifier and salt concentration were studied. The optimized monolithic column resulted in excellent separation of a group of structurally related nitroimidazole drugs within 10 min in isocratic elution condition. Column efficiencies of 99 000, 80 000, 103 000, 60 000 and 99 000 plates/m were obtained for metronidazole, secnidazole, ronidazole, tinidazole and dimetridazole, respectively. Parallel experiments were carried out using molecularly imprinted and non-imprinted capillary columns. The separation might be the result of combined effects including hydrophobic, hydrogen bonding and the imprinting cavities on the (S)-ONZ-imprinted monolithic column. PMID:20661943

  19. Boronate Affinity-Molecularly Imprinted Biocompatible Probe: An Alternative for Specific Glucose Monitoring.

    PubMed

    Chen, Guosheng; Qiu, Junlang; Fang, Xu'an; Xu, Jianqiao; Cai, Siying; Chen, Qing; Liu, Yan; Zhu, Fang; Ouyang, Gangfeng

    2016-08-19

    A biocompatible probe for specific glucose recognition is based on photoinitiated boronate affinity-molecular imprinted polymers (BA-MIPs). The unique pre-self-assembly between glucose and boronic acids creates glucose-specific memory cavities in the BA-MIPs coating. As a result, the binding constant toward glucose was enhanced by three orders of magnitude. The BA-MIPs probe was applied to glucose determination in serum and urine and implanted into plant tissues for low-destructive and long-term in vivo continuous glucose monitoring. PMID:27411946

  20. Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol

    NASA Astrophysics Data System (ADS)

    Fonseca, Matheus C.; Nascimento, Clebio S.; Borges, Keyller B.

    2016-02-01

    The purpose of this Letter was to study for the first time the interaction process of tramadol (TRM) with distinct functional monomers (FM) in the formation of molecular imprinted polymer (MIP), using density functional theory (DFT) calculations at B3LYP/6-31G(d,p). As result we were able to establish that the best MIP synthesis conditions are obtained with acrylic acid as FM in 1:3 molar ratio and with chloroform as solvent. This condition presented the lowest stabilization energy for the pre-polymerization complexes. Besides, the intermolecular hydrogen bonds found between the template molecule and functional monomers play a primary role to the complex stability.

  1. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    NASA Astrophysics Data System (ADS)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike

  2. Development of molecularly imprinted microspheres for the fast uptake of 4-cumylphenol from water and soil samples.

    PubMed

    Narula, Priyanka; Kaur, Varinder; Singh, Raghubir; Kansal, Sushil Kumar

    2014-11-01

    Molecularly imprinted microspheres containing binding sites for the extraction of 4-cumylphenol have been prepared for the first time. The imprinted microspheres were synthesized by a precipitation method using 4-cumylphenol as a template molecule, methacrylic acid as a functional monomer and divinylbenzene-80 as a cross-linker for polymer network formation. The formation and the morphology of molecularly imprinted microspheres were well characterized using infrared spectroscopy, thermogravimetric studies, and scanning electron microscopy. The Brunauer-Emmett-Teller analysis revealed the high surface area of the sorbent indicating formation of molecularly imprinted microspheres. The developed microspheres were employed as a sorbent for the solid-phase extraction of 4-cumylphenol and showed fast uptake kinetics. The sorption parameters were optimized to achieve efficient sorption of the template molecule, like pH, quantity of molecularly imprinted microspheres, time required for equilibrium set-up, sorption kinetics, and adsorption isotherm. A standard method was developed to analyze the sorbed sample quantitatively at 279 nm using high-performance liquid chromatography with diode array detection. It was validated by determining target analyte from synthetic samples, bottled water, spiked tap water, and soil samples. The prepared material is a selective and robust sorbent with good reusability. PMID:25196136

  3. Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses.

    PubMed

    White, Charles J; McBride, Matthew K; Pate, Kayla M; Tieppo, Arianna; Byrne, Mark E

    2011-08-01

    Symptoms of contact lenses induced dry eye (CLIDE) are typically treated through application of macromolecular re-wetting agents via eye drops. Therapeutic soft contact lenses can be formulated to alleviate CLIDE symptoms by slowly releasing comfort agent from the lens. In this paper, we present an extended wear silicone hydrogel contact lens with extended, controllable release of 120 kDa hydroxypropyl methylcellulose (HPMC) using a molecular imprinting strategy. A commercial silicone hydrogel lens was tailored to release approximately 1000 μg of HPMC over a period of up to 60 days in a constant manner at a rate of 16 μg/day under physiological flowrates, releasing over the entire range of continuous wear. Release rates could be significantly varied by the imprinting effect and functional monomer to template ratio (M/T) with M/T values 0, 0.2, 2.8, 3.4 corresponding to HPMC release durations of 10, 13, 23, and 53 days, respectively. Lenses had high optical quality and adequate mechanical properties for contact lens use. This work highlights the potential of imprinting in the design and engineering of silicone hydrogel lenses to release macromolecules for the duration of wear, which may lead to decreased CLIDE symptoms and more comfortable contact lenses. PMID:21601274

  4. Molecularly imprinted solid-phase extraction for the determination of fenitrothion in tomatoes.

    PubMed

    Pereira, Leandro Alves; Rath, Susanne

    2009-02-01

    Organophosphorus insecticides are widely employed in agriculture, and residues of them can remain after harvesting or storage. Pesticide residue control is an important task for ensuring food safety. Common chromatographic methods used in the determination of pesticide residues in food require clean-up and concentration steps prior to quantitation. While solid-phase extraction has been widely employed for this purpose, there is a need to improve selectivity. Due to their inherent biomimetic recognition systems, molecularly imprinted polymers (MIP) allow selectivity to be enhanced while keeping the costs of analysis low. In this work, a MIP that was designed to enable the selective extraction of fenitrothion (FNT) from tomatoes was synthesized using a noncovalent imprinting approach. The polymer was prepared using methacrylic acid as functional monomer and ethyleneglycol dimethacrylate as crosslinking monomer in dichloromethane (a porogenic solvent). The polymer was characterized by Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and nitrogen sorption porosimetry. The pore structure and the surface area were evaluated using the BET adsorption method. To characterize the batch rebinding behavior of the MIP, the adsorption isotherm was measured, allowing the total number of binding sites, the average binding affinity and the heterogeneity index to be established. A voltammetric method of quantifying FNT during the molecularly imprinted solid-phase extraction (MISPE) studies was developed. The polymer was placed in extraction cartridges which were then used to clean up and concentrate FNT in tomato samples prior to high-performance liquid chromatographic quantitation. The material presented a medium extraction efficiency of 59% (for analyses performed with three different cartridges on three days and a fortification level of 5.0 microg g(-1)) and selectivity when used in the preparation of

  5. Determination of protein binding affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs).

    PubMed

    EL-Sharif, Hazim F; Hawkins, Daniel M; Stevenson, Derek; Reddy, Subrayal M

    2014-08-01

    Hydrogel-based molecularly imprinted polymers (HydroMIPs) were prepared for several proteins (haemoglobin, myoglobin and catalase) using a family of acrylamide-based monomers. Protein affinity towards the HydroMIPs was investigated under equilibrium conditions and over a range of concentrations using specific binding with Hill slope saturation profiles. We report HydroMIP binding affinities, in terms of equilibrium dissociation constants (Kd) within the micro-molar range (25 ± 4 μM, 44 ± 3 μM, 17 ± 2 μM for haemoglobin, myoglobin and catalase respectively within a polyacrylamide-based MIP). The extent of non-specific binding or cross-selectivity for non-target proteins has also been assessed. It is concluded that both selectivity and affinity for both cognate and non-cognate proteins towards the MIPs were dependent on the concentration and the complementarity of their structures and size. This is tentatively attributed to the formation of protein complexes during both the polymerisation and rebinding stages at high protein concentrations. We have used atomic force spectroscopy to characterize molecular interactions in the MIP cavities using protein-modified AFM tips. Attractive and repulsive force curves were obtained for the MIP and NIP (non-imprinted polymer) surfaces (under protein loaded or unloaded states). Our force data suggest that we have produced selective cavities for the template protein in the MIPs and we have been able to quantify the extent of non-specific protein binding on, for example, a non-imprinted polymer (NIP) control surface. PMID:24950144

  6. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity.

    PubMed

    Esfandyari-Manesh, Mehdi; Darvishi, Behrad; Ishkuh, Fatemeh Azizi; Shahmoradi, Elnaz; Mohammadi, Ali; Javanbakht, Mehran; Dinarvand, Rassoul; Atyabi, Fatemeh

    2016-05-01

    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181 nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC50) of 4.9 ± 0.9, 7.4 ± 0.5 and 32.8 ± 3.8 nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells. PMID:26952466

  7. Novel molecularly imprinted magnetic nanoparticles for the selective extraction of protoberberine alkaloids in herbs and rat plasma.

    PubMed

    Meng, Jiawei; Zhang, Wenpeng; Bao, Tao; Chen, Zilin

    2015-06-01

    In this work, a novel magnetic nanomaterial functionalized with a molecularly imprinted polymer was prepared for the extraction of protoberberine alkaloids. Molecularly imprinted polymers were made on the surface of Fe3 O4 nanoparticles by using berberine as template, acetonitrile/water as porogen, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross-linker. The optimized molar ratio of template/functional monomer was 1:7. The polymeric magnetic nanoparticles were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. The stability and adsorption capacity of the molecularly imprinted polymers were investigated. The molecularly imprinted polymers were used as a selective sorbent for the magnetic molecularly imprinted solid-phase extraction and determination of jatrorrhizine, palmatine, and berberine. Extraction parameters were studied including loading pH, sample volume, stirring speed, and extraction time. Finally, a magnetic molecularly imprinted solid-phase extraction coupled to high-performance liquid chromatography method was developed. Under the optimized conditions, the method showed good linear range of 0.1-150 ng/mL for berberine and 0.1-100 ng/mL for jatrorrhizine and palmatine. The limit of detection was 0.01 ng/mL for berberine and 0.02 ng/mL for jatrorrhizine and palmatine. The proposed method has been applied to determine protoberberine alkaloids in Cortex phellodendri and rat plasma samples. The recoveries ranged from 87.33-102.43%, with relative standard deviation less than 4.54% in Cortex phellodendri and from 102.22-111.15% with relative standard deviation less than 4.59% in plasma. PMID:25832420

  8. Separation and determination of citrinin in corn using HPLC fluorescence detection assisted by molecularly imprinted solid phase extraction clean-up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A liquid chromatography based method to detect citrinin in corn was developed using molecularly imprinted solid phase extraction (MISPE) sample clean-up. Molecularly imprinted polymers were synthesized using 1,4-dihydroxy-2-naphthoic acid as the template and an amine functional monomer. Density func...

  9. A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol.

    PubMed

    Hong, Chien-Chong; Chang, Po-Hsiang; Lin, Chih-Chung; Hong, Chian-Lang

    2010-05-15

    This paper presents a disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol. So far, the methods to detect anesthetic propofol in hospitals are liquid chromatography (LC), high-performance liquid chromatography (HPLC), and gas chromatography-mass spectroscopy (GC-MS). These conventional instruments are bulky, expensive, and not ease of access. In this work, a novel plastic microfluidic biochip with on-chip anesthetic biosensor has been developed and characterized for rapid detection of anesthetic propofol. The template-molecule imprinted polymers were integrated into microfluidic biochips to be used for detecting anesthetic propofol optically at 655 nm wavelength after the reaction of propofol with color reagent. Experimental results show that the sensitivity of the microfluidic biochip with on-chip molecularly imprinted polymers (MIPs) biosensor is 6.47 mV/(ppm mm(2)). The specific binding of MIP to non-imprinted polymer (NIP) is up to 456%. And the detection limit of the microsystem is 0.25 ppm with a linear detection range from 0.25 to 10 ppm. The disposable microfluidic biochip with on-chip anesthetic biosensor using molecularly imprinted polymers presented in this work showed excellent performance in separation and sensing of anesthetic propofol molecules. While compared to large-scale conventional instruments, the developed microfluidic biochips with on-chip MIP biosensors have the advantages of compact size, high sensitivity, high selectivity, low cost, and fast response. PMID:20206494

  10. Superhydrophilic molecularly imprinted polymers based on a water-soluble functional monomer for the recognition of gastrodin in water media.

    PubMed

    Ji, Wenhua; Zhang, Mingming; Wang, Daijie; Wang, Xiao; Liu, Jianhua; Huang, Luqi

    2015-12-18

    In this study, the first successfully developed superhydrophilic molecularly imprinted polymers (MIPs) for gastrodin recognition have been described. MIPs were prepared via the bulk polymerization process in an aqueous solution using alkenyl glycosides glucose (AGG) as the water-soluble functional monomer. The non-imprinted polymers (NIPs) were also synthesized using the same method without the use of the template. The dynamic water contact angles and photographs of the dispersion properties confirmed that the molecularly imprinted polymers displayed excellent superhydrophilicity. The results demonstrated that the MIPs exhibited high selectivity and an excellent imprinting effect. A molecularly imprinted solid phase extraction (MISPE) method was established. Optimization of various parameters affecting MISPE was investigated. Under the optimized conditions, a wide linear range (0.001-100.0μgmL(-1)) and low limits of detection (LOD) and quantification (LOQ) (0.03 and 0.09ngmL(-1), respectively) were achieved. When compared with the NIPs, higher recoveries (90.5% to 97.6%) of gastrodin with lower relative standard deviations values (below 6.4%) using high performance liquid chromatography were obtained at three spiked levels in three blank samples. These results demonstrated one efficient, highly selective and environmentally-friendly MISPE technique with excellent reproducibility for the purification and pre-concentration of gastrodin from an aqueous extract of Gastrodia elata roots. PMID:26627582

  11. Metal ion mediated synthesis of molecularly imprinted polymers targeting tetracyclines in aqueous samples.

    PubMed

    Qu, Guorun; Zheng, Sulian; Liu, Yumin; Xie, Wei; Wu, Aibo; Zhang, Dabing

    2009-10-01

    Molecularly imprinted polymers (MIPs) prepared in water-containing systems are more appropriate as adsorption materials in analyte extraction from biological samples. However, water as a polar solvent involved in the synthesis of MIPs frequently disrupts non-covalent interactions, and causes non-specific binding. In this study Fe(2+) was used as mediator to prepare MIPs, targeting tetracyclines (TCs) of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC), with TC as template molecule and methacrylic acid (MAA) as functional monomer. The subsequent binding assay indicated that Fe(2+) was responsible for substantially improved specific binding in recognition of TCs by decreasing the non-specific binding. Spectrophotometric analysis suggested the existence of the strong interactions among TC, metal ions and MAA in the mixture of methanol and water. Moreover, mass spectrometric measurements verified that Fe(2+) could bridge between TC and MAA to form a ternary complex of one TC, one Fe(2+) and four MAAs with a mass of 844.857. Furthermore, combined with molecularly imprinted solid-phase extraction (MISPE) for sample pretreatment, HPLC-UV analysis data revealed good performance of the obtained MIPs as adsorbents. The recoveries of TC, OTC and CTC in urine samples were 80.1-91.6%, 78.4-89.3% and 78.2-86.2%, respectively. This research strategy provides an example for preparation of desirable water-compatible MIPs extracting target drugs from aqueous samples by introducing metal ion as mediator into conventional polymerization system. PMID:19726243

  12. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element.

    PubMed

    Mao, Yan; Bao, Yu; Gan, Shiyu; Li, Fenghua; Niu, Li

    2011-10-15

    A novel composite of graphene sheets/Congo red-molecular imprinted polymers (GSCR-MIPs) was synthesized through free radical polymerization (FRP) and applied as a molecular recognition element to construct dopamine (DA) electrochemical sensor. The template molecules (DA) were firstly absorbed at the GSCR surface due to their excellent affinity, and subsequently, selective copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) was further achieved at the GSCR surface. Potential scanning was presented to extract DA molecules from the imprinted polymers film, and as a result, DA could be rapidly and completely removed by this way. With regard to the traditional MIPs, the GSCR-MIPs not only possessed a faster desorption and adsorption dynamics, but also exhibited a higher selectivity and binding capacity toward DA molecule. As a consequence, an electrochemical sensor for highly sensitive and selective detection of DA was successfully constructed as demonstration based on the synthesized GSCR-MIPs nanocomposites. Under experimental conditions, selective detection of DA in a linear concentration range of 1.0 × 10(-7)-8.3 × 10(-4)M was obtained, which revealed a lower limit of detection and wider linear response compared to some previously reported DA electrochemical MIPs sensors. The new DA electrochemical sensor based on GSCR-MIPs composites also exhibited excellent repeatability, which expressed as relative standard deviation (RSD) was about 2.50% for 30 repeated analyses of 20 μM DA. PMID:21824760

  13. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP.

    PubMed

    Czulak, J; Guerreiro, A; Metran, K; Canfarotta, F; Goddard, A; Cowan, R H; Trochimczuk, A W; Piletsky, S

    2016-06-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates. PMID:27174700

  14. Preparation of magnetic molecularly imprinted polymer for selective recognition of resveratrol in wine.

    PubMed

    Chen, Fang-Fang; Xie, Xiao-Yu; Shi, Yan-Ping

    2013-07-26

    The magnetic molecularly imprinted polymers (MMIPs) for resveratrol were prepared by using surface molecular imprinting technique with a super paramagnetic core-shell nanoparticle as a supporter. Rhapontigenin, which is the analogues of resveratrol, was selected as dummy template molecules to avoid the leakage of trace amount of resveratrol. Acrylamide and ethylene glycol dimethacrylate were chosen as functional monomers and cross-linker, respectively. The obtained MMIPs were characterized by using scanning electron microscopy, Fourier transform infrared spectrum, X-ray diffraction and vibrating sample magnetometer. High performance liquid chromatography was used to analyze the target analytes. The resulting MMIPs exhibited high saturation magnetization of 53.14emug(-1) leading to the fast separation. The adsorption test showed that the MMIPs had high adsorption capacity for resveratrol and contained homogeneous binding sites. The MMIPs were employed as adsorbent of solid phase extraction for determination of resveratrol in real wine samples, and the recoveries of spiked samples ranged from 79.3% to 90.6% with the limit of detection of 4.42ngmL(-1). The prepared MMIPs could be employed to selectively pre-concentrate and determine resveratrol from wine samples. PMID:23481473

  15. Magnetic molecularly imprinted polymer for the selective extraction of quercetagetin from Calendula officinalis extract.

    PubMed

    Ma, Run-Tian; Shi, Yan-Ping

    2015-03-01

    A new magnetic molecularly imprinted polymers (MMIPs) for quercetagetin was prepared by surface molecular imprinting method using super paramagnetic core-shell nanoparticle as the supporter. Acrylamide as the functional monomer, ethyleneglycol dimethacrylate as the crosslinker and acetonitrile as the porogen were applied in the preparation process. Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM) were applied to characterize the MMIPs, and High performance liquid chromatography (HPLC) was utilized to analyze the target analytes. The selectivity of quercetagetin MMIPs was evaluated according to their recognition to template and its analogues. Excellent binding for quercetagetin was observed in MMIPs adsorption experiment, and the adsorption isotherm models analysis showed that the homogeneous binding sites were distributed on the surface of the MMIPs. The MMIPs were employed as adsorbents in solid phase extraction for the determination of quercetagetin in Calendula officinalis extracts. Furthermore, this method is fast, simple and could fulfill the determination and extraction of quercetagetin from herbal extract. PMID:25618718

  16. Preparation of Magnetic Hollow Molecularly Imprinted Polymers for Detection of Triazines in Food Samples.

    PubMed

    Wang, Aixiang; Lu, Hongzhi; Xu, Shoufang

    2016-06-22

    Novel magnetic hollow molecularly imprinted polymers (M-H-MIPs) were proposed for highly selective recognition and fast enrichment of triazines in food samples. M-H-MIPs were prepared on the basis of multi-step swelling polymerization, followed by in situ growth of magnetic Fe3O4 nanoparticles on the surface of hollow molecularly imprinted polymers (H-MIPs). Transmission electron microscopy and scanning electron microscopy confirmed the successful immobilization of Fe3O4 nanoparticles on the surface of H-MIPs. M-H-MIPs could be separated simply using an external magnet. The binding adsorption results indicated that M-H-MIPs displayed high binding capacity and fast mass transfer property and class selective property for triazines. Langmuir isotherm and pseudo-second-order kinetic models fitted the best adsorption models for M-H-MIPs. M-H-MIPs were used to analyze atrazine, simazine, propazine, and terbuthylazine in corn, wheat, and soybean samples. Satisfactory recoveries were in the range of 80.62-101.69%, and relative standard deviation was lower than 5.2%. Limits of detection from 0.16 to 0.39 μg L(-1) were obtained. When the method was applied to test positive samples that were contaminated with triazines, the results agree well with those obtained from an accredited method. Thus, the M-H-MIP-based dispersive solid-phase extraction method proved to be a convenient and practical platform for detection of triazines in food samples. PMID:27257079

  17. Molecularly imprinted polymer solid-phase extraction for detection of zearalenone in cereal sample extracts.

    PubMed

    Lucci, Paolo; Derrien, Delphine; Alix, Florent; Pérollier, Céline; Bayoudh, Sami

    2010-07-01

    The aim of this work was to develop a method for the clean-up and preconcentration of zearalenone from corn and wheat samples employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE). Cereal samples were extracted with acetonitrile/water (75:25, v/v) and the extract was diluted with water and applied to an AFFINIMIP ZON MIP-SPE column. The column was then washed to eliminate the interferences and zearalenone was eluted with methanol and quantified using HPLC with fluorescence detection (lambda(exc)=275/lambda(em)=450 nm). The precision and accuracy of the method were satisfactory for both cereals at the different fortification levels tested and it gave recoveries between 82 and 87% (RSDr 2.5-6.2%, n=3) and 86 and 90% (RSDr 0.9-6.8%, n=3) for wheat and maize, respectively. MIP-SPE column capacity was determined to be not less than 6.6 microg of zearalenone and to be at least four times higher than that of immunoaffinity column (IAC). The application of AFFINIMIP ZON molecularly imprinted polymer as a selective sorbent material for detection of zearalenone fulfilled the method performance criteria required by the Commission Regulation (EC) No. 401/2006, demonstrating the suitability of the technique for the control of zearalenone in cereal samples. PMID:20579483

  18. Extraction of quercetin from Herba Lysimachiae by molecularly imprinted-matrix solid phase dispersion.

    PubMed

    Hong, Yansuo; Chen, Ligang

    2013-12-15

    A new kind of quercetin molecularly imprinted polymer (MIP) was synthesized and applied as a selective sorbent in matrix solid-phase dispersion (MSPD) for the extraction of quercetin in Herba Lysimachiae. The MIP was prepared by surface imprinting method using quercetin as template, methacrylic acid as functional monomer, trimethylolpropane trimethacrylate as crosslinker and methanol as porogen. The selectivity of quercetin MIP was evaluated according to their recognition to quercetin and a compound with similar molecular size (bergenin). Good binding for quercetin was observed in MIP adsorption experiment. The isothermal adsorption and dynamic adsorption experiments were also carried out in this study. The best quercetin extraction conditions were as follows: the ratio of MIP to sample was 1:1, the dispersion time was 10min, washing solvent was 2% aqueous methanol and elution solvent was acetic acid-methanol (2:98, v/v). The proposed method was compared with the method used in Chinese pharmacopeia. The similar extraction yield was obtained by the two methods. Moreover, this method is faster, simpler and can realize extraction and purification procedures in the same system. PMID:24184834

  19. Core-shell magnetic molecularly imprinted polymers as sorbent for sulfonylurea herbicide residues.

    PubMed

    Miao, Shan Shan; Wu, Mei Sheng; Zuo, Hai Gen; Jiang, Chen; Jin, She Feng; Lu, Yi Chen; Yang, Hong

    2015-04-15

    Sulfonylurea herbicides are widely used at lower dosage for controlling broad-leaf weeds and some grasses in cereals and economic crops. It is important to develop a highly efficient and selective pretreatment method for analyzing sulfonylurea herbicide residues in environments and samples from agricultural products based on magnetic molecularly imprinted polymers (MIPs). The MIPs were prepared by a surface molecular imprinting technique especially using the vinyl-modified Fe3O4@SiO2 nanoparticle as the supporting matrix, bensulfuron-methyl (BSM) as the template molecule, methacrylic acid (MAA) as a functional monomer, trimethylolpropane trimethacrylate (TRIM) as a cross-linker, and azodiisobutyronitrile (AIBN) as an initiator. The MIPs show high affinity, recognition specificity, fast mass transfer rate, and efficient adsorption performance toward BSM with the adsorption capacity reaching up to 37.32 mg g(-1). Furthermore, the MIPs also showed cross-selectivity for herbicides triasulfuron (TS), prosulfuron (PS), and pyrazosulfuron-ethyl (PSE). The MIP solid phase extraction (SPE) column was easier to operate, regenerate, and retrieve compared to those of C18 SPE column. The developed method showed highly selective separation and enrichment of sulfonylurea herbicide residues, which enable its application in the pretreatment of multisulfonylurea herbicide residues. PMID:25797565

  20. Determination of cyproheptadine in feeds using molecularly imprinted solid-phase extraction coupled with HPLC.

    PubMed

    Yang, Jianwen; Wang, Zongnan; Zhou, Tong; Song, Xuqin; Liu, Qingyong; Zhang, Yuman; He, Limin

    2015-05-15

    A novel method was developed for the determination of cyproheptadine in feeds using molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography. The polymers were prepared using cyproheptadine as a template molecule, methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linking agent, and dichloromethane as a solvent by bulk polymerization. Under the optimum solid-phase extraction conditions, the molecular imprinting cartridge can selectively extract and enrich cyproheptadine from a variety of feeds. Mean recoveries of cyproheptadine from four kinds of feeds spiked at 0.1, 1.0 and 10mgkg(-1) ranged from 85.5% to 96.2%, with intra-day and inter-day relative standard deviation less than 10%. The calibration curve of cyproheptadine was good linear relationship (r>0.9993) within the range of 0.1-50μgmL(-1). The limit of detection (LOD) and the limit of quantification (LOQ) were 0.04 and 0.1mgkg(-1), respectively. PMID:25855316

  1. Molecular imprinted polymer functionalized carbon nanotube sensors for detection of saccharides

    NASA Astrophysics Data System (ADS)

    Badhulika, Sushmee; Mulchandani, Ashok

    2015-08-01

    In this work, we report the synthesis and fabrication of an enzyme-free sugar sensor based on molecularly imprinted polymer (MIP) on the surface of single walled carbon nanotubes (SWNTs). Electropolymerization of 3-aminophenylboronic acid (3-APBA) in the presence of 10 M d-fructose and fluoride at neutral pH conditions resulted in the formation of a self-doped, molecularly imprinted conducting polymer (MICP) via the formation of a stable anionic boronic ester complex between poly(aniline boronic acid) and d-fructose. Template removal generated binding sites on the polymer matrix that were complementary to d-fructose both in structure, i.e., shape, size, and positioning of functional groups, thus enabling sensing of d-fructose with enhanced affinity and specificity over non-MIP based sensors. Using carbon nanotubes along with MICPs helped to develop an efficient electrochemical sensor by enhancing analyte recognition and signal generation. These sensors could be regenerated and used multiple times unlike conventional affinity based biosensors which suffer from physical and chemical stability.

  2. Supported liquid membrane-protected molecularly imprinted fibre for solid-phase microextraction of thiabendazole.

    PubMed

    Barahona, Francisco; Turiel, Esther; Martín-Esteban, Antonio

    2011-05-23

    In this work, molecularly imprinted polymer fibres (MIP-fibre) have been prepared and evaluated for solid-phase microextraction (SPME), using thiabendazole (TBZ) as template. Inherent limitations of molecular imprinted polymers, such as target recognition in aqueous media, have been solved with the use of organic supported liquid membrane (SLM) protecting the MI-SPME process. MIP-fibres were located inside a polypropylene hollow capillary and protected by an organic solvent immobilized as a thin SLM in the pores of the capillary wall. The extraction procedure involved two simultaneous processes: liquid phase microextraction using polypropylene hollow fibres (HF-LPME) of the analytes from the sample to an organic acceptor solution through a SLM; and SPME of the analytes from the organic acceptor solution to a MIP-fibre inside the polypropylene capillary. The developed methodology was optimized and applied to the extraction of TBZ form spiked orange juices. Calibration curves showed good linearity in the concentration range under study (0.01-5.00 mg L(-1)) and a regression coefficient better than 0.995 was obtained. The detection limit was 4 μg L(-1), low enough to permit the satisfactory analysis of TBZ in real samples, according to European regulation. Relative standard deviations ranged below 10%, indicating good repeatability. By this manner, the advantages of inherent selectivity of MIP SPME fibres and the enrichment and sample cleanup capability of the HF-LPME have been successfully combined into a single device. PMID:21565306

  3. A molecularly imprinted polymer for the selective solid-phase extraction of dimethomorph from ginseng samples.

    PubMed

    Xu, Xuanwei; Liang, Shuang; Meng, Xinxin; Zhang, Min; Chen, Ying; Zhao, Dan; Li, Yueru

    2015-04-15

    A molecularly imprinted polymer (MIP) was synthesized and evaluated to selectively extract dimethomorph from ginseng samples. Dimethomorph molecularly imprinted polymers with template to monomer molar ratios were contrived and developed via precipitation polymerization employing methacrylic acid as functional monomer, ethylene dimethacrylate as cross-linker and butanone:N-heptane (7:3, v:v)as porogen. The LOD (limit of detection) of this method was 0.002 mg kg(-1), and the LOQ (limit of quantification) was 0.005 mg kg(-1). The different spiked level of ginseng was 0.1 mg kg(-1), 1.0 mg kg(-1), 5.0 mg kg(-1), and the average recovery of dimethomrph was 89.2-91.6%. Under the optimized condition, good linearity was obtained from 0.01 to 5 mg kg(-1) (r(2) ≥ 0.9997) with the relative standard deviations of less than 3.20%. This proposed MISPE-GC procedure eliminated the effect of template leakage on quantitative analysis and could be applied to direct determination of dimethomrph in ginseng samples. PMID:25795323

  4. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal.

    PubMed

    Lu, Wei; Asher, Sanford A; Meng, Zihui; Yan, Zequn; Xue, Min; Qiu, Lili; Yi, Da

    2016-10-01

    We developed a photonic crystal (PhC) sensor for the quantification of 2,4,6-trinitrotoluene (TNT) in solution. Monodisperse (210nm in diameter) molecularly imprinted colloidal particles (MICs) for TNT were prepared by the emulsion polymerization of methyl methacrylate and acrylamide in the presence of TNT as a template. The MICs were then self-assembled into close-packed opal PhC films. The adsorption capacity of the MICs for TNT was 64mg TNT/g. The diffraction from the PhC depended on the TNT concentration in a methanol/water (3/2, v/v) potassium dihydrogen phosphate buffer solution (pH=7.0, 30mM). The limit of detection (LOD) of the sensor was 1.03μg. The color of the molecularly imprinted colloidal array (MICA) changed from green to red with an 84nm diffraction red shift when the TNT concentration increased to 20mM. The sensor response time was 3min. The PhC sensor was selective for TNT compared to similar compounds such as 2,4,6-trinitrophenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitromesitylene, 4-nitrotoluene, 2-nitrotoluene, 1,3-dinitrobenzene, methylbenzene, 4-nitrophenol, 2-nitroaniline, 3-aminophenol and 3-nitroaniline. The sensor showed high stability with little response change after three years storage. This sensor technology might be useful for the visual determination of TNT. PMID:27214001

  5. A highly selective molecularly imprinted electrochemiluminescence sensor for ultra-trace beryllium detection.

    PubMed

    Li, Jianping; Ma, Fei; Wei, Xiaoping; Fu, Cong; Pan, Hongcheng

    2015-04-29

    A new molecularly imprinted electrochemiluminescence (ECL) sensor was proposed for highly sensitive and selective determination of ultratrace Be(2+) determination. The complex of Be(2+) with 4-(2-pyridylazo)-resorcinol (PAR) was chosen as the template molecule for the molecularly imprinted polymer (MIP). In this assay, the complex molecule could be eluted from the MIP, and the cavities formed could then selectively recognize the complex molecules. The cavities formed could also work as the tunnel for the transfer of probe molecules to produce sound responsive signal. The determination was based on the intensity of the signal, which was proportional to the concentrations of the complex molecule in the sample solution, and the Be(2+) concentration could then be determined indirectly. The results showed that in the range of 7×10(-11 )mol L(-1) to 8.0×10(-9) mol L(-1), the ECL intensity had a linear relationship with the Be(2+) concentrations, with the limit of detection of 2.35×10(-11) mol L(-1). This method was successfully used to detect Be(2+) in real water samples. PMID:25847161

  6. Highly selective detection of oil spill polycyclic aromatic hydrocarbons using molecularly imprinted polymers for marine ecosystems.

    PubMed

    Krupadam, Reddithota J; Nesterov, Evgueni E; Spivak, David A

    2014-06-15

    Im*plications due to oil spills on marine ecosystems have created a great interest toward developing more efficient and selective materials for oil spill toxins detection and remediation. This research paper highlights the application of highly efficient molecularly imprinted polymer (MIP) adsorbents based on a newly developed functional crosslinker (N,O-bismethacryloyl ethanolamine, NOBE) for detection of highly toxic polycyclic aromatic hydrocarbons (PAHs) in seawater. The binding capacity of MIP for oil spill toxin pyrene is 35 mg/g as compared to the value of 3.65 mg/g obtained using a non-imprinted polymer (NIP). The selectivity of all three high molecular weight PAHs (pyrene, chrysene and benzo[a]pyrene) on the NOBE-MIP shows an excellent selective binding with only 5.5% and 7% cross-reactivity for chrysene and benzo[a]pyrene, respectively. Not only is this particularly significant because the rebinding solvent is water, which is known to promote non-selective hydrophobic interactions; the binding remains comparable under salt-water conditions. These selective and high capacity adsorbents will find wide application in industrial and marine water monitoring/remediation. PMID:24759433

  7. Ammonium sensing in aqueous solutions with plastic optical fiber modified by molecular imprinting

    NASA Astrophysics Data System (ADS)

    Sequeira, F.; Duarte, D.; Rudnitskaya, A.; Gomes, M. T. S. R.; Nogueira, R.; Bilro, L.

    2016-05-01

    We report the development of a low cost plastic optical fibre (POF) sensor for ammonium detection using molecularly imprinted polymers (MIP's). The cladding of a 1 mm diameter PMMA fiber is removed, in which is grafted a molecular imprinted polymer (MIP), by radical polymerization with thermal initiation, that act as a selective sensing layer. For the polymerization, 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (AAPH) is used as initiator, methacrylic acid (MAA) as a monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, ammonium chloride (NH4Cl) as a template and 30% of ethanol in water as a solvent. The sensing method consists of an intensity based scheme. The response to different concentrations of ammonium solutions in water has been evaluated at room temperature. Solutions with (0 - 0.6) M concentration, with the corresponding refractive indexes varying between 1.3325 - 1.3387, at 25°C were used. The response of the fiber with the original cladding, and after cladding removal has been monitored and compared to the response given by the developed sensor. The response is very fast, less than 1 minute and reversible, which allows the continuum use of the sensor. Further developments are focused in optimization of MIP grafting procedure and sensor performance, in order to increase sensitivity.

  8. Molecularly imprinted photonic polymer based on β-cyclodextrin for amino acid sensing.

    PubMed

    Liu, Xiao-Yan; Fang, Hong-Xun; Yu, Li-Ping

    2013-11-15

    A novel molecularly imprinted photonic polymer (MIPP) using maleic anhydride modified β-cyclodextrin (β-CD) and acrylic acid as functional monomers has been presented for amino acid sensing. Reactive β-CD monomer carrying vinyl carboxylic acid functional groups was first synthesized. MIPP was fabricated by filling precursor solution into the interstitial spaces of polystyrene photonic crystal templates, followed by a thermal polymerization at 55 °C. Characterization showed that the MIPP possessed an opal photonic crystal structure. This β-CD-based MIPP could undergo a swelling change from 590 nm to 704 nm and still retain the molecular imprinting recognition ability during the sensing of L-phenylalanine (L-Phe). A function relationship was found between the diffraction wavelength shift and the logarithm of L-Phe concentration in the range of 10(-8)M to 10(-4)M at pH 6. A wavelength shift of 114 nm for L-Phe was observed within 30s, whereas there were no obvious shifts for d-Phe, L-tyrosine and L-tryptophan, indicating that the β-CD-based MIPP had high specificity and rapid response to L-Phe. The developed MIPP sensor has been applied to detect L-Phe in compound amino acid injection sample. PMID:24148405

  9. Hydrophilic Molecularly Imprinted Resorcinol-Formaldehyde-Melamine Resin Prepared in Water with Excellent Molecular Recognition in Aqueous Matrices.

    PubMed

    Lv, Tianwei; Yan, Hongyuan; Cao, Jiankun; Liang, Shiru

    2015-11-01

    Hydrophilic molecularly imprinted resorcinol-formaldehyde-melamine resin (MIRFM) is synthesized in water and shows excellent molecular recognition in aqueous matrices. The double functional monomers resorcinol and melamine, and the cross-linker formaldehyde, are all hydrophilic, and then the hydrophilic groups (such as hydroxyls, imino groups, and ether linkages) can be introduced into MIRFM, which make the material compatible with aqueous samples. The general principle is demonstrated by the synthesis of MIRFM using sulfanilamide as a dummy template for the selective recognition to sulfonamides (SAs) in milk samples. Resorcinol and melamine can interact with the template mainly by hydrogen bonding and π-π interaction, which makes MIRFM and the analytes have strong affinity. Besides, melamine can improve the rigidity of MIRFM and accelerate the polymerization process, so there is no need to add base or acid as a catalyst, which guarantees the success of molecular imprinting. MIRFM shows higher recovery and improved purification effect for SAs, in comparison to silica, HLB, C18, and SCX. Because of its excellent hydrophilicity and specificity, MIRFM is promising to be applied in biological, environmental, and clinical fields. PMID:26441379

  10. In silico screening of molecular imprinting prepolymerization systems: oseltamivir selective polymers through full-system molecular dynamics-based studies.

    PubMed

    Shoravi, Siamak; Olsson, Gustaf D; Karlsson, Björn C G; Bexborn, Fredrik; Abghoui, Younes; Hussain, Javed; Wiklander, Jesper G; Nicholls, Ian A

    2016-05-01

    All-component molecular dynamics studies were used to probe a library of oseltamivir molecularly imprinted polymer prepolymerization mixtures. Polymers included one of five functional monomers (acrylamide, hydroxyethylmethacrylate, methacrylic acid, 2-(triflouromethyl)acrylic acid, 4-vinylpyridine) and one of three porogens (acetonitrile, chloroform, methanol) combined with the crosslinking agent ethylene glycol dimethacrylate and initiator 2,2'-azobis(2-methylpropionitrile). Polymers were characterized by nitrogen gas sorption measurements and SEM, and affinity studies performed using radioligand binding in various media. In agreement with the predictions made from the simulations, polymers prepared in acetonitrile using either methacrylic or trifluoromethacrylic acid demonstrated the highest affinities for oseltamivir. Further, the ensemble of interactions observed in the methanol system provided an explanation for the morphology of polymers prepared in this solvent. The materials developed here offer potential for use in solid-phase extraction or for catalysis. The results illustrate the strength of this in silico strategy as a potential prognostic tool in molecularly imprinted polymer design. PMID:27043914