Science.gov

Sample records for molecularly imprinted polypyrrole

  1. Electropolymerized molecularly imprinted polypyrrole film for sensing of clofibric acid.

    PubMed

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6-8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  2. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    PubMed Central

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  3. Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: study of imprinting parameters.

    PubMed

    Turco, Antonio; Corvaglia, Stefania; Mazzotta, Elisabetta

    2015-01-15

    The present work describes the development of a simple and cost-effective electrochemical sensor for sulfadimethoxine (SDM) based on molecularly imprinted overoxidized polypyrrole (PPy). An all electrochemical approach is used for sensor fabrication and application consisting in molecularly imprinted polymer (MIP) galvanostatic deposition on a gold electrode and its overoxidation under different experimental conditions and in SDM amperometric detection. Several parameters influencing the imprinting effect are critically discussed and evaluated. A key role of the electrolyte used in electropolymerization (tetrabuthylammonium perchlorate and lithium perchlorate) has emerged demonstrating its effect on sensing performances of imprinted PPy and, related to this, on its morphology, as highlighted by atomic force microscopy (AFM). The effect of different overoxidation conditions in removing template is evaluated by analyzing MIP films before and after the treatment by X-ray photoelectron spectroscopy (XPS) also evidencing the correlation between MIP chemical structure and its rebinding ability. MIP-template interaction is verified also by Fourier Transform Infrared (FT-IR) spectroscopy. Under the selected optimal conditions, MIP sensor shows a linear range from 0.15 to 3.7 mM SDM, a limit of detection of 70 μM, a highly reproducible response (RSD 4.2%) and a good selectivity in the presence of structurally related molecules. SDM was determined in milk samples spiked at two concentration levels: 0.2 mM and 0.4 mM obtaining a satisfactory recovery of (97±3)% and (96±8)%, respectively. PMID:25104433

  4. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    PubMed

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. PMID:26095144

  5. Voltammetric Determination of Flunixin on Molecularly Imprinted Polypyrrole Modified Glassy Carbon Electrode

    PubMed Central

    Radi, Abd-Elgawad; Abd El-Ghany, Nadia; Wahdan, Tarek

    2016-01-01

    A novel electrochemical sensing approach, based on electropolymerization of a molecularly imprinted polypyrrole (MIPpy) film onto a glassy carbon electrode (GCE) surface, was developed for the detection of flunixin (FXN). The sensing conditions and the performance of the constructed sensor were assessed by cyclic, differential pulse and (DPV) square wave voltammetry (SWV). The sensor exhibited high sensitivity, with linear responses in the range of 5.0 to 50.0 µM with detection limits of 1.5 and 1.0 µM for DPV and SWV, respectively. In addition, the sensor showed high selectivity towards FXN in comparison to other interferents. The sensor was successfully utilized for the direct determination of FXN in buffalo raw milk samples. PMID:27242945

  6. Electrochemical Preparation of a Molecularly Imprinted Polypyrrole-modified Pencil Graphite Electrode for Determination of Ascorbic Acid

    PubMed Central

    Özcan, Levent; Şahin, Mutlu; Şahin, Yücel

    2008-01-01

    A molecularly imprinted polymer (MIP) polypyrrole (PPy)-based film was fabricated for the determination of ascorbic acid. The film was prepared by incorporation of a template molecule (ascorbic acid) during the electropolymerization of pyrrole onto a pencil graphite electrode (PGE) in aqueous solution using a cyclic voltammetry method. The performance of the imprinted and non-imprinted (NIP) films was evaluated by differential pulse voltammetry (DPV). The effect of pH, monomer and template concentrations, electropolymerization cycles and interferents on the performance of the MIP electrode was investigated and optimized. The molecularly imprinted film exhibited a high selectivity and sensitivity toward ascorbic acid. The DPV peak current showed a linear dependence on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 0.25 to 7.0 mM of ascorbic acid with a correlation coefficient of 0.9946. The detection limit (3σ) was determined as 7.4×10−5 M (S/N=3). The molecularly-imprinted polypyrrole-modified pencil graphite electrode showed a stable and reproducible response, without any influence of interferents commonly existing in pharmaceutical samples. The proposed method is simple and quick. The PPy electrodes have a low response time, good mechanical stability and are disposable simple to construct.

  7. Nanostructure conducting molecularly imprinted polypyrrole film as a selective sorbent for benzoate ion and its application in spectrophotometric analysis of beverage samples.

    PubMed

    Manbohi, Ahmad; Shamaeli, Ehsan; Alizadeh, Naader

    2014-07-15

    The benzoate anion was selectively extracted by electrochemically controlled solid-phase microextraction (EC-SPME) using a electro-synthesised nanostructure conducting molecularly imprinted polypyrrole (CMIP) film that imprinted for benzoate ions (template ion). The sorbent behaviors of CMIP were characterised using spectrophotometry analysis. The effect of pH, uptake and released times and potentials, template ion concentration, and interference were investigated, and experimental conditions optimised. The film exhibited excellent selectivity in the presence of potential interference from anions including salicylate, sorbate, citrate, phosphate, acetate and chloride ions. The calibration graph was linear (R(2)⩾ 0.993) in the range 1.1 × 10(-5)-5.5 × 10(-4) mol L(-1) and detection limit was 5.2 × 10(-6) mol L(-1). The relative standard deviation was less than 4.5% (n=3). The CMIP film, as a solid-phase micro-extraction absorbent, was applied for the selective clean up and quantification of benzoate in beverage samples using the EC-SPME-spectrophotometric method. The results were in agreement with those obtained using HPLC analysis. This method has a good selectivity and mechanical stability and is disposable simple to construct. However, HPLC method is more selective for determination of benzoate in some food products which have interference compounds such as vanilla and flavoring agents. PMID:24594173

  8. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions.

    PubMed

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang

    2015-08-30

    A novel molecularly imprinted polymer (MIP)-coated magnetic TiO2 nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC-MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, "green" and low-cost degradation of CR in industrial printing and dyeing wastewater. PMID:25867589

  9. Molecularly Imprinted Membranes

    PubMed Central

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  10. Electrochemical preparation of a molecularly imprinted polypyrrole modified pencil graphite electrode for the determination of phenothiazine in model and real biological samples.

    PubMed

    Nezhadali, Azizollah; Rouki, Zohreh; Nezhadali, Mohammad

    2015-11-01

    A sensitive electrochemical sensor for determination of phenothiazine (PTZ) was introduced based on molecularly imprinted polymer (MIP) film. A computational study was performed to evaluate the template-monomer geometry and interaction energy in the prepolymerization mixture. The electrode was prepared during electropolymerization of pyrrole (Py) on a pencil graphite electrode (PGE) by cyclic voltammetry (CV) technique. The quantitative measurements were performed using differential pulse voltammetry (DPV) in Britton-Robinson (BR) buffer solutions using 60% (v/v) acetonitrile-water (ACN/H2O) binary solvent. The effect of important parameters like pH, monomer concentration, number of cycles, etc on the efficiency of MIP electrode was optimized and the calibration curve was plotted at optimal conditions. Two dynamic linear ranges of 1-300 µmol L(-1) and 0.5-10 mmol L(-1) were observed. The detection limit (based on S/N=3) of PTZ was obtained 3×10(-7) mol L(-1). The MIP/PGE has been successfully applied as a selective sensor for fast and accurate determination of PTZ in some model and real biological samples. PMID:26452848

  11. Molecularly imprinted polymers for mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecularly imprinted polymers (MIPs) are a class of synthetic receptors capable of selective recognition of analytes. Recent developments in imprinting technology have made it possible to apply this technology in a range of applications, including mycotoxin detection. Structure-activity relations...

  12. Conducting molecular composites of polypyrrole with electroactive polymeric dopantions

    SciTech Connect

    Cameron, D.A.; Reynolds, J.R.

    1996-10-01

    Polypyrrole is one of the most widely used and studied electroactive polymers due to its good conductivity and stability in air. A variety of low molecular weight and polymeric ions have been used as charge compensating dopants in conductive polypyrrole in its oxidized state. In this work we report the electro-polymerization of polypyrrole films incorporating electroactive N-substituted polyaniline polyelectrolytes as dopant ions.

  13. Astrobiological Molecularly Imprinted Polymer Sensors

    NASA Astrophysics Data System (ADS)

    Izenberg, N. R.; Murray, G. M.; van Houten, K. A.; Hofstra, A. A.

    2005-12-01

    Development of Molecularly Imprinted Polymer (MIP) sensors for astrobiology is intended to provide a new class of microlaboratory sensors compatible with other life or biomarker detection. Molecular imprinting is a process for making selective binding sites in synthetic polymers. The process may be approached by designing the recognition site or by simply choosing monomers that may have favorable interactions with the imprinting molecule. We are working to apply this methodology to astrobiology for development of a reliable, low cost, low mass, low power consumption sensor technology for quantitative in-situ analysis of biochemistry, biomarkers, and other indicators of astrobiological importance. Specific goals of the project are: 1) To develop a general methodology and specific methods for MIP-based sensor construction. The overall methodology will guide procedures for design and testing of any desired sensor. Specific methods will be applied to key families and specific species of astrobiological interest, i.e., alkanes (and Polycyclic aromatic hydrocarbons - PAHs), amino acids, steroids, and hopanes; 2) To construct and characterize the general family and specific species sensors. We will test for accuracy, precision, interferences, and limitations of the sensor against blanks, standards, and known terrestrial biological environment samples. Additional testing will determine sturdiness and longevity of sensors after exposure to transit conditions (launch and space environment), and at potential target environments (pressure, temperature, pH, etc.); and 3) To construct and demonstrate the combination of multiple sensors into a viable prototype instrument, and roadmap the expansion of potential instrument capabilities and exploration of the ultimate environmental limitations of the technology, and the necessary changes and additions to create a mission-ready instrument. Initial work has resulted successful detection of aqueous alanine (D and L) with simple MIP

  14. Electrochemical Molecular Imprinted Sensors Based on Electrospun Nanofiber and Determination of Ascorbic Acid.

    PubMed

    Zhai, Yunyun; Wang, Dandan; Liu, Haiqing; Zeng, Yanbo; Yin, Zhengzhi; Li, Lei

    2015-01-01

    In this study, electrochemical molecularly imprinted sensors were fabricated and used for the determination of ascorbic acid (AA). Nanofiber membranes of cellulose acetate (CA)/multi-walled carbon nanotubes (MWCNTs)/polyvinylpyrrolidone (PVP) (CA/MWCNTs/PVP) were prepared by electrospinning technique. After being transferred to a glass carbon electrode (GC), the nanofiber interface was further polymerized with pyrrole through electrochemical cyclic voltammetry (CV) technique. Meanwhile, target molecules (such as AA) were embedded into the polypyrrole through the hydrogen bond. The effects of monomer concentration (pyrrole), the number of scan cycles and scan rates of polymerization were optimized. Differential pulse voltammetry (DPV) tests indicated that the oxidation current of AA (the selected target) were higher than that of the structural analogues, which illustrated the selective recognition of AA by molecularly imprinted sensors. Simultaneously, the molecularly imprinted sensors had larger oxidation current of AA than non-imprinted sensors in the processes of rebinding. The electrochemical measurements showed that the molecularly imprinted sensors demonstrated good identification behavior for the detection of AA with a linear range of 10.0 - 1000 μM, a low detection limit down to 3 μM (S/N = 3), and a recovery rate range from 94.0 to 108.8%. Therefore, the electrochemical molecularly imprinted sensors can be used for the recognition and detection of AA without any time-consuming elution. The method presented here demonstrates the great potential for electrospun nanofibers and MWCNTs to construct electrochemical sensors. PMID:26256603

  15. Molecularly Imprinted Polymers: Present and Future Prospective

    PubMed Central

    Vasapollo, Giuseppe; Sole, Roberta Del; Mergola, Lucia; Lazzoi, Maria Rosaria; Scardino, Anna; Scorrano, Sonia; Mele, Giuseppe

    2011-01-01

    Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented. PMID:22016636

  16. Plastic Antibodies: Molecular Recognition with Imprinted Polymers

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Furmanski, Brian; Shimizu, Ken D.

    2005-01-01

    Synthetic polymers are prepared and tested in a study for their molecular recognition properties of an adenine derivative, ethyl adenine-9-acetate (EA9A), within two laboratory periods. The procedure introduces undergraduate chemistry students to noncovalent molecular imprinting as well as the analytical techniques for assessing their recognition…

  17. Molecularly imprinted polymers for biomedical and biotechnological applications

    NASA Astrophysics Data System (ADS)

    Dmitrienko, E. V.; Pyshnaya, I. A.; Martyanov, O. N.; Pyshnyi, D. V.

    2016-05-01

    This survey covers main advances in the preparation and application of molecularly imprinted polymers which are capable of specific recognition of biologically active compounds. The principles underlying the production of highly efficient and template-specific molecularly imprinted polymers are discussed. The focus is on the imprinting of highly structured macromolecular and supramolecular templates. The existing and potential applications of molecularly imprinted polymers in various fields of chemistry and molecular biology are considered. The bibliography includes 261 references.

  18. Studies on molecular recognition of thymidines with molecularly imprinted polymers

    NASA Astrophysics Data System (ADS)

    Chen, Zhen-He; Luo, Ai-Qin; Sun, Li-Quan

    2009-07-01

    Molecularly imprinted polymers (MIPs) with excellent molecular recognition ability have been used in chemical sensors, chromatographic separation and biochemical analyses. Thymidine is an important part of DNA for biomolecular recognition and the intermediate of many medicines. The polymers imprinted with the template of thymidine and 5'-Otosylthymidine have been prepared, using a non-proton solvent, acetonitrile as the porogen. Direct imprinting with thymidine could not form strong molecular interaction sites in this system. Relative MIPs were obtained by bulk polymerization and their adsorption capacities were investigated. The adsorption capacities of MIP (P2) and nonimprinted polymer (P20) for thymidine are 0.120 mg•g-1and 0.103 mg•g-1, respectively. The imprinting factor is 1.17. As 5'-O-tosylthymidine is more soluble than thymidine moiety in acetonitrile and give rise to more sites of molecular recognition. The results demonstrated that the imprinted polymers were able to bind and recognize thymidine moderately in acetonitrile. MIPs imprinted with 5'-O-tosylthymidine like nature enzymes displayed some recognition ability to its analogues. The insoluble derivatives in the non-proton solvent can be an effective template to prepare efficient imprinting recognition sites.

  19. [Spectroscopic Study of Salbutamol Molecularly Imprinted Polymers].

    PubMed

    Ren, Hui-peng; Guan, Yu-yu; Dai, Rong-hua; Liu, Guo-yan; Chai, Chun-yan

    2016-02-01

    In order to solve the problem of on-site rapid detection of salbutamol residues in feed and animal products, and develop a new method of fast detection of salbutamol on the basis of the molecular imprinting technology, this article uses the salbutamol (SAL) working as template molecule, methacrylic acid (MAA) working as functional monomer. On this basis, a new type of core-shell type salbutamol molecularly imprinted polymers were prepared with colloidal gold particles as triggering core. Superficial characteristics of the MIPs and the related compounds were investigated by ultraviolet (UV) spectra and infrared (IR) spectra, Raman spectra, Scanning electron microscopy (SEM) respectively. The results indicated that a stable hydrogen bonding complex has been formed between the carboxyl groups of SAL and MA with a matching ratio of 1:1. The complex can be easily eluted by the reagent containing hydrogen bonding. The chemical binding constant K reaches -0.245 x 10⁶ L² · mol⁻². The possible binding sites of the hydrogen bonding was formed between the hydrogen atoms of -COOH in MA and the oxygen atoms of C==O in SAL. IR and Raman spectrum showed that, compared with MA, a significant red shift of -OH absorption peak was manifested in MIPs, which proved that SAL as template molecule occurred a specific bond between MA. Red shift of stretching vibration absorption peak of C==O was also detected in the un-eluted MIPs and obvious energy loss happened, which demonstrated a possible binding sites is SAL intramolecular of C==O atom of oxygen. If the hydrogen atoms of -COOH in MA wanted to generate hydrogen bond. However, the shapes of absorption peak of other functional groups including C==C, C==O, and -OH were very similar both in MIPs and NIPs. Specific cavities were formed after the template molecules in MIPs were removed. It was proved by the adsorption experiment that the specific sites in these cavities highly match with the chemical and space structure of SAL

  20. Nanoscale molecularly imprinted polymers and method thereof

    DOEpatents

    Hart, Bradley R.; Talley, Chad E.

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  1. Computationally Designed Molecularly Imprinted Materials

    NASA Astrophysics Data System (ADS)

    Pavel, Dumitru; Lagowski, Jolanta; Faid, Karim

    2004-03-01

    Molecular dynamics simulations were carried out for different molecular systems in order to predict the binding affinities, binding energies, binding distances and the active site groups between the simulated molecular systems and different bio-ligands (theophylline and its derivatives), which have been designed and minimized using molecular simulation techniques. The first simulated molecular systems consisted of a ligand and functional monomer, such as methacrylic acid and its derivatives. For each pair of molecular systems, (10 monomers with a ligand and 10 monomers without a ligand) a total energy difference was calculated in order to estimate the binding energy between a ligand and the corresponding monomers. The analysis of the simulated functional monomers with ligands indicates that the functional group of monomers interacting with ligands tends to be either COOH or CH2=CH. The distances between the ligand and monomer, in the most stable cases as indicated above, are between 2.0-4.5 Å. The second simulated molecular systems consisted of a ligand and a polymer. The polymers were obtained from monomers that were simulated above. And similar to monomer study, for each pair of molecular systems, (polymer with a ligand and polymer without a ligand) a total energy difference was calculated in order to estimate the binding energy between ligand and the corresponding polymer. The binding distance between the active site of a polymer and a ligand will also be discussed.

  2. Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification.

    PubMed

    Andaç, Müge; Galaev, Igor Yu; Denizli, Adil

    2016-05-15

    The publications in macro-molecularly imprinted polymers have increased drastically in recent years with the development of water-based polymer systems. The macroporous structure of cryogels has allowed the use of these materials within different applications, particularly in affinity purification and molecular imprinting based methods. Due to their high selectivity, specificity, efficient mass transfer and good reproducibility, molecularly imprinted cryogels (MICs) have become attractive for researchers in the separation and purification of proteins. In this review, the recent developments in affinity based cryogels and molecularly imprinted cryogels in protein purification are reviewed comprehensively. PMID:26454622

  3. Molecular imprint of dust evolution

    NASA Astrophysics Data System (ADS)

    Akimkin, Vitaly; Zhukovska, Svitlana; Wiebe, Dmitri; Semenov, Dmitry; Pavlyuchenkov, Yaroslav; Vasyunin, Anton; Birnstiel, Til; Henning, Thomas

    2013-07-01

    Evolution of sub-micron grains is an essential process during early stages of planet formation. The dust growth and sedimentation to the midplane affect a spectral energy distribution. At the same time dust evolution can alter significantly the distribution of gas that is a factor of 100 more massive than dust and can be traced with molecular line observations. We present simulations of protoplanetary disk structure with grain evolution using the ANDES code ("AccretioN disk with Dust Evolution and Sedimentation"). ANDES comprises (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain chemical network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. Such a set of physical processes allows us to assess the impact of dust evolution on the gas component, which is primarily related to radiation field and total available surface for chemical reactions. Considering cases of (i) evolved dust (2 Myr of grain coagulation, fragmentation and sedimentation) and (ii) pristine dust (well- mixed 0.1 micron grains), we found a sufficient changes in disk physical and chemical structure caused by the dust evolution. Due to higher transparency of the evolved disk model UV-shielded molecular layer is shifted closer to the midplane. The presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO, while the depletion is still effective in adjacent upper layers. Molecular concentrations of many species are enhanced in the disk model with dust evolution (CO2, NH2CN, HNO, H2O, HCOOH, HCN, CO) which provides an opportunity to use these molecules as tracers of dust evolution.

  4. A Combined Molecular Dynamics and Experimental Study of Doped Polypyrrole.

    PubMed

    Fonner, John M; Schmidt, Christine E; Ren, Pengyu

    2010-10-01

    Polypyrrole (PPy) is a biocompatible, electrically conductive polymer that has great potential for battery, sensor, and neural implant applications. Its amorphous structure and insolubility, however, limit the experimental techniques available to study its structure and properties at the atomic level. Previous theoretical studies of PPy in bulk are also scarce. Using ab initio calculations, we have constructed a molecular mechanics force field of chloride-doped PPy (PPyCl) and undoped PPy. This model has been designed to integrate into the OPLS force field, and parameters are available for the Gromacs and TINKER software packages. Molecular dynamics (MD) simulations of bulk PPy and PPyCl have been performed using this force field, and the effects of chain packing and electrostatic scaling on the bulk polymer density have been investigated. The density of flotation of PPyCl films has been measured experimentally. Amorphous X-ray diffraction of PPyCl was obtained and correlated with atomic structures sampled from MD simulations. The force field reported here is foundational for bridging the gap between experimental measurements and theoretical calculations for PPy based materials. PMID:21052521

  5. A Combined Molecular Dynamics and Experimental Study of Doped Polypyrrole

    PubMed Central

    Fonner, John M.; Schmidt, Christine E.; Ren, Pengyu

    2010-01-01

    Polypyrrole (PPy) is a biocompatible, electrically conductive polymer that has great potential for battery, sensor, and neural implant applications. Its amorphous structure and insolubility, however, limit the experimental techniques available to study its structure and properties at the atomic level. Previous theoretical studies of PPy in bulk are also scarce. Using ab initio calculations, we have constructed a molecular mechanics force field of chloride-doped PPy (PPyCl) and undoped PPy. This model has been designed to integrate into the OPLS force field, and parameters are available for the Gromacs and TINKER software packages. Molecular dynamics (MD) simulations of bulk PPy and PPyCl have been performed using this force field, and the effects of chain packing and electrostatic scaling on the bulk polymer density have been investigated. The density of flotation of PPyCl films has been measured experimentally. Amorphous X-ray diffraction of PPyCl was obtained and correlated with atomic structures sampled from MD simulations. The force field reported here is foundational for bridging the gap between experimental measurements and theoretical calculations for PPy based materials. PMID:21052521

  6. Design of molecularly imprinted conducting polymer protein-sensing films via substrate-dopant binding.

    PubMed

    Komarova, Elena; Aldissi, Matt; Bogomolova, Anastasia

    2015-02-21

    Addressing the challenge of protein biosensing using molecularly imprinted polymers (MIP), we have developed and tested a novel approach to creating sensing conducive polymer films imprinted with a protein substrate, ricin toxin chain A (RTA). Our approach for creating MIP protein sensing films is based on a concept of substrate-guided dopant immobilization with subsequent conducting polymer film formation. In this proof-of-concept work we have tested three macromolecular dopants with strong protein affinity, Ponceau S, Coomassie BB R250 and ι-Carrageenan. The films were formed using sequential interactions of the substrate, dopant and pyrrole, followed by electrochemical polymerization. The films were formed on gold array electrodes allowing for extensive data acquisition. The thickness of the films was optimized to allow for efficient substrate extraction, which was removed by a combination of protease and detergent treatment. The MIP films were tested for substrate rebinding using electrochemical impedance spectroscopy (EIS). The presence of macromolecular dopants was essential for MIP film specificity. Out of three dopants tested, RTA-imprinted polypyrrole films doped with Coomassie BB performed with highest specificity towards detection of RTA with a level of detection (LOD) of 0.1 ng ml(-1). PMID:25574520

  7. Protein crystallization facilitated by molecularly imprinted polymers

    PubMed Central

    Saridakis, Emmanuel; Khurshid, Sahir; Govada, Lata; Phan, Quan; Hawkins, Daniel; Crichlow, Gregg V.; Lolis, Elias; Reddy, Subrayal M.; Chayen, Naomi E.

    2011-01-01

    We present a previously undescribed initiative and its application, namely the design of molecularly imprinted polymers (MIPs) for producing protein crystals that are essential for determining high-resolution 3D structures of proteins. MIPs, also referred to as “smart materials,” are made to contain cavities capable of rebinding protein; thus the fingerprint of the protein created on the polymer allows it to serve as an ideal template for crystal formation. We have shown that six different MIPs induced crystallization of nine proteins, yielding crystals in conditions that do not give crystals otherwise. The incorporation of MIPs in screening experiments gave rise to crystalline hits in 8–10% of the trials for three target proteins. These hits would have been missed using other known nucleants. MIPs also facilitated the formation of large single crystals at metastable conditions for seven proteins. Moreover, the presence of MIPs has led to faster formation of crystals in all cases where crystals would appear eventually and to major improvement in diffraction in some cases. The MIPs were effective for their cognate proteins and also for other proteins, with size compatibility being a likely criterion for efficacy. Atomic force microscopy (AFM) measurements demonstrated specific affinity between the MIP cavities and a protein-functionalized AFM tip, corroborating our hypothesis that due to the recognition of proteins by the cavities, MIPs can act as nucleation-inducing substrates (nucleants) by harnessing the proteins themselves as templates. PMID:21690356

  8. Chemical microsensors with molecularly imprinted sensitive layers

    NASA Astrophysics Data System (ADS)

    Dickert, Franz L.; Greibl, Wolfgang; Sikorski, Renatus; Tortschanoff, Matthias; Weber, K.; Bulst, W. E.; Fischerauer, G.

    1998-12-01

    The bottleneck in the development of chemical sensors is the design of the coatings for chemical recognition of the analyte. One pronounced method is to tailor supramolecular cavities for different analytes. Polyfunctional linkers or the embedding of these materials in a polymeric matrix can improve stability and response time of the sensor. An even more favorable method to synthesize chemically sensitive layers is realized by molecular imprinting, since a rigid polymer can be generated directly on the transducer of interest and may be included in its production process. The analyte of interest acts as a template during the polymerization process and is evaporated or extracted by suitable solvents. Due to the cavities formed this polymer enriches analyte molecules, which can be detected by mass- sensitive devices such as QMB or SAW resonators or by optical measurements. This procedure allows both the detection of polycyclic aromatic hydrocarbons (PAHs) with fluorescence or mass sensitive devices. If the print PAHs are varied the polymers are tuned to the desired analyte. The enrichment of solvent vapors or other uncolored specimen by the layer can also be followed by the embedding of carbenium ions used as optical labels.

  9. Molecular crowding-based imprinted monolithic column for capillary electrochromatography.

    PubMed

    Zong, Hai-Yan; Liu, Xiao; Liu, Zhao-Sheng; Huang, Yan-Ping

    2015-03-01

    Molecular crowding is a new approach to stabilizing binding sites and improving molecular recognition. In this work, the concept was applied to the preparation of imprinted monolithic columns for CEC. The imprinted monolithic column was synthesized using a mixture of d-zopiclone (d-ZOP)(template), methacrylic acid, ethylene glycol dimethacrylate, and poly(methyl methacrylate) (PMMA) (molecular crowding agent). The resulting PMMA-based imprinted capillary was able to separate ZOP enantiomers in CEC mode. The resolution of enantiomer separation achieved on the d-ZOP-imprinted monolithic column was up to 2.09. Some polymerization factors, such as template-monomer molar ratio, functional monomer-cross-linker molar ratio and the composition of the porogen, on the imprinting effect of resulting molecularly imprinted polymer (MIP) monolithic column were systematically investigated. Chromatographic parameters, including pH values, the content of acetonitrile and the salt concentration on chiral separation were also studied. The results indicated the addition of PMMA resulted in MIPs with superior retention properties and excellent selectivity for d-ZOP, as compared to the MIPs prepared without addition of the crowding-inducing agent. The results revealed that molecular crowding is an effective method for the preparation of a highly efficient MIP stationary phase for chiral separation in CEC. PMID:25404035

  10. Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci.

    PubMed

    Eggermann, Thomas; Perez de Nanclares, Guiomar; Maher, Eamonn R; Temple, I Karen; Tümer, Zeynep; Monk, David; Mackay, Deborah J G; Grønskov, Karen; Riccio, Andrea; Linglart, Agnès; Netchine, Irène

    2015-01-01

    Congenital imprinting disorders (IDs) are characterised by molecular changes affecting imprinted chromosomal regions and genes, i.e. genes that are expressed in a parent-of-origin specific manner. Recent years have seen a great expansion in the range of alterations in regulation, dosage or DNA sequence shown to disturb imprinted gene expression, and the correspondingly broad range of resultant clinical syndromes. At the same time, however, it has become clear that this diversity of IDs has common underlying principles, not only in shared molecular mechanisms, but also in interrelated clinical impacts upon growth, development and metabolism. Thus, detailed and systematic analysis of IDs can not only identify unifying principles of molecular epigenetics in health and disease, but also support personalisation of diagnosis and management for individual patients and families. PMID:26583054

  11. Molecularly Imprinted Polymer Based Sensor for the Detection of Theophylline

    NASA Astrophysics Data System (ADS)

    Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.; del Valle, Manel

    2011-11-01

    A molecularly imprinted polymer (MIP) impedance-based sensor was employed to detect theophylline in distilled water. To evaluate its sensibility, impedance measurements were carried out in a diluted solution of theophylline (1 mM) and distilled water using MIP and NIP (reference non-imprinted polymer) sensors. MIP showed higher sensitivity to theophylline than the NIP. This feature shows their suitability for developing an electronic tongue system for determination of methylxanthines.

  12. Characterization of the Binding Properties of Molecularly Imprinted Polymers.

    PubMed

    Ansell, Richard J

    2015-01-01

    The defining characteristic of the binding sites of any particular molecularly imprinted material is heterogeneity: that is, they are not all identical. Nonetheless, it is useful to study their fundamental binding properties, and to obtain average properties. In particular, it has been instructive to compare the binding properties of imprinted and non-imprinted materials. This chapter begins by considering the origins of this site heterogeneity. Next, the properties of interest of imprinted binding sites are described in brief: affinity, selectivity, and kinetics. The binding/adsorption isotherm, the graph of concentration of analyte bound to a MIP versus concentration of free analyte at equilibrium, over a range of total concentrations, is described in some detail. Following this, the techniques for studying the imprinted sites are described (batch-binding assays, radioligand binding assays, zonal chromatography, frontal chromatography, calorimetry, and others). Thereafter, the parameters that influence affinity, selectivity and kinetics are discussed (solvent, modifiers of organic solvents, pH of aqueous solvents, temperature). Finally, mathematical attempts to fit the adsorption isotherms for imprinted materials, so as to obtain information about the range of binding affinities characterizing the imprinted sites, are summarized. PMID:25796622

  13. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    PubMed Central

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  14. Rapid preparation of molecularly imprinted polymer by frontal polymerization.

    PubMed

    Zhong, Dan-Dan; Liu, Xin; Pang, Qian-Qian; Huang, Yan-Ping; Liu, Zhao-Sheng

    2013-04-01

    Frontal polymerization was successfully applied, for the first time, to obtain molecularly imprinted polymers (MIPs). The method provides a solvent-free polymerization mode, and the reaction can be completed in 30 min. By this approach, MIPs were synthesized using a mixture of levofloxacin (template), methacrylic acid, and divinylbenzene. The effect of template concentration and the amount of comonomer on the imprinting effect of the resulting MIPs was investigated. The textural and morphological parameters of the MIP particles were also characterized by mercury intrusion porosimetry, nitrogen adsorption isotherms, and scanning electron microscopy, providing evidence concerning median pore diameter, pore volumes, and pore size distributions. The levofloxacin-imprinted polymer formed in frontal polymerization mode showed high selectivity, with an imprinting factor of 5.78. The results suggest that frontal polymerization provides an alternative means to prepare MIPs that are difficult to synthesize and may open up new perspectives in the field of MIPs. PMID:23392405

  15. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects

    PubMed Central

    Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun

    2015-01-01

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers’ desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed. PMID:26262607

  16. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects.

    PubMed

    Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun

    2015-01-01

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers' desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed. PMID:26262607

  17. [Spectroscopic study of diazepam molecularly imprinted polymers and initiative application to conductimetric sensor based on molecularly imprinted films].

    PubMed

    Liu, Xiao-fang; Li, Feng; Yao, Bing; Wang, Li; Liu, Guo-yan; Chai, Chun-yan

    2010-08-01

    The molecularly imprinted polymers were synthesized using diazepam as the template and molecularly imprinted films (MIF) prepared on screen printed electrodes (SPE). The binding mechanism and recognition characteristics of the molecularly imprinted polymers were studied by ultraviolet (UV) spectra and infrared (IR) spectra. In addition, a conductimetric sensor for diazepam was established preliminarily based on diazepam MIF modified SPE. The results of UV spectra indicated that template molecules and functional monomers had formed 1:2 hydrogen bonding complexes; the results of IR spectra showed that there were some functional groups in the molecularly imprinted polymers which could interact with the template molecules. The molecularly imprinted polymers manifested highly recognition to diazepam. The response of the conductimetric sensor to the concentration of diazepam displayed a linear correlation over a range of 0.04 to 0.62 mg x L(-1) with a detection limit of 0.008 mg x L(-1). The sensor is suitable for on-the-spot detection of diazepam. PMID:20939345

  18. Molecularly imprinted cryogels for carbonic anhydrase purification from bovine erythrocyte.

    PubMed

    Uygun, Murat; Karagözler, A Alev; Denizli, Adil

    2014-04-01

    Molecularly imprinted PHEMAH cryogels were synthesized and used for purification of carbonic anhydrase from bovine erythrocyte. Cryogels were prepared with free radical cryopolymerization of 2-hydroxyethyl methacrylate and methacryloylamido histidine and characterized by swelling degree, macroporosity, FTIR, SEM, surface area and elemental analysis. Maximum carbonic anhydrase adsorption of molecularly imprinted PHEMAH cryogel was found to be 3.16 mg/g. Selectivity of the molecularly imprinted cryogel was investigated using albumin, hemoglobin, IgG, γ-globulin, and lysozyme as competitor proteins and selectivity ratios were found to be 15.26, 60.05, 21.88, 17.61, and 17.42, respectively. Carbonic anhydrase purity was demonstrated by SDS-PAGE and zymogram results. PMID:24528406

  19. Virtual Screening of Receptor Sites for Molecularly Imprinted Polymers.

    PubMed

    Bates, Ferdia; Cela-Pérez, María Concepción; Karim, Kal; Piletsky, Sergey; López-Vilariño, José Manuel

    2016-08-01

    Molecularly Imprinted Polymers (MIPs) are highly advantageous in the field of analytical chemistry. However, interference from secondary molecules can also impede capture of a target by a MIP receptor. This greatly complicates the design process and often requires extensive laboratory screening which is time consuming, costly, and creates substantial waste products. Herein, is presented a new technique for screening of "virtually imprinted receptors" for rebinding of the molecular template as well as secondary structures, correlating the virtual predictions with experimentally acquired data in three case studies. This novel technique is particularly applicable to the evaluation and prediction of MIP receptor specificity and efficiency in complex aqueous systems. PMID:27076379

  20. Supramolecular recognition of estrogens via molecularly imprinted polymers

    PubMed Central

    Ričanyová, Júlia; Gadzała-Kopciuch, Renata; Szumski, Michał

    2010-01-01

    The isolation and preconcentration of estrogens from new types of biological samples (acellular and protein-free simulated body fluid) by molecularly imprinted solid-phase extraction has been described. In this technique, supramolecular receptors, namely molecularly imprinted polymers (MIPs) are used as a sorbent material. The recognition sites of MIPs were prepared by non-covalent multiple interactions and formed with the target 17β-estradiol as a template molecule. High-performance liquid chromatography with spectroscopic UV, selective, and a sensitive electrochemical CoulArray detector was used for the determination of 17β-estradiol, estrone, and estriol in simulated body fluid which mimicked human plasma. PMID:20549493

  1. Advancements of molecularly imprinted polymers in the food safety field.

    PubMed

    Wang, Peilong; Sun, Xiaohua; Su, Xiaoou; Wang, Tie

    2016-06-01

    Molecularly imprinted technology (MIT) has been widely employed to produce stable, robust and cheap molecularly imprinted polymer (MIP) materials that possess selective binding sites for recognition of target analytes in food, such as pesticides, veterinary drugs, mycotoxins, illegal drugs and so on. Because of high selectivity and specificity, MIPs have drawn great attention in the food safety field. In this review, the recent developments of MIPs in various applications for food safety, including sample preparation, chromatographic separation, sensing, immunoassay etc., have been summarized. We particularly discuss the advancements and limitations in these applications, as well as attempts carried out for their improvement. PMID:26937495

  2. Holographic molecularly imprinted polymers for label-free chemical sensing.

    PubMed

    Fuchs, Yannick; Soppera, Olivier; Mayes, Andrew G; Haupt, Karsten

    2013-01-25

    Holographic molecularly imprinted polymer films for the use in chemical sensors are obtained in one step through photopolymerization with interfering laser beams. This results in hierarchical structuring at four length scales: micrometer-scale patterning of millimeter- to centimeter- size polymer objects with holographic optical properties, exhibiting nanometer-scale porosity and specific molecular recognition properties at the molecular scale through self-assembly. Specific binding of the target analyte testosterone is measured by diffraction analysis. PMID:23080512

  3. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    PubMed

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. PMID:26520251

  4. PREPARATION AND CHARACTERIZATION OF MOLECULARLY IMPRINTED ELECTROPOLYMERIZED CARBON ELECTRODES

    EPA Science Inventory

    Molecularly imprinted polymers (MIP) selective for fluorescein, rhodamine or 2,4-dichlorophenoxyacetic acid (2,4-D) were electropolymerized onto graphite electrodes using an aqueous solution equimolar in resorsinol/ortho-phenylenediamine and in the presence of the template mole...

  5. Production of abiotic receptors by molecular imprinting of proteins

    SciTech Connect

    Braco, L.; Dabulis, K.; Klibanov, A.M. )

    1990-01-01

    When a protein is dissolved in a concentrated aqueous solution of a multifunctional organic compound, freeze-dried, and washed with an anhydrous organic solvent to remove the ligand, the resultant imprinted protein preparation binds up to 30-fold more of the template compound in anhydrous solvents that the nonimprinted protein in the same solvent (and both proteins in water). These artificial receptors exhibit marked ligand selectivity as well as stability in anhydrous media. This phenomenon of molecular imprinting, demonstrated for several unrelated proteins and ligands, may be helpful in the development of unique bioadsorbents and, potentially, new biocatalysts.

  6. Improvement of DNA recognition through molecular imprinting: hybrid oligomer imprinted polymeric nanoparticles (oligoMIP NPs).

    PubMed

    Brahmbhatt, H; Poma, A; Pendergraff, H M; Watts, J K; Turner, N W

    2016-02-01

    High affinity and specific binding are cardinal properties of nucleic acids in relation to their biological function and their role in biotechnology. To this end, structural preorganization of oligonucleotides can significantly improve their binding performance, and numerous examples of this can be found in Nature as well as in artificial systems. Here we describe the production and characterization of hybrid DNA-polymer nanoparticles (oligoMIP NPs) as a system in which we have preorganized the oligonucleotide binding by molecular imprinting technology. Molecularly imprinted polymers (MIPs) are cost-effective "smart" polymeric materials capable of antibody-like detection, but characterized by superior robustness and the ability to work in extreme environmental conditions. Especially in the nanoparticle format, MIPs are dubbed as one of the most suitable alternatives to biological antibodies due to their selective molecular recognition properties, improved binding kinetics as well as size and dispersibility. Nonetheless, there have been very few attempts at DNA imprinting in the past due to structural complexity associated with these templates. By introducing modified thymine bases into the oligonucleotide sequences, which allow establishing covalent bonds between the DNA and the polymer, we demonstrate that such hybrid oligoMIP NPs specifically recognize their target DNA, and that the unique strategy of incorporating the complementary DNA strands as "preorganized selective monomers" improves the recognition properties without affecting the NPs physical properties such as size, shape or dispersibility. PMID:26509192

  7. Uniform-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer.

    PubMed

    Haginaka, J; Takehira, H; Hosoya, K; Tanaka, N

    1999-07-23

    A uniform-sized molecularly imprinted polymer (MIP) for (S)-naproxen selectively modified with hydrophilic external layer has been prepared. First, the molecularly imprinted polymer for (S)-naproxen was prepared using 4-vinylpyridine and ethylene glycol dimethacrylate (EDMA) as a functional monomer and cross-linker, respectively, by a multi-step swelling and thermal polymerization method. Next, a 1:1 mixture of glycerol monomethacrylate (GMMA) and glycerol dimethacrylate (GDMA) was used for hydrophilic surface modification, and it was added directly to the molecularly imprinted polymer for (S)-naproxen 4 h after the start of molecular imprinting. The retention factors of all solutes tested were decreased with the surface modified molecularly imprinted polymer, compared with the unmodified molecularly imprinted polymer. However, chiral recognition of racemic naproxen was attained with the surface modified molecularly imprinted polymer as well as the unmodified molecularly imprinted polymer. Further, bovine serum albumin was completely recovered from the surface modified molecularly imprinted polymer. These results revealed that the chiral recognition sites of (S)-naproxen remained unchanged with hydrophilic surface modification, and that the molecularly imprinted polymer for (S)-naproxen was selectively modified with hydrophilic external layer. Preliminary results reveal that the surface modified molecularly imprinted polymer could be applicable to direct serum injection assays of (S)-naproxen. PMID:10457431

  8. Determination of fusaric acid in maize using molecularly imprinted SPE clean-up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new liquid chromatography method to detect fusaric acid in maize is reported based on molecularly imprinted polymer solid phase extraction clean-up (MISPE) using mimic-templated molecularly-imprinted polymers. Picolinic acid was used as a toxin analog for imprinting polymers during a thermolytic s...

  9. Magnetic molecularly imprinted polymer for aspirin recognition and controlled release

    NASA Astrophysics Data System (ADS)

    Kan, Xianwen; Geng, Zhirong; Zhao, Yao; Wang, Zhilin; Zhu, Jun-Jie

    2009-04-01

    Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe3O4 nanoparticles in chloroform. The obtained spherical magnetic MIPs with diameters of about 500 nm had obvious superparamagnetism and could be separated quickly by an external magnetic field. Binding experiments were carried out to evaluate the properties of magnetic MIPs and magnetic non-molecularly imprinted polymers (magnetic NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity and selectivity to ASP. Moreover, release profiles and release rate of ASP from the ASP-loaded magnetic MIPs indicated that the magnetic MIPs also had potential applications in drug controlled release.

  10. Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting

    DOEpatents

    Sasaki, Darryl Y.; Brinker, C. Jeffrey; Ashley, Carol S.; Daitch, Charles E.; Shea, Kenneth J.; Rush, Daniel J.

    2000-01-01

    A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.

  11. Molecularly Imprinted Polymers: Thermodynamic and Kinetic Considerations on the Specific Sorption and Molecular Recognition

    PubMed Central

    Li, Songjun; Huang, Xing; Zheng, Mingxia; Li, Wuke; Tong, Kejun

    2008-01-01

    This article presents a work aiming at thermodynamically and kinetically interpreting the specific sorption and recognition by a molecularly imprinted polymer. Using Boc-L-Phe-OH as a template, the imprinted material was prepared. The result indicates that the prepared polymer can well discriminate the imprint species from its analogue (Boc-D-Phe-OH), so as to adsorb more for the former but less for the latter. Kinetic analysis indicates that this specific sorption, in nature, can be a result of a preferential promotion. The imprint within the polymer causes a larger adsorption rate for the template than for the analogue. Thermodynamic study also implies that the molecular induction from the specific imprint to the template is larger than to the analogue, which thus makes the polymer capable of preferentially alluring the template to bind.

  12. [Molecularly imprinted polymers in electro analysis of proteins].

    PubMed

    Shumyantseva, V V; Bulko, T V; Baychorov, I Kh; Archakov, A I

    2015-01-01

    In the review the main approaches to creation of recognition materials capable of competing with biological specific receptors, (polymeric analogs of antibodies or molecularly imprinted polymers, MIP) for the electro analysis of functionally significant proteins such as a myoglobin, troponin T, albumin, human ferritin, calmodulin are considered. The main types of monomers for MIP fabrication, and methods for MIP/protein interactions, such as a surface plasmon resonance (SPR), nanogravimetry with use of the quartz crystal resonator (QCM), spectral and electrochemical methods are discussed. Experimental data on electrochemical registration of a myoglobin using MIP/electrode are presented. For a development of electrochemical sensor systems based on MIPs, o-phenylenediamine (1,2-diaminobenzene was used as a monomer. It was shown that the imprinting factor Imax(MIP)/Imax(NIP), calculated as a myoglobin signal ratio when embedding in MIP to a myoglobin signal when embedding in the polymer received without molecular template (NIP) corresponds 2-4. PMID:26215409

  13. Molecularly imprinted polymer based enantioselective sensing devices: a review.

    PubMed

    Tiwari, Mahavir Prasad; Prasad, Amrita

    2015-01-01

    Chiral recognition is the fundamental property of many biological molecules and is a quite important field in pharmaceutical analysis because of the pharmacologically different activities of enantiomers in living systems. Enantio-differentiating signal of the sensor requires specific interaction between the chiral compounds (one or a mixture of enantiomers) in question and the selector. This type of interaction is controlled normally by at least three binding centers, whose mutual arrangement and interacting characteristics with one of the enantiomers effectively control the selectivity of recognition. Molecular imprinting technology provides a unique opportunity for the creation of three-dimensional cavities with tailored recognition properties. Over the past decade, this field has expanded considerably across the variety of disciplines, leading to novel transduction approaches and many potential applications. The state-of-art of molecularly imprinted polymer-based chiral recognition might set an exotic trend toward the development of chiral sensors. The objective of this review is to provide comprehensive knowledge and information to all researchers who are interested in exploiting molecular imprinting technology toward the rational design of chiral sensors operating on different transduction principles, ranging from electrochemical to piezoelectric, being used for the detection of chiral compounds as they pose significant impact on the understanding of the origin of life and all processes that occur in living organisms. PMID:25467446

  14. Computational design and multivariate optimization of an electrochemical metoprolol sensor based on molecular imprinting in combination with carbon nanotubes.

    PubMed

    Nezhadali, Azizollah; Mojarrab, Maliheh

    2016-06-14

    This work describes the development of an electrochemical sensor based on a new molecularly imprinted polymer for detection of metoprolol (MTP) at ultra-trace level. The polypyrrole (PPy) was electrochemically synthesized on the tip of a pencil graphite electrode (PGE) which modified whit functionalized multi-walled carbon nanotubes (MWCNTs). The fabrication process of the sensor was characterized by cyclic voltammetry (CV) and the measurement process was carried out by differential pulse voltammetry (DPV). A computational approach was used to screening functional monomers and polymerization solvent for rational design of molecularly imprinted polymer (MIP). Based on computational results, pyrrole and water were selected as functional monomer and polymerization solvent, respectively. Several significant parameters controlling the performance of the MIP sensor were examined and optimized using multivariate optimization methods such as Plackett-Burman design (PBD) and central composite design (CCD). Under the selected optimal conditions, MIP sensor was showed a linear range from 0.06 to 490 μmol L(-1) MTP, a limit of detection of 2.88 nmol L(-1), a highly reproducible response (RSD 3.9%) and a good selectivity in the presence of structurally related molecules. Furthermore, the applicability of the method was successfully tested with determination of MTP in real samples (tablet, and serum). PMID:27181648

  15. Fluorescence measurements of activity associated with a molecularly imprinted polymer imprinted to dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Anderson, John; Pestov, Dmitry; Fischer, Robert L.; Webb, Stanley; Tepper, Gary C.

    2004-03-01

    Steady state and lifetime fluorescence measurements were acquired to measure the binding activity associated with molecularly imprinted polymer (MIP) microparticles imprinted to dipicolinic acid. Dipicolinic acid is a unique compound associated with the sporulation phase of spore-forming bacteria (e.g., genus Bacillus and Clostridium). Vinylic monomers were polymerized in a dimethylformamide solution containing the dipicolinic acid as a template. The resulting MIP was then pulverized and size selected into small microscale particles. Samplers were adapted incorporating the MIP particles within a dialyzer (500 MW). Tests were run on replicate samples of biologically active cultures representing both stationary phase and sporulation post fermentation products in standard media. The permeability of the membrane permitted diffusion of lighter molecular weight constituents from media effluents to enter the dialyzer chamber and contact the MIP. Extractions of the media were measured using steady state and lifetime fluorescence. Results showed dramatic steady state fluorescence changes as a function of excitation, emission and intensity and an estimated lifetime of 5.8 ns.

  16. Caffeine electrochemical sensor using imprinted film as recognition element based on polypyrrole, sol-gel, and gold nanoparticles hybrid nanocomposite modified pencil graphite electrode.

    PubMed

    Rezaei, Behzad; Khalili Boroujeni, Malihe; Ensafi, Ali A

    2014-10-15

    In the present study, a novel sensitive and selective nanocomposite imprinted electrochemical sensor for the indirect determination of caffeine has been prepared. The imprinted sensor was fabricated on the surface of pencil graphite electrode (PGE) via one-step electropolymerization of the imprinted polymer composed of conductive polymer, sol-gel, gold nanoparticles (AuNPs), and caffeine. Due to such combination like the thin film of molecularly imprinted polymer (MIP) with specific binding sites, the sensor responded quickly to caffeine. AuNPs were introduced for the enhancement of electrical response by facilitating charge transfer processes of [Fe(CN)6](3-)/[Fe(CN)6](4-) which was used as an electrochemical active probe. The fabrication process of the sensor was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Several important parameters controlling the performance of the sensor were investigated and optimized. The imprinted sensor has the advantages of high porous surface structure, inexpensive, disposable, excellent stability, good reproducibility and repeatability. The linear ranges of the MIP sensor were in the range from 2.0 to 50.0 and 50.0 to 1000.0 nmol L(-1), with the limit of detection (LOD) of 0.9 nmol L(-1) (S/N=3). Furthermore, the proposed method was successfully intended for the determination of caffeine in real samples (urine, plasma, tablet, green tea, energy and soda drink). PMID:24769451

  17. Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins.

    PubMed

    Szumski, Michał; Grzywiński, Damian; Prus, Wojciech; Buszewski, Bogusław

    2014-10-17

    Monolithic molecularly imprinted polymers extraction columns have been prepared in fused-silica capillaries by UV or thermal polymerization in a two-step process. First, a poly-(trimethylolpropane trimethacrylate) (polyTRIM) core monolith was synthesized either by UV or thermal polymerization. Then it was grafted with the mixture of methacrylic acid (MAA) as a functional monomer, ethylene dimethacrylate (EDMA) as a cross-linking agent, 5,7-dimethoxycoumarin (DMC) as an aflatoxin-mimicking template, toluene as a porogen solvent and 2,2-azobis-(2-methylpropionitrile) (AIBN) as an initiator of the polymerization reaction. Different thermal condition of the photografting and different concentrations of the grafting mixture were tested during polymerization. The extraction capillary columns were evaluated in the terms of their hydrodynamic and chromatographic properties. Retention coefficients for aflatoxin B1 and DMC were used for assessment of the selectivity and imprinting factor. The obtained results indicate that the temperature of photografting and concentration of the grafting mixture are key parameters that determine the quality of the prepared MIPs. From the MIP columns characterized by the highest permeability the column of the highest imprinting factor was applied for isolation of aflatoxins B1, B2, G1 and G2 from the model aqueous sample followed by on-line chromatographic separation. The process was performed using a micro-MISPE-microLC-LIF system of a novel design, which allowed for detection of the eluates from the sample preparation part as well as from the chromatographic separation. PMID:25218633

  18. Molecularly imprinted silica-silver nanowires for tryptophan recognition

    NASA Astrophysics Data System (ADS)

    Díaz-Faes López, T.; Díaz-García, M. E.; Badía-Laíño, R.

    2014-10-01

    We report on silver nanowires (AgNWs) coated with molecularly imprinted silica (MIP SiO2) for recognition of tryptophan (Trp). The use of AgNWs as a template confers an imprinted material with adequate mechanical strength and with a capability of recognizing Trp due to its nanomorphology when compared to spherical microparticles with a similar surface-to-volume ratio. Studies on adsorption isotherms showed the MIP-SiO2-AgNWs to exhibit homogeneous affinity sites with narrow affinity distribution. This suggests that the synthesized material behaves as a 1D nanomaterial with a large area and small thickness with very similar affinity sites. Trp release from MIP-SiO2-AgNWs was demonstrated to be dominated by the diffusion rate of Trp as controlled by the specific interactions with the imprinted silica shell. Considering these results and the lack of toxicity of silica sol-gel materials, the material offers potential in the field of drug or pharmaceutical controlled delivery, but also in optoelectronic devices, electrodes and sensors.

  19. Nicotine molecularly imprinted polymer: synergy of coordination and hydrogen bonding.

    PubMed

    Huynh, Tan-Phat; B K C, Chandra; Sosnowska, Marta; Sobczak, Janusz W; Nesterov, Vladimir N; D'Souza, Francis; Kutner, Wlodzimierz

    2015-02-15

    Two new bis(2,2'-bithienyl)methane derivatives, one with the zinc phthalocyanine substituent (ZnPc-S16) and the other with the 2-hydroxyethyl substituent (EtOH-S4), were synthesized to serve as functional monomers for biomimetic recognition of nicotine (Nic) by molecular imprinting. Formation of a pre-polymerization complex of the Nic template with ZnPc-S16 and EtOH-S4 was confirmed by both the high negative Gibbs free energy gain, ΔG = -115.95 kJ/mol, calculated using the density functional theory at the B3LYP/3-21G* level, and the high stability constant, Ks = 4.67 × 10(5) M(-1), determined by UV-vis titration in chloroform. A solution of this complex was used to deposit a Nic-templated molecularly imprinted polymer (MIP-Nic) film on an Au electrode of a quartz crystal resonator of EQCM by potentiodynamic electropolymerization. The imprinting factor was as high as ~9.9. Complexation of the Nic molecules by the MIP cavities was monitored with X-ray photoelectron spectroscopy (XPS), as manifested by a negative shift of the binding energy of the Zn 2p3/2 electron of ZnPc-S16 after Nic templating. For sensing applications, simultaneous chronoamperometry (CA) and piezoelectric microgravimetry (PM) measurements were performed under flow-injection analysis conditions. The limit of detection of the CA and PM chemosensing was as low as 40 and 12 µM, respectively. Among them, the CA chemosensing was more selective to the cotinine and myosmine interferences due to the 1.10 V vs. Ag/AgCl discriminating potential of nicotine electro-oxidation applied. Differences in selectivity to the analyte and interferences were interpreted by modeling complexation of Nic and, separately, each of the interferences with a "frozen" MIP-Nic molecular cavity. PMID:25441415

  20. From 3D to 2D: A Review of the Molecular Imprinting of Proteins

    PubMed Central

    Turner, Nicholas W.; Jeans, Christopher W.; Brain, Keith R.; Allender, Christopher J.; Hlady, Vladimir; Britt, David W.

    2008-01-01

    Molecular imprinting is a generic technology that allows for the introduction of sites of specific molecular affinity into otherwise homogeneous polymeric matrices. Commonly this technique has been shown to be effective when targeting small molecules of molecular weight <1500, while extending the technique to larger molecules such as proteins has proven difficult. A number of key inherent problems in protein imprinting have been identified, including permanent entrapment, poor mass transfer, denaturation, and heterogeneity in binding pocket affinity, which have been addressed using a variety of approaches. This review focuses on protein imprinting in its various forms, ranging from conventional bulk techniques to novel thin film and monolayer surface imprinting approaches. PMID:17137293

  1. Sol-gel-based molecularly imprinted xerogel for capillary microextraction.

    PubMed

    Bagheri, Habib; Piri-Moghadam, Hamed

    2012-09-01

    A novel molecularly imprinted xerogel (MIX) based on organically modified silica (ORMOSIL) was successfully prepared for on-line capillary microextraction (CME) coupled with high-performance liquid chromatography (HPLC). The sol-gel-based xerogel was prepared using only one precursor and exhibited extensive selectivity towards triazines along with significant thermal and chemical stability. Atrazine was selected as a model template molecule and 3-(trimethoxysilyl)propylmethacrylate (TMSPMA) as a precursor in which the propylmethacrylate moiety was responsible for van der Waals, dipole-dipole, and hydrogen-bond interactions with the template. This moiety plays a key role in creation of selective sites while methoxysilyl groups in TMSPMA acted as crosslinkers between the template and the propylmethacrylate moiety. Moreover, a non-imprinted xerogel (NIX) was also prepared in the absence of the template for evaluating the extraction efficiency of the prepared MIX. Then, the prepared imprinted and non-imprinted xerogels were used for extraction of three selected analytes of triazines class including atrazine, ametryn, and terbutryn, which have rather similar structures. The extraction efficiency of the prepared xerogel for atrazine, the template molecule, was found to be ten times greater than the efficiency achieved by the non-imprinted one. In the meantime, the extraction efficiency ratio of MIX to NIX for ametryn and terbutryn was also rather significant (eight times). Moreover, other compounds from different classes including dicamba, mecoprop, and estriol were also analyzed to evaluate the selectivity of the prepared MIX towards triazines. The ratio of enrichment factors (EF) of MIX to NIX for atrazine, ametryn, terbutryn, dicamba, mecoprop, and estriol were about 10, 8, 8, 2, 2, and 3, respectively. The linearity for the analytes was in the range of 5-700 μg L(-1). Limit of detection was in the range of 1-5 μg L(-1) and the RSD% values (n = 5) were all below 6

  2. [Preparation and evaluation of novel mesoporous molecular sieve of baicalin surface molecularly imprinted polymers].

    PubMed

    Gu, Xia-li; He, Hong-liang; Shi, Li-ying; Gao, Yan-kun; Chen, Li-na

    2015-05-01

    Taking mesoporous molecular sieve MCM-41 as a substrate, baicalin (BA) as template, acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, ethanol as solvent, under thermal polymerization initiator of azobis isobutyronitrilo (AIBN) , a kind of selective recognition of baicalin surface molecularly imprinted polymer was synthesized. The surface morphologies and characteristics of the MIPs were characterized by infrared spectroscopy (IR) and transmission electron microscope (TEM). The adsorption properties of polymer microsphere for the template were tested by the dynamic adsorption equilibrium experiments and static adsorption equilibrium experiments. The experiment showed that the imprinting process was successfully and the well-ordered one-dimensional pore structure of MCM-41 was still preserved. Furthermore, molecularly imprinted polymers had higher selective ability for BA, then provided a new method for the efficient separation and enrichment of baicalin active ingredients from medicinal plants Scutellaria baicalensis. PMID:26323135

  3. Enhanced adsorption of atrazine from aqueous solution by molecularly imprinted TiO2 film

    NASA Astrophysics Data System (ADS)

    Zhang, Chunjing; Yan, Jinlong; Zhang, Chunxiao; Yang, Zhengpeng

    2012-07-01

    TiO2 film imprinted by atrazine molecule at the surface of quartz crystal was prepared using molecular imprinting and surface sol-gel process. The molecularly imprinted TiO2 film was characterized by scanning electron microscopy and cyclic voltammetry, and the atrazine adsorption was investigated by quartz crystal microbalance (QCM) technique. In comparison with non-imprinted TiO2 film, the molecularly imprinted TiO2 film exhibits high selectivity for atrazine, better reversibility and a much higher adsorption capacity for the target molecule, the adsorption equilibrium constant estimated from the in situ frequency measurement is about 6.7 × 104 M-1, which is thirteen times higher than that obtained on non-imprinted TiO2 film.

  4. Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography.

    PubMed

    Gomez, Laura Piedad Chia; Spangenberg, Arnaud; Ton, Xuan-Anh; Fuchs, Yannick; Bokeloh, Frank; Malval, Jean-Pierre; Tse Sum Bui, Bernadette; Thuau, Damien; Ayela, Cédric; Haupt, Karsten; Soppera, Olivier

    2016-07-01

    Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor. PMID:27145145

  5. Fluorescent monomers: "bricks" that make a molecularly imprinted polymer "bright".

    PubMed

    Wan, Wei; Wagner, Sabine; Rurack, Knut

    2016-03-01

    Molecularly imprinted polymers (MIPs) are potent and established recognition phases in separation and enrichment applications. Because of their robustness, versatility and format adaptability, they also constitute very promising sensing phases, especially when the active sensing element is directly integrated into the MIP. Fluorescent MIPs incorporating fluorescent monomers are perhaps the best developed and most successful approach here. This article reviews the state of the art in this field, discussing the pros and cons of the use of fluorescent dye and probe derivatives as such monomers, the different molecular interaction forces for template complexation, signalling modes and a variety of related approaches that have been realized over the years, including Förster resonance energy transfer processes, covalent imprinting, postmodification attachment of fluorescent units and conjugated polymers as MIPs; other measurement schemes and sensing chemistries that use MIPs and fluorescence interrogation to solve analytical problems (fluorescent competitive assays, fluorescent analytes, etc.) are not covered here. Throughout the article, photophysical processes are discussed to facilitate understanding of the effects that can occur when one is planning for a fluorescence response to happen in a constrained polymer matrix. The article concludes with a concise assessment of the suitability of the different formats for sensor realization. PMID:26613794

  6. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.

    PubMed

    Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E

    2015-07-01

    Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world. PMID:26008649

  7. Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors.

    PubMed

    Huang, Yan; Zhu, Minshen; Pei, Zengxia; Huang, Yang; Geng, Huiyuan; Zhi, Chunyi

    2016-01-27

    The cycling stability of flexible supercapacitors with conducting polymers as electrodes is limited by the structural breakdown arising from repetitive counterion flow during charging/discharging. Supercapacitors made of facilely electropolymerized polypyrrole (e-PPy) have ultrahigh capacitance retentions of more than 97, 91, and 86% after 15000, 50000, and 100000 charging/discharging cycles, respectively, and can sustain more than 230000 charging/discharging cycles with still approximately half of the initial capacitance retained. To the best of our knowledge, such excellent long-term cycling stability was never reported. The fully controllable electropolymerization shows superiority in molecular ordering, favoring uniform stress distribution and charge transfer. Being left at ambient conditions for even 8 months, e-PPy supercapacitors completely retain the good electrochemical performance. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics. PMID:26741145

  8. Affinity sensor based on immobilized molecular imprinted synthetic recognition elements.

    PubMed

    Lenain, Pieterjan; De Saeger, Sarah; Mattiasson, Bo; Hedström, Martin

    2015-07-15

    An affinity sensor based on capacitive transduction was developed to detect a model compound, metergoline, in a continuous flow system. This system simulates the monitoring of low-molecular weight organic compounds in natural flowing waters, i.e. rivers and streams. During operation in such scenarios, control of the experimental parameters is not possible, which poses a true analytical challenge. A two-step approach was used to produce a sensor for metergoline. Submicron spherical molecularly imprinted polymers, used as recognition elements, were obtained through emulsion polymerization and subsequently coupled to the sensor surface by electropolymerization. This way, a robust and reusable sensor was obtained that regenerated spontaneously under the natural conditions in a river. Small organic compounds could be analyzed in water without manipulating the binding or regeneration conditions, thereby offering a viable tool for on-site application. PMID:25703726

  9. Molecularly imprinted solid phase extraction of fluconazole from pharmaceutical formulations.

    PubMed

    Manzoor, S; Buffon, R; Rossi, A V

    2015-03-01

    This work encompasses a direct and coherent strategy to synthesise a molecularly imprinted polymer (MIP) capable of extracting fluconazole from its sample. The MIP was successfully prepared from methacrylic acid (functional monomer), ethyleneglycoldimethacrylate (crosslinker) and acetonitrile (porogenic solvent) in the presence of fluconazole as the template molecule through a non-covalent approach. The non-imprinted polymer (NIP) was prepared following the same synthetic scheme, but in the absence of the template. The data obtained from scanning electronic microscopy, infrared spectroscopy, thermogravimetric and nitrogen Brunauer-Emmett-Teller plot helped to elucidate the structural as well as the morphological characteristics of the MIP and NIP. The application of MIP as a sorbent was demonstrated by packing it in solid phase extraction cartridges to extract fluconazole from commercial capsule samples through an offline analytical procedure. The quantification of fluconazole was accomplished through UPLC-MS, which resulted in LOD≤1.63×10(-10) mM. Furthermore, a high percentage recovery of 91±10% (n=9) was obtained. The ability of the MIP for selective recognition of fluconazole was evaluated by comparison with the structural analogues, miconazole, tioconazole and secnidazole, resulting in percentage recoveries of 51, 35 and 32%, respectively. PMID:25618633

  10. Molecularly imprinted hydrogels as functional active packaging materials.

    PubMed

    Benito-Peña, Elena; González-Vallejo, Victoria; Rico-Yuste, Alberto; Barbosa-Pereira, Letricia; Cruz, José Manuel; Bilbao, Ainhoa; Alvarez-Lorenzo, Carmen; Moreno-Bondi, María Cruz

    2016-01-01

    This paper describes the synthesis of novel molecularly imprinted hydrogels (MIHs) for the natural antioxidant ferulic acid (FA), and their application as packaging materials to prevent lipid oxidation of butter. A library of MIHs was synthesized using a synthetic surrogate of FA, 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HFA), as template molecule, ethyleneglycol dimethacrylate (EDMA) as cross-linker, and 1-allylpiperazine (1-ALPP) or 2-(dimethylamino)ethyl methacrylate (DMAEMA), in combination with 2-hydroxyethyl methacrylate (HEMA) as functional monomers, at different molar concentrations. The DMAEMA/HEMA-based MIHs showed the greatest FA loading capacity, while the 1-ALLP/HEMA-based polymers exhibited the highest imprinting effect. During cold storage, FA-loaded MIHs protected butter from oxidation and led to TBARs values that were approximately half those of butter stored without protection and 25% less than those recorded for butter covered with hydrogels without FA, potentially extending the shelf life of butter. Active packaging is a new field of application for MIHs with great potential in the food industry. PMID:26213001

  11. New molecular imprinted voltammetric sensor for determination of ochratoxin A.

    PubMed

    Yola, Mehmet Lütfi; Gupta, Vinod Kumar; Atar, Necip

    2016-04-01

    In this report, a novel molecular imprinted voltammetric sensor based on silver nanoparticles (AgNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) modified glassy carbon electrode (GCE) was presented for determination of ochrattoxin A (OCH). The developed surfaces were characterized using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. OCH imprinted GCE was prepared via electropolymerization process of 100mM phenol as monomer in the presence of phosphate buffer solution (pH6.0) containing 25 mM OCH. The linearity range and the detection limit of the method were calculated as 5.0 × 10(-11) - 1.5 × 10(-9)M and 1.6 × 10(-11) M, respectively. The voltammetric sensor was applied to grape juice and wine samples with good selectivity and recovery. The stability of the voltammetric sensor was also reported. PMID:26838863

  12. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    NASA Astrophysics Data System (ADS)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10-12-1.0 × 10-10 M and 2.0 × 10-13 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  13. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM

    PubMed Central

    Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A.

    2016-01-01

    Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity. PMID:27376287

  14. Volatile phenols depletion in red wine using molecular imprinted polymers.

    PubMed

    Teixeira, Rafaela; Dopico-García, Sonia; Andrade, Paula B; Valentão, Patrícia; López-Vilariño, José M; González-Rodríguez, Victoria; Cela-Pérez, Concepción; Silva, Luís R

    2015-12-01

    Wines can be modified by microorganisms during the ageing process, by producing off-flavours like volatile phenols (VP), leading to their deterioration, with great economic losses. The development of methods to recover wines affected by unwanted VP became an important target. Molecular imprinted polymers (MIPs) are synthetic materials with artificially-generated recognition sites for selective extraction of organic compounds from different matrices. In this work, two MIPs to remove unwanted VP from wines were developed and their effects were evaluated. Volatile compounds were determined by GC-FID and GC-IT/MS and phenolic compounds (non-coloured and anthocyanins) by HPLC-DAD. The treatment with MIP-4EG and MIP-4EP significantly reduced the content of 4-ethylguaiacol and 4-ethylphenol, respectively. Nevertheless, the changes observed in wine non-coloured and coloured phenolics and sensorial analysis indicate that their specificity and selectivity regarding off-flavours still needs to be improved. PMID:26604347

  15. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM.

    PubMed

    Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A

    2016-01-01

    Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity. PMID:27376287

  16. Molecularly Imprinted Polymers for Ochratoxin A Extraction and Analysis

    PubMed Central

    Yu, Jorn C. C.; Lai, Edward P. C.

    2010-01-01

    Molecularly imprinted polymers (MIPs) are considered as polymeric materials that mimic the functionality of antibodies. MIPs have been utilized for a wide variety of applications in chromatography, solid phase extraction, immunoassays, and sensor recognition. In this article, recent advances of MIPs for the extraction and analysis of ochratoxins are discussed. Selection of functional monomers to bind ochratoxin A (OTA) with high affinities, optimization of extraction procedures, and limitations of MIPs are compared from different reports. The most relevant examples in the literature are described to clearly show how useful these materials are. Strategies on MIP preparation and schemes of analytical methods are also reviewed in order to suggest the next step that would make better use of MIPs in the field of ochratoxin research. The review ends by outlining the remaining issues and impediments. PMID:22069649

  17. Synthesis, characterization and adsorption behavior of molecularly imprinted nanospheres for erythromycin using precipitation polymerization.

    PubMed

    Kou, Xing; Lei, Jiandu; Geng, Liyuan; Deng, Hongquan; Jiang, Qiying; Zhang, Guifeng; Ma, Guanghui; Su, Zhiguo

    2012-09-01

    Preparation of uniform size molecularly imprinted nanospheres for erythromycin with good selectivity and high binding capacity by precipitation polymerization were presented, in which erythromycin, methacrylic acid and ethylene glycol dimethacrylate are used as template molecule, functional monomer and cross-linker, respectively. The synthesis conditions of molecularly imprinted nanospheres were optimized and the optimal molar ratio of erythromycin to functional monomer is 1:3. The molecularly imprinted polymers were characterized by scanning electron microscope, laser particle size analyzer and BET, respectively. The results suggested that molecularly imprinted nanospheres for erythromycin exhibited spherical shape and good monodispersity. Selectivity analysis indicated that the imprinted nanospheres could specifically recognize erythromycin from its structure analogues. Furthermore, adsorption kinetics and adsorption isotherm of the imprinted nanospheres were employed to investigate the binding characteristics of the imprinted nanospheres. The results showed that the imprinted nanospheres have high adsorption capacity for erythromycin, and the maximum theoretical static binding capacity is up to 267.0188 mg g(-1). PMID:23035481

  18. Removal of Toxic Mercury from Petroleum Oil by Newly Synthesized Molecularly-Imprinted Polymer

    PubMed Central

    Khairi, Nor Ain Shahera; Yusof, Nor Azah; Abdullah, Abdul Halim; Mohammad, Faruq

    2015-01-01

    In recent years, molecularly-imprinted polymers (MIPs) have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II) imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it) with methacrylic acid (MAA), 2-hydroxyl ethyl methacrylate (HEMA), methanol and ethylene glycol dimethacrylate (EGDMA) as the monomer, co-monomer solvent (porogen) and cross-linker, respectively. Thus, the formed Hg(II) imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer, Emmett and Teller (BET) and thermal gravimetric analysis (TGA). The separation and preconcentration characteristics of Hg(II) imprinted polymer were investigated by solid phase extraction (SPE) procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II) imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II) imprinted beads with 87.54% removal of Hg(II) ions within the first 5 min. The results of the study therefore confirm that the Hg(II) imprinted polymer can be used multiple times without significantly losing its adsorption capacity. PMID:26006226

  19. Removal of toxic mercury from petroleum oil by newly synthesized molecularly-imprinted polymer.

    PubMed

    Khairi, Nor Ain Shahera; Yusof, Nor Azah; Abdullah, Abdul Halim; Mohammad, Faruq

    2015-01-01

    In recent years, molecularly-imprinted polymers (MIPs) have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II) imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it) with methacrylic acid (MAA), 2-hydroxyl ethyl methacrylate (HEMA), methanol and ethylene glycol dimethacrylate (EGDMA) as the monomer, co-monomer solvent (porogen) and cross-linker, respectively. Thus, the formed Hg(II) imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer, Emmett and Teller (BET) and thermal gravimetric analysis (TGA). The separation and preconcentration characteristics of Hg(II) imprinted polymer were investigated by solid phase extraction (SPE) procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II) imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II) imprinted beads with 87.54% removal of Hg(II) ions within the first 5 min. The results of the study therefore confirm that the Hg(II) imprinted polymer can be used multiple times without significantly losing its adsorption capacity. PMID:26006226

  20. Synthesis of molecularly imprinted polymer nanoparticles for the fast and highly selective adsorption of sunset yellow.

    PubMed

    Zhang, Yu; Xie, Zhihai; Teng, Xiaoxiao; Fan, Jin

    2016-04-01

    Novel molecularly imprinted polymer nanoparticles were synthesized by precipitation polymerization with sunset yellow as the template and [2-(methacryloyloxy)ethyl] trimethylammonium chloride as the functional monomer. The molecularly imprinted polymer nanoparticles were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and their specific surface area and thermal stability were measured. The molecularly imprinted polymer nanoparticles had a high adsorption capacity in wide pH range (pH 1-8) for sunset yellow. The adsorption equilibrium only needed 5 min, and the quantitative desorption was very fast (1 min) by using 10.0 mol/L HCl as the eluant. The maximum adsorption capacity of the molecularly imprinted polymer nanoparticles for sunset yellow was 144.6 mg/g. The adsorption isotherm and kinetic were well consistent with Langmuir adsorption model and pseudo-second-order kinetic model, respectively. The relative selectivity coefficients of the molecularly imprinted polymer nanoparticles for tartrazine and carmine were 9.766 and 12.64, respectively. The prepared molecularly imprinted polymer nanoparticles were repeatedly used and regenerated ten times without significant absorption capacity decrease. PMID:26899416

  1. Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers.

    PubMed

    Lv, Yongqin; Qin, Yating; Svec, Frantisek; Tan, Tianwei

    2016-06-15

    Molecularly imprinted plasmonic nanosensor has been prepared via the rational design of an ultrathin polymer layer on the surface of gold nanorods imprinted with the target protein. This nanosensor enabled selective fishing-out of the target protein biomarker even from a complex real sample such as human serum. Sensitive SERS detection of the protein biomarkers with a strong Raman enhancement was achieved by formation of protein imprinted gold nanorods aggregates, stacking of protein imprinted gold nanorods onto a glass plate, or self-assembly of protein imprinted gold nanorods into close-packed array. High specificity and sensitivity of this method were demonstrated with a detection limit of at least 10(-8)mol/L for the target protein. This could provide a promising alternative for the currently used immunoassays and fluorescence detection, and offer an ultrasensitive, non-destructive, and label-free technique for clinical diagnosis applications. PMID:26874111

  2. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein.

    PubMed

    Liu, Yanjin; Wang, Yuzhi; Dai, Qingzhou; Zhou, Yigang

    2016-09-14

    A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Qmax) and dissociation constant (KL) were analyzed by Langmuir isotherms (R(2) = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins. PMID:27566352

  3. Monoclonal Behavior of Molecularly Imprinted Polymer Nanoparticles in Capillary Electrochromatography

    PubMed Central

    Priego-Capote, Feliciano; Ye, Lei; Shakil, Sadia; Shamsi, Shahab A.; Nilsson, Staffan

    2009-01-01

    A new approach based on miniemulsion polymerization is demonstrated for synthesis of molecularly imprinted nanoparticles (MIP-NP; 30–150 nm) with “monoclonal” binding behavior. The performance of the MIP nanoparticles is characterized with partial filling capillary electro-chromatography, for the analysis of rac-propranolol, where (S)-propranolol is used as a template. In contrast to previous HPLC and CEC methods based on the use of MIPs, there is no apparent tailing for the enantiomer peaks, and baseline separation with 25 000–60 000 plate number is achieved. These effects are attributed to reduction of the MIP site heterogeneity by means of peripheral location of the core cross-linked NP and to MIP-binding sites with the same ordered radial orientation. This new MIP approach is based on the substitution of the functional monomers with a surfactant monomer, sodium N-undecenoyl glycinate (SUG) for improved inclusion in the MIP-NP structure and to the use of a miniemulsion in the MIP-NP synthesis. The feasibility of working primarily with aqueous electrolytes (10 mM phosphate with a 20% acetonitrile at pH 7) is attributable to the micellar character of the MIP-NPs, provided by the inclusion of the SUG monomers in the structure. To our knowledge this is the first example of “monoclonal” MIP-NPs incorporated in CEC separations of drug enantiomers. PMID:18336010

  4. Solid phase extraction of food contaminants using molecular imprinted polymers.

    PubMed

    Baggiani, Claudio; Anfossi, Laura; Giovannoli, Cristina

    2007-05-15

    Food contamination from natural or anthropogenic sources poses severe risks to human health. It is now largely accepted that continuous exposure to low doses of toxic chemicals can be related to several chronic diseases, including some type of cancer and serious hormonal dysfunctions. Contemporary analytical methods have the sensitivity required for contamination detection and quantification, but direct application of these methods on food samples can be rarely performed. In fact, the matrix introduces severe disturbances, and analysis can be performed only after some clean-up and preconcentration steps. Current sample pre-treatment methods, mostly based on the solid phase extraction technique, are very fast and inexpensive but show a lack of selectivity, while methods based on immunoaffinity extraction are very selective but expensive and not suitable for harsh environments. Thus, inexpensive, rapid and selective clean-up methods, relaying on "intelligent" materials are needed. Recent years have seen a significant increase of the "molecularly imprinted solid phase extraction" (MISPE) technique in the food contaminant analysis. In fact, this technique seems to be particularly suitable for extractive applications where analyte selectivity in the presence of very complex and structured matrices represents the main problem. In this review, several applications of MISPE in food contamination analysis will be discussed, with particular emphasis on the extraction of pesticides, drugs residua, mycotoxins and environmental contaminants. PMID:17456421

  5. Low-Density Lipoprotein Sensor Based on Molecularly Imprinted Polymer.

    PubMed

    Chunta, Suticha; Suedee, Roongnapa; Lieberzeit, Peter A

    2016-01-19

    Increased level of low-density lipoprotein (LDL) strongly correlates with incidence of coronary heart disease. We synthesized novel molecularly imprinted polymers (MIP) as biomimetic specific receptors to establish rapid analysis of LDL levels. For that purpose the ratios of monomers acrylic acid (AA), methacrylic acid (MAA), and N-vinylpyrrolidone (VP), respectively, were screened on 10 MHz dual-electrode quartz crystal microbalances (QCM). Mixing MAA and VP in the ratio 3:2 (m/m) revealed linear sensor characteristic to LDL cholesterol (LDL-C) from 4 to 400 mg/dL or 0.10-10.34 mmol/L in 100 mM phosphate-buffered saline (PBS) without significant interference: high-density lipoprotein (HDL) yields 4-6% of the LDL signal, very-low-density-lipoprotein (VLDL) yields 1-3%, and human serum albumin (HSA) yields 0-2%. The LDL-MIP sensor reveals analytical accuracy of 95-96% at the 95% confidence interval with precision at 6-15%, respectively. Human serum diluted 1:2 with PBS buffer was analyzed by LDL-MIP sensors to demonstrate applicability to real-life samples. The sensor responses are excellently correlated to the results of the standard technique, namely, a homogeneous enzymatic assay (R(2) = 0.97). This demonstrates that the system can be successfully applied to human serum samples for determining LDL concentrations. PMID:26643785

  6. Determination of clenbuterol in pork and potable water samples by molecularly imprinted polymer through the use of covalent imprinting method.

    PubMed

    Tang, Yiwei; Lan, Jianxing; Gao, Xue; Liu, Xiuying; Zhang, Defu; Wei, Liqiao; Gao, Ziyuan; Li, Jianrong

    2016-01-01

    A novel molecularly imprinted polymer (MIP) for efficient separation and concentration of clenbuterol (CLB) was synthesized by covalent imprinting approach using CLB derivative as functional monomer. The MIPs synthesized were characterized by scanning electron microscope, nitrogen adsorption analysis, Fourier transform infrared spectrometer, and thermo-gravimetric analysis. The binding experimental results showed that the MIPs synthesized had fast adsorption kinetic (20 min at 25 mg L(-1)), high adsorption capacity and specific recognition ability for the analyte. In addition, the MIPs synthesized were successfully used as solid-phase sorbent for CLB sample preparation to be analyzed by high performance liquid chromatography with ultraviolet detector. Under optimized experimental conditions, the linear range of the calibration curve was 5-80 μg L(-1) (R(2) = 0.9938). The proposed method was also applied to the analysis of CLB in pork and potable water samples. PMID:26213061

  7. Molecularly imprinted porous beads for the selective removal of copper ions.

    PubMed

    Younis, M Rizwan; Bajwa, Sadia Z; Lieberzeit, Peter A; Khan, Waheed S; Mujahid, Adnan; Ihsan, Ayesha; Rehman, Asma

    2016-02-01

    In the present work, novel molecularly imprinted polymer porous beads for the selective separation of copper ions have been synthesized by combining two material-structuring techniques, namely, molecular imprinting and oil-in-water-in-oil emulsion polymerization. This method produces monodisperse spherical beads with an average diameter of ∼2-3 mm, in contrast to adsorbents produced in the traditional way of grinding and sieving. Field-emission scanning electron microscopy indicates that the beads are porous in nature with interconnected pores of about 25-50 μm. Brunner-Emmett-Teller analysis shows that the ion-imprinted beads possess a high surface area (8.05 m(2) /g), and the total pore volume is determined to be 0.00823 cm(3) /g. As a result of the highly porous nature and ion-imprinting, the beads exhibit a superior adsorption capacity (84 mg/g) towards copper than the non-imprinted material (22 mg/g). Furthermore, selectivity studies indicate that imprinted beads show splendid recognizing ability, that is, nearly fourfold greater selective binding for Cu(2+) in comparison to the other bivalent ions such as Mn(2+) , Ni(2+) , Co(2+) , and Ca(2+) . The imprinted composite beads prepared in this study possess uniform porous morphology and may open up new possibilities for the selective removal of copper ions from waste water/contaminated matrices. PMID:26632078

  8. Chiral recognition in adrenergic receptor binding mimics prepared by molecular imprinting.

    PubMed

    Ramström, O; Yu, C; Mosbach, K

    1996-01-01

    Molecularly imprinted polymers were prepared against the adrenomimetic agents ephedrine and pseudoephedrine. These compounds each incorporate two chiral centres. The polymers were evaluated with respect to enantiodiscrimination of various adrenergic ligands. The selectivity of the polymeric binding sites for the imprinted molecules was very high, and it was found that binding of both the enantiomeric and diastereomeric isomers of the imprint species were effectively obstructed, it was found that these polymers could selectively recognize the enantiomers of the endogenous adrenergic ligand epinephrine as well as several beta-adrenergic blockers. These observations suggest that these polymers effectively mimic the recognition patterns exhibited by natural adrenergic receptors. PMID:9174958

  9. A Novel Methodology for Metal Ion Separation Based on Molecularly Imprinting

    SciTech Connect

    Zuo, Xiaobin; Mosha, Donnati; Hassan, Mansour M.; Givens, Richard S.; Busch, Daryle H.

    2004-03-31

    The siderophore-based extraction of iron from the soil by bacteria is proposed as a model for a new separation methodology labeled the soil poutice, a molecular device that would selectively retrieve the complex of a targeted metal ion. In this report we described the synthesis and characterization of molecularly imprinted polymers and their application in the specific recognition of macrocyclic metal complexes. The imprinting is based on non-covalent interactions such as hydrogen bonding, electrostatic attractions and minor metal-ligand coordination. Good rebinding capacity for the imprinting metal complex was observed in acetonitrile as well as in water. The polymers are resistant to strong acids and oxidizing agents and showed an increase of rebinding capacity during cycles of reuse. The imprinting procedure, combined with the previously known selective chelation of macrocyclic ligands, supports the feasibility of a new methodology that can be used to extract waste metal ions effectively and selectively from soils and ground water.

  10. Synthesis and Evaluation of Molecularly Imprinted Silica Gel for 2-Hydroxybenzoic Acid in Aqueous Solution

    PubMed Central

    Abdul Raof, Siti Farhana; Mohamad, Sharifah; Abas, Mhd Radzi

    2013-01-01

    A molecularly imprinted silica gel sorbent for selective removal of 2-Hydroxybenzoic acid (2-HA) was prepared by a surface imprinting technique with a sol-gel process. The 2-HA molecularly imprinted silica gel (2-HA-MISG) sorbent was evaluated by various parameters, including the influence of pH, static, kinetic adsorption and selectivity experiments. The optimum adsorption capacity to the 2-HA appeared to be around pH 2 by the polymer. Morevoer, the imprinted sorbent displayed fast uptake kinetics, obtained within 20 min. The adsorption capacity of the 2-HA-MISG (76.2 mg g−1) was higher than that of the non-imprinted silica gel (NISG) (42.58 mg g−1). This indicates that the 2-HA-MISG offers a higher affinity for 2-HA than the NISG. The polymer displays good selectivity and exhibits good reusability. Experimental results show the potential of molecularly imprinted silica sorbent for selective removal of 2-HA. PMID:23493059

  11. Preparation and characterization of monodisperse molecularly imprinted polymers for the recognition and enrichment of oleanolic acid.

    PubMed

    Tang, Zonggui; Liu, Changbin; Wang, Jing; Li, Hongmin; Ji, Yong; Wang, Guohong; Lu, Chunxia

    2016-04-01

    Monodisperse molecularly imprinted polymers for oleanolic acid were successfully prepared by a precipitation polymerization method using oleanolic acid as a template, methacrylic acid as a functional monomer, and divinylbenzene/ethylene glycol dimethacrylate as a crosslinker in a mixture of acetonitrile and ethanol (3:1, v/v). The imprinted polymers and nonimprinted polymers were characterized by using scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The resulting imprinted polymers had average diameters of 3.15 μm and monodispersity values of 1.024. The results clearly demonstrate that use of ethanol as a cosolvent is indeed exceedingly effective in promoting the dissolution of oleanolic acid and in obtaining uniform microspheres. Molecular recognition properties and binding capability to oleanolic acid were evaluated by adsorption testing, which indicated that the imprinted polymers displayed optimal binding performance with a maximum adsorption capacity of 17.3 mg/g and a binding saturation time of 80 min. Meanwhile, the produced imprinted polymers exhibited higher selectivity to oleanolic acid than that for ursolic acid and rhein. Herein, the studies can provide theoretical and experimental references for the oleanolic acid molecular imprinted system. PMID:27106769

  12. Molecularly imprinted polymers-curcuminoids and its application for solid phase extraction

    NASA Astrophysics Data System (ADS)

    Wulandari, Meyliana; Amran, M. B.; Lopez, A. B. Descalzo; Urraca, J. L.; Moreno-Bondi, M. C.

    2014-03-01

    Molecularly Imprinted Polymers (MIPs) for the selective recognition properties of curcumin (CUR), a cancer chemopreventive agent were obtained by a non-covalent imprinting approach with bisdemetoxycurcumin (BDMC) as the template molecule. The double bond of BDMC has been reduced in order not to be involved in polymerization and make the template molecules easy to be eluted. Several functional monomers have been evaluated to maximize the interactions with the template molecule during polymerization. MIPs prepared by bulk of N-(2-aminoethyl) metacrylamid hydrochlorideas functional monomer, ethylene glycol dimethacrylate as crosslinker, 2,2'-azobis (2'4-dimethyl valeronitril) as initiator and acetonitrile as porogen. Non-imprinted polymer (NIP) have been also synthesized for reference purposes. UV-vis spectroscopy has been used to predict the template to functional monomer ratio which indicates the formation of 2:1 complexes between monomer and curcumin and the association constants (K11 = 2529 μM and K12 = 1960.75 μM in acetonitrile). The capacity and imprinting factor have been evaluated as stationary phases in high-pressure liquid chromatography to CUR and BDMC. The binding properties and the homogeneity of the binding sites of the different polymers have been studied by Freundlich isotherm modeling and weight average affinity and number of binding sites. One of the foremost applications of molecular imprinting has been in molecularly imprinted solid phase extraction and it has the ability to separate and preconcentrate between closely related compounds in curcuminoids.

  13. Preparation and evaluation of a novel molecularly imprinted polymer coating for selective extraction of indomethacin from biological samples by electrochemically controlled in-tube solid phase microextraction.

    PubMed

    Asiabi, Hamid; Yamini, Yadollah; Seidi, Shahram; Ghahramanifard, Fazel

    2016-03-24

    In the present work, an automated on-line electrochemically controlled in-tube solid-phase microextraction (EC-in-tube SPME) coupled with HPLC-UV was developed for the selective extraction and preconcentration of indomethacin as a model analyte in biological samples. Applying an electrical potential can improve the extraction efficiency and provide more convenient manipulation of different properties of the extraction system including selectivity, clean-up, rate, and efficiency. For more enhancement of the selectivity and applicability of this method, a novel molecularly imprinted polymer coated tube was prepared and applied for extraction of indomethacin. For this purpose, nanostructured copolymer coating consisting of polypyrrole doped with ethylene glycol dimethacrylate was prepared on the inner surface of a stainless-steel tube by electrochemical synthesis. The characteristics and application of the tubes were investigated. Electron microscopy provided a cross linked porous surface and the average thickness of the MIP coating was 45 μm. Compared with the non-imprinted polymer coated tubes, the special selectivity for indomethacin was discovered with the molecularly imprinted coated tube. Moreover, stable and reproducible responses were obtained without being considerably influenced by interferences commonly existing in biological samples. Under the optimal conditions, the limits of detection were in the range of 0.07-2.0 μg L(-1) in different matrices. This method showed good linearity for indomethacin in the range of 0.1-200 μg L(-1), with coefficients of determination better than 0.996. The inter- and intra-assay precisions (RSD%, n = 3) were respectively in the range of 3.5-8.4% and 2.3-7.6% at three concentration levels of 7, 70 and 150 μg L(-1). The results showed that the proposed method can be successfully applied for selective analysis of indomethacin in biological samples. PMID:26944991

  14. Determination of glyphosate in foodstuff by one novel chemiluminescence-molecular imprinting sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Peini; Yan, Mei; Zhang, Congcong; Peng, Ruixue; Ma, Dongsheng; Yu, Jinghua

    2011-05-01

    A novel chemiluminescence (CL) sensor for the determination of glyphosate (GLY) was made up based on molecularly imprinted polymer (MIP). The molecularly imprinted microspheres (MIMs) with a small dimension which possess extremely high surface-to-volume ratio were synthesized using precipitation polymerization with GLY as template. And then the MIMs were modified on glass sheets, which were placed at the bottom of wells of microplate as the recognizer. Subsequently, a highly selective and high throughput chemiluminescence (CL)-molecular imprinting (MI) sensor for detection of GLY was achieved. Influencing factors were investigated and optimized in detail. The method can perform 96 independent measurements sequentially in 10 min and the limit of detection (LOD) for GLY was 0.046 μg mL -1. The relative standard deviation (RSD) for 11 parallel measurements of GLY was 4.68%. The results show that CL-MI sensor can become a useful analytical technology for quick molecular recognition.

  15. Removal of iron by chelation with molecularly imprinted supermacroporous cryogel.

    PubMed

    Çimen, Duygu; Göktürk, Ilgım; Yılmaz, Fatma

    2016-06-01

    Iron chelation therapy can be used for the selective removal of Fe(3+) ions from spiked human plasma by ion imprinting. N-Methacryloyl-(L)-glutamic acid (MAGA) was chosen as the chelating monomer. In the first step, MAGA was complexed with the Fe(3+) ions to prepare the precomplex, and then the ion-imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-glutamic acid) [PHEMAGA-Fe(3+)] cryogel column was prepared by cryo-polymerization under a semi-frozen temperature of - 12°C for 24 h. Subsequently, the template, of Fe(3+) ions was removed from the matrix by using 0.1 M EDTA solution. The values for the specific surface area of the imprinted PHEMAGA-Fe(3+) and non-imprinted PHEMAGA cryogel were 45.74 and 7.52 m(2)/g respectively, with a pore size in the range of 50-200 μm in diameter. The maximum Fe(3+) adsorption capacity was 19.8 μmol Fe(3+)/g cryogel from aqueous solutions and 12.28 μmol Fe(3+)/g cryogel from spiked human plasma. The relative selectivity coefficients of ion-imprinted cryogel for Fe(3+)/Ni(2+) and Fe(3+)/Cd(2+) were 1.6 and 4.2-fold greater than the non-imprinted matrix, respectively. It means that the PHEMAGA-Fe(3+) cryogel possesses high selectivity to Fe(3+) ions, and could be used many times without significantly decreasing the adsorption capacity. PMID:25727711

  16. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting.

    PubMed

    Cieplak, Maciej; Szwabinska, Katarzyna; Sosnowska, Marta; Chandra, Bikram K C; Borowicz, Pawel; Noworyta, Krzysztof; D'Souza, Francis; Kutner, Wlodzimierz

    2015-12-15

    We devised and prepared a conducting molecularly imprinted polymer (MIP) for human serum albumin (HSA) determination using semi-covalent imprinting. The bis(2,2'-bithien-5-yl)methane units constituted the MIP backbone. This MIP was deposited as a thin film on an Au electrode by oxidative potentiodynamic electropolymerization to fabricate an electrochemical chemosensor. The HSA template imprinting, and then its releasing from the MIP was confirmed by the differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), XPS, and PM-IRRAS measurements as well as by AFM imaging. Semi-covalent imprinting provided a very well defined locations of recognition sites in the MIP molecular cavities. These sites populated the imprinted cavities or the MIP surface only. The DPV and EIS response of the MIP film coated electrode to the HSA analyte was linear in the range of 0.8 to 20 and 4 to 80 µg/mL HSA, respectively, with the limit of detection of 16.6 and 800 ng/mL, respectively. The impressively high imprinting factor reached, exceeding 20, strongly confirmed that semi-covalent imprinting resulted in formation of a large number of very well defined molecular cavities with high affinity to the HSA molecules. The MIP selectivity against low-(molecular weight) interferences, common for physiological fluids, such as blood and urea, was very high. There was no response to the presence of these interferences at concentrations encountered in the samples analyzed. Moreover, the chemosensor selectivity to the myoglobin and cytochrome c interferences was excellent while that to lysozyme was slightly lower but still high. The chemosensor was useful for determination of abnormal HSA concentration in a control blood serum. PMID:26258876

  17. Molecular imprinted polymer for solid-phase extraction of flavonol aglycones from Moringa oleifera extracts.

    PubMed

    Pakade, Vusumzi; Cukrowska, Ewa; Lindahl, Sofia; Turner, Charlotta; Chimuka, Luke

    2013-02-01

    Molecular imprinted polymer produced using quercetin as the imprinting compound was applied for the extraction of flavonol aglycones (quercetin and kaempferol) from Moringa oleifera methanolic extracts obtained using heated reflux extraction method. Identification and quantification of these flavonols in the Moringa extracts was achieved using high performance liquid chromatography with ultra violet detection. Breakthrough volume and retention capacity of molecular imprinted polymer SPE was investigated using a mixture of myricetin, quercetin and kaempferol. The calculated theoretical number of plates was found to be 14, 50 and 8 for myricetin, quercetin and kaempferol, respectively. Calculated adsorption capacities were 2.0, 3.4 and 3.7 μmol/g for myricetin, quercetin and kaempferol, respectively. No myricetin was observed in Moringa methanol extracts. Recoveries of quercetin and kaempferol from Moringa methanol extracts of leaves and flowers ranged from 77 to 85% and 75 to 86%, respectively, demonstrating the feasibility of using the developed molecularly imprinted SPE method for quantitative clean-up of both of these flavonoids. Using heated reflux extraction combined with molecularly imprinted SPE, quercetin concentrations of 975 ± 58 and 845 ± 32 mg/kg were determined in Moringa leaves and flowers, respectively. However, the concentrations of kaempferol found in leaves and flowers were 2100 ± 176 and 2802 ± 157 mg/kg, respectively. PMID:23255435

  18. Mimicking Biological Delivery Through Feedback-Controlled Drug Release Systems Based on Molecular Imprinting

    PubMed Central

    Kryscio, David R.; Peppas, Nicholas A.

    2015-01-01

    Intelligent drug delivery systems (DDS) are able to rapidly detect a biological event and respond appropriately by releasing a therapeutic agent; thus, they are advantageous over their conventional counterparts. Molecular imprinting is a promising area that generates a polymeric network which can selectively recognize a desired analyte. This field has been studied for a variety of applications over a long period of time, but only recently has it been investigated for biomedical and pharmaceutical applications. Recent work in the area of molecularly imprinted polymers in drug delivery highlights the potential of these recognitive networks as environmentally responsive DDS that can ultimately lead to feedback controlled recognitive release systems. PMID:26500352

  19. A quantitative method evaluating the selective adsorption of molecularly imprinted polymer.

    PubMed

    Zhang, Z B; Hu, J Y

    2012-01-01

    Adsorption isotherms of 4 estrogenic compounds, estrone, 17β-estradiol, 17α-ethinylestradiol and Bisphenol A, using molecularly imprinted polymer were studied. The isotherms can be simulated by Langmuir model. According to the adsorption isotherms and the template's mass balance, an experimental concept, selective adsorption ratio, SAR, was proposed to assess how many template molecules extracted out of MIP could create selective binding sites. The SAR of the molecularly imprinted polymer was 74.3% for E2. This concept could be used to evaluate quantitatively the selective adsorption. PMID:22423989

  20. Highly sensitive and doubly orientated selective molecularly imprinted electrochemical sensor for Cu(2.).

    PubMed

    Li, Jianping; Zhang, Lianming; Wei, Ge; Zhang, Yun; Zeng, Ying

    2015-07-15

    Studies on molecularly imprinted electrochemical sensors for metal ions determination have been widely reported. However, the sensitivity and selectivity of the sensors needs to be improved urgently. In the current work, a novel molecularly imprinted electrochemical sensor was originally developed for selective determination of ultratrace Cu(2+) by combining the metal-ligand chelate orientated recognition with enzyme amplification effect. The detection relied on a competition reaction between Cu(2+)-glycine (Cu-Gly) and horse radish peroxidase (HRP)-labeled Cu-Gly on the imprinted polymer membrane modified electrode. The sensitivity of this sensor was promoted by enzyme amplification. Selectivity was improved by the double-specificity derived from ligand-to-metal ion and metal-ligand chelate orientated recognition of 3D imprinted cavities. This technique was quantitatively sensitive to Cu(2+) concentrations ranging from 0.5nmol/L to 30nmol/L, with a detection limit of 42.4pmol/L. which was lower than those in most of the reported methods. The allowable amounts of interference ions were higher when it compared to other common molecularly imprinted sensors. Moreover, the results of assaying several real samples have proven its feasibility for practical applications. PMID:25771304

  1. Molecularly imprinted shells from polymer and xerogel matrices on polystyrene colloidal spheres.

    PubMed

    Guan, Guijian; Liu, Renyong; Mei, Qingsong; Zhang, Zhongping

    2012-04-10

    We have devised a facile and general methodology for the synthesis of various molecularly imprinted shells at the surface of polystyrene (PS) colloidal spheres to recognize the explosive compound 2,4,6-trinitrotoluene (TNT). PS spheres with surface-functionalized carboxyl-group layers could direct a selective imprinting polymerization on their surface through the hydrogen-bonding interactions between surface carboxyl groups and amino monomers. Meanwhile, homogeneous polymerization in the solution phase was completely prevented by stepwise polymerization. The overall process led to the formation of monodisperse molecularly imprinted core-shell microspheres, and was very successful in the preparation of organic polymer and inorganic xerogel shells. Furthermore, greater capacity and faster binding kinetics towards target species were achieved, because surface-imprinted sites ensured the complete removal of templates, good accessibility to target molecules, and low mass-transfer resistance. The results reported herein, concerning the production of high-quality molecularly imprinted products, could also form the basis for the formulation of a new strategy for the fabrication of various functional coating layers on colloidal spheres with potential applications in the fields of separations and chemical sensing. PMID:22392767

  2. Man-tailored biomimetic sensor of molecularly imprinted materials for the potentiometric measurement of oxytetracycline.

    PubMed

    Moreira, Felismina T C; Kamel, Ayman H; Guerreiro, Joana R L; Sales, M Goreti F

    2010-10-15

    A novel biomimetic sensor for the potentiometric transduction of oxytetracycline is presented. The artificial host was imprinted in methacrylic acid and/or acrylamide based polymers. Different amounts of molecularly imprinted and non-imprinted polymers were dispersed in different plasticizing solvents and entrapped in a poly(vinyl chloride) matrix. Only molecularly imprinted based sensors allowed a potentiometric transduction, suggesting the existence of host-guest interactions. These sensors exhibited a near-Nernstian response in steady state evaluations; slopes and detection limits ranged 42-63 mV/decade and 2.5-31.3 μg/mL, respectively. Sensors were independent from the pH of test solutions within 2-5. Good selectivity was observed towards glycine, ciprofloxacin, creatinine, acid nalidixic, sulfadiazine, cysteine, hydroxylamine and lactose. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ±0.7%), fast response, good sensitivity (65 mV/decade), wide linear range (5.0×10(-5) to 1.0×10(-2) mol/L), low detection limit (19.8 μg/mL), and a stable baseline for a 5×10(-3) M citrate buffer (pH 2.5) carrier. The sensors were successfully applied to the analysis of drugs and urine. This work confirms the possibility of using molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction. PMID:20688507

  3. Preparation and characterization of erythromycin molecularly imprinted polymers based on distillation-precipitation polymerization.

    PubMed

    Liu, Jiang; Li, Le; Tang, Hui; Zhao, Feilang; Ye, Bang-Ce; Li, Yingchun; Yao, Jun

    2015-09-01

    Erythromycin-imprinted polymers with excellent recognition properties were prepared by an innovative strategy called distillation-precipitation polymerization. The interaction between erythromycin and methacrylic acid was studied by ultraviolet absorption spectroscopy, and the as-prepared materials were characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. Moreover, their binding performances were evaluated in detail by static, kinetic and selective sorption tests. It was found that the molecularly imprinted polymers afforded good morphology, monodispersity, and high adsorption capacity when the fraction of the monomers was 7 vol% in the whole reaction system, and the adsorption data for imprinted polymers correlated well with the Langmuir model. The maximum capacity of the imprinted and the non-imprinted polymers for adsorbing erythromycin is 44.03 and 19.95 mg/g, respectively. The kinetic studies revealed that the adsorption process fitted a pseudo-second-order kinetic model. Furthermore, the imprinted polymers display higher affinity toward erythromycin, compared with its analogue roxithromycin. PMID:26118901

  4. A novel strategy to improve the sensitivity of antibiotics determination based on bioelectrocatalysis at molecularly imprinted polymer film electrodes.

    PubMed

    Lian, Wenjing; Liu, Shuang; Wang, Lei; Liu, Hongyun

    2015-11-15

    A new strategy for the sensitive detection of kanamycin (KA) and other antibiotics based on molecularly imprinted polymer (MIP) and bioelectrocatalysis was developed in the present study. The KA-polypyrrole MIP films were electropolymerized on the surface of pyrolytic graphite (PG) electrodes, with pyrrole (PY) serving as the monomer and KA as the template. Because KA is electro-inactive, electroactive K3[Fe(CN)6] was used as the probe in the cyclic voltammetric (CV) measurements. The difference of the CV reduction peaks of K3[Fe(CN)6] at electrodes between the MIP films after KA removal and KA-rebinding MIP films could thus be used to determine KA quantitatively. When horseradish peroxidase (HRP) and H2O2 were added into the testing solution, the detection sensitivity of the system was greatly amplified because the electrochemical reduction of H2O2 could be catalyzed by HRP and mediated by K3[Fe(CN)6]. With the bioelectrocatalysis amplification, the limit of detection (LOD) for KA fell as low as 28 nM, approximately two orders of magnitude lower than that for the MIP films in the absence of enzymatic catalysis. The strategy demonstrated the generality. Not only KA but also other antibiotics, such as oxytetracycline (OTC), could be determined by this method. More significantly, in addition to the K3[Fe(CN)6]-HRP-H2O2 system, other bioelectrocatalysis systems, such as Fc(COOH)2-GOD-glucose (Fc(COOH)2=ferrocenedicarboxylic acid, GOD=glucose oxidase), could also be used to amplify the CV signal and realize the sensitive detection of KA for the MIP film system, thereby illustrating the great potential and prospects of the strategy. PMID:26079673

  5. Molecularly imprinted polymers with synthetic dummy templates for the preparation of capsaicin and dihydrocapsaicin from chili peppers.

    PubMed

    Ma, Xiuli; Ji, Wenhua; Chen, Lingxiao; Wang, Xiao; Liu, Jianhua; Wang, Xueyong

    2015-01-01

    In this work, dummy molecularly imprinted polymers with high selectivity and affinity to capsaicin and dihydrocapsaicin are designed using N-vanillylnonanamide as a dummy template. The performance of dummy molecularly imprinted polymers and nonimprinted polymers was evaluated using adsorption isotherms, adsorption kinetics, and selective recognition capacity. Dummy molecularly imprinted polymers were found to exhibit good site accessibility, taking just 20 min to achieve adsorption equilibrium; they were also highly selective toward capsaicin and dihydrocapsaicin. We successfully used dummy molecularly imprinted polymers as a specific sorbent for selectively enriching capsaicin and dihydrocapsaicin from chili pepper samples. In a scaled-up experiment, the selective recovery of capsaicinoids was calculated to be 77.8% using solid-phase extraction. To the best of our knowledge, this is the first example of the use of N-vanillylnonanamide as a dummy template in molecularly imprinted polymers to simultaneously enrich capsaicin and dihydrocapsaicin. PMID:25348490

  6. Experimental mixture design as a tool for the synthesis of antimicrobial selective molecularly imprinted monodisperse microbeads.

    PubMed

    Benito-Peña, Elena; Navarro-Villoslada, Fernando; Carrasco, Sergio; Jockusch, Steffen; Ottaviani, M Francesca; Moreno-Bondi, Maria C

    2015-05-27

    The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads. PMID:25942541

  7. Determination of ractopamine in pork using a magnetic molecularly imprinted polymer as adsorbent followed by HPLC.

    PubMed

    Tang, Yiwei; Gao, Jingwen; Liu, Xiuying; Lan, Jianxing; Gao, Xue; Ma, Yong; Li, Min; Li, Jianrong

    2016-06-15

    A new magnetic molecularly imprinted polymers (MMIPs) for separation and concentration of ractopamine (RAC) were prepared using surface molecular imprinting technique with methacryloyl chloride as functional monomer and RAC as template. The MMIPs were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and vibrating sample magnetometer. The results of re-binding experiments indicated that the MMIPs had fast adsorption kinetics and could reach binding equilibrium within 20 min, and the adsorption capacity of the MMIPs was 2.87-fold higher than that of the corresponding non-imprinted polymer. The selectivity of the MMIPs was evaluated according to its recognition to RAC and its analogues. The synthesized MMIPs were successfully applied to extraction, followed by high performance liquid chromatography to determine RAC in real food samples. Spiked recoveries ranged from 73.60% to 94.5%, with relative standard deviations of <11.17%. PMID:26868550

  8. Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits.

    PubMed

    Li, Jing-Wen; Wang, Yu-Long; Yan, Shan; Li, Xiu-Juan; Pan, Si-Yi

    2016-02-01

    Calixarene was used as a functional monomer to fabricate a molecularly imprinted polymer (MIP) by sol-gel technique for solid-phase microextraction (SPME) of parathion-methyl and its structural analogs. The MIP-coated fiber possessed excellent thermal and chemical stability as well as high extraction capacity. Its selectivity and possible recognition mechanism were investigated. The similarities in molecular shape and functional group play a key role in the selective recognition of the imprinted material. Any changes to the structure of the template would decrease the imprinting factor. A comparison of MIP-SPME was made with liquid-liquid extraction coupled with gas chromatography for the determination of organophosphorus pesticides (OPPs) in fruits. Much lower limits of detection and better recoveries were achieved by SPME in spiked apple and pineapple samples. The experiment demonstrates that the proposed method using the calixarene MIP fiber was more suitable for selective determination of trace OPPs in those fruit samples. PMID:26304345

  9. Synthesis and properties of core-shell magnetic molecular imprinted polymers

    NASA Astrophysics Data System (ADS)

    Chang, Limin; Chen, Shaona; Li, Xin

    2012-06-01

    A general fabricating protocol for the preparation of core-shell magnetic molecularly imprinted polymers (MIPs) for chlorinated phenols recognition is described. In this protocol, Fe3O4 magnetic nanoparticles were first prepared using the chemical co-precipitation method. Then, the obtained magnetic nanoparticles were coated with a silica shell through modified Stöber method. Finally, MIP films were coated onto the surface of silica-modified magnetic nanoparticles by surface molecular imprinting technique. The resultant polymers showed a high saturation magnetization value (31.350 emu g-1), and short response time (30 s). Meanwhile, the as-synthesized magnetic MIPs showed an excellent recognition and selection properties toward imprinted molecule over structurally related compounds.

  10. State-of-the-art applications of cyclodextrins as functional monomers in molecular imprinting techniques: a review.

    PubMed

    Lay, Sovichea; Ni, Xiaofeng; Yu, Haining; Shen, Shengrong

    2016-06-01

    As a versatile tool in separation science, cyclodextrins and their derivatives, known as emerging functional monomers, have been used extensively in molecular imprinting techniques. The attributes of cyclodextrins and their derivatives are widely known to form host-guest inclusion complex processes between the polymer and template. The exploitation of the imprinting technique could produce a product of molecularly imprinted polymers, which are very robust with long-term stability, reliability, cost-efficiency, and selectivity. Hence, molecularly imprinted polymers have gained popularity in chemical separation and analysis. Molecularly imprinted polymers containing either cyclodextrin or its derivatives demonstrate superior binding effects for a target molecule. As noted in the previous studies, the functional monomers of cyclodextrins and their derivatives have been used in molecular imprinting for selective separation with a wide range of chemical compounds, including steroidals, amino acids, polysaccharides, drugs, plant hormones, proteins, pesticides, and plastic additives. Therefore, the main goal of this review is to illustrate the exotic applications of imprinting techniques employing cyclodextrins and their derivatives as single or binary functional monomers in synthesizing molecularly imprinted polymers in areas of separation science by reviewing some of the latest studies reported in the literature. PMID:27324352

  11. Synthesis of molecularly imprinted polymer with 7-chloroethyl-theophylline-immobilized silica gel as template and its molecular recognition function

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhui; Tong, Aijun; Li, Longdi

    2004-01-01

    By reaction of 7-chloroethyl-theophylline with aminopropylsilanized silica gel we synthesized a 7-chloroethyl-theophylline-immobilized silica gel as template molecule and prepared a molecularly imprinted polymer (MIP-Si), which had special recognition sites to 7-chloroethyl-theophylline. A conventional molecularly imprinted polymer (MIP) using 7-chloroethyl-theophylline as template was also prepared for comparison. Binding abilities to 7-chloroethyl-theophylline and its structural analogs revealed that the MIP-Si shows much higher binding speed and much more binding capacity than the MIP does.

  12. Molecular dynamics approaches to the design and synthesis of PCB targeting molecularly imprinted polymers: interference to monomer-template interactions in imprinting of 1,2,3-trichlorobenzene.

    PubMed

    Cleland, Dougal; Olsson, Gustaf D; Karlsson, Björn C G; Nicholls, Ian A; McCluskey, Adam

    2014-02-01

    The interactions between each component of the pre-polymerisation mixtures used in the synthesis of molecularly imprinted polymers (MIP) specific for 1,2,3,4,5-pentachlorobenzene (1) and 1,2,3-trichlorobenzene (2) were examined in four molecular dynamics simulations. These simulations revealed that the relative frequency of functional monomer-template (FM-T) interactions was consistent with results obtained by the synthesis and evaluation of the actual MIPs. The higher frequency of 1 interaction with trimethylstyrene (TMS; 54.7%) than 1 interaction with pentafluorostyrene (PFS; 44.7%) correlated with a higher imprinting factor (IF) of 2.1 vs. 1.7 for each functional monomer respectively. The higher frequency of PFS interactions with 2 (29.6%) than TMS interactions with 2 (1.9%) also correlated well with the observed differences in IF (3.7) of 2 MIPs imprinted using PFS as the FM than the IF (2.8) of 2 MIPs imprinted using TMS as the FM. The TMS-1 interaction dominated the molecular simulation due to high interaction energies, but the weaker TMS-2 resulted in low interaction maintenance, and thus lower IF values. Examination of the other pre-polymerisation mixture components revealed that the low levels of TMS-2 interaction was, in part, due to interference caused by the cross linker (CL) ethyleneglycol dimethylacrylate (EGDMA) interactions with TMS. The main reason was, however, attributed to MeOH interactions with TMS in both a hydrogen bond and perpendicular configuration. This positioned a MeOH directly above the π-orbital of all TMS for an average of 63.8% of MD2 creating significant interference to π-π stacking interactions between 2 and TMS. These findings are consistent with the deviation from the 'normal' molecularly imprinted polymer synthesis ratio of 1 : 4 : 20 (T : FM : CL) of 20 : 1 : 29 and 15 : 6 : 29 observed with 2 and TMS and PFS respectively. Our molecular dynamics simulations correctly predicted the high level

  13. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.

    PubMed

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-05-15

    A successful approach for the fabrication and characterization of an optical fiber sensor for the detection of profenofos based on surface plasmon resonance (SPR) and molecular imprinting is introduced. Molecular imprinting technology is used for the creation of three dimensional binding sites having complementary shape and size of the specific template molecule over a polymer for the recognition of the same. Binding of template molecule with molecularly imprinted polymer (MIP) layer results in the change in the dielectric nature of the sensing surface (polymer) and is identified by SPR technique. Spectral interrogation method is used for the characterization of the sensing probe. The operating profenofos concentration range of the sensor is from 10(-4) to 10(-1)µg/L. A red shift of 18.7 nm in resonance wavelength is recorded for this profenofos concentration range. The maximum sensitivity of the sensor is 12.7 nm/log (µg/L) at 10(-4)µg/L profenofos concentration. Limit of detection (LOD) of the sensor is found to be 2.5×10(-6)µg/L. Selectivity measurements predict the probe highly selective for the profenofos molecule. Besides high sensitivity due to SPR technique and selectivity due to molecular imprinting, proposed sensor has numerous other advantages like immunity to electromagnetic interference, fast response, low cost and capability of online monitoring and remote sensing of analyte due to the fabrication of the probe on optical fiber. PMID:26706813

  14. Designing and preparation of cytisine alkaloid surface-imprinted material and its molecular recognition characteristics

    NASA Astrophysics Data System (ADS)

    Gao, Baojiao; Bi, Concon; Fan, Li

    2015-03-01

    Based on molecular design, a cytisine surface-imprinted material was prepared using the new surface-imprinting technique of "pre-graft polymerizing and post-imprinting". The graft-polymerization of glycidyl methacrylate (GMA) on the surfaces of micron-sized silica gel particles was first performed with a surface-initiating system, preparing the grafted particles PGMA/SiO2. Subsequently, a polymer reaction, the ring-opening reaction of the epoxy groups of the grafted PGMA, was conducted with sodium 2,4-diaminobenzene sulfonate (SAS) as reagent, resulting in the functional grafted particles SAS-PGMA/SiO2. The adsorption of cytisine on SAS-PGMA/SiO2 particles reached saturation via strong electrostatic interaction between the sulfonate groups of SAS-PGMA/SiO2 particles and the protonated N atoms in cytisine molecule. Finally, cytisine surface-imprinting was successfully carried out with glutaraldehyde as crosslinker, obtaining cytisine surface-imprinted material MIP-SASP/SiO2. The binding and recognition characteristics of MIP-SASP/SiO2 towards cytisine were investigated in depth. The experimental results show that there is strong electrostatic interaction between particles and cytisine molecules, and on this basis, cytisine surface-imprinting can be smoothly performed. The surface-imprinted MIP-SASP/SiO2 has special recognition selectivity and excellent binding affinity for cytisine, and the selectivity coefficients of MIP-SASP/SiO2 particles for cytisine relative to matrine and oxymatrine, which were used as two contrast alkaloids, are 9.5 and 6.5, respectively.

  15. Selective extraction and concentration of mebendazole in seawater samples using molecularly imprinted polymer as sorbent.

    PubMed

    Lian, Ziru; Liang, Zhenlin; Wang, Jiangtao

    2015-02-15

    A high selective pre-treatment method for the extraction and analysis of mebendazole in environmental water samples was developed based on molecularly imprinted solid-phase extraction (MISPE). The mebendazole imprinted polymers were synthesized in acetonitrile using methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross-linker respectively. The imprinted materials showed high adsorption ability for mebendazole and were applied as special solid-phase extraction sorbents for selective separation of mebendazole. An off-line MISPE procedure was developed for the purification and enrichment of mebendazole from natural seawater samples prior to high-performance liquid chromatography analysis. The recoveries of spiked seawater on the MISPE cartridges were from 83.0% to 90.6%, and the values of the relative standard deviation were in the range of 2.78-4.13% (n=3). The satisfied results showed that this pre-treatment methodology for extracting mebendazole in seawater was simple and effective. PMID:25547616

  16. A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice.

    PubMed

    Atar, Necip; Eren, Tanju; Yola, Mehmet Lütfi

    2015-10-01

    A novel and sensitive molecular imprinted surface plasmon resonance (SPR) biosensor was developed for selective determination of citrinin (CIT) in red yeast rice. Firstly, the gold surface of SPR chip was modified with allyl mercaptane. Then, CIT-imprinted poly(2-hydroxyethyl methacrylate-methacryloylamidoglutamic acid) (p(HEMA-MAGA)) film was generated on the gold surface modified with allyl mercaptane. The unmodified and imprinted surfaces were characterized by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM) and contact angle measurements. The linearity range and the detection limit were obtained as 0.005-1.0 ng/mL and 0.0017 ng/mL, respectively. The SPR biosensor was applied to determination of CIT in red yeast rice sample. PMID:25872420

  17. Recognition of dengue virus protein using epitope-mediated molecularly imprinted film.

    PubMed

    Tai, Dar-Fu; Lin, Chung-Yin; Wu, Tzong-Zeng; Chen, Li-Kuang

    2005-08-15

    Molecularly imprinted film was fabricated in the presence of a pentadecapeptide onto a quartz crystal microbalance (QCM) chip. This 15-mer peptide has been known as the linear epitope of the dengue virus NS1 protein. Imprinting resulted in an increased polymer affinity toward the corresponding templates but also to the virus protein. Direct detection of the dengue virus protein was achieved quantitatively. The QCM chip response to the NS1 protein was obtained using epitope-mediated imprinting demonstrating a comparable frequency shift in chips immobilized with monoclonal antibodies. The binding effect was further enhanced and confirmed using a monoclonal antibody to form a sandwich with the MIP-NS1 protein complex on the chip. No pretreatment was required. PMID:16097751

  18. A Cascade-Reaction Nanoreactor Composed of a Bifunctional Molecularly Imprinted Polymer that Contains Pt Nanoparticles.

    PubMed

    Wang, Jiao; Zhu, Maiyong; Shen, Xiaojuan; Li, Songjun

    2015-05-11

    This study was aimed at addressing the present challenge of cascade reactions, namely, how to furnish the catalysts with desired and hierarchical catalytic ability. This issue was addressed by constructing a cascade-reaction nanoreactor made of a bifunctional molecularly imprinted polymer containing acidic catalytic sites and Pt nanoparticles. The acidic catalytic sites within the imprinted polymer allowed one specified reaction, whereas the encapsulated Pt nanoparticles were responsible for another coupled reaction. To that end, the unique imprinted polymer was fabricated by using two well-coupled templates, that is, 4-nitrophenyl acetate and 4-nitrophenol. The catalytic hydrolysis of the former compound at the acidic catalytic sites led to the formation of the latter compound, which was further reduced by the encapsulated Pt nanoparticles to 4-aminophenol. Therefore, this nanoreactor demonstrated a catalytic-cascade ability. This protocol opens up the opportunity to develop functional catalysts for complicated chemical processes. PMID:25846700

  19. Preparation of electrochemical sensor for lead(II) based on molecularly imprinted film

    NASA Astrophysics Data System (ADS)

    Wang, Zhihua; Qin, Yaxin; Wang, Chu; Sun, Lijun; Lu, Xiaole; Lu, Xiaoquan

    2012-01-01

    A high selective voltammetric sensor for Pb2+ was introduced. The feasibility of utilizing strong interactions between Schiff bases and metal ion to prepare the molecularly imprinted polymers (MIPs) electrochemical sensor for Pb2+ in aqueous solutions was studied. Some parameters affecting sensor response were optimized and then a calibration curve was plotted. A dynamic linear range of 3.00 × 10-7 to 5.00 × 10-5 mol/L was obtained. The redox process of Pb2+ on the imprinted electrode is controlled by surface reaction. The stability and the life of imprinted membrane were improved by storing into diluted Pb2+ ion solution. The proposed method was applied to determination of Pb2+ in the Yellow River.

  20. Quality control of automotive engine oils with mass-sensitive chemical sensors--QCMs and molecularly imprinted polymers.

    PubMed

    Dickert, F L; Forth, P; Lieberzeit, P A; Voigt, G

    2000-04-01

    Molecularly imprinted polyurethanes were used as sensor materials for monitoring the degradation of automotive engine oils. Imprinting with characteristic oils permits the analysis of these complex mixtures without accurately knowing their composition. Mass-sensitive quartz crystal microbalances (QCMs) coated with such layers exhibit mass effects in addition to frequency shifts caused by viscosity, which can be compensated by an uncoated quartz or a non-imprint layer. Incorporation of degradation products into the imprinted coatings is a bulk phenomenon, which is proven by variation of the sensor layer height. Therefore, the resulting sensor effects are determined by the degradation products in the oil. PMID:11227411

  1. Stoichiometric molecularly imprinted polymers for the recognition of anti-cancer pro-drug tegafur.

    PubMed

    Mattos Dos Santos, Paula; Hall, Andrew J; Manesiotis, Panagiotis

    2016-05-15

    Molecularly imprinted polymers (MIPs) targeting tegafur, an anti-cancer 5-fluorouracil pro-drug, have been prepared by stoichiometric imprinting using 2,6-bis(acrylamido)pyridine (BAAPy) as the functional monomer. Solution association between tegafur and BAAPy was studied by (1)H NMR titration, which confirmed the formation of 1:1 complexes with an affinity constant of 574±15M(-1) in CDCl3. Evaluation of the synthesised materials by HPLC and equilibrium rebinding experiments revealed high selectivity of the imprinted polymer for the pro-drug vs. 5-fluorouracil and other competing analytes, with maximum imprinting factors of 25.3 and a binding capacity of 45.1μmolg(-1). The synthesised imprinted polymer was employed in solid-phase extraction of the pro-drug using an optimised protocol that included a simple wash with the porogen used in the preparation of the material. Tegafur recoveries of up to 96% were achieved from aqueous samples and 92% from urine samples spiked with the template and three competing analytes. The results demonstrate the potential of the prepared polymers in the pre-concentration of tegafur from biological samples, which could be an invaluable tool in the monitoring of patient compliance and drug uptake and excretion. PMID:26711233

  2. "Smart" molecularly imprinted monoliths for the selective capture and easy release of proteins.

    PubMed

    Wen, Liyin; Tan, Xinyi; Sun, Qi; Svec, Frantisek; Lv, Yongqin

    2016-08-01

    A new thermally switchable molecularly imprinted monolith for the selective capture and release of proteins has been designed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith reacted with ethylenediamine followed by functionalization with 2-bromoisobutyryl bromide to introduce the initiator for atom transfer radical polymerization. Subsequently, a protein-imprinted poly(N-isopropylacrylamide) layer was grafted onto the surface of the monolithic matrix by atom transfer radical polymerization. Scanning electron microscopy and energy-dispersive X-ray spectroscopy of the cross-sections of imprinted monoliths confirmed the formation of dense poly(N-isopropylacrylamide) brushes on the pore surface. The imprinted monolith exhibited high specificity and selectivity toward its template protein myoglobin over competing proteins and a remarkably large maximum adsorption capacity of 1641 mg/g. Moreover, this "smart" imprinted monolith featured thermally responsive characteristics that enabled selective capture and easy release of proteins triggered only by change in temperature with water as the mobile phase and avoided use of stronger organic solvents or change in ionic strength and pH. PMID:27352958

  3. Room temperature ionic liquid-mediated molecularly imprinted polymer monolith for the selective recognition of quinolones in pork samples.

    PubMed

    Sun, Xiangli; He, Jia; Cai, Guorui; Lin, Anqing; Zheng, Wenjie; Liu, Xuan; Chen, Langxing; He, Xiwen; Zhang, Yukui

    2010-12-01

    A novel molecularly imprinted polymer monolith was prepared by the room temperature ionic liquid-mediated in situ molecular imprinting technique, using norfloxacin (NOR) as the template, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker. The optimal synthesis conditions and recognition properties of NOR-imprinted monolithic column were investigated. The results indicated that the imprinted monoliths exhibited good ability of selective recognition against the template and its structural analog. Using the fabricated material as solid-phase extraction sorbent, a sample pre-treatment procedure of molecularly imprinted solid-phase extraction coupling with HPLC was developed for determination of trace quinolone residues in animal tissues samples. The recoveries ranging from 78.16 to 93.50% for eight quinolones antibiotics such as marbofloxacin, NOR, ciprofloxacin, danofloxacin, difloxacin, oxolinic acid, flumequine and enrofloxacin were obtained. PMID:21082676

  4. Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection

    NASA Astrophysics Data System (ADS)

    Dong, He; Tong, Ai-jun; Li, Long-di

    2003-01-01

    Recognition of five steroid compounds, β-estradiol, ethynylestradiol, estradiolbenzoate, testosterone and methyltestosterone were studied using a synthesized molecularly imprinted polymer (MIP). When β-estradiol was used as the template molecule, the polymer was synthesized with methacrylic acid (MAA) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the cross linking agent through non-covalent interactions. It is found that the kind of porogen solvent and the polymerization conditions greatly affected the binding ability of a MIP to a certain molecule. Releasing of the template was performed by continuous extraction with methanol containing 10% acetic acid in a Soxhlet extractor. Our results indicated that such carefully synthesized MIP showed specific affinity toward β-estradiol in the adsorption process.

  5. Exploiting β-cyclodextrin in molecular imprinting for achieving recognition of benzylparaben in aqueous media.

    PubMed

    Asman, Saliza; Mohamad, Sharifah; Sarih, Norazilawati Muhamad

    2015-01-01

    The molecularly imprinted polymer (MIP) based on methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) monomer was synthesized for the purpose of selective recognition of benzylparaben (BzP). The MAA-β-CD monomer was produced by bridging a methacrylic acid (MAA) and β-cyclodextrin (β-CD) using toluene-2,4-diisocyanate (TDI) by reacting the -OH group of MAA and one of the primary -OH groups of β-CD. This monomer comprised of triple interactions that included an inclusion complex, π-π interaction, and hydrogen bonding. To demonstrate β-CD performance in MIPs, two MIPs were prepared; molecularly imprinted polymer-methacrylic acid functionalized β-cyclodextrin, MIP(MAA-β-CD), and molecularly imprinted polymer-methacrylic acid, MIP(MAA); both prepared by a reversible addition fragmentation chain transfer polymerization (RAFT) in the bulk polymerization process. Both MIPs were characterized using the Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Brunauer-Emmett-Teller (BET). The presence of β-CD not only influenced the morphological structure, it also affected the specific surface area, average pore diameter, and total pore volume of the MIP. The rebinding of the imprinting effect was evaluated in binding experiments, which proved that the β-CD contributed significantly to the enhancement of the recognition affinity and selective adsorption of the MIP. PMID:25667978

  6. Enantioseparation and amperometric detection of chiral compounds by in situ molecular imprinting on the microchannel wall.

    PubMed

    Qu, Ping; Lei, Jianping; Ouyang, Ruizhuo; Ju, Huangxian

    2009-12-01

    The molecular imprinting technique was first introduced into the microchannel of a microfluidic device to form in situ the imprinted polymer for fast enantioseparation of chiral compounds. The molecularly imprinted polymer (MIP) was in situ chemically polymerized on the microchannel wall using acrylamide as the functional monomer and ethylene glycol dimethacrylate as the cross-linker, and characterized by scanning electron microscopy, atomic force microscopy, and infrared spectroscopy. Under the optimized conditions, such as optimal preparation of MIP, composition and pH of mobile phase, and separation voltage, the model enantiomers, tert-butoxycarbonyl-D-tryptophan (Boc-D-Trp) and Boc-L-Trp, could be baseline separated within 75 s. The linear ranges for amperometric detection of the enantiomers using carbon fiber microdisk electrode at +1.2 V (vs Ag/AgCl) were from 75 to 4000 microM and 400 to 4000 microM with the detection limits of 20 and 140 microM, respectively. The MIP-microchip electrophoresis provided a powerful protocol for separation and detection of Boc-Trp enantiomers within a short analytical time. The molecular imprinting on microchannel wall opens a promising avenue for fast enantioscreening of chiral compounds. PMID:19883060

  7. Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting.

    PubMed

    Gupta, Banshi D; Shrivastav, Anand M; Usha, Sruthi P

    2016-01-01

    Molecular imprinting is earning worldwide attention from researchers in the field of sensing and diagnostic applications, due to its properties of inevitable specific affinity for the template molecule. The fabrication of complementary template imprints allows this technique to achieve high selectivity for the analyte to be sensed. Sensors incorporating this technique along with surface plasmon or localized surface plasmon resonance (SPR/LSPR) provide highly sensitive real time detection with quick response times. Unfolding these techniques with optical fiber provide the additional advantages of miniaturized probes with ease of handling, online monitoring and remote sensing. In this review a summary of optical fiber sensors using the combined approaches of molecularly imprinted polymer (MIP) and the SPR/LSPR technique is discussed. An overview of the fundamentals of SPR/LSPR implementation on optical fiber is provided. The review also covers the molecular imprinting technology (MIT) with its elementary study, synthesis procedures and its applications for chemical and biological anlayte detection with different sensing methods. In conclusion, we explore the advantages, challenges and the future perspectives of developing highly sensitive and selective methods for the detection of analytes utilizing MIT with the SPR/LSPR phenomenon on optical fiber platforms. PMID:27589746

  8. Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid.

    PubMed

    Wang, Xuan; Mu, Zhongde; Liu, Ran; Pu, Yuepu; Yin, Lihong

    2013-12-15

    A novel sensor for the rapid and label-free detection of imidacloprid was developed based on the combination of a colloidal crystal templating method and a molecular imprinting technique. The molecular imprinted photonic hydrogel film was prepared with methacrylic acid as monomers, ethylene glycol dimethylacrylate as cross-linkers and imidacloprid as imprinting template molecules. When the colloidal crystal template and the molecularly imprinted template was removed, the resulted MIPH film possessed a highly ordered three-dimensional macroporous structure with nanocavities. The response of the MIPH film to imidacloprid in aqueous solution can be detected through a readable Bragg diffraction red shift. When the concentration of imidacloprid increased from 10(-13) to 10(-7) g/mL, the Bragg diffraction peak shifted from 551 to 589 nm, while there were no obvious peak shifts for thiamethoxam and acetamiprid. This sensor which comprises of no label techniques and expensive instruments has potential application for the detection of trace imidacloprid. PMID:23993570

  9. Exploiting β-Cyclodextrin in Molecular Imprinting for Achieving Recognition of Benzylparaben in Aqueous Media

    PubMed Central

    Asman, Saliza; Mohamad, Sharifah; Muhamad Sarih, Norazilawati

    2015-01-01

    The molecularly imprinted polymer (MIP) based on methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) monomer was synthesized for the purpose of selective recognition of benzylparaben (BzP). The MAA-β-CD monomer was produced by bridging a methacrylic acid (MAA) and β-cyclodextrin (β-CD) using toluene-2,4-diisocyanate (TDI) by reacting the –OH group of MAA and one of the primary –OH groups of β-CD. This monomer comprised of triple interactions that included an inclusion complex, π–π interaction, and hydrogen bonding. To demonstrate β-CD performance in MIPs, two MIPs were prepared; molecularly imprinted polymer-methacrylic acid functionalized β-cyclodextrin, MIP(MAA-β-CD), and molecularly imprinted polymer-methacrylic acid, MIP(MAA); both prepared by a reversible addition fragmentation chain transfer polymerization (RAFT) in the bulk polymerization process. Both MIPs were characterized using the Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Brunauer-Emmett-Teller (BET). The presence of β-CD not only influenced the morphological structure, it also affected the specific surface area, average pore diameter, and total pore volume of the MIP. The rebinding of the imprinting effect was evaluated in binding experiments, which proved that the β-CD contributed significantly to the enhancement of the recognition affinity and selective adsorption of the MIP. PMID:25667978

  10. Molecularly imprinted polymeric stir bar: Preparation and application for the determination of naftopidil in plasma and urine samples.

    PubMed

    Peng, Jun; Xiao, Deli; He, Hua; Zhao, Hongyan; Wang, Cuixia; Shi, Tian; Shi, Kexin

    2016-01-01

    In this study, molecularly imprinting technology and stir bar absorption technology were combined to develop a microextraction approach based on a molecularly imprinted polymeric stir bar. The molecularly imprinted polymer stir bar has a high performance, is specific, economical, and simple to prepare. The obtained naftopidil-imprinted polymer-coated bars could simultaneously agitate and adsorb naftopidil in the sample solution. The ratio of template/monomer/cross-linker and conditions of template removal were optimized to prepare a stir bar with highly efficient adsorption. Fourier transform infrared spectroscopy, scanning electron microscopy, selectivity, and extraction capacity experiments showed that the molecularly imprinted polymer stir bar was prepared successfully. To utilize the molecularly imprinted polymer stir bar for the determination of naftopidil in complex body fluid matrices, the extraction time, stirring speed, eluent, and elution time were optimized. The limits of detection of naftopidil in plasma and urine sample were 7.5 and 4.0 ng/mL, respectively, and the recoveries were in the range of 90-112%. The within-run precision and between-run precision were acceptable (relative standard deviation <7%). These data demonstrated that the molecularly imprinted polymeric stir bar based microextraction with high-performance liquid chromatography was a convenient, rapid, efficient, and specific method for the precise determination of trace naftopidil in clinical analysis. PMID:26541792

  11. Molecularly imprinted upconversion nanoparticles for highly selective and sensitive sensing of Cytochrome c.

    PubMed

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Liu, Cuicui; Huang, Xuan; Wang, Shuo

    2015-12-15

    A novel method combined the high selectivity of molecular imprinting technology with the strong fluorescence property of upconversion nanoparticles (UCNPs) for sensing of Cytochrome c (Cyt c) was proposed. The molecularly imprinted material-coated upconversion nanoparticles (UCNPs@MIP) were obtained by in situ coating Cyt c imprinted materials to the surface of the carboxyl modified UCNPs through sol-gel technique. The structure and component of the prepared UCNPs@MIP was investigated by transmission electron microscopy (TEM), power X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDXA) and X-ray photoelectron spectroscopic (XPS). The TEM showed the diameter of UCNPs was 40 nm, and thickness of MIP was 5-10nm. The fluorescence intensity of UCNPs@MIP reduced gradually with the increase of Cyt c concentration. Under optimum conditions, the imprinting factor is 3.19, and the UCNPs@MIP showed selective recognition for Cyt c among other proteins such as bovine serum albumin (BSA) and Lysozyme (Lyz). Therefore, this new method for sensing protein is very promising for future applications. PMID:26176210

  12. Polymeric Colloidal Nanostructures Fabricated via Highly Controlled Convective Assembly and Their Use for Molecular Imprinting.

    PubMed

    Yang, Jin Chul; Park, Jin Young

    2016-03-23

    In this work, the formation of various polystyrene (PS) colloidal structures on striped PS patterns is demonstrated based on a simple and novel convective assembly method that controls the electrostatic interactions between the PS colloidal particles and sodium dodecyl sulfate (SDS). Under the optimal conditions (different withdrawal speeds, channel dimensions, suspension concentrations, etc.), highly ordered structures such as highly close-packed, zigzag, and linear colloidal aggregates are observed. In addition, these colloidal arrangements are used for development of molecularly imprinted polymer (MIP) sensors with highly improved sensing properties. Using PDMS replicas, three hemispherical poly(methacrylic acid-ethylene glycol dimethacrylate) (poly(MAA-EGDMA)) MIP films, including planar MIP and non-imprinted polymer (NIP) films, are photopolymerized for detection of trace atrazine in an aqueous solution. From gravimetric quartz crystal microbalance (QCM) measurements, a non-close-packed MIP film exhibits highest sensing response (Δf = 932 Hz) to atrazine detection among hemispherical MIP films and shows 6.5-fold higher sensing response than the planar MIP film. In addition, the sensitivity of the MIP sensor is equivalent to -119 Hz/(mol L(-1)). From the ratio of slopes of the calibration curves for the hemispherical MIP and NIP films, the imprinting factor (If) is as high as 11.0. The hemispherical MIP film also shows excellent selectivity in comparison with the sensing responses of other analogous herbicides. As a result, this molecular surface imprinting using PS colloidal arrays is highly efficient for herbicide detection. PMID:26938141

  13. Computational investigation of stoichiometric effects, binding site heterogeneities, and selectivities of molecularly imprinted polymers.

    PubMed

    Terracina, Jacob J; Bergkvist, Magnus; Sharfstein, Susan T

    2016-06-01

    A series of quantum mechanical (QM) computational optimizations of molecularly imprinted polymer (MIP) systems were used to determine optimal monomer-to-target ratios. Imidazole- and xanthine-derived target molecules were studied. The investigation included both small-scale models (3-7 molecules) and larger-scale models (15-35 molecules). The optimal ratios differed between the small and larger scales. For the larger models containing multiple targets, binding-site surface area analysis was used to quantify the heterogeneity of these sites. The more fully surrounded sites had greater binding energies. No discretization of binding modes was seen, furthering arguments for continuous affinity distribution models. Molecular mechanical (MM) docking was then used to measure the selectivities of the QM-optimized binding sites. Selectivity was also shown to improve as binding sites become more fully encased by the monomers. For internal sites, docking consistently showed selectivity favoring the molecules that had been imprinted via QM geometry optimizations. The computationally imprinted sites were shown to exhibit size-, shape-, and polarity-based selectivity. Here we present a novel approach to investigate the selectivity and heterogeneity of imprinted polymer binding sites, by applying the rapid orientation screening of MM docking to the highly accurate QM-optimized geometries. Modeling schemes were designed such that no computing clusters or other specialized modeling equipment would be required. Improving the in silico analysis of MIP system properties will ultimately allow for the production of more sensitive and selective polymers. PMID:27207254

  14. Adsorption and recognition characteristics of surface molecularly imprinted polymethacrylic acid/silica toward genistein.

    PubMed

    Zhang, Yanyan; Gao, Baojiao; An, Fuqiang; Xu, Zeqing; Zhang, Tingting

    2014-09-12

    In this paper, on the basis of surface-initiated graft polymerization, a new surface molecular imprinting technique is established by molecular design. And molecularly imprinted polymer MIP-PMAA/SiO2 is successfully prepared with genistein as template. The adsorption and recognition characteristics of MIP-PMAA/SiO2 for genistein are studied in depth by using static method, dynamic method and competitive adsorption experiment. The experimental results show that MIP-PMAA/SiO2 possesses very strong adsorption affinity and specific recognition for genistein. The saturated adsorption capacity could reach to 0.36mmolg(-1). The selectivity coefficients relative to quercetin and rutin are 5.4 and 11.8, respectively. Besides, MIP-PMAA/SiO2 is regenerated easily and exhibits excellent reusability. PMID:25085816

  15. Optical sensing of phenylalanine in urine via extraction with magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles

    NASA Astrophysics Data System (ADS)

    Hsu, Chung-Yi; Lee, Mei-Hwa; Thomas, James L.; Shih, Ching-Ping; Hung, Tzu-Lin; Whang, Thou-Jen; Lin, Hung-Yin

    2015-07-01

    Incorporation of superparamagnetic nanoparticles into molecularly imprinted polymers (MIPs) is useful for both bioseparations and for concentration and sensing of biomedically relevant target molecules in physiological fluids, through the application of a magnetic field. In this study, we combined the separation and concentration of a target (phenylalanine) in urine, using magnetic molecularly imprinted polymeric composite nanoparticles, with optical sensing, to improve assay sensitivity. This target is important as a catecholamine precursor, and as an important amino acid constituent of proteins. Poly(ethylene-co-vinyl alcohol)s were imprinted with target molecules, and showed a high imprinting effectiveness (target binding compared with binding to non-imprinted polymer particles.) Fluorescence spectrophotometry was used to measure binding of the target, and also binding of possible interfering compounds. These measurements suggest that functional groups on phenylalanine dominate the selectivity of the synthesized MIPs. Finally, the composite nanoparticles were used to separate and sense the target molecule in urine by Raman scattering microscopy.

  16. Potentiometric Sensors Based on Surface Molecular Imprinting: Detection of Cancer Biomarkers and Viruses

    SciTech Connect

    Wang, Y.; Zhang, Z; Jain, V; Yi, J; Mueller, S; Sokolov, J; Liu, Z; Levon, K; Rigas, B; Rafailovich, M

    2010-01-01

    The continuing discovery of cancer biomarkers necessitates improved methods for their detection. Molecular imprinting using artificial materials provides an alternative to the detection of a wide range of substances. We applied surface molecular imprinting using self-assembled monolayers to design sensing elements for the detection of cancer biomarkers and other proteins. These elements consist of a gold-coated silicon chip onto which hydroxyl-terminated alkanethiol molecules and template biomolecule are co-adsorbed, where the thiol molecules are chemically bound to the metal substrate and self-assembled into highly ordered monolayers, the biomolecules can be removed, creating the foot-print cavities in the monolayer matrix for this kind of template molecules. Re-adsorption of the biomolecules to the sensing chip changes its potential, which can be measured potentiometrically. We applied this method to the detection of carcinoembryonic antigen (CEA) in both solutions of purified CEA and in the culture medium of a CEA-producing human colon cancer cell line. The CEA assay, validated also against a standard immunoassay, was both sensitive (detection range 2.5-250 ng/mL) and specific (no cross-reactivity with hemoglobin; no response by a non-imprinted sensor). Similar results were obtained for human amylase. In addition, we detected virions of poliovirus in a specific manner (no cross-reactivity to adenovirus, no response by a non-imprinted sensor). Our findings demonstrate the application of the principles of molecular imprinting to the development of a new method for the detection of protein cancer biomarkers and to protein-based macromolecular structures such as the capsid of a virion. This approach has the potential of generating a general assay methodology that could be highly sensitive, specific, simple and likely inexpensive.

  17. Molecularly imprinted polymer grafted to porous polyethylene frits: a new selective solid-phase extraction format.

    PubMed

    Barahona, Francisco; Turiel, Esther; Martín-Esteban, Antonio

    2011-10-01

    In this paper, a novel format for selective solid-phase extraction based on a molecularly imprinted polymer (MIP) is described. A small amount of MIP has been synthesized within the pores of commercial polyethylene (PE) frits and attached to its surface using benzophenone (BP), a photo-initiator capable to start the polymerisation from the surface of the support material. Key properties affecting the obtainment of a proper polymeric layer, such as polymerisation time and kind of cross-linker were optimised. The developed imprinted material has been applied as a selective sorbent for cleaning extracts of thiabendazole (TBZ), as model compound, from citrus samples. The use of different solvents for loading the analyte in the imprinted frits was investigated, as well as the binding capacity of the imprinted polymer. Imprinted frits showed good selectivity when loads were performed using toluene and a linear relationship was obtained for the target analyte up to 1000 ng of loaded analyte. Prepared composite material was applied to the SPE of TBZ in real samples extracts, showing an impressive clean-up ability. Calibrations showed good linearity in the concentration range of 0.05-5.00 μg g(-1), referred to the original solid sample, and the regression coefficients obtained were greater than 0.996. The calculated detection limit was 0.016 μg g(-1), low enough to satisfactory analysis of TBZ in real samples. RSDs at different spiking levels ranged below 15% in all the cases and imprinted frits were reusable without loss in their performance. PMID:21855075

  18. Preparation of molecularly imprinted polymers using anacardic acid monomers derived from cashew nut shell liquid.

    PubMed

    Philip, Joseph Y N; Buchweishaija, Joseph; Mkayula, Lupituko L; Ye, Lei

    2007-10-31

    The objective of this work was to use monomers from cashew ( Anacardium occidentale L.) nut shells to develop molecularly imprinted polymers. Cashew nut shell liquid (CNSL) is a cheap and renewable agro byproduct consisting of versatile monomers. Solvent-extracted CNSL contains over 80% anacardic acid (AnAc) with more than 90% degree of unsaturation in its C 15 side chain. From AnAc monomer, anacardanyl acrylate (AnAcr) and anacardanyl methacrylate (AnMcr) monomers were synthesized and their chemical structures were characterized by Fourier transform IR and NMR. Different imprinted bulk polymers based on AnAc, AnAcr, and AnMcr functional monomers have been prepared. In the present study, each functional monomer was separately copolymerized in toluene with ethylene glycol dimethacrylate and divinylbenzene as cross-linkers, using racemic propranolol as a model template. While the AnAc based polymer revealed a meager rebinding ability, the imprinted polymers made from AnAcr and AnMcr displayed highly specific propranolol binding. At a polymer concentration of 2 mg/mL, AnAcr and AnMcr based imprinted polymers were able to bind over 50% of trace propranolol (initial concentration 1.2 nM). Under the same condition propranolol uptake by the two nonimprinted control polymers was less than 20%. Chiral recognition properties of these polymers were further confirmed using tritium-labeled (S)-propranolol as a tracer in displacement experiments, suggesting that the apparent affinity of the imprinted chiral sites for the correct enantiomer is at least 10 times that of the mismatched (R)-propranolol. Moreover, cross reactivity studies of these polymers showed that the (S)-imprinted sites have higher cross-reactivity toward (R, S)-metoprolol than (R)-propranolol and (R)-timolol. PMID:17927136

  19. Biopolymeric receptor for peptide recognition by molecular imprinting approach--synthesis, characterization and application.

    PubMed

    Singh, Lav Kumar; Singh, Monika; Singh, Meenakshi

    2014-12-01

    The present work is focused on the development of a biocompatible zwitterionic hydrogel for various applications in analytical chemistry. Biopolymer chitosan was derivatized to obtain a series of zwitterionic hydrogel samples. Free amino groups hanging on the biopolymeric chain were reacted with γ-butyrolactone to quaternize the N-centers of polymeric chain. N,N-methylene-bis-acrylamide acts as a crosslinker via Michael-type addition in the subsequent step and facilitated gelation of betainized chitosan. These biopolymeric hydrogel samples were fully characterized by FTIR, (1)H NMR, (13)C NMR spectra, SEM and XRD. Hydrogels were further characterized for their swelling behavior at varying parameters. The extent of swelling was perceived to be dictated by solvent composition such as pH, ionic strength and temperature. This valuable polymeric format is herein chosen to design an artificial receptor for dipeptide 'carnosine', which has adequate societal significance to be analytically determined, by molecular imprinting. Electrostatic interactions along with complementary H-bonding and other hydrophobic interactions inducing additional synergetic effect between the template (carnosine) and the imprinted polymer led to the formation of imprinted sites. The MIP was able to selectively and specifically take up carnosine from aqueous solution quantitatively. Thus prepared MIPs were characterized by FTIR spectroscopy, SEM providing evidence for the quality and quantity of imprinted gels. The binding studies showed that the MIP illustrated good recognition for carnosine as compared to non-imprinted polymers (NIPs). Detection limit was estimated as 3.3 μg mL(-1). Meanwhile, selectivity experiments demonstrated that imprinted gel had a high affinity to carnosine in the presence of close structural analogues (interferrants). PMID:25491843

  20. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water.

    PubMed

    Wang, Jixiang; Qiu, Hao; Shen, Hongqiang; Pan, Jianming; Dai, Xiaohui; Yan, Yongsheng; Pan, Guoqing; Sellergren, Börje

    2016-11-15

    Molecularly imprinted fluorescent polymers have shown great promise in biological or chemical separations and detections, due to their high stability, selectivity and sensitivity. In this work, molecularly imprinted fluorescent hollow nanoparticles, which could rapidly and efficiently detect λ-cyhalothrin (a toxic insecticide) in water samples, was reported. The molecularly imprinted fluorescent sensor showed excellent sensitivity (the limit of detection low to 10.26nM), rapid detection rate (quantitative detection of λ-cyhalothrin within 8min), regeneration ability (maintaining good fluorescence properties after 8 cycling operation) and appreciable selectivity over several structural analogs. Moreover, the fluorescent sensor was further used to detect λ-cyhalothrin in real samples form the Beijing-Hangzhou Grand Canal Water. Despite the relatively complex components of the environmental water, the molecularly imprinted fluorescent hollow nanosensor still showed good recovery, clearly demonstrating the potential value of this smart sensor nanomaterial in environmental monitoring. PMID:27208472

  1. Water-compatible molecularly imprinted polymers for selective solid phase extraction of dencichine from the aqueous extract of Panax notoginseng.

    PubMed

    Ji, Wenhua; Xie, Hongkai; Zhou, Jie; Wang, Xiao; Ma, Xiuli; Huang, Luqi

    2016-01-01

    Specific molecularly imprinted polymers for dencichine were developed for the first time in this study by the bulk polymerization using phenylpyruvic acid and dl-tyrosine as multi-templates. The photographs confirmed that molecularly imprinted polymers prepared using N,N'-methylene diacrylamide as cross-linker and glycol dimethyl ether as porogen displayed excellent hydrophilicity. Selectivity, adsorption isotherm and adsorption kinetics were investigated. The sample loading-washing-eluting solvent was optimized to evaluate the property of molecularly imprinted solid phase extract. Compared with LC/WCX-SPE, water-compatible molecularly imprinted solid phase extraction displayed more excellent specific adsorption performance. The extracted dencichine from Panax notoginseng with the purity of 98.5% and the average recovery of 85.6% (n=3) was obtained. PMID:26680322

  2. The Application of Template Selectophores for the Preparation of Molecularly Imprinted Polymers.

    PubMed

    Danylec, Basil; Schwarz, Lachlan J; Harris, Simon J; Boysen, Reinhard I; Hearn, Milton T W

    2015-01-01

    Molecularly imprinted polymers are versatile materials with wide application scope for the detection, capture and separation of specific compounds present in complex feed stocks. A major challenge associated with their preparation has been the need to sacrifice one mole equivalent of the template molecule to generate the complementary polymer cavities that selectively bind the target molecule. Moreover, template molecules can often be difficult to synthesise, expensive or lack stability. In this study, we describe a new approach, directed at the use of synthetic selectophores, chosen as readily prepared and low cost structural analogues with recognition groups in similar three-dimensional arrangements as found in the target molecule. To validate the approach, a comparative study of selectophores related to the polyphenolic compound (E)-resveratrol has been undertaken using traditional and green chemical synthetic approaches. These molecular mimic compounds were employed as polymer templates and also as binding analytes to interrogate the recognition sites associated with the molecularly imprinted polymers. Importantly, the study confirms that the use of selectophores has the potential to confer practical advantages, including access to more efficient methods for selection and preparation of suitable template molecules with a broader range of molecular diversity, as well as delivering imprinted polymers capable of recognizing the target compound and structurally related products. PMID:26404229

  3. Synthesis and computational investigation of molecularly imprinted nanospheres for selective recognition of alpha-tocopherol succinate

    PubMed Central

    Piacham, Theeraphon; Nantasenamat, Chanin; Isarankura-Na-Ayudhya, Chartchalerm; Prachayasittikul, Virapong

    2013-01-01

    Molecularly imprinted polymers (MIPs) are macromolecular matrices that can mimic the functional properties of antibodies, receptors and enzymes while possessing higher durability. As such, these polymers are interesting materials for applications in biomimetic sensor, drug synthesis, drug delivery and separation. In this study, we prepared MIPs and molecularly imprinted nanospheres (MINs) as receptors with specific recognition properties toward tocopherol succinate (TPS) in comparison to tocopherol (TP) and tocopherol nicotinate (TPN). MIPs were synthesized using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as crosslinking agent and dichloromethane or acetronitrile as porogenic solvent under thermal-induced polymerization condition. Results indicated that imprinted polymers of TPS-MIP, TP-MIP and TPN-MIP all bound specifically to their template molecules at 2 folds greater than the non-imprinted polymers. The calculated binding capacity of all MIP was approximately 2 mg per gram of polymer when using the optimal rebinding solvent EtOH:H2O (3:2, v/v). Furthermore, the MINs toward TPS and TP were prepared by precipitation polymerization that yielded particles that are 200-400 nm in size. The binding capacities of MINs to their templates were greater than that of the non-imprinted nanospheres when using the optimal rebinding solvent EtOH:H2O (4:1, v/v). Computer simulation was performed to provide mechanistic insights on the binding modalities of template-monomer complexes. In conclusion, we had successful prepared MIPs and MINs for binding specifically to TP and TPS. Such MIPs and MINs have great potential for industrial and medical applications, particularly for the selective separation of TP and TPS. PMID:26622214

  4. Electroanalysis of myoglobin based on electropolymerized molecularly imprinted polymer poly-o-phenylenediamine and carbon nanotubes/screen printed electrode.

    PubMed

    Shumyantseva, V V; Bulko, T V; Sigolaeva, L V; Kuzikov, A V; Archakov, A I

    2016-05-01

    Electroanalysis of myoglobin as a marker of acute myocardial infarction by means of screenprinted electrodes modified with multiwalled carbon nanotubes and polymeric artificial antibodies is developed. Plastic antibodies to myoglobin (molecularly imprinted polymers, MIPs) based on o-phenylenediamine were produced by electropolymerization. Molecular imprinting technology in biosensor analysis was used as alternative to natural receptors (namely, antibodies) and demonstrated high sensitivity (1.5 × 10(-2) A/nmol of myoglobin) and selectivity. PMID:27417724

  5. Molecularly imprinted adsorbents for selective separation and/or concentration of environmental pollutants.

    PubMed

    Kubo, Takuya; Hosoya, Ken; Otsuka, Koji

    2014-01-01

    This review describes the development of molecularly imprinted materials for selective separation and/or concentration of environmental pollutants, the quantitative concentration of which is usually difficult to determine because of their low level of concentration and existence of a large number of contaminants in environmental water. The fragment imprinting technique allowed for the selective separation of endocrine disrupters and halogenated aromatic compounds, including bisphenol A, and chlorinated/brominated aromatic compounds by the specific structural recognition based on the breeds, position, and number of the substituents. Also, the interval immobilization technique provided the specific materials enabling selective concentration based on the interval recognition of ionic functional groups in the targeting compounds, so that the effective determinations were achieved for natural toxins and pharmaceuticals in environmental water. Additionally, a selective photodegradation of toxins and a stimulus responsible hydrogel by the similar molecular recognition ability were successfully carried out. We have summarized these techniques including our recent studies. PMID:24420250

  6. Removal of carbamazepine and clofibric acid from water using double templates-molecularly imprinted polymers.

    PubMed

    Dai, Chao-meng; Zhang, Juan; Zhang, Ya-lei; Zhou, Xue-fei; Duan, Yan-ping; Liu, Shu-guang

    2013-08-01

    A novel double templates-molecularly imprinted polymer (MIP) was prepared by precipitation polymerization using carbamazepine (CBZ) and clofibric acid (CA) as the double templates molecular and 2-vinylpyridine as functional monomer. The equilibrium data of MIP was well described by the Freundlich isotherm model. Two kinetic models were adopted to describe the experimental data, and the pseudo second-order model well-described adsorption of CBZ and CA on the MIP. Adsorption experimental results showed that the MIP had good selectivity and adsorption capacity for CBZ and CA in the presence of competitive compounds compared with non-imprinted polymer, commercial powdered activated carbon, and C18 adsorbents. The feasibility of removing CBZ and CA from water by the MIP was demonstrated using tap water, lake water, and river water. PMID:23436062

  7. Surface plasmon resonance based optical fiber riboflavin sensor by using molecularly imprinted gel

    NASA Astrophysics Data System (ADS)

    Verma, Roli; Gupta, Banshi D.

    2013-05-01

    We report the fabrication and characterization of surface plasmon resonance (SPR) based optical fiber riboflavin/vitamin B2 sensor using combination of colloidal crystal templating and molecularly imprinted gel. The sensor works on spectral interrogation method. The operating range of the sensor lies from 0 μg/ml to 320 μg/ml, the suitable amount of intakes of riboflavin recommended for different age group. The SPR spectra show blue shift with increasing concentration of riboflavin, which is due to the interaction of riboflavin molecule over specific binding sites caused by molecular imprinting. The present sensor has many advantageous features such as fast response, small probe size, low cost and can be used for remote/online monitoring.

  8. Computational simulation and preparation of fluorescent magnetic molecularly imprinted silica nanospheres for ciprofloxacin or norfloxacin sensing.

    PubMed

    Gao, Bo; He, Xin-Ping; Jiang, Yang; Wei, Jia-Tong; Suo, Hui; Zhao, Chun

    2014-12-01

    A magnetic molecularly imprinted fluorescent sensor for the sensitive and convenient determination of ciprofloxacin or norfloxacin in human urine was synthesized and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, ultraviolet/visible spectroscopy, and fluorescence spectroscopy. Both cadmium telluride quantum dots and ferroferric oxide nanoparticles are introduced into the polymer for the rapid separation and detection of the target molecules. The synthesized molecularly imprinted polymers were applied to detect ciprofloxacin or its structural analog norfloxacin in human urine with the detection limit 130 ng/mL. A computational study was developed to evaluate the template-monomer geometry and interaction energy in the polymerization mixture to determine the reaction molar ratio of the template and monomer molecules. PMID:25311209

  9. Magnetic molecularly imprinted polymers for spectrophotometric quantification of curcumin in food.

    PubMed

    Liu, Xiuying; Zhu, Lijie; Gao, Xue; Wang, Yuxin; Lu, Haixia; Tang, Yiwei; Li, Jianrong

    2016-07-01

    Herein, we present a simple and rapid method for monitoring curcumin in food samples using a magnetic molecularly imprinted technique combined with ultraviolet-visible (UV-Vis) spectrophotometry. Magnetic molecularly imprinted polymers (mag-MIPs) were first synthesized by fabricating MIPs on to the surface of Fe3O4 nanobeads using curcumin as a template and methacrylic acid as a functional monomer. The obtained mag-MIPs were evaluated in detail with different techniques (such as binding isotherm, Scatchard analysis, and selectivity) and various adsorption experiments. Finally, mag-MIPs were constructed and UV-Vis spectrophotometry was used to quantify curcumin under optimized conditions. Good recoveries between 79.37% and 88.89% were obtained with the limits of detection and quantification of 1.31 and 4.38μg/mL, respectively. PMID:26920299

  10. Molecularly Imprinted Polymer Coated Quantum Dots for Multiplexed Cell Targeting and Imaging.

    PubMed

    Panagiotopoulou, Maria; Salinas, Yolanda; Beyazit, Selim; Kunath, Stephanie; Duma, Luminita; Prost, Elise; Mayes, Andrew G; Resmini, Marina; Tse Sum Bui, Bernadette; Haupt, Karsten

    2016-07-11

    Advanced tools for cell imaging are of great interest for the detection, localization, and quantification of molecular biomarkers of cancer or infection. We describe a novel photopolymerization method to coat quantum dots (QDs) with polymer shells, in particular, molecularly imprinted polymers (MIPs), by using the visible light emitted from QDs excited by UV light. Fluorescent core-shell particles specifically recognizing glucuronic acid (GlcA) or N-acetylneuraminic acid (NANA) were prepared. Simultaneous multiplexed labeling of human keratinocytes with green QDs conjugated with MIP-GlcA and red QDs conjugated with MIP-NANA was demonstrated by fluorescence imaging. The specificity of binding was verified with a non-imprinted control polymer and by enzymatic cleavage of the terminal GlcA and NANA moieties. The coating strategy is potentially a generic method for the functionalization of QDs to address a much wider range of biocompatibility and biorecognition issues. PMID:27238424

  11. Preparation and Application of Novel Magnetic Molecularly Imprinted Composites for Recognition of Sulfadimethoxine in Feed Samples.

    PubMed

    Feng, Min; Li, Hengye; Zhang, Lin; Zhang, Jingyou; Dai, Jianping; Wang, Xiaojin; Zhang, Lingli; Wei, Yunji

    2016-01-01

    Novel magnetic molecularly imprinted composites were prepared through a facile method using sulfadimethoxine (SDM) as template. The inorganic magnetic nanoparticles were linked with the organic molecularly imprinted polymer (MIP) through irreversibly covalent bond. So, the resulted composites showed excellent stability and reusability under acidic elution conditions. The magnetic MIP composites showed good selectivity, high binding capacity and excellent kinetics toward SDM. Adopting the magnetic MIP composites as extraction material, an off-line magnetic solid-phase extraction (SPE)/high performance liquid chromatography (HPLC) method was established. The calibration curve was linear in the range of 0.05 - 15 mg kg(-1) (r(2) = 0.9976). The LOD and LOQ were 0.016 and 0.052 mg kg(-1), respectively, while the recoveries were in the range of 89.3 - 107.0%. These novel magnetic MIP composites may become a powerful tool for the extraction of template from complex samples with good efficiency. PMID:27169650

  12. Synthesis of porous molecularly imprinted polymers for selective adsorption of glutathione

    NASA Astrophysics Data System (ADS)

    Song, Renyuan; Hu, Xiaoling; Guan, Ping; Li, Ji; Qian, Liwei; Wang, Chaoli; Wang, Qiaoli

    2015-03-01

    An effective approach overcome the classical deficiencies of biomolecules molecularly imprinted polymers (MIPs), that is, low binding capacity and slow mass transfer rate, is proposed. With glutathione (GSH) as target molecule, porous imprinted layers were fabricated according to our newly developed method the introduction of a mixture of acetontrile and dimethylsulfoxide as porogen in surface-initiated polymerization systems. The resultant MIPs particles exhibited a large surface area could remarkably improve the imprinting effect in relation to a significantly increased imprinting factor and mass transfer rate, compared to the MIPs prepared by using aqueous solution as solvent. The batch static binding tests were carried out to evaluate the adsorption kinetics, adsorption isotherms and selective recognition of the MIPs particles. The binding behavior followed the pseudo-second order kinetic model, revealing that the process was chemically carried out. Two binding isotherm models were applied to analyze equilibrium data, obtaining the best description by Langmuir isotherm model. In addition, the selective of separation and extraction of GSH from a mixture of GSH and its structural analogs could be achieved on the MIPs solid-phase extraction cartridge, indicating that the possibility for the separation and enrichment of the template from complicated matrices.

  13. Synthesis of surface nano-molecularly imprinted polymers for sensitive baicalin detection from biological samples

    PubMed Central

    Gu, Xiaoli; He, Hongliang; Wang, Chong-Zhi; Gao, Yankun; Zhang, Hongjuan; Hong, Junli; Du, Shuhu; Chen, Lina; Yuan, Chun-Su

    2015-01-01

    Surface molecularly imprinted polymers (MIP@SBA-15) imprinted on the surface of hybrid nanostructured organic/inorganic materials (SBA-15) were prepared for the selective extraction and detection of baicalin (BA) from biological samples. The surface morphologies and characteristics of the imprinted and non-imprinted polymers were characterized by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo–gravimetric analysis (TGA) and nitrogen adsorption–desorption isotherms. The results indicated that the polymers were successfully grafted on the surface of SBA-15 and possessed a highly ordered mesoporous structure. In binding tests, MIP@SBA-15 reached saturated adsorption within 80 min and exhibited significant specific recognition toward BA with large adsorption capacity. Meanwhile, the prepared MIP@SBA-15 was used as a selective sorbent for solid-phase extraction of BA from biological samples. Recoveries of BA from the liver and spleen ranged from 90.6% to 90.9% with RSD < 3.7%. All these results reveal that this method is simple, rapid and sensitive for effectively extracting and detecting trace BA in biological samples. PMID:26257892

  14. Molecularly imprinted polymer sensors for detection in the gas, liquid, and vapor phase.

    PubMed

    Jenkins, Amanda L; Ellzy, Michael W; Buettner, Leonard C

    2012-06-01

    Fast, reliable, and inexpensive analytical techniques for detection of airborne chemical warfare agents are desperately needed. Recent advances in the field of molecularly imprinted polymers have created synthetic nanomaterials that can sensitively and selectively detect these materials in aqueous environments, but thus far, they have not been demonstrated to work for detection of vapors. The imprinted polymers function by mimicking the function of biological receptors. They can provide high sensitivity and selectivity but, unlike their biological counterparts, maintain excellent thermal and mechanical stability. The traditional imprinted polymer approach is further enhanced in this work by the addition of a luminescent europium that has been introduced into the polymers to provide enhanced chemical affinity as well as a method for signal transduction to indicate the binding event. The europium in these polymers is so sensitive to the bound target; it can distinguish between species differing by a single methyl group. The imprinted polymer technology is fiber optic-based making it inexpensive and easily integratable with commercially available miniature fiber optic spectrometer technologies to provide a shoebox size device. In this work, we will describe efforts to apply these sensors for detection of airborne materials and vapors. Successful application of this technology will provide accurate low level vapor detection of chemical agents or pesticides with little to no false positives. PMID:22641530

  15. Nanometric thin polymeric films based on molecularly imprinted technology: towards electrochemical sensing applications.

    PubMed

    Ginzburg-Turgeman, Roni; Mandler, Daniel

    2010-09-28

    A new approach for assembling selective electrodes based on molecularly imprinted polymers (MIPs) is presented. The approach is based on the radical polymerization of a mixture of methacrylic acid (MAA) and ethyleneglycol dimethacrylate (EGDMA) in the presence of an initiator, benzoyl peroxide (BPO) and an activator, N,N'-dimethyl-p-toluidine (DMpT) at room temperature and atmospheric pressure. To form nanometric thin polymeric films the polymerization solution was spin-coated in the course of polymerization. The different physical and chemical parameters that affected the properties of the films, such as the spinning rate and the EGDMA:MAA ratio, were studied and optimized. A variety of techniques, e.g., rheoscopy, SEM, AFM, profilometry and electrochemistry, were used to characterize the films and the polymerization process. By optimizing the conditions very thin and reproducible films could be prepared and imprinted. The electrochemical behavior of the films showed that they were permeable to water-soluble electroactive species providing that either polyethylene glycol or template species were added to the polymerization mixture. Finally, we demonstrated that films imprinted with ferrocenylmethyl alcohol (Fc-MeOH) successfully extracted the imprinted species after their removal from MIPs. PMID:20668737

  16. Interactions of bupivacaine with a molecularly imprinted polymer in a monolithic format studied by NMR.

    PubMed

    Courtois, Julien; Fischer, Gerd; Schauff, Siri; Albert, Klaus; Irgum, Knut

    2006-01-15

    A trimethylolpropane trimethacrylate-based monolith of dimensions carefully chosen to fit exactly in a standard 4-mm solid-state CP/MAS NMR rotor was photopolymerized and subsequently molecularly imprinted with bupivacaine using a grafting protocol with methacrylic acid and ethylene dimethacrylate as monomers. As no crushing or grinding of the monolith was necessary, additional unspecific surface area was not created. This procedure ascertains that differences observed between imprinted and nonimprinted polymers are due only to graft imprinted surfaces and give therefore better results in NMR spectroscopy due to less unspecific interactions between analyte and monolith. This improves the comparability to chromatographic evaluations where uncrushed monolithic columns are also used. To track interactions between analyte and stationary phase, the saturation transfer difference (STD) technique was applied on the polymer in the suspended state using the same solvent as in the chromatographic evaluation. This relatively new NMR method has to our knowledge not been used on chromatographic materials before. By using STD NMR on pristine monoliths, it was possible to measure large differences between the imprinted or nonimprinted polymers and the analyte indicating significant differences in the interaction mechanisms. These could be directly correlated with retention differences observed in chromatographic evaluations. PMID:16408943

  17. Differential fluorescence from molecularly imprinted polymers containing europium ions as a transducer element

    NASA Astrophysics Data System (ADS)

    Pestov, Dmitry; Anderson, John; Tepper, Gary

    2006-10-01

    Molecularly imprinted polymers (MIPs) have the potential to provide a unique combination of high chemical selectivity and environmental stability and are, therefore, being widely studied in chemical sensor applications. Optical interrogation of the MIP-chemical interaction is very convenient for the detection of fluorescent compounds, but is problematic for the detection of non-fluorescent species. Doping MIPs with Eu3+ is one approach that can facilitate the optical detection of non-fluorescent species. Eu3+ has absorption in the near UV and the doped MIP can, therefore, be excited with a commercially available laser diode at 375nm. In the present paper MIPs doped with Eu3+ and imprinted to methyl salicylate (MES), a chemical warfare agent simulant, were prepared in the form of a thin film on a quartz substrate. Non-imprinted (Blank) polymer films were also prepared using the same imprinting procedure, but without introducing the MES template. Both polymers were tested to MES and the structurally similar compound methyl 3,5-dimethylbenzoate (DMB) in hexane. For MES, the fluorescence intensity of the MIP was significantly stronger than for the Blank, while for the methyl 3,5-dimethylbenzoate, the Blank polymer exhibited the stronger fluorescence signal. A portable chemical sensor employing differential fluorescence from MIP/Blank polymer pairs is under development and allows target discrimination without the need for spectroscopic analysis of the emission spectra.

  18. Preparation of a novel drug sensor using a molecular imprinted polymer approach

    NASA Astrophysics Data System (ADS)

    Wren, Stephen P.; Nguyen, T. Hien; Gascoine, Paul; Lacey, Dick; Sun, Tong; Grattan, Kenneth T. V.

    2013-05-01

    A chemical sensor for the detection of cocaine has been developed, based on a molecularly imprinted polymer (MIP) containing a fluorescein moiety as the signalling group. The fluorescent MIP was formed and covalently attached to the distal end of an optical fibre. The sensor exhibited an increase in fluorescence intensity in response to cocaine in an aqueous acetonitrile mixture. Selectivity for cocaine over codeine has been demonstrated.

  19. Dummy molecularly imprinted mesoporous silica prepared by hybrid imprinting method for solid-phase extraction of bisphenol A.

    PubMed

    Yu, Dan; Hu, Xiaolei; Wei, Shoutai; Wang, Qiang; He, Chiyang; Liu, Shaorong

    2015-05-29

    A novel hybrid dummy imprinting strategy was developed to prepare a mesoporous silica for the solid-phase extraction (SPE) of bisphenol A (BPA). A new covalent template-monomer complex (BPAF-Si) was first synthesized with 2,2-bis(4-hydroxyphenyl)hexafluoropropane (BPAF) as the template. The imprinted silica was obtained through the gelation of BPAF-Si with tetraethoxysilane and the subsequent removal of template by thermal cleavage, and then it was characterized by FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. Results showed that the new silica had micron-level particle size and ordered mesoporous structure. The static binding test verified that the imprinted silica had much higher recognition ability for BPA than the non-imprinted silica. The imprinted silica also showed high extraction efficiencies and high enrichment factor for SPE of BPA. Using the imprinted silica, a SPE-HPLC-UV method was developed and successfully applied for detecting BPA in BPA-spiked tap water and lake water samples with a recovery of 99-105%, a RSD of 2.7-5.0% and a limit of detection (S/N=3) of 0.3ng/mL. The new imprinted silica avoided the interference of the residual template molecules and reduced the non-specific binding sites, and therefore it can be utilized as a good sorbent for SPE of BPA in environmental water samples. PMID:25892637

  20. Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering.

    PubMed

    Brüggemann, O

    2001-08-01

    Molecular imprinting is a way of creating polymers bearing artificial receptors. It allows the fabrication of highly selective plastics by polymerizing monomers in the presence of a template. This technique primarily had been developed for the generation of biomimetic materials to be used in chromatographic separation, in extraction approaches and in sensors and assays. Beyond these applications, in the past few years molecular imprinting has become a tool for producing new kinds of catalysts. For catalytic applications, the template must be chosen, so that it is structurally comparable with the transition state (a transition state analogue, TSA) of a reaction, or with the product or substrate. The advantage of using these polymeric catalysts is obvious: the backbone withstands more aggressive conditions than a bio material could ever survive. Results are presented showing the applicability of a molecularly imprinted catalyst in different kinds of chemical reactors. It is demonstrated that the catalysts can be utilized not only in batch but also in continuously driven reactors and that their performance can be improved by means of chemical reaction engineering. PMID:11429307

  1. Rationally designed molecularly imprinted polymers for selective extraction of methocarbamol from human plasma.

    PubMed

    Gholivand, Mohammad Bagher; Khodadadian, Mehdi

    2011-09-15

    Molecularly imprinted polymers (MIPs) with high selectivity toward methocarbamol have been computationally designed and synthesized based on the general non-covalent molecular imprinting approach. A virtual library consisting of 18 functional monomers was built and possible interactions between the template and functional monomers were investigated using a semiempirical approach. The monomers with the highest binding scores were then considered for additional calculations using a more accurate quantum mechanical (QM) calculation exploiting the density functional theory (DFT) at B3LYP/6-31G(d,p) level. The cosmo polarizable continuum model (CPCM) was also used to simulate the polymerization solvent. On the basis of computational results, acrylic acid (AA) and tetrahydrofuran (THF) were found to be the best choices of functional monomer and polymerization solvent, respectively. MIPs were then synthesized by the precipitation polymerization method and used as selective adsorbents to develop a molecularly imprinted solid-phase extraction (MISPE) procedure before quantitative analysis. After MISPE the drug could be determined either by differential pulse voltammetry (DPV), on a glassy carbon electrode modified with multiwalled-carbon nanotubes (GC/MWNT), or high performance chromatography (HPLC) with UV detection. A comparative study between MISPE-DPV and MISPE-HPLC-UV was performed. The MISPE-DPV was more sensitive but both techniques showed similar accuracy and precision. PMID:21807239

  2. Electropolymerized molecular imprinting on glassy carbon electrode for voltammetric detection of dopamine in biological samples.

    PubMed

    Kiss, Laszlo; David, Vasile; David, Iulia Gabriela; Lazăr, Paul; Mihailciuc, Constantin; Stamatin, Ioan; Ciobanu, Adela; Ştefănescu, Cristian Dragoş; Nagy, Livia; Nagy, Géza; Ciucu, Anton Alexandru

    2016-11-01

    A simple and reliable method for preparing a selective dopamine (DA) sensor based on a molecularly imprinted polymer of ethacridine was proposed. The molecularly imprinted polymer electrode was prepared through electrodepositing polyethacridine-dopamine film on the glassy carbon electrode and then removing DA from the film via chemical induced elution. The molecular imprinted sensor was tested by cyclic voltammetry as well as by differential pulse voltammetry (DPV) to verify the changes in oxidative currents of DA. In optimized DPV conditions the oxidation peak current was well-proportional to the concentration of DA in the range from 2.0×10(-8)M up to 1×10(-6)M. The limit of detection (3σ) of DA was found to be as low as 4.4nM, by the proposed sensor that could be considered a sensitive marker of DA depletion in Parkinson's disease. Good reproducibility with relative standard deviation of 1.4% and long term stability within two weeks were also observed. The modified sensor was validated for the analysis of DA in deproteinized human serum samples using differential pulse voltammetric technique. PMID:27591643

  3. Molecularly Imprinted Composite Membranes for Selective Detection of 2-Deoxyadenosine in Urine Samples

    PubMed Central

    Scorrano, Sonia; Mergola, Lucia; Di Bello, Maria Pia; Lazzoi, Maria Rosaria; Vasapollo, Giuseppe; Del Sole, Roberta

    2015-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. In this work, a novel molecularly imprinted polymer composite membrane (MIM) was synthesized and employed for the selective detection in urine samples of 2-deoxyadenosine (2-dA), an important tumoral marker. By thermal polymerization, the 2-dA-MIM was cross-linked on the surface of a polyvinylidene-difluoride (PVDF) membrane. By characterization techniques, the linking of the imprinted polymer on the surface of the membrane was found. Batch-wise guest binding experiments confirmed the absorption capacity of the synthesized membrane towards the template molecule. Subsequently, a time-course of 2-dA retention on membrane was performed and the best minimum time (30 min) to bind the molecule was established. HPLC analysis was also performed to carry out a rapid detection of target molecule in urine sample with a recovery capacity of 85%. The experiments indicated that the MIM was highly selective and can be used for revealing the presence of 2-dA in urine samples. PMID:26086824

  4. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques.

    PubMed

    Hammond, G Denise; Vojta, Adam L; Grant, Sheila A; Hunt, Heather K

    2016-01-01

    The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 10⁶. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring. PMID:27314397

  5. Configuration control on the shape memory stiffness of molecularly imprinted polymer for specific uptake of creatinine

    NASA Astrophysics Data System (ADS)

    Ang, Qian Yee; Zolkeflay, Muhammad Helmi; Low, Siew Chun

    2016-04-01

    In this study, sol-gel processing was proposed to prepare a creatinine (Cre)-imprinted molecularly imprinted polymer (MIP). The intermolecular interaction constituted by the cross-linkers, i.e., 2-acrylamido-2-methylpropane-sulfonic acid (AMPS) and aluminium ion (Al3+), was studied and compared in order to form a confined matrix that promises the effectiveness of molecular imprinting. In view of the shape recognition, the hydrogen bonded Cre-AMPS did not demonstrate good recognition of Cre, with Cre binding found only at 5.70 ± 0.15 mg g-1 of MIP. Whilst, MIP cross-linked using Al3+ was able to attain an excellent Cre adsorption capacity of 19.48 ± 0.64 mg g-1 of MIP via the stronger ionic interaction of Cre-Al3+. Based on the Scatchard analysis, a higher Cre concentration in testing solution required greater driving force to resolve the binding resistance of Cre molecules, so as to have a precise Cre binding with shape factor. The molecular recognition ability of Cre-MIP in present work was shape-specific for Cre as compared to its structural analogue, 2-pyrrolidinone (2-pyr), by an ideal selectivity coefficient of 6.57 ± 0.10. In overall, this study has come up with a practical approach on the preparation of MIP for the detection of renal dysfunction by point-of-care Cre testing.

  6. Molecularly imprinted polymer microspheres for optical measurement of ultra trace nonfluorescent cyhalothrin in honey.

    PubMed

    Gao, Lin; Li, Xiuying; Zhang, Qi; Dai, Jiangdong; Wei, Xiao; Song, Zhilong; Yan, Yongsheng; Li, Chunxiang

    2014-08-01

    In this study, we first present a general protocol for making fluorescent molecularly imprinted polymer microspheres via precipitation polymerisation. We first prepared the fluorescent molecularly imprinted polymer microspheres upon copolymerisation of acrylamide with a small quantity of allyl fluorescein in the presence of cyhalothrin to form recognition sites without doping. The as-synthesised microspheres exhibited spherical shape, high fluorescence intensity and highly selective recognition. Under optical conditions, polymer microspheres were successfully applied to selectively and sensitively detect cyhalothrin, and a linear relationship could be obtained covering the lower concentration range of 0-1.0nM with a correlation coefficient of 0.9936 described by the Stern-Volmer equation. A lower limit of detection was found to be 0.004nM. The results of practical detection suggested that the developed method was satisfactory for determination of cyhalothrin in honey samples. This study therefore demonstrated the potential of molecularly imprinted polymers for detection of cyhalothrin in food. PMID:24629930

  7. Development and application of novel clonazepam molecularly imprinted coatings for stir bar sorptive extraction.

    PubMed

    Li, Xiaoxu; Mei, Xiaoliang; Xu, Lei; Shen, Xin; Zhu, Wanying; Hong, Junli; Zhou, Xuemin

    2016-04-15

    The molecularly imprinted magnetic stir bar coatings were created based on graft-functional Fe3O4 nanoparticles with magnetic field-induced self-assembly. The magnetic complex including clonazepam as template, the graft-functional Fe3O4 nanoparticles and methacrylic acid as monomers was pre-assembled through π-π interaction and hydrogen bonding, then was directionally adsorbed on the surface of magnetic stir bar under the magnetic induction. The molecularly imprinted coating with well-ordered structure was generated by one-step copolymerization based on the cross linking of ethylene glycol dimethacrylate. The molecularly imprinted coating with multiple recognition sites could be manufactured and applied in polar solvents, and showed superior selectivity and fast binding kinetics for benzodiazepines. The analytes in herbal health foods, treated by stir bar sorptive extraction, were determined by HPLC-UV. Good linearity was observed in the range of 0.01-2 μg mL(-1). The content of clonazepam in the herbal health foods was found to be 44 ng g(-1), and the average recoveries were 89.8-103.3% with a relative standard deviation (RSD) <6.5%, demonstrating the successful application in real sample analysis. PMID:26851451

  8. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques

    PubMed Central

    Hammond, G. Denise; Vojta, Adam L.; Grant, Sheila A.; Hunt, Heather K.

    2016-01-01

    The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 106. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring. PMID:27314397

  9. Preparation and evaluation of molecularly imprinted polymer liquid chromatography column for the separation of Cathine enantiomers

    PubMed Central

    Balamurugan, Krishnamoorthy; Gokulakrishnan, Kannan; Prakasam, Tangirala

    2011-01-01

    In this study molecular imprinting technology was employed to prepare a specific affinity sorbent for the resolution of Cathine, a chiral drug product. The molecularly imprinted polymer (MIP) was prepared by non-covalent molecular imprinting with either (+) or (−)-Cathine (threo-2-amino-1-hydroxy-1-phenyl propane; norpseudoephedrine) as the template. Methacrylic acid and ethylene glycol di-methacrylate were copolymerized in the presence of the template molecule. The bulk polymerization was carried out in chloroform with 2,2′-azobisisobutyronitrile as the initiator, at 5 °C and under UV radiation. The resulting MIP was ground into powders, which were slurry packed into analytical columns. After removal of template molecules, the MIP-packed columns were found to be effective for the resolution of (±)-Cathine racemates. The separation factor for the enantiomers ranged between 1.5 and 2.4 when the column was packed with MIP prepared with (+)-Cathine as the template. A separation factor ranging from 1.6 to 2.9 could be achieved from the column packed with MIP, prepared with (−)-Cathine as the template. Although the separation factor was higher with that previously obtained from reversed-phase column chromatography following derivatization with a chiral agent, elution peaks were broader due to the heterogeneity of binding sites on MIP particles and the possible non-specific interaction. PMID:23960776

  10. Ion-exchange molecularly imprinted polymer for the extraction of negatively charged acesulfame from wastewater samples.

    PubMed

    Zarejousheghani, Mashaalah; Schrader, Steffi; Möder, Monika; Lorenz, Pierre; Borsdorf, Helko

    2015-09-11

    Acesulfame is a known indicator that is used to identify the introduction of domestic wastewater into water systems. It is negatively charged and highly water-soluble at environmental pH values. In this study, a molecularly imprinted polymer (MIP) was synthesized for negatively charged acesulfame and successfully applied for the selective solid phase extraction (SPE) of acesulfame from influent and effluent wastewater samples. (Vinylbenzyl)trimethylammonium chloride (VBTA) was used as a novel phase transfer reagent, which enhanced the solubility of negatively charged acesulfame in the organic solvent (porogen) and served as a functional monomer in MIP synthesis. Different molecularly imprinted polymers were synthesized to optimize the extraction capability of acesulfame. The different materials were evaluated using equilibrium rebinding experiments, selectivity experiments and scanning electron microscopy (SEM). The most efficient MIP was used in a molecularly imprinted-solid phase extraction (MISPE) protocol to extract acesulfame from wastewater samples. Using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) analysis, detection and quantification limits were achieved at 0.12μgL(-1) and 0.35μgL(-1), respectively. Certain cross selectivity for the chemical compounds containing negatively charged sulfonamide functional group was observed during selectivity experiments. PMID:26256920

  11. A molecularly imprinted polymer (MIP)-coated microbeam MEMS sensor for chemical detection

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Li, Lily; Hiller, Tobias; Turner, Kimberly L.

    2015-05-01

    Recently, microcantilever-based technology has emerged as a viable sensing platform due to its many advantages such as small size, high sensitivity, and low cost. However, microcantilevers lack the inherent ability to selectively identify hazardous chemicals (e.g., explosives, chemical warfare agents). The key to overcoming this challenge is to functionalize the top surface of the microcantilever with a receptor material (e.g., a polymer coating) so that selective binding between the cantilever and analyte of interest takes place. Molecularly imprinted polymers (MIPs) can be utilized as artificial recognition elements for target chemical analytes of interest. Molecular imprinting involves arranging polymerizable functional monomers around a template molecule followed by polymerization and template removal. The selectivity for the target analyte is based on the spatial orientation of the binding site and covalent or noncovalent interactions between the functional monomer and the analyte. In this work, thin films of sol-gel-derived xerogels molecularly imprinted for TNT and dimethyl methylphosphonate (DMMP), a chemical warfare agent stimulant, have demonstrated selectivity and stability in combination with a fixed-fixed beam microelectromechanical systems (MEMS)-based gas sensor. The sensor was characterized by parametric bifurcation noise-based tracking.

  12. Determination of domoic acid in shellfish extracted by molecularly imprinted polymers.

    PubMed

    Lin, Zhengzhong; Wang, Dan; Peng, Aihong; Huang, Zhiyong; Lin, Yuhui

    2016-08-01

    A selective sample cleanup method using molecularly imprinted polymers was developed for the separation of domoic acid (a shellfish toxin) from shellfish samples. The molecularly imprinted polymers for domoic acid was prepared by emulsion polymerization using 1,3,5-pentanetricarboxylic acid as the template molecule, 4-vinyl pyridine as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, and Span80/Tween-80 (1:1 v/v) as the composite emulsifiers. The molecularly imprinted polymer showed high affinity to domoic acid with a dissociation constant of 13.5 μg/mL and apparent maximum adsorption capacity of 1249 μg/g. They were used as a selective sorbent for the detection of domoic acid from seafood samples coupled with high-performance liquid chromatography. The detection limit of 0.17 μg/g was lower than the maximum level permitted by several authorities. The mean recoveries of domoic acid from clam samples were 93.0-98.7%. It was demonstrated that the proposed method could be applied to the determination of domoic acid from shellfish samples. PMID:27311699

  13. Clinical spectrum and molecular diagnosis of Angelman and Prader-Willi syndrome patients with an imprinting mutation

    SciTech Connect

    Saitoh, S.; Cassidy, S.B.; Conroy, J.M.

    1997-01-20

    Recent studies have identified a new class of Prader-Willi syndrome (PWS) and Angelman syndrome (AS) patients who have biparental inheritance, but neither the typical deletion nor uniparental disomy (UPD) or translocation. However, these patients have uniparental DNA methylation throughout 15q11-q13, and thus appear to have a mutation in the imprinting process for this region. Here we describe detailed clinical findings of five AS imprinting mutation patients (three families) and two PWS imprinting mutation patients (one new family). All these patients have essentially the classical clinical phenotype for the respective syndrome, except that the incidence of microcephaly is lower in imprinting mutation AS patients than in deletion AS patients. Furthermore, imprinting mutation AS and PWS patients do not typically have hypopigmentation, which is commonly found in patients with the usual large deletion. Molecular diagnosis of these cases is initially achieved by DNA methylation analyses of the DN34/ZNF127, PW71 (D15S63), and SNRPN loci. The latter two probes have clear advantages in the simple molecular diagnostic analysis of PWS and AS patients with an imprinting mutation, as has been found for typical deletion or UPD PWS and AS cases. With the recent finding of inherited microdeletions in PWS and AS imprinting mutation families, our studies define a new class of these two syndromes. The clinical and molecular identification of these PWS and AS patients has important genetic counseling consequences. 49 refs., 4 figs., 3 tabs.

  14. Surface molecularly imprinted silica for selective solid-phase extraction of biochanin A, daidzein and genistein from urine samples.

    PubMed

    Chrzanowska, Anna M; Poliwoda, Anna; Wieczorek, Piotr P

    2015-05-01

    Selective molecularly imprinted silica polymer (SiO2MIP) for extraction of biochanin A, daidzein and genistein was synthesized using the surface molecular imprinting technique with the silica gel as a support. Biochanin A (BCA) was used as a template, 3-aminopropyltriethoxysilane (APTES) as a functional monomer, and tetraethoxysilicane (TEOS) as a cross-linker. Non-imprinted polymer with the sol-gel process (SiO2NIP) was also prepared for comparison. The synthesized polymers were characterized by Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM) and a standard Brunauer-Emett-Teller (BET) and Barret-Joyner-Halenda (BJH) analysis. The obtained results indicated the structural differences between imprinted and non-imprinted polymers. Finally, the SiO2MIP and SiO2NIP were adopted as the adsorbents of solid phase extraction for isolation and preconcentration of biochanin A and its structural analogues-daidzein and genistein from aqueous and urine samples. The performance analysis revealed that SiO2MIP displayed better affinity to the three investigated isoflavones compared with SiO2NIP. The recoveries of spiked samples for studied analytes ranged from 65.7% to 102.6% for molecularly imprinted silica polymer and 8.9-16.0% for non-imprinted sorbents. PMID:25817705

  15. SOFT-MI: a novel microfabrication technique integrating soft-lithography and molecular imprinting for tissue engineering applications.

    PubMed

    Vozzi, Giovanni; Morelli, Ilaria; Vozzi, Federico; Andreoni, Chiara; Salsedo, Elisabetta; Morachioli, Annagiulia; Giusti, Paolo; Ciardelli, Gianluca

    2010-08-01

    An innovative approach has been employed for the realization of bioactive scaffolds able to mimic the in vivo cellular microenvironment for tissue engineering applications. This method is based on the combination of molecular imprinting and soft-lithography technology to enhance cellular adhesion and to guide cell growth and proliferation due to presence of highly specific recognition sites of selected biomolecules on a well-defined polymeric microstructure. In this article polymethylmethacrylate (PMMA) scaffolds have been realized by using poly(dimethylsiloxane) (PDMS) microstructured molds imprinted with FITC-albumin and TRITC-lectin. In addition gelatin, an adhesion protein, was employed for the molecular imprinting of polymeric scaffolds for cellular tests. The most innovative aspect of this research was the molecular imprinting of whole cells for the development of substrates able to enhance the cell adhesion processes. PMID:20564617

  16. Imprints of Molecular Clouds in Radio Continuum Images

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.

    2012-11-01

    We show radio continuum images of several molecular complexes in the inner Galaxy and report the presence of dark features that coincide with dense molecular clouds. Unlike infrared dark clouds, these features which we call "radio dark clouds" are produced by a deficiency in radio continuum emission from molecular clouds that are embedded in a bath of UV radiation field or synchrotron emitting cosmic-ray particles. The contribution of the continuum emission along different path lengths results in dark features that trace embedded molecular clouds. The new technique of identifying cold clouds can place constraints on the depth and the magnetic field of molecular clouds when compared to those of the surrounding hot plasma radiating at radio wavelengths. The study of five molecular complexes in the inner Galaxy, Sgr A, Sgr B2, radio Arc, the Snake filament, and G359.75-0.13 demonstrates an anti-correlation between the distributions of radio continuum and molecular line and dust emission. Radio dark clouds are identified in Green Bank Telescope maps and Very Large Array images taken with uniform sampling of uv coverage. The level at which the continuum flux is suppressed in these sources suggests that the depth of the molecular cloud is similar to the size of the continuum emission within a factor of two. These examples suggest that high-resolution, high-dynamic-range continuum images can be powerful probes of interacting molecular clouds with massive stars and supernova remnants in regions where the kinematic distance estimates are ambiguous as well as in the nuclei of active galaxies.

  17. Novel surface dummy molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol A from water samples.

    PubMed

    Hu, Xiaolei; Wu, Xiao; Yang, Fanfan; Wang, Qiang; He, Chiyang; Liu, Shaorong

    2016-02-01

    A novel surface molecularly imprinted silica composite was prepared by a dummy-template imprinting strategy for the solid-phase extraction (SPE) of bisphenol A (BPA). 2,2-Bis(4-hydroxyphenyl) hexafluoropropane (BPAF) was chosen as the template molecule, and a hybrid technique was used for imprinting procedure. The imprinted silica was characterized by FT-IR spectroscopy, scanning electron microscope, thermo-gravimetric analysis, and nitrogen adsorption-desorption isotherms. The static binding test verified that the imprinted silica had much higher recognition ability for BPA than the non-imprinted silica, and the kinetic adsorption test presented the fast binding kinetics of the surface imprinted silica for BPA. When used as a SPE sorbent, the imprinted silica showed high extraction efficiencies and high enrichment factor for BPA. Based on the imprinted silica, a SPE-HPLC-UV method was developed and successfully applied to the detection of BPA in BPA-spiked lake water, tap water and drinking water samples with a high recovery of 97.3-106.0%, a RSD of 1.2-3.8% (n=3) and a limit of detection (S/N=3) of 0.3 ng/mL. The analysis results of a certified BPA sample also demonstrated the reliability of present method. The new surface dummy molecularly imprinted silica completely avoided the interference of the residual template molecules and greatly improved the binding kinetic of the target molecules. Therefore, it can be used as a good sorbent for SPE of BPA in environmental water samples. PMID:26653420

  18. Binding behaviour of molecularly imprinted polymers prepared by a hierarchical approach in mesoporous silica beads of varying porosity.

    PubMed

    Baggiani, Claudio; Baravalle, Patrizia; Giovannoli, Cristina; Anfossi, Laura; Passini, Cinzia; Giraudi, Gianfranco

    2011-04-01

    One of the most interesting methods for preparing molecularly imprinted polymers with controlled morphology consists in filling the pores of silica beads with an imprinting mixture, polymerizing it and dissolving the support, leaving porous imprinted beads that are the "negative image" of the silica beads. The main advantage of such an approach consists in the easy preparation of spherical imprinted polymeric particles with narrow diameter and pore size distribution, particularly indicated for chromatographic applications. In this approach it has been shown that the resulting morphology of polymeric beads depends essentially on the porosity and surface properties of the silica beads that act as microreactors for the thermopolymerization process. Anyway, it is not yet clear if the porosity of the silica beads influences the binding properties of the resulting imprinted beads. In this paper, we report the effect of different porosities of the starting mesoporous silica beads on the resulting binding properties of imprinted polymers with molecular recognition properties towards the fungicide carbendazim. The morphological properties of the imprinted beads prepared through this hierarchical approach were measured by nitrogen adsorption porosimetry and compared with a reference imprinted material prepared by bulk polymerization. The chromatographic behaviour of HPLC columns packed with the imprinted materials were examined by eluting increasing amounts of carbendazim and extracting the binding parameters through a peak profiling approach. The experimental results obtained show that the resulting binding properties of the imprinted beads are strongly affected by the polymerization approach used but not by the initial porosity of the silica beads, with the sole exception of the binding site density, which appears to be inversely proportional to them. PMID:21349526

  19. Molecularly imprinted polymer for specific extraction of hypericin from Hypericum perforatum L. herbal extract.

    PubMed

    Li, Zhaozhou; Qin, Cuili; Li, Daomin; Hou, Yuze; Li, Songbiao; Sun, Junjie

    2014-09-01

    The molecularly imprinted polymers (MIPs) were prepared by an oxidation-reduction polymerization system using a non-covalent molecularly imprinting strategy with hypericin as the template, acrylamide as the functional monomer and pentaerythritol triacrylate as the cross-linker in the porogen of acetone. The UV spectrum revealed that a cooperative hydrogen-bonding complex between hypericin and acrylamide might be formed at the ratio of 1:6 in the prepolymerized system. Two classes of the binding sites were produced in the resulting hypericin-imprinted polymer with the dissociation constants of 16.61μgL(-1) and 69.35μgL(-1), and the affinity binding sites of 456.53μgg(-1) and 603.06μgg(-1), respectively. The synthesized MIPs were characterized by scanning electron microscope, thermogravimetric and differential thermal analysis. High-performance liquid chromatography was used to investigate the adsorption and recognition properties of the MIPs. Selective binding of the template molecule was demonstrated in comparison to the analog pseudohypericin. After the Hypericum perforatum L. plant being air dried and finely ground, an extract was prepared by shaking the powder in a methanol-water solution (80:20, v/v), vacuum filtration though a Büchner funnel, liquid-liquid extraction with ethyl ether and ethyl acetate, and evaporating on a rotary evaporator until dry. With the sorbents of the optimized MIPs, a molecularly imprinted solid-phase extraction (MISPE) procedure was developed for enrichment and separation of hypericin from the Hypericum extract in the presence of interfering substances. The selective extraction of hypericin from herbal medicine was achieved with the recovery of 82.30%. The results showed that MISPE can be a useful tool for specific isolation and effective clean-up of target compounds from natural products. PMID:24946147

  20. [Preparation and applications of 4-methyl imidazole magnetic surface molecularly imprinted polymers].

    PubMed

    Qi, Yuxia; Zhao, Lijuan; Ma, Meihua; Wei, Chanling; Li, Ya; Li, Wenjing; Gong, Bolin

    2015-12-01

    The magnetic surface molecularly imprinted polymers (MIPs) with specific recognition of 4-methyl imidazole (4-MI) were prepared by using 4-MI as template molecule, methacrylic acid (MAA) as functional monomer and Fe3O4 as magnetic fluid. The polymers were characterized by of Fourier transform infrared spectrometer (FT-IR) analysis, X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results demonstrated that an imprinted polymer layer was successfully coated onto the surface of modified Fe3O4 nanomaterials, resulting in a narrow diameter distribution and good magnetic responsibility. The ultraviolet (UV) spectrophotometry was used to demonstrate the interaction between 4-MI and MAA. It was found that one 4-MI molecule was entrapped by one MAA molecule, which was the main existing form of subject and object. By UV spectrophotometric method to study the adsorption performance of magnetic molecularly imprinted polymers, the specific adsorption equilibrium and selectivity were evaluated by batch rebinding studies. The Scatchard analysis showed that there were two kinds of binding sites in the Fe3O4 @ (4-MI-MIP). The corresponding maximum adsorption capacities of 4-MI onto Fe3O4 @ (4-MI-MIP) were 40.31 mg/g and 23.07 mg/g, and the dissociation constants were 64.85 mg/L and 30.41 mg/L, respectively. The kinetic experimental data were correlated with second-order kinetic model. The magnetic molecularly imprinted polymers were used for the adsorption of 4-methyl imidazole in environmental water samples, and good results were obtained. PMID:27097456

  1. Development of andrographolide molecularly imprinted polymer for solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Yin, Xiaoying; Liu, Qingshan; Jiang, Yifan; Luo, Yongming

    2011-06-01

    A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C 18-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata ( Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9 ± 0.6 μmol/g and 12.1 ± 0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n = 5) and 96.0% and 104.2% (RSD 2.9-3.7%, n = 5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment.

  2. Molecularly imprinted polymer microspheres for solid-phase extraction of protocatechuic acid in Rhizoma homalomenae.

    PubMed

    Chen, Fang-Fang; Wang, Guo-Ying; Shi, Yan-Ping

    2011-10-01

    Molecularly imprinted polymers (MIPs) had been prepared by precipitation polymerization method using acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, acetonitrile as the porogen solvent and protocatechuic acid (PA), one of phenolic acids, as the template molecule. The MIPs were characterized by scanning electron microscopy and Fourier transform infrared, and their performance relative to non-imprinted polymers was assessed by equilibrium binding experiments. Six structurally similar phenolic acids, including p-hydroxybenzoic acid, gallic acid, salicylic acid, syringic acid, vanillic acid, ferulic acid were selected to assess the selectivity and recognition capability of the MIPs. The MIPs were applied to extract PA from the traditional Chinese medicines as a solid-phase extraction sorbent. The resultant cartridge showed that the MIPs have a good extraction performance and were able to selectively extract almost 82% of PA from the extract of Rhizoma homalomenae. Thus, the proposed molecularly imprinted-solid phase extraction-high performance liquid chromatography method can be successfully used to extract and analyse PA in traditional Chinese medicines. PMID:21809445

  3. Photoresponsive hollow molecularly imprinted polymer for the determination of trace bisphenol A in water.

    PubMed

    Gong, Cheng-Bin; Yang, Yu-Zhu; Yang, Yue-Hong; Zheng, An-Xun; Liu, Song; Tang, Qian

    2016-11-01

    A photoresponsive hollow molecularly imprinted polymer (PHMIP) was fabricated for photoresponsive recognition and determination of trace bisphenol A (BPA) in aqueous media using a water-soluble azo compound as the functional monomer. The PHMIP was prepared on sacrificial silica microspheres by surface imprinting and subsequent removal of the silica core. The PHMIP displayed photocontrolled recognition for BPA. SEM, TEM, FT-IR, TGA and N2 adsorption-desorption analyses confirmed successful formation of the hollow structure. The PHMIP displayed higher binding capacity, a larger specific area, and faster mass transfer rate than its corresponding surface molecularly imprinted polymer. The PHMIP was used to determine trace BPA in real samples with a limit of detection of 0.5ppm. For samples spiked at 0-10ppm, the BPA recoveries were in the range of 93.0%-99.0%. This PHMIP-based method provides convenient and inexpensive detection method for trace BPA in environmental samples. This method is especially suitable for determining materials that do not possess specific spectroscopic or luminescent properties. PMID:27478978

  4. Fullerene derived molecularly imprinted polymer for chemosensing of adenosine-5'-triphosphate (ATP).

    PubMed

    Sharma, Piyush S; Dabrowski, Marcin; Noworyta, Krzysztof; Huynh, Tan-Phat; Kc, Chandra B; Sobczak, Janusz W; Pieta, Piotr; D'Souza, Francis; Kutner, Wlodzimierz

    2014-09-24

    For molecular imprinting of oxidatively electroactive analytes by electropolymerization, we used herein reductively electroactive functional monomers. As a proof of concept, we applied C60 fullerene adducts as such for the first time. For that, we derivatized C60 to bear either an uracil or an amide, or a carboxy addend for recognition of the adenosine-5'-triphosphate (ATP) oxidizable analyte with the ATP-templated molecularly imprinted polymer (MIP-ATP). Accordingly, the ATP complex with all of the functional monomers formed in solution was potentiodynamically electropolymerized to deposit an MIP-ATP film either on an Au electrode of the quartz crystal resonator or on a Pt disk electrode for the piezoelectric microgravimetry (PM) or capacitive impedimetry (CI) determination of ATP, respectively, under the flow-injection analysis (FIA) conditions. The apparent imprinting factor for ATP was ∼4.0. After extraction of the ATP template, analytical performance of the resulting chemosensors, including detectability, sensitivity, and selectivity, was characterized. The limit of detection was 0.3 and 0.03mM ATP for the PM and CI chemosensor, respectively. The MIP-ATP film discriminated structural analogues of ATP quite well. The Langmuir, Freundlich, and Langmuir-Freundlich isotherms were fitted to the experimental data of the ATP sorption and sorption stability constants appeared to be nearly independent of the adopted sorption model. PMID:25172817

  5. Molecularly imprinted polymers as the extracted sorbents of clenbuterol ahead of liquid chromatographic determination*

    PubMed Central

    Lay, Sovichea; Yu, Hai-ning; Hu, Bao-xiang; Shen, Sheng-rong

    2016-01-01

    A pre-treatment methodology for clenbuterol hydrochloride (CLEN) isolation and enrichment in a complex matrix environment was developed through exploiting molecularly imprinted polymers (MIPs). CLEN-imprinted polymers were synthesized by the combined use of ally-β-cyclodextrin (ally-β-CD) and methacrylic acid (MAA), allyl-β-CD and acrylonitrile (AN), and allyl-β-CD and methyl methacrylate (MMA) as the binary functional monomers. MAA-linked allyl-β-CD MIPs (M-MAA) were characterized by Fourier transform-infrared (FT-IR) spectroscopy and a scanning electron microscope (SEM). Based upon the results, M-MAA polymers generally proved to be an excellent selective extraction compared to its references: AN-linked allyl-β-CD MIPs (M-AN) and MMA-linked allyl-β-CD MIPs (M-MMA). M-MAA polymers were eventually chosen to run through a molecularly imprinted solid-phase extraction (MISPE) micro-column to enrich CLEN residues spiked in pig livers. A high recovery was achieved, ranging from 91.03% to 96.76% with relative standard deviation (RSD) ≤4.45%. PMID:27256680

  6. A norepinephrine coated magnetic molecularly imprinted polymer for simultaneous multiple chiral recognition.

    PubMed

    Chen, Juan; Liang, Ru-Ping; Wang, Xiao-Ni; Qiu, Jian-Ding

    2015-08-28

    A newly designed molecularly imprinted polymer (MIP) material was developed and successfully used as recognition element for enantioselective recognition by microchip electrophoresis. In this work, molecularly imprinted polymers were facilely prepared employing Fe3O4 nanoparticles (NPs) as the supporting substrate and norepinephrine as the functional monomer in the presence of template molecule in a weak alkaline solution. After extracting the embedded template molecules, the produced imprinted Fe3O4@polynorepinephrine (MIP-Fe3O4@PNE) NPs have cavities complementary to three dimensional shape of template molecules favoring high binding capacity and magnetism property for easy manipulation. The MIP-Fe3O4@PNE NPs prepared with l-tryptophan, l-valine, l-threonine, Gly-l-Phe, S-(-)-ofloxacin or S-(-)-binaphthol as template molecules were packed in the polydimethylsiloxane microchannel via magnetic field as novel stationary phase to successful enantioseparation of corresponding target analysts. The MIP-Fe3O4@PNE NPs-based microchip electrophoresis system exhibited strong recognition ability, excellent high-performance, admirable reproducibility and stability, which provided a powerful protocol for separation enantiomers within a short analytical time and opened up an avenue for multiplex chiral compound assay in various systems. PMID:26206627

  7. Molecularly imprinted polymers as the extracted sorbents of clenbuterol ahead of liquid chromatographic determination.

    PubMed

    Lay, Sovichea; Yu, Hai-Ning; Hu, Bao-Xiang; Shen, Sheng-Rong

    2016-06-01

    A pre-treatment methodology for clenbuterol hydrochloride (CLEN) isolation and enrichment in a complex matrix environment was developed through exploiting molecularly imprinted polymers (MIPs). CLEN-imprinted polymers were synthesized by the combined use of ally-β-cyclodextrin (ally-β-CD) and methacrylic acid (MAA), allyl-β-CD and acrylonitrile (AN), and allyl-β-CD and methyl methacrylate (MMA) as the binary functional monomers. MAA-linked allyl-β-CD MIPs (M-MAA) were characterized by Fourier transform-infrared (FT-IR) spectroscopy and a scanning electron microscope (SEM). Based upon the results, M-MAA polymers generally proved to be an excellent selective extraction compared to its references: AN-linked allyl-β-CD MIPs (M-AN) and MMA-linked allyl-β-CD MIPs (M-MMA). M-MAA polymers were eventually chosen to run through a molecularly imprinted solid-phase extraction (MISPE) micro-column to enrich CLEN residues spiked in pig livers. A high recovery was achieved, ranging from 91.03% to 96.76% with relative standard deviation (RSD) ≤4.45%. PMID:27256680

  8. Carbon paste electrode modified with duplex molecularly imprinted polymer hybrid film for metronidazole detection.

    PubMed

    Xiao, Ni; Deng, Jian; Cheng, Jianlin; Ju, Saiqin; Zhao, Haiqing; Xie, Jin; Qian, Duo; He, Jun

    2016-07-15

    A novel electrochemical sensor based on duplex molecularly imprinted polymer (DMIP) hybrid film modified carbon paste electrode (CPE) has been developed for highly sensitive and selective determination of metronidazole (MNZ). A conductive poly(anilinomethyltriethoxysilane) film is firstly electrodeposited on the surface of a CPE, and then a molecularly imprinted polysiloxane (MIPS) membrane is covalently covered on the film via sol-gel process. The as-constructed DMIP hybrid film, combining the advantages of MIPS and conducting MIP, can make feasible the direct and efficient signal transformation between the target analyte and the transducer, as well as enhance the imprinting recognition capability, mass transfer efficiency and the detection sensitivity. Under optimized conditions, the reduction peak currents of MNZ are linear to MNZ concentrations in the range from 4.0×10(-7) to 2.0×10(-4) molL(-1) with a detection limit of 9.1×10(-8)molL(-1). The RSD values vary from 2.9% to 4.7% for intra-day and from 3.4% to 4.2% for inter-day precision. The DMIP-based sensor has been successfully applied for the determination of MNZ in biological and pharmaceutical samples. The accuracy and reliability of the method is further confirmed by high performance liquid chromatography. PMID:26921552

  9. Molecular Imprinting of Silica Nanoparticle Surfaces via Reversible Addition-Fragmentation Polymerization for Optical Biosensing Applications

    NASA Astrophysics Data System (ADS)

    Oluz, Zehra; Nayab, Sana; Kursun, Talya Tugana; Caykara, Tuncer; Yameen, Basit; Duran, Hatice

    Azo initiator modified surface of silica nanoparticles were coated via reversible addition-fragmentation polymerization (RAFT) of methacrylic acid and ethylene glycol dimethacrylate using 2-phenylprop 2-yl dithobenzoate as chain transfer agent. Using L-phenylalanine anilide as template during polymerization led molecularly imprinted nanoparticles. RAFT polymerization offers an efficient control of grafting process, while molecularly imprinted polymers shows enhanced capacity as sensor. L-phenylalanine anilide imprinted silica particles were characterized by X-Ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM). Performances of the particles were followed by surface plasmon resonance spectroscopy (SPR) after coating the final product on gold deposited glass substrate against four different analogous of analyte molecules: D-henylalanine anilide, L-tyrosine, L-tryptophan and L-phenylalanine. Characterizations indicated that silica particles coated with polymer layer do contain binding sites for L-phenylalanine anilide, and are highly selective for the molecule of interest. This project was supported by TUBITAK (Project No:112M804).

  10. Fluorescent molecularly imprinted polymer based on Navicula sp. frustules for optical detection of lysozyme.

    PubMed

    Lim, Guat Wei; Lim, Jit Kang; Ahmad, Abdul Latif; Chan, Derek Juinn Chieh

    2016-03-01

    The direct correlation between disease and lysozyme (LYZ) levels in human body fluids makes the sensitive and convenient detection of LYZ the focus of scientific research. Fluorescent molecularly imprinted polymer has emerged as a new alternative for LYZ detection in order to resolve the limitation of immunoassays, which are expensive, unstable, require complex preparation, and are time consuming. In this study, a novel fluorescence molecularly imprinted polymer based on Navicula sp. frustules (FITC-MIP) has been synthesized via post-imprinting treatment for LYZ detection. Navicula sp. frustules were used as supported material because of their unique properties of moderate surface area, reproducibility, and biocompatibility, to address the drawbacks of nanoparticle core material with low adsorption capacity. The FITC acts as recognition signal and optical readout, whereas MIP provides LYZ selectivity. The synthesized FITC-MIP showed a response time as short as 5 min depending on the concentration of LYZ. It is found that the LYZ template can significantly quench the fluorescence intensity of FITC-MIP linearly within a concentration range of 0 to 0.025 mg mL(-1), which is well described by Stern-Volmer equation. The FITC-MIP can selectively and sensitively detect down to 0.0015 mg mL(-1) of LYZ concentration. The excellent sensing performance of FITC-MIP suggests that FITC-MIP is a potential biosensor in clinical diagnosis applications. PMID:26842746

  11. Expanding Cancer Detection Using Molecular Imprinting for a Novel Point-of-Care Diagnostic Device

    NASA Astrophysics Data System (ADS)

    Yu, Yingjie; Rafailovich, Miriam; Wang, Yantian; Ranjbaran, Alina; Wang, Tom; Nam, David

    2012-02-01

    We propose the use of a potentiometric biosensor that incorporates the efficient and specific molecular imprinting (MI) method with a self-assembled monolayer (SAM). We first tested the biosensor using carcinoembryonic antigen, CEA, a biomarker associated with pancreatic cancer. No change in detection efficiency was observed when detection was performed in the presence of 100% serum albumin, indicating that the sensor is able to discriminate for the template analyte even in concentrated solution of similar substances. Computer simulations of the protein structure were performed in order to estimate the changes in morphology and determine the sensitivity of the biosensor to conformational changes in the proteins. We found that even small changes in PH can generate rotation of the surface functional groups, without significant change in the morphology. Yet, the results show that only when the detection and imprinting conditions are similar, robust signals occurs. Hence we concluded that both morphology and surface chemistry play a role in the recognition.

  12. Preliminary investigations into surface molecularly imprinted nanoparticles for Helicobacter pylori eradication

    PubMed Central

    Han, Jiaying; Sun, Yinjing; Hou, Jiapeng; Wang, Yuyan; Liu, Yu; Xie, Cao; Lu, Weiyue; Pan, Jun

    2015-01-01

    This paper reports investigations into the preparation and characterization of surface molecularly imprinted nanoparticles (SMINs) designed to adhere to Helicobacter pylori (H. pylori). Imprinted nanoparticles were prepared by the inverse microemulsion polymerization method. A fraction of Lpp20, an outer membrane protein of H. pylori known as NQA, was chosen as template and modified with myristic acid to facilitate its localization on the surface of the nanoparticles. The interaction between these SMINs with the template NQA were evaluated using surface plasmon resonance (SPR), change in zeta potential and fluorescence polarization (FP). The results were highly consistent in demonstrating a preferential recognition of the template NQA for SMINs compared with the control nanoparticles. In vitro experiments also indicate that such SMINs are able to adhere to H. pylori and may be useful for H. pylori eradication. PMID:26713273

  13. In situ synthesis of molecularly imprinted polymers on glass microspheres in a column.

    PubMed

    Zhuang, Yan; Luo, Hongpeng; Duan, Deliang; Chen, Lirong; Xu, Xiaojie

    2007-10-01

    A facile method to fabricate molecularly imprinted polymers (MIPs) on glass microspheres in a column was developed. The column was prepacked with glass microspheres, and then the prepolymerization mixture was injected into the interstitial volume of the column. The polymerization took place in situ and the column could be directly used for high-performance liquid chromatography after the template had been removed. The template consumption was reduced greatly because the prepolymerization mixture just filled the interstitial volume between the glass microspheres in the column. The MIPs obtained exhibited better kinetic properties, higher efficiency, and low back pressure of the column. Emodin imprinted polymers were prepared by this method and were used for solid-phase extraction. PMID:17786412

  14. Titania-based molecularly imprinted polymer for sulfonic acid dyes prepared by sol-gel method.

    PubMed

    Li, Man; Li, Rong; Tan, Jin; Jiang, Zi-Tao

    2013-03-30

    A novel titania-based molecularly imprinted polymer (MIP) was synthesized through sol-gel process with sunset yellow (Sun) as template, without use of functional monomer. MIP was used as a solid-phase extraction material for the isolation and enrichment of sulfonic acid dyes in beverages. The results showed that MIP exhibited better selectivity, higher recovery and adsorption capacity for the sulfonic acid dyes compared to the non-imprinted polymer (NIP). MIP presented highest extraction selectivity to Sun when pH less than or equal to 3. The adsorption capacity was 485.9 mg g(-1), which was larger than that of NIP (384.7 mg g(-1)). The better clean-up ability demonstrated the capability of MIP for the isolation and enrichment of sulfonic acid dyes in complicated food samples. The mean recoveries for the sulfonic acid dyes on MIP were from 81.9% to 97.2% in spiked soft drink. PMID:23598213

  15. Sequential molecularly imprinted solid-phase extraction methods for the analysis of resveratrol and other polyphenols.

    PubMed

    Schwarz, Lachlan J; Danylec, Basil; Harris, Simon J; Boysen, Reinhard I; Hearn, Milton T W

    2016-03-18

    Molecularly imprinted polymers (MIPs) templated with either the phytoalexin, (E)-resveratrol, or its structural analog, 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide, have been used in tandem for the sequential extraction of (E)-resveratrol from aqueous peanut meal extracts in high purity and in near quantitative yields. Re-processing of the (E)-resveratrol-depleted peanut meal extract with the 3,5-dihydroxy-N-(4-hydroxyphenyl)benzamide imprinted MIP yielded additional polyphenolic components, identified as A-type procyanidins. Tandem liquid chromatography-electrospray ionization mass spectrometry confirmed the identity and purity of the isolated products. This study documents the advantages of tandem approaches with MIPs for the solid phase extraction and analysis of multiple bioactive compounds present in complex biomass waste streams. PMID:26905880

  16. Guided folding takes a start from the molecular imprinting of structured epitopes.

    PubMed

    Cenci, L; Guella, G; Andreetto, E; Ambrosi, E; Anesi, A; Bossi, A M

    2016-08-25

    A biomimetic route towards assisted folding was explored. Molecularly imprinted polymeric nanoparticles (MIP NPs), i.e. biomimetics with entailed molecular recognition properties made by a template assisted synthesis, were prepared to target a structured epitope: the cystine containing peptide CC9ox, which corresponds to the apical portion of the β-hairpin hormone Hepcidin-25. The structural selection was achieved by the MIP NPs; moreover, the MIP NPs demonstrated favouring the folding of the linear random peptide (CC9red) into the structured one (CC9ox), anticipating the future role of the MIP NPs as in situ nanomachines to counteract folding defects. PMID:27524659

  17. Development of a molecularly imprinted solid-phase extraction sorbent for the selective extraction of telmisartan from human urine.

    PubMed

    Yılmaz, Hüma; Basan, Hasan

    2015-05-01

    A novel molecularly imprinted solid-phase extraction with spectrofluorimetry method has been developed for the selective extraction of telmisartan from human urine. Molecularly imprinted polymers were prepared by a noncovalent imprinting approach through UV-radical polymerization using telmisartan as a template molecule, 2-dimethylamino ethyl methacrylate as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, N,N-azobisisobutyronitrile as an initiator, chloroform as a porogen. Molecularly imprinted polymers and nonimprinted control polymer sorbents were dry-packed into solid-phase extraction cartridges, and eluates from cartridges were analyzed using a spectrofluorimeter. Limit of detection and limit of quantitation values were 11.0 and 36.0 ng/mL, respectively. A very high imprinting factor (16.1) was achieved and recovery values for the telmisartan spiked in human urine were in the range of 76.1-79.1%. In addition, relatively low within-day (0.14-1.6%) and between-day (0.11-1.31%) precision values were obtained. Valsartan was used to evaluate the selectivity of sorbent as well. As a result, a sensitive, selective, and simple molecularly imprinted solid-phase extraction with spectrofluorimetry method has been developed and successfully applied to the direct determination telmisartan in human urine. PMID:25755138

  18. Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT.

    PubMed

    Graham, Amy L; Carlson, Catherine A; Edmiston, Paul L

    2002-01-15

    Molecularly imprinting sol-gel materials for DDT using both a noncovalent and a covalent approach was examined. A nonpolar porous sol-gel network was created through the use of the bridged polysilsesquioxane, bis-(trimethoxysilylethyl)benzene (BTEB), as the principal sol-gel component. Noncovalent molecular imprinting was deemed unsuccessful, presumably because of the lack of strong intermolecular interactions that can be established between the DDT and the sol-gel precursor. A covalent imprinting strategy was employed by generating a sacrificial spacer through the reaction of two 3-isocyanatopropyltriethoxysilanes with one of two different template molecules: 4,4'-ethylenedianiline (EDA) or 4,4'-ethylidenebisphenol (EBP). After formation of the sol-gel, the bonds linking the spacer template to the matrix were cleaved in a manner that generated a pocket of the appropriate size bordered by amine groups that could aid in the binding of DDT through weak hydrogen bonding interactions. Experiments indicated that DDT could be bound selectively by such an approch. To generate a sensor, an environmentally sensitive fluorescent probe, 7-nitrobenz-2-oxa-1,3-diazole, (NBD) located adjacent to the DDT binding site was used to transduce the binding of analyte. EDA-imprinted sol-gels, deposited as films on glass microscope slides, were shown to quantitatively detect DDT in water to a limit-of-detection of 50 ppt with a response time of <60 s. Repeat measurements could be made with the same sensing films after rinsing with acetone between each measurement. The EDA sensing material was selective for DDT and other structurally similar molecules. However, the sensing film design was limited by the relatively minor changes in fluorescence intensity upon binding DDT. This situation may be remedied by an alternative methodology that can facilitate attachment of the NBD fluorophore in an optimal position proximal to the binding pocket. PMID:11811423

  19. Morphology and kinetic modeling of molecularly imprinted organosilanol polymer matrix for specific uptake of creatinine.

    PubMed

    Ang, Qian Yee; Low, Siew Chun

    2015-09-01

    Molecular imprinting is an emerging technique to create imprinted polymers that can be applied in affinity-based separation, in particular, biomimetic sensors. In this study, the matrix of siloxane bonds prepared from the polycondensation of hydrolyzed tetraethoxysilane (TEOS) was employed as the inorganic monomer for the formation of a creatinine (Cre)-based molecularly imprinted polymer (MIP). Doped aluminium ion (Al(3+)) was used as the functional cross-linker that generated Lewis acid sites in the confined silica matrix to interact with Cre via sharing of lone pair electrons. Surface morphologies and pore characteristics of the synthesized MIP were determined by field emission scanning electron microscopy (FESEM) and Brunauer-Emmet-Teller (BET) analyses, respectively. The imprinting efficiency of MIPs was then evaluated through the adsorption of Cre with regard to molar ratios of Al(3+). A Cre adsorption capacity of up to 17.40 mg Cre g(-1) MIP was obtained and adsorption selectivity of Cre to its analogues creatine (Cr) and N-hydroxysuccinimide (N-hyd) were found to be 3.90 ± 0.61 and 4.17 ± 3.09, respectively. Of all the studied MIP systems, chemisorption was predicted as the rate-limiting step in the binding of Cre. The pseudo-second-order chemical reaction kinetic provides the best correlation of the experimental data. Furthermore, the equilibrium adsorption capacity of MIP fit well with a Freundlich isotherm (R (2) = 0.98) in which the heterogeneous surface was defined. PMID:26163132

  20. The preparation of magnetic molecularly imprinted nanoparticles for the recognition of bovine hemoglobin.

    PubMed

    Zhang, Min; Wang, Yuzhi; Jia, Xiaoping; He, Meizhi; Xu, Minli; Yang, Shan; Zhang, Cenjin

    2014-03-01

    The protein imprinted technique combining surface imprinting and nano-sized supports materials is an attractive strategy for protein recognition and rapid separation. In this work, we imprinted bovine hemoglobin (BHb) on magnetic nanoparticles. With itaconic acid (IA) and acrylamide (AAm) as the monomers, the experiment was carried out in aqueous media via surface-imprinting technique. The effects of initial concentration and adsorption time over the adsorption capacity of both imprinted and non-imprinted nanoparticles were analyzed. The maximum adsorption capability of imprinted nanoparticles was found to be 77.6 mg g(-1), which was 3.1-4.3 times higher than that of the non-imprinted nanoparticles prepared at the same conditions. This resulted in the successful formation of imprinting cavities. Moreover, in selective adsorption experiment and competitive batch rebinding test, imprinted nanoparticles exhibited a high specific recognition of the template protein over the non-imprinted protein. PMID:24468385

  1. Determination of tetracyclines in food samples by molecularly imprinted monolithic column coupling with high performance liquid chromatography.

    PubMed

    Sun, Xiangli; He, Xiwen; Zhang, Yukui; Chen, Langxing

    2009-08-15

    A novel solid phase extraction (SPE) method for determination of tetracyclines (TCs) in milk and honey samples by molecularly imprinted monolithic column was developed. Using tetracycline (TC) as the template, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, methanol as the solvent, cyclohexanol and dodecanol as the mixed porogenic solvents, a TC imprinted monolithic column was prepared by in situ molecular imprinting technique for the first time, and the optimal synthesis conditions and the selectivity of TC imprinted monolithic column were investigated. The interfering substances in food samples and TCs can be separated successfully on imprinted column. Molecularly imprinted solid phase extraction (MISPE) coupling with C18 column was used to determinate the TCs in milk and honey. The recoveries of this method for six tetracyclines antibiotics such as tetracycline (TC), oxytetracycline (OTC), minocycline (MINO), chlortetracycline (CTC), metacycline (MTC) and doxycycline (DTC) were investigated, and high recoveries of 73.3-90.6% from milk samples and 62.6-82.3% from honey samples were obtained. A method for determination of TCs at low concentration level in milk and honey samples was successfully developed by using the monolithic column as the precolumn for solid phase extraction of six TCs compounds. PMID:19576466

  2. Tailoring molecularly imprinted polymer beads for alternariol recognition and analysis by a screening with mycotoxin surrogates.

    PubMed

    Abou-Hany, Rahma A G; Urraca, Javier L; Descalzo, Ana B; Gómez-Arribas, Lidia N; Moreno-Bondi, María C; Orellana, Guillermo

    2015-12-18

    Molecularly imprinted porous polymer microspheres have been prepared for selective binding of alternariol (AOH), a phenolic mycotoxin produced by Alternaria fungi. In order to lead the synthesis of recognition materials, four original AOH surrogates have been designed, prepared and characterized. They bear different number of phenol groups in various positions and different degree of O-methylation on the dibenzo[b,d]pyran-6-one skeleton. A comprehensive library of mixtures of basic, acidic or neutral monomers, with divinylbenzene or ethyleneglycol dimethacrylate as cross-linkers, were polymerized at a small scale in the presence of the four molecular mimics of the toxin molecule. This polymer screening has allowed selection of the optimal composition of the microbeads (N-(2-aminoethyl)methacrylamide, EAMA, and ethylene glycol dimethacrylate). The latter are able to bind AOH in water-acetonitrile (80:20, v/v) with an affinity constant of 109±10mM(-1) and a total number of binding sites of 35±2μmolg(-1), being alternariol monomethylether the only competitor species. Moreover, (1)H NMR titrations have unveiled a 1:2 surrogate-to-EAMA stoichiometry, the exact interaction sites and a binding constant of 1.5×10(4)M(-2). A molecularly imprinted solid phase extraction (MISPE) method has been optimized for selective isolation of the mycotoxin from aqueous samples upon a discriminating wash with 3mL of acetonitrile/water (20:80, v/v) followed by determination by HPLC with fluorescence detection. The method has been applied, in combination to ultrasound-assisted extraction, to the analysis of AOH in tomato samples fortified with the mycotoxin at five concentration levels (33-110μgkg(-1)), with recoveries in the range of 81-103% (RSD n=6). To the best of our knowledge, this is the first imprinted material capable of molecularly recognizing this widespread food contaminant. PMID:26632518

  3. Oxytetracycline recovery from aqueous media using computationally designed molecularly imprinted polymers.

    PubMed

    Rodríguez-Dorado, Rosalía; Carro, Antonia M; Chianella, Iva; Karim, Kal; Concheiro, Angel; Lorenzo, Rosa A; Piletsky, Sergey; Alvarez-Lorenzo, Carmen

    2016-09-01

    Polymers for recovery/removal of the antimicrobial agent oxytetracycline (OTC) from aqueous media were developed with use of computational design and molecular imprinting. 2-Hydroxyethyl methacrylate, 2-acrylamide-2-methylpropane sulfonic acid (AMPS), and mixtures of the two were chosen according to their predicted affinity for OTC and evaluated as functional monomers in molecularly imprinted polymers and nonimprinted polymers. Two levels of AMPS were tested. After bulk polymerization, the polymers were crushed into particles (200-1000 μm). Pressurized liquid extraction was implemented for template removal with a low amount of methanol (less than 20 mL in each extraction) and a few extractions (12-18 for each polymer) in a short period (20 min per extraction). Particle size distribution, microporous structure, and capacity to rebind OTC from aqueous media were evaluated. Adsorption isotherms obtained from OTC solutions (30-110 mg L(-1)) revealed that the polymers prepared with AMPS had the highest affinity for OTC. The uptake capacity depended on the ionic strength as follows: purified water > saline solution (0.9 % NaCl) > seawater (3.5 % NaCl). Polymer particles containing AMPS as a functional monomer showed a remarkable ability to clean water contaminated with OTC. The usefulness of the stationary phase developed for molecularly imprinted solid-phase extraction was also demonstrated. Graphical Abstract Selection of functional monomers by molecular modeling renders polymer networks suitable for removal of pollutants from contaminated aqueous environments, under either dynamic or static conditions. PMID:27488280

  4. [Preparation and characterization of core-shell structural magnetic molecularly imprinted polymers for nafcillin].

    PubMed

    Chen, Langxing; Liu, Yuxing; He, Xiwen; Zhang, Yukui

    2015-05-01

    The uniform core-shell nanostructured magnetic molecularly imprinted polymers (MIPs) were synthesized using antibiotic nafcillin as a template. In this protocol, the magnetite nanoparticles (NPs) were synthesized by the solvothermal reaction firstly. Subsequently, the vinyl groups were grated onto silica-modified Fe3O4 surface by 3-methacryloyloxypropyltrimethoxysilane via sol-gel method. Finally, the nafcillin-MIPs film was formed on the surface of Fe3O4 @ SiO2 by the copolymerization of vinyl end group with functional monomer, methacrylic acid, cross-linking agent, ethylene glycol dimethacrylate, the initiator azo-bis-isobutyronitrile and template molecule. The morphological and magnetic characteristics of the MIPs were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometer. The obtained spherical magnetic MIPs with diameters of about 320 nm had good monodispersity. The static binding experiment was carried out to evaluate the properties of magnetic MIPs and non imprinted polymers (NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity to template and good selectivity. The imprinting factor and the maximum adsorption capacity of Fe3O4 @ MIPs to nafcillin were 2.46 and 50.7 mg/g, respectively. It is expected that the prepared magnetic MIPs could be used for the enrichment of nafcillin in complex samples. PMID:26387205

  5. High-capacity magnetic hollow porous molecularly imprinted polymers for specific extraction of protocatechuic acid.

    PubMed

    Li, Hui; Hu, Xin; Zhang, Yuping; Shi, Shuyun; Jiang, Xinyu; Chen, Xiaoqin

    2015-07-24

    Magnetic hollow porous molecularly imprinted polymers (HPMIPs) with high binding capacity, fast mass transfer, and easy magnetic separation have been fabricated for the first time. In this method, HPMIPs was firstly synthesized using protocatechuic acid (PCA) as template, 4-vinylpyridine (4-VP) as functional monomer, glycidilmethacrylate (GMA) as co-monomer, and MCM-48 as sacrificial support. After that, epoxide ring of GMA was opened for chemisorbing Fe3O4 nanoparticles to prepare magnetic HPMIPs. The results of characterization indicated that magnetic HPMIPs exhibited large surface area (548m(2)/g) with hollow porous structure and magnetic sensitivity (magnetic saturation at 2.9emu/g). The following adsorption characteristics investigation exhibited surprisingly higher adsorption capacity (37.7mg/g), and faster kinetic binding (25min) than any previously reported PCA imprinted MIPs by traditional or surface imprinting technology. The equilibrium data fitted well to Langmuir equation and the adsorption process could be described by pseudo-second order model. The selective recognition experiments also demonstrated the high selectivity of magnetic HPMIPs towards PCA over analogues. The results of the real sample analysis confirmed the superiority of the proposed magnetic HPMIPs for selective and efficient enrichment of trace PCA from complex matrices. PMID:26044378

  6. New molecularly-imprinted polymer for carnitine and its application as ionophore in potentiometric selective membranes.

    PubMed

    Moret, Joséphine; Moreira, Felismina T C; Almeida, Sofia A A; Sales, M Goreti F

    2014-10-01

    Carnitine (CRT) is a biological metabolite found in urine that contributes in assessingseveral disease conditions, including cancer. Novel quick screening procedures for CRT are therefore fundamental. This work proposes a novel potentiometric device where molecularly imprinted polymers (MIPs) were used as ionophores. The host-tailored sites were imprinted on a polymeric network assembled by radical polymerization of methacrylic acid (MAA) and trimethylpropane trimethacrylate (TRIM). Non-imprinted polymers (NIPs) were produced as control by removing the template from the reaction media. The selective membrane was prepared by dispersing MIP or NIP particles in plasticizer and poly(vinyl chloride), PVC, and casting this mixture over a solid contact support made of graphite. The composition of the selective membrane was investigated with regard to kind/amount of sensory material (MIP or NIP), and the need for a lipophilic additive. Overall, MIP sensors with additive exhibited the best performance, with near-Nernstian response down to ~1×10(-4)mol L(-1), at pH5, and a detection limit of ~8×10(-5)mol L(-1). Suitable selectivity was found for all membranes, assessed by the matched potential method against some of the most common species in urine (urea, sodium, creatinine, sulfate, fructose and hemoglobin). CRT selective membranes including MIP materials were applied successfully to the potentiometric determination of CRT in urine samples. PMID:25175239

  7. Molecularly imprinted polymer doped with Hectorite for selective recognition of sinomenine hydrochloride.

    PubMed

    Zhang, W; Fu, H L; Li, X Y; Zhang, H; Wang, N; Li, W; Zhang, X X

    2016-01-01

    In this work, a new and facile method was introduced to prepare molecularly imprinted polymers (MIPs) based on nano clay hectorite (Hec) for sinomenine hydrochloride (SM) analysis. Hec was firstly dissolved in distilled water in order to swell adequately, followed by a common precipitation polymerization with SM as the template, methacrylic acid as monomer, ethylene glycol dimethacrylate as a crosslinker and 2,2-azobisisobutyronitrile as an initiator. Hec@SM-MIPs were characterized by Fourier transform infrared spectrometer, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The maximum binding capacity of Hec@SM-MIPs, SM-MIPs and non-imprinted polymers (NIPs) (Hec@NIPs) was 57.4, 16.8 and 11.6 mg/g, respectively. The reason for this result may be that Hec@SM-MIPs have more binding sites and imprinted cavities for template molecule. Equilibrium data were described by the Langmuir and Freundlich isotherm models. The results showed that the Hec@SM-MIPs adsorption data correlated better with the Langmuir equation than the Freundlich equation under the studied concentration range. In vitro drug release experiment, Hec@SM-MIPs have a better ability to control SM release than SM-MIPs. Therefore, Hec@SM-MIPs were successfully applied to extraction of SM and used as the materials for drug delivery system. PMID:26614052

  8. Capillary electrophoresis characterization of molecularly imprinted polymer particles in fast binding with 17β-estradiol.

    PubMed

    DeMaleki, Zack; Lai, Edward P C; Dabek-Zlotorzynska, Ewa

    2010-09-01

    Molecularly imprinted polymer (MIP) submicron particles were synthesized, using either ethylene glycol dimethacrylate or trimethylolpropane trimethacrylate as a cross-linker, specifically for recognition of 17β-estradiol (E2). HPLC with fluorescence detection (HPLC-FD) results showed that 90(±5)% of E2 bound onto these particles after 2 min of incubation, and 96(±3)% after long equilibrium. The binding capacity was 8(±3) μmol/g for MIP particles prepared using ethylene glycol dimethacrylate, and 33-43(±8) μmol/g for using trimethylolpropane trimethacrylate. CE separation of MIP and non-imprinted polymer particles was successful when 50 mM borate buffer (pH 8.5) containing 0.005% w/v EOTrol™ LN in reverse polarity (-30 kV) was used. The electrophoretic mobilities of MIP and non-imprinted polymer particles, together with dynamic light scattering measurement of particle sizes, allowed for an estimation of their surface charges. Automated injection of E2 and particles in mixture set a lower limit of 20(±1) s on incubation time for the study of fast binding kinetics. The presence of E2 and bisphenol A (BPA) together tested the selectivity of MIP particles, when the two compounds competed for available binding cavities or sites. Addition of E2 after BPA confirmed E2 occupation of the specific binding cavities, via displacement of BPA. PMID:20658488

  9. Molecularly Imprinted Polymer Microspheres Containing Photoswitchable Spiropyran-Based Binding Sites

    PubMed Central

    2013-01-01

    A versatile approach for the preparation of photoswitchable molecularly imprinted polymers (MIPs) is proposed where the selective recognition and the photoresponsive function are assumed by two different monomers. As a proof of concept, MIP microspheres were synthesized by precipitation polymerization for recognizing terbutylazine, a triazine-type herbicide. Formation of the selective binding sites was based upon H-bonding interactions between the template and the functional monomer methacrylic acid, whereas a polymerizable spiropyran unit was incorporated into the polymer matrix to provide light-controllable characteristics. A trifunctional monomer, trimethylolpropane trimethacrylate, was used as a cross-linker. The imprinted particles exhibited considerable morphological differences compared to their nonimprinted counterparts as observed by scanning electron microscopy. The imprinting effect was confirmed by equilibrium rebinding studies. The photoresponsiveness of the polymer particles was visualized by fluorescence microscopy and further characterized by spectroscopy. The template binding behavior could be regulated by alternating UV and visible light illumination when analyte release and uptake was observed, respectively. Binding isotherms fitted by the Freundlich model revealed the photomodulation of the number of binding sites and their average affinity. This facile synthetic approach may give an attractive starting point to endow currently existing highly selective MIPs with photoswitchable properties, thereby extending the scope of spiropyran-based photoresponsive smart materials. PMID:23961698

  10. Preparation of molecularly imprinted solid phase extraction using bensulfuron-methyl imprinted polymer and clean-up for the sulfonylurea-herbicides in soybean.

    PubMed

    Tang, Kaijie; Chen, Shangwei; Gu, Xiaohong; Wang, Haijun; Dai, Jun; Tang, Jian

    2008-04-28

    A pre-treatment methodology based on the molecularly imprinted solid phase extraction (MI-SPE) procedure was developed for the determination of bensulfuron-methyl (BSM), tribenuron-methyl (TBM), metsulfuron-methyl (MSM) and nicosulfuron (NS) in soybean samples. A molecular imprinted polymer (MIP) was prepared by precipitation polymerization using BSM as the template molecule, alpha-methacrylic acid (MAA) as the functional monomer, trimethylolpropane trimethacrylate (TRIM) as the cross-linker and dichloromethane as the porogen. The binding behaviors of the template BSM and its analogues on the MIP were evaluated by high performance liquid chromatography (HPLC). Then, solid phase extraction (SPE) with a BSM molecularly imprinted polymer (BSM-MIP) as adsorbent was investigated and the optimum loading, washing, and eluting conditions for MI-SPE of the selected BSM, MSM, TBM, and NS were established. The optimized MI-SPE procedure was used to extract the sulfonylureas and a high recovery was obtained in the soybean samples. PMID:18405688

  11. Dopaminergic receptor-ligand binding assays based on molecularly imprinted polymers on quartz crystal microbalance sensors.

    PubMed

    Naklua, Wanpen; Suedee, Roongnapa; Lieberzeit, Peter A

    2016-07-15

    Molecularly imprinted polymers (MIPs) have been successfully applied as selective materials for assessing the binding activity of agonist and antagonist of dopamine D1 receptor (D1R) by using quartz crystal microbalance (QCM). In this study, D1R derived from rat hypothalamus was used as a template and thus self-organized on stamps. Those were pressed into an oligomer film consisting of acrylic acid: N-vinylpyrrolidone: N,N'-(1,2-dihydroxyethylene) bis-acrylamide in a ratio of 2:3:12 spin coated onto a dual electrode QCM. Such we obtained one D1R-MIP-QCM electrode, whereas the other electrode carried the non-imprinted control polymer (NIP) that had remained untreated. Successful imprinting of D1R was confirmed by AFM. The polymer can re-incorporate D1R leading to frequency responses of 100-1200Hz in a concentration range of 5.9-47.2µM. In a further step such frequency changes proved inherently useful for examining the binding properties of test ligands to D1R. The resulting mass-sensitive measurements revealed Kd of dopamine∙HCl, haloperidol, and (+)-SCH23390 at 0.874, 25.6, and 0.004nM, respectively. These results correlate well with the values determined in radio ligand binding assays. Our experiments revealed that D1R-MIP sensors are useful for estimating the strength of ligand binding to the active single site. Therefore, we have developed a biomimetic surface imprinting strategy for QCM studies of D1R-ligand binding and presented a new method to ligand binding assay for D1R. PMID:26926593

  12. Optimisation and production of a molecular-imprinted-polymer for the electrochemical determination of triacetone triperoxide (TATP)

    NASA Astrophysics Data System (ADS)

    Mamo, S. K.; Gonzalez-Rodriguez, J.

    2014-10-01

    Triacetone triperoxide (TATP) explosive is one of the most common components of improvised explosive devices which can be prepared from commercially readily available reagents with easier synthetic procedure that is available over the internet. Molecularly imprinted polymer electrochemical sensors can offer highly selective determination of several classes of compounds from wide range of sample matrices in parts per billion levels. Highly sensitive and selective molecularly imprinted polymer electrochemical sensor has been developed for determination of TATP in acetonitrile. Molecular imprinting has been performed via electro-polymerization on to glassy carbon, gold, silver and platinum electrode surface by cyclic voltammetry from a solution of pyrrole functional monomer, TATP template, and LiClO4 supporting electrolyte. Quantitative differential pulse voltammetric measurements of TATP, with LiClO4 supporting electrolyte, were performed using the molecularly imprinted polymer modified and bare glassy carbon electrodes in a potential range of -2.0V to +1.0 V (vs. Ag/AgCl). Three-factor two-level factorial design has been used to optimize the monomer concentration at 0.1 mol L-1, template concentration at 100 mmol L-1, and the number of cyclic voltammetry scan cycles to 10 cycles, using differential pulse voltammetric current intensity as response variable. The molecularly imprinted polymer modified glassy carbon electrode demonstrated superior selectivity for TATP in the presence of PETN, RDX, HMX, and TNT.

  13. Molecular Imprint of Enzyme Active Site by Camel Nanobodies

    PubMed Central

    Li, Jiang-Wei; Xia, Lijie; Su, Youhong; Liu, Hongchun; Xia, Xueqing; Lu, Qinxia; Yang, Chunjin; Reheman, Kalbinur

    2012-01-01

    Screening of inhibitory Ab1 antibodies is a critical step for producing catalytic antibodies in the anti-idiotypic approach. However, the incompatible surface of the active site of the enzyme and the antigen-binding site of heterotetrameric conventional antibodies become the limiting step. Because camelid-derived nanobodies possess the potential to preferentially bind to the active site of enzymes due to their small size and long CDR3, we have developed a novel approach to produce antibodies with alliinase activities by exploiting the molecular mimicry of camel nanobodies. By screening the camelid-derived variable region of the heavy chain cDNA phage display library with alliinase, we obtained an inhibitory nanobody VHHA4 that recognizes the active site. Further screening with VHHA4 from the same variable domain of the heavy chain of a heavy-chain antibody library led to a higher incidence of anti-idiotypic Ab2 abzymes with alliinase activities. One of the abzymes, VHHC10, showed the highest activity that can be inhibited by Ab1 VHHA4 and alliinase competitive inhibitor penicillamine and significantly suppressed the B16 tumor cell growth in the presence of alliin in vitro. The results highlight the feasibility of producing abzymes via anti-idiotypic nanobody approach. PMID:22374998

  14. Determination of theophylline in serum by molecularly imprinted solid-phase extraction with pulsed elution.

    PubMed

    Mullett, W M; Lai, E P

    1998-09-01

    The technique of molecular imprinting is used to produce an extensively cross-linked poly(methacrylic acid-co-ethylene dimethacrylate) material that contains theophylline as a print molecule. After Soxhlet extraction of the theophylline, binding sites are formed in the polymer with complementary size, shape, and positioning of chemical functionalities. The molecularly imprinted polymer's (MIP) high theophylline selectivity, chemical stability, and physically robust nature make it an ideal stationary-phase material in columns for HPLC separation of theophylline from other structurally related drug compounds. Mobile-phase tests confirm that a retention mechanism typical of normal-phase chromatography governs the separation, and selectivity of the MIP column can be controlled by a combination of the mobile phase and the sample solvent. Under optimal conditions, the MIP column functions like a solid-phase sorbent for theophylline extraction. Rapid elution of the bound theophylline can be accomplished in a pulsed format through injection of 20 μL of a solvent that has the proper polarity and protic nature to disrupt the electrostatic interactions and hydrogen bonding between theophylline and binding sites. A concentration detection limit of 120 ng/mL is obtained using direct UV absorption detection at 270 nm, which corresponds to a mass detection limit of 2.4 ng. This new technique, molecularly imprinted solid-phase extraction with pulsed elution (MISPE-PE), permits on-line preconcentration of theophylline from a large volume of dilute sample solution. Using a sample volume of 300 μL, a 40 ng/mL standard solution produces a detectable peak signal. Application of MISPE-PE in serum analysis further demonstrates the high capability of the MIP column to selectively isolate theophylline from other matrix components for fast, accurate determination. PMID:21644709

  15. Synthesis of Water-Dispersible Molecularly Imprinted Electroactive Nanoparticles for the Sensitive and Selective Paracetamol Detection.

    PubMed

    Luo, Jing; Ma, Qiang; Wei, Wei; Zhu, Ye; Liu, Ren; Liu, Xiaoya

    2016-08-17

    A novel kind of water-dispersible molecularly imprinted electroactive nanoparticles was prepared combining macromolecular self-assembly with molecularly imprinting technique employing paracetamol (PCM) as template molecule. An amphiphilic electroactive copolymer (P(NVC-EHA-AA), PNEA) containing carbazole group was first synthesized through a one-pot free radical copolymerization. The coassembly of the electroactive copolymers with the template molecules (PCM) in aqueous solution generated nanoparticles embedded with PCM, leading to the formation of molecularly imprinted electroactive nanoparticles (MIENPs). A robust MIP film was formed on the surface of electrode by electrodeposition of MIENPs and subsequent electropolymerization of the carbazole units in MIENPs. After the extraction of PCM molecules, a MIP sensor was successfully constructed. It should be noted that electropolymerization of the electroactive units in MIENPs creates cross-conjugated polymer network, which not only locks the recognition sites but also significantly accelerates the electron transfer and thus enhances the response signal of the MIP sensor. These advantages endowed the MIP sensor with good selectivity and high sensitivity for PCM detection. The MIP sensor could recognize PCM from its possible interfering substances with good selectivity. Under the optimal conditions, two linear ranges from 1 μM to 0.1 mM and 0.1 to 10 mM with a detection limit of 0.3 μM were obtained for PCM detection. The MIP sensor also showed good stability and repeatability, which has been successfully used to analyze PCM in tablets and human urine samples with satisfactory results. PMID:27463123

  16. Designing and preparation of novel alkaloid-imprinted membrane with grafting type and its molecular recognition characteristic and permselectivity.

    PubMed

    Gao, Baojiao; Zhang, Liqin; Li, Yanbin

    2016-09-01

    A novel polysulfone-based molecularly imprinted membrane (MIM) with graft type (designated as GMIM) was successfully prepared by a combination of film-forming method of immersion-precipitation phase transformation with molecule surface-imprinting technique. The porous asymmetry membrane of chloromethylated polysulfone (CMPSF) was first prepared by a phase inversion method, and then the CMPSF membrane was amination-modified with ethanediamine as reagent, resulting aminated polysulfone membrane AMPSF, on whose surface primary amino groups were contained. Then the graft-polymerization of methacrylic acid (MAA) was realized by initiating of the surface-initiating system of -NH2/S2O8(-), obtaining the grafted membrane PSF-g-PMAA. After PSF-g-PMAA membrane adsorbed matrine, the crosslinking reaction of the grafted PMAA was allowed to be carried out with ethylene glycol diglycidyl ether (EGDE) as crosslinker, resulting in the matrine imprinted membrane with graft type, GMIM. The binding characteristics of the imprinted membrane GMIM, the permeability and separation property for matrine were investigated in depth. The experimental results show that the imprinted membrane consists of a thin imprinted layer, a thin skin layer containing channels at nanoscale and a support layer with macroporous structure. The imprinted membrane GMIM has specific recognition selectivity and excellent binding affinity for matrine, and its selectivity coefficient for matrine relative to cytisine is 4.85. More importantly, the imprinted membrane can produce good "gate effect" because of its own structure characteristic, so that it has fine permselectivity for the template, matrine molecule. The separation coefficient of the imprinted membrane GMIM for matrine relative to cytisine as a contrast reaches up to 5.9, displaying the excellent performance of a selectively permeable membrane. PMID:27207062

  17. Effect of minimizing amount of template by addition of macromolecular crowding agent on preparation of molecularly imprinted monolith.

    PubMed

    Sun, Guang-Ying; Zhong, Dan-Dan; Li, Xiang-Jie; Luo, Yu-Qing; Ba, Hang; Liu, Zhao-Sheng; Aisa, Haji Akber

    2015-09-01

    One of the main challenges in the preparation of molecularly imprinted polymers (MIPs) is the substantial initial amount of template needed because of the requirement of high load capacities for most applications. A new strategy of macromolecular crowding was suggested to solve this problem by reducing the amount of template in the polymerization recipe. In a ternary porogenic system of polystyrene (PS) (crowding agent), tetrahydrofuran, and toluene, an imprinted monolithic column with high porosity and good permeability was synthesized using a mixture of ellagic acid (template), acrylamide, and ethylene glycol dimethacrylate. The effect of polymerization factors, including monomer-template molar ratio and the molecular weight and concentration of PS, on the imprinting effect of the resulting MIP monoliths was systematically investigated. At a high ratio of monomer-template (120:1), the greatest imprinting factor of 32.4 was obtained on the MIP monolith with the aid of macromolecular crowding agent. The PS-based imprinted monolith had imprinting even at the extremely high ratio of functional monomer to template of 1510:1. Furthermore, an off-line solid-phase extraction based on the ground MIP was conducted, and the purification recovery of ellagic acid from pomegranate-rind extract was up to 80 %. In conclusion, this approach based on macromolecular crowding is simple, and is especially valuable for those applications of MIP preparation for which a rare template is used. PMID:26210545

  18. Preparation and characterization of a molecularly imprinted monolithic column for pressure-assisted CEC separation of nitroimidazole drugs.

    PubMed

    Liao, Sulan; Wang, Xiaochun; Lin, Xucong; Xie, Zenghong

    2010-08-01

    A polymethacrylate-based molecularly imprinted monolithic column bearing mixed functional monomers, using non-covalent imprinting approach, was designed for the rapid separation of nitroimidazole compounds. The new monolithic column has been prepared via simple in situ polymerization of 2-hydroxyethyl methacrylate, dimethylaminoethyl methacrylate and ethylene dimethacrylate, using (S)-ornidazole ((S)-ONZ) as template in a binary porogenic mixture consisting of toluene and dodecanol. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of monomers as well as the composition of the porogenic solvent. The column performance was evaluated in pressure-assisted CEC mode. Separation conditions such as pH, voltage, amount of organic modifier and salt concentration were studied. The optimized monolithic column resulted in excellent separation of a group of structurally related nitroimidazole drugs within 10 min in isocratic elution condition. Column efficiencies of 99 000, 80 000, 103 000, 60 000 and 99 000 plates/m were obtained for metronidazole, secnidazole, ronidazole, tinidazole and dimetridazole, respectively. Parallel experiments were carried out using molecularly imprinted and non-imprinted capillary columns. The separation might be the result of combined effects including hydrophobic, hydrogen bonding and the imprinting cavities on the (S)-ONZ-imprinted monolithic column. PMID:20661943

  19. Theoretical investigation on functional monomer and solvent selection for molecular imprinting of tramadol

    NASA Astrophysics Data System (ADS)

    Fonseca, Matheus C.; Nascimento, Clebio S.; Borges, Keyller B.

    2016-02-01

    The purpose of this Letter was to study for the first time the interaction process of tramadol (TRM) with distinct functional monomers (FM) in the formation of molecular imprinted polymer (MIP), using density functional theory (DFT) calculations at B3LYP/6-31G(d,p). As result we were able to establish that the best MIP synthesis conditions are obtained with acrylic acid as FM in 1:3 molar ratio and with chloroform as solvent. This condition presented the lowest stabilization energy for the pre-polymerization complexes. Besides, the intermolecular hydrogen bonds found between the template molecule and functional monomers play a primary role to the complex stability.

  20. Boronate Affinity-Molecularly Imprinted Biocompatible Probe: An Alternative for Specific Glucose Monitoring.

    PubMed

    Chen, Guosheng; Qiu, Junlang; Fang, Xu'an; Xu, Jianqiao; Cai, Siying; Chen, Qing; Liu, Yan; Zhu, Fang; Ouyang, Gangfeng

    2016-08-19

    A biocompatible probe for specific glucose recognition is based on photoinitiated boronate affinity-molecular imprinted polymers (BA-MIPs). The unique pre-self-assembly between glucose and boronic acids creates glucose-specific memory cavities in the BA-MIPs coating. As a result, the binding constant toward glucose was enhanced by three orders of magnitude. The BA-MIPs probe was applied to glucose determination in serum and urine and implanted into plant tissues for low-destructive and long-term in vivo continuous glucose monitoring. PMID:27411946

  1. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    NASA Astrophysics Data System (ADS)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike

  2. Development of molecularly imprinted microspheres for the fast uptake of 4-cumylphenol from water and soil samples.

    PubMed

    Narula, Priyanka; Kaur, Varinder; Singh, Raghubir; Kansal, Sushil Kumar

    2014-11-01

    Molecularly imprinted microspheres containing binding sites for the extraction of 4-cumylphenol have been prepared for the first time. The imprinted microspheres were synthesized by a precipitation method using 4-cumylphenol as a template molecule, methacrylic acid as a functional monomer and divinylbenzene-80 as a cross-linker for polymer network formation. The formation and the morphology of molecularly imprinted microspheres were well characterized using infrared spectroscopy, thermogravimetric studies, and scanning electron microscopy. The Brunauer-Emmett-Teller analysis revealed the high surface area of the sorbent indicating formation of molecularly imprinted microspheres. The developed microspheres were employed as a sorbent for the solid-phase extraction of 4-cumylphenol and showed fast uptake kinetics. The sorption parameters were optimized to achieve efficient sorption of the template molecule, like pH, quantity of molecularly imprinted microspheres, time required for equilibrium set-up, sorption kinetics, and adsorption isotherm. A standard method was developed to analyze the sorbed sample quantitatively at 279 nm using high-performance liquid chromatography with diode array detection. It was validated by determining target analyte from synthetic samples, bottled water, spiked tap water, and soil samples. The prepared material is a selective and robust sorbent with good reusability. PMID:25196136

  3. Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses.

    PubMed

    White, Charles J; McBride, Matthew K; Pate, Kayla M; Tieppo, Arianna; Byrne, Mark E

    2011-08-01

    Symptoms of contact lenses induced dry eye (CLIDE) are typically treated through application of macromolecular re-wetting agents via eye drops. Therapeutic soft contact lenses can be formulated to alleviate CLIDE symptoms by slowly releasing comfort agent from the lens. In this paper, we present an extended wear silicone hydrogel contact lens with extended, controllable release of 120 kDa hydroxypropyl methylcellulose (HPMC) using a molecular imprinting strategy. A commercial silicone hydrogel lens was tailored to release approximately 1000 μg of HPMC over a period of up to 60 days in a constant manner at a rate of 16 μg/day under physiological flowrates, releasing over the entire range of continuous wear. Release rates could be significantly varied by the imprinting effect and functional monomer to template ratio (M/T) with M/T values 0, 0.2, 2.8, 3.4 corresponding to HPMC release durations of 10, 13, 23, and 53 days, respectively. Lenses had high optical quality and adequate mechanical properties for contact lens use. This work highlights the potential of imprinting in the design and engineering of silicone hydrogel lenses to release macromolecules for the duration of wear, which may lead to decreased CLIDE symptoms and more comfortable contact lenses. PMID:21601274

  4. Determination of protein binding affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs).

    PubMed

    EL-Sharif, Hazim F; Hawkins, Daniel M; Stevenson, Derek; Reddy, Subrayal M

    2014-08-01

    Hydrogel-based molecularly imprinted polymers (HydroMIPs) were prepared for several proteins (haemoglobin, myoglobin and catalase) using a family of acrylamide-based monomers. Protein affinity towards the HydroMIPs was investigated under equilibrium conditions and over a range of concentrations using specific binding with Hill slope saturation profiles. We report HydroMIP binding affinities, in terms of equilibrium dissociation constants (Kd) within the micro-molar range (25 ± 4 μM, 44 ± 3 μM, 17 ± 2 μM for haemoglobin, myoglobin and catalase respectively within a polyacrylamide-based MIP). The extent of non-specific binding or cross-selectivity for non-target proteins has also been assessed. It is concluded that both selectivity and affinity for both cognate and non-cognate proteins towards the MIPs were dependent on the concentration and the complementarity of their structures and size. This is tentatively attributed to the formation of protein complexes during both the polymerisation and rebinding stages at high protein concentrations. We have used atomic force spectroscopy to characterize molecular interactions in the MIP cavities using protein-modified AFM tips. Attractive and repulsive force curves were obtained for the MIP and NIP (non-imprinted polymer) surfaces (under protein loaded or unloaded states). Our force data suggest that we have produced selective cavities for the template protein in the MIPs and we have been able to quantify the extent of non-specific protein binding on, for example, a non-imprinted polymer (NIP) control surface. PMID:24950144

  5. Molecularly imprinted solid-phase extraction for the determination of fenitrothion in tomatoes.

    PubMed

    Pereira, Leandro Alves; Rath, Susanne

    2009-02-01

    Organophosphorus insecticides are widely employed in agriculture, and residues of them can remain after harvesting or storage. Pesticide residue control is an important task for ensuring food safety. Common chromatographic methods used in the determination of pesticide residues in food require clean-up and concentration steps prior to quantitation. While solid-phase extraction has been widely employed for this purpose, there is a need to improve selectivity. Due to their inherent biomimetic recognition systems, molecularly imprinted polymers (MIP) allow selectivity to be enhanced while keeping the costs of analysis low. In this work, a MIP that was designed to enable the selective extraction of fenitrothion (FNT) from tomatoes was synthesized using a noncovalent imprinting approach. The polymer was prepared using methacrylic acid as functional monomer and ethyleneglycol dimethacrylate as crosslinking monomer in dichloromethane (a porogenic solvent). The polymer was characterized by Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and nitrogen sorption porosimetry. The pore structure and the surface area were evaluated using the BET adsorption method. To characterize the batch rebinding behavior of the MIP, the adsorption isotherm was measured, allowing the total number of binding sites, the average binding affinity and the heterogeneity index to be established. A voltammetric method of quantifying FNT during the molecularly imprinted solid-phase extraction (MISPE) studies was developed. The polymer was placed in extraction cartridges which were then used to clean up and concentrate FNT in tomato samples prior to high-performance liquid chromatographic quantitation. The material presented a medium extraction efficiency of 59% (for analyses performed with three different cartridges on three days and a fortification level of 5.0 microg g(-1)) and selectivity when used in the preparation of

  6. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity.

    PubMed

    Esfandyari-Manesh, Mehdi; Darvishi, Behrad; Ishkuh, Fatemeh Azizi; Shahmoradi, Elnaz; Mohammadi, Ali; Javanbakht, Mehran; Dinarvand, Rassoul; Atyabi, Fatemeh

    2016-05-01

    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181 nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC50) of 4.9 ± 0.9, 7.4 ± 0.5 and 32.8 ± 3.8 nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells. PMID:26952466

  7. Novel molecularly imprinted magnetic nanoparticles for the selective extraction of protoberberine alkaloids in herbs and rat plasma.

    PubMed

    Meng, Jiawei; Zhang, Wenpeng; Bao, Tao; Chen, Zilin

    2015-06-01

    In this work, a novel magnetic nanomaterial functionalized with a molecularly imprinted polymer was prepared for the extraction of protoberberine alkaloids. Molecularly imprinted polymers were made on the surface of Fe3 O4 nanoparticles by using berberine as template, acetonitrile/water as porogen, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross-linker. The optimized molar ratio of template/functional monomer was 1:7. The polymeric magnetic nanoparticles were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. The stability and adsorption capacity of the molecularly imprinted polymers were investigated. The molecularly imprinted polymers were used as a selective sorbent for the magnetic molecularly imprinted solid-phase extraction and determination of jatrorrhizine, palmatine, and berberine. Extraction parameters were studied including loading pH, sample volume, stirring speed, and extraction time. Finally, a magnetic molecularly imprinted solid-phase extraction coupled to high-performance liquid chromatography method was developed. Under the optimized conditions, the method showed good linear range of 0.1-150 ng/mL for berberine and 0.1-100 ng/mL for jatrorrhizine and palmatine. The limit of detection was 0.01 ng/mL for berberine and 0.02 ng/mL for jatrorrhizine and palmatine. The proposed method has been applied to determine protoberberine alkaloids in Cortex phellodendri and rat plasma samples. The recoveries ranged from 87.33-102.43%, with relative standard deviation less than 4.54% in Cortex phellodendri and from 102.22-111.15% with relative standard deviation less than 4.59% in plasma. PMID:25832420

  8. Separation and determination of citrinin in corn using HPLC fluorescence detection assisted by molecularly imprinted solid phase extraction clean-up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A liquid chromatography based method to detect citrinin in corn was developed using molecularly imprinted solid phase extraction (MISPE) sample clean-up. Molecularly imprinted polymers were synthesized using 1,4-dihydroxy-2-naphthoic acid as the template and an amine functional monomer. Density func...

  9. A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol.

    PubMed

    Hong, Chien-Chong; Chang, Po-Hsiang; Lin, Chih-Chung; Hong, Chian-Lang

    2010-05-15

    This paper presents a disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol. So far, the methods to detect anesthetic propofol in hospitals are liquid chromatography (LC), high-performance liquid chromatography (HPLC), and gas chromatography-mass spectroscopy (GC-MS). These conventional instruments are bulky, expensive, and not ease of access. In this work, a novel plastic microfluidic biochip with on-chip anesthetic biosensor has been developed and characterized for rapid detection of anesthetic propofol. The template-molecule imprinted polymers were integrated into microfluidic biochips to be used for detecting anesthetic propofol optically at 655 nm wavelength after the reaction of propofol with color reagent. Experimental results show that the sensitivity of the microfluidic biochip with on-chip molecularly imprinted polymers (MIPs) biosensor is 6.47 mV/(ppm mm(2)). The specific binding of MIP to non-imprinted polymer (NIP) is up to 456%. And the detection limit of the microsystem is 0.25 ppm with a linear detection range from 0.25 to 10 ppm. The disposable microfluidic biochip with on-chip anesthetic biosensor using molecularly imprinted polymers presented in this work showed excellent performance in separation and sensing of anesthetic propofol molecules. While compared to large-scale conventional instruments, the developed microfluidic biochips with on-chip MIP biosensors have the advantages of compact size, high sensitivity, high selectivity, low cost, and fast response. PMID:20206494

  10. Superhydrophilic molecularly imprinted polymers based on a water-soluble functional monomer for the recognition of gastrodin in water media.

    PubMed

    Ji, Wenhua; Zhang, Mingming; Wang, Daijie; Wang, Xiao; Liu, Jianhua; Huang, Luqi

    2015-12-18

    In this study, the first successfully developed superhydrophilic molecularly imprinted polymers (MIPs) for gastrodin recognition have been described. MIPs were prepared via the bulk polymerization process in an aqueous solution using alkenyl glycosides glucose (AGG) as the water-soluble functional monomer. The non-imprinted polymers (NIPs) were also synthesized using the same method without the use of the template. The dynamic water contact angles and photographs of the dispersion properties confirmed that the molecularly imprinted polymers displayed excellent superhydrophilicity. The results demonstrated that the MIPs exhibited high selectivity and an excellent imprinting effect. A molecularly imprinted solid phase extraction (MISPE) method was established. Optimization of various parameters affecting MISPE was investigated. Under the optimized conditions, a wide linear range (0.001-100.0μgmL(-1)) and low limits of detection (LOD) and quantification (LOQ) (0.03 and 0.09ngmL(-1), respectively) were achieved. When compared with the NIPs, higher recoveries (90.5% to 97.6%) of gastrodin with lower relative standard deviations values (below 6.4%) using high performance liquid chromatography were obtained at three spiked levels in three blank samples. These results demonstrated one efficient, highly selective and environmentally-friendly MISPE technique with excellent reproducibility for the purification and pre-concentration of gastrodin from an aqueous extract of Gastrodia elata roots. PMID:26627582

  11. Molecular imprinted polymer functionalized carbon nanotube sensors for detection of saccharides

    NASA Astrophysics Data System (ADS)

    Badhulika, Sushmee; Mulchandani, Ashok

    2015-08-01

    In this work, we report the synthesis and fabrication of an enzyme-free sugar sensor based on molecularly imprinted polymer (MIP) on the surface of single walled carbon nanotubes (SWNTs). Electropolymerization of 3-aminophenylboronic acid (3-APBA) in the presence of 10 M d-fructose and fluoride at neutral pH conditions resulted in the formation of a self-doped, molecularly imprinted conducting polymer (MICP) via the formation of a stable anionic boronic ester complex between poly(aniline boronic acid) and d-fructose. Template removal generated binding sites on the polymer matrix that were complementary to d-fructose both in structure, i.e., shape, size, and positioning of functional groups, thus enabling sensing of d-fructose with enhanced affinity and specificity over non-MIP based sensors. Using carbon nanotubes along with MICPs helped to develop an efficient electrochemical sensor by enhancing analyte recognition and signal generation. These sensors could be regenerated and used multiple times unlike conventional affinity based biosensors which suffer from physical and chemical stability.

  12. Supported liquid membrane-protected molecularly imprinted fibre for solid-phase microextraction of thiabendazole.

    PubMed

    Barahona, Francisco; Turiel, Esther; Martín-Esteban, Antonio

    2011-05-23

    In this work, molecularly imprinted polymer fibres (MIP-fibre) have been prepared and evaluated for solid-phase microextraction (SPME), using thiabendazole (TBZ) as template. Inherent limitations of molecular imprinted polymers, such as target recognition in aqueous media, have been solved with the use of organic supported liquid membrane (SLM) protecting the MI-SPME process. MIP-fibres were located inside a polypropylene hollow capillary and protected by an organic solvent immobilized as a thin SLM in the pores of the capillary wall. The extraction procedure involved two simultaneous processes: liquid phase microextraction using polypropylene hollow fibres (HF-LPME) of the analytes from the sample to an organic acceptor solution through a SLM; and SPME of the analytes from the organic acceptor solution to a MIP-fibre inside the polypropylene capillary. The developed methodology was optimized and applied to the extraction of TBZ form spiked orange juices. Calibration curves showed good linearity in the concentration range under study (0.01-5.00 mg L(-1)) and a regression coefficient better than 0.995 was obtained. The detection limit was 4 μg L(-1), low enough to permit the satisfactory analysis of TBZ in real samples, according to European regulation. Relative standard deviations ranged below 10%, indicating good repeatability. By this manner, the advantages of inherent selectivity of MIP SPME fibres and the enrichment and sample cleanup capability of the HF-LPME have been successfully combined into a single device. PMID:21565306

  13. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP.

    PubMed

    Czulak, J; Guerreiro, A; Metran, K; Canfarotta, F; Goddard, A; Cowan, R H; Trochimczuk, A W; Piletsky, S

    2016-06-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates. PMID:27174700

  14. Preparation of magnetic molecularly imprinted polymer for selective recognition of resveratrol in wine.

    PubMed

    Chen, Fang-Fang; Xie, Xiao-Yu; Shi, Yan-Ping

    2013-07-26

    The magnetic molecularly imprinted polymers (MMIPs) for resveratrol were prepared by using surface molecular imprinting technique with a super paramagnetic core-shell nanoparticle as a supporter. Rhapontigenin, which is the analogues of resveratrol, was selected as dummy template molecules to avoid the leakage of trace amount of resveratrol. Acrylamide and ethylene glycol dimethacrylate were chosen as functional monomers and cross-linker, respectively. The obtained MMIPs were characterized by using scanning electron microscopy, Fourier transform infrared spectrum, X-ray diffraction and vibrating sample magnetometer. High performance liquid chromatography was used to analyze the target analytes. The resulting MMIPs exhibited high saturation magnetization of 53.14emug(-1) leading to the fast separation. The adsorption test showed that the MMIPs had high adsorption capacity for resveratrol and contained homogeneous binding sites. The MMIPs were employed as adsorbent of solid phase extraction for determination of resveratrol in real wine samples, and the recoveries of spiked samples ranged from 79.3% to 90.6% with the limit of detection of 4.42ngmL(-1). The prepared MMIPs could be employed to selectively pre-concentrate and determine resveratrol from wine samples. PMID:23481473

  15. Magnetic molecularly imprinted polymer for the selective extraction of quercetagetin from Calendula officinalis extract.

    PubMed

    Ma, Run-Tian; Shi, Yan-Ping

    2015-03-01

    A new magnetic molecularly imprinted polymers (MMIPs) for quercetagetin was prepared by surface molecular imprinting method using super paramagnetic core-shell nanoparticle as the supporter. Acrylamide as the functional monomer, ethyleneglycol dimethacrylate as the crosslinker and acetonitrile as the porogen were applied in the preparation process. Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM) were applied to characterize the MMIPs, and High performance liquid chromatography (HPLC) was utilized to analyze the target analytes. The selectivity of quercetagetin MMIPs was evaluated according to their recognition to template and its analogues. Excellent binding for quercetagetin was observed in MMIPs adsorption experiment, and the adsorption isotherm models analysis showed that the homogeneous binding sites were distributed on the surface of the MMIPs. The MMIPs were employed as adsorbents in solid phase extraction for the determination of quercetagetin in Calendula officinalis extracts. Furthermore, this method is fast, simple and could fulfill the determination and extraction of quercetagetin from herbal extract. PMID:25618718

  16. Preparation of Magnetic Hollow Molecularly Imprinted Polymers for Detection of Triazines in Food Samples.

    PubMed

    Wang, Aixiang; Lu, Hongzhi; Xu, Shoufang

    2016-06-22

    Novel magnetic hollow molecularly imprinted polymers (M-H-MIPs) were proposed for highly selective recognition and fast enrichment of triazines in food samples. M-H-MIPs were prepared on the basis of multi-step swelling polymerization, followed by in situ growth of magnetic Fe3O4 nanoparticles on the surface of hollow molecularly imprinted polymers (H-MIPs). Transmission electron microscopy and scanning electron microscopy confirmed the successful immobilization of Fe3O4 nanoparticles on the surface of H-MIPs. M-H-MIPs could be separated simply using an external magnet. The binding adsorption results indicated that M-H-MIPs displayed high binding capacity and fast mass transfer property and class selective property for triazines. Langmuir isotherm and pseudo-second-order kinetic models fitted the best adsorption models for M-H-MIPs. M-H-MIPs were used to analyze atrazine, simazine, propazine, and terbuthylazine in corn, wheat, and soybean samples. Satisfactory recoveries were in the range of 80.62-101.69%, and relative standard deviation was lower than 5.2%. Limits of detection from 0.16 to 0.39 μg L(-1) were obtained. When the method was applied to test positive samples that were contaminated with triazines, the results agree well with those obtained from an accredited method. Thus, the M-H-MIP-based dispersive solid-phase extraction method proved to be a convenient and practical platform for detection of triazines in food samples. PMID:27257079

  17. Molecularly imprinted polymer solid-phase extraction for detection of zearalenone in cereal sample extracts.

    PubMed

    Lucci, Paolo; Derrien, Delphine; Alix, Florent; Pérollier, Céline; Bayoudh, Sami

    2010-07-01

    The aim of this work was to develop a method for the clean-up and preconcentration of zearalenone from corn and wheat samples employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE). Cereal samples were extracted with acetonitrile/water (75:25, v/v) and the extract was diluted with water and applied to an AFFINIMIP ZON MIP-SPE column. The column was then washed to eliminate the interferences and zearalenone was eluted with methanol and quantified using HPLC with fluorescence detection (lambda(exc)=275/lambda(em)=450 nm). The precision and accuracy of the method were satisfactory for both cereals at the different fortification levels tested and it gave recoveries between 82 and 87% (RSDr 2.5-6.2%, n=3) and 86 and 90% (RSDr 0.9-6.8%, n=3) for wheat and maize, respectively. MIP-SPE column capacity was determined to be not less than 6.6 microg of zearalenone and to be at least four times higher than that of immunoaffinity column (IAC). The application of AFFINIMIP ZON molecularly imprinted polymer as a selective sorbent material for detection of zearalenone fulfilled the method performance criteria required by the Commission Regulation (EC) No. 401/2006, demonstrating the suitability of the technique for the control of zearalenone in cereal samples. PMID:20579483

  18. Extraction of quercetin from Herba Lysimachiae by molecularly imprinted-matrix solid phase dispersion.

    PubMed

    Hong, Yansuo; Chen, Ligang

    2013-12-15

    A new kind of quercetin molecularly imprinted polymer (MIP) was synthesized and applied as a selective sorbent in matrix solid-phase dispersion (MSPD) for the extraction of quercetin in Herba Lysimachiae. The MIP was prepared by surface imprinting method using quercetin as template, methacrylic acid as functional monomer, trimethylolpropane trimethacrylate as crosslinker and methanol as porogen. The selectivity of quercetin MIP was evaluated according to their recognition to quercetin and a compound with similar molecular size (bergenin). Good binding for quercetin was observed in MIP adsorption experiment. The isothermal adsorption and dynamic adsorption experiments were also carried out in this study. The best quercetin extraction conditions were as follows: the ratio of MIP to sample was 1:1, the dispersion time was 10min, washing solvent was 2% aqueous methanol and elution solvent was acetic acid-methanol (2:98, v/v). The proposed method was compared with the method used in Chinese pharmacopeia. The similar extraction yield was obtained by the two methods. Moreover, this method is faster, simpler and can realize extraction and purification procedures in the same system. PMID:24184834

  19. Core-shell magnetic molecularly imprinted polymers as sorbent for sulfonylurea herbicide residues.

    PubMed

    Miao, Shan Shan; Wu, Mei Sheng; Zuo, Hai Gen; Jiang, Chen; Jin, She Feng; Lu, Yi Chen; Yang, Hong

    2015-04-15

    Sulfonylurea herbicides are widely used at lower dosage for controlling broad-leaf weeds and some grasses in cereals and economic crops. It is important to develop a highly efficient and selective pretreatment method for analyzing sulfonylurea herbicide residues in environments and samples from agricultural products based on magnetic molecularly imprinted polymers (MIPs). The MIPs were prepared by a surface molecular imprinting technique especially using the vinyl-modified Fe3O4@SiO2 nanoparticle as the supporting matrix, bensulfuron-methyl (BSM) as the template molecule, methacrylic acid (MAA) as a functional monomer, trimethylolpropane trimethacrylate (TRIM) as a cross-linker, and azodiisobutyronitrile (AIBN) as an initiator. The MIPs show high affinity, recognition specificity, fast mass transfer rate, and efficient adsorption performance toward BSM with the adsorption capacity reaching up to 37.32 mg g(-1). Furthermore, the MIPs also showed cross-selectivity for herbicides triasulfuron (TS), prosulfuron (PS), and pyrazosulfuron-ethyl (PSE). The MIP solid phase extraction (SPE) column was easier to operate, regenerate, and retrieve compared to those of C18 SPE column. The developed method showed highly selective separation and enrichment of sulfonylurea herbicide residues, which enable its application in the pretreatment of multisulfonylurea herbicide residues. PMID:25797565

  20. Determination of cyproheptadine in feeds using molecularly imprinted solid-phase extraction coupled with HPLC.

    PubMed

    Yang, Jianwen; Wang, Zongnan; Zhou, Tong; Song, Xuqin; Liu, Qingyong; Zhang, Yuman; He, Limin

    2015-05-15

    A novel method was developed for the determination of cyproheptadine in feeds using molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography. The polymers were prepared using cyproheptadine as a template molecule, methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linking agent, and dichloromethane as a solvent by bulk polymerization. Under the optimum solid-phase extraction conditions, the molecular imprinting cartridge can selectively extract and enrich cyproheptadine from a variety of feeds. Mean recoveries of cyproheptadine from four kinds of feeds spiked at 0.1, 1.0 and 10mgkg(-1) ranged from 85.5% to 96.2%, with intra-day and inter-day relative standard deviation less than 10%. The calibration curve of cyproheptadine was good linear relationship (r>0.9993) within the range of 0.1-50μgmL(-1). The limit of detection (LOD) and the limit of quantification (LOQ) were 0.04 and 0.1mgkg(-1), respectively. PMID:25855316

  1. Highly selective detection of oil spill polycyclic aromatic hydrocarbons using molecularly imprinted polymers for marine ecosystems.

    PubMed

    Krupadam, Reddithota J; Nesterov, Evgueni E; Spivak, David A

    2014-06-15

    Im*plications due to oil spills on marine ecosystems have created a great interest toward developing more efficient and selective materials for oil spill toxins detection and remediation. This research paper highlights the application of highly efficient molecularly imprinted polymer (MIP) adsorbents based on a newly developed functional crosslinker (N,O-bismethacryloyl ethanolamine, NOBE) for detection of highly toxic polycyclic aromatic hydrocarbons (PAHs) in seawater. The binding capacity of MIP for oil spill toxin pyrene is 35 mg/g as compared to the value of 3.65 mg/g obtained using a non-imprinted polymer (NIP). The selectivity of all three high molecular weight PAHs (pyrene, chrysene and benzo[a]pyrene) on the NOBE-MIP shows an excellent selective binding with only 5.5% and 7% cross-reactivity for chrysene and benzo[a]pyrene, respectively. Not only is this particularly significant because the rebinding solvent is water, which is known to promote non-selective hydrophobic interactions; the binding remains comparable under salt-water conditions. These selective and high capacity adsorbents will find wide application in industrial and marine water monitoring/remediation. PMID:24759433

  2. A highly selective molecularly imprinted electrochemiluminescence sensor for ultra-trace beryllium detection.

    PubMed

    Li, Jianping; Ma, Fei; Wei, Xiaoping; Fu, Cong; Pan, Hongcheng

    2015-04-29

    A new molecularly imprinted electrochemiluminescence (ECL) sensor was proposed for highly sensitive and selective determination of ultratrace Be(2+) determination. The complex of Be(2+) with 4-(2-pyridylazo)-resorcinol (PAR) was chosen as the template molecule for the molecularly imprinted polymer (MIP). In this assay, the complex molecule could be eluted from the MIP, and the cavities formed could then selectively recognize the complex molecules. The cavities formed could also work as the tunnel for the transfer of probe molecules to produce sound responsive signal. The determination was based on the intensity of the signal, which was proportional to the concentrations of the complex molecule in the sample solution, and the Be(2+) concentration could then be determined indirectly. The results showed that in the range of 7×10(-11 )mol L(-1) to 8.0×10(-9) mol L(-1), the ECL intensity had a linear relationship with the Be(2+) concentrations, with the limit of detection of 2.35×10(-11) mol L(-1). This method was successfully used to detect Be(2+) in real water samples. PMID:25847161

  3. Ammonium sensing in aqueous solutions with plastic optical fiber modified by molecular imprinting

    NASA Astrophysics Data System (ADS)

    Sequeira, F.; Duarte, D.; Rudnitskaya, A.; Gomes, M. T. S. R.; Nogueira, R.; Bilro, L.

    2016-05-01

    We report the development of a low cost plastic optical fibre (POF) sensor for ammonium detection using molecularly imprinted polymers (MIP's). The cladding of a 1 mm diameter PMMA fiber is removed, in which is grafted a molecular imprinted polymer (MIP), by radical polymerization with thermal initiation, that act as a selective sensing layer. For the polymerization, 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (AAPH) is used as initiator, methacrylic acid (MAA) as a monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, ammonium chloride (NH4Cl) as a template and 30% of ethanol in water as a solvent. The sensing method consists of an intensity based scheme. The response to different concentrations of ammonium solutions in water has been evaluated at room temperature. Solutions with (0 - 0.6) M concentration, with the corresponding refractive indexes varying between 1.3325 - 1.3387, at 25°C were used. The response of the fiber with the original cladding, and after cladding removal has been monitored and compared to the response given by the developed sensor. The response is very fast, less than 1 minute and reversible, which allows the continuum use of the sensor. Further developments are focused in optimization of MIP grafting procedure and sensor performance, in order to increase sensitivity.

  4. Metal ion mediated synthesis of molecularly imprinted polymers targeting tetracyclines in aqueous samples.

    PubMed

    Qu, Guorun; Zheng, Sulian; Liu, Yumin; Xie, Wei; Wu, Aibo; Zhang, Dabing

    2009-10-01

    Molecularly imprinted polymers (MIPs) prepared in water-containing systems are more appropriate as adsorption materials in analyte extraction from biological samples. However, water as a polar solvent involved in the synthesis of MIPs frequently disrupts non-covalent interactions, and causes non-specific binding. In this study Fe(2+) was used as mediator to prepare MIPs, targeting tetracyclines (TCs) of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC), with TC as template molecule and methacrylic acid (MAA) as functional monomer. The subsequent binding assay indicated that Fe(2+) was responsible for substantially improved specific binding in recognition of TCs by decreasing the non-specific binding. Spectrophotometric analysis suggested the existence of the strong interactions among TC, metal ions and MAA in the mixture of methanol and water. Moreover, mass spectrometric measurements verified that Fe(2+) could bridge between TC and MAA to form a ternary complex of one TC, one Fe(2+) and four MAAs with a mass of 844.857. Furthermore, combined with molecularly imprinted solid-phase extraction (MISPE) for sample pretreatment, HPLC-UV analysis data revealed good performance of the obtained MIPs as adsorbents. The recoveries of TC, OTC and CTC in urine samples were 80.1-91.6%, 78.4-89.3% and 78.2-86.2%, respectively. This research strategy provides an example for preparation of desirable water-compatible MIPs extracting target drugs from aqueous samples by introducing metal ion as mediator into conventional polymerization system. PMID:19726243

  5. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element.

    PubMed

    Mao, Yan; Bao, Yu; Gan, Shiyu; Li, Fenghua; Niu, Li

    2011-10-15

    A novel composite of graphene sheets/Congo red-molecular imprinted polymers (GSCR-MIPs) was synthesized through free radical polymerization (FRP) and applied as a molecular recognition element to construct dopamine (DA) electrochemical sensor. The template molecules (DA) were firstly absorbed at the GSCR surface due to their excellent affinity, and subsequently, selective copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) was further achieved at the GSCR surface. Potential scanning was presented to extract DA molecules from the imprinted polymers film, and as a result, DA could be rapidly and completely removed by this way. With regard to the traditional MIPs, the GSCR-MIPs not only possessed a faster desorption and adsorption dynamics, but also exhibited a higher selectivity and binding capacity toward DA molecule. As a consequence, an electrochemical sensor for highly sensitive and selective detection of DA was successfully constructed as demonstration based on the synthesized GSCR-MIPs nanocomposites. Under experimental conditions, selective detection of DA in a linear concentration range of 1.0 × 10(-7)-8.3 × 10(-4)M was obtained, which revealed a lower limit of detection and wider linear response compared to some previously reported DA electrochemical MIPs sensors. The new DA electrochemical sensor based on GSCR-MIPs composites also exhibited excellent repeatability, which expressed as relative standard deviation (RSD) was about 2.50% for 30 repeated analyses of 20 μM DA. PMID:21824760

  6. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal.

    PubMed

    Lu, Wei; Asher, Sanford A; Meng, Zihui; Yan, Zequn; Xue, Min; Qiu, Lili; Yi, Da

    2016-10-01

    We developed a photonic crystal (PhC) sensor for the quantification of 2,4,6-trinitrotoluene (TNT) in solution. Monodisperse (210nm in diameter) molecularly imprinted colloidal particles (MICs) for TNT were prepared by the emulsion polymerization of methyl methacrylate and acrylamide in the presence of TNT as a template. The MICs were then self-assembled into close-packed opal PhC films. The adsorption capacity of the MICs for TNT was 64mg TNT/g. The diffraction from the PhC depended on the TNT concentration in a methanol/water (3/2, v/v) potassium dihydrogen phosphate buffer solution (pH=7.0, 30mM). The limit of detection (LOD) of the sensor was 1.03μg. The color of the molecularly imprinted colloidal array (MICA) changed from green to red with an 84nm diffraction red shift when the TNT concentration increased to 20mM. The sensor response time was 3min. The PhC sensor was selective for TNT compared to similar compounds such as 2,4,6-trinitrophenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitromesitylene, 4-nitrotoluene, 2-nitrotoluene, 1,3-dinitrobenzene, methylbenzene, 4-nitrophenol, 2-nitroaniline, 3-aminophenol and 3-nitroaniline. The sensor showed high stability with little response change after three years storage. This sensor technology might be useful for the visual determination of TNT. PMID:27214001

  7. A molecularly imprinted polymer for the selective solid-phase extraction of dimethomorph from ginseng samples.

    PubMed

    Xu, Xuanwei; Liang, Shuang; Meng, Xinxin; Zhang, Min; Chen, Ying; Zhao, Dan; Li, Yueru

    2015-04-15

    A molecularly imprinted polymer (MIP) was synthesized and evaluated to selectively extract dimethomorph from ginseng samples. Dimethomorph molecularly imprinted polymers with template to monomer molar ratios were contrived and developed via precipitation polymerization employing methacrylic acid as functional monomer, ethylene dimethacrylate as cross-linker and butanone:N-heptane (7:3, v:v)as porogen. The LOD (limit of detection) of this method was 0.002 mg kg(-1), and the LOQ (limit of quantification) was 0.005 mg kg(-1). The different spiked level of ginseng was 0.1 mg kg(-1), 1.0 mg kg(-1), 5.0 mg kg(-1), and the average recovery of dimethomrph was 89.2-91.6%. Under the optimized condition, good linearity was obtained from 0.01 to 5 mg kg(-1) (r(2) ≥ 0.9997) with the relative standard deviations of less than 3.20%. This proposed MISPE-GC procedure eliminated the effect of template leakage on quantitative analysis and could be applied to direct determination of dimethomrph in ginseng samples. PMID:25795323

  8. Molecularly imprinted photonic polymer based on β-cyclodextrin for amino acid sensing.

    PubMed

    Liu, Xiao-Yan; Fang, Hong-Xun; Yu, Li-Ping

    2013-11-15

    A novel molecularly imprinted photonic polymer (MIPP) using maleic anhydride modified β-cyclodextrin (β-CD) and acrylic acid as functional monomers has been presented for amino acid sensing. Reactive β-CD monomer carrying vinyl carboxylic acid functional groups was first synthesized. MIPP was fabricated by filling precursor solution into the interstitial spaces of polystyrene photonic crystal templates, followed by a thermal polymerization at 55 °C. Characterization showed that the MIPP possessed an opal photonic crystal structure. This β-CD-based MIPP could undergo a swelling change from 590 nm to 704 nm and still retain the molecular imprinting recognition ability during the sensing of L-phenylalanine (L-Phe). A function relationship was found between the diffraction wavelength shift and the logarithm of L-Phe concentration in the range of 10(-8)M to 10(-4)M at pH 6. A wavelength shift of 114 nm for L-Phe was observed within 30s, whereas there were no obvious shifts for d-Phe, L-tyrosine and L-tryptophan, indicating that the β-CD-based MIPP had high specificity and rapid response to L-Phe. The developed MIPP sensor has been applied to detect L-Phe in compound amino acid injection sample. PMID:24148405

  9. Hydrophilic Molecularly Imprinted Resorcinol-Formaldehyde-Melamine Resin Prepared in Water with Excellent Molecular Recognition in Aqueous Matrices.

    PubMed

    Lv, Tianwei; Yan, Hongyuan; Cao, Jiankun; Liang, Shiru

    2015-11-01

    Hydrophilic molecularly imprinted resorcinol-formaldehyde-melamine resin (MIRFM) is synthesized in water and shows excellent molecular recognition in aqueous matrices. The double functional monomers resorcinol and melamine, and the cross-linker formaldehyde, are all hydrophilic, and then the hydrophilic groups (such as hydroxyls, imino groups, and ether linkages) can be introduced into MIRFM, which make the material compatible with aqueous samples. The general principle is demonstrated by the synthesis of MIRFM using sulfanilamide as a dummy template for the selective recognition to sulfonamides (SAs) in milk samples. Resorcinol and melamine can interact with the template mainly by hydrogen bonding and π-π interaction, which makes MIRFM and the analytes have strong affinity. Besides, melamine can improve the rigidity of MIRFM and accelerate the polymerization process, so there is no need to add base or acid as a catalyst, which guarantees the success of molecular imprinting. MIRFM shows higher recovery and improved purification effect for SAs, in comparison to silica, HLB, C18, and SCX. Because of its excellent hydrophilicity and specificity, MIRFM is promising to be applied in biological, environmental, and clinical fields. PMID:26441379

  10. In silico screening of molecular imprinting prepolymerization systems: oseltamivir selective polymers through full-system molecular dynamics-based studies.

    PubMed

    Shoravi, Siamak; Olsson, Gustaf D; Karlsson, Björn C G; Bexborn, Fredrik; Abghoui, Younes; Hussain, Javed; Wiklander, Jesper G; Nicholls, Ian A

    2016-05-01

    All-component molecular dynamics studies were used to probe a library of oseltamivir molecularly imprinted polymer prepolymerization mixtures. Polymers included one of five functional monomers (acrylamide, hydroxyethylmethacrylate, methacrylic acid, 2-(triflouromethyl)acrylic acid, 4-vinylpyridine) and one of three porogens (acetonitrile, chloroform, methanol) combined with the crosslinking agent ethylene glycol dimethacrylate and initiator 2,2'-azobis(2-methylpropionitrile). Polymers were characterized by nitrogen gas sorption measurements and SEM, and affinity studies performed using radioligand binding in various media. In agreement with the predictions made from the simulations, polymers prepared in acetonitrile using either methacrylic or trifluoromethacrylic acid demonstrated the highest affinities for oseltamivir. Further, the ensemble of interactions observed in the methanol system provided an explanation for the morphology of polymers prepared in this solvent. The materials developed here offer potential for use in solid-phase extraction or for catalysis. The results illustrate the strength of this in silico strategy as a potential prognostic tool in molecularly imprinted polymer design. PMID:27043914

  11. Magnetic molecularly imprinted polymers synthesized by surface-initiated reversible addition-fragmentation chain transfer polymerization for the enrichment and determination of synthetic estrogens in aqueous solution.

    PubMed

    Chen, Fangfang; Zhang, Jingjing; Wang, Minjun; Kong, Jie

    2015-08-01

    Magnetic molecularly imprinted polymers have attracted significant interest because of their multifunctionality of selective recognition of target molecules and rapid magnetic response. In this contribution, magnetic molecularly imprinted polymers were synthesized via surface-initiated reversible addition addition-fragmentation chain transfer polymerization using diethylstilbestrol as the template for the enrichment of synthetic estrogens. The uniform imprinted surface layer and the magnetic property of the magnetic molecularly imprinted polymers favored a fast binding kinetics and rapid analysis of target molecules. The static and selective binding experiments demonstrated a desirable adsorption capacity and good selectivity of the magnetic molecularly imprinted polymers in comparison to magnetic non-molecularly imprinted polymers. Accordingly, a corresponding analytical method was developed in which magnetic molecularly imprinted polymers were employed as magnetic solid-phase extraction materials for the concentration and determination of four synthetic estrogens (diethylstilbestrol, hexestrol, dienestrol, and bisphenol A) in fish pond water. The recoveries of these synthetic estrogens in spiked fish pond water samples ranged from 61.2 to 99.1% with a relative standard deviation of lower than 6.3%. This study provides a versatile approach to prepare well-defined magnetic molecularly imprinted polymers sorbents for the analysis of synthetic estrogens in water solution. PMID:25989155

  12. Synthesis of metronidazole-imprinted molecularly imprinted polymers by distillation precipitation polymerization and their use as a solid-phase adsorbent and chromatographic filler.

    PubMed

    Liu, Jiang; Zhang, Lu; Li Han Song, Le; Liu, Yuan; Tang, Hui; Li, Yingchun

    2015-04-01

    Metronidazole-imprinted polymers with superior recognition properties were prepared by a novel strategy called distillation-precipitation polymerization. The as-obtained polymers were characterized by Fourier-transform infrared spectroscopy, laser particle size determination and scanning electron microscopy, and their binding performances were evaluated in detail by static, kinetic and dynamic rebinding tests, and Scatchard analysis. The results showed that when the fraction of the monomers was 5 vol% in the whole reaction system, the prepared polymers afforded good morphology, monodispersity, and high adsorption capacity and excellent selectivity to the target molecule, metronidazole. The optimal binding performance is 12.41 mg/g for metronidazole just before leakage occurred and 38.51 mg/g at saturation in dynamic rebinding tests. Metronidazole-imprinted polymers were further applied as packing agents in solid-phase extraction and as chromatographic filler, both of which served for the detection of metronidazole in fish tissue. The results illustrated the recoveries of spiked samples ranged from 82.97 to 87.83% by using molecularly imprinted solid-phase extraction combined with a C18 commercial column and 93.7 to 101.2% by directly using the polymer-packed chromatographic column. The relative standard deviation of both methods was less than 6%. PMID:25594306

  13. Plastic Antibodies for Cosmetics: Molecularly Imprinted Polymers Scavenge Precursors of Malodors.

    PubMed

    Nestora, Sofia; Merlier, Franck; Beyazit, Selim; Prost, Elise; Duma, Luminita; Baril, Bérangère; Greaves, Andrew; Haupt, Karsten; Tse Sum Bui, Bernadette

    2016-05-17

    Molecularly imprinted polymers (MIPs) are synthetic antibody mimics capable of specific molecular recognition. Advantageously, they are more stable, easy to tailor for a given application and less expensive than antibodies. These plastic antibodies are raising increasing interest and one relatively unexplored domain in which they could outplay these advantages particularly well is cosmetics. Here, we present the use of a MIP as an active ingredient of a cosmetic product, for suppressing body odors. In a dermo-cosmetic formulation, the MIP captures selectively the precursors of malodorous compounds, amidst a multitude of other molecules present in human sweat. These results pave the way to the fabrication of a novel generation of MIPs with improved selectivities in highly complex aqueous environments, and should be applicable to biotechnological and biomedical areas as well. PMID:27060928

  14. Development of a molecularly imprinted polymer based surface plasmon resonance sensor for theophylline monitoring

    NASA Astrophysics Data System (ADS)

    Zheng, Rui; Cameron, Brent D.

    2011-03-01

    Molecularly imprinted polymer (MIP) thin films and surface plasmon resonance (SPR) sensing technologies were combined to develop a novel sensing platform for monitoring real-time theophylline concentration, which is a compound of interest in environmental monitoring and a molecular probe for phenotyping certain cytochrome P450 enzymes. The MIPs hydrogel is easy to synthesize and provides shape-selective recognition with high affinity to specific target molecules. Different polymerization formulas were tested and optimized. The influence of the monomer sensitive factors were addressed by SPR. SPR is an evanescent wave optics based sensing technique that is suitable for real-time and label free sensing purposes. Gold nanorods (Au NRs) were uniformly immobilized onto a SPR sensing surface for the construction of a fiber optics based prism-free localized SPR (LSPR) measurement. This technique can be also applied to assess the activities of other small organic molecules by adjusting the polymerization formula, thus, this approach also has many other potential applications.

  15. Ligand Replacement Approach to Raman-Responded Molecularly Imprinted Monolayer for Rapid Determination of Penicilloic Acid in Penicillin.

    PubMed

    Zhang, Liying; Jin, Yang; Huang, Xiaoyan; Zhou, Yujie; Du, Shuhu; Zhang, Zhongping

    2015-12-01

    Penicilloic acid (PA) is a degraded byproduct of penicillin and often causes fatal allergies to humans, but its rapid detection in penicillin drugs remains a challenge due to its similarity to the mother structure of penicillin. Here, we reported a ligand-replaced molecularly imprinted monolayer strategy on a surface-enhanced Raman scattering (SERS) substrate for the specific recognition and rapid detection of Raman-inactive PA in penicillin. The bis(phenylenediamine)-Cu(2+)-PA complex was first synthesized and stabilized onto the surface of silver nanoparticle film that was fabricated by a bromide ion-added silver mirror reaction. A molecularly imprinted monolayer was formed by the further modification of alkanethiol around the stabilized complex on the Ag film substrate, and the imprinted recognition site was then created by the replacement of the complex template with Raman-active probe molecule p-aminothiophenol. When PA rebound into the imprinted site in the alkanethiol monolayer, the SERS signal of p-aminothiophenol exhibited remarkable enhancement with a detection limit of 0.10 nM. The imprinted monolayer can efficiently exclude the interference of penicillin and thus provides a selective determination of 0.10‰ (w/w) PA in penicillin, which is about 1 order of magnitude lower than the prescribed residual amount of 1.0‰. The strategy reported here is simple, rapid and inexpensive compared to the traditional chromatography-based methods. PMID:26545037

  16. Molecularly imprinted macroporous monoliths for solid-phase extraction: Effect of pore size and column length on recognition properties.

    PubMed

    Vlakh, E G; Stepanova, M A; Korneeva, Yu M; Tennikova, T B

    2016-09-01

    The series of macroporous monolithic molecularly imprinted monoliths differed by pore size, column length (volume) and amount of template used for imprinting was synthesized using methacrylic acid and glycerol dimethacrylate as co-monomers and antibiotic ciprofloxacin as a template. The prepared monoliths were characterized regarding to their permeability, pore size, porosity, and resistance to the flow of a mobile phase. The surface morphology was also analyzed. The slight dependence of imprinting factor on flow rate, as well as its independence on pore size of macroporous molecularly imprinted monolithic media was observed. The column obtained at different conditions exhibited different affinity of ciprofloxacin to the imprinted sites that was characterized with Kdiss values in the range of 10(-5)-10(-4)M. The solid-phase extraction of ciprofloxacin from such biological liquids as human blood serum, human urine and cow milk serum was performed using the developed monolithic columns. In all cases, the extraction was found to be 95.0-98.6%. Additionally, the comparison of extraction of three fluoroqinolone analogues, e.g. ciprofloxacin, levofloxacin and moxifloxacin, from human blood plasma was carried out. Contrary to ciprofloxacin extracted with more than 95%, this parameter did not exceed 40% for its analogues. PMID:27433985

  17. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice.

    PubMed

    Eren, Tanju; Atar, Necip; Yola, Mehmet Lütfi; Karimi-Maleh, Hassan

    2015-10-15

    Lovastatin (LOV) is a statin, used to lower cholesterol which has been found as a hypolipidemic agent in commercial red yeast rice. In present study, a sensitive molecular imprinted quartz crystal microbalance (QCM) sensor was prepared by fabricating a self-assembling monolayer formation of allylmercaptane on QCM chip surface for selective determination of lovastatin (LOV) in red yeast rice. To prepare molecular imprinted quartz crystal microbalance (QCM) nanosensor, LOV imprinted poly(2-hydroxyethyl methacrylate-methacryloylamidoaspartic acid) [p(HEMA-MAAsp)] nanofilm was attached on the modified gold surface of QCM chip. The non-modified and improved surfaces were characterized by using contact angle, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. The imprinted QCM sensor was validated according to the ICH guideline (International Conference on Harmonisation). The linearity range was obtained as 0.10-1.25 nM. The detection limit of the prepared material was calculated as 0.030 nM. The developed QCM nanosensor was successfully used to examine red yeast rice. Furthermore, the stability and repeatability of the prepared QCM nanosensor were studied. The spectacular long-term stability and repeatability of the prepared LOV-imprinted QCM nanosensor make them intriguing for use in QCM sensors. PMID:25952889

  18. Selective recognition and discrimination of water-soluble azo dyes by a seven-channel molecularly imprinted polymer sensor array.

    PubMed

    Long, Zerong; Lu, Yi; Zhang, Mingliang; Qiu, Hongdeng

    2014-10-01

    A seven-channel molecularly imprinted polymer sensor array was prepared and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, UV-Vis spectroscopy, and nitrogen physisorption studies. The results revealed that the imprinted polymers have distinct-binding affinities from those of structurally similar azo dyes. Analysis of the UV-Vis spectral response patterns of the seven dye analytes against the imprinted polymer array suggested that the different selectivity patterns of the array were closely connected to the imprinting process. To evaluate the effectiveness of the array format, the binding of a series of analytes was individually measured for each of the seven polymers, made with different templates (including one control polymer synthesized without the use of a template). The response patterns of the array to the selected azo dyes were processed by canonical discriminant analysis. The results showed that the molecularly imprinted array was able to discriminate each analyte with 100% accuracy. Moreover, the azo dyes in two real samples, spiked chrysoidin in smoked bean curd extract and Fanta lime soda (containing tartrazine), were successfully classified by the array. PMID:25099151

  19. Thermodynamic study of molecularly imprinted polymer used as the stationary phase in high performance liquid chromatography.

    PubMed

    Denderz, Natalia; Lehotay, Jozef; Cižmárik, Jozef; Cibulková, Zuzana; Simon, Peter

    2012-04-27

    Molecularly imprinted polymer (MIP) and non-imprinted polymer (NIP) on the base of methacrylic acid prepared by a bulk polymerization were used as stationary phases for the HPLC analysis. The thermodynamic processes were carried out to investigate the temperature effects during sorption processes of potential local anaesthetics - morpholinoethyl esters of alkoxy-substituted phenylcarbamic acid (MEsP), local anaesthetic - diperodon, flavonoid - quercetin in methanol, acetonitrile and toluene (porogen) as mobile phases. Mobile phases and corresponding solvents were selected according to the solubility of each analyte. The template was chosen from the set of homologous of MEsP - 2-(morpholin-4-yl)ethyl (2-methoxyphenyl)carbamate. Values of retention factors were measured over the temperature range of 20-60°C. There were determined van't Hoff curves - dependences between logarithms of the retention factors (lnk) and the inverse value of the temperature (1/T). Observed graphs were linear directly indicating that there were no changes of interaction mechanisms in the studied range of temperature. Selectivities (evaluated by the separation factors, α) and sorption selectivities (evaluated by the imprinting factors, IFs) of the MIP and the NIP toward template, related and not-related structures with the template were evaluated chromatographically. The highest separation factors and the imprinting factors (IF=4.73 ± 0.35 for the template) were observed in methanol, not in porogen. Only in the case of quercetin the highest IF was observed in ACN (1.88 ± 0.13). Contrary to expectations, the driving force for the affinity of the target molecules for both of polymers was enthalpic term (with an average of 54%, 82% and 84% contribution of enthalpic term for MeOH, ACN and toluene, respectively on the MIP and 53%, 57% and 65% for MeOH, ACN and toluene, respectively on the NIP). The MIP and NIP were also characterized by attenuated total reflectance analysis Fourier transform

  20. Macroporous molecularly imprinted polymer/cryogel composite systems for the removal of endocrine disrupting trace contaminants.

    PubMed

    Le Noir, Mathieu; Plieva, Fatima; Hey, Tobias; Guieysse, Benoit; Mattiasson, Bo

    2007-06-22

    A new concept for the preparation of selective sorbents with high flow path properties is presented by embedding molecularly imprinted polymers (MIPs) into various macroporous gels (MGs). A MIP was first synthetized with 17beta-estradiol (E2) as template for the selective adsorption of this endocrine disrupter. The composite macroporous gel/MIP (MG/MIP) monoliths were then prepared at subzero temperatures. Complete recovery of E2 from a 2 microg/L aqueous solution was achieved using the polyvinyl alcohol (PVA) MG/MIP monoliths whereas only 49-74% was removed with non-imprinted polymers (when no template was used). The PVA MG/MIP monolith columns were operated at almost 10 times higher flow rate (50 mL/min) compared to the MIP columns with operation flow rate of 1-5 mL/min. The possibility for processing the particulate containing wastewater effluents at high flow rates with selectivity on E2 removal, as well as the easy preparation of the monoliths, make the macroporous MG/MIP systems attractive and robust sorbents for the clean up of water from endocrine disrupting trace contaminants. PMID:17449053

  1. A molecularly imprinted monolith for the fast chiral separation of antiparasitic drugs by pressurized CEC.

    PubMed

    Liao, Sulan; Wang, Xiaochun; Lin, Xucong; Wu, Xiaoping; Xie, Zenghong

    2010-07-01

    Molecularly imprinted polymer (MIP) monoliths with (S)-ornidazole ((S)-ONZ) as the template molecule have been designed and prepared by the simple thermal polymerization of methacrylic acid, 4-vinylpyridine, and ethylene dimethacrylate in the presence of a binary porogenic mixture of toluene and dodecanol. The influences of polymerization mixture composition on the chiral recognition of ONZ have been evaluated, and the imprint effect in the optimized MIP monolith has been clearly demonstrated. The new monolithic stationary phase with optimized porous property and good selectivity was used for the chiral separation of ONZ by pressurized CEC. The pressurized CEC conditions were also optimized to obtain the good chiral separation. The enantiomers were rapidly separated within 9 min on the MIP-based chiral stationary phase, whereas the chiral separation was not obtained on the nonimprinted polymer. Additionally, the proposed method has been successfully applied to the chiral separation of ONZ in tablet samples by injection of the crude sample. The cross-selectivity for similar antiparasitic drug was investigated. The results indicated that the chiral separation of secnidazole could also be obtained on the optimized MIP monolith within 14 min. PMID:20535749

  2. Glucose detection with surface plasmon resonance spectroscopy and molecularly imprinted hydrogel coatings.

    PubMed

    Wang, Jing; Banerji, Soame; Menegazzo, Nicola; Peng, Wei; Zou, Qiongjing; Booksh, Karl S

    2011-10-30

    Molecularly imprinted hydrogel membranes were developed and evaluated for detection of small analytes via surface plasmon resonance spectroscopy. Imprinting of glucose phosphate barium salt into a poly(allylamine hydrochloride) network covalently bound to gold surfaces yielded a selective sensor for glucose. Optimization of relative amounts of chemicals used for preparation of the hydrogel was performed to obtain highest sensitivity. Addition of gold nanoparticles into the hydrogel matrix significantly amplified its response and sensitivity due to the impact of gold nanoparticles on the refractive index of the sensing layer. Evaluation of its selectivity showed that the sensor displayed preferential recognition to glucose compared to structurally related sugars in addition to being unaffected by phosphate as well as compounds containing amine groups, like creatinine. The detection limit of glucose in deionized water was calculated to be 0.02 mg/mL. The developed sensor was finally exposed to human urine spiked with glucose illustrating the coating's ability to re-bind the analyte in complex matrices. While the working concentration range in water was determined to be suitable for glucose monitoring in diabetic individuals at physiological levels, the detection in urine was determined to be 0.12 mg/mL. The decreased performance in urine provided an initial perspective on the difficulties associated with measurements in complex media. PMID:22063522

  3. Molecularly imprinted hollow spheres for the solid phase extraction of estrogens.

    PubMed

    Chen, Wei; Xue, Min; Xue, Fei; Mu, Xiangrong; Xu, Zhibin; Meng, Zihui; Zhu, Guangxian; Shea, Kenneth J

    2015-08-01

    Solid phase extraction (SPE) is widely used in many different areas, such as environmental, biological, and food analysis, where cleaning and pre-concentration of samples are key steps in the analytical protocol. New materials have significant impact on the development of solid phase extraction. In this paper, mono-dispersed molecularly imprinted hollow spheres (MIHSs) of β-estradiol (E2) were synthesized using silica nanospheres particles as the sacrificial matrix. Compared to the corresponding non-imprinted hollow spheres (NIHSs), the MIHSs with uniform size of 290 nm have outstanding affinity in aqueous solution. Static saturation adsorption required only 15min to achieve equilibrium, with a binding capacity (Qmax) of 44.5 μmol g(-1). The extraction of E2, ethinyl estradiol (EE), diethylstilbestrol (DES), ethisterone (ES) and estrone (E1) from water samples by MIHSs was also investigated. In the spiked samples of tap water, Qinghe river water and Zhanjiang river water, more than 90.42% of E2, but less than 79% of EE, DES, ES and E1 were recovered. The limits of detection (LOD) ranged from 0.1 to 0.26 µmol L(-1) after solid phase extraction by MIHSs and HPLC-UV analysis. The adsorption capacity of the MIHSs showed no significant deterioration after six rounds of regeneration. PMID:26048825

  4. Expanding Cancer Detection Using Molecular Imprinting for a Novel Point-of-Care Diagnostic Device

    NASA Astrophysics Data System (ADS)

    Yu, Yingjie; Rafailovich, Miriam; Wang, Yantian; Kang, Yeona; Zhang, Lingxi; Rigas, Basil; Division of Gastroenterology, School of Medicine Team

    2013-03-01

    We propose the use of a potentiometric biosensor that incorporates the efficient and specific molecular imprinting (MI) method with a self-assembled monolayer (SAM). We first tested the biosensor using carcinoembryonic antigen, CEA, a biomarker associated with pancreatic cancer. No change in detection efficiency was observed, indicating that the sensor is able to discriminate for the template analyte even in concentrated solution of similar substances. In addition, we use biosensor to discriminate normal fibrinogen and damaged fibrinogen, which is critical for the detection of bleeding disorder. Computer simulations of the protein structure were performed in order to estimate the changes in morphology and determine the sensitivity of the biosensor to conformational changes in the proteins. We found that even small changes in PH can generate rotation of the surface functional groups. Yet, the results show that only when the detection and imprinting conditions are similar, robust signals occurs. Hence we concluded that both morphology and surface chemistry play a role in the recognition.

  5. Determination of melamine in powdered milk by molecularly imprinted stir bar sorptive extraction coupled with HPLC.

    PubMed

    Zhu, Ling; Xu, Guanhong; Wei, Fangdi; Yang, Jing; Hu, Qin

    2015-09-15

    A novel molecularly imprinted stir bar (MIP-SB) was developed with melamine (MA) as the template molecule in this study. The sorptive capacity of MIP-SB was nearly three times over that of non-imprinted stir bar (NIP-SB). The MIP-SB presented much better selectivity than NIP-SB when used to absorb MA and its analogues. An analytical method to determine MA in powdered milk was established by combining MIP-SB sorptive extraction with HPLC. The liner range was 0.0631-12.6ng/mL with good correlation coefficient of 0.9983, and the limit of detection was 0.0127ng/mL based on three times ratio of signal to noise. This method was successfully applied to the determination of MA in powdered milk with satisfactory results. The method built is simple and suitable for the determination of MA in milk products which is of great significance for quality control of milk products. PMID:26001132

  6. Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres.

    PubMed

    Dai, Chao-Meng; Geissen, Sven-Uwe; Zhang, Ya-Lei; Zhang, Yong-Jun; Zhou, Xue-Fei

    2011-06-01

    A molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization using diclofenac (DFC) as a template. Binding characteristics of the MIP were evaluated using equilibrium binding experiments. Compared to the non-imprinted polymer (NIP), the MIP showed an outstanding affinity towards DFC in an aqueous solution with a binding site capacity (Q(max)) of 324.8 mg/g and a dissociation constant (K(d)) of 3.99 mg/L. The feasibility of removing DFC from natural water by the MIP was demonstrated by using river water spiked with DFC. Effects of pH and humic acid on the selectivity and adsorption capacity of MIP were evaluated in detail. MIP had better selectivity and higher adsorption efficiency for DFC as compared to that of powdered activated carbon (PAC). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance, which is a definite advantage over single-use activated carbon. PMID:21439696

  7. Application of Molecularly Imprinted Polymers to Selective Removal of Clofibric Acid from Water

    PubMed Central

    Dai, Chaomeng; Zhang, Juan; Zhang, Yalei; Zhou, Xuefei; Liu, Shuguang

    2013-01-01

    A new molecularly imprinted polymer (MIP) adsorbent for clofibric acid (CA) was prepared by a non-covalent protocol. Characterization of the obtained MIP was achieved by scanning electron microscopy (SEM) and nitrogen sorption. Sorption experimental results showed that the MIP had excellent binding affinity for CA and the adsorption of CA by MIP was well described by pseudo-second-order model. Scatchard plot analysis revealed that two classes of binding sites were formed in the MIP with dissociation constants of 7.52±0.46 mg L−1 and 114±4.2 mg L−1, respectively. The selectivity of MIP demonstrated higher affinity for CA over competitive compound than that of non-imprinted polymers (NIP). The MIP synthesized was used to remove CA from spiked surface water and exhibited significant binding affinity towards CA in the presence of total dissolved solids (TDS). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance. PMID:24205143

  8. Atrazine Molecular Imprinted Polymers: Comparative Analysis by Far-Infrared and Ultraviolet Induced Polymerization

    PubMed Central

    Chen, Jun; Bai, Lian-Yang; Liu, Kun-Feng; Liu, Run-Qiang; Zhang, Yu-Ping

    2014-01-01

    Atrazine molecular imprinted polymers (MIPs) were comparatively synthesized using identical polymer formulation by far-infrared (FIR) radiation and ultraviolet (UV)-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIPuv possessed specific binding to atrazine compared with their MIPFIR radiation counterparts. Scatchard plot’s of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high-and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF) and different selectivity index (SI) for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM), Fourier transform infrared absorption (FT-IR), and mercury analyzer (MA). Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of atrazine from lake water, followed by high performance liquid chromatography (HPLC) analysis. Compared with commercial C18 SPE sorbent (86.4%–94.8%), higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%–97.1% and 94.4%–101.9%, for both MIPs, respectively. PMID:24398982

  9. Upconversion particles coated with molecularly imprinted polymers as fluorescence probe for detection of clenbuterol.

    PubMed

    Tang, Yiwei; Gao, Ziyuan; Wang, Shuo; Gao, Xue; Gao, Jingwen; Ma, Yong; Liu, Xiuying; Li, Jianrong

    2015-09-15

    A novel fluorescence probe based on upconversion particles, YF3:Yb(3+), Er(3+), coating with molecularly imprinted polymers (MIPs@UCPs) has been synthesized for selective recognition of the analyte clenbuterol (CLB), which was characterized by scan electron microscope and X-ray powder diffraction. The fluorescence of the MIPs@UCPs probe is quenched specifically by CLB, and the effect is much stronger than the NIPs@UCPs (non-imprinting polymers, NIPs). Good linear correlation was obtained for CLB over the concentration range of 5.0-100.0 μg L(-1) with a detection limit of 0.12 μg L(-1) (S/N=3). The developed method was also used in the determination of CLB in water and pork samples, and the recoveries ranged from 81.66% to 102.46% were obtained with relative standard deviation of 2.96-4.98% (n=3). The present study provides a new and general tactics to synthesize MIPs@UCPs fluorescence probe with highly selective recognition ability to the CLB and is desirable for application widely in the near future. PMID:25884733

  10. Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin.

    PubMed

    Wang, Xiaoyan; Yu, Jialuo; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin

    2016-03-15

    A facile strategy was developed to prepare molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin (PC) based on fluorescence resonance energy transfer (FRET), via a sol-gel polymerization process using nitrobenzoxadiazole (NBD) as fluorescent signal source. The ratio of two fluorescence peak emission intensities of NBD and PC was utilized to determine the concentration of PC, which could effectively reduce the background interference and fluctuation of diverse conditions. As a result, this sensor obtained high sensitivity with a low detection limit of 0.14 nM within 6 min, and excellent recognition specificity for PC over its analogues with a high imprinting factor of 9.1. Furthermore, the sensor attained high recoveries in the range of 93.8-110.2% at three spiking levels of PC, with precisions below 4.7% in seawater and lake water samples. The developed sensor strategy demonstrated simplicity, reliability, rapidity, high selectivity and high sensitivity, proving to be a feasible way to develop high efficient fluorescence sensors and thus potentially applicable for ultratrace analysis of complicated matrices. PMID:26485176

  11. Solanesol extraction from tobacco leaves by Flash chromatography based on molecularly imprinted polymers.

    PubMed

    Ma, Xiaoqin; Meng, Zihui; Qiu, Lili; Chen, Jing; Guo, Yushu; Yi, Da; Ji, Tiantian; Jia, Hua; Xue, Min

    2016-05-01

    A novel solanesol extraction method based on molecularly imprinted polymer (MIP) as the Flash chromatography stationary phase was established and evaluated. Spherical MIP particles in a size range of 250-350μm (d (0.5)=320μm) for solanesol were synthesized by suspension polymerization, with imprinting factor of 3.9. The MIP particles (5.5g) were packed in common Teflon column as the stationary phase while the sample solution and elution solvent were confirmed as methanol and methanol/acetic acid solution (80/20, v/v), loading at 4ml/min and eluting 8ml/min, respectively. Under the optimal chromatographic conditions, the adsorption capacity of the MIP-Flash column was determined as 107.3μmol/g, and in each process, 370.8mg purified solanesol (98.4%) could be obtained from the extract (20mM, 40ml) of tobacco leaves (14.7g), and the yield of solanesol was 2.5% of the dry weight of tobacco leaves. The results reported here confirm the feasibility to extract highly purified active ingredients directly from natural products on a large scale by MIP-Flash chromatography. PMID:26994329

  12. Atrazine molecular imprinted polymers: comparative analysis by far-infrared and ultraviolet induced polymerization.

    PubMed

    Chen, Jun; Bai, Lian-Yang; Liu, Kun-Feng; Liu, Run-Qiang; Zhang, Yu-Ping

    2014-01-01

    Atrazine molecular imprinted polymers (MIPs) were comparatively synthesized using identical polymer formulation by far-infrared (FIR) radiation and ultraviolet (UV)-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIP(uv) possessed specific binding to atrazine compared with their MIP(FIR) radiation counterparts. Scatchard plot's of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high- and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF) and different selectivity index (SI) for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM), Fourier transform infrared absorption (FT-IR), and mercury analyzer (MA). Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of atrazine from lake water, followed by high performance liquid chromatography (HPLC) analysis. Compared with commercial C18 SPE sorbent (86.4%-94.8%), higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%-97.1% and 94.4%-101.9%, for both MIPs, respectively. PMID:24398982

  13. Molecularly Imprinted Electropolymer for a Hexameric Heme Protein with Direct Electron Transfer and Peroxide Electrocatalysis

    PubMed Central

    Peng, Lei; Yarman, Aysu; Jetzschmann, Katharina J.; Jeoung, Jae-Hun; Schad, Daniel; Dobbek, Holger; Wollenberger, Ulla; Scheller, Frieder W.

    2016-01-01

    For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of −184.4 ± 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP). PMID:26907299

  14. Molecularly Imprinted Electropolymer for a Hexameric Heme Protein with Direct Electron Transfer and Peroxide Electrocatalysis.

    PubMed

    Peng, Lei; Yarman, Aysu; Jetzschmann, Katharina J; Jeoung, Jae-Hun; Schad, Daniel; Dobbek, Holger; Wollenberger, Ulla; Scheller, Frieder W

    2016-01-01

    For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of -184.4 ± 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP). PMID:26907299

  15. Molecularly imprinted solid-phase extraction of glutathione from urine samples.

    PubMed

    Song, Renyuan; Hu, Xiaoling; Guan, Ping; Li, Ji; Zhao, Na; Wang, Qiaoli

    2014-11-01

    Molecularly imprinted polymer (MIP) particles for glutathione were synthesized through iniferter-controlled living radical precipitation polymerization (IRPP) under ultraviolet radiation at ambient temperature. Static adsorption, solid-phase extraction, and high-performance liquid chromatography were carried out to evaluate the adsorption properties and selective recognition characteristics of the polymers for glutathione and its structural analogs. The obtained IRPP-MIP particles exhibited a regularly spherical shape, rapid binding kinetics, high imprinting factor, and high selectivity compared with the MIP particles prepared using traditional free-radical precipitation polymerization. The selective separation and enrichment of glutathione from the mixture of glycyl-glycine and glutathione disulfide could be achieved on the IRPP-MIP cartridge. The recoveries of glutathione, glycyl-glycine, and glutathione disulfide were 95.6% ± 3.65%, 29.5% ± 1.26%, and 49.9% ± 1.71%, respectively. The detection limit (S/N=3) of glutathione was 0.5 mg·L(-1). The relative standard deviations (RSDs) for 10 replicate detections of 50 mg·L(-1) of glutathione were 5.76%, and the linear range of the calibration curve was 0.5 mg·L(-1) to 200 mg·L(-1) under optimized conditions. The proposed approach was successfully applied to determine glutathione in spiked human urine samples with recoveries of 90.24% to 96.20% and RSDs of 0.48% to 5.67%. PMID:25280681

  16. Deep Eutectic Solvents Modified Molecular Imprinted Polymers for Optimized Purification of Chlorogenic Acid from Honeysuckle.

    PubMed

    Li, Guizhen; Wang, Wei; Wang, Qian; Zhu, Tao

    2016-02-01

    Deep eutectic solvents (DES) were synthesized with choline chloride (ChCl), and DES modified molecular imprinted polymers (DES-MIPs), DES modified non-imprinted polymers (DES-NIPs, without template), MIPs and NIPs were prepared in an identical procedure. Fourier transform infrared spectrometer (FT-IR) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained polymers. Rebinding experiment and solid-phase extraction (SPE) were used to prove the high selectivity adsorption properties of the polymers. Box-Behnken design (BBD) with three factors was used to optimize the extraction condition of chlorogenic acid (CA) from honeysuckles. The optimum extraction conditions were found to be ultrasonic time optimized (20 min), the volume fraction of ethanol (60%) and ratio of liquid to material (15 mL g(-1)). Under these conditions, the mean extraction yield of CA was 12.57 mg g(-1), which was in good agreement with the predicted BBD model value. Purification of hawthorn extract was achieved by SPE process, and SPE recoveries of CA were 72.56, 64.79, 69.34 and 60.08% by DES-MIPs, DES-NIPs, MIPs and NIPs, respectively. The results showed DES-MIPs had potential for promising functional adsorption material for the purification of bioactive compounds. PMID:26347506

  17. [Rapid fabrication of molecularly imprinted polymer fibers for solid phase microextraction of bisphenol A].

    PubMed

    Hu, Mei; Zhang, Yijun; Yang, Jinghua; Zhou, Xiaomao; Wei, Zhuqing; Ding, Xiaoqing; Zhang, Yuping

    2015-02-01

    The rapid preparation of molecularly imprinted polymer (MIP) fibers was reported using bisphenol A (BPA) as the template molecular, acetonitrile (ACN) as the porogenic solvent, α-methacrylic acid (MAA) as the functional monomer, ethylene dimethacrylate (EDMA) as the crosslinker, and azodiisobutyronitrile (AIBN) as the thermal initiator. It was carried out within a capillary of 530 µm inner diameter (I. D.) by microwave irradiation in 7 min. The resulted BPA-MIP fibers were pushed out from the capillary, eluted in a vial and inserted in the capillary again followed by the application of the solid phase microextraction (SPME) procedure. The extraction performance was investigated in detail by varying the molar ratios between the template and the monomer (BPA/MAA), the concentration of NaCl, the extraction and desorption time, the pH value and the desorption solvents. The selectivity of the prepared MIP and non-molecularly imprinted polymer (NIP) fibers was comparatively evaluated by selecting two structurally-related compounds, phenol (P) and 4-phenylphenol (PP), and non-analogue dicyandiamide (DCD). The established method was successfully applied for the pretreatment and determination of BPA from beverage samples coupled to high performance liquid chromatography (HPLC). Under the optimal conditions, the linear range of BPA was 10-400 µg/L; the detection limit (LOD) was 0.45 µg/L and the recoveries spiked in the mineral water were 88.4%-102. 8%. The results demonstrated that the developed method can determine BPA in real samples with some advantages of simple pretreatment, rapid analysis, low limit of detection and low consumption of materials. PMID:25989683

  18. Determination of sulfadiazine in eggs using molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography.

    PubMed

    He, Xiuping; Tan, Liju; Wu, Wei; Wang, Jiangtao

    2016-06-01

    The development of a simple and effective method for the isolation and purification of sulfadiazine residues in food of animal origin is of great significance since it is a great danger to human health. An off-line molecularly imprinted solid-phase extraction with high-performance liquid chromatography method was proposed for the selective pretreatment and determination of sulfadiazine in eggs, rapidly and effectively. The molecularly imprinted polymer was proved to have a homogeneous spherical structure and porous surface morphology with excellent adsorption capacity of 5258 μg/g for sulfadiazine. The newly established method showed a good linearity in the range of 0-200 μg/L, low limits of detection (0.06 μg/L), acceptable reproducibility (RSD, 2.60-5.03%, n = 3), and satisfactory relative recoveries (78.22-86.10%). It was demonstrated that the proposed molecularly imprinted solid-phase extraction with high-performance liquid chromatography method could be applied to determine sulfadiazine in eggs, which simplified the pretreatment procedure and improved the accuracy of the analysis process by reducing the loss of sulfadiazine in the fat-removing procedure compared with traditional methods. Molecularly imprinted solid-phase extraction with excellent selectivity and adsorption capacity is a simple, rapid, selective, and effective pretreatment method for the determination of sulfadiazine in egg samples. PMID:27063936

  19. Photoresponsive surface molecularly imprinted polymer on ZnO nanorods for uric acid detection in physiological fluids.

    PubMed

    Tang, Qian; Li, Zai-Yong; Wei, Yu-Bo; Yang, Xia; Liu, Lan-Tao; Gong, Cheng-Bin; Ma, Xue-Bing; Lam, Michael Hon-Wah; Chow, Cheuk-Fai

    2016-09-01

    A photoresponsive surface molecularly imprinted polymer for uric acid in physiological fluids was fabricated through a facile and effective method using bio-safe and biocompatible ZnO nanorods as a support. The strategy was carried out by introducing double bonds on the surface of the ZnO nanorods with 3-methacryloxypropyltrimethoxysilane. The surface molecularly imprinted polymer on ZnO nanorods was then prepared by surface polymerization using uric acid as template, water-soluble 5-[(4-(methacryloyloxy)phenyl)diazenyl]isophthalic acid as functional monomer, and triethanolamine trimethacryl ester as cross-linker. The surface molecularly imprinted polymer on ZnO nanorods showed good photoresponsive properties, high recognition ability, and fast binding kinetics toward uric acid, with a dissociation constant of 3.22×10(-5)M in aqueous NaH2PO4 buffer at pH=7.0 and a maximal adsorption capacity of 1.45μmolg(-1). Upon alternate irradiation at 365 and 440nm, the surface molecularly imprinted polymer on ZnO nanorods can quantitatively uptake and release uric acid. PMID:27207036

  20. RECOGNITION OF PYRENE USING MOLECULARLY-IMPRINTED ELECTROCHEMICALLY-DEPOSITED POLY (2-MERCAPTOBENZIMIDAZOLE) OR POLY(RESORCINOL) ON GOLD ELECTRODES

    EPA Science Inventory

    The feasibility of using thiol chemistry to form molecularly imprinted polymer-coated gold electrodes to measure pyrene is reported. For the first approach, poly(2-mercaptoimidazole) (2-MBI) was electrochemically deposited on gold electrodes in the presence or absence of the tem...

  1. HIGHLY SELECTIVE SENSORS FOR CHEMICAL AND BIOLOGICAL WARFARE AGENTS, INSECTICIDES AND VOCS BASED ON A MOLECULAR SURFACE IMPRINTING TECHNIQUE

    EPA Science Inventory

    Abstract was given as an oral platform presentation at the Pittsburgh Conference, Orlando FL (March 5-9, 2006). Research described is the development of sensors based on molecular surface imprinting. Applications include the monitoring of chemical and biological agents and inse...

  2. Fast identification of selective resins for removal of genotoxic aminopyridine impurities via screening of molecularly imprinted polymer libraries.

    PubMed

    Kecili, Rustem; Billing, Johan; Nivhede, David; Sellergren, Börje; Rees, Anthony; Yilmaz, Ecevit

    2014-04-25

    This study describes the identification and evaluation of molecularly imprinted polymers (MIPs) for the selective removal of potentially genotoxic aminopyridine impurities from pharmaceuticals. Screening experiments were performed using existing MIP resin libraries to identify resins selective towards those impurities in the presence of model pharmaceutical compounds. A hit resin with a considerable imprinting effect was found in the screening and upon further investigation, the resin was found to show a broad selectivity towards five different aminopyridines in the presence of the two model active pharmaceutical ingredients (APIs) piroxicam and tenoxicam. PMID:24661866

  3. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.

    PubMed

    Tao, Qing-Lan; Li, Yue; Shi, Ying; Liu, Rui-Jiang; Zhang, Ye-Wang; Guo, Jianyong

    2016-06-01

    Magnetic Fe3O4@SiO2 nanoparticles were prepared with molecular imprinting method using cellulase as the template. And the surface of the nanoparticles was chemically modified with arginine. The prepared nanoparticles were used as support for specific immobilization of cellulase. SDS-PAGE results indicated that the adsorption of cellulase onto the modified imprinted nanoparticles was selective. The immobilization yield and efficiency were obtained more than 70% after the optimization. Characterization of the immobilized cellulase revealed that the immobilization didn't change the optimal pH and temperature. The half-life of the immobilized cellulase was 2-fold higher than that of the free enzyme at 50 degrees C. After 7 cycles reusing, the immobilized enzyme still retained 77% of the original activity. These results suggest that the prepared imprinted nanoparticles have the potential industrial applications for the purification or immobilization of enzymes. PMID:27427671

  4. Molecularly imprinted polymer-based bulk optode for the determination of itopride hydrochloride in physiological fluids.

    PubMed

    Abdel-Haleem, F M; Madbouly, Adel; El Nashar, R M; Abdel-Ghani, N T

    2016-11-15

    We report here for the first time on the use of Molecularly Imprinted Polymers as modifiers in bulk optodes, Miptode, for the determination of a pharmaceutical compound, itopride hydrochloride as an example in a concentration range of 1×10(-1)-1×10(-4)molL(-1). In comparison to the optode containing the ion exchanger only (Miptode 3), the optode containing the ion exchanger and the MIP particles (Miptode 2) showed improved selectivity over the most lipophilic species, Na(+) and K(+), by more than two orders of magnitude. For instance, the optical selectivity coefficients using Miptode 2, [Formula: see text] , were as follow: NH4(+)˂-6; Na(+)=-4.0, which were greatly enhanced in comparison with that obtained by Miptode 3. This work opens a new avenue for using miptodes for the determination of all the pharmaceutical preparations without the need for the development of new ionophores. PMID:27266658

  5. Optimisation of the synthesis of vancomycin-selective molecularly imprinted polymer nanoparticles using automatic photoreactor

    NASA Astrophysics Data System (ADS)

    Muzyka, Kateryna; Karim, Khalku; Guerreiro, Antonio; Poma, Alessandro; Piletsky, Sergey

    2014-03-01

    A novel optimized protocol for solid-state synthesis of molecularly imprinted polymer nanoparticles (nanoMIPs) with specificity for antibiotic vancomycin is described. The experimental objective was optimization of the synthesis parameters (factors) affecting the yield of obtained nanoparticles which have been synthesized using the first prototype of an automated solid-phase synthesizer. Applications of experimental design (or design of experiments) in optimization of nanoMIP yield were carried out using MODDE 9.0 software. The factors chosen in the model were the amount of functional monomers in the polymerization mixture, irradiation time, temperature during polymerization, and elution temperature. In general, it could be concluded that the irradiation time is the most important and the temperature was the least important factor which influences the yield of nanoparticles. Overall, the response surface methodology proved to be an effective tool in reducing time required for optimization of complex experimental conditions.

  6. Ultrasensitive Detection of Testosterone Using Microring Resonator with Molecularly Imprinted Polymers

    PubMed Central

    Chen, Yangqing; Liu, Yong; Shen, Xiaodan; Chang, Zhimin; Tang, Longhua; Dong, Wen-Fei; Li, Mingyu; He, Jian-Jun

    2015-01-01

    We report ultrasensitive and highly selective detection of testosterone based on microring resonance sensor using molecularly imprinted polymers (MIP). A silicon-on-insulator (SOI) micoring resonator was modified by MIP films (MIPs) on a surface. The MIPs was synthesized by thermopolymerization using methacrylic acid as functional monomer and ethylene glycol dimethacrylate as crosslinking agent. The concentration of detected testosterone varies from 0.05 ng/mL to 10 ng/mL. The detection limit reaches 48.7 pg/mL. Ultrahigh sensitivity, good specificity and reproducibility have been demonstrated, indicating the great potential of making a cost effective and easy to operate lab-on-Chip and down scaling micro-fluidics devices in biosensing. PMID:26694390

  7. Biomimicry issues: the quest for sensing molecules at the origin of life using molecularly imprinter polymer

    NASA Astrophysics Data System (ADS)

    Carbonnier, Benjamin; Chehimi, Mohamed M.; Bakas, Idriss; Salmi, Zakaria; Mazerie, Isabelle; Floner, Didier; Geneste, Florence; Guerrouache, Mohamed

    The use of real time sensing analysis is becoming very popular in many applications and research areas such as, environment and agriculture for in situ monitoring of contaminants and food safety analysis, fundamental biology for studying for example protein-membrane interactions or drug discovery, health research for clinical diagnosis.[1] More recently, chip technology involving antibody-based detection system has been envisioned to search for life outside the Earth with a specific focus on Mars. [2] Sensors using such natural receptors are usually costly and suffer from the unstability of the surface-immobilized receptors. In this respect, the use of synthetic receptors appears as a very promising approach. Molecularly imprinting is undoubtedly one of the most promising approaches for designing biomimetic materials. In this respect, sensing microdevices based on molecularly imprinted polymers (MIPs) have attracted a great deal of interest over the recent years given their ability to recognize specifically and selectively molecules, proteins and even microorganisms, with excellent detection limits. MIPs can be prepared as powders, colloids and ultrathin films. The latter option is particularly interesting because it limits diffusion of the analytes to the artificial receptor sites within the sensing layers [3] and facilitates the making of nanostructured MIP grafts [4]. In addition, MIP sensing ultrathin layers are amenable to the detection of the analytes with varied transducing methods among which electrochemistry, a simple, versatile and easy to implement technique is very appealing to detect analytes concentrations in the picomolar or sub-picomolar range [5]. In this contribution, the important parameters in obtaining molecularly imprinted polymer layers grafted on gold working electrodes and exhibiting high sensitivity towards acid and base molecules are addressed. Square wave voltammetry is demonstrated to be a very powerful electroanalytical while the limit

  8. Characterization of an atrazine molecularly imprinted polymer prepared by a cooling method

    NASA Astrophysics Data System (ADS)

    Royani, Idha; Widayani, Abdullah, Mikrajuddin; Khairurrijal

    2014-03-01

    A molecularly imprinted polymer (MIP) for atrazine was successfully prepared. Atrazine molecules as templates were incorporated into the pre-polymerization solution containing a functional monomer (methacrylic acid), a cross-linker (ethylene glycol dimethacrylate), and an initiator (benzoyl peroxide). The placement of a tube containing the pre-polymerization solution into a freezer was done to replace nitrogen pouring into the pre-polymerization solution. The sensing characteristic of the obtained MIP was examined and it was found that the amount of atrazine bound to the cavities in the MIP increases with increasing the initial concentration of atrazine. From Scatchard plots, it was found that the equilibrium dissociation constant KD and the apparent maximum number of binding sites Bmax, which are written as (KD, Bmax), are (6.4 μM, 13.41 mmol/g) and (6.5 μM, 4.55 mmol/g) for the 10 and 30 mg of MIP, respectively.

  9. Synthesis of chitosan molecularly imprinted polymers for solid-phase extraction of methandrostenolone.

    PubMed

    Wang, Yun; Wang, Enlan; Wu, Ziming; Li, Huan; Zhu, Zhi; Zhu, Xinsheng; Dong, Ying

    2014-01-30

    Chitosan molecularly imprinted polymers (CHI-MIPs) for selective extraction of methandrostenolone (MA) was synthesized by cross-linking of chitosan with epichlorohydrin in the presence of MA as the template molecule. Systematic investigations of the influences of template, functional polymer, cross-linker as well as porogen concentrations on the rebinding capacity of CHI-MIPs were carried out. Adsorption and kinetic binding experiments indicated that the synthesized CHI-MIPs had high adsorption and excellent affinity to MA. Solid-phase extraction (SPE) using the prepared CHI-MIPs as adsorbent was then investigated, and the optimum loading and eluting conditions for SPE of the MA were established. The optimized SPE procedure was used to extract the MA from several spiked samples and a good sample clean-up was obtained with the average recoveries ranged from 95.97 to 101.79%. PMID:24299807

  10. [Synthesis and Study on Adsorption Property of Congo Red Molecularly Imprinted Polymer Nanospheres].

    PubMed

    Chang, Zi-qiang; Chen, Fu-bin; Zhang, Yu; Shi, Zuo-long; Yang, Chun-yan; Zhang, Zhu-jun

    2015-07-01

    Molecularly imprinted polymer nanospheres (MIP) were prepared with Congo red as the template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross linker, azodiisobutyronitrile (AIBN) as an initiator, and acetonitrile as the porogen by precipitation polymerization. The morphology of MIP was characterized by SEM and TEM which showed that the diameter of MIP was nanometer grade (90 nm) and the shape was homogeneous. The specific surface area and pore volumes of MIP and NIP were examined through Brunauer-Emett-Teller method of nitrogen adsorption experiments. Then, the adsorption and selective recognition ability of MIPs were evaluated using the equilibrium rebinding experiments. The results indicated that the prepared MIP showed a good selectivity recognition ability to its template. It concluded that MIP could be employed as an effective material for removing Congo red from waste water. PMID:26489326

  11. Bubble fractionation of enantiomers from solution using molecularly imprinted polymers as collectors.

    PubMed

    Armstrong, D W; Schneiderheinze, J M; Hwang, Y S; Sellergren, B

    1998-09-01

    Adsorptive bubble separation methods have been used to enrich components from both heterogeneous and homogeneous solutions. These methods are particularly effective for processing large solution volumes at low cost. Previous work demonstrated that chiral, surface-active collectors could be used to enrich enantiomers from homogeneous solution in a foam fractionation process. In a significant extension of this work, the use of highly selective molecularly imprinted polymers (MIPs) and heterogeneous solutions for the bubble flotation of enantiomers was evaluated. The high selectivity and ease of recycling of the MIP make this a potentially powerful approach for process-scale separations from large-volume bulk solutions. New MIPs were produced with low swelling properties which allowed them to retain enantioselectivity after numerous recyclings. PMID:9737214

  12. Preparation of biocompatible molecularly imprinted shell on superparamagnetic iron oxide nanoparticles for selective depletion of bovine hemoglobin in biological sample.

    PubMed

    Hao, Yi; Gao, Ruixia; Liu, Dechun; Zhang, Bianbian; Tang, Yuhai; Guo, Zengjun

    2016-05-15

    Bovine hemoglobin (BHb), as one of the high-abundance proteins, could seriously mask and hamper the analysis of low-abundance proteins in serum. To selectively deplete BHb, we design a simple and effective strategy for preparation of biocompatible molecularly imprinted shell on superparamagnetic iron oxide nanoparticles through surface imprinting technique combined with template immobilization strategy. Firstly, template proteins are immobilized on the directly aldehyde-functionalized magnetic nanoparticles through imine bonds. Then, with gelatin as functional monomer, a polymeric network molded around the immobilized template proteins is obtained. Finally, the specific cavities for BHb are fabricated after removing the template proteins. The effects of imprinting conditions were investigated and the optimal imprinting conditions are found to be 40mg of BHb, 150mg of gelatin, and 8h of polymerization time. The resultant materials exhibit good dispersion, high crystallinity, and satisfactory superparamagnetic property with a high saturation magnetization (33.43emug(-1)). The adsorption experiments show that the imprinted nanomaterials have high adsorption capacity of 93.1mgg(-1), fast equilibrium time of 35min, and satisfactory selectivity for target protein. Meanwhile, the obtained polymers could be used without obvious deterioration after six adsorption-desorption cycles. In addition, the resultant polymers are successfully applied in the selective isolation BHb from bovine blood sample, which could provide an alternative solution for the preparatory work of proteomics. PMID:26939073

  13. Development of Molecularly Imprinted Polymer in Porous Film Format for Binding of Phenol and Alkylphenols from Water

    PubMed Central

    Gryshchenko, Andriy O.; Bottaro, Christina S.

    2014-01-01

    Molecularly imprinted polymers (MIPs) were fabricated on glass slides with a “sandwich” technique giving ~20 μm thick films. Methanol/water as a solvent, and polyethyleneglycol and polyvinylacetate as solvent modifiers, were used to give a porous morphology, which was studied with scanning electron microscopy and gravimetric analysis. Various MIPs were synthesized through non-covalent imprinting with phenol as the template; itaconic acid, 4-vinylpyridine, and styrene as monomers; ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and pentaerythritol triacrylate (PETA) as cross-linkers. Binding and imprinting properties of the MIPs were evaluated based on phenol adsorption isotherms. Since phenol has only one weakly acidic hydroxyl group and lacks unique structural characteristics necessary for binding specificity, the preparation of selective MIPs was challenging. The recognition of phenol via hydrogen bonding is suppressed in water, while hydrophobic interactions, though promoted, are not specific enough for highly-selective phenol recognition. Nevertheless, the styrene-PETA MIP gave modest imprinting effects, which were higher at lower concentrations (Imprinting Factor (IF) = 1.16 at 0.5 mg·L−1). The isotherm was of a Freundlich type over 0.1–40 mg·L−1 and there was broad cross-reactivity towards other structurally similar phenols. This shows that phenol MIPs or simple adsorbents can be developed based on styrene for hydrophobic binding, and PETA to form a tighter, hydrophilic network. PMID:24447925

  14. Development of molecularly imprinted polymer in porous film format for binding of phenol and alkylphenols from water.

    PubMed

    Gryshchenko, Andriy O; Bottaro, Christina S

    2014-01-01

    Molecularly imprinted polymers (MIPs) were fabricated on glass slides with a "sandwich" technique giving ~20 µm thick films. Methanol/water as a solvent, and polyethyleneglycol and polyvinylacetate as solvent modifiers, were used to give a porous morphology, which was studied with scanning electron microscopy and gravimetric analysis. Various MIPs were synthesized through non-covalent imprinting with phenol as the template; itaconic acid, 4-vinylpyridine, and styrene as monomers; ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and pentaerythritol triacrylate (PETA) as cross-linkers. Binding and imprinting properties of the MIPs were evaluated based on phenol adsorption isotherms. Since phenol has only one weakly acidic hydroxyl group and lacks unique structural characteristics necessary for binding specificity, the preparation of selective MIPs was challenging. The recognition of phenol via hydrogen bonding is suppressed in water, while hydrophobic interactions, though promoted, are not specific enough for highly-selective phenol recognition. Nevertheless, the styrene-PETA MIP gave modest imprinting effects, which were higher at lower concentrations (Imprinting Factor (IF) = 1.16 at 0.5 mg·L(-1)). The isotherm was of a Freundlich type over 0.1-40 mg·L(-1) and there was broad cross-reactivity towards other structurally similar phenols. This shows that phenol MIPs or simple adsorbents can be developed based on styrene for hydrophobic binding, and PETA to form a tighter, hydrophilic network. PMID:24447925

  15. Molecularly imprinted polymerization-based surface plasmon resonance sensing for glucose detection in human urine

    NASA Astrophysics Data System (ADS)

    Banerji, Soame; Peng, Wei; Kim, Yoon-Chang; Booksh, Karl S.

    2006-10-01

    A novel Surface Plasmon Resonance (SPR) sensor to detect glucose using molecularly imprinted polymer (MIP) will be presented in this paper. SPR has been traditionally used as a probe for surface interaction of large molecules but harder to measure small molecules since the effective change in the SPR condition becomes smaller. The accurate measurement of glucose in complex physiological fluids like urine is particularly challenging since the constituents of these fluids vary significantly from person to person and even throughout the day for a particular individual. The polymer was prepared by crosslinking polyallyamine in the presence of Glucose Phosphate, monobarium salt (GPS-Ba) and attached to a 50 nm thin film of gold which had been sputtered on top of a glass slide, via amide coupling. Upon removal of the template, this sensor was used to detect glucose in human urine in physiologically significant levels (1-20 mg/ml). Enhancement of the glucose sensor was made possible by incorporating gold nanoparticles which improved the signal. This study has demonstrated the specific detection of glucose in a complex physiological fluid using SPR spectroscopy. The association of glucose to the imprinted polymer results in the swelling of the polymer that can be tracked by the minima in SPR spectra. The sensitivity of this method, while lower than protein based detection schemes, is sufficient for quantitative measurement of glucose in urine at physiologically significant levels without extensive pre-treatment of the sample. Given the nature of the weak non-covalent binding of glucose to the amine functional groups, the scheme used here can be adapted to detect a number of different molecular species of sizes comparable to that of glucose without the need for extensive sample preparation or use of chemicals with limited shelf life.

  16. Molecularly Imprinted Polymer Integrated with a Surface Acoustic Wave Technique for Detection of Sulfamethizole.

    PubMed

    Ayankojo, Akinrinade George; Tretjakov, Aleksei; Reut, Jekaterina; Boroznjak, Roman; Öpik, Andres; Rappich, Jörg; Furchner, Andreas; Hinrichs, Karsten; Syritski, Vitali

    2016-01-19

    The synergistic effect of combining molecular imprinting and surface acoustic wave (SAW) technologies for the selective and label-free detection of sulfamethizole as a model antibiotic in aqueous environment was demonstrated. A molecularly imprinted polymer (MIP) for sulfamethizole (SMZ) selective recognition was prepared in the form of a homogeneous thin film on the sensing surfaces of SAW chip by oxidative electropolymerization of m-phenylenediamine (mPD) in the presence of SMZ, acting as a template. Special attention was paid to the rational selection of the functional monomer using computational and spectroscopic approaches. SMZ template incorporation and its subsequent release from the polymer was supported by IR microscopic measurements. Precise control of the thicknesses of the SMZ-MIP and respective nonimprinted reference films (NIP) was achieved by correlating the electrical charge dosage during electrodeposition with spectroscopic ellipsometry measurements in order to ensure accurate interpretation of label-free responses originating from the MIP modified sensor. The fabricated SMZ-MIP films were characterized in terms of their binding affinity and selectivity toward the target by analyzing the binding kinetics recorded using the SAW system. The SMZ-MIPs had SMZ binding capacity approximately more than eight times higher than the respective NIP and were able to discriminate among structurally similar molecules, i.e., sulfanilamide and sulfadimethoxine. The presented approach for the facile integration of a sulfonamide antibiotic-sensing layer with SAW technology allowed observing the real-time binding events of the target molecule at nanomolar concentration levels and could be potentially suitable for cost-effective fabrication of a multianalyte chemosensor for analysis of hazardous pollutants in an aqueous environment. PMID:26704414

  17. Determination triazine pesticides in cereal samples based on single-hole hollow molecularly imprinted microspheres.

    PubMed

    Zhao, Qi; Li, Huiyu; Xu, Yang; Zhang, Fengshuang; Zhao, Jiahui; Wang, Long; Hou, Juan; Ding, Hong; Li, Yi; Jin, Haiyan; Ding, Lan

    2015-01-01

    Single-hole hollow molecularly imprinted microspheres (h-MIMs) were prepared by hard template method and applied to extract six triazine pesticides in cereal samples, followed by HPLC-MS/MS detection. The synthesis mechanism of the h-MIMs has been studied. The h-MIMs exhibited bigger specific surface area and much higher binding capacity than the molecularly imprinted polymers prepared by precipitation polymerization (p-MIPs) and surface polymerization (s-MIPs). Besides, the adsorption rate of h-MIMs to prometryn was significantly higher than that of p-MIPs and s-MIPs. Owing to the hollow structure of the h-MIMs, more binding cavities were located on the inner and outer surfaces of the h-MIMs, which could facilitate the removal of template molecules from the polymers and the rebinding of the target molecules to the polymers. Under the optimal conditions, the detection limits of triazines are in the range of 0.08-0.16ngg(-1). At the spiked level (5ngg(-1)), the recoveries of triazines are in the range of 81±4% to 96±4%. The proposed method was successfully applied to determine six triazines in five cereal samples. Atrazine was found in two rice samples and a wheat sample with the contents of 5.1, 6.7 and 5.6ngg(-1), respectively. Ametryn and prometryn were found in a maize sample with the contents of 7.6 and 7.3ngg(-1), respectively. PMID:25537174

  18. Monitoring bisphenol A and its biodegradation in water using a fluorescent molecularly imprinted chemosensor.

    PubMed

    Wu, Ya-ting; Liu, Yan-jie; Gao, Xia; Gao, Kai-chun; Xia, Hu; Luo, Mi-fang; Wang, Xue-juan; Ye, Lei; Shi, Yun; Lu, Bin

    2015-01-01

    In this paper, we present a simple and rapid method for monitoring bisphenol A (BPA) and its biodegradation in environmental water using a fluorescent molecularly imprinted polymer chemosensor (fMIPcs). A fluorescent molecularly imprinted polymer (fMIP) was first synthesized by precipitation polymerization method using BPA as template, dansyl methacrylate as functional monomer. Then a fMIPcs was constructed by combining the fMIP with a fluorescent microplate reader. The fMIPcs displayed selective, concentration-dependent fluorescence quenching in response to BPA in water even in the existence of interferences, thereby allowing reliable high through-put quantification of BPA via simple fluorescence measurements. The fMIPcs was able to directly quantify BPA (from 10 to 2000 μg L(-1)) in different environmental water samples (distilled water, distilled water containing heavy metals and humic acid, tap water, and river water) with high accuracy, and to monitor BPA biodegradation in real-time. Using the fMIPcs, it was possible to achieve fast analytical results with lower limit of detection for BPA (3 μg L(-1)) from smaller sample volume (250 μL), which are superior to many relevant methods reported in the literature. Moreover, BPA levels and biodegradation rates measured by fMIPcs are comparable to the instrument-based method (HPLC). The fMIPcs developed in this work offers a new solution for simple, rapid, accurate and high through-put BPA quantification, and makes it possible to monitor BPA biodegradation in real time. PMID:25112577

  19. Molecular imprinting of caffeine on cellulose/silica composite and its characterization

    NASA Astrophysics Data System (ADS)

    Gill, Rajinder Singh

    This dissertation presents a study to prepare molecularly imprinted inorganic/organic hybrid composite which not only confirm the higher binding capabilities for the target molecule (template) but also discriminate its structural analogs. Molecularly imprinted Cellulose/Silica composite (MIP) was prepared by using caffeine as the template. Silica derived from TEOS by using sol-gel techniques was deposited on cheap, abundant organic matrix such as cellulose, which can provide a filtering medium while coffee brewing. Removal of the template from the precursor was verified by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Remarkably reduced intensity of -NH2 scissor like mode of caffeine and the presence of traces of "N" by elemental analysis, confirmed the complete removal of caffeine on washing with ethanol. Cellulose to TEOS mass ratio of 2:1 was found to be close to optimal during our analysis. Energy dispersive spectroscopy results leads to an important fact that the deposition of silica was stable even at 373 K. Focus was on the adsorption affinities of caffeine by MIP and was tested by performing relative adsorption of caffeine by MIP and blank (standard) using demountable path length cell in IR. It was observed that MIP showed almost 3-folds higher adsorption capabilities as compared to blank. The initial rate of adsorption of caffeine by MIP is much higher than blank which is one of the desirable feature according the its intended use. The higher adsorption of caffeine by MIP not only depends on the amount of silica deposited but also the available binding sites present on its surface. Selectivity of MIP was also verified by the competitive adsorption of caffeine and its structure analogs such as theophylline. Clearly, MIP showed greater and more rapid binding capabilities for caffeine than theophylline. At short contact times, the binding capability for caffeine is almost 1.8 times greater than the binding capabilities for theophylline.

  20. Au(III)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food.

    PubMed

    Liu, Bingqian; Tang, Dianping; Zhang, Bing; Que, Xiaohua; Yang, Huanghao; Chen, Guonan

    2013-03-15

    Redox-active magnetic molecularly imprinted polymer (mMIP) nanospheres were first synthesized and functionalized with streptomycin templates for highly efficient electrochemical determination of streptomycin residues (STR) in food by coupling with bioelectrocatalytic reaction of enzymes for signal amplification. The mMIP nanospheres were synthesized by using Au(III)-promoted molecularly imprinted polymerization with STR templates on magnetic beads. Based on extraction of template molecules from the mMIP surface, the imprints toward STR templates were formed. The assay was implemented with a competitive-type assay format. Upon addition of streptomycin, the analyte competed with glucose oxidase-labeled streptomycin (GOX-STR) for molecular imprints on the mMIP nanospheres. With the increasing streptomycin in the sample, the conjugation amount of GOX-STR on the mMIP nanospheres decreased, leading to the change in the bioelectrocatalytic current relative to glucose system. Under optimal conditions, the catalytic current was proportional to STR level in the sample, and exhibited a dynamic range of 0.05-20 ng mL(-1) with a detection limit of 10 pg mL(-1) STR (at 3s(B)). Intra- and inter-assay coefficients of variation were below 12%. The assayed results for STR spiked samples including milk and honey with the mMIP-based sensor were received a good accordance with the results obtained from the referenced high-performance liquid chromatography (HPLC) method. PMID:23058661

  1. Molecularly imprinted polymers for the solid-phase extraction of four fluoroquilones from milk and lake water samples.

    PubMed

    Wu, Xi; Wu, Lintao

    2015-10-01

    A method based on molecular crowding and ionic liquids as reaction solvents has been used for the synthesis of molecularly imprinted polymers. Levofloxacin was selected as the template, polymethyl methacrylate was the molecular crowding agent, and 1-butyl-3-methylimidazolium tetrafluoroborate (ionic liquid) was selected as the reaction solvent and porogen. The optimized proportion for the mixed porogen was dimethyl sulfoxide/ionic liquid/polymethyl methacrylate 1:1.6:5 in chloroform (150 mg mL(-1) ). The morphology and chemical composition of levofloxacin imprinted polymers were assessed by scanning electron microscopy and Fourier transform infrared spectroscopy. The absorption experiments demonstrated that the levofloxacin imprinted polymers possess high selective recognition property to levofloxacin and analogs, including enrofloxacin, ciprofloxacin and gatifloxacin, which all belong to fluoroquinolones. An extraction method using levofloxacin imprinted polymers as sorbent followed by high-performance liquid chromatography analysis was optimized for the determination of four fluoroquinolones in milk and lake water samples. Under the optimized conditions, good linearity was observed in a range of 5-1000 ng g(-1) with the limit of detection between 0.3 and 0.5 ng g(-1) for the four fluoroquinolones. The recoveries at three spiked levels ranged 82.4-98.3% with the relative standard deviation ≤4.9. PMID:26418224

  2. In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high-viscosity polymerization solvents.

    PubMed

    Renkecz, Tibor; László, Krisztina; Horváth, Viola

    2012-06-01

    There is a growing need in membrane separations for novel membrane materials providing selective retention. Molecularly imprinted polymers (MIPs) are promising candidates for membrane functionalization. In this work, a novel approach is described to prepare composite membrane adsorbers incorporating molecularly imprinted microparticles or nanoparticles into commercially available macroporous filtration membranes. The polymerization is carried out in highly viscous polymerization solvents, and the particles are formed in situ in the pores of the support membrane. MIP particle composite membranes selective for terbutylazine were prepared and characterized by scanning electron microscopy and N₂ porosimetry. By varying the polymerization solvent microparticles or nanoparticles with diameters ranging from several hundred nanometers to 1 µm could be embedded into the support. The permeability of the membranes was in the range of 1000 to 20,000 Lm⁻²  hr⁻¹  bar⁻¹. The imprinted composite membranes showed high MIP/NIP (nonimprinted polymer) selectivity for the template in organic media both in equilibrium-rebinding measurements and in filtration experiments. The solid phase extraction of a mixture of the template, its analogs, and a nonrelated compound demonstrated MIP/NIP selectivity and substance selectivity of the new molecularly imprinted membrane. The synthesis technique offers a potential for the cost-effective production of selective membrane adsorbers with high capacity and high throughput. PMID:22641529

  3. Synthesis of molecularly imprinted photocatalysts containing low TiO2 loading: Evaluation for the degradation of pharmaceuticals.

    PubMed

    de Escobar, Cícero Coelho; Lansarin, Marla Azário; dos Santos, João Henrique Zimnoch

    2016-04-01

    A molecularly imprinted (MI) photocatalyst containing a low TiO2 loading (7.00-16.60mgL(-1) of TiO2) was prepared via an acid-catalyzed sol-gel route using different classes of pharmaceutical compounds (i.e., Atorvastatin, Diclofenac, Ibuprofen, Tioconazole, Valsartan, Ketoconazole and Gentamicine) as the template. Herein, our main goal was to test the hypothesis that photocatalysts based on molecular imprinting may improve the degradation performance of pharmaceutical compounds compared to that of a commercial sample (Degussa P25) due to presence of specific cavities in the silica domain. To elucidate certain trends between the performance of photocatalysts and their structural and textural properties, as well the effect of the structure of the drugs on molecular imprinting, the data were analyzed in terms of pore diameter, pore volume, surface area, zeta potential and six-membered ring percentage of silica. In comparison to the commercial sample (P25), we have shown that adsorption and degradation were enhanced from 48 to 752% and from 5 to 427%, respectively. A comparison with the control system (non-imprinted) indicates that the increased performance of the MI systems was due to the presence of specific cavities on the silica domain, and the textural and structural aspects also support this conclusion. The MI photocatalyst was reusable for seven cycles of reuse in which approximately 60% of its photocatalytic efficiency was preserved for the system containing Diclofenac as the template. PMID:26800507

  4. Understanding the structural changes that take place in a polypyrrole film during its oxi-reduction process: a molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Lopez Cascales, J. J.; Otero, T. F.

    2005-06-01

    Oxi-reduction processes of conducting polymer are the base of a great number of technological developments in the fields of polymeric actuators (artificial muscles) or smart windows. Hence, the understanding the structural changes that take place in the polymer as a function of its oxidation seems to be crucial for a proper understanding of these complicated systems. In this sense, a model with atomic detail has been simulated by Molecular Dynamics Simulation, which provides an insight of how the electrical response of the system depends of the structural changes that take place inside the polymer. In this regard, the conducting polymer, water and counterions were modeled with atomic detail with the goal of obtaining an insight of the ring orientation and reorientational relaxation time of the pyrrole rings at different oxidation states of the polymer. In addition, we studied how the above properties are greatly affected by the oxidation state of the polymer and the variation these properties changes from the polypyrrole/water interface to the polypyrrole bulk. Finally, we correlated the reorientational dynamics of pyrrole rings with the oxidation kinetic observed from a macroscopic point of view.

  5. New biomedical devices with selective peptide recognition properties. Part 1: Characterization and cytotoxicity of molecularly imprinted polymers

    PubMed Central

    Rechichi, A; Cristallini, C; Vitale, U; Ciardelli, G; Barbani, N; Vozzi, G; Giusti, P

    2007-01-01

    Abstract Molecular imprinting is a technique for the synthesis of polymers capable to bind target molecules selectively. The imprinting of large proteins, such as cell adhesion proteins or cell receptors, opens the way to important and innovative biomedical applications. However, such molecules can incur into important conformational changes during the preparation of the imprinted polymer impairing the specificity of the recognition cavities. The “epitope approach” can overcome this limit by adopting, as template, a short peptide sequence representative of an accessible fragment of a larger protein. The resulting imprinted polymer can recognize both the template and the whole molecule thanks to the specific cavities for the epitope. In this work two molecularly imprinted polymer formulations (a macroporous monolith and nanospheres) were obtained using the protected peptide Z-Thr-Ala-Ala-OMe, as template, and Z-Thr-Ile-Leu-OMe, as analogue for the selectivity evaluation, methacrylic acid, as functional monomer, and trimethylolpropane trimethacrylate and pentaerythritol triacrylate (PETRA), as cross-linkers. Polymers were synthesized by precipitation polymerization and characterized by standard techniques. Polymerization and rebinding solutions were analyzed by high performance liquid chromatography. The highly cross-linked polymers retained about 70% of the total template amount, against (20% for the less cross-linked ones). The extracted template amount and the rebinding capacity decreased with the cross-linking degree, while the selectivity showed the opposite behaviour. The PETRA cross-linked polymers showed the best recognition (MIP 2−, α= 1.71) and selectivity (MIP 2+, α′= 5.58) capabilities. The cytotoxicity tests showed normal adhesion and proliferation of fibroblasts cultured in the medium that was put in contact with the imprinted polymers. PMID:18205706

  6. The selective binding character of a molecular imprinted particle for Bisphenol A from water.

    PubMed

    Ren, Yue-Ming; Yang, Jing; Ma, Wei-Qing; Ma, Jun; Feng, Jing; Liu, Xiao-Li

    2014-03-01

    A molecular imprinted particle for Bisphenol A (BPA-MIP) was successfully used for selective recognition of BPA in the water. The contaminants such as 3, 3', 5, 5'-Tetrabromobisphenol A (TBBPA), phenol and phenol red (PSP) were selected as the latent interferon to investigate the selectivity. The binding efficiencies of BPA-MIP for different phenols were explored at various initial concentrations in the single and mixed water. Various selective parameters such as Kd, K and K' of BPA-MIP for BPA were calculated. The influences of humic acid (HA) and common ions on the BPA binding were investigated. A physical model was proposed to illustrate the selective binding performance. The results showed that BPA-MIP possessed strong selectivity for BPA in competitive water, while the other similar phenols had the influence for BPA binding at the order of TBBPA > phenol > PSP. The HA and common ions indicated little effect on the BPA binding process onto BPA-MIP. It was found that the molecular geometry and the hydrogen bonding interactions between the hydroxyl and carboxyl played an important role in recognizing the target molecular in the binding process. PMID:24361706

  7. Molecularly imprinted polymer dedicated to the extraction of glyphosate in natural waters.

    PubMed

    Puzio, K; Claude, B; Amalric, L; Berho, C; Grellet, E; Bayoudh, S; Nehmé, R; Morin, Ph

    2014-09-26

    Three molecularly imprinted polymers (MIPs) have been synthesized in order to bind efficiently glyphosate (GLY) in natural waters (mineral and underground). Since the target analyte is polar and hydrophilic, electrostatic interactions and hydrogen bonds have been favored with two templates (phenylphosphonic acid and diethyl(α-aminobenzyl)-phosphonic acid) and two functional monomers (1-allyl-2-thiourea and methacrylic acid). MIPs have been assessed by comparison of the recoveries obtained with MIP and NIP (non imprinted polymer) by solid-phase extraction (SPE). The selectivity of MIP versus NIP was satisfactory for the three imprinted polymers with a very straightforward protocol: conditioning of 250 mg of MIP or NIP packed in 3-mL polypropylene cartridges with 3 mL Milli-Q water, loading of Milli-Q water (15 mL) spiked with 5 mg L(-1) of GLY and its metabolite, aminomethylphosphonic acid (AMPA) and elution by 3 mL NH4OH (10mM) or 3 mL HCl (100mM). SPE fractions were directly analyzed by capillary electrophoresis (CE). Thus, the recoveries of both analytes were greater than 80% for all MIPs and less than 25% for most NIPs. Moreover, the MIP prepared with 1-allyl-2-thiourea as functional monomer and phenylphosphonic acid as template displayed a capacity of 0.033 μmol/mg for GLY. However, the substitution of Milli-Q water by mineral water caused the decrease of MIP recoveries, for that, a pretreatment of the sample by ionic exchange resins was set up and succeeded in improving recoveries (about 50% for GLY and 25% for AMPA). Then, groundwaters were spiked with low concentrations of GLY and AMPA (0.5 μgL(-1)) and directly percolated through MIP cartridges. The extractions were carried out by triplicate and the elution fractions were analyzed by UPLC-MS/MS. The results showed no retention of AMPA but a total retention of GLY by MIP. PMID:25152490

  8. Biomimetic materials processing: Implementation of molecular imprinting and study of biomineralization through the development of an agarose gel assay

    NASA Astrophysics Data System (ADS)

    Boggavarapu, Sajiv

    Biomimetics is defined as an approach in which naturally occurring materials processes are mimicked in laboratory situations. The ultimate goal is to develop synthetic analogues of naturally occurring materials such as bone and teeth, classified as biocomposites, which possess similar chemical and mechanical properties. The work presented here provides the initial work in furthering the progress of biomimetic materials processing. The first element of the work utilizes molecular imprinting as a selective recognition, or sensing tool, for detection of low molecular weight organic molecules. Molecular imprinting is a phenomenon in which crosslinked synthetic polymers exhibit selective binding towards small organic molecules. Initial work in the field was done in which numerous processing steps were involved with bulk polymer samples while the achievement here lies in the development of molecular imprinted polymer films which greatly facilitate the processing and characterization. Molecularly imprinted polymers are sometimes referred to as artificial antibodies due to the selective binding aspects that are highly analogous to natural antibodies. Additional work involves transforming the recognition aspects of molecular imprinting into a biomineralization analogue. Biomineralization is the process in which organisms convert freely soluble minerals (namely calcium carbonates and calcium phosphates) into solid parts, such as bones and teeth, at ambient conditions via the influence of organic molecules such as proteins and carbohydrates. The molecular imprinting approach with biomineralization led to limited success but formed the foundation for a more detailed study into the effects of small organic functional groups (COOH-, OH-) on the growth of calcium carbonates and calcium phosphates, the core components of important biocomposites such as bone. In order to study the effects of organic molecules on the calcium based crystals, a mineralization assay was developed in an

  9. Molecularly imprinted solid phase extraction for the selective HPLC determination of alpha-tocopherol in bay leaves.

    PubMed

    Puoci, F; Cirillo, G; Curcio, M; Iemma, F; Spizzirri, U G; Picci, N

    2007-06-19

    A new sorbent for molecularly imprinted solid phase extraction (MISPE) was synthesized to extract and purify alpha-tocopherol (alpha-TP) from vegetable sources. Molecularly imprinted polymers (MIP) were synthesized using methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent using a photo-polymerization procedure. A thermo-polymerization was also performed but no imprinting effect in the resulting materials was raised. The proposed MISPE protocol could overcome the drawback of traditional detection methods, which require pre-treatments of the samples. The possibility to obtain the selective recognition of alpha-TP from natural samples in aqueous mixtures represents one of the main advantages of our materials. Our procedure involves the direct HPLC injection of eluate without any treatment and above all the use of no toxic and biocompatible organic solvents. After the evaluation of the selectivity of the alpha-TP imprinted polymers, the performance of these materials as solid phase extraction (SPE) sorbents was investigated. Our MISPE-HPLC procedure has a high sensitivity, LOD and LOQ were 3.49x10(-7) and 1.16x10(-6) mol L(-1), respectively, as well as good precision (intraday precision below 3.3% and interday precisions below 6.5%) and recovery (60%). Thus, it can be successfully used for the purification of alpha-TP from bay leaves. PMID:17543603

  10. Selective solid-phase extraction using molecularly imprinted polymer as a sorbent for the analysis of fenarimol in food samples.

    PubMed

    Khan, Shagufta; Bhatia, Tejasvi; Trivedi, Purushottam; Satyanarayana, G N V; Mandrah, Kapil; Saxena, Prem Narayan; Mudiam, Mohana Krishna Reddy; Roy, Somendu Kumar

    2016-05-15

    In the present communication, a non-covalent fenarimol-imprinted polymer was synthesized by precipitation polymerization technique using methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, and azobisisobutyronitrile (AIBN) as an initiator in different porogenic solvent. Binding study of molecularly imprinted and non-imprinted polymer (MIP and NIP) showed that MIP possesses a higher affinity towards this analyte compared to NIP. The binding affinity of MIP was calculated by static and kinetic adsorption study. Further, a MIP based cartridge was designed to use in extraction process, necessary for specific determination and quantification of the fungicide in food matrices. Under the optimum conditions, developed method was found to be linear (R(2)=0.9999-0.9994). Limit of detection (LOD) and limit of quantitation (LOQ) in samples were 0.03-0.06 and 0.12-0.21 μg mL(-1), respectively. The rate of recovery of fenarimol was 91.16-99.52% on MIPs. The validated method of molecularly imprinted solid-phase extraction (MISPE) cartridge was successfully applied to the food matrices and compared with commercial sorbent (RP18 and Oasis HLB). However we feel, this method has promising applications in the routine analysis of food samples in industry. PMID:26776046

  11. Isolation and detection of steroids from human urine by molecularly imprinted solid-phase extraction and liquid chromatography.

    PubMed

    Gadzała-Kopciuch, Renata; Ricanyová, Júlia; Buszewski, Bogusław

    2009-04-15

    Naturally occurring steroids such as progesterone, testosterone and 17beta-estradiol were analyzed in this study. These bio-identical molecules paradoxically can be either beneficial or harmful. Unfortunately as growth promoters can be toxic and cancerogenic at elevated levels. Due to difficulty in monitoring at trace quantities of these hormones in biological matrices specific adsorption materials molecularly imprinted polymers (MIPs) were used for preconcentration and clean up in sample preparation step. A non-covalent imprinting approach was used for bulk polymerization of progesterone, testosterone and 17beta-estradiol imprinted polymers. Synthesis of MIPs was achieved by thermal, UV and gamma irradiation initiated polymerization whereby were used methacrylic acid (MAA), 4-vinylpyridine (4-VP) as functional monomers, ethylene glycol dimethacrylate (EDMA), trimethylolpropane trimethacrylate (TRIM) as cross-linking agents and acetonitrile, isooctane-toluene (1:99, v/v) and chloroform as porogen solvents. It was also used as initiator 2,2'-azobis(2-methylpropionitrile) (AIBN) or benzyl methyl ether (BME). The MIPs were applied as selective sorbents in solid-phase extraction (SPE). Molecularly imprinted solid-phase extraction (MISPE) considered as hyphenated technique were applied in extraction step before HPLC-DAD analysis of steroids from human urine. PMID:19328752

  12. Preparation of molecularly imprinted cross-linked chitosan/glutaraldehyde resin for enantioselective separation of L-glutamic acid.

    PubMed

    Monier, M; El-Sokkary, A M A

    2010-08-01

    In the present study, separation of L-glutamic acid from dilute aqueous solution by solid-phase extraction based on molecular imprinting technique using cross-linked chitosan/glutaraldehyde resin was investigated. L-Glutamic acid imprinted cross-linked chitosan (LGIC) was prepared by cross-linking of chitosan by glutaraldehyde cross-linker, in the presence of L-glutamic acid. Non-imprinted cross-linked chitosan (NIC) as control was also prepared by the same procedure in the absence of template molecules. The morphological structures of both LGIC and NIC were examined by scanning electron microscope (SEM). LGIC particles were applied to determine the optimum operational condition for l-glutamic acid separation from dilute aqueous solution. In adsorption step, optimum pH and retention time were 5.5 and 100 min, while corresponding values in extraction step were 2.5 and 60 min, respectively. The adsorption isotherms indicated that the maximum adsorption capacities of L- and D-glutamic acid on LGIC were 42+/-0.8 and 26+/-1.2mg/g, respectively, while in case of NIC, both L- and D-glutamic acid present the same maximum adsorption capacity 7+/-0.6 mg/g, which confirm that the molecular imprinting technique creates an enantioselectivity of LGIC toward L-glutamic acid. In addition, chiral resolution of l-, d-glutamic acid racemic mixture was carried out using column of LGIC. PMID:20441776

  13. Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk.

    PubMed

    Hou, Juan; Li, Huiyu; Wang, Long; Zhang, Ping; Zhou, Tianyu; Ding, Hong; Ding, Lan

    2016-01-01

    In this paper, a novel, selective and eco-friendly sensor for the detection of tetracycline was developed by grafting imprinted polymers onto the surface of carbon quantum dots. A simple microwave-assisted approach was utilized to fabricate the fluorescent imprinted composites rapidly for the first time, which could shorten the polymerization time and simplify the experimental procedure dramatically. The novel composites not only demonstrated excellent fluorescence stability and special binding sites, but also could selectively accumulate target analytes. Under optimal conditions, the relative fluorescence intensity of the composites decreased linearly with increasing the concentration of tetracycline from 20 nM to 14 µM. The detection limit of tetracycline was 5.48 nM. The precision and reproducibility of the proposed sensor were also acceptable. Significantly, the practicality of this ultrasensitive sensor for tetracycline detection in milk was further validated, revealing the advantages of simplicity, sensitivity, selectivity and low cost. This approach combines the high selective adsorption property of molecular imprinted polymers and the sensitivity of fluorescence detection. It is envisioned that the development of fluorescent molecularly imprinted composites will offer a new way of thinking for rapid analysis in complex samples. PMID:26695231

  14. Comparison of multi-recognition molecularly imprinted polymers for recognition of melamine, cyromazine, triamterene, and trimethoprim.

    PubMed

    Wang, Xian-Hua; Zhang, Jing; Peng, Chao; Dong, Qian; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-09-01

    Three fragmental templates, including 2,4-diamino-6-methyl-1,3,5-triazine (DMT), cyromazine (CYR), and trimethoprim (TME), were used to prepare the fragment molecularly imprinted polymers (FMIPs), respectively, in polar ternary porogen which was composed of ionic liquid ([BMIM]BF4), methanol, and water. The morphology, specific surface areas, and selectivity of the obtained FMIPs for fragmental analogues were systematically characterized. The experimental results showed that the FMIPs possessed the best specific recognition ability to the relative template and the greatest imprinting factor (IF) was 5.25, 6.69, and 7.11 of DMT on DMT-MIPs, CYR on CYR-MIPs, and TME on TME-MIPs, respectively. In addition, DMT-MIPs also showed excellent recognition capability for fragmental analogues including CYR, melamine (MEL), triamterene (TAT), and TME, and the IFs were 2.08, 3.89, 2.18, and 2.60, respectively. The effects of pH and temperature on the retention of the fragmental and structural analogues were studied in detail. Van't Hoff analysis indicated that the retention and selectivity on FMIPs were an entropy-driven process, i.e., steric interaction. The resulting DMT-MIPs were used as a solid-phase extraction material to enrich CYR, MEL, TAT, and TME in different bio-matrix samples for high-performance liquid chromatography analysis. The developed method had acceptable recoveries (86.8-98.6%, n = 3) and precision (2.7-4.6%) at three spiked levels (0.05-0.5 μg g(-1)). PMID:26195027

  15. Synthesis of a molecularly imprinted sorbent for selective solid-phase extraction of β-N-methylamino-L-alanine.

    PubMed

    Svoboda, Pavel; Combes, Audrey; Petit, Julia; Nováková, Lucie; Pichon, Valérie

    2015-11-01

    The aim of the work was to synthesize a molecularly imprinted material for the selective solid-phase extraction (SPE) of β-N-methylamino-L-alanine (L-2-amino-3-methylpropionic acid; BMAA) from cyanobacterial extracts. BMAA and its structural analogs that can be used as template are small, polar and hydrophilic molecules. These molecules are poorly soluble in organic solvents that are commonly used for the synthesis of acrylic-based polymers. Therefore, a sol gel approach was chosen to carry out the synthesis and the resulting sorbents were evaluated with different extraction procedures in order to determine their ability to selectively retain BMAA. The presence of imprinted cavities in the sorbent was demonstrated by comparing elution profiles obtained by using molecularly imprinted silica (MIS) and non-imprinted silica (NIS) as a control. The molecularly imprinted solid-phase extraction (MISPE) procedure was first developed in a pure medium (acetonitrile) and further optimized for the treatment of cyanobacterial samples. It was characterized by high elution recoveries (89% and 77% respectively in pure and in real media).The repeatability of the extraction procedure in pure medium, in real medium and the reproducibility of MIS synthesis all expressed as RSD values of extraction recovery of BMAA were equal to 3%, 12% and 5%, respectively. A MIS capacity of 0.34 µmol/g was measured. The matrix effects, which affected the quantification of BMAA when employing a mixed mode sorbent, were completely removed by adding a clean-up step of the mixed-mode sorbent extract on the MIS. PMID:26452922

  16. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.

    PubMed

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol-gel silica based inorganic polymeric sorbent (sol-gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol-gel catalyst. Non-imprinted sol-gel polymer (sol-gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol-gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol-gel MIP was 23 mg/g. The sol-gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work-flow. Intra and

  17. Molecularly imprinted polymers grafted to flow through poly(trimethylolpropane trimethacrylate) monoliths for capillary-based solid-phase extraction.

    PubMed

    Courtois, Julien; Fischer, Gerd; Sellergren, Börje; Irgum, Knut

    2006-03-17

    Monolithic molecularly imprinted polymers (mMIPs) have been synthesized in a novel way using a trimethylolpropane trimethacrylate core material photo-polymerized in situ in a 100 microm I.D. UV-transparent capillary and further photo-grafted to create specific cavities in the grafted layer. This polymerization technique allows the imprints to be directly created on the surface of the material using a minimum amount of template. Three different anaesthetics of similar structures (bupivacaine, mepivacaine and S-ropivacaine) were used as model target molecules to synthesize sample enrichment media. Hence, various mMIPs have been prepared and evaluated on a micro-system against each analyte in order to test the retention properties and cross-selectivities of the materials. The retention factors were determined and compared with the non-imprinted reference column (mNIP), yielding high imprinting factors together with good selectivity factors between the three analytes. A study with a pure enantiomeric target was carried out to assess the degree of stereo-specific imprinting for injection of racemic mixtures. Finally, one column was imprinted with an equimolar mixture of all three anaesthetics to provide further comprehension of the retention mechanism and accredit the possibility of using the material as a sample enrichment entity. Scanning electron microscopy (SEM), nitrogen absorption/desorption (BET) and mercury intrusion porosimetry were used to characterize the monolith and the mMIPs properties. Nuclear magnetic resonance (NMR) has been used to assess the similarities between the mMIP and mNIP. PMID:16376897

  18. Molecularly imprinted polymer for recognition of 5-fluorouracil by RNA-type nucleobase pairing.

    PubMed

    Huynh, Tan-Phat; Pieta, Piotr; D'Souza, Francis; Kutner, Wlodzimierz

    2013-09-01

    A 6-aminopurine (adenine) derivative of bis(2,2'-bithienyl)methane, vis., 4-[2-(6-amino-9H-purin-9-yl)ethoxy]phenyl-4-[bis(2,2'-bithienyl)methane] or Ade-BTM, was designed and synthesized for recognition of 5-fluorouracil (FU), an antitumor chemotherapy agent, by RNA-type (nucleobase pairing)-driven molecular imprinting. The prepolymerization complex stoichiometry involved one FU molecule and two molecules of the Ade-BTM functional monomer. Molecular structure of this complex was thermodynamically optimized via density functional theory at the B3LYP/3-21G* level. The stability constant of the FU-Ade-BTM complex of 1:2 stoichiometry was K = 2.17(±0.07) × 10(7) M(-2), as determined by titration with quenching of fluorescence of the bis(2,2'-bithienyl)methane moiety of Ade-BTM by the FU titrant, in benzonitrile, at 352 nm excitation. Next, (5-fluorouracil)-templated molecularly imprinted polymer (MIP-FU) films were deposited on indium-tin oxide (ITO) or Au film-coated glass slides, Pt disk electrodes, or 10-MHz quartz crystal resonators by potentiodynamic electropolymerization from solution of FU, Ade-BTM, and tris([2,2'-bithiophen]-5-yl)methane (TTM) cross-linking monomer at FU:Ade-BTM:TTM = 1:2:3 mol ratio. Then UV-visible and Fourier transform infrared (FT-IR) spectra of the MIP-FU films were recorded to confirm the FU template presence in the MIP-FU film and its subsequent release by extraction with methanol from this film. For determination of the stability constant of the complex of the MIP cavity and FU, piezoelectric microgravimetry (PM) under both batch- and flow-injection analysis conditions was used. For sensing application, three different transduction platforms [differential pulse voltammetry (DPV), capacitive impedimetry (CI), and PM] were integrated with the MIP-FU recognition unit. The limit of detection (LOD) was 56 nM, 75 nM, and 0.26 mM, for these chemosensors, respectively, indicating suitability of the former two for FU determination in blood

  19. Study on monomer suitability toward the template in molecularly imprinted polymer: An ab initio approach

    NASA Astrophysics Data System (ADS)

    Prasad, Bhim Bali; Rai, Garima

    2012-03-01

    Study of monomer-template interactions in molecularly imprinted polymer (MIP) is inevitable to comprehend best selectivity at the molecular level in pre-polymer solution. In the present work, binding energies of tryptophan, an amino acid template, complexed with different monomers were computed using second order Moller Plesset theory (MP2) at 6-311++g** level in gas phase. This helped in recommending a generic MIP, suitable for the selective and sensitive diagnosis of tryptophan, in clinical setting as disease biomarker, at primitive level. The tryptophan is an important biomarker owing to its highly regulated physiological process in the treatment of premenstrual dysphoric disorder and pellagra like diseases. Frequency calculations were performed using Density Functional Theory (DFT) at B3LYP employing 6-31+g (2d, 2p) level including thermal and entropy corrections. The monomer, p-nitrophenyl acrylate (2 mol), was adjudged having giving best binding score for the complexation at ground state with tryptophan (1 mol) for MIP development.

  20. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors

    PubMed Central

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-01-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs. PMID:26215887

  1. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors.

    PubMed

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-01-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs. PMID:26215887

  2. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors

    NASA Astrophysics Data System (ADS)

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-07-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs.

  3. Inverse opals of molecularly imprinted hydrogels for the detection of bisphenol A and pH sensing.

    PubMed

    Griffete, Nébéwia; Frederich, Hugo; Maître, Agnès; Ravaine, Serge; Chehimi, Mohamed M; Mangeney, Claire

    2012-01-10

    Inverse opal films of molecularly imprinted polymers (MIP) were elaborated using the colloidal crystal template method. The colloidal crystals of silica particles were built by the Langmuir-Blodgett technique, allowing a perfect control of the film thickness. Polymerization in the interspaces of the colloidal crystal in the presence of bisphenol A (BPA) and removal of the used template provides 3D-ordered macroporous methacrylic acid-based hydrogel films in which nanocavities derived from bisphenol A are distributed within the thin walls of the inverse opal hydrogel. The equilibrium swelling properties of the nonimprinted (NIPs) and molecularly imprinted polymers (MIPs) were studied as a function of pH and bisphenol A concentration, while the molecular structures of the bulk hydrogels were analyzed using a cross-linked network structure theory. This study showed an increase in nanopore (mesh) size in the MIPs after BPA extraction as compared to NIPs, in agreement with the presence of nanocavities left by the molecular imprints of the template molecule. The resulting inverse opals were found to display large responses to external stimuli (pH or BPA) with Bragg diffraction peak shifts depending upon the hydrogel film thickness. The film thickness was therefore shown to be a critical parameter for improving the sensing capacities of inverse opal hydrogel films deposited on a substrate. PMID:22088132

  4. Computational and experimental investigation of molecular imprinted polymers for selective extraction of dimethoate and its metabolite omethoate from olive oil.

    PubMed

    Bakas, Idriss; Oujji, Najwa Ben; Moczko, Ewa; Istamboulie, Georges; Piletsky, Sergey; Piletska, Elena; Ait-Addi, Elhabib; Ait-Ichou, Ihya; Noguer, Thierry; Rouillon, Régis

    2013-01-25

    This work presents the development of molecularly imprinted polymers (MIPs) for the selective extraction of dimethoate from olive oil. Computational simulations allowed selecting itaconic acid as the monomer showing the highest affinity towards dimethoate. Experimental validation confirmed modelling predictions and showed that the polymer based on IA as functional monomer and omethoate as template molecule displays the highest selectivity for the structurally similar pesticides dimethoate, omethoate and monocrotophos. Molecularly imprinted solid phase extraction (MISPE) method was developed and applied to the clean-up of olive oil extracts. It was found that the most suitable solvents for loading, washing and elution step were respectively hexane, hexane-dichloromethane (85:15%) and methanol. The developed MIPSE was successfully applied to extraction of dimethoate from olive oil, with recovery rates up to 94%. The limits of detection and quantification of the described method were respectively 0.012 and 0.05 μg g(-1). PMID:23290360

  5. Experimental and computational studies on molecularly imprinted solid-phase extraction for gonyautoxins 2,3 from dinoflagellate Alexandrium minutum.

    PubMed

    Lian, Ziru; Li, Hai-Bei; Wang, Jiangtao

    2016-08-01

    An innovative and effective extraction procedure based on molecularly imprinted solid-phase extraction (MISPE) was developed for the isolation of gonyautoxins 2,3 (GTX2,3) from Alexandrium minutum sample. Molecularly imprinted polymer microspheres were prepared by suspension polymerization and and were employed as sorbents for the solid-phase extraction of GTX2,3. An off-line MISPE protocol was optimized. Subsequently, the extract samples from A. minutum were analyzed. The results showed that the interference matrices in the extract were obviously cleaned up by MISPE procedures. This outcome enabled the direct extraction of GTX2,3 in A. minutum samples with extraction efficiency as high as 83 %, rather significantly, without any need for a cleanup step prior to the extraction. Furthermore, computational approach also provided direct evidences of the high selective isolation of GTX2,3 from the microalgal extracts. PMID:27251197

  6. Preparation of molecularly imprinted polymers based on magnetic nanoparticles for the selective extraction of protocatechuic acid from plant extracts.

    PubMed

    Xie, Xiaoyu; Wei, Fen; Chen, Liang; Wang, Sicen

    2015-03-01

    In this study, highly selective core-shell molecularly imprinted polymers on the surface of magnetic nanoparticles were prepared using protocatechuic acid as the template molecule. The resulting magnetic molecularly imprinted polymers were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and vibrating sample magnetometry. The binding performances of the prepared materials were evaluated by static and selective adsorption. The binding isotherms were obtained for protocatechuic acid and fitted by the Langmuir isotherm model and Freundlich isotherm model. Furthermore, the resulting materials were used as the solid-phase extraction materials coupled to high-performance liquid chromatography for the selective extraction and detection of protocatechuic acid from the extracts of Homalomena occulta and Cynomorium songaricum with the recoveries in the range 86.3-102.2%. PMID:25641806

  7. Separation of phenolic acids from natural plant extracts using molecularly imprinted anion-exchange polymer confined ionic liquids.

    PubMed

    Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-04-01

    Polymer-confined ionic liquids were used for the separation of phenolic acids from natural plant extract by utilizing an anion-exchange mechanism. They were synthesized using molecular imprinting technique to reduce non-directional ion-ion interactions during anion-exchange and other interactions with interference substances that could decrease selectivity. A suitable sorbent for phenolic acid separation could be identified based on the adsorption behaviors of phenolic acids on different polymer-confined ionic liquids. Thus, the developed ionic liquid-based molecularly imprinted anion-exchange polymer (IMAP) achieved high recovery rates by solid-phase extraction of phenolic acids from Salicornia herbacea L. extract: 90.1% for protocatechuic acid, 95.5% for ferulic acid and 96.6% for caffeic acid. Moreover, the phenolic acids were separable from each other by repeated solid phase extraction cycles. The proposed method could be used to separate other phenolic acids or organic acids from complex samples. PMID:21903215

  8. Magnetic molecularly imprinted polymer for the selective extraction of sildenafil, vardenafil and their analogs from herbal medicines.

    PubMed

    Chen, Fang-Fang; Xie, Xiao-Yu; Shi, Yan-Ping

    2013-10-15

    The successfully developed magnetic molecularly imprinted polymers (MMIPs) toward six synthetic phosphodiesterase type-5 (PDE-5) inhibitors were described. Sildenafil was used as template for the preparation of MMIPs using superparamagnetic core-shell nanoparticle as supporter. The obtained MMIPs were characterized using transmission electron microscope, Fourier transform infrared, X-ray diffraction, and vibrating sample magnetometer. High performance liquid chromatography (HPLC) with diode array detector (DAD) was used for the analysis of target analytes. The application of MMIPs as selective sorbent in the cleanup of herbal medicine samples prior to HPLC offered simple sample preparation. The adsorption capacity and selectivity of prepared MMIPs and magnetic non-molecularly imprinted polymers were investigated. The binding isotherms were obtained for sildenafil and fitted by Freundlich isotherm model. Structurally similar compound of sildenafil and a reference compound protocatechuic acid were used for investing the selective recognition of MMIPs. PMID:24054622

  9. Conjugated-protein mimics with molecularly imprinted reconstructible and transformable regions that are assembled using space-filling prosthetic groups.

    PubMed

    Takeuchi, Toshifumi; Mori, Takuya; Kuwahara, Atsushi; Ohta, Takeo; Oshita, Azusa; Sunayama, Hirobumi; Kitayama, Yukiya; Ooya, Tooru

    2014-11-17

    Conjugated-protein mimics were obtained using a new molecular imprinting strategy combined with post-imprinting modifications. An antibiotic was employed as a model template molecule, and a polymerizable template molecule was designed, which was composed of the antibiotic and two different prosthetic groups attached through a disulfide bond and Schiff base formation. After co-polymerization with a cross-linker, the template molecule was removed together with the prosthetic groups, yielding the apo-type scaffold. Through conjugation of the two different prosthetic groups at pre-determined positions within the apo-type scaffold, the apo cavity was transformed into a functionalized holo cavity, which enables the on/off switching of the molecular recognition ability, signal transduction activity for binding events, and photoresponsive activity. PMID:25257234

  10. A novel double-layer molecularly imprinted polymer film based surface plasmon resonance for determination of testosterone in aqueous media

    NASA Astrophysics Data System (ADS)

    Tan, Yuan; Jing, Lijing; Ding, Yonghong; Wei, Tianxin

    2015-07-01

    This work aimed to prepare a novel double-layer structure molecularly imprinted polymer film (MIF) on the surface plasmon resonance (SPR) sensor chips for detection of testosterone in aqueous media. The film was synthesized by in-situ UV photo polymerization. Firstly, the modification of gold surface of SPR chip was performed by 1-dodecanethiol. Then double-layer MIF was generated on the 1-dodecanethiol modified gold surface. The non-modified and imprinted surfaces were characterized by atomic force microscopy (AFM), fourier transform infrared (FTIR) spectroscopy and contact angle measurements. Analysis of SPR spectroscopy showed that the imprinted sensing film displayed good selectivity for testosterone compared to other analogues and the non-imprinted polymer film (NIF). Within the concentrations range of 1 × 10-12-1 × 10-8 mol/L, the coupling angle changes of SPR were linear with the negative logarithm of testosterone concentrations (R2 = 0.993). Based on a signal/noise ratio of three, the detection limit was estimated to be 10-12 mol/L. Finally, the developed MIF was successfully applied to the seawater detection of testosterone. The results in the experiments suggested that a combination of SPR sensing with MIF was a promising alternative method for detection of testosterone in aqueous media.

  11. Recognition Properties and Competitive Assays of a Dual Dopamine/Serotonin Selective Molecularly Imprinted Polymer

    PubMed Central

    Suedee, Roongnapa; Seechamnanturakit, Vatcharee; Suksuwan, Acharee; Canyuk, Bhutorn

    2008-01-01

    A molecularly imprinted polymer (MIP) with dual dopamine/serotonin-like binding sites (DS-MIP) was synthesized for use as a receptor model of study the drug-interaction of biological mixed receptors at a molecular level. The polymer material was produced using methacrylic acid (MAA) and acrylamide (ACM) as functional monomers, N,N′-methylene bisacrylamide (MBAA) as cross-linker, methanol/water mixture (4:1, v/v) as porogen and a mixture of dopamine (D) and serotonin (S) as templates. The prepared DS-MIP exhibited the greatest rebinding of the template(s) in aqueous methanol solution with decreased recognition in acetonitrile, water and methanol solvent. The binding affinity and binding capacity of DS-MIP with S were found to be higher than those of DS-MIP with D. The selectivity profiles of DS-MIP suggest that the D binding site of DS-MIP has sufficient integrity to discriminate between species of non-optimal functional group orientation, whilst the S binding site of DS-MIP is less selective toward species having structural features and functional group orientations different from S. The ligand binding activities of a series of ergot derivatives (ergocryptine, ergocornine, ergocristine, ergonovine, agroclavine, pergolide and terguride) have been studied with the DS-MIP using a competitive ligand binding assay protocol. The binding affinities of DS-MIP were demonstrated in the micro- or submicro-molar range for a series of ergot derivatives, whereas the binding affinities were considerably greater to natural receptors derived from the rat hypothalamus. The DS-MIP afforded the same pattern of differentiation as the natural receptors, i.e. affinity for the clavines > lysergic acid derivatives > ergopeptines. The results suggest that the discrimination for the ergot derivatives by the dopamine and serotonin sites of DS-MIP is due to the structural features and functional orientation of the phenylethylamine and indolylethylamine entities at the binding sites, and the

  12. Thermodynamic studies on the solvent effects in chromatography on molecularly imprinted polymers

    SciTech Connect

    Kim, Hyunjung; Guiochon, Georges A

    2005-03-01

    Molecularly imprinted polymers (MIPs) are used as highly enantioselective stationary phases in liquid chromatography. To optimize the binding performance of MIPs, different types of polar modifiers are frequently used. Previous studies have shown that the hydrogen-bonding donor parameter (HBD) of the modifier has a large influence on the binding performance of MIPs in chiral separations. This possibility is addressed in a detailed thermodynamic study of a Fmoc-l-tryptophan (Fmoc-l-Trp) imprinted polymer, eluted with four different polar modifiers, i.e., THF, propan-2-ol, methanol, and acetic acid, which have different HBDs (0.00, 0.33, 0.43, and 0.61, respectively). Adsorption isotherm data for each enantiomer in each of these organic modifiers were acquired by frontal analysis over a 20000 dynamic concentration range. Nonlinear regression of the isotherm data, along with independent calculation of the affinity energy distributions, identified four different types of binding sites coexisting for the enantiomers on the MIP. The exception was acetic acid, which has the highest HBD. In this case, three types of binding sites only coexist on the MIP. The isotherm parameters obtained from these data show the following: (1) The association energies of the two enantiomers with a given type of sites have a similar magnitude; however, the density of the sites is higher for the template than for its antipode. (2) The nature of the organic modifier has a larger influence on the density of high-energy sites than on the association constant of these sites. (3) The molecular size of the organic modifier has a larger influence on the site density (especially for Fmoc-d-Trp) than does HBD. (4) Using an organic modifier with a higher HBD reduces the enantioselectivity on each site. (5) High-energy sites are more enantioselective than low-energy ones. (6) Using an organic modifier with a high HBD causes a larger reduction in the density of high-energy sites approached by the

  13. Development of a Molecularly Imprinted Polymer-Based Sensor for the Electrochemical Determination of Triacetone Triperoxide (TATP)

    PubMed Central

    Mamo, Samuel Kassahun; Gonzalez-Rodriguez, Jose

    2014-01-01

    The explosive triacetone triperoxide (TATP), which can be prepared from commercially readily available reagents following an easy synthetic procedure, is one of the most common components of improvised explosive devices (IEDs). Molecularly-imprinted polymer (MIP) electrochemical sensors have proved useful for the determination of different compounds in different matrices with the required sensitivity and selectivity. In this work, a highly sensitive and selective molecularly imprinted polymer with electrochemical capabilities for the determination of TATP has been developed. The molecular imprinting has been performed via electropolymerisation onto a glassy carbon electrode surface by cyclic voltammetry from a solution of pyrrole functional monomer, TATP template and LiClO4. Differential Pulse Voltammetry of TATP, with LiClO4 as supporting electrolyte, was performed in a potential range of −2.0 V to +1.0 V (vs. Ag/AgCl). Three-factor two-level factorial design was used to optimise the monomer concentration at 0.1 mol·L−1, template concentration at 100 mmol·L−1 and the number of cyclic voltammetry scan cycles to 10. The molecularly imprinted polymer-modified glassy carbon electrode demonstrated good performance at low concentrations for a linear range of 82–44,300 μg·L−1 and a correlation coefficient of r2 = 0.996. The limits of detection (LoD) and quantification (LoQ) achieved were 26.9 μg·L−1 and 81.6 μg·L−1, respectively. The sensor demonstrated very good repeatability with precision values (n = 6, expressed as %RSD) of 1.098% and 0.55% for 1108 and 2216 μg·L−1, respectively. It also proved selective for TATP in the presence of other explosive substances such as PETN, RDX, HMX, and TNT. PMID:25490589

  14. Hydrophilic-Hydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for High-Sensitive Colorimetric Detection of Tetracycline.

    PubMed

    Hou, Jue; Zhang, Huacheng; Yang, Qiang; Li, Mingzhu; Jiang, Lei; Song, Yanlin

    2015-06-01

    A hydrophilic-hydrophobic patterned molecularly imprinted (MIP) photonic crystal (PC) sensor is fabricated for highly sensitive tetracycline detection. The relationship between the tetracycline concentration, its corresponding color of the sensor, and the diameter of MIP-PC dot is found using a fan-shaped color card. This work provides a new strategy to design the sensors with tunable detection ranges for practical applications. PMID:25649896

  15. Selective Recognition of d-Aldohexoses in Water by Boronic Acid-Functionalized, Molecularly Imprinted Cross-Linked Micelles.

    PubMed

    Awino, Joseph K; Gunasekara, Roshan W; Zhao, Yan

    2016-08-10

    Molecular imprinting within cross-linked micelles using 4-vinylphenylboronate derivatives of carbohydrates provided water-soluble nanoparticle receptors selective for the carbohydrate templates. Complete differentiation of d-aldohexoses could be achieved by these receptors if a single inversion of hydroxyl occurred at C2 or C4 of the sugar or if two or more inversions took place. Glycosides with a hydrophobic aglycan displayed stronger binding due to increased hydrophobic interactions. PMID:27442012

  16. Development of a molecularly imprinted polymer-based sensor for the electrochemical determination of triacetone triperoxide (TATP).

    PubMed

    Mamo, Samuel Kassahun; Gonzalez-Rodriguez, Jose

    2014-01-01

    The explosive triacetone triperoxide (TATP), which can be prepared from commercially readily available reagents following an easy synthetic procedure, is one of the most common components of improvised explosive devices (IEDs). Molecularly-imprinted polymer (MIP) electrochemical sensors have proved useful for the determination of different compounds in different matrices with the required sensitivity and selectivity. In this work, a highly sensitive and selective molecularly imprinted polymer with electrochemical capabilities for the determination of TATP has been developed. The molecular imprinting has been performed via electropolymerisation onto a glassy carbon electrode surface by cyclic voltammetry from a solution of pyrrole functional monomer, TATP template and LiClO4. Differential Pulse Voltammetry of TATP, with LiClO4 as supporting electrolyte, was performed in a potential range of -2.0 V to +1.0 V (vs. Ag/AgCl). Three-factor two-level factorial design was used to optimise the monomer concentration at 0.1 mol∙L(-1), template concentration at 100 mmol∙L(-1) and the number of cyclic voltammetry scan cycles to 10. The molecularly imprinted polymer-modified glassy carbon electrode demonstrated good performance at low concentrations for a linear range of 82-44,300 µg∙L(-1) and a correlation coefficient of r(2) = 0.996. The limits of detection (LoD) and quantification (LoQ) achieved were 26.9 μg∙L(-1) and 81.6 μg∙L(-1), respectively. The sensor demonstrated very good repeatability with precision values (n = 6, expressed as %RSD) of 1.098% and 0.55% for 1108 and 2216 µg∙L(-1), respectively. It also proved selective for TATP in the presence of other explosive substances such as PETN, RDX, HMX, and TNT. PMID:25490589

  17. Molecular imprinting and immobilization of cellulase onto magnetic Fe3O4@SiO2 nanoparticles.

    PubMed

    Li, Yue; Wang, Xiang-Yu; Zhang, Rui-Zhuo; Zhang, Xiao-Yun; Liu, Wei; Xu, Xi-Ming; Zhang, Ye-Wang

    2014-04-01

    Supermagnetic Fe3O4@SiO2 nanoparticles were molecular-imprinted prepared with cellulase as the template. The molecular imprinted nanoparticles were used as support to immobilization of cellulase. The transmission electron microscopy confirmed the core-shell structure and revealed that the size of the nanoparticles was around 10 nm. It was observed that cellulase was immobilized on the nanoparticles successfully from the Fourier transform infrared spectra. The adsorption of cellulase on the nanoparticles was specific and rapid. A high immobilization efficiency of 95% was achieved after the optimization. At 70 degrees C, the half-life of the immobilized cellulase was 3.3-fold of the free enzyme. Compared with the free enzyme, the immobilized cellulase has the same optimal pH, higher optimal temperature, better thermal stability and higher catalytic efficiency. The results strongly suggest that the immobilized cellulase on molecular imprinted Fe3O4@SiO2 has the potential applications in the production of bioethanol, paper and pulp industry, and pharmaceutical industry. PMID:24734713

  18. SnO2 highly sensitive CO gas sensor based on quasi-molecular-imprinting mechanism design.

    PubMed

    Li, Chenjia; Lv, Meng; Zuo, Jialin; Huang, Xintang

    2015-01-01

    Response of highly sensitive SnO2 semiconductor carbon monoxide (CO) gas sensors based on target gas CO quasi-molecular-imprinting mechanism design is investigated with gas concentrations varied from 50 to 3000 ppm. SnO2 nanoparticles prepared via hydrothermal method and gas sensor film devices SC (exposed to the target gas CO for 12 h after the suspension coating of SnO2 film to be fully dried, design of quasi-molecular-imprinting mechanism, the experiment group) and SA (exposed to air after the suspension coating of SnO2 film to be fully dried, the comparison group) made from SnO2 nanoparticles are all characterized by XRD, SEM and BET surface area techniques, respectively. The gas response experimental results reveal that the sensor SC demonstrates quicker response and higher sensitivity than the sensor SA does. The results suggest that in addition to the transformation of gas sensor materials, surface area, and porous membrane devices, the Molecular Imprinting Theory is proved to be another way to promote the performance of gas sensors. PMID:25664435

  19. SnO2 Highly Sensitive CO Gas Sensor Based on Quasi-Molecular-Imprinting Mechanism Design

    PubMed Central

    Li, Chenjia; Lv, Meng; Zuo, Jialin; Huang, Xintang

    2015-01-01

    Response of highly sensitive SnO2 semiconductor carbon monoxide (CO) gas sensors based on target gas CO quasi-molecular-imprinting mechanism design is investigated with gas concentrations varied from 50 to 3000 ppm. SnO2 nanoparticles prepared via hydrothermal method and gas sensor film devices SC (exposed to the target gas CO for 12 h after the suspension coating of SnO2 film to be fully dried, design of quasi-molecular-imprinting mechanism, the experiment group) and SA (exposed to air after the suspension coating of SnO2 film to be fully dried, the comparison group) made from SnO2 nanoparticles are all characterized by XRD, SEM and BET surface area techniques, respectively. The gas response experimental results reveal that the sensor SC demonstrates quicker response and higher sensitivity than the sensor SA does. The results suggest that in addition to the transformation of gas sensor materials, surface area, and porous membrane devices, the Molecular Imprinting Theory is proved to be another way to promote the performance of gas sensors. PMID:25664435

  20. Evaluation of a molecularly imprinted polymer for determination of steroids in goat milk by matrix solid phase dispersion.

    PubMed

    Gañán, Judith; Morante-Zarcero, Sonia; Gallego-Picó, Alejandrina; Garcinuño, Rosa María; Fernández-Hernando, Pilar; Sierra, Isabel

    2014-08-01

    A molecularly imprinted polymer-matrix solid-phase dispersion methodology for simultaneous determination of five steroids in goat milk samples was proposed. Factors affecting the extraction recovery such as sample/dispersant ratio and washing and elution solvents were investigated. The molecularly imprinted polymer used as dispersant in the matrix solid-phase dispersion procedure showed high affinity to steroids, and the obtained extracts were sufficiently cleaned to be directly analyzed. Analytical separation was performed by micellar electrokinetic chromatography using a capillary electrophoresis system equipped with a diode array detector. A background electrolyte composed of borate buffer (25mM, pH 9.3), sodium dodecyl sulfate (10mM) and acetonitrile (20%) was used. The developed MIP-MSPD methodology was applied for direct determination of testosterone (T), estrone (E1), 17β-estradiol (17β-E2), 17α-ethinylestradiol (EE2) and progesterone (P) in different goat milk samples. Mean recoveries obtained ranged from 81% to 110%, with relative standard deviations (RSD)≤12%. The molecularly imprinted polymer-matrix solid-phase dispersion method is fast, selective, cost-effective and environment-friendly compared with other pretreatment methods used for extraction of steroids in milk. PMID:24881547

  1. Molecularly imprinted quartz crystal microbalance sensor based on poly(o-aminothiophenol) membrane and Au nanoparticles for ractopamine determination.

    PubMed

    Kong, Ling-Jie; Pan, Ming-Fei; Fang, Guo-Zhen; He, Xin-lei; Yang, Yu-kun; Dai, Jie; Wang, Shuo

    2014-01-15

    A molecularly imprinted quartz crystal microbalance (QCM) sensor for ractopamine (RAC) detection was developed by electrodepositing a poly-o-aminothiophenol membrane on an Au electrode surface modified by self-assembled Au nanoparticles (AuNPs). The modified electrodes were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. This molecularly imprinted QCM sensor showed good frequency response in RAC binding measurements and the introduction of AuNPs demonstrated performance improvements. Frequency shifts were found to be proportional to concentration of RAC in the range of 2.5×10(-6) to 1.5×10(-4) mol L(-1) with a detection limit of 1.17×10(-6) mol L(-1) (S/N=3). The sensor showed a good selective affinity for RAC (selectivity coefficient >3) compared with similar molecules and good reproducibility and long-term stability. This research has combined the advantages of high specific surface area of AuNPs, high selectivity from molecularly imprinted electrodeposited membrane and high sensitivity from quartz crystal microgravimetry. In addition, the modified electrode sensor was successfully applied to determine RAC residues in spiked swine feed samples with satisfactory recoveries ranging from 87.7 to 95.2%. PMID:23974160

  2. Selective extraction of triazine herbicides based on a combination of membrane assisted solvent extraction and molecularly imprinted solid phase extraction.

    PubMed

    Chimuka, Luke; van Pinxteren, Manuela; Billing, Johan; Yilmaz, Ecevit; Jönsson, Jan Åke

    2011-02-01

    A selective extraction technique based on the combination of membrane assisted solvent extraction and molecularly imprinted solid phase extraction for triazine herbicides in food samples was developed. Simazine, atrazine, prometon, terbumeton, terbuthylazine and prometryn were extracted from aqueous food samples into a hydrophobic polypropylene membrane bag containing 1000μL of toluene as the acceptor phase along with 100mg of MIP particles. In the acceptor phase, the compounds were re-extracted onto MIP particles. The extraction technique was optimised for the type of organic acceptor solvent, amount of molecularly imprinted polymers particles in the organic acceptor phase, extraction time and addition of salt. Toluene as the acceptor phase was found to give higher triazine binding onto MIP particles compared to hexane and cyclohexane. Extraction time of 120min and 100mg of MIP were found to be optimum parameters. Addition of salt increased the extraction efficiency for more polar triazines. The selectivity of the technique was demonstrated by extracting spiked cow pea and corn extracts where clean chromatograms were obtained compared to only membrane assisted solvent extraction or only molecularly imprinted solid phase extraction. The study revealed that this combination may be a simple way of selectively extracting compounds in complex samples. PMID:21190688

  3. A core-shell surface magnetic molecularly imprinted polymers with fluorescence for λ-cyhalothrin selective recognition.

    PubMed

    Gao, Lin; Wang, Jixiang; Li, Xiuying; Yan, Yongsheng; Li, Chunxiang; Pan, Jianming

    2014-11-01

    In this study, we report here a general protocol for making core-shell magnetic Fe3O4/SiO2-MPS/MIPs (MPS = 3-(methacryloxyl) propyl trimethoxysilane, MIPs = molecularly imprinted polymers, Fe3O4/SiO2-MPS as core, MIPs as shell) via a surface molecular imprinting technique for optical detection of trace λ-cyhalothrin. The fluorescent molecularly imprinted polymer shell was first prepared by copolymerization of acrylamide with a small quantity of allyl fluorescein in the presence of λ-cyhalothrin to form recognition sites without doping. The magnetic Fe3O4/SiO2-MPS/MIPs exhibited paramagnetism, high fluorescence intensity, and highly selective recognition. Using fluorescence quenching as a detecting tool, Fe3O4/SiO2-MPS/MIPs were successfully applied to selectively and sensitively detect λ-cyhalothrin, and a linear relationship could be obtained covering a wide concentration range of 0-50 nM with a correlation coefficient of 0.9962 described by the Stern-Volmer equation. The experimental results of practical detection revealed that magnetic Fe3O4/SiO2-MPS/MIPs as an attractive recognition element was satisfactory for determination of trace λ-cyhalothrin in honey samples. This study, therefore, demonstrated the potential of MIPs for detection of λ-cyhalothrin in food. PMID:25200071

  4. Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical Sensing of Glucose at Physiological pH.

    PubMed

    Wang, Hui; Yi, Jinhui; Velado, David; Yu, Yanyan; Zhou, Shuiqin

    2015-07-29

    Nanosized carbon dots (CDs) are emerging as superior fluorophores for biosensing and a bioimaging agent with excellent photostability, chemical inertness, and marginal cytotoxicity. This paper reports a facile one-pot strategy to immobilize the biocompatible and fluorescent CDs (∼6 nm) into the glucose-imprinted poly(N-isopropylacrylamide-acrylamide-vinylphenylboronic acid) [poly(NIPAM-AAm-VPBA)] copolymer microgels for continuous optical glucose detection. The CDs designed with surface hydroxyl/carboxyl groups can form complexes with the AAm comonomers via hydrogen bonds and, thus, can be easily immobilized into the gel network during the polymerization reaction. The resultant glucose-imprinted hybrid microgels can reversibly swell and shrink in response to the variation of surrounding glucose concentration and correspondingly quench and recover the fluorescence signals of the embedded CDs, converting biochemical signals to optical signals. The highly imprinted hybrid microgels demonstrate much higher sensitivity and selectivity for glucose detection than the nonimprinted hybrid microgels over a clinically relevant range of 0-30 mM at physiological pH and benefited from the synergistic effects of the glucose molecular contour and the geometrical constraint of the binding sites dictated by the glucose imprinting process. The highly stable immobilization of CDs in the gel networks provides the hybrid microgels with excellent optical signal reproducibility after five repeated cycles of addition and dialysis removal of glucose in the bathing medium. In addition, the hybrid microgels show no effect on the cell viability in the tested concentration range of 25-100 μg/mL. The glucose-imprinted poly(NIPAM-AAm-VPBA)-CDs hybrid microgels demonstrate a great promise for a new glucose sensor that can continuously monitor glucose level change. PMID:26148139

  5. Specific glucose-to-SPR signal transduction at physiological pH by molecularly imprinted responsive hybrid microgels.

    PubMed

    Wu, Weitai; Shen, Jing; Li, Yaoxin; Zhu, Hongbo; Banerjee, Probal; Zhou, Shuiqin

    2012-10-01

    We design a class of imprinted hybrid microgels that can optically monitor glucose levels with high sensitivity and selectivity in complex media at physiological pH, acting like a "glucose-indicator". Such imprinted hybrid microgels were made of Ag nanoparticles (NPs) in situ immobilized in molecularly imprinted glucose-responsive polymeric microgel templates containing phenylboronic acids in such a way that the Ag NPs were confined in the immediate vicinity to each other, thus enabling their efficient plasmon coupling. The glucose-responsive gel-actuated tunable plasmon coupling effects among the Ag NPs immobilized inside the microgels were investigated in both phosphate buffer solution and artificial tear fluid. The visually evident color shift from yellow to red of the hybrid microgel dispersion in response to a glucose concentration change from 0 to 20.0 mm allows one to see the glucose levels without instrumental aid. The surface plasmon resonance (SPR) response of the imprinted hybrid microgels at appropriate loading amount of Ag NPs is free of the significant interferences from the major non-glucose constituents, enabling the optical glucose sensing in artificial tear fluids with the achieved root-mean-squared error of predication (RMSEC) as low as 13.7 μM (~0.2 mg/dL) over a clinically relevant glucose concentration range of 0.1-20 mm (1.8-360 mg/dL). The highly versatile imprinted hybrid microgels could potentially be used for continuous glucose monitoring in clinical diagnostic and bioprocess applications. PMID:22800540

  6. Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy.

    PubMed

    Hu, Yaxi; Feng, Shaolong; Gao, Fang; Li-Chan, Eunice C Y; Grant, Edward; Lu, Xiaonan

    2015-06-01

    A novel biosensor combining molecularly imprinted polymers and surface-enhanced Raman spectroscopy (MIPs-SERS) determines melamine in whole milk. MIPs were synthesized by bulk polymerization of melamine (template), methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross-linking agent) and 2,2'-azobisisobutyronitrile (initiator). Static and kinetic adsorption tests validated the use of MIPs to efficiently separate and enrich melamine from whole milk. Silver dendrite nanostructure served as SERS-active substrate for signal collection. Principal component analysis and hierarchical cluster analysis segregated Raman signatures of whole milk samples with different melamine concentrations. Regression models showed a good linear relationship (R(2)=0.93) between the height of melamine SERS band (at 703cm(-1)) and melamine concentration in the range from 0.005mmolL(-1) to 0.05mmolL(-1). The limit of detection and limit of quantification were 0.012mmolL(-1) and 0.039mmolL(-1), confirming the high sensitivity of this biosensor to accurately determine melamine in whole milk. Simple sample pretreatment reduced full analysis time to determine melamine in whole milk to less than 20min. PMID:25624214

  7. Fast and selective extraction of sulfonamides from honey based on magnetic molecularly imprinted polymer.

    PubMed

    Chen, Ligang; Zhang, Xiaopan; Sun, Lei; Xu, Yang; Zeng, Qinglei; Wang, Hui; Xu, Haoyan; Yu, Aimin; Zhang, Hanqi; Ding, Lan

    2009-11-11

    A fast and selective method was developed for the determination of sulfonamides (SAs) in honey based on magnetic molecularly imprinted polymer. The extraction was carried out by blending and stirring the sample, extraction solvent and polymers. When the extraction was complete, the polymers, along with the captured analytes, were easily separated from the sample matrix by an adscititious magnet. The analytes eluted from the polymers were determined by liquid chromatography-tandem mass spectrometry. Under the optimal conditions, the detection limits of SAs are in the range of 1.5-4.3 ng g(-1). The relative standard deviations of intra- and interday ranging from 3.7% to 7.9% and from 4.3% to 9.9% are obtained, respectively. The proposed method was successfully applied to determine SAs including sulfadiazine, sulfamerazine, sulfamethoxydiazine, sulfamonomethoxine, sulfadimethoxine, sulfamethoxazole and sulfaquinoxaline in different honey samples. The recoveries of SAs in these samples from 67.1% to 93.6% were obtained. PMID:19817457

  8. Preparation of a magnetic molecularly imprinted polymer for selective recognition of rhodamine B

    NASA Astrophysics Data System (ADS)

    Liu, Xiuying; Yu, Dan; Yu, Yingchao; Ji, Shujuan

    2014-11-01

    A novel magnetic molecularly imprinted polymer (MMIP) was developed as an adsorbent to selectively remove rhodamine B from real samples. The polymer was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermo-gravimetric analysis. Static adsorption, kinetic adsorption, and selective recognition experiments were also performed to investigate the specific adsorption equilibrium, kinetics, and selective recognition ability of the MMIP. The MMIPs had outstanding thermal stability, large adsorption capacity, and high competitive selectivity. When they were used as dispersed solid-phase extraction adsorbents in real samples, rhodamine B recovery was 79.97-81.88% and 75.56-79.74% in intra-day and inter-day reproducibility experiments with relative standard deviations lower than 2.62% and 4.28%, respectively. Extraction was optimized for yield and efficiency. Precision, accuracy, and linear working range were determined under optimal experimental conditions. The limits of detection and quantification were 1.05 and 3.49 μg L-1, respectively. These results suggest MMIPs may be used for determination of rhodamine B in real samples.

  9. A microfluidic system with integrated molecular imprinting polymer films for surface plasmon resonance detection

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chiang; Lee, Gwo-Bin; Chien, Fan-Ching; Chen, Shean-Jen; Chen, Wen-Janq; Yang, Ming-Chang

    2006-07-01

    This paper presents a novel microfluidic system with integrated molecular imprinting polymer (MIP) films designed for surface plasmon resonance (SPR) biosensing of multiple nanoscale biomolecules. The innovative microfluidic chip uses pneumatic microvalves and micropumps to transport a precise amount of the biosample through multiple microchannels to sensing regions containing the locally spin-coated MIP films. The signals of SPR biosensing are basically proportional to the number of molecules adsorbed on the MIP films. Hence, a precise control of flow rates inside microchannels is important to determine the adsorption amount of the molecules in the SPR/MIP chips. The integration of micropumps and microvalves can automate the sample introduction process and precisely control the amount of the sample injection to the microfluidic system. The proposed biochip enables the label-free biosensing of biomolecules in an automatic format, and provides a highly sensitive, highly specific and high-throughput detection performance. Three samples, i.e. progesterone, cholesterol and testosterone, are successfully detected using the developed system. The experimental results show that the proposed SPR/MIP microfluidic chip provides a comparable sensitivity to that of large-scale SPR techniques, but with reduced sample consumption and an automatic format. As such, the developed biochip has significant potential for a wide variety of nanoscale biosensing applications. The preliminary results of the current paper were presented at Transducers 2005, Seoul, Korea, 5-9 June 2005.

  10. Selective detection of fenaminosulf via a molecularly imprinted fluorescence switch and silver nano-film amplification.

    PubMed

    Li, Shuhuai; Yin, Guihao; Zhang, Qun; Li, Chunli; Luo, Jinhui; Xu, Zhi; Qin, Anli

    2015-09-15

    A novel fluorescence switch sensor was constructed for detecting the fungicide fenaminosulf (FM), based on a dye-doped molecularly imprinted polymer (MIP) and silver nanofilm amplification. The MIP was prepared by electropolymerization of hydroquinone doped with neutral red on the silver nanofilm modified electrode. A fluorescence signal was produced by the neutral red and the fluorescence intensity was diminished by the ion pair that formed via electrostatic forces between FM and the dye. Therefore, elution and adsorption of FM by the MIP acted as a switch to control the fluorescence intensity, which was effectively amplified by the silver nanofilm. The decrease in fluorescence intensity was linear with the FM concentration, establishing a new method for FM detection. Under optimal conditions, good linear correlation was obtained for FM concentrations over the range from 2.0 × 10(-10) to 4.0 × 10(-8)mol/L, with a detection limit of 1.6 × 10(-11)mol/L. This method was utilized to determine residual FM in vegetable samples, and recoveries ranging from 92.0% to 110% were obtained. PMID:25930004

  11. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Li, Yingchun; Liu, Yuan; Liu, Jie; Liu, Jiang; Tang, Hui; Cao, Cong; Zhao, Dongsheng; Ding, Yi

    2015-01-01

    Electrochemical nanosensors based on nanoporous gold leaf (NPGL) and molecularly imprinted polymer (MIP) are developed for pharmaceutical analysis by using metronidazole (MNZ) as a model analyte. NPGL, serving as the loading platform for MIP immobilization, possesses large accessible surface area with superb electric conductivity, while electrochemically synthesized MIP thin layer affords selectivity for specific recognition of MNZ molecules. For MNZ determination, the hybrid electrode shows two dynamic linear range of 5 × 10-11 to 1 × 10-9 mol L-1 and 1 × 10-9 to 1.4 × 10-6 mol L-1 with a remarkably low detection limit of 1.8 × 10-11 mol L-1 (S/N = 3). In addition, the sensor exhibits high binding affinity and selectivity towards MNZ with excellent reproducibility and stability. Finally, the reliability of MIP-NPGL for MNZ detection is proved in real fish tissue samples, demonstrating the potential for the proposed electrochemical sensors in monitoring drug and biological samples.

  12. Removal of phenolic estrogen pollutants from different sources of water using molecularly imprinted polymeric microspheres.

    PubMed

    Lin, Yi; Shi, Yun; Jiang, Ming; Jin, Yuan; Peng, Yan; Lu, Bin; Dai, Kang

    2008-05-01

    The efficiency and effects of using Bisphenol A-molecularly imprinted polymeric microspheres (MIPMs) to remove phenolic estrogens from different sources of water were evaluated. MIPMs prepared by precipitation polymerization removed a group of phenolic estrogens from different kinds of water selectively and effectively. The highest removal efficiency was observed at pH=5. Fifty millimoles per litre ions or 10mg/L humid acid improved removal efficiency. MIPMs were more suitable to remove trace estrogens in large volume than high concentration of estrogens in small volume. The removal efficiency of spiked tap water, lake water and river water were better than that of distilled water. Hundred milligrams of MIPMs had higher removal selectivity and efficiency than those of 100mg or 300mg activated carbons. Moreover, MIPMs can be re-used for at least 30 times without losing any removal efficiency. MIPMs provided a selective, simple, reliable and practicable solution to remove trace phenolic estrogens from different sources of water. PMID:17870222

  13. Screening of the binding properties of molecularly imprinted nanoparticles via capillary electrophoresis.

    PubMed

    Musile, Giacomo; Cenci, Lucia; Andreetto, Erika; Ambrosi, Emmanuele; Tagliaro, Franco; Bossi, Alessandra Maria

    2016-05-01

    In response to the need for straightforward analytical methods to assess the affinity of molecularly imprinted nanoparticles (MIP NPs) for ligands, capillary electrophoresis (CE) was exploited using MIP NPs targeting the iron-regulating hormone hepcidin. In this work, MIP NPs were challenged with their template peptide, i.e., the N-terminal 5-mer of hepcidin, in comparison to unrelated ligand peptides. A CE separation method was developed ex novo achieving, after optimization of the background electrolyte (150 mM sodium phosphate pH 7.4) and of the running temperature (35 °C), the full separation of the free ligand from the complexed MIP NPs. The CE binding isotherm allowed the estimation of a micromolar dissociation constant for the 5-mer template-MIP NPs complex, in agreement with independent measurements. The CE offered the advantages of a direct injection of the MIP NPs/ligand incubation mix, without preliminary fractionation steps, requiring only minimal sample volumes and short analysis times. In conclusion CE proved to be a valid technique for characterizing the interactions of MIP NP libraries for selected target compounds. Graphical Abstract Five different nanodiamond samples were exhaustively characterized using a suite of analytical techniques. PMID:26960903

  14. Flow-Injection Preconcentration of Chloramphenicol Using Molecularly Imprinted Polymer for HPLC Determination in Environmental Samples

    PubMed Central

    Kowalski, Damian; Poboży, Ewa; Trojanowicz, Marek

    2011-01-01

    The residue of antibiotic chloramphenicol (CAP) is important issue for food quality control and also for the environmental monitoring. It is banned for use in food-producing animals and has very limited use in human medicine, because of its severe impact on human health. Determination of trace level of CAP in environmental samples requires a very sensitive analytical method and efficient preconcentration procedure. CAP can be efficiently preconcentrated in flow-injection system using flow-through reactor packed with molecularly imprinted polymer (MIP), but determination of CAP in eluate from MIP requires the application of chromatographic separation, which was made in reversed-phase HPLC system with UV detection. In optimized conditions the limit of detection for 100 mL sample in HPLC with offline preconcentration on MIP was evaluated as 0.66 mg/L. In hyphenated FIA-HPLC system with zone sampling the LOD for developed method was evaluated as 15 ng/L, which indicates the possibility of using it for analysis of environmental samples. PMID:21584273

  15. Active food packaging based on molecularly imprinted polymers: study of the release kinetics of ferulic acid.

    PubMed

    Otero-Pazos, Pablo; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Benito-Peña, Elena; González-Vallejo, Victoria; Moreno-Bondi, M Cruz; Angulo, Immaculada; Paseiro-Losada, Perfecto

    2014-11-19

    A novel active packaging based on molecularly imprinted polymer (MIP) was developed for the controlled release of ferulic acid. The release kinetics of ferulic acid from the active system to food simulants (10, 20, and 50% ethanol (v/v), 3% acetic acid (w/v), and vegetable oil), substitutes (95% ethanol (v/v) and isooctane), and real food samples at different temperatures were studied. The key parameters of the diffusion process were calculated by using a mathematical modeling based on Fick's second law. The ferulic acid release was affected by the temperature as well as the percentage of ethanol of the simulant. The fastest release occurred in 95% ethanol (v/v) at 20 °C. The diffusion coefficients (D) obtained ranged between 1.8 × 10(-11) and 4.2 × 10(-9) cm(2)/s. A very good correlation between experimental and estimated data was obtained, and consequently the model could be used to predict the release of ferulic acid into food simulants and real food samples. PMID:25369799

  16. Fabrication of a SnO2-Based Acetone Gas Sensor Enhanced by Molecular Imprinting

    PubMed Central

    Tan, Wenhu; Ruan, Xiaofan; Yu, Qiuxiang; Yu, Zetai; Huang, Xintang

    2015-01-01

    This work presents a new route to design a highly sensitive SnO2–based sensor for acetone gas enhanced by the molecular imprinting technique. Unassisted and acetone-assisted thermal synthesis methods are used to synthesis SnO2 nanomaterials. The prepared SnO2 nanomaterials have been characterized by X-ray powder diffraction, scanning electron microscopy and N2 adsorption−desorption. Four types of SnO2 films were obtained by mixing pure deionized water and liquid acetone with the two types of as-prepared powders, respectively. The acetone gas sensing properties of sensors coated by these films were evaluated. Testing results reveal that the sensor coated by the film fabricated by mixing liquid acetone with the SnO2 nanomaterial synthesized by the acetone-assisted thermal method exhibits the best acetone gas sensing performance. The sensor is optimized for the smooth adsorption and desorption of acetone gas thanks to the participation of acetone both in the procedure of synthesis of the SnO2 nanomaterial and the device fabrication, which results in a distinct response–recovery behavior. PMID:25549174

  17. Determination of malachite green in fish based on magnetic molecularly imprinted polymer extraction followed by electrochemiluminescence.

    PubMed

    Huang, Baomei; Zhou, Xibin; Chen, Jing; Wu, Guofan; Lu, Xiaoquan

    2015-09-01

    A novel procedure for selective extraction of malachite green (MG) from fish samples was set up by using magnetic molecularly imprinted polymers (MMIP) as the solid phase extraction material followed by electrochemiluminescence (ECL) determination. MMIP was prepared by using Fe3O4 magnetite as magnetic component, MG as template molecule, methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent. MMIP was characterized by SEM, TEM, FT-IR, VSM and XRD. Leucomalachite green (LMG) was oxidized in situ to MG by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). And then MMIP was successfully used to selectively enrich MG from fish samples. Adsorbed MG was desorbed and determined by ECL. Under the optimal conditions, calibration curve was good linear in the range of 0.29-290 μg/kg and the limit of detection (LOD) was 7.3 ng/kg (S/N=3). The recoveries of MMIP extraction were 77.1-101.2%. In addition, MMIP could be regenerated. To the best of our knowledge, MMIP coupling with ECL quenching of Ru(bpy)3(2+)/TPA for the determination of MG has not yet been developed. PMID:26003716

  18. [Molecularly imprinted polymeric microspheres prepared by seed swelling and suspension polymerization].

    PubMed

    Cheng, Guo-Xiang; Zhang, Li-Yong; Fu, Cong

    2002-03-01

    A series of molecularly imprinted polymeric microspheres(MIPMs) were prepared by seed swelling and suspension polymerization method in aqueous system using tyrosine as printing molecules, methacrylic acid as functional monomers and trimethylolpropane trimethacrylate (TRIM) as cross-linkers. The morphology including the size, size distribution, pore and pore distribution of the polymer beads was analyzed by scanning electron microscope(SEM). The major factors that influence these properties of the beads are discussed. The molecule selecting property of the MIPMs was detected through liquid chromatography. The results showed that uniform-sized spherical MIPMs had been prepared in aqueous system by seed swelling and suspension polymerization method, and its surface was distributed with pores between 1 micron to 10 microns. The average bead size was adjusted from about 50 microns to 400 microns by changing the stirring speed and the amount of seeds used during the preparation. The prepared MIPMs exhibited a considerable tendency to adsorb tyrosine, the printing molecules selectively, and the separation factor was up to 1.82 when phenylalanine was chosen as the competitive molecules. PMID:12541962

  19. Molecularly imprinted ionic liquid magnetic microspheres for the rapid isolation of organochlorine pesticides in environmental water.

    PubMed

    Qiao, Fengxia; Gao, Mengmeng; Yan, Hongyuan

    2016-04-01

    A new type of molecularly imprinted ionic liquid magnetic microspheres was synthesized by aqueous suspension polymerization, using 4,4'-dichlorobenzhydrol as a dummy template, and 1-allyl-3-ethylimidazolium hexafluorophosphate and methacrylic acid as co-functional monomers. The results of morphology and magnetic property evaluation of the obtained microspheres demonstrated that it was monodispersed spherical, possessed a rough surface, and an outstanding magnetic properties. Binding experiments revealed that it had a substantial adsorption capacity and strong recognition ability to organochlorine pesticides (OCPs) in aqueous solution. Then the microspheres were applied as an adsorbent of magnetic dispersive solid-phase extraction for the selective recognition and rapid determination of OCPs in environmental water. Under the optimum conditions, good linearity of the three types of OCPs (dicofol, tetradifon, and p,p'-dichlorodiphenyldichloroethane) was achieved in the range of 1.0-100 ng/mL (r ≥ 0.9994). The recoveries at three spiking levels ranged from 82.6 to 100.4% with the RSDs less than 6.9%. PMID:26791136

  20. Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe₃O₄.

    PubMed

    Zhang, Ya-Lei; Zhang, Juan; Dai, Chao-Meng; Zhou, Xue-Fei; Liu, Shu-Guang

    2013-09-12

    A novel magnetic-molecularly imprinted polymer (MMIP) based on chitosan-Fe₃O₄ has been synthesized for fast separation of carbamazepine (CBZ) from water. During polymerization, the modified chitosan-Fe₃O₄ was used not only as supporter but also as functional monomer. The properties of obtained MMIP were characterized by scanning electron and transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectra, thermo-gravimetric analysis and so on. The sorption equilibrium data was well described by Freundlich isotherm model and the increase in the temperature generated an increase in the sorption amount, indicating endothermic nature of adsorption process. Sorption kinetics followed the pseudo-second-order model. The feasibility of selective sorption of CBZ from real water by the MMIP was analyzed by using spiked real water samples. The result showed that the sorption capacity of MMIP has no obvious decrease in different water samples whereas there was obvious decline in the sorption amount of the MNIP. PMID:23911519

  1. Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer.

    PubMed

    Yang, Guangming; Zhao, Faqiong

    2015-02-15

    Herein, we present a novel electrochemical sensor for the determination of chloramphenicol (CAP), which is based on multiwalled carbon nanotubes@molecularly imprinted polymer (MWCNTs@MIP), mesoporous carbon (CKM-3) and three-dimensional porous graphene (P-r-GO). Firstly, 3-hexadecyl-1-vinylimidazolium chloride (C16VimCl) was synthetized by using 1-vinylimidazole and 1-chlorohexadecane as precursors. Then, C16VImCl was used to improve the dispersion of MWCNT and as monomer to prepare MIP on MWCNT surface to obtain MWCNTs@MIP. After that, the obtained MWCNTs@MIP was coated on the CKM-3 and P-r-GO modified glassy carbon electrode to construct an electrochemical sensor for the determination of CAP. The parameters concerning this assay strategy were carefully considered. Under the optimal conditions, the electrochemical sensor offered an excellent response for CAP. The linear response ranges were 5.0 × 10(-9)-5 × 10(-7)mol L(-1) and 5.0 × 10(-7)-4.0 × 10(-6), respectively, and the detection limit was 1.0 × 10(-10)mol L(-1). The electrochemical sensor was applied to determine CAP in real samples with satisfactory results. PMID:25280341

  2. Determination of malachite green in aquatic products based on magnetic molecularly imprinted polymers.

    PubMed

    Lin, Zheng-zhong; Zhang, Hong-yuan; Peng, Ai-hong; Lin, Yi-dong; Li, Lu; Huang, Zhi-yong

    2016-06-01

    Magnetic molecularly imprinted polymers (MMIPs) were synthesized through precipitation polymerization using malachite green (MG) as template, methacrylic acid as monomer, ethylene dimethacrylate as crosslinker, and Fe3O4 magnetite as magnetic component. MMIPs were characterized by scanning electron microscopy, Fourier transform infrared spectrometry, and vibrating sample magnetometry. Under the optimum condition, the MMIPs obtained exhibited quick binding kinetics and high affinity to MG in the solution. Scatchard plot analysis revealed that the MMIPs contained only one type of binding site with dissociation constant of 24.0 μg mL(-1). The selectivity experiment confirmed that the MMIPs exhibited higher selective binding capacity for MG than its structurally related compound (e.g., crystal violet). As a sorbent for the extraction of MG in sample preparation, MMIPs together with the absorbed analytes could easily be separated from the sample matrix with an external magnet. After elution with methanol/acetic acid (9:1, v/v), MG in the eluent was determined by high-performance liquid chromatography coupled with UV detector with recoveries of 94.0-115%. Results indicated that the as-prepared MMIPs are promising materials for MG analysis in aquatic products. PMID:26830557

  3. Application of a molecularly imprinted polymer for the extraction of kukoamine a from potato peels.

    PubMed

    Piletska, Elena V; Burns, Rosemary; Terry, Leon A; Piletsky, Sergey A

    2012-01-11

    A molecularly imprinted polymer (MIP) for the purification of N(1),N(12)-bis(dihydrocaffeoyl)spermine (kukoamine A) was computationally designed and tested. The properties of the polymer were characterized. The protocol of the solid phase extraction (SPE) of kukoamine A from potato peels was optimized. A HPLC-MS method for the quantification of kukoamine A was developed and used for all optimization studies. The capacity of the MIP in relation to kukoamine A from the potato peels extract was estimated at 54 mg/g of the polymer. The kukoamine A purified from potato extract using MIP was exceptionally pure (≈ 90%). Although the corresponding blank polymer was less selective than the MIP for the extraction of kukoamine A from the potato extract, it was shown that the blank polymer could be effectively used for the purification of the crude synthetic kukoamine (polymer capacity = 80 mg of kukoamine A/g of the adsorbent, kukoamine A purity ≈ 86%). Therefore, selective adsorbents could be computationally designed for other plant products, allowing their purification in quantities that would be sufficient for more detailed studies and potential practical applications. PMID:22142260

  4. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors

    PubMed Central

    Li, Yingchun; Liu, Yuan; Liu, Jie; Liu, Jiang; Tang, Hui; Cao, Cong; Zhao, Dongsheng; Ding, Yi

    2015-01-01

    Electrochemical nanosensors based on nanoporous gold leaf (NPGL) and molecularly imprinted polymer (MIP) are developed for pharmaceutical analysis by using metronidazole (MNZ) as a model analyte. NPGL, serving as the loading platform for MIP immobilization, possesses large accessible surface area with superb electric conductivity, while electrochemically synthesized MIP thin layer affords selectivity for specific recognition of MNZ molecules. For MNZ determination, the hybrid electrode shows two dynamic linear range of 5 × 10−11 to 1 × 10−9 mol L−1 and 1 × 10−9 to 1.4 × 10−6 mol L−1 with a remarkably low detection limit of 1.8 × 10−11 mol L−1 (S/N = 3). In addition, the sensor exhibits high binding affinity and selectivity towards MNZ with excellent reproducibility and stability. Finally, the reliability of MIP-NPGL for MNZ detection is proved in real fish tissue samples, demonstrating the potential for the proposed electrochemical sensors in monitoring drug and biological samples. PMID:25572290

  5. Controlled release of the herbicide simazine from computationally designed molecularly imprinted polymers.

    PubMed

    Piletska, Elena V; Turner, Nicholas W; Turner, Anthony P F; Piletsky, Sergey A

    2005-11-01

    The present study describes the development of materials suitable for environmental control of algae. Molecularly imprinted polymers (MIPs) were used as simazine carriers able to provide the controlled release of simazine into water. Three polymers were designed using computational modelling. The selection of methacrylic acid (MA) and hydroxyethyl methacrylate (HEM) as functional monomers was based on results obtained using the Leapfrog algorithm. A cross-linked polymer made without functional monomers was also prepared and tested as a control. The release of simazine from all three polymers was studied. It was shown that the presence of functional monomers is important for polymer affinity and for controlled release of herbicide. The speed of release of herbicide correlated with the calculated binding characteristics. The high-affinity MA-based polymer released approximately 2% and the low-affinity HEM-based polymer released approximately 27% of the template over 25 days. The kinetics of simazine release from HEM-based polymer show that total saturation of an aqueous environment could be achieved over a period of 3 weeks and this corresponds to the maximal simazine solubility in water. The possible use of these types of polymers in the field of controlled release is discussed. PMID:16111783

  6. Application of multivariate analysis to the screening of molecularly imprinted polymers (MIPs) for ametryn.

    PubMed

    Koohpaei, A R; Shahtaheri, S J; Ganjali, M R; Forushani, A Rahimi; Golbabaei, F

    2008-05-30

    Among the solid-phase extraction (SPE) techniques, a novel system for a triazine herbicide named ametryn, has been developed based on a molecular imprinted polymer (MIP) phase. Through this method, the synthesis of the complementary to ametryn MIP was accomplished and the factors influencing its efficiency have been optimized. Through the optimization process, the type and the amounts of functional monomer and solvents, template amount, cross-linker, initiator as well as the polymerization temperature were considered to be evaluated. Based on the obtained results, the optimum conditions for the efficient polymerized sorbent, considering the recovery efficiency were solvent: acetonitrile, 6.41 mL; monomer: methacrylic acid, 5.41 mmol; template: 1.204 mmol; cross-linker: 27.070 mmol; initiator: 2.03 mmol; temperature: 40.86 degrees C. The optimum molar ratio among the template, monomer and cross-linker for ametryn was 1:4.49:22.48. The reversed-phase HPLC-UV was used for the ametryn determination, using an isocratic solvent delivery system (acetonitrile: H(2)O, 60:40), flow-rate of 0.8 mL min(-1) and a UV wavelength of 220 nm. In line with the obtained results, using central composite design (CCD) can increase the precision and accuracy of synthesis and optimization of MIP to ametryn and possibly other similar analogues. PMID:18585172

  7. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors.

    PubMed

    Li, Yingchun; Liu, Yuan; Liu, Jie; Liu, Jiang; Tang, Hui; Cao, Cong; Zhao, Dongsheng; Ding, Yi

    2015-01-01

    Electrochemical nanosensors based on nanoporous gold leaf (NPGL) and molecularly imprinted polymer (MIP) are developed for pharmaceutical analysis by using metronidazole (MNZ) as a model analyte. NPGL, serving as the loading platform for MIP immobilization, possesses large accessible surface area with superb electric conductivity, while electrochemically synthesized MIP thin layer affords selectivity for specific recognition of MNZ molecules. For MNZ determination, the hybrid electrode shows two dynamic linear range of 5 × 10(-11) to 1 × 10(-9) mol L(-1) and 1 × 10(-9) to 1.4 × 10(-6) mol L(-1) with a remarkably low detection limit of 1.8 × 10(-11) mol L(-1) (S/N = 3). In addition, the sensor exhibits high binding affinity and selectivity towards MNZ with excellent reproducibility and stability. Finally, the reliability of MIP-NPGL for MNZ detection is proved in real fish tissue samples, demonstrating the potential for the proposed electrochemical sensors in monitoring drug and biological samples. PMID:25572290

  8. [Preparation of microcystin-LR molecularly imprinted polymer coated stir bar and its adsorptive performances].

    PubMed

    Qiu, Xiuzhen; Liang, Yong; Guo, Huishi

    2014-11-01

    An effective method for the preparation of magnetic molecularly imprinted polymers (MIPs) on attapulgite (ATP) using microcystin-LR (MC-LR) as template molecule through reversible addition fragmentation chain transfer (RAFT) radical polymerization was reported. A novel MIPs stir bar sorptive extraction (SBSE) coating was prepared by sol-gel method. The structure and morphology of MIPs were characterized by infrared spectroscopy (IR) and transmission electron microscopy (TEM). The adsorption performance of SBSE coated with MC-LR was studied by high performance liquid chromatography (HPLC). The results showed that under the optimized experimental conditions, the present method has high selectivity to MC-LR. A good linearity was achieved for MC-LR over the range of 0.010-5.0 mg/L and the limit of detection (S/N = 3) was found to be as low as 0.27 μg/L. The proposed method was successfully applied to the determination of MC-LR in water samples. The average recoveries ranged from 83.33% to 100.07% with the relative standard deviations (RSDs) of 1.40%-9.17% at three spiked levels (20, 40 and 80 μg/L). The developed method is rapid, selective and sensitive, and adapts to the analysis of trace MC in water samples. PMID:25764656

  9. Water-compatible molecularly imprinted polymer as a sorbent for the selective extraction and purification of adefovir from human serum and urine.

    PubMed

    Pourfarzib, Mojgan; Dinarvand, Rasoul; Akbari-Adergani, Behrouz; Mehramizi, Ali; Rastegar, Hossein; Shekarchi, Maryam

    2015-05-01

    A molecularly imprinted polymer has been synthesized to specifically extract adefovir, an antiviral drug, from serum and urine by dispersive solid-phase extraction before high-performance liquid chromatography with UV analysis. The imprinted polymers were prepared by bulk polymerization by a noncovalent imprinting method that involved the use of adefovir (template molecule) and functional monomer (methacrylic acid) complex prior to polymerization, ethylene glycol dimethacrylate as cross-linker, and chloroform as porogen. Molecular recognition properties, binding capacity, and selectivity of the molecularly imprinted polymers were evaluated and the results show that the obtained polymers have high specific retention and enrichment for adefovir in aqueous medium. The new imprinted polymer was utilized as a molecular sorbent for the separation of adefovir from human serum and urine. The serum and urine extraction of adefovir by the molecularly imprinted polymer followed by high-performance liquid chromatography showed a linear calibration curve in the range of 20-100 μg/L with excellent precisions (2.5 and 2.8% for 50 μg/L), respectively. The limit of detection and limit of quantization were determined in serum (7.62 and 15.1 μg/L), and urine (5.45 and 16 μg/L). The recoveries for serum and urine samples were found to be 88.2-93.5 and 84.3-90.2%, respectively. PMID:25763883

  10. [Preparation of nicosulfuron molecularly imprinted microspheres and research of adsorption characteristics].

    PubMed

    Xia, Ying; Zhang, Lan; Zhao, Ercheng; Jia, Chunhong; Zhu, Xiaodan

    2014-02-01

    Molecularly imprinted microspheres (MIPMs) for binding and recognition of nicosulfuron (NS) (NS-MIPMs) were prepared by precipitation polymerization. Methacrylic acid (MAA) was used as the functional monomer, trimethylolpropane trimethacrylate (TRIM) as the linking agent, 2,2-azobisisobutyronitrile (AIBN) as the initiator and chloroform as the porogenic solvent. The preparation conditions were optimized, and MIPMs exhibited the best adsorption capacity when the molar ratio of NS/MAA/TRIM/AIBN was 1:4:4:1 and the volume of the porogenic solvent was 90 mL. An ultraviolet-visible (UV-Vis) spectrophotometer was employed to study the mechanism of the interaction between NS and MAA, and the results showed that the NS-MAA complexes of 1:1 molar ratio were obtained in the pre-polymerization phase. The rebinding capacity of MIPMs was evaluated according to adsorption kinetics and adsorption isotherm of the imprinted microspheres. The Scatchard plot revealed that the template polymer system has a two-site binding behavior and the MIPMs exhibited the maximum rebinding to NS at 11,370.5 microg/g. The MIPMs were then used as adsorbents in a solid phase extraction (SPE) column and the optimum loading, washing and eluting conditions for the MIPMs were established. Additionally, a rapid method for the determination of NS residues in soil was developed using an NS-MIPMs SPE column. The analyte was extracted using acetonitrile and phosphate buffer, cleaned-up by an NS-MIPMs SPE column and analyzed by HPLC. The results showed that good linearity was observed in the range of 0.01-1 mg/L for NS, with a correlation coefficient of 0. 998 6. The recovery tests were performed at the spiked levels of 0.02-1 mg/kg, and the recoveries were in the range of 82.2%-86.3% with the relative standard deviations of 1.9%-4.3%. The advantages of the proposed method are that it is easy to operate, reliable and applicable to analyze the NS residues in soil samples. PMID:24822444

  11. Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol-gel surface imprinting technology

    NASA Astrophysics Data System (ADS)

    Liao, Sen; Zhang, Wen; Long, Wei; Hou, Dan; Yang, Xuechun; Tan, Ni

    2016-02-01

    In this paper, a new core-shell composite of nordihydroguaiaretic acid (NDGA) molecularly imprinted polymers layer-coated silica gel (MIP@SiO2) was prepared through sol-gel technique and applied as a material for extraction of NDGA from Ephedra. It was synthesized using NDGA as the template molecule, γ-aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTEOS) as the functional monomers, tetraethyl orthosilicate (TEOS) as the cross-linker and ethanol as the porogenic solvent in the surface of silica. The non-imprinted polymers layer-coated silica gel (NIP@SiO2) were prepared with the same procedure, but with the absence of template molecule. In addition, the optimum adsorption affinity occurred when the molar ratio of NDGA:APTS:MTEOS:TEOS was 1:6:2:80. The prepared MIP@SiO2 and NIP@SiO2 were analyzed by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform-infrared spectroscopy (FT-IR). Their affinity properties to NDGA were evaluated through dynamic adsorption, static adsorption, and selective recognition experiments, and the results showed the saturated adsorption capacity of MIP@SiO2 could reach to 5.90 mg g-1, which was two times more than that of NIP@SiO2. High performance liquid chromatography (HPLC) was used to evaluate the extraction of NDGA from the medicinal plant ephedra by the above prepared materials, and the results indicated that the MIP@SiO2 had potential application in separation of the natural active component NDGA from medicinal plants.

  12. Molecularly imprinted polymer for the selective extraction of luteolin from Chrysanthemum morifolium Ramat.

    PubMed

    Gao, Die; Yang, Fengqing; Xia, Zhining; Zhang, Qihui

    2016-08-01

    In this work, luteolin-imprinted polymers were prepared by noncovalent precipitation polymerization for the first time. Their structural features and morphologies were analyzed by using Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The adsorption experiments revealed that the luteolin-imprinted polymers presented high selective recognition property to luteolin. The selectivity experiment showed that the adsorption capacity and selectivity of polymers to luteolin was higher than that of three structural analogs, including quercetin, isorhamnetin, and ombuin. Furthermore, an efficient method based on luteolin-imprinted polymers coupled with solid-phase extraction was developed for the pretreatment of luteolin from Chrysanthemum morifolium Ramat. The results demonstrated that the luteolin-imprinted polymers coupled with solid phase extraction method was proven to be a potentially competitive technique for the separation and enrichment of luteolin in complex samples such as Chinese patent medicines and biological samples. PMID:27288270

  13. Covalent immobilization of molecularly imprinted polymer nanoparticles on a gold surface using carbodiimide coupling for chemical sensing.

    PubMed

    Kamra, Tripta; Chaudhary, Shilpi; Xu, Changgang; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2016-01-01

    One challenging task in building (bio)chemical sensors is the efficient and stable immobilization of receptor on a suitable transducer. Herein, we report a method for covalent immobilization of molecularly imprinted core-shell nanoparticles for construction of robust chemical sensors. The imprinted nanoparticles with a core-shell structure have selective molecular binding sites in the core and multiple amino groups in the shell. The model Au transducer surface is first functionalized with a self-assembled monolayer of 11-mercaptoundecanoic acid. The 11-mercaptoundecanoic acid is activated by treatment with carbodiimide/N-hydroxysuccinimide and then reacted with the core-shell nanoparticles to form amide bonds. We have characterized the process by studying the treated surfaces after each preparation step using atomic force microscopy, scanning electron microscopy, fluorescence microscopy, contact angle measurements and X-ray photoelectron spectroscopy. The microscopy results show the successful immobilization of the imprinted nanoparticles on the surface. The photoelectron spectroscopy results further confirm the success of each functionalization step. Further, the amino groups on the MIP surface were activated by electrostatically adsorbing negatively charged Au colloids. The functionalized surface was shown to be active for surface enhanced Raman scattering detection of propranolol. The particle immobilization and surface enhanced Raman scattering approach described here has a general applicability for constructing chemical sensors in different formats. PMID:26397901

  14. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots.

    PubMed

    Amjadi, Mohammad; Jalili, Roghayeh; Manzoori, Jamshid L

    2016-05-01

    A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2 @MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2 @MIP nanoparticles were characterized by fluorescence, UV-vis absorption and FT-IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2 @MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2 @MIP decreased with increasing CAP by a Stern-Volmer type equation in the concentration range of 40-500 µg L(-1). The corresponding detection limit was 5.0 µg L(-1). The intra-day and inter-day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. PMID:27037966

  15. A novel voltammetric sensor for ascorbic acid based on molecularly imprinted poly(o-phenylenediamine-co-o-aminophenol).

    PubMed

    Kong, Yong; Shan, Xueling; Ma, Jianfeng; Chen, Meilan; Chen, Zhidong

    2014-01-27

    A molecularly imprinted copolymer, poly(o-phenylenediamine-co-o-aminophenol) (PoPDoAP), was prepared as a new ascorbic acid (AA) sensor. The copolymer was synthesized by incorporation of AA as template molecules during the electrochemical copolymerization of o-phenylenediamine and o-aminophenol, and complementary sites were formed after the copolymer was electrochemically reduced in ammonium aqueous solution. The molecularly imprinted copolymer sensor exhibited a high sensitivity and selectivity toward AA. Differential pulse voltammograms (DPVs) showed a linear concentration range of AA from 0.1 to 10 mM, and the detection limit was calculated to be 36.4 μM. Compared to conventional polyaniline-based AA sensors, the analytical performance of the imprinted copolymer sensor was improved due to the broadened usable pH range of PoPDoAP (from pH 1.0 to pH 8.0). The sensor also exhibited a good reproducibility and stability. And it has been successfully applied in the determination of AA in real samples, including vitamin C tablet and orange juices, with satisfactory results. PMID:24418133

  16. Novel molecularly-imprinted solid-phase microextraction fiber coupled with gas chromatography for analysis of furan.

    PubMed

    Hashemi-Moghaddam, Hamid; Ahmadifard, Mojtaba

    2016-04-01

    This study combined a molecularly-imprinted polymer with headspace solid-phase microextraction (HS-SPME). Preparation of molecularly-imprinted polymer is not effective for volatile compounds. To overcome this limitation, pyrrole was chosen as a template for the preparation of the furan-imprinted polymer. The holes in the synthesized polymer were suitable for furan adsorption because the chemical structure of pyrrole is similar to that of furan. The extraction properties of the fiber to furan were examined using an HS-SPME device coupled with gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The effects of the extraction parameters of exposure time, sampling temperature, and salt concentration on extraction efficiency were studied. Satisfactory reproducibility was obtained for extractions from spiked water samples at RSD<7.5% (n=5). The calibration graphs were linear at 0.5-100 ng ml(-1) and the detection limit for furan was 0.042 ng ml(-1). The fabricated fiber was successfully applied for headspace extraction of furan from tap water and canned tuna as shown by GC-MS analysis. PMID:26838393

  17. A core-shell-structured molecularly imprinted polymer on upconverting nanoparticles for selective and sensitive fluorescence sensing of sulfamethazine.

    PubMed

    Tian, Jinghan; Bai, Jialei; Peng, Yuan; Qie, Zhiwei; Zhao, Yufeng; Ning, Baoan; Xiao, Dan; Gao, Zhixian

    2015-08-01

    A core-shell structured molecularly imprinted polymer on upconverting nanoparticles (UCNPs@MIP) was synthesized for the fluorescence (FL) sensing of sulfamethazine (SMZ). Hexagonal UCNPs were synthesized by the solvothermal method, then coated with a thin silica shell and modified with vinyl groups. Finally, surface polymerization was initiated among the vinyl groups, the functional monomers and cross-linking agents by the initiator. The MIP synthesized by this procedure was anchored on the surface of UCNPs, possessed better site accessibility and lower transfer resistance for the target molecule compared to bulk imprinted materials. The obtained UCNPs@MIP showed good binding capacity, fast response, high selectivity and specificity to the SMZ. The FL intensity of the UCNPs@MIP decreased sensitively with the increasing concentration of SMZ in the range of 50-700 ng mL(-1), the detection limit was 34 ng mL(-1) (S/N = 3). The UCNPs@MIP was successfully applied to the detection of SMZ in chicken samples. Thanks to the unique near-infrared (NIR) excitation nature of UCNPs, the chicken meat only needed some simple extraction procedures before FL detection, no complex purifications were required. The average recoveries ranged from 96.01% to 98.90%, with relative standard deviations (RSDs) below 4.5%. This work offers a novel sensing system that combined the advantages of upconverting nanotechnology and molecularly imprinted technology. PMID:26075380

  18. Molecularly imprinted polymers for selective analysis of chemical warfare surrogate and nuclear signature compounds in complex matrices.

    PubMed

    Harvey, Scott D

    2005-07-01

    This paper describes the preparation and evaluation of molecularly imprinted polymers (MIPs) that display specificity toward diisopropyl methylphosphonate (DIMP) and tributyl phosphate (TBP). Polymer activity was assessed by solid-phase extraction and high-performance liquid chromatography experiments. Both DIMP- and TBP-specific vinylpyridine-based MIPs selectively retained their targets relative to a non-imprinted control. Proof-of-principle experiments demonstrated highly selective analysis of the targets from fortified complex matrix samples (diesel fuel, gasoline, and air extract concentrate). The retained MIP fractions gave near quantitative recovery of the target analytes with very low matrix background content. The same fraction from the control sorbent recovered only about half of the analyte and tended to be less pure. PMID:16117000

  19. Molecularly imprinted poly(N-vinyl imidazole) based polymers grafted onto nonwoven fabrics for recognition/removal of phloretic acid

    NASA Astrophysics Data System (ADS)

    Llorina Rañada, Ma.; Akbulut, Meshude; Abad, Lucille; Güven, Olgun

    2014-01-01

    A solution of N-vinyl imidazole (VIm), ethylene glycol dimethylacrylate (EGDMA), and phloretic acid (p-hydroxyphenylpropionic acid, HPPA) as functional monomer, crosslinker and template, respectively, were used to graft molecularly imprinted polymer (MIP) onto polyethylene/polypropylene (PE/PP) nonwoven fabric via gamma radiation at room temperature. Control grafted films were also synthesized using the same procedure in the absence of HPPA. Binding performance of the MIP grafts was investigated for different template molecule concentrations and contact time. An imprinting factor for the sample prepared at 5 kGy dose was determined as 2.41 for 50 ppm HPPA solution for 3-h incubation. MIP graft layers were investigated by positron annihilation lifetime spectroscopy (PALS) as well as SEM.

  20. Photoelectrochemical lab-on-paper device based on molecularly imprinted polymer and porous Au-paper electrode.

    PubMed

    Wang, Panpan; Sun, Guoqiang; Ge, Lei; Ge, Shenguang; Yu, Jinghua; Yan, Mei

    2013-09-01

    In this work, microfluidic paper-based analytical device (μ-PAD) was applied in a photoelectrochemical (PEC) method and thus a truly low-cost, simple, portable, and disposable microfluidic PEC origami device (μ-PECOD) was demonstrated. The molecular imprinting technique was introduced into microfluidic paper-based analytical devices (μ-PADs) through electropolymerization of molecular imprinted polyaniline (MPANI) in a novel Au nanoparticle (AuNP)-modified paper working electrode (Au-PWE). This is fabricated through the growth of an AuNP layer on the surfaces of cellulose fibers in the PWE. Under visible light irradiation, MPANI can generate the photoelectric transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO), delivering the excited electrons to the AuNPs, and then to the carbon working electrode. Simultaneously, it is believed that a positively charged hole of MPANI that took part in the oxidation process was consumed by ascorbic acid (AA) to promote the amplifying photocurrent response. On the basis of this novel MPANI-Au-PWE and the principle of origami, a microfluidic molecular imprinted polymer (MIP)-based photoelectrochemical analytical origami device (μ-MPECOD), comprised of an auxiliary tab and a sample tab, is developed for the detection of heptachlor in the linear range from 0.03 nmol L(-1) to 10.0 nmol L(-1) with a low detection limit of 8.0 pmol L(-1). The selectivity, reproducibility, and stability of this μ-MPECOD are investigated. This μ-MPECOD would provide a new platform for high-throughput, sensitive, specific, and multiplex assay in public health, environmental monitoring, and the developing world. PMID:23801374

  1. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma.

    PubMed

    Yola, Mehmet Lütfi; Eren, Tanju; Atar, Necip

    2014-10-15

    The molecular imprinting technique depends on the molecular recognition. It is a polymerization method around the target molecule. Hence, this technique creates specific cavities in the cross-linked polymeric matrices. In present study, a sensitive imprinted electrochemical biosensor based on Fe@Au nanoparticles (Fe@AuNPs) involved in 2-aminoethanethiol (2-AET) functionalized multi-walled carbon nanotubes (f-MWCNs) modified glassy carbon (GC) electrode was developed for determination of cefexime (CEF). The results of X-ray photoelectron spectroscopy (XPS) and reflection-absorption infrared spectroscopy (RAIRS) confirmed the formation of the developed surfaces. CEF imprinted film was constructed by cyclic voltammetry (CV) for 9 cycles in the presence of 80 mM pyrrole in phosphate buffer solution (pH 6.0) containing 20mM CEF. The developed electrochemical biosensor was validated according to the International Conference on Harmonisation (ICH) guideline and found to be linear, sensitive, selective, precise and accurate. The linearity range and the detection limit were obtained as 1.0 × 10(-10)-1.0 × 10(-8)M and 2.2 × 10(-11)M, respectively. The developed CEF imprinted sensor was successfully applied to real samples such as human plasma. In addition, the stability and reproducibility of the prepared molecular imprinted electrode were investigated. The excellent long-term stability and reproducibility of the prepared CEF imprinted electrodes make them attractive in electrochemical sensors. PMID:24832202

  2. A facile approach for synthesizing molecularly imprinted graphene for ultrasensitive and selective electrochemical detecting 4-nitrophenol.

    PubMed

    Luo, Jing; Cong, Jiaojiao; Liu, Jie; Gao, Yahan; Liu, Xiaoya

    2015-03-15

    In this work, a novel and convenient strategy was developed to prepare molecularly imprinted polymers (MIPs) on the surface of graphene sheet. In this route, vinyl group functionalized graphene (GR/NVC) was first prepared by immobilizing 4-vinylcarbazole onto the surface of graphene via π-π interaction. The subsequent grafting copolymerization of methacrylic acid and ethylene glycol dimethacrylate in the presence of 4-nitrophenol (4-NP, template molecule) was carried out at GR/NVC surface, leading to the formation of GR/MIPs composite. The GR/MIPs composite was characterized by FTIR, fluorescence, TGA, SEM and AFM, and was used to fabricate electrochemical sensor for the detection of 4-NP. The electrochemical behavior of GR/MIPs sensor for 4-NP was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The effects of the preparation conditions, such as concentration of the NVC and template, the solution pH, and incubation time, were also optimized. Under optimized conditions, the DPV current response of GR/MIPs sensor was nearly 12 times than that of the GR/NIPs sensor. It also should be noted that as compared to traditional MIP, shorter response time and much higher current response were demonstrated. In addition, the GR/MIPs sensor could recognize 4-NP from its structural analogs, indicating the excellent selectivity of the GR/MIPs sensor. The peak current is linearly proportional to the concentration of 4-NP ranging from 0.01 μM to 100 μM and 200 μM to 1000 μM with a significantly low detection limit of 5 nM, a wider response range and lower detection limits as compared to most of the previously reported electrochemical sensors for 4-NP. Furthermore, the GR/MIPs sensor exhibits good stability with adequate reproducibility and has been successfully used to determine 4-NP in water samples. PMID:25732429

  3. Molecularly imprinted polymers as biomimetic receptors for fluorescence-based optical sensors

    NASA Astrophysics Data System (ADS)

    Moreno-Bondi, María C.; Urraca, Javier L.; Benito-Peña, Elena; Navarro-Villoslada, Fernando; Martins, Sofía A.; Orellana, Guillermo; Sellergren, Börje

    2007-07-01

    Molecularly imprinted polymers (MIPs), human-made polymers capable of recognizing a particular molecule in the presence of others due to the selective cavities of the material, have been successfully applied to the development of chromatographic and solid phase extraction methods. They have also been applied to the development of electrochemical, piezoelectrical and optical sensors. In parallel with the classification of biosensors, MIP-based devices can work according to two different detection schemes: (1) affinity sensors ("plastic-bodies") and, (2) catalytic sensors ("plastic-enzymes"). In the first case the change in a characteristic optical property, most frequently fluorescence, of the analyte or of the polymer is monitored, upon their mutual interaction. Alternatively, a fluorescent analogue of the target analyte can also be used to develop sensors based on competitive assays (MIAs). Optimization of the polymer composition and, in particular, a proper choice of the nature of the functional monomers involved in the polymerization process, is critical to prepare materials able to selectively interact with the analyte in aqueous media and with the fast kinetics required for analytical applications. Moreover, a rational design of fluorescent analogues of non-naturally fluorescent templates or of fluorescent monomers able to change its property upon interaction with the analyte, is also a bottle neck for wide application of this recognition elements in optical sensing. In this paper we present several approaches to address these issues namely the optimization of MIP composition and the design and synthesis of novel fluorophores for the analysis of antibiotics and mycotoxins in real samples.

  4. A microvolume molecularly imprinted polymer modified fiber-optic evanescent wave sensor for bisphenol A determination.

    PubMed

    Xiong, Yan; Ye, Zhongbin; Xu, Jing; Liu, Yucheng; Zhang, Hanyin

    2014-04-01

    A fiber-optic evanescent wave sensor for bisphenol A (BPA) determination based on a molecularly imprinted polymer (MIP)-modified fiber column was developed. MIP film immobilized with BPA was synthesized on the fiber column, and the sensor was then constructed by inserting the optical fiber prepared into a transparent capillary. A microchannel (about 2.0 μL) formed between the fiber and the capillary acted as a flow cell. BPA can be selectively adsorbed online by the MIP film and excited to produce fluorescence by the evanescent wave produced on the fiber core surface. The conditions for BPA enrichment, elution, and fluorescence detection are discussed in detail. The analytical measurements were made at 276 nm/306 nm (λ(ex)/λ(em)), and linearity of 3 × 10(-9)-5 × 10(-6) g mL(-1) BPA, a limit of detection of 1.7 × 10(-9) g mL(-1) BPA (3σ), and a relative standard deviation of 2.4% (n = 5) were obtained. The sensor selectivity and MIP binding measurement were also evaluated. The results indicated that the selectivity and sensitivity of the proposed fiber-optic sensor could be greatly improved by using MIP as a recognition and enrichment element. Further, by modification of the sensing and detection elements on the optical fiber, the proposed sensor showed the advantages of easy fabrication and low cost. The novel sensor configuration provided a platform for monitoring other species by simply changing the light source and sensing elements. The sensor presented has been successfully applied to determine BPA released from plastic products treated at different temperatures. PMID:24553664

  5. Molecularly imprinted polymer film interfaced with Surface Acoustic Wave technology as a sensing platform for label-free protein detection.

    PubMed

    Tretjakov, Aleksei; Syritski, Vitali; Reut, Jekaterina; Boroznjak, Roman; Öpik, Andres

    2016-01-01

    Molecularly imprinted polymer (MIP)-based synthetic receptors integrated with Surface Acoustic Wave (SAW) sensing platform were applied for the first time for label-free protein detection. The ultrathin polymeric films with surface imprints of immunoglobulin G (IgG-MIP) were fabricated onto the multiplexed SAW chips using an electrosynthesis approach. The films were characterized by analyzing the binding kinetics recorded by SAW system. It was revealed that the capability of IgG-MIP to specifically recognize the target protein was greatly influenced by the polymer film thickness that could be easily optimized by the amount of the electrical charge consumed during the electrodeposition. The thickness-optimized IgG-MIPs demonstrated imprinting factors towards IgG in the range of 2.8-4, while their recognition efficiencies were about 4 and 10 times lower toward the interfering proteins, IgA and HSA, respectively. Additionally, IgG-MIP preserved its capability to recognize selectively the template after up to four regeneration cycles. The presented approach of the facile integration of the protein-MIP sensing layer with SAW technology allowed observing the real-time binding events of the target protein at relevant sensitivity levels and can be potentially suitable for cost effective fabrication of a biosensor for analysis of biological samples in multiplexed manner. PMID:26703269

  6. Reactive carbon microspheres prepared by surface-grafting 4-(chloromethyl)phenyltrimethoxysilane for preparing molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Liu, Weifeng; Zhao, Huijun; Yang, Yongzhen; Liu, Xuguang; Xu, Bingshe

    2013-07-01

    Carbon microspheres (CMSs) were oxidized by a mixture of concentrated sulfuric and nitric acids, and modified by 4-(chloromethyl)phenyltrimethoxysilane to give reactive surface. Then, by adopting the surface molecular imprinting technique, dibenzothiophene (DBT) molecule-imprinted material MIP-DBT/CMSs was prepared with methacrylic acid as functional monomer and ethylene glycol dimethacrylate as crosslinking agent. The binding character of MIP-DBT/CMSs toward DBT was investigated with static method by gas chromatography, using fluorene and biphenyl as the reference substances which are similar to DBT in chemical structure to a certain extent. The effects of reaction time, temperature, and coupling agent concentration during silanization were investigated. The results show that the optimized conditions of silanization were 0.3 g oxidized-CMSs, 5% of CMTMS, 80 °C and 4 h. On the basis of silanized-CMSs, MIP-DBT/CMSs was synthesized. The adsorption results show that MIP-DBT/CMSs possessed strong adsorption ability for DBT. The maximal adsorption amount reached up 88.83 mg/g, in comparison with 44.51 mg/g of the non-imprinted polymer. In addition, MIP-DBT/CMSs exhibited a good selective adsorption capacity for DBT than fluorene (19.86 mg/g) and biphenyl (15.33 mg/g). The adsorption behavior followed the pseudo second order kinetic model. And the Freundlich isotherm was found to describe well the equilibrium adsorption data.

  7. Molecular Imprinted Polymer of Methacrylic Acid Functionalised β-Cyclodextrin for Selective Removal of 2,4-Dichlorophenol

    PubMed Central

    Surikumaran, Hemavathy; Mohamad, Sharifah; Sarih, Norazilawati Muhamad

    2014-01-01

    This work describes methacrylic acid functionalized β-cyclodextrin (MAA-βCD) as a novel functional monomer in the preparation of molecular imprinted polymer (MIP MAA-βCD) for the selective removal of 2,4-dichlorophenol (2,4-DCP). The polymer was characterized using Fourier Transform Infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The influence of parameters such as solution pH, contact time, temperature and initial concentrations towards removal of 2,4-DCP using MIP MAA-βCD have been evaluated. The imprinted material shows fast kinetics and the optimum pH for removal of 2,4-DCP is pH 7. Compared with the corresponding non-imprinted polymer (NIP MAA-βCD), the MIP MAA-βCD exhibited higher adsorption capacity and outstanding selectivity towards 2,4-DCP. Freundlich isotherm best fitted the adsorption equilibrium data of MIP MAA-βCD and the kinetics followed a pseudo-second-order model. The calculated thermodynamic parameters showed that adsorption of 2,4-DCP was spontaneous and exothermic under the examined conditions. PMID:24727378

  8. A resonance light scattering sensor based on bioinspired molecularly imprinted polymers for selective detection of papain at trace levels.

    PubMed

    Yang, Bin; Lv, Sifang; Chen, Feng; Liu, Chan; Cai, Changqun; Chen, Chunyan; Chen, Xiaoming

    2016-03-17

    A novel resonance light scattering sensor based on the molecularly imprinted polymers (MIPs) technique was developed for specific recognition of the trace quantities of papain (Pap). In this sensor, as the specific recognition element, an excellent biocompatibility of protein-imprinted polymer without fluorescent materials was easily prepared, which based on the effective synthesis of mussel-inspired bionic polydopamine (PDA) on the surface of SiO2 nanoparticles (SiO2@PDA NPs). This recognition element could capture the target protein selectively, which led to the enhancement of resonance light scattering intensity with the increasing of the target protein concentration. The sensor was applied to determine Pap in the linear concentration range of 2.0-20.0 nM with a correlation coefficient r = 0.9966, and a low detection limit of 0.63 nM. The relative standard deviation for 14 nM of Pap was 1.02% (n = 7). In addition, the specificity study confirmed the resultant Pap-imprinted SiO2@PDA NPs had a high-selectivity to Pap, and the practical analytical performance was further examined by evaluating the detection of Pap in the dietary supplement with satisfactory results, with good recoveries of 97.5-105.3%. PMID:26920781

  9. Determination of azithromycin residue in pork using a molecularly imprinted monolithic microcolumn coupled to liquid chromatography with tandem mass spectrometry.

    PubMed

    Zhou, Tong; Yang, Haicui; Jin, Zhen; Liu, Qingying; Song, Xuqin; He, Limin; Fang, Binghu; Meng, Chenying

    2016-04-01

    Using spiramycin as a dummy template, a molecularly imprinted polymer monolithic micro-column with high selection to azithromycin was prepared in a micropipette tip. The imprinting factor of the monolithic micro-column prepared was approximately 2.67 and the morphological structure of the polymers was characterized by scanning electron microscopy. A simple, sensitive, and reproducible method based on the imprinted monolithic micro-column coupled to liquid chromatography with tandem mass spectrometry was developed for determining the residues of azithromycin in pork. Pork samples were extracted with acetonitrile, cleaned up under the optimal monolithic micro-column conditions, and analyzed using liquid chromatography with tandem mass spectrometry in the multiple reaction monitoring mode. The assay exhibited a linear dynamic range of 0.50-50 μg/L with the correlation coefficient (r(2) ) above 0.99. In the three spiking levels of 0.50, 1.0, and 10 μg/kg, the average recoveries of azithromycin from pork samples were between 85.8 and 96.5% with a relative standard deviation below 10%. The limit of detection and limit of quantitation were 0.03 and 0.1 μg/kg, respectively. PMID:26854282

  10. Nanosilica-based molecularly imprinted polymer nanoshell for specific recognition and determination of rhodamine B in red wine and beverages.

    PubMed

    Long, Zerong; Xu, Weiwei; Lu, Yi; Qiu, Hongdeng

    2016-09-01

    A new and facile rhodamine B (RhB)-imprinted polymer nanoshell coating for SiO2 nanoparticles was readily prepared by a combination of silica gel modification and molecular surface imprinting. The RhB-imprinted polymers (RhB-MIPs) were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and UV-vis spectroscopy; the binding properties and selectivity of these MIPs were investigated in detail. The uniformly imprinted nanoparticles displayed a rather thin shell thickness (23nm) with highly effective recognition sites, showing homogenous distribution and monolayer adsorption. The maximum MIP adsorption capacity (Qm) was as high as 45.2mgg(-1), with an adsorption equilibrium time of about 15min at ambient temperature. Dynamic rebinding experiments showed that chemical adsorption is crucial for RhB binding to RhB-MIPs. The adsorption isotherm for RhB-MIPs binding could also be described by the Langmuir equation at different temperatures and pH values. Increasing temperature led to an enhanced Qm, a decreased dissociation constant (K'd), and a more negative free energy (ΔG), indicating that adsorption is favored at higher temperatures. Moreover, the adsorption capacity of RhB was remarkably affected by pH. At pH>7, the adsorption of RhB was driven by hydrogen bonding interactions, while at pH<7 electrostatic forces were dominant. Additionally, the MIPs also showed specific recognition of RhB from the standard mixture solution containing five structurally analogs. This method was also successfully employed to determine RhB content in red wine and beverages using three levels of spiking, with recoveries in the range of 91.6-93.1% and relative standard deviations lower than 4.1%. PMID:27372912

  11. Class-specific molecularly imprinted polymers for the selective extraction and determination of sulfonylurea herbicides in maize samples by high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    She, Yong-Xin; Cao, Wei-Qiang; Shi, Xiao-Mei; Lv, Xiao-Ling; Liu, Jia-Jia; Wang, Rong-Yan; Jin, Fen; Wang, Jing; Xiao, Hang

    2010-08-01

    A novel method based on the molecularly imprinted solid-phase extraction (MISPE) procedure has been developed for the simultaneous determination of concentrations of sulfonylurea herbicides such as chlorsulfuron (CS), monosulfuron (MNS), and thifensulfuron methyl (TFM) in maize samples by liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS). The molecularly imprinted polymer (MIP) for sulfonylurea herbicides was synthesized by precipitation polymerization using chlorsulfuron as the template molecule, 2-(diethylamino)ethyl methacrylate (DEAMA) as the functional monomer, and trimethylolpropane trimethacrylate (TRIM) as the cross-linker. The selectivities of the chlorsulfuron template and its analogs on the molecularly imprinted polymer were evaluated by high-performance liquid chromatography (HPLC). The extraction and purification procedures for the solid-phase extraction (SPE) cartridge with a molecularly imprinted polymer as the adsorbent for the selected sulfonylurea herbicides were then established. A molecularly imprinted solid-phase extraction method followed by high-performance liquid chromatography-tandem mass spectrometry for the determination of chlorsulfuron, monosulfuron, and thifensulfuron methyl was also established. The mean recoveries of these compounds in maize were in the range 75-110% and the limits of detection (LOD) of chlorsulfuron, monosulfuron, and thifensulfuron methyl were 0.02, 0.75, and 1.45 microg kg(-1), respectively. It was demonstrated that the MISPE-HPLC-MS/MS method could be applied to the determination of chlorsulfuron, monosulfuron, and thifensulfuron methyl in maize samples. PMID:20598653

  12. Synthesis of caffeic acid molecularly imprinted polymer microspheres and high-performance liquid chromatography evaluation of their sorption properties.

    PubMed

    Valero-Navarro, Angel; Gómez-Romero, María; Fernández-Sánchez, Jorge F; Cormack, Peter A G; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2011-10-14

    In the current work, a molecularly imprinted polymer (MIP) has been synthesised and used to enable the extraction of a naturally-occurring antioxidant from complex media. More specifically, we describe the first example of a caffeic acid (CA) MIP which has been synthesised in the form of well-defined polymer microspheres, and its use for the extraction of CA from fruit juice sample. The CA MIP was synthesised by precipitation polymerisation using 4-vinylpyridine as functional monomer, divinylbenzene-80 as crosslinker and acetonitrile:toluene (75/25, v/v) as porogen. The particle sizing and morphological characterisation of the polymers was carried out by means of scanning electron microscopy (narrow particle size distribution; ∼5 and 1.5 μm particle diameters for the MIP and NIP [non-imprinted polymer], respectively) and nitrogen sorption porosimetry (specific surface areas of 340 and 350 m(2)g(-1), and specific pore volumes of 0.17 and 0.19 cm(3)g(-1) for the MIP and NIP, respectively). The polymers were evaluated further by batch rebinding experiments, and from the derived isotherms their binding capacity and binding strength were determined (number of binding sites (N(K))=0.6 and 0.3 mmol g(-1) for the MIP and NIP, respectively, and apparent average adsorption constant (K(N))=10.0 and 1.6L mmol(-1) for the MIP and NIP, respectively). To evaluate the molecular recognition character of the MIP it was packed into a stainless steel column (50 mm × 4.6 mm i.d.) and evaluated as an HPLC-stationary phase. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve the peak shape without negatively affecting the imprinting factor (IF). Very interesting, promising properties were revealed. The imprinting factor (IF) under the optimised conditions was 11.9. Finally, when the imprinted LC column was used for the selective recognition of CA over eight related compounds, very good selectivity was obtained. This outcome enabled

  13. One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation.

    PubMed

    Wang, Xiao-Ni; Liang, Ru-Ping; Meng, Xiang-Ying; Qiu, Jian-Ding

    2014-10-01

    A facile approach for preparation of molecularly imprinted polymers was developed and successfully used as chiral stationary phase for rapid enantioseparation by open tubular capillary electrochromatography (OT-CEC). In this work, molecularly imprinted polymers were one-step prepared employing Fe3O4 nanoparticles (NPs) as the supporting substrate and dopamine as the functional monomer. By simply mixing Fe3O4 NPs with template molecules in a weak alkaline solution of dopamine, a thin adherent polydopamine (PDA) film imprinted with template molecules was formed by the self-polymerization of dopamine on the surface of Fe3O4 NPs. After extracting the embedded template molecules, the produced imprinted Fe3O4@PDA NPs are of three dimensional shape of template molecules favoring high binding capacity and magnetism property for easy manipulation. The imprinted Fe3O4@PDA NPs prepared with l-tryptophan, l-tyrosine, Gly-l-Phe or s-ofloxacin as template molecules were packed in the PDMS microchannel via magnetic field as novel stationary phase for the successful enantioseparation of corresponding target analysts. In addition, the imprinted Fe3O4@PDA NPs-based OT-CEC system exhibited excellent reproducibility, stability and repeatability, which provides a powerful protocol for separation enantiomers within a short analytical time and opens up a promising avenue for high-throughput screening of chiral compounds. PMID:25182855

  14. Design and synthesis of a fluorescent molecular imprinted polymer for use in an optical fibre-based cocaine sensor

    NASA Astrophysics Data System (ADS)

    Wren, Stephen P.; Piletsky, Sergey A.; Karim, Kal; Gascoine, Paul; Lacey, Richard; Sun, Tong; Grattan, Kenneth T. V.

    2014-05-01

    Previously, we have developed chemical sensors using fibre optic-based techniques for the detection of Cocaine, utilising molecularly imprinted polymers (MIPs) containing fluorescein moieties as the signalling groups. Here, we report the computational design of a fluorophore which was incorporated into a MIP for the generation of a novel sensor that offers improved sensitivity for Cocaine with a detection range of 1-100μM. High selectivity for Cocaine over a suite of known Cocaine interferants (25μM) was also demonstrated by measuring changes in the intensity of fluorescence signals received from the sensor.

  15. Binding and Release of Glutamate from Overoxidized Polypyrrole via an Applied Potential for Application as a Molecular Switch

    NASA Astrophysics Data System (ADS)

    Hauff, Elizabeth von; Meteleva-Fischer, Yulia; Parisi, Jürgen; Weiler, Reto

    2008-06-01

    The controlled binding and release of glutamate from overoxidized polypyrrole (PPy) films via a variable potential was investigated. Glutamate-doped PPy films were electrochemically deposited from aqueous sodium glutamate electrolytes containing the pyrrole monomer. The resulting polymer films were found to have a high degree of roughness, which increased with increasing film thickness. This was also found to correspond to an increase in the glutamate content on the PPy film surface. The glutamate content on the film was in the order of 10-8 m/cm2 depending on the film deposition time. Glutamate was then released from the film into the electrolyte through overoxidization of the PPy layer and an applied potential. The amount of glutamate released from the film was greater than that on the surface of the film indicating that glutamate can be released from the PPy film via an applied potential. The switching behaviour of the polymer electrode, i. e. the repeated binding and release of glutamate to/from the polymer film via a variable potential, was investigated. The glutamate content in the samples was detected via liquid scintillation counting techniques performed on samples prepared with tritium (3H)-marked glutamate.

  16. Preparation of a magnetic molecularly imprinted polymer by atom-transfer radical polymerization for the extraction of parabens from fruit juices.

    PubMed

    You, Xiaoxiao; Piao, Chungying; Chen, Ligang

    2016-07-01

    A silica-based surface magnetic molecularly imprinted polymer for the selective recognition of parabens was prepared using a facile and general method that combined atom-transfer radical polymerization with surface imprinting technique. The prepared magnetic molecularly imprinted polymer was characterized by transmission electron microscopy, Fourier transform infrared spectrometry and physical property measurement. The isothermal adsorption experiment and kinetics adsorption experiment investigated the adsorption property of magnetic molecularly imprinted polymer to template molecule. The four parabens including methylparaben, ethylparaben, propylparaben, and butylparaben were used to assess the rebinding selectivity. An extraction method, which used magnetic molecularly imprinted polymer as adsorbents coupled with high-performance liquid chromatography for the determination of the four parabens in fruit juice samples was developed. Under the optimal conditions, the limits of detections of the four parabens were 0.028, 0.026, 0.021, and 0.026 mg/L, respectively. The precision expressed as relative standard deviation ranging from 2.6 to 8.9% was obtained. In all three fortified levels, recoveries of parabens were in the range of 72.5-89.4%. The proposed method has been applied to different fruit juice samples including orange juice, grape juice, apple juice and peach juice, and satisfactory results were obtained. PMID:27214157

  17. Selective and simultaneous determination of trace bisphenol A and tebuconazole in vegetable and juice samples by membrane-based molecularly imprinted solid-phase extraction and HPLC.

    PubMed

    Wu, Ya-Ting; Zhang, Yan-Hong; Zhang, Meng; Liu, Fei; Wan, Ying-Chun; Huang, Zheng; Ye, Lei; Zhou, Qi; Shi, Yun; Lu, Bin

    2014-12-01

    Nanofibrous molecularly imprinted membranes (nano-MIMs) with multi-analyte selectivity were prepared by encapsulating two types of molecularly imprinted polymer nanoparticles (MIP-NPs) into electrospun polyvinyl alcohol nanofibers. The obtained nano-MIMs maintained high molecular selectivity offered by each of the MIP-NPs. Nano-MIM embedding BPA-imprinted nanoparticles and TBZ-imprinted nanoparticles together showed the highest binding selectivity for acid bisphenol A (BPA) and basic tebuconazole (TBZ). This nano-MIM was used as affinity material of membrane-based molecularly imprinted solid-phase extraction (m-MISPE) to extract trace BPA and TBZ in vegetables and juices simultaneously. The recoveries of BPA and TBZ from different samples were higher than 70.33% with RSDs lower than 9.57%. m-MISPE gave better HPLC separation efficiencies and higher recoveries than conventional SPE based on C18/SCX. Multi-analyte selective m-MISPE combined with HPLC realized selective and simultaneous determination of several trace analytes with opposite charges/polarities in different food samples. PMID:24996366

  18. Application of molecularly imprinted polymer solid-phase extraction for salivary cotinine.

    PubMed

    Vitor, Ricardo Vilela; Martins, Matheus Coutinho Gonçalves; Figueiredo, Eduardo Costa; Martins, Isarita

    2011-06-01

    A method constituted by molecularly imprinted solid-phase extraction (MISPE) with high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) was developed for cotinine analysis in saliva samples. For this purpose, the separation was carried out with a C18 reversed-phase column at 20 °C. The mobile phase which was composed of a mixture of 09:91 (v/v) acetonitrile/phosphate buffer, pH 6.3, was delivered with isocratic flow rate at 1.4 mL min(-1). Employing MISPE, the best conditions were achieved with 1.5 mL of saliva plus 1.5 mL of 0.1 mol L(-1) of acetate buffer, pH 5.5, which were then passed through a cartridge previously conditioned with 2 mL acetonitrile, 2 mL methanol, and 2 mL of 0.1 mol L(-1) sodium acetate buffer, pH 5.5. The washing was carried out with 1 mL deionized water, 1 mL of 0.1 mol L(-1) sodium hydroxide, and 1 mL hexane; finally; the cotinine elution was carried out with 3 mL methanol/water (97.5: 2.5, v/v). Linearity ranged from 30 to 500 ng mL(-1) with r > 0.99. Intra-assay, interassay precision, and accuracy ranged from 3.1% to 10.1%, 5.2% to 15.9%, and 99.22% to 111.17%, respectively. The detection and quantification limits were 10 and 30 ng mL(-1), respectively. This investigation has provided a reliable method for routine cotinine determination in saliva, and it is an important tool for monitoring cigarette smoke exposure in smokers. The method was applied in five smokers' samples who consumed around five to 20 cigarettes per day and the values of cotinine in saliva were from 66.7 to 316.16 ng mL(-1). PMID:21448605

  19. Removal of bisphenol A from aqueous medium using molecularly surface imprinted microbeads.

    PubMed

    Bayramoglu, Gulay; Arica, M Yakup; Liman, Gorkem; Celikbicak, Omur; Salih, Bekir

    2016-05-01

    The aim of this study is to prepare bisphenol A (BPA) imprinted polymers, which can be used for the selective removal of BPA from aqueous medium. The BPA-imprinted (MIP) and non-imprinted (NIP) microbeads were synthesized, and characterized by Zeta-sizer, FTIR, SEM and BET method. Bisphenol A was determined in solutions using liquid chromatography-mass spectroscopy (LC-MS). The effect of initial concentration of BPA, the adsorption rate and the pH of the medium on the capacity of BPA-imprinting polymer were studied. Adsorption capacity of BPA was affected by the amount of the incorporated functional monomer in the polymer network. BPA adsorption capacity of MIP-3 and NIP microbeads from aqueous medium was estimated as 76.7 and 59.9 mg g(-1), respectively. The binding efficiencies of BPA-MIP-3 microbeads for different phenolic compounds (i.e., BPA with p-toluidine, 4-aminophenol or 2-naphthol) were explored at binary solutions, and the binding capacities of BPA-imprinted microbeads were found to be 2.79 × 10(-1), 2.39 × 10(-1), 7.59 × 10(-2) and 5.48 × 10(-2) mmol g(-1) microbeads, respectively. The satisfactory results demonstrated that the obtained BPA-MIP microbeads showed an appreciable binding specificity toward BPA than similar structural compounds in the aqueous medium. Moreover, the reusability of BPA-MIP-3 microbeads was tested for several times and no significant loss in adsorption capacity was observed. Finally, the binary and multi-component systems results show that MIP-3 microbeads have special recognition selectivity and excellent binding affinity for template molecule "BPA". PMID:26907596

  20. Preparation of molecularly imprinted polymers for strychnine by precipitation polymerization and multistep swelling and polymerization and their application for the selective extraction of strychnine from nux-vomica extract powder.

    PubMed

    Nakamura, Yukari; Matsunaga, Hisami; Haginaka, Jun

    2016-04-01

    Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux-vomica extract powder. PMID:26914809

  1. Molecularly Imprinted Polymer (MIP) Film with Improved Surface Area Developed by Using Metal-Organic Framework (MOF) for Sensitive Lipocalin (NGAL) Determination.

    PubMed

    Iskierko, Zofia; Sharma, Piyush Sindhu; Prochowicz, Daniel; Fronc, Krzysztof; D'Souza, Francis; Toczydłowska, Diana; Stefaniak, Filip; Noworyta, Krzysztof

    2016-08-10

    Electropolymerizable functional and cross-linking monomers were used to prepare conducting molecularly imprinted polymer film with improved surface area with the help of a sacrificial metal-organic framework (MOF). Subsequent dissolution of the MOF layer resulted in a surface developed MIP film. This surface enlargement increased the analyte accessibility to imprinted molecular cavities. Application of the porous MIP film as a recognition unit of an extended-gate field effect transistor (EG-FET) chemosensor effectively enhanced analytical current signals of determination of recombinant human neutrophil gelatinase-associated lipocalin (NGAL). PMID:27454556

  2. Novel restricted access materials combined to molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey.

    PubMed

    He, Juan; Song, Lixin; Chen, Si; Li, Yuanyuan; Wei, Hongliang; Zhao, Dongxin; Gu, Keren; Zhang, Shusheng

    2015-11-15

    A novel restricted access materials (RAM) combined to molecularly imprinted polymers (MIPs), using malathion as template molecule and glycidilmethacrylate (GMA) as pro-hydrophilic co-monomer, were prepared for the first time. RAM-MIPs with hydrophilic external layer were characterized by scanning electron microscopy and recognition and selectivity properties were compared with the restricted access materials-non-molecularly imprinted polymers (RAM-NIPs) and unmodified MIPs. RAM-MIPs were used as the adsorbent enclosed in solid phase extraction column and several important extraction parameters were comprehensively optimized to evaluate the extraction performance. Under the optimum extraction conditions, RAM-MIPs exhibited comparable or even higher selectivity with greater extraction capacity toward six kinds of organophosphorus pesticides (including malathion, ethoprophos, phorate, terbufos, dimethoate, and fenamiphos) compared with the MIPs and commercial solid phase extraction columns. The RAM-MIPs solid phase extraction coupled with gas chromatography was successfully applied to simultaneously determine six kinds of organophosphorus pesticides from honey sample. The new established method showed good linearity in the range of 0.01-1.0 μg mL(-1), low limits of detection (0.0005-0.0019 μg mL(-1)), acceptable reproducibility (RSD, 2.26-4.81%, n = 6), and satisfactory relative recoveries (90.9-97.6%). It was demonstrated that RAM-MIPs solid phase extraction with excellent selectivity and restricted access function was a simple, rapid, selective, and effective sample pretreatment method. PMID:25977034

  3. Selective extraction of derivates of p-hydroxy-benzoic acid from plant material by using a molecularly imprinted polymer.

    PubMed

    Karasová, Gabriela; Lehotay, Jozef; Sádecká, Jana; Skacáni, Ivan; Lachová, Miroslava

    2005-12-01

    Selective SPE of derivates of p-hydroxybenzoic acid (pHBA) from plant extract of Melissa officinalis is presented using a molecularly imprinted polymer (MIP) made with protocatechuic acid (PA) as template molecule. MIP was prepared with acrylamide as functional monomer, ethylene glycol dimethacrylate as crosslinking monomer and ACN as porogen. MIP was evaluated towards six phenolic acids: PA, gallic acid, pHBA, vanillic acid (VA), gentisic acid (GeA) and syringic acid (SyrA), and then steps of molecularly imprinted SPE (MISPE) procedure were optimized. The best specific binding capacity of MIP was obtained for PA in ACN (34.7 microg/g of MIP). Other tested acids were also bound on MIP if they were dissolved in this solvent. ACN was chosen as solvent for sample application. M. officinalis was extracted into methanol/water (4:1, v/v), the extract was then evaporated to dryness and dissolved in ACN before application on MIP. Water and ACN were used as washing solvents and elution of benzoic acids was performed by means of a mixture methanol/acetic acid (9:1, v/v). pHBA, GA, PA and VA were extracted with recoveries of 56.3-82.1% using this MISPE method. GeA was not determined in plant extract. PMID:16405176

  4. Molecularly imprinted nanohybrids based on dopamine-modified poly(γ-glutamic acid) for electrochemical sensing of melamine.

    PubMed

    Zhang, Rongli; Xu, Sheng; Zhu, Ye; Zhao, Wei; Luo, Jing; Liu, Xiaoya; Tang, Dingxing

    2016-11-15

    A voltammetric sensor for melamine (MEL) was prepared from molecularly imprinted nanohybrids (MINBs). A dopamine modified poly-γ-glutamic acid copolymer (γ-PGA-DA) and MEL were self-assembled into MEL/γ-PGA-DA nanoparticles (NPs) in aqueous solution via weak interactions, followed by adding an aqueous AgNO3 solution into the mixture. The Ag(+) was adsorbed in the MEL/γ-PGA-DA NPs and spontaneously reduced to Ag NPs by the dopamine moieties of γ-PGA-DA, forming Ag/MEL/γ-PGA-DA MINBs, which were then cast on a gold electrode to form a MINBs film. The MEL was removed by electrolysis via catalysis of Ag NPs at a constant potential of 1.4V in phosphate buffer saline solution, to obtain a voltammetric sensor for MEL. The sensor responded linearly to MEL in the concentration range of 5×10(-18) to 5×10(-7)molL(-1). Compared to other published molecularly imprinted polymer sensors for sensing MEL, the prepared MINBs sensor had much wider detection range with lower detection limit. PMID:27196255

  5. Enhancing the Activity of Peptide-Based Artificial Hydrolase with Catalytic Ser/His/Asp Triad and Molecular Imprinting.

    PubMed

    Wang, Mengfan; Lv, Yuqi; Liu, Xiaojing; Qi, Wei; Su, Rongxin; He, Zhimin

    2016-06-01

    In this study, an artificial hydrolase was developed by combining the catalytic Ser/His/Asp triad with N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF), followed by coassembly of the peptides into nanofibers (CoA-HSD). The peptide-based nanofibers provide an ideal supramolecular framework to support the functional groups. Compared with the self-assembled catalytic nanofibers (SA-H), which contain only the catalytic histidine residue, the highest activity of CoA-HSD occurs when histidine, serine, and aspartate residues are at a ratio of 40:1:1. This indicates that the well-ordered nanofiber structure and the synergistic effects of serine and aspartate residues contribute to the enhancement in activity. Additionally, for the first time, molecular imprinting was applied to further enhance the activity of the peptide-based artificial enzyme (CoA-HSD). p-NPA was used as the molecular template to arrange the catalytic Ser/His/Asp triad residues in the proper orientation. As a result, the activity of imprinted coassembled CoA-HSD nanofibers is 7.86 times greater than that of nonimprinted CoA-HSD and 13.48 times that of SA-H. PMID:27191381

  6. System-level Study on Synergism and Antagonism of Active Ingredients in Traditional Chinese Medicine by Using Molecular Imprinting Technology

    PubMed Central

    Chen, Tengfei; Gu, Jiangyong; Zhang, Xinzhuang; Ma, Yimin; Cao, Liang; Wang, Zhenzhong; Chen, Lirong; Xu, Xiaojie; Xiao, Wei

    2014-01-01

    In this work, synergism and antagonism among active ingredients of traditional Chinese medicine (TCM) were studied at system-level by using molecular imprinting technology. Reduning Injection (RDNI), a TCM injection, was widely used to relieve fever caused by viral infection diseases in China. Molecularly imprinted polymers (MIPs) synthesized by sol-gel method were used to separate caffeic acid (CA) and analogues from RDNI without affecting other compounds. It can realize the preparative scale separation. The inhibitory effects of separated samples of RDNI and sample combinations in prostaglandin E2 biosynthesis in lipopolysaccharide-induced RAW264.7 cells were studied. The combination index was calculated to evaluate the synergism and antagonism. We found that components which had different scaffolds can produce synergistic anti-inflammatory effect inside and outside the RDNI. Components which had similar scaffolds exhibited the antagonistic effect, and the antagonistic effects among components could be reduced to some extent in RDNI system. The results indicated MIPs with the characteristics of specific adsorption ability and large scale preparation can be an effective approach to study the interaction mechanism among active ingredients of complex system such as TCM at system-level. And this work would provide a new idea to study the interactions among active ingredients of TCM. PMID:25418048

  7. Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template – “Plastic Antibodies”

    PubMed Central

    Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J.; Piletska, Elena V.; Turner, Anthony P.F.; Piletsky, Sergey A.

    2016-01-01

    Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, Kd = 6.3 × 10−8 m), vancomycin (d = 250 nm, Kd = 3.4 × 10−9 m), a peptide (d = 350 nm, Kd = 4.8 × 10−8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium. PMID:26869870

  8. Microextraction by packed sorbent liquid chromatography with time-of-flight mass spectrometry of triazines employing a molecularly imprinted polymer.

    PubMed

    Andrade, Felipe Nascimento; Santos-Neto, Álvaro José; Lanças, Fernando Mauro

    2014-11-01

    Molecularly imprinted polymers for the determination of triazines were synthesized by precipitation using atrazine as template, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker, and 2,2'-azobisisobutrynitrile as initiator. The polymers were characterized by infrared spectroscopy and scanning electron microscopy and packed in a device for microextraction by packed sorbent aiming for the preconcentration/cleanup of herbicides, such as atrazine, simazine, simetryn, ametryn, and terbutryn in corn samples. Liquid chromatography coupled with time-of-flight mass spectrometry was used for the separation and determination of the herbicides. The selectivity coefficient of molecularly imprinted polymers was compared with that of nonimprinted polymer for the binary mixtures of atrazine/propanil and atrazine/picloram, and the values obtained were 15.6 and 2.96, respectively. The analytical curve ranged from 10 to 80 μg/kg (r = 0.989) and the limits of detection and quantification in the corn matrices were 3.3 and 10 μg/kg, respectively. Intra- and interday precisions were < 14.8% and accuracy was better than 90.9% for all herbicides. Polymer synthesis was successfully applied to the cleanup and preconcentration of triazines from fortified corn samples with 91.1-109.1% of recovery. PMID:25137313

  9. Determination of trace levels of triazines in corn matrices by bar adsorptive microextraction with a molecularly imprinted polymer.

    PubMed

    Andrade, Felipe Nascimento; Ide, Alessandra Honjo; Neng, Nuno da Rosa; Lanças, Fernando Mauro; Nogueira, José Manuel Florêncio

    2016-02-01

    This manuscript addresses the determination of triazines (ametryn, atrazine, simazine, and terbutryn) in corn matrices using bar adsorptive microextraction coated with a selective molecularly imprinted polymer phase following microliquid desorption and high-performance liquid chromatography with diode array detection. The molecularly imprinted polymer was synthesized using atrazine as a template and methacrylic acid as a functional monomer. Assays performed in 25 mL of ultrapure water samples spiked at 8.0 μg/L yielded 80-120 % recoveries under the evaluated experimental conditions. The method showed an accuracy (0.2 < bias < 17.9%), precision (relative standard deviation <17.4%), convenient detection (0.2 μg/L), and quantification (0.7 μg/L) limits, as well as linear dynamic ranges (0.8-24.0 μg/L) with remarkable determination coefficients (R(2) > 0.9926). The proposed analytical method was applied to monitor triazines in three types of corn matrices using the standard addition methodology. Experiments performed in corn samples spiked with triazines at the trace level (8.0 μg/kg of each analyte) gave rise to recoveries (81.0-119.4%) with good reproducibility and robustness. The proposed methodology is also easy to implement and showed to be a good analytical alternative to monitor triazines in complex matrices, when compared with other sorption-based microextraction techniques. PMID:26632142

  10. Molecular Imprint of Exposure to Naturally Occurring Genetic Variants of Human Cytomegalovirus on the T cell Repertoire

    NASA Astrophysics Data System (ADS)

    Smith, Corey; Gras, Stephanie; Brennan, Rebekah M.; Bird, Nicola L.; Valkenburg, Sophie A.; Twist, Kelly-Anne; Burrows, Jacqueline M.; Miles, John J.; Chambers, Daniel; Bell, Scott; Campbell, Scott; Kedzierska, Katherine; Burrows, Scott R.; Rossjohn, Jamie; Khanna, Rajiv

    2014-02-01

    Exposure to naturally occurring variants of herpesviruses in clinical settings can have a dramatic impact on anti-viral immunity. Here we have evaluated the molecular imprint of variant peptide-MHC complexes on the T-cell repertoire during human cytomegalovirus (CMV) infection and demonstrate that primary co-infection with genetic variants of CMV was coincident with development of strain-specific T-cell immunity followed by emergence of cross-reactive virus-specific T-cells. Cross-reactive CMV-specific T cells exhibited a highly conserved public T cell repertoire, while T cells directed towards specific genetic variants displayed oligoclonal repertoires, unique to each individual. T cell recognition foot-print and pMHC-I structural analyses revealed that the cross-reactive T cells accommodate alterations in the pMHC complex with a broader foot-print focussing on the core of the peptide epitope. These findings provide novel molecular insight into how infection with naturally occurring genetic variants of persistent human herpesviruses imprints on the evolution of the anti-viral T-cell repertoire.

  11. Localized and propagating surface plasmon resonance based fiber optic sensor for the detection of tetracycline using molecular imprinting

    NASA Astrophysics Data System (ADS)

    Shrivastav, Anand M.; Mishra, Satyendra K.; Gupta, Banshi D.

    2015-03-01

    In the present study we report a novel approach for the fabrication of localized and propagating surface plasmon resonance based fiber optic sensor for the detection of tetracycline using molecular imprinting (MIP) technique. The sensor is fabricated by coating layers of silver film, silver nanoparticles and MIP film prepared using tetracycline molecule as template over an unclad core of the multimode optical fiber. Nanoparticles of sizes in the range 10-30 nm are synthesized by hydrothermal process. A polychromatic light source is used to launch the light from one end of the fiber and the absorption spectrum for a given concentration of the tetracycline solution around the probe is measured at the other end of the fiber using a spectrometer interfaced with a computer. The absorption spectra are recorded for the concentration range of tetracycline from 10-8 M to 10-5 M. A shift of 102 nm in peak absorbance wavelength is obtained for this concentration range. The sensor works in the promising concentration range of tetracycline found in foods etc. The sensor has various advantages such as high sensitivity, low cost, fast response and capability of online monitoring and remote sensing. Further, the sensitivity of the sensor is about double the sensor based on localized surface plasmon resonance and molecular imprinting.

  12. Blood Group Typing: From Classical Strategies to the Application of Synthetic Antibodies Generated by Molecular Imprinting

    PubMed Central

    Mujahid, Adnan; Dickert, Franz L.

    2015-01-01

    Blood transfusion requires a mandatory cross-match test to examine the compatibility between donor and recipient blood groups. Generally, in all cross-match tests, a specific chemical reaction of antibodies with erythrocyte antigens is carried out to monitor agglutination. Since the visual inspection is no longer useful for obtaining precise quantitative information, therefore there is a wide variety of different technologies reported in the literature to recognize the agglutination reactions. Despite the classical methods, modern biosensors and molecular blood typing strategies have also been considered for straightforward, accurate and precise analysis. The interfacial part of a typical sensor device could range from natural antibodies to synthetic receptor materials, as designed by molecular imprinting and which is suitably integrated with the transducer surface. Herein, we present a comprehensive overview of some selected strategies extending from traditional practices to modern procedures in blood group typing, thus to highlight the most promising approach among emerging technologies. PMID:26729127

  13. Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters.

    PubMed

    Önnby, L; Pakade, V; Mattiasson, B; Kirsebom, H

    2012-09-01

    Removal of As(V) by adsorption from water solutions was studied using three different synthetic adsorbents. The adsorbents, (a) aluminium nanoparticles (Alu-NPs, <50 nm) incorporated in amine rich cryogels (Alu-cryo), (b) molecular imprinted polymers (<38 μm) in polyacrylamide cryogels (MIP-cryo) and (c) thiol functionalised cryogels (SH-cryo) were evaluated regarding material characteristics and arsenic removal in batch test and continuous mode. Results revealed that a composite design with particles incorporated in cryogels was a successful means for applying small particles (nano- and micro- scale) in water solutions with maintained adsorption capacity and kinetics. Low capacity was obtained from SH-cryo and this adsorbent was hence excluded from the study. The adsorption capacities for the composites were 20.3 ± 0.8 mg/g adsorbent (Alu-cryo) and 7.9 ± 0.7 mg/g adsorbent (MIP-cryo) respectively. From SEM images it was seen that particles were homogeneously distributed in Alu-cryo and heterogeneously distributed in MIP-cryo. The particle incorporation increased the mechanical stability and the polymer backbones of pure polyacrylamide (MIP-cryo) were of better stability than the amine containing polymer backbone (Alu-cryo). Both composites worked well in the studied pH range of pH 2-8. Adsorption tested in real wastewater spiked with arsenic showed that co-ions (nitrate, sulphate and phosphate) affected arsenic removal for Alu-cryo more than for MIP-cryo. Both composites still adsorbed well in the presence of counter-ions (copper and zinc) present at low concentrations (μg/l). The unchanged and selective adsorption in realistic water observed for MIP-cryo was concluded to be due to a successful imprinting, here controlled using a non-imprinted polymer (NIP). A development of MIP-cryo is needed, considering its low adsorption capacity. PMID:22687522

  14. Preparation, characterization and usage of molecularly imprinted polymer for the isolation of quercetin from hydrolyzed nettle extract.

    PubMed

    Karaman Ersoy, Şeyda; Tütem, Esma; Sözgen Başkan, Kevser; Apak, Reşat; Nergiz, Cevdet

    2016-04-01

    Quercetin (3,3',4',5,7-pentahydroxyflavone, QC) is a health-beneficial flavonoid, widely occurring in leaves, fruits, and flowers of various plants. In this work aiming isolation, purification and pre-concentration of QC, QC imprinted polymers (QC-MIPs) in different molar ratios {template:monomer:cross-linker (1:4:20, 1:5:30, 1:8:40, 1:10:50)} were prepared thermally through bulk polymerization by using QC as the template molecule, 4-vinylpyridine (4-VP), methacrylic acid (MAA), acrylamide (AA) as the functional monomers, ethylene glycol dimethacrylate (EDMA) as the cross-linker and 2,2'-azobisisobutyronitrile (AIBN) as initiator in the porogens of acetone and tetrahydrofuran. Their recognition and selectivity properties were investigated in solutions containing QC and other similar-structure phenolics by equilibrium binding experiments using different proportions of acetonitrile (ACN)-dimethylsulfoxide (DMSO) mixtures and methanol (MeOH) as solvents. The MIP with 1:4:20 molar ratio of QC:4-VP:EDMA was established as the most suitable for recognition of QC. Sorption parameters of the MIP and the NIP (non-imprinted polymer) were calculated by using Freundlich and Langmuir isotherms with QC solutions in ACN:DMSO (98:2, v/v). The mentioned MIP was found to be highly selective for quercetin over other phenolic compounds (rutin, catechin, etc.). Thus, molecularly imprinted solid-phase extraction (MISPE) procedures were applied for selective pre-concentration and purification of QC from synthetic mixtures of phenolic compounds and nettle extract, known as a source of official and folk medicine. The results demonstrated the possibility of direct extraction of certain pharmacophoric constituents such as QC and QC derivatives from nettle by MIP separation. PMID:26953839

  15. Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples.

    PubMed

    Motaharian, Ali; Motaharian, Fatemeh; Abnous, Khalil; Hosseini, Mohammad Reza Milani; Hassanzadeh-Khayyat, Mohammad

    2016-09-01

    In this research, an electrochemical sensor based on molecularly imprinted polymer (MIP) nanoparticles for selective and sensitive determination of diazinon (DZN) pesticides was developed. The nanoparticles of diazinon imprinted polymer were synthesized by suspension polymerization and then used for modification of carbon paste electrode (CPE) composition in order to prepare the sensor. Cyclic voltammetry (CV) and square wave voltammetry (SWV) methods were applied for electrochemical measurements. The obtained results showed that the carbon paste electrode modified by MIP nanoparticles (nano-MIP-CP) has much higher adsorption ability for diazinon than the CPE based non-imprinted polymer nanoparticles (nano-NIP-CP). Under optimized extraction and analysis conditions, the proposed sensor exhibited excellent sensitivity (95.08 μA L μmol(-1)) for diazinon with two linear ranges of 2.5 × 10(-9) to 1.0 × 10(-7) mol L(-1) (R (2) = 0.9971) and 1.0 × 10(-7) to 2.0 × 10(-6) mol L(-1) (R (2) = 0.9832) and also a detection limit of 7.9 × 10(-10) mol.L(-1). The sensor was successfully applied for determination of diaznon in well water and apple fruit samples with recovery values in the range of 92.53-100.86 %. Graphical abstract Procedure for preparation of electrochemical sensor based on MIP nanoparticles for determination of diazinon. PMID:27497964

  16. Iniferter-mediated grafting of molecularly imprinted polymers on porous silica beads for the enantiomeric resolution of drugs.

    PubMed

    Gutiérrez-Climente, Raquel; Gómez-Caballero, Alberto; Halhalli, Mahadeo; Sellergren, Börje; Goicolea, M Aránzazu; Barrio, Ramón J

    2016-03-01

    A surface-imprinted chiral stationary phase for the enantiomeric resolution of the antidepressant drug, citalopram, is presented in this work. N, N'-diethylaminodithiocarbamoylpropyl(trimethoxy)silane has been used as silane iniferter for the surface functionalization of the solid silica support. A molecularly imprinted polymer thin film, in the nm scale, was then grafted on the silanized silica using itaconic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linker in the presence of the template S-citalopram. The total monomer amount was calculated to obtain the desired thickness. Non-imprinted stationary phases were prepared similarly in the absence of S-citalopram. Characterization of the materials was carried out by scanning electron microscopy, thermogravimetric analysis, elemental analysis and Fourier transform infrared spectroscopy. Stationary phases have been applied to the chromatographic separation of the target. Conditions for best chromatographic resolution of the enantiomers were optimized, and it was found that a mobile phase consisting of a mixture of formate buffer (40 mM, pH 3) and acetonitrile (30:70 v/v) at 40 °C provided best results. Binding behaviour of the developed material was finally assessed by batch rebinding experiments. The obtained binding isotherm was fitted to different binding models being the Freundlich-Langmuir model, the one that best fitted the experimental data. The developed material has shown high selectivity for the target enantiomer, and the stationary phase could be undoubtedly exploited for chiral separation of the drug. PMID:25683741

  17. Molecularly imprinted electrochemical sensing of urinary melatonin in a microfluidic system

    PubMed Central

    Lee, Mei-Hwa; O'Hare, Danny; Chen, Yi-Li; Chang, Yu-Chia; Yang, Chien-Hsin; Liu, Bin-Da; Lin, Hung-Yin

    2014-01-01

    Melatonin levels may be related to the risks of breast cancer and prostate cancer. The measurement of urinary melatonin is also useful in monitoring serum melatonin levels following oral administration. In this work, melatonin is the target molecule, which is imprinted onto poly(ethylene-co-vinyl alcohol) by evaporation of the solvent on the working electrode of an electrochemical sensing chip. This sensing chip is used directly as a tool for optimizing the imprinting polymer composition, flow rate, and injection volume of the samples. Microfluidic sensing of the target and interference molecules revealed that the lowest detection limit is as low as ∼pM, and the electrochemical response is weak even at high interference concentrations. Poly(ethylene-co-vinyl alcohol), containing 44 mol. % ethylene, had an imprinting effectiveness of more than six-fold. In random urine analysis, the microfluidic amperometric measurements of melatonin levels with an additional and recovery of melatonin, the melatonin recovery achieved 94.78 ± 1.9% for melatonin at a concentration of 1.75–2.11 pg/mL. PMID:25584113

  18. Preparation of molecularly imprinted resin based on chitosan for chiral recognition of S-mandelic acid.

    PubMed

    Monier, M; El-Mekabaty, A

    2013-04-01

    An enantioselective S-mandelic acid (S-MA) imprinted chitosan (SMIC) was prepared by cross-linking of chitosan using formaldehyde cross-linker, in the presence of S-MA as an imprint template molecule and 0.5% acetic acid solution as a solvent. Non-imprinted cross-linked chitosan (NIC) as control was also prepared by the same procedure in absence of template molecules. The surface morphology of both SMIC and NIC were examined by scanning electron microscope (SEM). SMIC particles were applied to determine the optimum operational condition for S-MA separation from dilute aqueous solution. In adsorption step, optimum pH and retention time were 3.5 and 60 min, while corresponding values in extraction step were 1 and 40 min, respectively. Also, the adsorption isotherms indicated that the maximum adsorption capacities of S- and R-MA on SMIC were 100 ± 0.5 and 64 ± 0.8 mg/g, respectively, while in the case of NIC, both R- and S-MA present the same maximum adsorption. PMID:23357795

  19. Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin.

    PubMed

    Wang, Yanying; Han, Miao; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Wu, Kangbing; Li, Chunya

    2015-12-15

    A molecularly imprinted polymer film was in situ polymerized on a carboxyl functionalized multi-walled carbon nanotubes modified glassy carbon electrode surface under room temperature. This technique provides a promising imprinting approach for protein in an aqueous solution using 3-(3-aminopropyl)-1-vinylimidazolium tetrafluoroborate ionic liquid as functional monomer, N, N'-methylenebisacrylamide as crossing linker, ammonium persulfate and N,N,N',N'-tetramethylethylenediamine as initiator, and bovine serum albumin (BSA) as template. The molecularly imprinted polymerized ionic liquid film shows enhanced accessibility, high specificity and sensitivity towards BSA. Electrochemical sensing performance of the imprinted sensor was thoroughly investigated using K3Fe[CN]6/K4Fe[CN]6 as electroactive probes. Under optimal conditions, the current difference before and after specific recognition of BSA was found linearly related to its concentration in the range from 1.50×10(-9) to 1.50×10(-6) mol L(-1). The detection limit was calculated to be 3.91×10(-10) mol L(-1) (S/N=3). The practical application of the imprinted sensor was demonstrated by determining BSA in liquid milk samples. PMID:26232004

  20. Optimization of Molecularly Imprinted Polymer Method for Rapid Screening of 17β-Estradiol in Water by Fluorescence Quenching

    PubMed Central

    Yang, Yu; Lai, Edward P. C.

    2011-01-01

    A new method was optimized for rapid screening of 17β-estradiol (E2) in water under 10 min. Molecularly imprinted polymer (MIP) particles (325 ± 25 nm) were added in a water sample at pH 5.5 and 20°C to form a suspension. Fluorescence emission from E2 nonspecifically bound onto the MIP particles was first quenched by large gold nanoparticles (43 ± 5 nm). The Stern-Volmer plot was linear, with dynamic quenching constants (Ksv) of 2.9 ×104 M−1. Fluorescence emission from E2 specifically bound inside the MIP particles was next quenched by small nitrite anions that easily penetrated the imprinted cavities. The Stern-Volmer plot became nonlinear, with Ksv = 2.1 × 102 M−1 and static quenching constant (V) below 1.0 M−1. The difference between these two emission intensities varied as the initial E2 concentration in water, generating a Scatchard calibration curve with R2 > 0.97 from 0.1 to 10 ppb. PMID:21826142

  1. Molecularly imprinted polymers combination with deep eutectic solvents for solid-phase extraction of caffeic acid from hawthorn.

    PubMed

    Li, Guizhen; Tang, Weiyang; Cao, Weimin; Wang, Qian; Zhu, Tao

    2015-08-01

    Molecularly imprinted polymers (MIPs) with caffeic acid as template and non-imprinted polymers (NIPs) materials were prepared in the same procedure. Field emission scanning electron microscopy (FE-SEM) and adsorption capacity test were used to evaluate characteristic of the new materials. MIPs, NIPs and C18 were used for rapid purification of caffeic acid from hawthorn with solid-phase extraction ( SPE) , and extract yields of caffeic acid with the proposed materials were 3.46 µg/g, 1.01 µg/g and 1.17 µg/g, respectively. To optimize the MIPs-SPE procedures, different kinds of elution solutions were studied. Deep eutectic solvents (DESs) were prepared by choline chloride (ChCl)-glycerol (1/2, n/n) and choline chloride-urea (1/ 2, n/n). Methanol was mixed with the two kinds of DESs (glycerol-based DESs, urea-based DESs) in different ratios (0.5:1, 1:1, 2:1, 3:1, 4:1, 5:1, v/v), and they were used to investigated as elution solutions in the above MIPs-SPE procedures. The results showed that MIPs were potential SPE materials, and methanol/ glycerol-based DESs (3 :1, v/v) had the best elution capability with the recovery of 82.32%. PMID:26749853

  2. A molecularly imprinted polymer based a lab-on-paper chemiluminescence device for the detection of dichlorvos

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Guo, Yumei; Luo, Jing; Kou, Juan; Zheng, Hongyan; Li, Baoxin; Zhang, Zhujun

    2015-04-01

    In this work, a new molecularly imprinted polymer (MIP) based lab-on-paper device with chemiluminescence (CL) detection of dichlorvos (DDV) was designed. With the circle-shaped device, the MIP layer with certain depth was synthesized and adsorbed on the paper surface and DDV can be selectively imprinted on it. The adsorption and washing procedures can be achieved well on the paper-based chip. The paper-based device was fabricated by a simple cutting method and many chips can be made at the same time. On the basis of DDV enhancing CL of luminol-H2O2 greatly, the proposed MIP based lab-on-paper CL device showed better selectivity to DDV and it has been applied to the determination of DDV in vegetables in the range of 3.0 ng/mL-1.0 μg/mL with the detection limit of 0.8 ng/mL. This study has made a successful attempt in the development of highly selective and sensitive monitoring of DDV in real samples and will provide a new approach for sensitive and specific assay in environmental monitoring.

  3. Separation of photosensitive substances in humic acids using molecular imprinting method based on electrostatic interactions and hydrogen bond

    NASA Astrophysics Data System (ADS)

    Ou, Xiaoxia; Yu, Chunyan; Wang, Chong; Zhang, Fengjie

    2013-03-01

    The goal of this research was to provide an improved understanding of the existence of photosensitive structure in humic acids (HAs) that are extracted from Changbai Mountain soils. Molecular imprinting technique was used to separate phthalocyanine-like substances from HAs with the mechanisms of electrostatic interactions and intermolecular hydrogen bond. Copper phthalocyanine (CuPc) was used as template molecule and the fraction bound by CuPc-imprinted polymers (MIP) named F (bind) presented higher spectroscopic activity than that of effluent fraction named F (eff). The fluorescence intensity of F(bind) at emission wavelength of 462 nm was 5.5 times as high as that of F(eff) at 458 nm, and the UV-vis absorbance at 254 nm of F(bind) had been increased to 2.5 times as compared with F(eff). The results of this work show the key role of humic substances with special structures in the light or photo involved process.

  4. One-pot synthesis of carbon dots-embedded molecularly imprinted polymer for specific recognition of sterigmatocystin in grains.

    PubMed

    Xu, Longhua; Fang, Guozhen; Pan, Mingfei; Wang, Xuefeng; Wang, Shuo

    2016-03-15

    A novel sensitive fluorescent sensor for determination of sterigmatocystin (ST), which was based on carbon dots-embedded molecularly imprinted polymer (CDs@MIP), was prepared by an efficient one-pot reaction. First, highly blue luminescent CDs were synthesized via a one-step reaction. Then, through a non-hydrolytic sol-gel process, MIP was formed on the CDs surface in the presence of 1,8-dihydroxyanthraquinone as an alternative template molecule to obtain CDs@MIP. The CDs acted as antennas for signal amplification and optical readout, and the MIP coated on the CDs surface provided specific binding sites for ST. The performance of CDs@MIP was compared with that of CDs embedded in non-imprinted polymer (CDs@NIP). CDs@MIP exhibited high selectivity and sensitivity toward ST. Under optimized conditions, the relative fluorescence intensity of CDs@MIP decreased linearly with the concentration of ST from 0.05 to 2.0 mgL(-1) with a detection limit of 0.019 mgL(-1) (S/N=3) and the precision for five replicate detections of 0.10 mgL(-1) ST was 2.31%. The sensor was also used to determine the content of ST in grains with satisfactory results. PMID:26544869

  5. Preparation and application of molecularly imprinted polymer for isolation of chicoric acid from Chicorium intybus L. medicinal plant.

    PubMed

    Saad, Engy M; Madbouly, Adel; Ayoub, Nahla; El Nashar, Rasha Mohamed

    2015-06-01

    Molecularly imprinted polymer (MIP) was synthesized and applied for the extraction of chicoric acid from Chicory herb (Chicorium intybus L.). A computational study was developed to find a suitable template to functional monomer molar ratio for MIP preparations. The molar ratio was chosen based on the comparison of the binding energy of the complexes between the template and functional monomers. Based on the computational results, eight different polymers were prepared using chicoric acid as the template. The MIPs were synthesized in a non-covalent approach via thermal free-radical polymerization, using two different polymerization methods, bulk and suspension. Batch rebinding experiments were performed to evaluate the binding properties of the imprinted polymers. The best results were obtained with a MIP prepared using bulk polymerization with 4-vinylpyridine (4-VP) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the crosslinker with a molar ratio of 1:4:20. The best MIP showed selective binding ability toward chicoric acid in the presence of the template's structural analogues, caffeic acid, caftaric acid and chlorogenic acid. PMID:26002213

  6. Fabrication and evaluation of temperature responsive molecularly imprinted sorbents based on surface of yeast via surface-initiated AGET ATRP

    NASA Astrophysics Data System (ADS)

    Pan, Jianming; Hang, Hui; Li, Xiuxiu; Zhu, Wenjing; Meng, Minjia; Dai, Xiaohui; Dai, Jiangdong; Yan, Yongsheng

    2013-12-01

    Temperature responsive molecularly imprinted polymers (T-MIPs) were prepared based on the surface of yeast by electron transfer atom transfer radical polymerization (AGET ATRP). The as-prepared T-MIPs were charcterized by FT-IR, SEM, TGA and elemental analysis, which indicated that T-MIPs exhibited thermal stability and composed of temperature responsive imprinted layer. Then T-MIPs were evaluated as sorbents to selectively recognise and release cefalexin (CFX) molecules. The results suggested binding properties of T-MIPs were related to the testing temperature. The maximum adsorption capacity of T-MIPs at 303 K was 59.4 mg g-1, and the maximum release proportion for T-MIPs at 293 K in water for 24 h was 71.08%. The selective recognition experiments demonstrated high affinity and selectivity of T-MIPs towards CFX over competitive compounds, and the specific recognition of binding sites may be based on the distinct size, structure and functional group to the template molecules.

  7. Molecularly imprinted polymers for the analysis and removal of polychlorinated aromatic compounds in the environment: a review.

    PubMed

    Ndunda, Elizabeth N; Mizaikoff, Boris

    2016-05-23

    Synthetic receptors and in particular molecularly imprinted polymers (MIPs) are gaining relevance as selective sorbent materials and biomimetic recognition elements for analyzing polychlorinated aromatic compounds (PACs) in the environment. PACs are still ubiquitous toxic pollutants requiring their continuous environmental assessment for protecting humans and animals from exposure. Since nowadays most PACs occur at ultra-trace concentration levels and in complex matrices, the selectivity of MIPs renders them ideally suited for facilitating either sample pre-treatment and quantitative enrichment, or acting as biomimetic recognition elements as an integral component of corresponding sensing schemes. Due to the diversity of PACs, imprinting polymers for these constituents appears particularly challenging. This review focuses on prevalent strategies towards successfully templating polymer materials towards polychlorinated biphenyls and their hydroxy forms, chlorophenols, dioxins and furans, and organochlorine pesticides, and successful applications of the polymer materials in monitoring of these compounds at trace-levels in real-world environmental matrices. Discussed are also group-selective sorbents for facilitating simultaneous detection and quantification of PACs. PMID:27109025

  8. Molecularly imprinted solid-phase extraction for the selective determination of valnemulin in feeds with high performance liquid chromatography.

    PubMed

    Guo, Hongbin; Liu, Kaiyong; Liu, Yahong; Fang, Binghu; Liu, Min; He, Limin; Zeng, Zhenling

    2011-01-15

    A simple, sensitive and reproducible high performance liquid chromatographic method was developed for determining valnemulin in feeds. Feed samples were extracted with ethyl acetate under alkaline condition, cleaned up by molecularly imprinted solid-phase extraction, and analyzed by high performance liquid chromatography with ultraviolet detection. The characteristics of the synthesized polymer were evaluated and the loading capacity of the polymer was about 1000 μg analyte/g imprinted polymer. The new procedure for the feed sample cleanup using the prepared polymer cartridge gave higher recoveries and fewer matrix interferences. The assay exhibited a linear dynamic range of 5.0-200 mg kg(-1) with the correlation coefficient above 0.9993. Recoveries of valnemulin from feed samples spiked at 5.0, 20 and 50 mg kg(-1) ranged between 76.0% and 94.4% with relative standard deviations of less than 9%. The limit of detection for valnemulin in feeds was 1 mg kg(-1). PMID:21212028

  9. Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers

    USGS Publications Warehouse

    Ferrer, I.; Lanza, F.; Tolokan, A.; Horvath, V.; Sellergren, B.; Horvai, G.; Barcelo, D.

    2000-01-01

    Two molecularly imprinted polymers were synthesized using either dichloromethane or toluene as the porogen and terbuthylazine as the template and were used as solid-phase extraction cartridges for the enrichment of six chlorotriazines (deisopropylatrazine, deethylatrazine, simazine, atrazine, propazine, and terbuthylazine) in natural water and sediment samples. The extracted samples were analyzed by liquid chromatography/diode array detection (LC/DAD). Several washing solvents, as well as different volumes, were tested for their ability to remove the matrix components nonspecifically adsorbed on the sorbents. This cleanup step was shown to be of prime importance to the successful extraction of the pesticides from the aqueous samples. The optimal analytical conditions were obtained when the MIP imprinted using dichloromethane was the sorbent, 2 mL of dichloromethane was used in the washing step, and the preconcentrated analytes were eluted with 8 mL of methanol. The recoveries were higher than 80% for all the chlorotriazines except for propazine (53%) when 50- or 100-mL groundwater samples, spiked at 1 ??g/L level, were analyzed. The limits of detection varied from 0.05 to 0.2 ??g/L when preconcentrating a 100-mL groundwater sample. Natural sediment samples from the Ebre Delta area (Tarragona, Spain) containing atrazine and deethylatrazine were Soxhlet extracted and analyzed by the methodology developed in this work. No significant interferences from the sample matrix were noticed, thus indicating good selectivity of the MIP sorbents used.

  10. Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aqueous media via dual-phase solvent system.

    PubMed

    Hu, Yuling; Liu, Ruijin; Zhang, Yi; Li, Gongke

    2009-08-15

    In this study, a novel and simple dual-phase solvent system for the improvement of extraction capability of magnetic molecularly imprinted polymer (MIP) beads in aqueous sample was proposed. The method integrated MIP extraction and micro-liquid-liquid extraction (micro-LLE) into only one step. A magnetic MIP beads using atrazine as template was synthesized, and was applied to aqueous media by adding micro-volume of n-hexane to form a co-extraction system. The magnetic MIP beads preferred to suspend in the organic phase, which shielded them from the disturbance of water molecule. The target analytes in the water sample was extracted into the organic phase by micro-LLE and then further bound to the solid-phase of magnetic MIP beads. The beads specificity was significantly improved with the imprinting efficiency of template increasing from 0.5 to 4.4, as compared with that in pure aqueous media. The extraction capacity, equilibration process and cross-selectivity of the MIP dual-phase solvent extraction system were investigated. The proposed method coupled with high-performance liquid chromatography was applied to the analysis of atrazine, simazine, propazine, simetryn, prometryne, ametryn and terbutryn in complicated sample such as tomato, strawberry juice and milk. The method is selective, sensitive and low organic solvent-consuming, and has potential to broaden the range of MIP application in biological and environmental sample. PMID:19576415

  11. Surface plasmon resonance sensor for femtomolar detection of testosterone with water-compatible macroporous molecularly imprinted film.

    PubMed

    Zhang, Qingwen; Jing, Lijing; Zhang, Jinling; Ren, Yamin; Wang, Yang; Wang, Yi; Wei, Tianxin; Liedberg, Bo

    2014-10-15

    A novel water-compatible macroporous molecularly imprinted film (MIF) has been developed for rapid, sensitive, and label-free detection of small molecule testosterone in urine. The MIF was synthesized by photo copolymerization of monomers (methacrylic acid [MAA] and 2-hydroxyethyl methacrylate [HEMA]), cross-linker (ethylene glycol dimethacrylate, EGDMA), and polystyrene nanoparticles (PS NPs) in combination with template testosterone molecules. The PS NPs and template molecules were subsequently removed to form an MIF with macroporous structures and the specific recognition sites of testosterone. Incubation of artificial urine and human urine on the MIF and the non-imprinted film (NIF), respectively, indicated undetectable nonspecific adsorption. Accordingly, the MIF was applied on a surface plasmon resonance (SPR) sensor for the detection of testosterone in phosphate-buffered saline (PBS) and artificial urine with a limit of detection (LOD) down to 10(-15)g/ml. To the best of our knowledge, the LOD is considered as one of the lowest among the SPR sensors for the detection of small molecules. The control experiments performed with analogue molecules such as progesterone and estradiol demonstrated the good selectivity of this MIF for sensing testosterone. Furthermore, this MIF-based SPR sensor shows high stability and reproducibility over 8months of storage at room temperature, which is more robust than protein-based biosensors. PMID:24991687

  12. Application of the van't Hoff dependences in the characterization of molecularly imprinted polymers for some phenolic acids.

    PubMed

    Denderz, Natalia; Lehotay, Jozef

    2012-12-14

    Thermodynamic analysis was used to quantify the contribution of entropic and enthalpic terms of the binding processes of selected phenolic acids (PAs), quercetin and diperodon on series of molecularly imprinted polymers (MIPs). All polymers were prepared using acrylamide as functional monomer and acetonitrile as a porogen. The following PAs were used as templates - gallic (GA), gentisic (GeA), syringic (SyrA), protocatechuic (PCA), 4-hydroxybenzoic (pHBA) and vanillic (VA). The assessment was based on quantification by HPLC measurement of the analytes tested at temperature range from 20°C to 60°C in two mobile phases - methanol and porogen. There were determined van't Hoff curves - dependences between logarithms of the retention factors (lnk) and the inverse value of the temperature (1/T). All plots fall along straight lines, what suggests that there were no changes in the sorption mechanisms over the studied temperature range. Determined thermodynamic characteristics helped to specify the nature of molecular recognition on the PAs-MIPs. We found that preferred eluent for analytes sorption on the PAs-MIPs and the NIP was porogen. When methanol as the mobile phase was used there was not documented sorption of the investigated compounds on the NIP. Calculated imprinting factors (IFs) in porogen were highest in the dominant advantage of template molecules used, what confirmed a good molecular imprinting effect. The IF values for PAs studied were as follows: GA=21.98±2.62, PCA=6.07±0.13, pHBA=3.58±0.25, SyrA=2.80±0.17, GeA=2.37±0.34 and VA=2.07±0.10. The results of thermodynamic studies demonstrated that enthalpic term was the dominating driving force for the predominant part of investigated analytes. The exceptions were: SyrA on the NIP and on the GA-MIP, diperodon on the PCA-MIP in acetonitrile and quercetin on the GA-MIP in methanol where a favourable driving force was to be found an entropic term. The PAs-MIPs and NIP were also characterized by attenuated

  13. Analysis of fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up and ion-pair LC with diode array UV detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusaric acid is a phytotoxin and mycotoxin occasionally found in maize contaminated with Fusarium fungi. A selective sample clean-up procedure was developed to detect fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up coupled with ion-pair liquid chromatography...

  14. Construction of Molecularly Imprinted Polymer Microspheres by Using Helical Substituted Polyacetylene and Application in Enantio-Differentiating Release and Adsorption.

    PubMed

    Liang, Junya; Wu, Yi; Deng, Jianping

    2016-05-18

    Chiral molecularly imprinted polymer microspheres (MIPMs) reported so far are majorly limited to being constructed by using achiral polymer together with chiral template. The present contribution reports on a unique type of chiral MIPMs consisting of chirally helical substituted polyacetylene, which are prepared through suspension polymerization by using (a)chiral acetylenics as monomer and chiral Boc-d/l-proline as template. The resulting MIPMs after removing the template show optical activity that is derived from the chirally helical structures of substituted polyacetylene. The microspheres demonstrate enantio-differentiating ability in releasing the enantiopure templates. A complete release of the template provides the chiral MIPMs. Worthy to mention is that the two chiral sources (chirally helical conformation and chiral template configuration) work in a synergistic way, obviously increasing the MIPMs' enantiodiscrimination ability. The present study develops a strategy for preparing chiral MIPMs, which are expected to find significant applications in chiral separation, enantioselective release of chiral drugs, etc. PMID:27117526

  15. Analysis of testosterone in human urine using molecularly imprinted solid-phase extraction and corona discharge ion mobility spectrometry.

    PubMed

    Mirmahdieh, Shiva; Mardihallaj, Azam; Hashemian, Zahra; Razavizadeh, Jalal; Ghaziaskar, Hassan; Khayamian, Taghi

    2011-01-01

    Analysis of testosterone was accomplished using corona discharge ion mobility spectrometry. Molecular imprinted polymer was used for the extraction and pre-concentration of testosterone. Analytical parameters including precision, dynamic range and detection limit were obtained. The linear dynamic range was from 10 to 250 ng/mL and the limit of detection was 0.9 ng/mL. The proposed method was used for analysis of testosterone in urine samples. A urine sample from a 3-year-old girl was used as the blank. The RSD was below 10%. The obtained results from the method were also compared with the standard method for analysis of testosterone using SPE-HPLC analysis. The results demonstrate the accuracy of the method. PMID:21171183

  16. Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Ge, Shenguang; Lu, Juanjuan; Ge, Lei; Yan, Mei; Yu, Jinghua

    2011-09-01

    A novel procedure for the determination of deltmethrin (DM) is reported. The water-soluble CdTe quantum dots (QDs) and highly fluorescent silica molecularly imprinted nanospheres embedded CdTe QDs (CdTe-SiO 2-MIPs) were prepared and characterized by fluorescence spectroscopy, UV-vis spectroscopy, TEM and IR. The fluorescence nanosensor based CdTe-SiO 2-MIPs is developed. The possible quenching mechanism is discussed by DM. Under optimal conditions, the relative fluorescence intensity of CdTe-SiO 2-MIPs decreased with increasing DM by a Stern-Volmer type equation in the concentration range of 0.5-35.0 μg mL -1, the corresponding detection limit is 0.16 μg mL -1. The developed sensor based on CdTe-SiO 2-MIPs was applied to determine DM in fruit and vegetable samples.

  17. Discrimination of fresh fruit juices by a fluorescent sensor array for carboxylic acids based on molecularly imprinted titania.

    PubMed

    Tan, Jin; Li, Rong; Jiang, Zi-Tao

    2014-12-15

    Design of chemical sensor arrays that can discriminate real-world samples has been highly attractive in recent years. Herein a fluorescent indicator-displacement sensor array for discrimination of fresh fruit juices was developed. By coupling the unique high affinity of titania to electron-donating anions and the cross-reactivity of molecularly imprinted materials to structurally similar species, a small array was fabricated using only one rhodamine-based fluorescent dye and three synthesized materials. Citric, malic, succinic and tartaric acids were chosen as indices. The recognition mechanism was investigated by spectrofluorimetric titration using a non-linear Langmuir-type adsorption model. The proposed method was applied to discriminate thirteen fruit juices through their carboxylic acid contents. Principal component analysis of the data clearly grouped the thirteen juices with the first principal component owning 98.2% of the total variation. The comparison of the sensor array with HPLC determination of the carboxylic acids was finally made. PMID:25038646

  18. Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe3O4-chitosan.

    PubMed

    Liu, Guangyang; Li, Tengfei; Yang, Xin; She, Yongxin; Wang, Miao; Wang, Jing; Zhang, Min; Wang, Shanshan; Jin, Fen; Jin, Maojun; Shao, Hua; Jiang, Zejun; Yu, Hailong

    2016-02-10

    A novel fluorescence sensing strategy for determination of atrazine in tap water involving direct competition between atrazine and 5-(4,6-dichlorotriazinyl) aminofluorescein (5-DTAF), and which exploits magnetic molecularly imprinted polymer (MMIP), has been developed. The MMIP, based on Fe3O4-chitosan nanoparticles, was synthesized to recognize specific binding sites of atrazine. The recognition capability and selectivity of the MMIP for atrazine and other triazine herbicides was investigated. Under optimal conditions, the competitive reaction between 5-DTAF and atrazine was performed to permit quantitation. Fluorescence intensity changes at 515 nm was linearly related to the logarithm of the atrazine concentration for the range 2.32-185.4 μM. The detection limit for atrazine was 0.86μM (S/N=3) and recoveries were 77.6-115% in spiked tap water samples. PMID:26686107

  19. Molecularly Imprinted Polymers for Selective Analysis of Chemical Warfare Surrogate and Nuclear Signature Compounds in Complex Matrices

    SciTech Connect

    Harvey, Scott D.

    2005-08-01

    This paper describes the preparation and evaluation of molecularly imprinted polymers (MIPs) that display specificity toward diisopropyl methylphosphonate (DIMP) and tributyl phosphate (TBP). Polymer activity was assessed by solid-phase extraction and high-performance liquid chromatography experiments. Both DIMP- and TBP-specific MIPs selectively retained their targets relative to a nonimprinted control. Proof-of-principle experiments demonstrated highly selective analysis of the targets from fortified complex matrix samples (diesel fuel, gasoline, and air extract concentrate). The retained MIP fractions gave near quantitative recovery of the target analytes with very low matrix background content. The same fraction from the control sorbent was less pure and recovered only about half of the analyte.

  20. Rapid preparation of molecularly imprinted polymers by microwave-assisted emulsion polymerization for the extraction of florfenicol in milk.

    PubMed

    Chen, Haiyan; Son, Sunil; Zhang, Fengshuang; Yan, Jin; Li, Yi; Ding, Hong; Ding, Lan

    2015-03-01

    In this study, we proposed a rapid and simple method for the preparation of molecularly imprinted polymers (MIPs) by emulsion polymerization. The polymerization process was accelerated by microwave heating, and the reaction time was greatly shortened. The obtained MIPs were spherical in shape and exhibited a uniform morphology. The MIPs with selectivity and high affinity to florfenicol were successfully applied as solid-phase extraction materials to extract and clean up the florfenicol in milk, followed by liquid chromatography-tandem mass spectrometry (LC-MS) analysis. The parameters affecting the performance of extraction and LC-MS analysis were evaluated. The detection limit of the method was 4.1ngmL(-1). The relative standard deviations of intra- and inter-day were in the range of 3.5-4.7% and 3.9-7.5%, respectively. PMID:25614968

  1. Ultraselective Sorbents. Task 2: Molecularly Imprinted Polymers (MIPs)/Stabilized Antibody Fragments (STABs). Final Report FY 2004

    SciTech Connect

    Harvey, Scott D.

    2004-09-01

    This report describes the preparation and application of molecularly imprinted polymers (MIPs) for the highly selective analysis of target signature compounds. The overall goal of this project task is to exploit the high selectivity of MIPs to generate a pure and enriched fraction of target analyte from environmental samples, either during the sampling stage or immediately thereafter. Due to the high purity of analyte fraction obtained, simplified field portable instrumentation that is capable of high performance trace analysis can be constructed. Major sections contained in this FY 2004 Final Report describe: (1) the synthesis and evaluation of MIPs specific toward explosives, (2) the design, construction, and performance of a novel instrument for the trace aqueous analysis of G-series nerve agent hydrolysis compounds, and (3) interfacing MIP separations with ion mobility spectrometric detection.

  2. A novel molecularly imprinted method with computational simulation for the affinity isolation and knockout of baicalein from Scutellaria baicalensis.

    PubMed

    Li, Hong; He, Hongliang; Huang, Jiaojiao; Wang, Chong-Zhi; Gu, Xiaoli; Gao, Yankun; Zhang, Hongjuan; Du, Shuhu; Chen, Lina; Yuan, Chun-Su

    2016-02-01

    A novel molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization with baicalein (BAI) as the template and used as solid-phase extraction (SPE) adsorbent, aiming at the affinity isolation and selective knockout of BAI from Scutellaria baicalensis Georgi (SB). We used computational simulation to predict the optimal functional monomer, polymerization solvent and molar ratio of template to functional monomer. Characterization and performance tests revealed that MIP exhibited uniform spherical morphology, rapid binding kinetics, and higher adsorption capacity for BAI compared with nonimprinted polymer (NIP). The application of MIP in SPE coupled with high-performance liquid chromatography to extract BAI from SB showed excellent recovery (94.3%) and purity (97.0%). Not only the single BAI compound, but also the BAI-removed SB extract was obtained by one-step process. This new method is useful for isolation and knockout of key bioactive compounds from herbal medicines. PMID:26037609

  3. A fluorescent molecularly-imprinted polymer gate with temperature and pH as inputs for detection of alpha-fetoprotein.

    PubMed

    Karfa, Paramita; Roy, Ekta; Patra, Santanu; Kumar, Deepak; Madhuri, Rashmi; Sharma, Prashant K

    2016-04-15

    In this work, we have reported a new approach on the use of stimuli-responsive molecularly imprinted polymer (MIP) for trace level sensing of alpha-fetoprotein (AFP), which is a well know cancer biomarker. The stimuli-responsive MIP is composed of three components, a thermo-responsive monomer, a pH responsive component (tyrosine derivative) and a highly fluorescent vinyl silane modified carbon dot. The synthesized AFP-imprinted polymer possesses excellent selectivity towards their template molecule and dual-stimuli responsive behavior. Along with this, the imprinted polymer was also explored as 'OR' logic gate with two stimuli (pH and temperature) as inputs. However, the non-imprinted polymers did not have such 'OR' gate property, which confirms the role of template binding. The imprinted polymer was also used for estimation of AFP in the concentration range of 3.96-80.0 ng mL(-1), with limit of detection (LOD) 0.42 ng mL(-1). The role of proposed sensor was successfully exploited for analysis of AFP in real human blood plasma, serum and urine sample. PMID:26657588

  4. Nanocomposite of bimetallic nanodendrite and reduced graphene oxide as a novel platform for molecular imprinting technology.

    PubMed

    Patra, Santanu; Roy, Ekta; Madhuri, Rashmi; Sharma, Prashant K

    2016-04-28

    In this present work, for the first time, we are reporting a green synthesis approach for the preparation of vinyl modified reduced graphene oxide-based magnetic and bimetallic (Fe/Ag) nanodendrite (RGO@BMNDs). Herein, the RGO@BMNDs acts as a platform for the synthesis of the pyrazinamide (PZA)-imprinted polymer matrix and used for designing of the electrochemical sensor. We have demonstrated how the change in morphology could affect the electrochemical and magnetic property of nanomaterials and for this the reduced graphene oxide-based bimetallic nanoparticle (Fe/Ag) was also prepared It was found that the combination of graphene and bimetallic nanodendrites shows improvement as well as enhancement in the electrocatalytic activity and adsorption capacity, in comparison to their respective nanoparticles. The application of imprinted-RGO@BMNDs sensor was explored for trace level detection of PZA (Limit of detection = 6.65 pg L(-1), S/N = 3), which is a drug used for the cure of Tuberculosis. This is lowest detection limit reported so far for the detection of PZA. The sensor is highly selective, cost-effective, simple and free from any interfering effect. The real time application of the sensor was explored by successful detection of PZA in pharmaceutical and human blood serum, plasma and urine samples. PMID:27046213

  5. Intraparticle mass transfer kinetics on molecularly imprinted polymers of structural analogues of a template

    SciTech Connect

    Kim, Hyunjung; Kaczmarski, Krzysztof; Guiochon, Georges A

    2005-09-01

    The intraparticle mass transfer kinetics of the structural analogues of a template on a Fmoc-L-Tryptophan (Fmoc-L-Trp) imprinted polymer (MIP) and on the corresponding non-imprinted polymer (NIP) were quantitatively studied using the lumped pore diffusion model (POR) of chromatography. The best equilibrium isotherm models of these compounds were used to calculate the high-concentration band profiles of different substrates on the MIP and the NIP with the POR model. These profiles were compared to experimental band profiles. The numerical values of the intraparticle pore and surface diffusion coefficients were adjusted to determine those that minimized the differences between calculated and experimental profiles. The results of this exercise show that surface diffusion is the dominant intraparticle mass transfer process for the substrates on the polymers and that the energetic heterogeneity of the surface should be considered in accounting for the surface diffusion of the L-enantiomers on the MIP. The surface diffusion coefficient increases with decreasing overall affinity of each substrate for the polymers.

  6. Development of molecular imprinted nanosensor for determination of tobramycin in pharmaceuticals and foods.

    PubMed

    Yola, Mehmet Lütfi; Uzun, Lokman; Özaltın, Nuran; Denizli, Adil

    2014-03-01

    In this study, we developed quartz crystal microbalance (QCM) nanosensor for the real-time detection of tobramycin (TOB). Firstly, the modification of gold surface of QCM chip was performed by self-assembling monolayer formation of allyl mercaptane to introduce polymerizable double bonds on the chip surface. Then, TOB imprinted poly(2-hydroxyethyl methacrylate-methacryloylamidoglutamic acid) [p(HEMA-MAGA)] film was generated on the gold surface. The nonmodified and TOB-imprinted p(HEMA-MAGA) surfaces were characterized by using atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, ellipsometry and contact angle measurements. The proposed method was validated according to the ICH guideline. The linearity range and the detection limit (S/N=3) were obtained as 1.7×10(-11)-1.5×10(-10) M and 5.7×10(-12) M, respectively. The developed method was applied to pharmaceuticals, and food samples such as chicken egg white and milk extract for the determination of TOB. In addition, association kinetics analysis and isotherm models were applied to the data to explain the adsorption process that took place. PMID:24468376

  7. Molecularly imprinted polymer-coated hollow fiber membrane for the microextraction of triazines directly from environmental waters.

    PubMed

    Barahona, Francisco; Díaz-Álvarez, Myriam; Turiel, Esther; Martín-Esteban, Antonio

    2016-04-15

    In this work, novel molecularly imprinted polymer-coated hollow fibers (MIP-HFs) have been prepared and evaluated for the development of a micro-solid phase extraction method for the analysis of triazines in aqueous samples using high performance liquid chromatography and UV detection. The proposed extraction method combines liquid-liquid microextraction and molecular imprinting technology. In brief, a thin film of toluene is immobilised in the pores of the obtained MIP-HF. Afterwards, the conditioned MIP-HF is immersed in the water sample. Under stirring for a certain time, the target analytes are liquid-liquid extracted from the sample to the immobilised toluene and then these diffuse to the specific binding sites of the MIP. The effect of various experimental parameters as time and stirring-rate and salting-out effect among others, were studied for the establishment of optimum rebinding conditions. Recoveries for seven triazines tested in 100mL pure water samples spiked with 15 μg L(-1) of each triazine were within 0.8-6.9%, with a relative standard deviation (RSD)<10% (n=3). The detection limits (LODs) were within 0.05-0.1 μg L(-1), depending upon the triazine. The proposed methodology was successfully applied to extract the triazines from spiked tap and river water samples at μg L(-1) concentration level. The mircroextraction procedure with the developed MIP-HFs overcomes the typical low performance and lack of selective recognition of MIPs in aqueous media, allowing the determination of triazines in environmental waters at expected real concentration levels. PMID:26994922

  8. Magnetic sensing film based on Fe₃O₄@Au-GSH molecularly imprinted polymers for the electrochemical detection of estradiol.

    PubMed

    Han, Qing; Shen, Xin; Zhu, Wanying; Zhu, Chunhong; Zhou, Xuemin; Jiang, Huijun

    2016-05-15

    A novel magnetic molecularly imprinted sensing film (MMISF) was fabricated for the determination of estradiol (E2) based on magnetic glassy carbon electrode (MGCE) and magnetic molecularly imprinted polymers (MMIPs). The MMIPs were synthesized by in situ polymerization of glutathione (GSH)-functionalized gold (Au)-coated Fe3O4 (Fe3O4@Au-GSH) nanocomposites and aniline. The MMISF was constructed with MMIPs via a kind of "soft modification" where MMIPs were assembled and immobilized on the surface of MGCE or removed from it by freely installing a magnet into MGCE or not. The E2-MMIPs were obtained by MMIPs recognizing E2 from sample, and the electrochemical detection was carried out after forming the "soft modification" sensing film by putting MGCE into the E2-MMIPs suspension liquid. Afterwards, the "soft modification" MMISF was peeled off from the electrode by removing the magnet from MGCE. The interface of the electrode could be quickly refreshed through simple treatment for the next detection. The structures and morphologies of Fe3O4@Au-GSH, MMIPs and MMISF were investigated by Fourier transform infrared spectrometer, ultraviolet and visible spectrophotometer, scanning electron microscope and atomic force microscope. In addition, the MMISF was successfully used for detecting E2 in milk powder with good sensitivity, selectivity, reproducibility and efficiency. The linear range of the MMISF for E2 was 0.025-10.0μmolL(-1) with the limit of detection of 2.76nmolL(-1) (S/N= 3). PMID:26706939

  9. Molecularly imprinted polymer beads for clean-up and preconcentration of β-lactamase-resistant penicillins in milk.

    PubMed

    Urraca, Javier L; Chamorro-Mendiluce, Raquel; Orellana, Guillermo; Moreno-Bondi, Maria C

    2016-03-01

    This work describes the development and application of class-selective molecularly imprinted polymers (MIPs) for the analysis of beta-lactamase-resistant penicillins, namely cloxacillin (CLOXA), oxacillin (OXA), and dicloxacillin (DICLOXA), in milk samples. Our method is based on molecularly imprinted solid-phase extraction (MISPE) coupled to high-performance liquid chromatography (HPLC) with diode-array detection (DAD). 2-Biphenylylpenicillin (2BPEN), a surrogate with a close resemblance to beta-lactamase-resistant penicillins in terms of size, shape, hydrophobicity, and functionality, was synthesized and used as the template for the polymer synthesis. A MIP library was prepared and screened to select the optimum functional monomer, N-(2-aminoethyl)methacrylamide, and cross-linker, trimethylolpropane trimethacrylate, that provided the best recognition for the target antibiotics. For the MISPE application, the MIPs were prepared in the form of microspheres, using porous silica beads (40-75 μm) as sacrificial scaffolds. The developed MISPE method enables efficient extraction from aqueous samples and analysis of the antimicrobials, when followed by a selective washing with 2 mL acetonitrile-water (20:80 v/v) and elution with 1 mL 0.05 mol L(-1) tetrabutylammonium in methanol. The analytical method was validated according to EU guideline 2002/657/EC. The limits of quantification (S/N = 10) were in the 5.3-6.3 μg kg(-1) range, well below the maximum residue limits (MRLs) currently established. Inter-day mean recoveries were in the range 99-102 % with RSDs below 9 %, improving on the performance of previously reported MISPE methods for the analysis of CLOXA, OXA, or DICLOXA in milk samples. PMID:26342308

  10. Early diagnosis of fungal infections using piezomicrogravimetric and electric chemosensors based on polymers molecularly imprinted with d-arabitol.

    PubMed

    Dabrowski, Marcin; Sharma, Piyush Sindhu; Iskierko, Zofia; Noworyta, Krzysztof; Cieplak, Maciej; Lisowski, Wojciech; Oborska, Sylwia; Kuhn, Alexander; Kutner, Wlodzimierz

    2016-05-15

    An elevated concentration of d-arabitol in urine, especially compared to that of l-arabitol or creatinine, is indicative of a fungal infection. For that purpose, we devised, fabricated, and tested chemical sensors determining d-arabitol. These chemosensors comprised the quartz crystal resonator (QCR) or extended-gate field-effect transistor (EG-FET) transducers integrated with molecularly imprinted polymer (MIP) film recognition units. To this end, we successfully applied a covalent approach to molecular imprinting, which involved formation of weak reversible covalent bonds between vicinal hydroxyl groups of arabitol and boronic acid substituents of the bithiophene functional monomer used. The MIP films were synthesized and simultaneously deposited on gold electrodes of quartz crystal resonators (Au-QCRs) or Au-glass slides by oxidative potentiodynamic electropolymerization. With the QCR and EG-FET chemosensors, the d-arabitol concentration was determined under flow-injection analysis and stagnant-solution binding conditions, respectively. Selectivity with respect to common interferences, and l-arabitol in particular, of the devised chemosensors was superior. Limits of detection and linear dynamic concentration ranges of the QCR and EG-FET chemosensors were 0.15 mM and 0.15 to 1.25 mM as well as 0.12 mM and 0.12 to 1.00 mM, respectively, being lower than the d-arabitol concentrations in urine of patients with invasive candidiasis (>220 μM). Therefore, the devised chemosensors are suitable for early diagnosis of fungal infections caused by Candida sp. yeasts. PMID:26761618

  11. Preparation of molecularly imprinted polymeric fibers using a single bifunctional monomer for the solid-phase microextraction of parabens from environmental solid samples.

    PubMed

    Díaz-Álvarez, Myriam; Smith, Stephen P; Spivak, David A; Martín-Esteban, Antonio

    2016-02-01

    In this study, molecularly imprinted polymer fibers for solid-phase microextraction have been prepared with a single bifunctional monomer, N,O-bismethacryloyl ethanolamine using the so-called "one monomer molecularly imprinted polymers" method, replacing the conventional combination of functional monomer and cross-linker to form high fidelity binding sites. For comparison, imprinted fibers were prepared following the conventional approach based on ethylene glycol dimethacrylate as cross-linker and methacrylic acid as monomer. The recognition performance of the new fibers was evaluated in the solid-phase microextraction of parabens, and from this study it was concluded that they provided superior performance over conventionally formulated fibers. Ultimately, real-world environmental testing on spiked solid samples was successful by the molecularly imprinted solid-phase microextraction of samples, and the relative recoveries obtained at enrichment levels of 10 ng/g of parabens were within 78-109% for soil and 83-109% for sediments with a relative standard deviation <15% (n = 3). PMID:26582435

  12. Computer-aided design and synthesis of magnetic molecularly imprinted polymers with high selectivity for the removal of phenol from water.

    PubMed

    Yang, Wenming; Liu, Lukuan; Ni, Xiaoni; Zhou, Wei; Huang, Weihong; Liu, Hong; Xu, Wanzhen

    2016-02-01

    A molecular simulation method was introduced to compute the phenol-monomer pre-assembled system of a molecularly imprinted polymer. The interaction type and intensity between phenol and monomer were evaluated by combining binding energy and charge transfer with complex conformation. The simulation results indicate that interaction energies are simultaneously affected by the type of monomer and the ratio between phenol and monomers. At the same time, we considered that by increasing the amount of functional monomer is not always better for preparing molecularly imprinter polymers. In this study, three kinds of novel magnetic phenol-imprinted polymers with favorable specific adsorption effects were prepared by the surface imprinting technique combined with atom transfer radical polymerization. Various measures were selected to characterize the structure and morphology to obtain the optimal polymer. The characterization results show that the optimal polymer has suitable features for further adsorption process. A series of static adsorption experiments were conducted to analyze its adsorption performance, which follows the Elovich model from the kinetic analysis and the Sips equation from the isothermal analysis. To further verify the reliability and accuracy of the simulation results, the effects of different monomers on the adsorption selectivity were also determined. They display higher selectivity towards phenol than 4-nitrophenol.The results from the simulation of the pre-assembled complexes are in reasonable agreement with those from the experiment. PMID:26648327

  13. A simple approach for the preparation of simazine molecularly imprinted nanofibers via self-polycondensation for selective solid-phase microextraction.

    PubMed

    Saraji, Mohammad; Mehrafza, Narges

    2016-09-14

    A novel molecularly imprinted sol-gel material based on polysiloxane nanofiber was introduced as a solid-phase microextraction coating on a stainless steel wire for the extraction of simazine. The nanostructured molecularly imprinted fiber was prepared by a simple single step method at room temperature, using methyltriethoxysilane as the sol-gel precursor and simazine as the template molecule. The fiber was applied for the extraction of simazine in different water samples followed by gas chromatography and mass spectrometry detection. The extraction capacity of the molecularly imprinted fiber was 8 ng, and it had better extraction efficiency than the non-imprinted fiber and commercial fibers (PDMS and PA). The fiber had also a good selectivity for simazine and its analogous compounds. Important parameters affecting the extraction and desorption efficiency, such as salt concentration, stirring rate, pH of sample solution, extraction time and temperature, temperature and time of desorption, were investigated. The intra- and inter-day relative standard deviations were in the range of 4.3-7.6%. The fiber-to-fiber reproducibility was 7.7-8.5%. The method showed a good linearity (r(2)> 0.9980) in the range of 0.02-20 μg L(-1) with the detection limit of 0.005 μg L(-1). The relative recoveries were also in the range of 94-97% for different water samples. PMID:27566345

  14. Molecularly imprinted polymer on a SiO2 -coated graphene oxide surface for the fast and selective dispersive solid-phase extraction of Carbamazepine from biological samples.

    PubMed

    Khalilian, Faezeh; Ahmadian, Setareh

    2016-04-01

    A surface carbamazepine-imprinted polymer was grafted and synthesized on the SiO2 /graphene oxide surface. Firstly SiO2 was coated on synthesized graphene oxide sheet using the sol-gel technique. Prior to polymerization, the vinyl group was incorporated on to the surface of SiO2 /graphene oxide to direct selective polymerization on the surface. Methacrylic acid, ethylene glycol dimethacrylate and ethanol were used as monomer, cross-linker and porogen, respectively. Nonimprinted polymer was also prepared for comparison. The properties of the molecularly imprinted polymer were characterized using field-emission scanning electron microscopy and Fourier-transform infrared spectroscopy. The surface molecularly imprinted polymer was utilized as an adsorbent of dispersive solid-phase extraction for separation and preconcentration of carbamazepine. The effects of the different parameters influencing the extraction efficiency, such as sample pH were investigated and optimized. The specificity of the molecular imprinted polymer over the nonimprinted polymer was examined in absence and presence of competitive drugs. The carbamazepine calibration curve showed linearity in the ranges 0.5-500 μg/L. The limits of detection and quantification under the optimized conditions were 0.1 and 0.3 μg/L, respectively. The within-day and between-day relative standard deviations (n = 3) were 3.6 and 4.3%, respectively. Furthermore, the relative recoveries for spiked biological samples were above 85%. PMID:26899307

  15. Restricted access molecularly imprinted polymers obtained by bovine serum albumin and/or hydrophilic monomers' external layers: a comparison related to physical and chemical properties.

    PubMed

    Santos, Mariane Gonçalves; Moraes, Gabriel de Oliveira Isac; Nakamura, Maurício Gustavo; dos Santos-Neto, Álvaro José; Figueiredo, Eduardo Costa

    2015-11-21

    Molecularly imprinting polymers (MIPs) can be modified with external layers in order to obtain restricted access molecularly imprinted polymers (RAMIPs) able to exclude macromolecules and retain low weight compounds. These modifications have been frequently achieved using hydrophilic monomers, chemically bound on the MIP surface. Recently, our group proposed a new biocompatible RAMIP based on the formation of a bovine serum albumin coating on the surface of MIP particles. This material has been used to extract drugs directly from untreated human plasma samples, but its physicochemical evaluation has not been carried out yet, mainly in comparison with RAMIPs obtained by hydrophilic monomers. Thus, we proposed in this paper a comparative study involving the surface composition, microscopic aspect, selectivity, binding kinetics, adsorption and macromolecule elimination ability of these different materials. We concluded that the synthesis procedure influences the size and shape of particles and that hydrophilic co-monomer addition as well as coating with BSA do not alter the chemical recognition ability of the material. The difference between imprinted and non-imprinted polymers' adsorption was evident (suggesting that imprinted polymers have a better capacity to bind the template than the non-imprinted ones). The Langmuir model presents the best fit to describe the materials' adsorption profile. The polymer covered with hydrophilic monomers presented the best adsorption for the template in an aqueous medium, probably due to a hydrophilic layer on its surface. We also concluded that an association of the hydrophilic monomers with the bovine serum albumin coating is important to obtain materials with higher capacity of macromolecule exclusion. PMID:26460233

  16. Molecularly imprinted polymer microspheres enhanced biodegradation of bisphenol A by acclimated activated sludge.

    PubMed

    Xie, Ya-ting; Li, Hai-bin; Wang, Ling; Liu, Qian; Shi, Yun; Zheng, Hai-yan; Zhang, Meng; Wu, Ya-ting; Lu, Bin

    2011-01-01

    The impacts of bisphenol A- imprinted polymeric microspheres (MIPMs) on the biodegradation of bisphenol A by acclimated activated sludge were studied. Due to the selective adsorption of MIPMs to bisphenol A (BPA) and its analogues, addition of MIPMs to activated sludge increased levels of BPA and its metabolites, which were also the substrates of biodegradation. Higher substrates (BPA and its metabolites) level promoted biodegradation efficiencies of activated sludge via accelerating removal speed of BPA and its metabolites, increasing degradation rate and decreasing half-lives of biodegradation. The enhancement of MIPMs in degradation efficiencies was more significant in environmental water containing low-level of pollutants, and water containing interferences such as heavy metals and humic acid. Furthermore, MIPMs were more suitable than non-selective sorbents such as active carbon to be used as enhancer for BPA biodegradation. MIPMs combined with activated sludge are simple, effective, environmental-friendly processes to biodegrade low-level pollutants in environmental water. PMID:21131017

  17. Mass transfer kinetics on heterogeneous binding sites of molecularly imprinted polymers

    SciTech Connect

    Kim, Hyunjung; Kaczmarski, Krzysztof; Guiochon, Georges A

    2005-07-01

    The mass transfer kinetics of the L- and D-Fmoc-Tryptophan (Fmoc-Trp) enantiomers on Fmoc-L-Trp imprinted polymer (MIP) and on its reference polymer (NIP), were measured using their elution peak profiles and the breakthrough curves recorded in frontal analysis for the determination of their equilibrium isotherms, at temperatures of 40, 50, 60, and 70 C. At all temperatures, the isotherm data of the Fmoc-Trp enantiomers on the MIP were best accounted for by the Tri-Langmuir isotherm model, while the isotherm data of Fmoc-Trp on the NIP were best accounted for by the Bi-Langmuir isotherm model. The profiles of the elution bands of various amounts of each enantiomer were acquired in the concentration range from 0.1 to 40 mM. These experimental profiles were compared with those calculated using the best values estimated for the isotherm parameters and the lumped pore diffusion model (POR), which made possible to calculate the intraparticle diffusion coefficients for each system. The results show that surface diffusion contributes predominantly to the overall mass transfer kinetics on both the MIP and the NIP, compared to external mass transfer and pore diffusion. The surface diffusion coefficients (D{sub s}) of Fmoc-L-Trp on the NIP does not depend on the amount bound (q) while the values of D{sub s} for the two Fmoc-Trp enantiomers on the MIP increase with increasing q at all temperatures. These positive dependencies of D{sub s} on q for Fmoc-Trp on the MIP were fairly well modeled by indirectly incorporating surface heterogeneity into the surface diffusion coefficient. The results obtained show that the mass transfer kinetics of the enantiomers on the imprinted polymers depend strongly on the surface heterogeneity.

  18. Using of molecularly imprinted polymers for determination of gallic and protocatechuic acids in red wines by high performance liquid chromatography.

    PubMed

    Denderz, Natalia; Lehotay, Jozef

    2014-10-31

    The sorption capacities of gallic- and protocatechuic acid-molecularly imprinted polymers (GA-MIP and PCA-MIP, respectively) and non-imprinted polymer (NIP) have been determined on the piston columns by the frontal analyses (FAs). Mobile phases consisted of MeOH, MeOH/H2O (1:1), 12.5% EtOH or ACN. Solutes concentrations used in FAs were 1μg/mL and 50μg/mL. All sorption capacities were depended on analyte and solvent used. Results obtained from the FAs have shown that both imprinted polymers almost always were preferentially recognized PCA molecule. Only in MeOH, the GA-MIP had ability to recognize its template molecule positively. Surprisingly, in some cases, also the NIP exhibited higher sorption capacities than the MIPs for their templates, e.g. in ACN for GA or in MeOH for PCA. This behaviour indicates that in some solvents, the low affinity sites of the blank polymer can act as strong interacting sites. In the next, prepared MIPs were successfully used as the SPE-sorbents for the extraction and purification of chosen phenolic acids from red wine samples. The recoveries both of MIPs were the highest for PCA, what was in agreement with the experiments carried out in 12.5% EtOH during FAs. Prepared MIP-beads allowed the purification of chosen red wine samples with satisfactory selectivities and high recoveries. The linearity of the method was in the range from 10μg/mL to 70μg/mL and 0.1μg/mL to 4.5μg/mL for GA and PCA, respectively, with the determination coefficients ranging from 0.996-0.999. The LODs (S/N=3) ranged from 0.1μg/mL to 0.4μg/mL. The RSDs for the recoveries varied from 4.0% to 8.1%. The PAs-MIPs and corresponding NIP were also characterized by attenuated total reflectance analysis Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron analysis (SEM). PMID:25468500

  19. Aflatoxin B1 Detection Using a Highly-Sensitive Molecularly-Imprinted Electrochemical Sensor Based on an Electropolymerized Metal Organic Framework.

    PubMed

    Jiang, Mengjuan; Braiek, Mohamed; Florea, Anca; Chrouda, Amani; Farre, Carole; Bonhomme, Anne; Bessueille, Francois; Vocanson, Francis; Zhang, Aidong; Jaffrezic-Renault, Nicole

    2015-09-01

    A sensitive electrochemical molecularly-imprinted sensor was developed for the detection of aflatoxin B1 (AFB1), by electropolymerization of p-aminothiophenol-functionalized gold nanoparticles in the presence of AFB1 as a template molecule. The extraction of the template leads to the formation of cavities that are able to specifically recognize and bind AFB1 through π-π interactions between AFB1 molecules and aniline moities. The performance of the developed sensor for the detection of AFB1 was investigated by linear sweep voltammetry using a hexacyanoferrate/hexacyanoferrite solution as a redox probe, the electron transfer rate increasing when the concentration of AFB1 increases, due to a p-doping effect. The molecularly-imprinted sensor exhibits a broad linear range, between 3.2 fM and 3.2 µM, and a quantification limit of 3 fM. Compared to the non-imprinted sensor, the imprinting factor was found to be 10. Selectivity studies were also performed towards the binding of other aflatoxins and ochratoxin A, proving good selectivity. PMID:26371042

  20. Surface molecular imprinting on hybrid SiO2-coated CdTe nanocrystals for selective optosensing of bisphenol A and its optimal design

    NASA Astrophysics Data System (ADS)

    Qiu, Chunxiao; Xing, Youhong; Yang, Wenming; Zhou, Zhiping; Wang, Yingchun; Liu, Hong; Xu, Wanzhen

    2015-08-01

    Twenty molecular dynamics (MD) simulations of molecular imprinting prepolymerization systems had been performed to optimize the imprinting shell of the fluorescent sensor. The results revealed that the system with a Bisphenol A (BPA): 3-aminopropyltriethoxysilane (APTES): tetraethylorthosilicate (TEOS) mole ratio of 10:15:60 had the most stable template (T)-functional monomer (FM) cluster. Correspondingly, five kinds of imprinted and non-imprinted polymers were synthesized to assess the reliability and validity of the simulation results. Hybrid SiO2-coated CdTe NCs (HS-QD) were synthesized by a simple reflux procedure including a sol-gel reaction that resulted in the formation of a hybrid SiO2 layer with CdS-like clusters on a CdTe core. Based on the optimal component ratio of the prepolymerization system, MIP shells were anchored on the surface of HS-QD to build a fluorescent MIP sensor. A linear relationship between relative fluorescence intensity and the concentration of BPA had been obtained covering the concentration range of 0.05-10 μmol L-1 with a limit of detection of 6 nmol L-1. The feasibility of the fluorescent sensor was successfully evaluated through the analysis of BPA in river water and milk. The recoveries are above 96.31%, and the relative standard deviation (RSD) ranged from 1.55% to 2.78%.

  1. Aflatoxin B1 Detection Using a Highly-Sensitive Molecularly-Imprinted Electrochemical Sensor Based on an Electropolymerized Metal Organic Framework

    PubMed Central

    Jiang, Mengjuan; Braiek, Mohamed; Florea, Anca; Chrouda, Amani; Farre, Carole; Bonhomme, Anne; Bessueille, Francois; Vocanson, Francis; Zhang, Aidong; Jaffrezic-Renault, Nicole

    2015-01-01

    A sensitive electrochemical molecularly-imprinted sensor was developed for the detection of aflatoxin B1 (AFB1), by electropolymerization of p-aminothiophenol-functionalized gold nanoparticles in the presence of AFB1 as a template molecule. The extraction of the template leads to the formation of cavities that are able to specifically recognize and bind AFB1 through π-π interactions between AFB1 molecules and aniline moities. The performance of the developed sensor for the detection of AFB1 was investigated by linear sweep voltammetry using a hexacyanoferrate/hexacyanoferrite solution as a redox probe, the electron transfer rate increasing when the concentration of AFB1 increases, due to a p-doping effect. The molecularly-imprinted sensor exhibits a broad linear range, between 3.2 fM and 3.2 µM, and a quantification limit of 3 fM. Compared to the non-imprinted sensor, the imprinting factor was found to be 10. Selectivity studies were also performed towards the binding of other aflatoxins and ochratoxin A, proving good selectivity. PMID:26371042

  2. 6-Chloro-N,N-diethyl-1,3,5-triazine-2,4-diamine (CAT) sensor based on biomimetic recognition utilizing a molecularly imprinted artificial receptor.

    PubMed

    Fuchiwaki, Yusuke; Shimizu, Akio; Kubo, Izumi

    2007-01-01

    We aimed to develop a 6-chloro-N,N-diethyl-1,3,5-triazine-2,4-diamine (CAT)-sensing system based on a biomimetic receptor of a molecularly imprinted polymer for CAT and electrochemical determination of CAT. A molecularly imprinted polymer for CAT was prepared by the polymerization of methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EDMA) as a cross-linker with a template molecule (CAT) in dimethyl formamide (DMF). The polymer prepared with the ratio of these monomers (CAT:MAA:EDMA = 1:7.5:20) showed the most selective rebinding to CAT, and the obtained polymer was recognized as a CAT-imprinted polymer (CAT-MIP). The effect of the specific imprinting sites of CAT-MIP was demonstrated by Scatchard analysis. In an aqueous solution of CAT, CAT-MIP showed the maximum binding of CAT in a 0.05 M phosphate buffer (PB), pH 5.0. The binding amount of CAT to CAT-MIP was 24% more than atrazine and 72% more than propazine. The CAT-sensing system was composed of a column of CAT-MIP particles and a voltammetry analyzer. The reductive current of CAT depended on the concentration of CAT up to 30 microM with the system. PMID:17213623

  3. Preparation of molecularly imprinted polymers using theanine as dummy template and its application as SPE sorbent for the determination of eighteen amino acids in tobacco.

    PubMed

    Zhu, Fengling; Wang, Jing; Zhu, Lijun; Tan, Lanlan; Feng, Guanglin; Liu, Shaomin; Dai, Ya; Wang, Hua

    2016-04-01

    In this paper, a novel dummy template molecularly imprinted polymer (DMIP) based on a vinyl-SiO2 microspheres surface for the simultaneous selective recognition and enrichment of 18 amino acids was prepared via a surface molecular imprinting technique using theanine as a dummy template. Compared to the imprinted polymers prepared using traditional polymerization techniques, the obtained DMIPs exhibited a regular spherical shape and were relatively monodisperse. The maximal sorption capacity (Qmax) of the resulting DMIPs for the 18 amino acids was up to 1444.3 mg g(-1). A kinetic binding study showed that the sorption capacity reached 85.40% of Qmax in 25 min and sorption equilibrium at 30 min. The imprint factors of the sorbents ranged from 2.86 to 6.9 for the 18 amino acids, which indicated that the DMIP sorbents have high selectivity. An HPLC-UV method for the simultaneous determination of 18 amino acids in tobacco and tobacco smoke was developed using the DMIPs as sorbents for solid phase extraction (SPE) in the sample pretreatment procedure. Under the optimum experimental conditions, the materials had enrichment factors of up to 200 for the amino acids, and the recoveries of the 18 amino acids in tobacco smoke were in the range from 79% to 104% with relative standard deviations of less than 7.4%. It indicated that the obtained DMIP sorbents could specifically recognize the amino acids from complicated samples. PMID:26838422

  4. Fluorescence Probe Based on Hybrid Mesoporous Silica/Quantum Dot/Molecularly Imprinted Polymer for Detection of Tetracycline.

    PubMed

    Zhang, Liang; Chen, Ligang

    2016-06-29

    A newly designed fluorescence probe made from a hybrid quantum dot/mesoporous silica/molecularly imprinted polymer (QD/MS/MIP) was successfully created, and the probe was used for the detection of tetracycline (TC) in serum sample. QD/MS/MIP was characterized by transmission electron microscope, Fourier transform infrared spectroscopy, UV spectroscopy, X-ray powder diffraction, nitrogen adsorption-desorption experiment and fluorescence spectroscopy. Tetracycline, which is a type of broad-spectrum antibiotic, was selected as the template. The monomer and the template were combined by covalent bonds. After the template was removed to form a binding site, a hydrogen bonding interaction formed between the hole and the target molecule. Moreover, when rebinding TC, a new complex was produced between the amino group of QD/MS/MIP and the hydroxyl group of TC. After that, the energy of the QDs could transfer to the complex, which explains the fluorescence quenching phenomenon. The fluorescent intensity of QD/MS/MIP decreased in 10 min, and an excellent linearity from 50 to 1000 ng mL(-1) was correspondingly obtained. This composite material has a high selectivity with an imprinting factor of 6.71. In addition, the confirmed probe strategy was successfully applied to serum sample analyses, and the recoveries were 90.2%-97.2% with relative standard deviations of 2.2%-5.7%. This current work offers a novel and suitable method to synthesize QD/MS/MIP with a highly selective recognition ability. This composite material will be valuable for use in fluorescence probe applications. PMID:27280785

  5. Physical Selectivity of Molecularly Imprinted polymers evaluated through free volume size distributions derived from Positron Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pasang, T.; Ranganathaiah, C.

    2015-06-01

    The technique of imprinting molecules of various sizes in a stable structure of polymer matrix has derived multitudes of applications. Once the template molecule is extracted from the polymer matrix, it leaves behind a cavity which is physically (size and shape) and chemically (functional binding site) compatible to the particular template molecule. Positron Annihilation Lifetime Spectroscopy (PALS) is a well known technique to measure cavity sizes precisely in the nanoscale and is not being used in the field of MIPs effectively. This method is capable of measuring nanopores and hence suitable to understand the physical selectivity of the MIPs better. With this idea in mind, we have prepared molecular imprinted polymers (MIPs) with methacrylicacid (MAA) as monomer and EGDMA as cross linker in different molar ratio for three different size template molecules, viz. 4-Chlorophenol (4CP)(2.29 Å), 2-Nephthol (2NP) (3.36 Å) and Phenolphthalein (PP) (4.47Å). FTIR and the dye chemical reactions are used to confirm the complete extraction of the template molecules from the polymer matrix. The free volume size and its distribution have been derived from the measured o-Ps lifetime spectra. Based on the free volume distribution analysis, the percentage of functional cavities for the three template molecules are determined. Percentage of functional binding cavities for 4-CP molecules has been found out to be 70.2% and the rest are native cavities. Similarly for 2NP it is 81.5% and nearly 100% for PP. Therefore, PALS method proves to be very precise and accurate for determining the physical selectivity of MIPs.

  6. Electrochemical sensor based on molecularly imprinted polymer for sensitive and selective determination of metronidazole via two different approaches.

    PubMed

    Liu, Jie; Tang, Hui; Zhang, Bo; Deng, Xiling; Zhao, Feilang; Zuo, Peng; Ye, Bang-Ce; Li, Yingchun

    2016-06-01

    A molecularly imprinted polymer decorated glassy carbon electrode (MIP/GCE) is facilely developed into an electrochemical sensing platform for detection of metronidazole (MNZ). MIP preparation was carried out via in situ electropolymerization and o-phenylenediamine was selected as the optimal functional monomer. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to characterize and assess the performance of the so-obtained sensor. In particular, two assay methods, which are based on different principles, were involved in the detection procedure. One is based on MIP/catalysis (Method І) and the other is MIP/gate effect (Method II). Comparison of these two methods was made in the aspects including detection range, sensitivity, accuracy, selectivity, repeatability, and long-term stability. It is found that Method І affords a lower detection limit of 3.33 × 10(-10) M (S/N = 3) while the detection limit of Method II is 6.67 × 10(-10) M (S/N = 3). The linear range of Method І and II is 1.0 × 10(-9) to 1.0 × 10(-8) M and 2.0 × 10(-9) to 1.0 × 10(-7) M, respectively. The MIP/GCE exhibits good recognition ability towards the template molecule-MNZ in the presence of the analogues of MNZ and other interferents, which can be ascribed to the successful imprinting effect during MIP membrane preparation. Graphical Abstract Procedure for fabricating MIP/GCE and its application in detecting metronidazole in serum. PMID:27100231

  7. Molecularly imprinted polymers for the pre-concentration of polar organic micropollutants for compound-specific isotope analysis

    NASA Astrophysics Data System (ADS)

    Bakkour, Rani; Hofstetter, Thomas B.

    2014-05-01

    Compound-specific isotope analysis (CSIA) is a promising tool for assessing transformations of polar organic micropollutants such as pesticides, pharmaceuticals and consumer chemicals in aquatic systems. There are, however, two major challenges: (1) Polar organic micropollutants occur at very low levels and, as a consequence, large amounts of water are required to achieve analyte enrichment with factors of 50'000 and more, inevitably leading to large interferences from the aqueous matrix. (2) The polarity of these micropollutants impedes the use of typical non-polar sorbates for solid-phase enrichment. In view of these challenges, the use of molecularly imprinted polymers (MIP) is a promising approach to produce tailor-made materials for highly selective enrichment of polar organic micropollutants with reduced matrix interferences. In this work, we explore the use of MIP to selectively enrich benzotriazoles, an important class of polar aquatic micropollutants. Polymers were synthesized in the presence of 5,6-dimethyl-1H-benzotriazole as a template, which leaves cavities in the polymer matrix with a very high affinity to the template and closely related structures including our main target analyte, 1H-benzotrizole. After extraction of the template, specific recognition of substituted benzotriazoles is expected by the synthesized MIPs. As the MIP has no specific affinity to the matrix, there is also expected to be negligible enrichment of the matrix. Retention factors of the MIP are compared for different synthetic procedures and to non-imprinted polymers where no specific intermolecular interactions with benzotriazoles are expected. Optimum performance of the MIP is demonstrated in this study in terms of the selectivity of enrichment, recoveries of analytes and the goodness of carbon and nitrogen isotope ratios measured by gas chromatography isotopic ratio mass spectrometry (GC/IRMS). This approach will enable us to enrich large amounts of aqueous samples while

  8. Molecularly imprinted polymer grafted on polysaccharide microsphere surface by the sol-gel process for protein recognition.

    PubMed

    Li, Feng; Li, Jing; Zhang, Shusheng

    2008-02-15

    An interfacial organic-inorganic hybridization concept was applied to the preparation of a new spherical imprinted material for protein recognition. The functional biopolymer chitosan (CS), shaped as microsphere and high-density cross-linked, constituted of the polysaccharide core for surface imprinting. After the model template protein, bovine serum albumin, was covalently immobilized by forming imine bonds with the functional amine groups of CS, two kinds of organic siloxane (3-aminopropyltrimethoxysiloxane: APTMS, and tetraethoxysiloxane: TEOS) assembled and polymerized on the polysaccharide-protein surface via sol-gel process in aqueous solution at room temperature. After template removal, the protein-imprinted sol-gel surface exhibited a prevalent preference for the template protein in adsorption experiments, as compared with four contrastive proteins. Bioinformatics methods were also employed to investigate the imprinting process and the recognition effect. The influence of siloxane type, pH, siloxane/water ratio on template removal and recognition selectivity was assessed. Under optimized imprinting conditions, a large quantity of well-distributed pores was observed on the immobilized-template imprinted surface. The surface-imprinted adsorbent offered a fast kinetics for template re-adsorption and could be reused. Compared with the imprinted material prepared with free-template, material prepared with immobilized-template possessed higher adsorption capacity towards template protein. Easy preparation of the described imprinted material, high affinity and good reusability make this approach attractive and broadly applicable in biotechnology for down-stream processing and biosensor. PMID:18371777

  9. Multiwalled carbon nanotube based molecular imprinted polymer for trace determination of 2,4-dichlorophenoxyaceticacid in natural water samples using a potentiometric method

    NASA Astrophysics Data System (ADS)

    Anirudhan, Thayyath S.; Alexander, Sheeba

    2014-06-01

    A novel potentiometric sensor based on ion imprinted polymer inclusion membrane (IPIM) was prepared from the modification of multiwalled carbon nanotube (MWCNT) based molecularly imprinted polymer for the trace determination of the pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) in natural water samples. MWCNTs are initially functionalized with vinyl groups through nitric acid oxidation along with reacting by allylamine. MWCNT based imprinted polymer (MWCNT-MIP) was synthesized by means of methacrylic acid (MAA) as the monomer, trimethylol propane trimethacrylate (TRIM) as the cross linker, α,α‧-azobisisobutyronitrile (AIBN) as the initiator and 2,4-D an organochlorine pesticide molecule as the template. Organized material was characterized by means of FTIR, XRD and SEM analyses. The sensing membrane was developed by the inclusion of 2,4-D imprinted polymer materials in the polyvinyl chloride (PVC) matrix. The optimization of operational parameters normally used such as amount and nature of plasticizers sensing material, pH and response time was conducted. From the non-imprinted (NIPIM) and imprinted polymer inclusion membrane (IPIM) sensors the response behavior of 2,4-D was compared under optimum conditions. The IPIM sensor responds in the range of 1 × 10-9-1 × 10-5 M and the detection limit was found to be 1.2 × 10-9 M. The stability of MWCNT-IPIM sensor was checked by various methods and it is found to be 3 months and it can be reused many times without losing its sensitivity. For the application of sensor experiments with ground and tap water samples were performed.

  10. Influence of mobile phase composition and cross-linking density on the enantiomeric recognition properties of molecularly imprinted polymers.

    PubMed

    Yu, C; Mosbach, K

    2000-08-01

    A series of experiments were conducted to investigate elements which affect the enantiomeric recognition properties of molecularly imprinted polymers (MIPs) in the HPLC mode. Our results show that the recognition properties of MIPs are greatly influenced by the mobile phase used. For a polymer prepared in acetonitrile, a good enantiomeric separation was observed when acetonitrile-based mobile phase was used, when the mobile phase was changed to chloroform-based, no enantiomeric recognition was observed although the sample molecule was retarded. This indicates that the specific co-operative binding interactions between the functional groups at the imprinted polymer's recognition sites and the sample molecule were considerably disrupted and only non-specific interactions remained. When the mobile phase was changed back to acetonitrile-based, the recognition was regained. In contrast, for polymers prepared in chloroform, chloroform-based mobile phase gave much better separation than acetonitrile-based mobile phase. When other solvents were tested, significant solvent effects were generally observed. Based on these observations, the recognition properties of the methacrylic acid (MAA)-co-ethylene glycol dimethacrylate (EGDMA) polymers were reinvestigated, and the results show that by simply using an optimised mobile phase system, significantly improved recognition over previously reported results was observed. For a polymer made against Cbz-L-Trp, 100 microg of Cbz-D,L-Trp was separated with a separation factor (alpha) of 4.23 and a resolution (Rs) of 3.87, whereas in the previous report, 10 microg of Cbz-D,L-Trp was only separated with alpha = 1.67 and Rs = 0.1. It is generally realised that the imprinted polymer's recognition property is also very much influenced by the nature of the polymer network. It was shown that the recognition decreased with a decrease in the apparent degree of cross-linking (molar percentage of cross-linker in the polymerisation mixture

  11. Preparation of hybrid molecularly imprinted polymer with double-templates for rapid simultaneous purification of theophylline and chlorogenic acid in green tea.

    PubMed

    Tang, Weiyang; Li, Guizhen; Row, Kyung Ho; Zhu, Tao

    2016-05-15

    A novel double-templates technique was adopted for solid-phase extraction packing agent, and the obtained hybrid molecularly imprinted polymers with double-templates (theophylline and chlorogenic acid) were characterized by fourier transform infrared and field emission scanning electron microscope. The molecular recognition ability and binding capability for theophylline and chlorogenic acid of polymers was evaluated by static absorption and dynamic adsorption curves. A rapid and accurate approach was established for simultaneous purification of theophylline and chlorogenic acid in green tea by coupling hybrid molecularly imprinted solid-phase extraction with high performance liquid chromatography. With optimization of SPE procedure, a reliable analytical method was developed for highly recognition towards theophylline and chlorogenic acid in green tea with satisfactory extraction recoveries (theophylline: 96.7% and chlorogenic acid: 95.8%). The limit of detection and limit of quantity of the method were 0.01μg/mL and 0.03μg/mL for theophylline, 0.05μg/mL and 0.17μg/mL for chlorogenic acid, respectively. The recoveries of proposed method at three spiked levels analysis were 98.7-100.8% and 98.3-100.2%, respectively, with the relative standard deviation less than 1.9%. Hybrid molecularly imprinted polymers with double-templates showed good performance for two kinds of targets, and the proposed approach with high affinity of hybrid molecularly imprinted polymers might offer a novel method for the purification of complex samples. PMID:26992488

  12. Surface Molecularly Imprinted Polymer of Chitosan Grafted Poly(methyl methacrylate) for 5-Fluorouracil and Controlled Release

    PubMed Central

    Zheng, Xue-Fang; Lian, Qi; Yang, Hua; Wang, Xiuping

    2016-01-01

    The molecular surface imprinted graft copolymer of chitosan with methyl methacrylate (MIP-CS-g-PMMA) were prepared by free radical polymerization with 5-fluorouracil (5-FU) as the template molecule using initiator of ammonium persulfate as adsorption system. MIPs were characterized by FTIR, X-ray diffraction, thermo-gravimetric analysis, 1H NMR and SEM. The mechanism of graft copolymerization and factors affected graft reaction were studied in details, and the optimum reaction conditions (to the highest %G and %E as the standard) were obtained at [MMA] 1.2 mol/L, [Chitosan] 16.67 mol/L, [initiator] 0.0062 mol/L, temperature 60 °C and reaction time 7 h. MIPs exhibited high recognition selectivity and excellent combining affinity to template molecular. The in vitro release of the 5-FU was highly pH-dependent and time delayed. The release behavior showed that the drugs did not release in simulated gastric fluid (pH = 1.0), and the drug release was small in the simulated small intestinal fluid (pH = 6.8), and drug abrupt release will be produced in the simulated colon fluid (pH = 7.4), indicating excellent colon-specific drug delivery behavior. PMID:26892676

  13. Silylated melamine and cyanuric acid as precursors for imprinted and hybrid silica materials with molecular recognition properties.

    PubMed

    Arrachart, Guilhem; Carcel, Carole; Trens, Philippe; Moreau, Jöel J E; Wong Chi Man, Michel

    2009-06-15

    Two monotrialkoxysilylated compounds that consist of complementary fragments of melamine (M) and cyanuric acid (CA) have been synthesised. The molecular recognition properties of the M and CA fragments through complementary hydrogen bonds (DAD and ADA; D=donor, A=acceptor) are the key factor used to direct the formation of hybrid silica materials by using a sol-gel process. These materials were synthesised following two methods: First, an organo-bridged silsesquioxane was obtained by the hydrolysis of the two complementary monotrialkoxysilylated melamine and cyanuric acid derivatives, with fluoride ions as a catalyst. The hydrogen-bonding interactions between the two organic fragments are responsible for the formation of the bridging unit. The transcription of the assembly into the hybrid material was characterised and evidenced by solid-state NMR (29Si, 13C) and FTIR spectroscopic experiments. Second, the molecular recognition was exploited to synthesise an imprinted hybrid silica. This material was prepared by co-condensation of tetraethyl orthosilicate (TEOS) with the monosilylated cyanuric acid derivative (CA) templated by nonsilylated melamine. The melamine template was completely removed by treating the solid material with hydrochloric acid. The reintroduction of the template was performed by treating the resulting material with an aqueous suspension of melamine. These steps were monitored and analysed by several techniques, such as solid-state NMR (29Si, 13C) and FTIR spectroscopic analysis and nitrogen adsorption-desorption isotherms. PMID:19440996

  14. Surface Molecularly Imprinted Polymer of Chitosan Grafted Poly(methyl methacrylate) for 5-Fluorouracil and Controlled Release.

    PubMed

    Zheng, Xue-Fang; Lian, Qi; Yang, Hua; Wang, Xiuping

    2016-01-01

    The molecular surface imprinted graft copolymer of chitosan with methyl methacrylate (MIP-CS-g-PMMA) were prepared by free radical polymerization with 5-fluorouracil (5-FU) as the template molecule using initiator of ammonium persulfate as adsorption system. MIPs were characterized by FTIR, X-ray diffraction, thermo-gravimetric analysis, (1)H NMR and SEM. The mechanism of graft copolymerization and factors affected graft reaction were studied in details, and the optimum reaction conditions (to the highest %G and %E as the standard) were obtained at [MMA] 1.2 mol/L, [Chitosan] 16.67 mol/L, [initiator] 0.0062 mol/L, temperature 60 °C and reaction time 7 h. MIPs exhibited high recognition selectivity and excellent combining affinity to template molecular. The in vitro release of the 5-FU was highly pH-dependent and time delayed. The release behavior showed that the drugs did not release in simulated gastric fluid (pH = 1.0), and the drug release was small in the simulated small intestinal fluid (pH = 6.8), and drug abrupt release will be produced in the simulated colon fluid (pH = 7.4), indicating excellent colon-specific drug delivery behavior. PMID:26892676

  15. Preparation of thermal-responsive magnetic molecularly imprinted polymers for selective removal of antibiotics from aqueous solution.

    PubMed

    Xu, Longcheng; Pan, Jianming; Dai, Jiangdong; Li, Xiuxiu; Hang, Hui; Cao, Zhijing; Yan, Yongsheng

    2012-09-30

    A novel thermal-responsive magnetic molecularly imprinted polymers (TMMIPs), maghemite/silica/poly (N-isopropylacrylamide-co-acrylamide-co-ethylene glycol dimethacrylate) (γ-Fe(2)O(3)/SiO(2)/P (NIPAm-co-AAm-co-EGDMA)), were developed as a potential effective adsorbent for selectively remove sulfamethazine (SMZ) exist in aquatic environments, which has been recognized as a warranting considerable issue. Free radical polymerization of NIPAm, AAm and EGDMA was performed in dimethyl sulfoxide/water (DMSO/H(2)O) (v/v=9/1) with 2,2'-azobisisobutyronitrile (AIBN) as initiator to coat γ-Fe(2)O(3)/SiO(2)/3-(methacryloxyl) propyl trimethoxysilane (MPS) microspheres through the capture of oligomers with the aid of vinyl groups on their surfaces. The unique aspect of TMMIPs was that they combined molecular recognition, magnetic separation and thermo-responsiveness. The got material was characterized by SEM, TEM, FT-IR and VSM. Batch mode adsorption studies were carried out to investigate the specific adsorption equilibrium, kinetics, and selective recognition ability of TMMIPs. Reversible recognition and release of template molecule were realized by changing environmental temperatures. Several other antibiotics were selected as model analytes to evaluate the selective recognition performance of TMMIPs. The TMMIPs have good temperature response, selectivity and reusability, making them possible in applying for antibiotics separation and controlled release. PMID:22795838

  16. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production. PMID:27311588

  17. Chemically modified polypyrrole

    SciTech Connect

    Inagaki, T.; Skotheim, T.A.; Lee, H.S.; Okamoto, Y.; Samuelson, L.; Tripathy, S.

    1988-01-01

    Polypyrrole (PPy) films have been systematically modified with electroactive groups in the ..beta..-position to design electrode materials with specific electrochemical and surface active properties. Electrochemical copolymerization of pyrrole and 3-(6-ferrocenyl,6-hydroxyhexyl)pyrrole (P-6-Fc) yields a ferrocene functionalized polypyrrole with a controlled amount to ferrocene functionalization. And also, copolymers of pyrrole and 3-(4-(2,5- dimethoxyphenyl)butyl)pyrrole (P-MP) can be made by electrochemical polymerization and converted to the copolymers containing pH dependent electroactive hydroquinone moieties. Derivatized pyrroles have also been incorporated into Langmuir-Blodgett film structures. The surface pressure-area isotherms of 3-(13-ferrocenyl,13-hydroxytridecy)pyrrole (P-13-Fc) and the mixed monolayer of P-13-Fc and 3-n-hexadecylpyrrole (HDP) are shown. 17 refs., 4 figs.

  18. Core-shell molecularly imprinted polymer nanoparticles with assistant recognition polymer chains for effective recognition and enrichment of natural low-abundance protein.

    PubMed

    Liu, Dejing; Yang, Qian; Jin, Susu; Song, Yingying; Gao, Junfei; Wang, Ying; Mi, Huaifeng

    2014-02-01

    Core-shell molecular imprinting of nanomaterials overcomes difficulties with template transfer and achieves higher binding capacities for macromolecular imprinting, which are more important to the imprinting of natural low-abundance proteins from cell extracts. In the present study, a novel strategy of preparing core-shell nanostructured molecularly imprinted polymers (MIPs) was developed that combined the core-shell approach with assistant recognition polymer chains (ARPCs). Vinyl-modified silica nanoparticles were used as support and ARPCs were used as additional functional monomers. Immunoglobulin heavy chain binding protein (BiP) from the endoplasmic reticulum (ER) was chosen as the model protein. The cloned template protein BiP was selectively assembled with ARPCs from their library, which contained numerous limited-length polymer chains with randomly distributed recognition and immobilization sites. The resulting complex was copolymerized onto the surface of vinyl-modified silica nanoparticles under low concentrations of the monomers. After template removal, core-shell-structured nanoparticles with a thin imprinted polymer layer were produced. The particles demonstrated considerably high adsorption capacity, fast adsorption kinetics and selective binding affinities toward the template BiP. Furthermore, the synthesized MIP nanoparticles successfully isolated cloned protein BiP from protein mixtures and highly enriched BiP from an ER extract containing thousands of kinds of proteins. The enrichment reached 115-fold and the binding capacity was 5.4 μg g(-1), which were higher than those achieved by using traditional MIP microspheres. The advantageous properties of MIP nanoparticles hold promise for further practical applications in biology, such as protein analysis and purification. PMID:24140608

  19. Selective sample pretreatment by molecularly imprinted polymer monolith for the analysis of fluoroquinolones from milk samples.

    PubMed

    Zheng, Ming-Ming; Gong, Rui; Zhao, Xing; Feng, Yu-Qi

    2010-04-01

    Water-compatible pefloxacin-imprinted monoliths synthesized in a water-containing system were used for the selective extraction of fluoroquinolones (FQs). The MIP monolith was synthesized by using methacrylic acid as the functional monomer, di(ethylene glycol) dimethacrylate as a cross-linker and methanol-water (10:3, v/v) as the porogenic solvent. The ability of the derivated MIP for selective recognition of FQs (ciprofloxacin, difloxacin, danofloxacin and enrofloxacin) and quinolones (flumequine, and oxolinic acid) was evaluated. The derivated monolith showed high selectivity and was able to distinguish between FQs and quinolones. A simple rapid and sensitive method using polymer monolith microextraction (PMME) based on the MIP monolith combined with HPLC with fluorescence detection was developed for the determination of four FQs from milk samples. Owing to the unique porous structure and flow-through channels in the network skeleton of the MIP monolith, phosphate buffer diluted milk samples were directly supplied to PMME; allowing non-specific bound proteins and other biological matrix to be washed out, and FQs to be selectively enriched. The limit of detection of the method was 0.4-1.6ng/mL and recovery was 92.4-98.2% with relative standard deviations less than 5.9%. PMID:20189184

  20. 2D Confined-Space Assisted Growth of Molecular-Level-Thick Polypyrrole Sheets with High Conductivity and Transparency.

    PubMed

    Yang, Yang; Wang, Dong; Wu, Yongjin; Tian, Xiaorui; Qin, Haili; Hu, Liang; Zhang, Ting; Ni, Weihai; Jin, Jian

    2016-04-01

    Herein, the use of a 2D soft template system composed of hundred-nanometer-thick water/ethanol mixed layers sandwiched by lamellar bilayer membranes of a self-assembled amphiphilic molecule to produce ultrathin polyprrole (PPy) with a uniform thickness as thin as 3.8 nm and with large dimensions (>2 μm(2) ) is presented. The obtained PPy nanosheets exhibit regioregularity with ordered chain alignment where the polymer chains in the nanosheets produced are well aligned with a clear interchain spacing as confirmed by small-angle X-ray scattering measurement. The molecular-level-thick PPy nanosheets exhibit extremely high conductivity up to 1330 S m(-1) , thanks to the ordered alignment of polymer chains in the nanosheets, and a high transparency in both the visible region (transmittance >99%) and near-infrared region (transmittance >93%). PMID:26833631

  1. The development of a new optical sensor based on the Mn doped ZnS quantum dots modified with the molecularly imprinted polymers for sensitive recognition of florfenicol

    NASA Astrophysics Data System (ADS)

    Sadeghi, Susan; Jahani, Moslem; Belador, Foroogh

    2016-04-01

    The Mn doped ZnS quantum dots (Mn:ZnS QDs) capped with the florfenicol molecularly imprinted polymer (Mn:ZnS QDs@MIP) were prepared via the sol-gel surface imprinting approach using 3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross-linker for the optosensing of the florfenicol. Transmission electron microscopy (TEM), X-ray diffractometer, IR spectroscopy, UV-Vis absorption spectrophotometry, and spectrofluorometry were used to elucidate the formation, morphology, and identification of the products. To illustrate the usefulness of the new imprinted material, the non-imprinted coated Mn:ZnS QDs (Mn:ZnS QDs@NIP) were synthesized without the presence of the florfenicol. It was revealed that the fluorescence (FL) intensity of the Mn:ZnS QDs@MIP increased with increasing the FF concentration. Under the optimal conditions, changes in the FL intensity in the presence of the target molecule showed a linear response in the concentration range of 30-700 μmol L- 1 with a detection limit of 24 μmol L- 1. The developed method was finally applied successfully to the determination of FF in different meat samples with satisfactory recoveries.

  2. The development of a new optical sensor based on the Mn doped ZnS quantum dots modified with the molecularly imprinted polymers for sensitive recognition of florfenicol.

    PubMed

    Sadeghi, Susan; Jahani, Moslem; Belador, Foroogh

    2016-04-15

    The Mn doped ZnS quantum dots (Mn:ZnS QDs) capped with the florfenicol molecularly imprinted polymer (Mn:ZnS QDs@MIP) were prepared via the sol-gel surface imprinting approach using 3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross-linker for the optosensing of the florfenicol. Transmission electron microscopy (TEM), X-ray diffractometer, IR spectroscopy, UV-Vis absorption spectrophotometry, and spectrofluorometry were used to elucidate the formation, morphology, and identification of the products. To illustrate the usefulness of the new imprinted material, the non-imprinted coated Mn:ZnS QDs (Mn:ZnS QDs@NIP) were synthesized without the presence of the florfenicol. It was revealed that the fluorescence (FL) intensity of the Mn:ZnS QDs@MIP increased with increasing the FF concentration. Under the optimal conditions, changes in the FL intensity in the presence of the target molecule showed a linear response in the concentration range of 30-700μmolL(-1) with a detection limit of 24μmolL(-1). The developed method was finally applied successfully to the determination of FF in different meat samples with satisfactory recoveries. PMID:26828536

  3. Temperature and magnetism bi-responsive molecularly imprinted polymers: Preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil.

    PubMed

    Li, Longfei; Chen, Lin; Zhang, Huan; Yang, Yongzhen; Liu, Xuguang; Chen, Yongkang

    2016-04-01

    Temperature and magnetism bi-responsive molecularly imprinted polymers (TMMIPs) based on Fe3O4-encapsulating carbon nanospheres were prepared by free radical polymerization, and applied to selective adsorption and controlled release of 5-fluorouracil (5-FU) from an aqueous solution. Characterization results show that the as-synthesized TMMIPs have an average diameter of about 150 nm with a typical core-shell structure, and the thickness of the coating layer is approximately 50 nm. TMMIPs also displayed obvious magnetic properties and thermo-sensitivity. The adsorption results show that the prepared TMMIPs exhibit good adsorption capacity (up to 96.53 mg/g at 25 °C) and recognition towards 5-FU. The studies on 5-FU loading and release in vitro suggest that the release rate increases with increasing temperature. Meanwhile, adsorption mechanisms were explored by using a computational analysis to simulate the imprinted site towards 5-FU. The interaction energy between the imprinted site and 5-FU is -112.24 kJ/mol, originating from a hydrogen bond, Van der Waals forces and a hydrophobic interaction between functional groups located on 5-FU and a NIPAM monomer. The electrostatic potential charges and population analysis results suggest that the imprinted site of 5-FU can be introduced on the surface of TMMIPs, confirming their selective adsorption behavior for 5-FU. PMID:26838836

  4. Selective mixed-bed solid phase extraction of atrazine herbicide from environmental water samples using molecularly imprinted polymer.

    PubMed

    Zarejousheghani, Mashaalah; Fiedler, Petra; Möder, Monika; Borsdorf, Helko

    2014-11-01

    A novel approach for the selective extraction of organic target compounds from water samples has been developed using a mixed-bed solid phase extraction (mixed-bed SPE) technique. The molecularly imprinted polymer (MIP) particles are embedded in a network of silica gel to form a stable uniform porous bed. The capabilities of this method are demonstrated using atrazine as a model compound. In comparison to conventional molecularly imprinted-solid phase extraction (MISPE), the proposed mixed-bed MISPE method in combination with gas chromatography-mass spectrometry (GC-MS) analysis enables more reproducible and efficient extraction performance. After optimization of operational parameters (polymerization conditions, bed matrix ingredients, polymer to silica gel ratio, pH of the sample solution, breakthrough volume plus washing and elution conditions), improved LODs (1.34 µg L(-1) in comparison to 2.25 µg L(-1) obtained using MISPE) and limits of quantification (4.5 µg L(-1) for mixed-bed MISPE and 7.5 µg L(-1) for MISPE) were observed for the analysis of atrazine. Furthermore, the relative standard deviations (RSDs) for atrazine at concentrations between 5 and 200 µg L(-1) ranged between 1.8% and 6.3% compared to MISPE (3.5-12.1%). Additionally, the column-to-column reproducibility for the mixed-bed MISPE was significantly improved to 16.1%, compared with 53% that was observed for MISPE. Due to the reduced bed-mass sorbent and at optimized conditions, the total amount of organic solvents required for conditioning, washing and elution steps reduced from more than 25 mL for conventional MISPE to less than 2 mL for mixed-bed MISPE. Besides reduced organic solvent consumption, total sample preparation time of the mixed-bed MISPE method relative to the conventional MISPE was reduced from more than 20 min to less than 10 min. The amount of organic solvent required for complete elution diminished from 3 mL (conventional MISPE) to less than 0.4 mL with the mixed

  5. On-line detection of hippuric acid by microextraction with a molecularly-imprinted polysulfone membrane sorbent and liquid chromatography-tandem mass spectrometry.

    PubMed

    Moein, Mohammad Mahdi; El-Beqqali, Aziza; Javanbakht, Mehran; Karimi, Mohammad; Akbari-Adergani, Behrouz; Abdel-Rehim, Mohamed

    2014-10-30

    Destruction of sorbents during consecutive extractions using the micro-extraction by packed sorbent (MEPS) technique is a serious problem. In MEPS the complex matrix such as plasma and blood can affect the sorbent physical properties and the sorbent can be deteriorated after handling of few samples. To overcome this problem, the surface of a polysulfone membrane (PSM) was modified by a molecularly imprinted sol-gel and utilized for online extraction of a lung cancer biomarker, hippuric acid (HA), in biological matrices. The molecularly imprinted polymer membrane provided fast, sensitive, selective and robust sample preparation method for HA in biological fluids. In addition, MIP membrane could be used for up to 50 extractions without a significant change in extraction recovery. To achieve the best results, the parameters that influenced the extraction efficiency were thoroughly investigated. Moreover, for evaluating the performance of the molecularly imprinted sol-gel membrane (MISM), a non-molecularly imprinted sol-gel membrane (NISM) as a blank