Science.gov

Sample records for molecularly targeted therapy

  1. Hepatotoxicity of molecular targeted therapy

    PubMed Central

    Sałek-Zań, Agata

    2014-01-01

    A constant increase in occurrence of neoplasms is observed; hence new methods of therapy are being intensively researched. One of the methods of antineoplastic treatment is molecular targeted therapy, which aims to influence individual processes occurring in cells. Using this type of medications is associated with unwanted effects resulting from the treatment. Liver damage is a major adverse effect diagnosed during targeted therapy. Drug-induced liver damage can occur as necrosis of hepatocytes, cholestatic liver damage and cirrhosis. Hepatotoxicity is evaluated on the basis of International Consensus Criteria. Susceptibility of the liver to injury is connected not only with toxicity of the used medications but also with metastasis, coexistence of viral infections or other chronic diseases as well as the patient's age. It has been proven that in most cases the liver injury is caused by treatment with multikinase inhibitors, in particular tyrosine kinase inhibitors. The Food and Drug Administration (FDA) ordered the inclusion of additional labels – so-called “black box warnings” – indicating increased risk of liver injury when treating with pazopanib, sunitinib, lapatinib and regorafenib. A meta-analysis published in 2013 showed that treating neoplastic patients with tyrosine kinase inhibitors can increase the risk of drug-induced liver damage at least twofold. Below the mechanisms of drug-induced liver injury and hepatotoxic effects of molecular targeted therapy are described. PMID:26034384

  2. Ovarian cancer: emerging molecular-targeted therapies

    PubMed Central

    Sourbier, Carole

    2012-01-01

    With about 22,000 new cases estimated in 2012 in the US and 15,500 related deaths, ovarian cancer is a heterogeneous and aggressive disease. Even though most of patients are sensitive to chemotherapy treatment following surgery, recurring disease is almost always lethal, and only about 30% of the women affected will be cured. Thanks to a better understanding of the molecular mechanisms underlying ovarian cancer malignancy, new therapeutic options with molecular-targeted agents have become available. This review discusses the rationale behind molecular-targeted therapies and examines how newly identified molecular targets may enhance personalized therapies for ovarian cancer patients. PMID:22807625

  3. [Anti-angiogenesis and molecular targeted therapies].

    PubMed

    Miyanaga, Akihiko; Gemma, Akihiko

    2015-08-01

    Tumor angiogenesis contributes to the development of tumor progression. Several vascular endothelial growth factor(VEGF)-targeted agents, administered either as single agents or in combination with chemotherapy, have been shown to benefit patients with advanced-stage malignancies. In particular, bevacizumab is a humanized monoclonal antibody that specifically targets VEGF, inhibiting angiogenesis, thereby impeding tumor growth and survival. It is also possible that combined VEGF and the epidermal growth factor (EGFR) pathway blockade could further enhance antitumor efficacy and help prevent resistance to therapy. Preclinical and clinical studies have shown new various molecular targets and the functional characteristics of tumor angiogenesis, which may provide strategies for improving the therapeutic benefit. PMID:26281687

  4. [Molecular alterations in melanoma and targeted therapies].

    PubMed

    Mourah, Samia; Lebbé, Céleste

    2014-12-01

    Melanoma is a skin cancer whose incidence is increasing steadily. The recent discovery of frequent and recurrent genetic alterations in cutaneous melanoma allowed a molecular classification of tumors into distinct subgroups, and paved the way for targeted therapy. Several signaling pathways are involved in the progression of this disease with oncogenic mutations affecting signaling pathways: MAPK, PI3K, cAMP and cyclin D1/CDK4. In each of these pathways, several potential therapeutic targets have been identified and specific inhibitors have already been developed and have shown clinical efficacy. The use of these inhibitors is often conditioned by tumors genotyping. In France, melanomas genotyping is supported by the platforms of the National Cancer Institute (INCA), which implemented a national program ensuring access to innovation for personalized medicine. The identification of new targets in melanoma supplies a very active dynamic development of innovative molecules contributing to changing the therapeutic landscape of this pathology. PMID:25776766

  5. Treatment planning for molecular targeted radionuclide therapy.

    PubMed

    Siantar, Christine Hartmann; Vetter, Kai; DeNardo, Gerald L; DeNardo, Sally J

    2002-06-01

    Molecular targeted radionuclide therapy promises to expand the usefulness of radiation to successfully treat widespread cancer. The unique properties of radioactive tags make it possible to plan treatments by predicting the radiation absorbed dose to both tumors and normal organs, using a pre-treatment test dose of radiopharmaceutical. This requires a combination of quantitative, high-resolution, radiation-detection hardware and computerized dose-estimation software, and would ideally include biological dose-response data in order to translate radiation absorbed dose into biological effects. Data derived from conventional (external beam) radiation therapy suggests that accurate assessment of the radiation absorbed dose in dose-limiting normal organs could substantially improve the observed clinical response for current agents used in a myeloablative regimen, enabling higher levels of tumor control at lower tumor-to-normal tissue therapeutic indices. Treatment planning based on current radiation detection and simulations technology is sufficient to impact on clinical response. The incorporation of new imaging methods, combined with patient-specific radiation transport simulations, promises to provide unprecedented levels of resolution and quantitative accuracy, which are likely to increase the impact of treatment planning in targeted radionuclide therapy. PMID:12136519

  6. Potential molecular targets for Ewing's sarcoma therapy.

    PubMed

    Jully, Babu; Rajkumar, Thangarajan

    2012-10-01

    Ewing's sarcoma (ES) is a highly malignant tumor of children and young adults. Modern therapy for Ewing's sarcoma combines high-dose chemotherapy for systemic control of disease, with advanced surgical and/or radiation therapeutic approaches for local control. Despite optimal management, the cure rate for localized disease is only approximately 70%, whereas the cure rate for metastatic disease at presentation is less than 30%. Patients who experience long-term disease-free survival are at risk for significant side-effects of therapy, including infertility, limb dysfunction and an increased risk for second malignancies. The identification of new targets for innovative therapeutic approaches is, therefore, strongly needed for its treatment. Many new pharmaceutical agents have been tested in early phases of clinical trials in ES patients who have recurrent disease. While some agents led to partial response or stable disease, the percentages of drugs eliciting responses or causing an overall effect have been minimal. Furthermore, of the new pharmaceuticals being introduced to clinical practice, the most effective agents also have dose-limiting toxicities. Novel approaches are needed to minimize non-specific toxicity, both for patients with recurrence and at diagnosis. This report presents an overview of the potential molecular targets in ES and highlights the possibility that they may serve as therapeutic targets for the disease. Although additional investigations are required before most of these approaches can be assessed in the clinic, they provide a great deal of hope for patients with Ewing's sarcoma. PMID:23580819

  7. MOLECULAR TARGETED THERAPIES FOR PANCREATIC CANCER

    PubMed Central

    Borja-Cacho, Daniel; Jensen, Eric Hans; Saluja, Ashok Kumar; Buchsbaum, Donald J; Vickers, Selwyn Maurice

    2008-01-01

    Background Pancreatic cancer cells express different mutations that increase the aggressiveness and confer resistance to conventional chemo- and radiotherapy. Molecules that selectively bind and inhibit these mutations are effective in other solid tumors and are now emerging as a complementary therapy in pancreatic cancer. The objective of this review is to describe the effect of drugs that inhibit specific mutations present in pancreatic cancer with special emphasis in clinical trials. Data sources We reviewed the English-language literature (Medline) addressing the role of drugs that target mutations present in pancreatic cancer. Both preclinical and clinical studies were included. Conclusions The preclinical evidence supports the combination of conventional approved therapies plus drugs that block EGFR, VEGF or induce apoptosis. However, most of the current clinical evidence is limited to small phase I trials evaluating the toxicity and safety of these regimens. The results of additional randomized trials that are still undergoing will clarify the role of these drugs in pancreatic cancer. Mini-abstract The role of molecular targeting in the treatment of pancreatic cancer is expanding. In this review, we summarize the most promising therapeutic targets as well as the current status of ongoing clinical trials. PMID:18718222

  8. [Mechanism and clinical progress of molecular targeted cancer therapy].

    PubMed

    Hu, Hong-xiang; Wang, Xue-qing; Zhang, Hua; Zhang, Qiang

    2015-10-01

    Molecular target-based cancer therapy is playing a more and more important role in cancer therapy because of its high specificity, good tolerance and so on. There are different kinds of molecular targeted drugs such as monoclonal antibodies and small molecular kinase inhibitors, and more than 50 drugs have been approved since 1997. When the first monoclonal antibody, rituximab, was on the market. The development of molecular target-based cancer therapeutics has become the main approach. Based on this, we summarized the drugs approved by FDA and introduced their mechanism of actions and clinical applications. In order to incorporate most molecular targeted drugs and describe clearly various characteristics, we divided them into four categories: drugs related to EGFR, drugs related to antiangiogenesis, drugs related to specific antigen and other targeted drugs. The purpose of this review is to provide a current status of this field and discover the main problems in the molecular targeted therapy. PMID:26837167

  9. Molecular Targeted α-Particle Therapy for Oncologic Applications

    PubMed Central

    Wadas, Thaddeus J.; Pandya, Darpan N.; Solingapuram Sai, Kiran Kumar; Mintz, Akiva

    2015-01-01

    OBJECTIVE A significant challenge facing traditional cancer therapies is their propensity to significantly harm normal tissue. The recent clinical success of targeting therapies by attaching them to antibodies that are specific to tumor-restricted biomarkers marks a new era of cancer treatments. CONCLUSION In this article, we highlight the recent developments in α-particle therapy that have enabled investigators to exploit this highly potent form of therapy by targeting tumor-restricted molecular biomarkers. PMID:25055256

  10. Molecular Targeted Therapies of Aggressive Thyroid Cancer

    PubMed Central

    Ferrari, Silvia Martina; Fallahi, Poupak; Politti, Ugo; Materazzi, Gabriele; Baldini, Enke; Ulisse, Salvatore; Miccoli, Paolo; Antonelli, Alessandro

    2015-01-01

    Differentiated thyroid carcinomas (DTCs) that arise from follicular cells account >90% of thyroid cancer (TC) [papillary thyroid cancer (PTC) 90%, follicular thyroid cancer (FTC) 10%], while medullary thyroid cancer (MTC) accounts <5%. Complete total thyroidectomy is the treatment of choice for PTC, FTC, and MTC. Radioiodine is routinely recommended in high-risk patients and considered in intermediate risk DTC patients. DTC cancer cells, during tumor progression, may lose the iodide uptake ability, becoming resistant to radioiodine, with a significant worsening of the prognosis. The lack of specific and effective drugs for aggressive and metastatic DTC and MTC leads to additional efforts toward the development of new drugs. Several genetic alterations in different molecular pathways in TC have been shown in the past few decades, associated with TC development and progression. Rearranged during transfection (RET)/PTC gene rearrangements, RET mutations, BRAF mutations, RAS mutations, and vascular endothelial growth factor receptor 2 angiogenesis pathways are some of the known pathways determinant in the development of TC. Tyrosine kinase inhibitors (TKIs) are small organic compounds inhibiting tyrosine kinases auto-phosphorylation and activation, most of them are multikinase inhibitors. TKIs act on the aforementioned molecular pathways involved in growth, angiogenesis, local, and distant spread of TC. TKIs are emerging as new therapies of aggressive TC, including DTC, MTC, and anaplastic thyroid cancer, being capable of inducing clinical responses and stabilization of disease. Vandetanib and cabozantinib have been approved for the treatment of MTC, while sorafenib and lenvatinib for DTC refractory to radioiodine. These drugs prolong median progression-free survival, but until now no significant increase has been observed on overall survival; side effects are common. New efforts are made to find new more effective and safe compounds and to personalize the therapy in

  11. Apoptosis and Molecular Targeting Therapy in Cancer

    PubMed Central

    Hassan, Mohamed; Watari, Hidemichi; AbuAlmaaty, Ali; Ohba, Yusuke; Sakuragi, Noriaki

    2014-01-01

    Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction. PMID:25013758

  12. Application of Monte Carlo Methods in Molecular Targeted Radionuclide Therapy

    SciTech Connect

    Hartmann Siantar, C; Descalle, M-A; DeNardo, G L; Nigg, D W

    2002-02-19

    Targeted radionuclide therapy promises to expand the role of radiation beyond the treatment of localized tumors. This novel form of therapy targets metastatic cancers by combining radioactive isotopes with tumor-seeking molecules such as monoclonal antibodies and custom-designed synthetic agents. Ultimately, like conventional radiotherapy, the effectiveness of targeted radionuclide therapy is limited by the maximum dose that can be given to a critical, normal tissue, such as bone marrow, kidneys, and lungs. Because radionuclide therapy relies on biological delivery of radiation, its optimization and characterization are necessarily different than for conventional radiation therapy. We have initiated the development of a new, Monte Carlo transport-based treatment planning system for molecular targeted radiation therapy as part of the MINERVA treatment planning system. This system calculates patient-specific radiation dose estimates using a set of computed tomography scans to describe the 3D patient anatomy, combined with 2D (planar image) and 3D (SPECT, or single photon emission computed tomography) to describe the time-dependent radiation source. The accuracy of such a dose calculation is limited primarily by the accuracy of the initial radiation source distribution, overlaid on the patient's anatomy. This presentation provides an overview of MINERVA functionality for molecular targeted radiation therapy, and describes early validation and implementation results of Monte Carlo simulations.

  13. [Progress in molecularly targeted therapies for acute myeloid leukemia].

    PubMed

    Tomita, Akihiro

    2015-02-01

    Genetic abnormalities including specific point mutations have recently been confirmed by applying comprehensive genome sequencing analyses. Molecular targeting therapies, which focus on the mutated proteins and over-expressed proteins in acute myeloid leukemia (AML) cells, are now being developed in clinical studies and/or based on in vitro analyses. This manuscript summarizes the genetic abnormalities in AML cells and some of the current molecular targeting therapies including FLT3 inhibitors (e.g. AC220; Quizartinib), Polo like kinase 1 (PLK1) inhibitors (e.g. BI-6727; Volasertib), IDH2 inhibitors (e.g. AG-221), and XPO1 inhibitors (e.g. KPT-330; Selinexor). PMID:25765792

  14. Molecular diagnosis for personalized target therapy in gastric cancer.

    PubMed

    Cho, Jae Yong

    2013-09-01

    Gastric cancer is the second leading cause of cancer-related deaths worldwide. In advanced and metastatic gastric cancer, the conventional chemotherapy with limited efficacy shows an overall survival period of about 10 months. Patient specific and effective treatments known as personalized cancer therapy is of significant importance. Advances in high-throughput technologies such as microarray and next generation sequencing for genes, protein expression profiles and oncogenic signaling pathways have reinforced the discovery of treatment targets and personalized treatments. However, there are numerous challenges from cancer target discoveries to practical clinical benefits. Although there is a flood of biomarkers and target agents, only a minority of patients are tested and treated accordingly. Numerous molecular target agents have been under investigation for gastric cancer. Currently, targets for gastric cancer include the epidermal growth factor receptor family, mesenchymal-epithelial transition factor axis, and the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathways. Deeper insights of molecular characteristics for gastric cancer has enabled the molecular classification of gastric cancer, the diagnosis of gastric cancer, the prediction of prognosis, the recognition of gastric cancer driver genes, and the discovery of potential therapeutic targets. Not only have we deeper insights for the molecular diversity of gastric cancer, but we have also prospected both affirmative potentials and hurdles to molecular diagnostics. New paradigm of transdisciplinary team science, which is composed of innovative explorations and clinical investigations of oncologists, geneticists, pathologists, biologists, and bio-informaticians, is mandatory to recognize personalized target therapy. PMID:24156032

  15. New strategy for monitoring targeted therapy: molecular imaging

    PubMed Central

    Teng, Fei-Fei; Meng, Xue; Sun, Xin-Dong; Yu, Jin-Ming

    2013-01-01

    Targeted therapy is becoming an increasingly important component in the treatment of cancer. How to accurately monitor targeted therapy has been crucial in clinical practice. The traditional approach to monitor treatment through imaging has relied on assessing the change of tumor size by refined World Health Organization criteria, or more recently, by the Response Evaluation Criteria in Solid Tumors. However, these criteria, which are based on the change of tumor size, show some limitations for evaluating targeted therapy. Currently, genetic alterations are identified with prognostic as well as predictive potential concerning the use of molecularly targeted drugs. Conversely, considering the limitations of invasiveness and the issue of expression heterogeneity, molecular imaging is better able to assay in vivo biologic processes noninvasively and quantitatively, and has been a particularly attractive tool for monitoring treatment in clinical cancer practice. This review focuses on the applications of different kinds of molecular imaging including positron emission tomography-, magnetic resonance imaging-, ultrasonography-, and computed tomography-based imaging strategies on monitoring targeted therapy. In addition, the key challenges of molecular imaging are addressed to successfully translate these promising techniques in the future. PMID:24124361

  16. Clinical Challenges to Current Molecularly Targeted Therapies in Lung Cancer

    PubMed Central

    Chhabra, Gagan; Eggert, Ashley; Puri, Neelu

    2016-01-01

    Lung cancer is difficult to treat with a poor prognosis and a five year survival of 15%. Current molecularly targeted therapies are initially effective in non-small cell lung cancer (NSCLC) patients; however, they are plagued with difficulties including induced resistance and small therapeutically responsive populations. This mini review describes the mechanism of resistance to several molecularly targeted therapies which are currently being used to treat NSCLC. The major targets discussed are c-Met, EGFR, HER2, ALK, VEGFR, and BRAF. The first generation tyrosine kinase inhibitors (TKIs) resulted in resistance; however, second and third generation TKIs are being developed, which are generally more efficacious and have potential to treat NSCLC patients with resistance to first generation TKIs. Combination therapies could also be effective in preventing TKI resistance in NSCLC patients.

  17. Targeted molecular therapies in thyroid carcinoma.

    PubMed

    Romagnoli, Serena; Moretti, Sonia; Voce, Pasquale; Puxeddu, Efisio

    2009-12-01

    Thyroid cancer incidence has significantly increased in the last three decades and many patients seek medical attention for its treatment every year. Among follicular cell-derived tumors, the majority are differentiated thyroid carcinomas (DTC), whose prognosis is very good with only 15% of the cases presenting disease persistence or recurrence after initial treatment. Medullary thyroid carcinoma has a worse prognosis, especially in patients with diffused cancers at the time of initial surgery. Traditional treatment options for persistent or recurrent disease include additional surgery, radioiodine treatment and TSH-suppression in DTC patients; external beam radiotherapy, and cytotoxic chemotherapy, often have low efficacy and many patients with advanced disease ultimately die. In the last two decades many of the molecular events involved in cancer formation have been uncovered. This knowledge has prompted the development of novel therapeutic strategies mainly based on the inhibition of key molecular mediators of the tumorigenic process. In particular the class of small-molecule tyrosine kinase inhibitors was enriched by many compounds that have reached clinical trials and in some cases have had approval for clinical use in specific cancers. Many of these compounds entered clinical trials also for locally advanced or metastatic thyroid carcinomas showing very promising results. PMID:20126863

  18. Hepatocellular Carcinoma: Novel Molecular Targets in Carcinogenesis for Future Therapies

    PubMed Central

    Bertino, Gaetano; Demma, Shirin; Ardiri, Annalisa; Proiti, Maria; Gruttadauria, Salvatore; Toro, Adriana; Malaguarnera, Giulia; Bertino, Nicoletta; Malaguarnera, Michele; Malaguarnera, Mariano; Di Carlo, Isidoro

    2014-01-01

    Background. Hepatocellular carcinoma is one of the most common and lethal malignant tumors worldwide. Over the past 15 years, the incidence of HCC has more than doubled. Due to late diagnosis and/or advanced underlying liver cirrhosis, only limited treatment options with marginal clinical benefit are available in up to 70% of patients. During the last decades, no effective conventional cytotoxic systemic therapy was available contributing to the dismal prognosis in patients with HCC. A better knowledge of molecular hepatocarcinogenesis provides today the opportunity for targeted therapy. Materials and Methods. A search of the literature was made using cancer literature, the PubMed, Scopus, and Web of Science (WOS) database for the following keywords: “hepatocellular carcinoma,” “molecular hepatocarcinogenesis,” “targeted therapy,” and “immunotherapy.” Discussion and Conclusion. Treatment decisions are complex and dependent upon tumor staging, presence of portal hypertension, and the underlying degree of liver dysfunction. The knowledge of molecular hepatocarcinogenesis broadened the horizon for patients with advanced HCC. During the last years, several molecular targeted agents have been evaluated in clinical trials in advanced HCC. In the future, new therapeutic options will be represented by a blend of immunotherapy-like vaccines and T-cell modulators, supplemented by molecularly targeted inhibitors of tumor signaling pathways. PMID:25089265

  19. Treatment of advanced thyroid cancer: role of molecularly targeted therapies.

    PubMed

    Covell, Lorinda L; Ganti, Apar Kishor

    2015-09-01

    Advanced thyroid cancer is not amenable to therapy with conventional cytotoxic chemotherapy. However, newer advances in the understanding of the molecular pathogenesis of different subtypes of thyroid cancer have provided new opportunities for the evaluation of molecularly targeted therapies. This has led to multiple clinical trials using various multi-kinase inhibitors and the subsequent US FDA approval of sorafenib for differentiated thyroid cancer and vandetanib and cabozantinib for medullary thyroid carcinoma. This review provides a summary of the current literature for the treatment of advanced thyroid carcinoma and future directions in this disease. PMID:26335853

  20. Molecularly targeted therapies for malignant glioma: rationale for combinatorial strategies

    PubMed Central

    Thaker, Nikhil G; Pollack, Ian F

    2010-01-01

    Median survival of patients with malignant glioma (MG) from time of diagnosis is approximately 1 year, despite surgery, irradiation and conventional chemotherapy. Improving patient outcome relies on our ability to develop more effective therapies that are directed against the unique molecular aberrations within a patient’s tumor. Such molecularly targeted therapies may provide novel treatments that are more effective than conventional chemotherapeutics. Recently developed therapeutic strategies have focused on targeting several core glioma signaling pathways, including pathways mediated by growth-factors, PI3K/Akt/PTEN/mTOR, Ras/Raf/MEK/MAPK and other vital pathways. However, given the molecular diversity, heterogeneity and diverging and converging signaling pathways associated with MG, it is unlikely that any single agent will have efficacy in more than a subset of tumors. Overcoming these therapeutic barriers will require multiple agents that can simultaneously inhibit these processes, providing a rationale for combination therapies. This review summarizes the currently implemented single-agent and combination molecularly targeted therapies for MG. PMID:19951140

  1. Molecular mechanisms for vascular complications of targeted cancer therapies.

    PubMed

    Gopal, Srila; Miller, Kenneth B; Jaffe, Iris Z

    2016-10-01

    Molecularly targeted anti-cancer therapies have revolutionized cancer treatment by improving both quality of life and survival in cancer patients. However, many of these drugs are associated with cardiovascular toxicities that are sometimes dose-limiting. Moreover, the long-term cardiovascular consequences of these drugs, some of which are used chronically, are not yet known. Although the scope and mechanisms of the cardiac toxicities are better defined, the mechanisms for vascular toxicities are only beginning to be elucidated. This review summarizes what is known about the vascular adverse events associated with three classes of novel anti-cancer therapies: vascular endothelial growth factor (VEGF) inhibitors, breakpoint cluster-Abelson (BCR-ABL) kinase inhibitors used to treat chronic myelogenous leukaemia (CML) and immunomodulatory agents (IMiDs) used in myeloma therapeutics. Three of the best described vascular toxicities are reviewed including hypertension, increased risk of acute cardiovascular ischaemic events and arteriovenous thrombosis. The available data regarding the mechanism by which each therapy causes vascular complication are summarized. When data are limited, potential mechanisms are inferred from the known effects of inhibiting each target on vascular cell function and disease. Enhanced understanding of the molecular mechanisms of vascular side effects of targeted cancer therapy is necessary to effectively manage cancer patients and to design safer targeted cancer therapies for the future. PMID:27612952

  2. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma

    PubMed Central

    Wachsmann, Jason; Peng, Fangyu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872

  3. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma.

    PubMed

    Wachsmann, Jason; Peng, Fangyu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872

  4. Molecular Targeted Approaches to Cancer Therapy and Prevention Using Chalcones

    PubMed Central

    Jandial, Danielle D.; Blair, Christopher A.; Zhang, Saiyang; Krill, Lauren S.; Zhang, Yan-Bing; Zi, Xiaolin

    2014-01-01

    There is an emerging paradigm shift in oncology that seeks to emphasize molecularly targeted approaches for cancer prevention and therapy. Chalcones (1,3-diphenyl-2-propen-1-ones), naturally-occurring compounds with widespread distribution in spices, tea, beer, fruits and vegetables, consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. Due to their structural diversity, relative ease of chemical manipulation and reaction of α, β-unsaturated carbonyl moiety with cysteine residues in proteins, some lead chalcones from both natural products and synthesis have been identified in a variety of screening assays for modulating important pathways or molecular targets in cancers. These pathways and targets that are affected by chalcones include MDM2/p53, tubulin, proteasome, NF-kappa B, TRIAL/death receptors and mitochondria mediated apoptotic pathways, cell cycle, STAT3, AP-1, NRF2, AR, ER, PPAR-γ and β-catenin/Wnt. Compared to current cancer targeted therapeutic drugs, chalcones have the advantages of being inexpensive, easily available and less toxic; the ease of synthesis of chalcones from substituted benzaldehydes and acetophenones also makes them an attractive drug scaffold. Therefore, this review is focused on molecular targets of chalcones and their potential implications in cancer prevention and therapy. PMID:24467530

  5. Gene mutations and molecularly targeted therapies in acute myeloid leukemia

    PubMed Central

    Hatzimichael, Eleftheria; Georgiou, Georgios; Benetatos, Leonidas; Briasoulis, Evangelos

    2013-01-01

    Acute myelogenous leukemia (AML) can progress quickly and without treatment can become fatal in a short period of time. However, over the last 30 years fine-tuning of therapeutics have increased the rates of remission and cure. Cytogenetics and mutational gene profiling, combined with the option of allogeneic hematopoietic stem cell transplantation offered in selected patients have further optimized AML treatment on a risk stratification basis in younger adults. However there is still an unmet medical need for effective therapies in AML since disease relapses in almost half of adult patients becoming refractory to salvage therapy. Improvements in the understanding of molecular biology of cancer and identification of recurrent mutations in AML provide opportunities to develop targeted therapies and improve the clinical outcome. In the spectrum of identified gene mutations, primarily targetable lesions are gain of function mutations of tyrosine kinases FLT3, JAK2 and cKIT for which specific, dual and multi-targeted small molecule inhibitors have been developed. A number of targeted compounds such as sorafenib, quizartinib, lestaurtinib, midostaurin, pacritinib, PLX3397 and CCT137690 are in clinical development. For loss-of-function gene mutations, which are mostly biomarkers of favorable prognosis, combined therapeutic approaches can maximize the therapeutic efficacy of conventional therapy. Apart from mutated gene products, proteins aberrantly overexpressed in AML appear to be clinically significant therapeutic targets. Such a molecule for which targeted inhibitors are currently in clinical development is PLK1. We review characteristic gene mutations, discuss their biological functions and clinical significance and present small molecule compounds in clinical development, which are expected to have a role in treating AML subtypes with characteristic molecular alterations. PMID:23358589

  6. Progress of molecular targeted therapies for prostate cancers

    PubMed Central

    Fu, Weihua; Madan, Elena; Yee, Marla; Zhang, Hongtao

    2011-01-01

    Prostate cancer remains the most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in men in the United States. The current standard of care consists of prostatectomy and radiation therapy, which may often be supplemented with hormonal therapies. Recurrence is common, and many develop metastatic prostate cancer for which chemotherapy is only moderately effective. It is clear that novel therapies are needed for the treatment of the malignant forms of prostate cancer that recur after initial therapies, such as hormone refractory (HRPC) or castration resistant prostate cancer (CRPC). With advances in understanding of the molecular mechanisms of cancer, we have witnessed unprecedented progress in developing new forms of targeted therapy. Several targeted therapeutic agents have been developed and clinically used for the treatment of solid tumors such as breast cancer, non-small cell lung cancer, and renal cancer. Some of these reagents modulate growth factors and/or their receptors, which are abundant in cancer cells. Other reagents target the downstream signal transduction, survival pathways, and angiogenesis pathways that are abnormally activated in transformed cells or metastatic tumors. We will review current developments in this field, focusing specifically on treatments that can be applied to prostate cancers. Finally we will describe aspects of the future direction of the field with respect to discovering biomarkers to aid in identifying responsive prostate cancer patients. PMID:22146293

  7. Magnetomotive molecular probes for targeted contrast enhancement and therapy

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2011-03-01

    The diagnostic, interrogational, and therapeutic potential of molecular probes is rapidly being investigated and exploited across virtually every biomedical imaging modality. While many types of probes enhance contrast or delivery therapy by static localization to targeted sites, significant potential exists for utilizing dynamic molecular probes. Recent examples include molecular beacons, photoactivatable probes, or controlled switchable drug-releasing particles, to name a few. In this review, we describe a novel class of dynamic molecular probes that rely on the application and control of localized external magnetic fields. These magnetomotive molecular probes can provide optical image contrast through a modulated scattering signal, can interrogate the biomechanical properties of their viscoelastic microenvironment by tracking their underdamped oscillatory step-response to applied fields, and can potentially delivery therapy through nanometer-to-micrometer mechanical displacement or local hyperthermia. This class of magnetomotive agents includes not only magnetic iron-oxide nanoparticles, but also new magnetomotive microspheres or nanostructures with embedded iron-oxide agents. In vitro three-dimensional cell assays and in vivo targeting studies in animal tumor models have demonstrated the potential for multimodal detection and imaging, using magnetic resonance imaging for whole-body localization, and magnetomotive optical coherence tomography for high-resolution localization and imaging.

  8. Chemotherapy and molecular targeting therapy for recurrent cervical cancer.

    PubMed

    Tsuda, Naotake; Watari, Hidemichi; Ushijima, Kimio

    2016-04-01

    For patients with primary stage ⅣB, persistent, or recurrent cervical cancer, chemotherapy remains the standard treatment, although it is neither curative nor associated with long-term disease control. In this review, we summarized the history of treatment of recurrent cervical cancer, and the current recommendation for chemotherapy and molecular targeted therapy. Eligible articles were identified by a search of the MEDLINE bibliographical database for the period up to November 30, 2014. The search strategy included the following any or all of the keywords: "uterine cervical cancer", "chemotherapy", and "targeted therapies". Since cisplatin every 21 days was considered as the historical standard treatment for recurrent cervical cancer, subsequent trials have evaluated and demonstrated activity for other agents including paclitaxel, gemcitabine, topotecan and vinorelbine among others. Accordingly, promising agents were incorporated into phase Ⅲ trials. To examine the best agent to combine with cisplatin, several landmark phase Ⅲ clinical trials were conducted by Gynecologic Oncology Group (GOG) and Japan Clinical Oncology Group (JCOG). Through, GOG204 and JCOG0505, paclitaxel/cisplatin (TP) and paclitaxel/carboplatin (TC) are now considered to be the recommended therapies for recurrent cervical cancer patients. However, the prognosis of patients who are already resistant to chemotherapy, are very poor. Therefore new therapeutic strategies are urgently required. Molecular targeted therapy will be the most hopeful candidate of these strategies. From the results of GOG240, bevacizumab combined with TP reached its primary endpoint of improving overall survival (OS). Although, the prognosis for recurrent cervical cancer patients is still poor, the results of GOG240 shed light on the usefulness of molecular target agents to chemotherapy in cancer patients. Recurrent cervical cancer is generally considered incurable and current chemotherapy regiments offer only

  9. Evolving molecularly targeted therapies for advanced-stage thyroid cancers.

    PubMed

    Bible, Keith C; Ryder, Mabel

    2016-07-01

    Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid cancer (MTC), and two agents (sorafenib and lenvatinib) for the treatment of radioactive- iodine refractory differentiated thyroid cancer (DTC) in both the USA and in the EU. The effects of these and other therapies on overall survival and quality of life among patients with thyroid cancer, however, remain to be more-clearly defined. When applied early in the disease course, intensive multimodality therapy seems to improve the survival outcomes of patients with anaplastic thyroid cancer (ATC), but salvage therapies for ATC are of uncertain benefit. Additional innovative, rationally designed therapeutic strategies are under active development both for patients with DTC and for patients with ATC, with multiple phase II and phase III randomized clinical trials currently ongoing. Continued effort is being made to identify further signalling pathways with potential therapeutic relevance in thyroid cancers, as well as to elaborate on the complex interactions between signalling pathways, with the intention of translating these discoveries into effective and personalized therapies. Herein, we summarize the progress made in molecular medicine for advanced-stage thyroid cancers of different histotypes, analyse how these developments have altered - and might further refine - patient care, and identify open questions for future research. PMID:26925962

  10. Chemotherapy and molecular targeting therapy for recurrent cervical cancer

    PubMed Central

    Tsuda, Naotake; Watari, Hidemichi; Ushijima, Kimio

    2016-01-01

    For patients with primary stage ⅣB, persistent, or recurrent cervical cancer, chemotherapy remains the standard treatment, although it is neither curative nor associated with long-term disease control. In this review, we summarized the history of treatment of recurrent cervical cancer, and the current recommendation for chemotherapy and molecular targeted therapy. Eligible articles were identified by a search of the MEDLINE bibliographical database for the period up to November 30, 2014. The search strategy included the following any or all of the keywords: “uterine cervical cancer”, “chemotherapy”, and “targeted therapies”. Since cisplatin every 21 days was considered as the historical standard treatment for recurrent cervical cancer, subsequent trials have evaluated and demonstrated activity for other agents including paclitaxel, gemcitabine, topotecan and vinorelbine among others. Accordingly, promising agents were incorporated into phase Ⅲ trials. To examine the best agent to combine with cisplatin, several landmark phase Ⅲ clinical trials were conducted by Gynecologic Oncology Group (GOG) and Japan Clinical Oncology Group (JCOG). Through, GOG204 and JCOG0505, paclitaxel/cisplatin (TP) and paclitaxel/carboplatin (TC) are now considered to be the recommended therapies for recurrent cervical cancer patients. However, the prognosis of patients who are already resistant to chemotherapy, are very poor. Therefore new therapeutic strategies are urgently required. Molecular targeted therapy will be the most hopeful candidate of these strategies. From the results of GOG240, bevacizumab combined with TP reached its primary endpoint of improving overall survival (OS). Although, the prognosis for recurrent cervical cancer patients is still poor, the results of GOG240 shed light on the usefulness of molecular target agents to chemotherapy in cancer patients. Recurrent cervical cancer is generally considered incurable and current chemotherapy regiments

  11. Molecular Pathogenesis and Targeted Therapies for Intrahepatic Cholangiocarcinoma.

    PubMed

    Moeini, Agrin; Sia, Daniela; Bardeesy, Nabeel; Mazzaferro, Vincenzo; Llovet, Josep M

    2016-01-15

    Intrahepatic cholangiocarcinoma (iCCA) is a molecularly heterogeneous hepatobiliary neoplasm with poor prognosis and limited therapeutic options. The incidence of this neoplasm is growing globally. One third of iCCA tumors are amenable to surgical resection, but most cases are diagnosed at advanced stages with chemotherapy as the only established standard of practice. No molecular therapies are currently available for the treatment of this neoplasm. The poor understanding of the biology of iCCA and the lack of known oncogenic addiction loops has hindered the development of effective targeted therapies. Studies with sophisticated animal models defined IDH mutation as the first gatekeeper in the carcinogenic process and led to the discovery of striking alternative cellular origins. RNA- and exome-sequencing technologies revealed the presence of recurrent novel fusion events (FGFR2 and ROS1 fusions) and somatic mutations in metabolic (IDH1/2) and chromatin-remodeling genes (ARID1A, BAP1). These latest advancements along with known mutations in KRAS/BRAF/EGFR and 11q13 high-level amplification have contributed to a better understanding of the landscape of molecular alterations in iCCA. More than 100 clinical trials testing molecular therapies alone or in combination with chemotherapy including iCCA patients have not reported conclusive clinical benefits. Recent discoveries have shown that up to 70% of iCCA patients harbor potential actionable alterations that are amenable to therapeutic targeting in early clinical trials. Thus, the first biomarker-driven trials are currently underway. PMID:26405193

  12. Cytoreductive surgery in the era of targeted molecular therapy

    PubMed Central

    Thomas, Arun Z.; Adibi, Mehrad; Borregales, Leonardo D.; Karam, Jose A.

    2015-01-01

    Cytoreductive nephrectomy (CN) was regarded standard of care for patients with metastatic renal cell carcinoma (mRCC) in the immunotherapy era. With the advent of targeted molecular therapy (TMT) for the treatment of mRCC, the routine use of CN has been questioned. Up to date evidence continues to suggest that CN remains an integral part of treatment in appropriately selected patients. This review details the original context in which the efficacy of CN was established and rationale for the continued use of cytoreductive surgery in the era of TMT. PMID:26815334

  13. Renal Cell Carcinoma: Molecular Biology and Targeted Therapy

    PubMed Central

    Su, Daniel; Stamatakis, Lambros; Singer, Eric A.; Srinivasan, Ramaprasad

    2014-01-01

    Purpose of review Renal cell carcinoma (RCC) continues to be the subject of vigorous clinical and translational investigation. Advances in systemic targeted therapies, new molecular pathways, and immunotherapy approaches will be discussed. Recent findings Agents targeting the vascular endothelial growth factor (VEGF) and/or the mammalian target of rapamycin (mTOR) pathways continue to be the mainstay for treating metastatic RCC (mRCC). Although enhanced target specificity has improved the toxicity profile associated with newer VEGF-pathway antagonists, durable complete responses remain the exception. Identification of novel pathways/agents, as well as the optimal sequencing and combination of existing targeted agents, remain areas of active study. In addition, emerging data from early clinical trials has reinvigorated interest in immunomodulatory agents. Summary The therapeutic armamentarium available to genitourinary oncologists continues to grow but much work remains to be done to fully realize the potential of pathway-specific targeted strategies and immune-based approaches for mRCC. PMID:24675233

  14. Molecular Approach to Targeted Therapy for Multiple Sclerosis.

    PubMed

    Sherbet, Gajanan V

    2016-01-01

    The development and evolution of targeted therapy to any disease require the identification of targets amenable to treatment of patients. Here the pathogenetic signalling systems involved in multiple sclerosis are scrutinised to locate nodes of deregulation and dysfunction in order to devise strategies of drug development for targeted intervention. Oliogoclonal bands (OCB) are isoelectric focusing profiles of immunoglobulins synthesised in the central nervous system. OCBs enable the diagnosis of multiple sclerosis with high sensitivity and specificity and are related to the course of the disease and progression. The OCB patterns can be linked with the expression of angiogenic molecular species. Angiogenic signalling which has also been implicated in demyelination provides the option of using angiogenesis inhibitors in disease control. The PI3K (phosphoinositide 3-kinase)/Akt axis has emerged with a key role in myelination with its demonstrable links with mTOR mediated transcription of downstream target genes. Inflammatory signals and innate and acquired immunity from the activation of NF-κB (nuclear factor κB) responsive genes are considered. NF-κB signalling could be implicated in myelination. The transcription factor STAT (signal transducers and activators of transcription) and the EBV (Epstein- Barr virus) transcription factor BZLF1 contributing significantly to the disease process are a major environmental factor linked to MS. EBV can activate TGF (transforming growth factor) and VEGF (vascular endothelial growth factor) signalling. EBV microRNAs are reviewed as signalling mediators of pathogenesis. Stem cell transplantation therapy has lately gained much credence, so the current status of mesenchymal and hematopoietic stem cell therapy is reviewed with emphasis on the differential expression immune-related genes and operation of signalling systems. PMID:26560895

  15. Molecular targets in Gastrointestinal Stromal Tumors (GIST) therapy.

    PubMed

    Braconi, C; Bracci, R; Cellerino, R

    2008-08-01

    Gastrointestinal Stromal Tumors (GISTs) are the most common mesenchimal tumors of the gastrointestinal tract. Such tumors usually have activating mutations in either KIT (75-80%) or Platelet Derived Growth Factor Receptor alpha (PDGFRa) (5-10%) which lead to ligand-independent signal transduction. Targeting these activated proteins with Imatinib mesylate, a small-molecule kinase inhibitor, has proven useful in the treatment of recurrent or metastatic GISTs. However, more than half of patients develop resistance to Imatinib after about 2 years. Therefore, other targets have been studying in order to implement the therapeutical armamentarium for this disease. Sunitinib malate is an oral multikinase inhibitor that targets several receptor tyrosine kinases and has proved to prolong survival in Imatinib-resistant patients. Other molecules, such as Nilotinib, Sorafenib and Dasatinib were shown to be useful in Imatinib resistant mutant cell lines and the results of their activity in humans are being awaited. Recent evidence suggests that GIST cells acquire the capability to escape from the control of KIT and PDGFRa through the activation of alternative pathways. Therefore, further effort should be invested in the discovery of new signaling pathways, such as AXL, MET, IGF-R, which might be involved in the evolution of the disease. After a description of KIT and PDGFRa as known targets of anti-GIST treatments, we review other mechanisms and mediators that might be potential targets of new therapies, providing a comprehensive revision of the new molecular strategies under investigation. PMID:18690842

  16. Molecular Pathways: Targeted α-Particle Radiation Therapy

    PubMed Central

    Baidoo, Kwamena E.; Yong, Kwon; Brechbiel, Martin W.

    2012-01-01

    An α-particle, a 4He nucleus, is exquisitely cytotoxic, and indifferent to many limitations associated with conventional chemo- and radiotherapy. The exquisite cytotoxicity of α radiation, the result of its high mean energy deposition (high linear energy transfer, LET) and limited range in tissue, provides for a highly controlled therapeutic modality that can be targeted to selected malignant cells (targeted α-therapy (TAT)) with minimal normal tissue effects. There is a burgeoning interest in the development of TAT that is buoyed by the increasing number of ongoing clinical trials worldwide. The short path length renders α-emitters suitable for treatment and management of minimal disease such as micrometastases or residual tumor after surgical debulking, hematological cancers, infections, and compartmental cancers such as ovarian cancer or neoplastic meningitis. Yet, despite decades of study of high-LET radiation, the mechanistic pathways of the effects of this modality remain not well defined. The modality is effectively presumed to follow a simple therapeutic mechanism centered on catastrophic double strand (ds) DNA breaks without full examination of the actual molecular pathways and targets that are activated that directly impact cell survival or death. This Molecular Pathways article provides an overview of the mechanisms and pathways that are involved in the response to and repair of TAT induced DNA damage as currently understood. Finally, this article highlights the current state of clinical translation of TAT as well as other high-LET radionuclide radiation therapy using α-emitters such as 225Ac, 211At, 213Bi, 212Pb and 223Ra. PMID:23230321

  17. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly and Cushing Disease Paradigms

    PubMed Central

    Mooney, Michael A.; Simon, Elias D.; Little, Andrew S.

    2016-01-01

    The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment. PMID:27517036

  18. Cervical Cancer: Development of Targeted Therapies Beyond Molecular Pathogenesis

    PubMed Central

    Knoff, Jayne; Yang, Benjamin; Hung, Chien-Fu; Wu, T.-C.

    2014-01-01

    It is well known that human papillomavirus (HPV) is the causative agent of cervical cancer. The integration of HPV genes into the host genome causes the upregulation of E6 and E7 oncogenes. E6 and E7 proteins inactivate and degrade tumor suppressors p53 and retinoblastoma, respectively, leading to malignant progression. HPV E6 and E7 antigens are ideal targets for the development of therapies for cervical cancer and precursor lesions because they are constitutively expressed in infected cells and malignant tumors but not in normal cells and they are essential for cell immortalization and transformation. Immunotherapies are being developed to target E6/E7 by eliciting antigen-specific immune responses. siRNA technologies target E6/E7 by modulating the expression of the oncoproteins. Proteasome inhibitors and histone deacetylase inhibitors are being developed to indirectly target E6/E7 by interfering with their oncogenic activities. The ultimate goal for HPV-targeted therapies is the progression through clinical trials to commercialization. PMID:24533233

  19. Personalizing therapies for gastric cancer: Molecular mechanisms and novel targeted therapies

    PubMed Central

    Luis, Michael; Tavares, Ana; Carvalho, Liliana S; Lara-Santos, Lúcio; Araújo, António; de Mello, Ramon Andrade

    2013-01-01

    Globally, gastric cancer is the 4th most frequently diagnosed cancer and the 2nd leading cause of death from cancer, with an estimated 990000 new cases and 738000 deaths registered in 2008. In the advanced setting, standard chemotherapies protocols acquired an important role since last decades in prolong survival. Moreover, recent advances in molecular therapies provided a new interesting weapon to treat advanced gastric cancer through anti-human epidermal growth factor receptor 2 (HER2) therapies. Trastuzumab, an anti-HER2 monoclonal antibody, was the first target drug in the metastatic setting that showed benefit in overall survival when in association with platinum-5-fluorouracil based chemotherapy. Further, HER2 overexpression analysis acquired a main role in predict response for trastuzumab in this field. Thus, we conducted a review that will discuss the main points concerning trastuzumab and HER2 in gastric cancer, providing a comprehensive overview of molecular mechanisms and novel trials involved. PMID:24151357

  20. [Development of molecular targeted therapies in lung cancers].

    PubMed

    Suda, Kenichi; Mitsudomi, Tetsuya

    2014-05-01

    Human cancers usually possess cumulative genetic aberrations. However, recent studies have revealed that the proliferation and survival of specific subsets of lung cancer depend on a few somatic mutation(s), so-called driver mutations. Representative driver mutations include the EGFR mutation and ALK translocation identified in about 40% and 3% of lung adenocarcinomas in Japan, respectively. These tumors are extremely sensitive to the respective tyrosine kinase inhibitors. This sensitivity has encouraged researchers and clinicians to explore novel driver mutations in lung cancers as future molecular targets. Driver mutations reported so far include the HER2 mutation, BRAF mutation, ROS1 translocation, RET translocation, and NTRK translocation in lung adenocarcinomas, and FGFR1 amplification, DDR2 mutation, and FGFR3 translocation in lung squamous cell carcinomas. However, despite initial dramatic responses, the acquisition of resistance to molecular targeted drugs is almost inevitable. Overcoming resistance to molecular targeted drugs, the key drugs at this time, is an urgent issue to improve the outcomes of lung cancer patients. PMID:24946519

  1. Progress of Molecular Targeted Therapies for Advanced Renal Cell Carcinoma

    PubMed Central

    Santoni, Matteo; Amantini, Consuelo; Burattini, Luciano; Berardi, Rossana; Santoni, Giorgio; Cascinu, Stefano; Muzzonigro, Giovanni

    2013-01-01

    Vascular endothelial growth factor (VEGF) plays a crucial role in tumor angiogenesis. VEGF expression in metastatic renal cell carcinoma (mRCC) is mostly regulated by hypoxia, predominantly via the hypoxia-induced factor (HIF)/Von Hippel-Lindau (VHL) pathway. Advances in our knowledge of VEGF role in tumor angiogenesis, growth, and progression have permitted development of new approaches for the treatment of mRCC, including several agents targeting VEGF and VEGF receptors: tyrosine kinase pathway, serine/threonine kinases, α5β1-integrin, deacetylase, CD70, mammalian target of rapamycin (mTOR), AKT, and phosphatidylinositol 3′-kinase (PI3K). Starting from sorafenib and sunitinib, several targeted therapies have been approved for mRCC treatment, with a long list of agents in course of evaluation, such as tivozanib, cediranib, and VEGF-Trap. Here we illustrate the main steps of tumor angiogenesis process, defining the pertinent therapeutic targets and the efficacy and toxicity profiles of these new promising agents. PMID:24093097

  2. Metastatic cancer stem cells: new molecular targets for cancer therapy.

    PubMed

    Leirós, G J; Balañá, M E

    2011-11-01

    The cancer stem cell (CSC) hypothesis, predicts that a small subpopulation of cancer cells that possess "stem-like" characteristics, are responsible for initiating and maintaining cancer growth. According to the CSC model the many cell populations found in a tumour might represent diverse stages of differentiation. From the cellular point of view metastasis is considered a highly inefficient process and only a subset of tumour cells is capable of successfully traversing the entire metastatic cascade and eventually re-initiates tumour growth at distant sites. Some similar features of both normal and malignant stem cells suggest that CSCs are not only responsible for tumorigenesis, but also for metastases. The CSC theory proposes that the ability of a tumour to metastasize is an inherent property of a subset of CSCs. The similar biological characteristics shared by normal stem cells (NSCs) and CSCs mainly implicate self-renewal and differentiation potential, survival ability, niche-specific microenvironment requirements and specific homing to metastatic sites and may have important implications in terms of new approaches to cancer therapy in the metastatic setting. There are several agents targeting many of these CSC features that have shown to be effective both in vitro and in vivo. Although clinical trials results are still preliminary and continue under investigation, these new therapies are very promising. The identification of new therapeutic targets and drugs based on CSC model constitutes a great challenge. PMID:21470128

  3. The Challenges and the Promise of Molecular Targeted Therapy in Malignant Gliomas1

    PubMed Central

    Wang, Hongxiang; Xu, Tao; Jiang, Ying; Xu, Hanchong; Yan, Yong; Fu, Da; Chen, Juxiang

    2015-01-01

    Malignant gliomas are the most common malignant primary brain tumors and one of the most challenging forms of cancers to treat. Despite advances in conventional treatment, the outcome for patients remains almost universally fatal. This poor prognosis is due to therapeutic resistance and tumor recurrence after surgical removal. However, over the past decade, molecular targeted therapy has held the promise of transforming the care of malignant glioma patients. Significant progress in understanding the molecular pathology of gliomagenesis and maintenance of the malignant phenotypes will open opportunities to rationally develop new molecular targeted therapy options. Recently, therapeutic strategies have focused on targeting pro-growth signaling mediated by receptor tyrosine kinase/RAS/phosphatidylinositol 3-kinase pathway, proangiogenic pathways, and several other vital intracellular signaling networks, such as proteasome and histone deacetylase. However, several factors such as cross-talk between the altered pathways, intratumoral molecular heterogeneity, and therapeutic resistance of glioma stem cells (GSCs) have limited the activity of single agents. Efforts are ongoing to study in depth the complex molecular biology of glioma, develop novel regimens targeting GSCs, and identify biomarkers to stratify patients with the individualized molecular targeted therapy. Here, we review the molecular alterations relevant to the pathology of malignant glioma, review current advances in clinical targeted trials, and discuss the challenges, controversies, and future directions of molecular targeted therapy. PMID:25810009

  4. Treatment outcome of radiation therapy and concurrent targeted molecular therapy in spinal metastasis from renal cell carcinoma

    PubMed Central

    Park, Sangjoon; Kim, Kyung Hwan; Rhee, Woo Joong; Lee, Jeongshim; Cho, Yeona; Koom, Woong Sub

    2016-01-01

    Purpose: To evaluate the clinical outcomes of patients who underwent radiation therapy with or without targeted molecular therapy for the treatment of spinal metastasis from renal cell carcinoma (RCC). Materials and Methods: A total of 28 spinal metastatic lesions from RCC patients treated with radiotherapy between June 2009 and June 2015 were retrospectively reviewed. Thirteen lesions were treated concurrently with targeted molecular therapy (concurrent group) and 15 lesions were not (nonconcurrent group). Local control was defined as lack of radiographically evident local progression and neurological deterioration. Results: At a median follow-up of 11 months (range, 2 to 58 months), the 1-year local progression-free rate (LPFR) was 67.0%. The patients with concurrent targeted molecular therapy showed significantly higher LPFR than those without (p = 0.019). After multivariate analysis, use of concurrent targeted molecular therapy showed a tendency towards improved LPFR (hazard ratio, 0.13; 95% confidence interval, 0.01 to 1.16). There was no difference in the incidence of systemic progression between concurrent and nonconcurrent groups. No grade ≥2 toxicities were observed during or after radiotherapy. Conclusion: Our study suggests the possibility that concurrent use of targeted molecular therapy during radiotherapy may improve LPFR. Further study with a large population is required to confirm these results. PMID:27306772

  5. Present Advances and Future Perspectives of Molecular Targeted Therapy for Osteosarcoma.

    PubMed

    Shaikh, Atik Badshah; Li, Fangfei; Li, Min; He, Bing; He, Xiaojuan; Chen, Guofen; Guo, Baosheng; Li, Defang; Jiang, Feng; Dang, Lei; Zheng, Shaowei; Liang, Chao; Liu, Jin; Lu, Cheng; Liu, Biao; Lu, Jun; Wang, Luyao; Lu, Aiping; Zhang, Ge

    2016-01-01

    Osteosarcoma (OS) is a bone cancer mostly occurring in pediatric population. Current treatment regime of surgery and intensive chemotherapy could cure about 60%-75% patients with primary osteosarcoma, however only 15% to 30% can be cured when pulmonary metastasis or relapse has taken place. Hence, novel precise OS-targeting therapies are being developed with the hope of addressing this issue. This review summarizes the current development of molecular mechanisms and targets for osteosarcoma. Therapies that target these mechanisms with updated information on clinical trials are also reviewed. Meanwhile, we further discuss novel therapeutic targets and OS-targeting drug delivery systems. In conclusion, a full insight in OS pathogenesis and OS-targeting strategies would help us explore novel targeted therapies for metastatic osteosarcoma. PMID:27058531

  6. Present Advances and Future Perspectives of Molecular Targeted Therapy for Osteosarcoma

    PubMed Central

    Shaikh, Atik Badshah; Li, Fangfei; Li, Min; He, Bing; He, Xiaojuan; Chen, Guofen; Guo, Baosheng; Li, Defang; Jiang, Feng; Dang, Lei; Zheng, Shaowei; Liang, Chao; Liu, Jin; Lu, Cheng; Liu, Biao; Lu, Jun; Wang, Luyao; Lu, Aiping; Zhang, Ge

    2016-01-01

    Osteosarcoma (OS) is a bone cancer mostly occurring in pediatric population. Current treatment regime of surgery and intensive chemotherapy could cure about 60%–75% patients with primary osteosarcoma, however only 15% to 30% can be cured when pulmonary metastasis or relapse has taken place. Hence, novel precise OS-targeting therapies are being developed with the hope of addressing this issue. This review summarizes the current development of molecular mechanisms and targets for osteosarcoma. Therapies that target these mechanisms with updated information on clinical trials are also reviewed. Meanwhile, we further discuss novel therapeutic targets and OS-targeting drug delivery systems. In conclusion, a full insight in OS pathogenesis and OS-targeting strategies would help us explore novel targeted therapies for metastatic osteosarcoma. PMID:27058531

  7. Targeted Molecular Imaging in Oncology: Focus on Radiation Therapy

    PubMed Central

    Nimmagadda, Sridhar; Ford, Eric C.; Wong, John W.; Pomper, Martin G.

    2008-01-01

    Anatomically based technologies (CT, MR, etc.) are in routine use in radiotherapy for planning and assessment purposes. Even with improvements in imaging, however, radiotherapy is still limited in efficacy and toxicity in certain applications. Further advances may be provided by technologies that image the molecular activities of tumors and normal tissues. Possible uses for molecular imaging include better localization of tumor regions and early assay for the radiation response of tumors and normal tissues. Critical to the success of this approach is the identification and validation of molecular probes that are suitable in the radiotherapy context. Recent developments in molecular imaging probes and integration of functional imaging with radiotherapy are promising. This review focuses on recent advances in molecular imaging strategies and probes that may aid in improving the efficacy of radiotherapy. PMID:18314068

  8. Molecular Characterization of Head and Neck Cancer: How Close to Personalized Targeted Therapy?

    PubMed Central

    Worsham, Maria J.; Ali, Haythem; Dragovic, Jadranka; Schweitzer, Vanessa P.

    2013-01-01

    Molecular targeted therapy in squamous head and neck cancer (HNSCC) continues to make strides and holds much promise. Cetuximab remains the sole FDA-approved molecular targeted therapy available for HNSCC, though there are several new biological agents targeting the epidermal growth factor receptor (EGFR) and other pathways in the regulatory approval pipeline. While targeted therapies have the potential to be personalized, their current use in HNSCC is not personalized. This is illustrated for EGFR targeted drugs, where EGFR as a molecular target has yet to be individualized for HNSCC. Future research needs to identify factors that correlate with response (or lack of one) and the underlying genotype-phenotype relationship that dictates this response. Comprehensive exploration of genetic and epigenetic landscapes in HNSCC is opening new frontiers to further enlighten, mechanistically inform, and set a course for eventually translating these discoveries into therapies for patients. This opinion offers a snap shot of the evolution of molecular subytping in HNSCC, its current clinical applicability, as well as new emergent paradigms with implications for controlling this disease in the future. PMID:22873739

  9. Targeted Delivery Systems for Molecular Therapy in Skeletal Disorders

    PubMed Central

    Dang, Lei; Liu, Jin; Li, Fangfei; Wang, Luyao; Li, Defang; Guo, Baosheng; He, Xiaojuan; Jiang, Feng; Liang, Chao; Liu, Biao; Badshah, Shaikh Atik; He, Bing; Lu, Jun; Lu, Cheng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Abnormalities in the integral components of bone, including bone matrix, bone mineral and bone cells, give rise to complex disturbances of skeletal development, growth and homeostasis. Non-specific drug delivery using high-dose systemic administration may decrease therapeutic efficacy of drugs and increase the risk of toxic effects in non-skeletal tissues, which remain clinical challenges in the treatment of skeletal disorders. Thus, targeted delivery systems are urgently needed to achieve higher drug delivery efficiency, improve therapeutic efficacy in the targeted cells/tissues, and minimize toxicities in non-targeted cells/tissues. In this review, we summarize recent progress in the application of different targeting moieties and nanoparticles for targeted drug delivery in skeletal disorders, and also discuss the advantages, challenges and perspectives in their clinical translation. PMID:27011176

  10. Molecular strategies targeting the host component of cancer to enhance tumor response to radiation therapy

    SciTech Connect

    Kim, Dong Wook; Huamani, Jessica; Fu, Allie; Hallahan, Dennis E. . E-mail: dennis.hallahan@vanderbilt.edu

    2006-01-01

    The tumor microenvironment, in particular, the tumor vasculature, as an important target for the cytotoxic effects of radiation therapy is an established paradigm for cancer therapy. We review the evidence that the phosphoinositide 3-kinase (PI3K)/Akt pathway is activated in endothelial cells exposed to ionizing radiation (IR) and is a molecular target for the development of novel radiation sensitizing agents. On the basis of this premise, several promising preclinical studies that targeted the inhibition of the PI3K/Akt activation as a potential method of sensitizing the tumor vasculature to the cytotoxic effects of IR have been conducted. An innovative strategy to guide cytotoxic therapy in tumors treated with radiation and PI3K/Akt inhibitors is presented. The evidence supports a need for further investigation of combined-modality therapy that involves radiation therapy and inhibitors of PI3K/Akt pathway as a promising strategy for improving the treatment of patients with cancer.

  11. Molecular therapy targeting Sonic hedgehog and hepatocyte growth factor signaling in a mouse model of medulloblastoma.

    PubMed

    Coon, Valerie; Laukert, Tamara; Pedone, Carolyn A; Laterra, John; Kim, K Jin; Fults, Daniel W

    2010-09-01

    The use of genetically engineered mice has provided insights into the molecular pathogenesis of the pediatric brain tumor medulloblastoma and revealed promising therapeutic targets. Ectopic expression of Sonic hedgehog (Shh) in cerebellar neural progenitor cells induces medulloblastomas in mice, and coexpression of hepatocyte growth factor (HGF) enhances Shh-induced tumor formation. To determine whether Shh + HGF-driven medulloblastomas were responsive to Shh signaling blockade and whether treatment response could be enhanced by combination therapy targeting both HGF and Shh signaling pathways, we carried out a survival study in mice. We induced medulloblastomas by retrovirus-mediated expression of Shh and HGF, after which we treated the mice systemically with (a) HGF-neutralizing monoclonal antibody L2G7, (b) Shh signaling inhibitor cyclopamine, (c) Shh-neutralizing monoclonal antibody 5E1, (d) L2G7 + cyclopamine, or (e) L2G7 + 5E1. We report that monotherapy targeting either HGF signaling or Shh signaling prolonged survival and that anti-HGF therapy had a more durable response than Shh-targeted therapy. The effect of L2G7 + 5E1 combination therapy on cumulative survival was equivalent to that of L2G7 monotherapy and that of L2G7 + cyclopamine therapy was worse. The principal mechanism by which Shh- and HGF-targeted therapies inhibited tumor growth was a potent apoptotic death response in tumor cells, supplemented by a weaker suppressive effect on proliferation. Our observation that combination therapy either failed to improve or even reduced survival in mice bearing Shh + HGF-induced medulloblastomas compared with monotherapy underscores the importance of preclinical testing of molecular-targeted therapies in animal models of tumors in which the targeted pathways are known to be active. PMID:20807782

  12. Molecular Therapy Targeting Sonic Hedgehog and Hepatocyte Growth Factor Signaling in a Mouse Model of Medulloblastoma

    PubMed Central

    Coon, Valerie; Laukert, Tamara; Pedone, Carolyn A.; Laterra, John; Kim, K. Jin; Fults, Daniel W.

    2010-01-01

    The use of genetically engineered mice has provided insights into the molecular pathogenesis of the pediatric brain tumor medulloblastoma and revealed promising therapeutic targets. Ectopic expression of Sonic Hedgehog (Shh) in cerebellar neural progenitor cells induces medulloblastomas in mice, and coexpression of hepatocyte growth factor (HGF) enhances Shh-induced tumor formation. To determine whether Shh+HGF–driven medulloblastomas were responsive to Shh signaling blockade and whether treatment response could be enhanced by combination therapy targeting both HGF and Shh signaling pathways, we carried out a survival study in mice. We induced medulloblastomas by retrovirus-mediated expression of Shh and HGF, after which we treated the mice systemically with (a) HGF-neutralizing monoclonal antibody L2G7, (b) Shh signaling inhibitor cyclopamine, (c) Shh-neutralizing monoclonal antibody 5E1, (d) L2G7+cyclopamine, or (e) L2G7+5E1. We report that monotherapy targeting either HGF signaling or Shh signaling prolonged survival and that anti-HGF therapy had a more durable response than Shh-targeted therapy. The effect of L2G7+5E1 combination therapy on cumulative survival was equivalent to that of L2G7 monotherapy and that of L2G7+cyclopamine therapy was worse. The principal mechanism by which Shh- and HGF-targeted therapies inhibited tumor growth was a potent apoptotic death response in tumor cells, supplemented by a weaker suppressive effect on proliferation. Our observation that combination therapy either failed to improve or even reduced survival in mice bearing Shh+HGF induced medulloblastomas compared with monotherapy underscores the importance of preclinical testing of molecular-targeted therapies in animal models of tumors in which the targeted pathways are known to be active. PMID:20807782

  13. Molecular Approaches To Target GPCRs in Cancer Therapy

    PubMed Central

    Innamorati, Giulio; Valenti, Maria Teresa; Giovinazzo, Francesco; Carbonare, Luca Dalle; Parenti, Marco; Bassi, Claudio

    2011-01-01

    Hundreds of G protein coupled receptor (GPCR) isotypes integrate and coordinate the function of individual cells mediating signaling between different organs in our bodies. As an aberration of the normal relationships that organize cells' coexistence, cancer has to deceive cell-cell communication in order to grow and spread. GPCRs play a critical role in this process. Despite the fact that GPCRs represent one of the most common drug targets, current medical practice includes only a few anticancer compounds directly acting on their signaling. Many approaches can be envisaged to target GPCRs involved in oncology. Beyond interfering with GPCRs signaling by using agonists or antagonists to prevent cell proliferation, favor apoptosis, induce maturation, prevent migration, etc., the high specificity of the interaction between the receptors and their ligands can be exploited to deliver toxins, antineoplastic drugs or isotopes to transformed cells. In this review we describe the strategies that are in use, or appear promising, to act directly on GPCRs in the fight against neoplastic transformation and tumor progression.

  14. ROS1 Kinase Inhibitors for Molecular-Targeted Therapies.

    PubMed

    Al-Sanea, M M; Abdelazem, A Z; Park, B S; Yoo, K H; Sim, T; Kwon, Y J; Lee, S H

    2016-01-01

    ROS1 is a pivotal transmembrane receptor protein tyrosine kinase which regulates several cellular processes like apoptosis, survival, differentiation, proliferation, cell migration, and transformation. There is increasing evidence supporting that ROS1 plays an important role in different malignancies including glioblastoma, colorectal cancer, gastric adenocarcinoma, inflammatory myofibroblastic tumor, ovarian cancer, angiosarcoma, and non small cell lung cancer; thus, ROS1 has become a potential drug discovery target. ROS1 shares about 49% sequence homology with ALK primary structure; therefore, wide range of ALK kinase inhibitors have shown in vitro inhibitory activity against ROS1 kinase. After Crizotinib approval by FDA for the management of ALK-rearranged lung cancer, ROS1-positive tumors have been focused. Although significant advancements have been achieved in understanding ROS1 function and its signaling pathways plus recent discovery of small molecules modulating ROS1 protein, a vital need of medicinal chemistry efforts is still required to produce selective and potent ROS1 inhibitors as an important therapeutic strategy for different human malignancies. This review focuses on the current knowledge about different scaffolds targeting ROS1 rearrangements, methods to synthesis, and some biological data about the most potent compounds that have delivered various scaffold structures. PMID:26438251

  15. Novel molecular targeted therapies for refractory thyroid cancer.

    PubMed

    Perez, Cesar A; Santos, Edgardo S; Arango, Belisario A; Raez, Luis E; Cohen, Ezra E W

    2012-05-01

    The incidence of thyroid cancer continues to increase and this neoplasia remains the most common endocrine malignancy. No effective systemic treatment currently exists for iodine-refractory differentiated or medullary thyroid carcinoma, but recent advances in the pathogenesis of these diseases have revealed key targets that are now being evaluated in the clinical setting. RET (rearranged during transfection)/PTC (papillary thyroid carcinoma) gene rearrangements, B-Raf gene mutations, and vascular endothelial growth factor receptor 2 (VEGFR-2) angiogenesis pathways are some of the known genetic alterations playing a crucial role in the development of thyroid cancer. Several novel agents have demonstrated promising responses. Of the treatments studied, multi-kinase inhibitors such as axitinib, sorafenib, motesanib, and XL-184 have shown to be the most effective by inducing clinical responses and stabilizing the disease process. Randomized clinical trials are currently evaluating these agents, results that may soon change the management of thyroid cancer. PMID:21544895

  16. New molecularly targeted therapies against advanced hepatocellular carcinoma: From molecular pathogenesis to clinical trials and future directions.

    PubMed

    Chuma, Makoto; Terashita, Katsumi; Sakamoto, Naoya

    2015-10-01

    Hepatocellular carcinoma (HCC) can be lethal due to its aggressive course and lack of effective systemic therapies for advanced disease. Sorafenib is the only systemic therapy that has demonstrated an overall survival benefit in patients with advanced HCC, and new agents for treatment of advanced HCC are needed. The multiple pathways involved in HCC oncogenesis, proliferation and survival provide many opportunities for the development of molecularly targeted therapies. Molecular targets of interest have expanded from angiogenesis to cancer cell-directed oncogenic signaling pathways for treatment of advanced HCC. Agents targeting vascular endothelial growth factor receptor, epidermal growth factor receptor, fibroblast growth factor receptor, platelet-derived growth factor receptor, c-mesenchymal-epithelial transition factor-1 and mammalian target of rapamycin signaling have been actively explored. This article focuses on the evaluation of molecular agents targeting pathogenic HCC and provides a review of recently completed phase III drug studies (e.g. involving sorafenib, sunitinib, brivanib, linifanib, erlotinib, everolimus, ramucirumab or orantinib) and ongoing drug studies (e.g. involving lenvatinib, regorafenib, tivantinib or cabozantinib) of molecularly targeted agents in advanced HCC, including a brief description of the biologic rationale behind these agents. PMID:25472913

  17. Septic acute kidney injury: molecular mechanisms and the importance of stratification and targeting therapy.

    PubMed

    Morrell, Eric D; Kellum, John A; Pastor-Soler, Núria M; Hallows, Kenneth R

    2014-01-01

    The most common cause of acute kidney injury (AKI) in hospitalized patients is sepsis. However, the molecular pathways and mechanisms that mediate septic AKI are not well defined. Experiments performed over the past 20 years suggest that there are profound differences in the pathogenesis between septic and ischemic AKI. Septic AKI often occurs independently of hypoperfusion, and is mediated by a concomitant pro- and anti-inflammatory state that is activated in response to various pathogen-associated molecular patterns, such as endotoxin, as well as damage-associated molecular patterns. These molecular patterns are recognized by Toll-like receptors (TLRs) found in the kidney, and effectuate downstream inflammatory pathways. Additionally, apoptosis has been proposed to play a role in the pathogenesis of septic AKI. However, targeted therapies designed to mitigate the above aspects of the inflammatory state, TLR-related pathways, and apoptosis have failed to show significant clinical benefit. This failure is likely due to the protean nature of septic AKI, whereby different patients present at different points along the immunologic spectrum. While one patient may benefit from targeted therapy at one end of the spectrum, another patient at the other end may be harmed by the same therapy. We propose that a next important step in septic AKI research will be to identify where patients lie on the immunologic spectrum in order to appropriately target therapies at the inflammatory cascade, TLRs, and possibly apoptosis. PMID:25575158

  18. Molecular targeted therapies in advanced or metastatic chordoma patients: facts and hypotheses.

    PubMed

    Lebellec, Loïc; Aubert, Sébastien; Zaïri, Fahed; Ryckewaert, Thomas; Chauffert, Bruno; Penel, Nicolas

    2015-07-01

    Chordomas, derived from undifferentiated notochordal remnants, represent less than 4% of bone primary tumors. Despite surgery followed by radiotherapy, local and metastatic relapses are frequent. In case of locally advanced or metastatic chordomas, medical treatment is frequently discussed. While chemotherapy is ineffective, it would appear that some molecular targeted therapies, in particular imatinib, could slow down the tumor growth in case-reports, retrospective series, and phase I or II trials. Nineteen publications, between January 1990 and September 2014, have been found describing the activity of these targeted therapies. A systematic analysis of these publications shows that the best objective response with targeted therapies was stabilization in 52 to 69% of chordomas. Given the indolent course of advanced chordoma and because of the absence of randomized trial, the level of evidence to treat chordomas with molecular therapy is low (level III), whatever the drug. Furthermore, we could not draw firm conclusion on the activity of imatinib. Other putative targets have also been described. Therefore, further clinical trials are expected, especially with these targets. Nevertheless, it seems essential, in those future studies, to consider the naturally slow course of the disease. PMID:25682222

  19. [Molecular biological foundation of targeted therapy for metastatic renal cell carcinoma].

    PubMed

    Lai, Chong; Teng, Xiaodong

    2016-01-01

    The incidence of renal cell carcinoma (RCC) is increasing. Radical cure by surgery can only be achieved in patients with early stage tumors. How to precisely use antineoplastic agents after surgery is an important problem to be solved. Most metastatic RCCs are pathologically identified as clear cell RCC (ccRCC), thus to develop agents targeting ccRCC is critical. Most clinically available targeted therapies are based on targeting some spots in specific pathways; or based on targeting new anti-tumor mechanisms, such as programmed death-1(PD-1), antibody-drug conjugates (ADC) and stem cells. There is still no targeted therapy having definite effect to most RCC patients. Only von Hippel-Lindau (VHL) pathway so far has been confirmed to be related to ccRCC development and progression; the inactivation of VHL gene causes many significant downstream gene changes. The key proteins involved in VHL pathway may be potential therapeutic targets for ccRCC. In this article, we review the current progress of targeted therapy for RCC, focus on the molecular characteristics of ccRCC, its relation to VHL pathway, the potential therapeutic targets and future clinical application for metastatic ccRCC. PMID:27045248

  20. Molecular Targeted Therapies for the Treatment of Leptomeningeal Carcinomatosis: Current Evidence and Future Directions

    PubMed Central

    Lee, Dae-Won; Lee, Kyung-Hun; Kim, Jin Wook; Keam, Bhumsuk

    2016-01-01

    Leptomeningeal carcinomatosis (LMC) is the multifocal seeding of cerebrospinal fluid and leptomeninges by malignant cells. The incidence of LMC is approximately 5% in patients with malignant tumors overall and the rate is increasing due to increasing survival time of cancer patients. Eradication of the disease is not yet possible, so the treatment goals of LMC are to improve neurologic symptoms and to prolong survival. A standard treatment for LMC has not been established due to low incidences of LMC, the rapidly progressing nature of the disease, heterogeneous populations with LMC, and a lack of randomized clinical trial results. Treatment options for LMC include intrathecal chemotherapy, systemic chemotherapy, and radiation therapy, but the prognoses remain poor with a median survival of <3 months. Recently, molecular targeted agents have been applied in the clinic and have shown groundbreaking results in specific patient groups epidermal growth factor receptor (EGFR)-targeted therapy or an anaplastic lymphoma kinase (ALK) inhibitor in lung cancer, human epidermal growth factor receptor 2 (HER2)-directed therapy in breast cancer, and CD20-targeted therapy in B cell lymphoma). Moreover, there are results indicating that the use of these agents under proper dose and administration routes can be effective for managing LMC. In this article, we review molecular targeted agents for managing LMC. PMID:27399673

  1. Molecularly targeted therapy for advanced hepatocellular carcinoma - a drug development crisis?

    PubMed Central

    Thillai, Kiruthikah; Ross, Paul; Sarker, Debashis

    2016-01-01

    Hepatocellular carcinoma is the fastest growing cause of cancer related death globally. Sorafenib, a multi-targeted kinase inhibitor, is the only drug proven to improve outcomes in patients with advanced disease offering modest survival benefit. Although comprehensive genomic mapping has improved understanding of the genetic aberrations in hepatocellular cancer (HCC), this knowledge has not yet impacted clinical care. The last few years have seen the failure of several first and second line phase III clinical trials of novel molecularly targeted therapies, warranting a change in the way new therapies are investigated in HCC. Potential reasons for these failures include clinical and molecular heterogeneity, trial design and a lack of biomarkers. This review discusses the current crisis in HCC drug development and how we should learn from recent trial failures to develop a more effective personalised treatment paradigm for patients with HCC. PMID:26909132

  2. Biomarker Tests for Molecularly Targeted Therapies: Laying the Foundation and Fulfilling the Dream.

    PubMed

    Lyman, Gary H; Moses, Harold L

    2016-06-10

    Precision medicine focuses on the management of individual patients on the basis of biomarkers and other distinguishing characteristics, with the overarching objective of improving clinical outcomes. The rapid proliferation of biomarker tests and targeted therapies has revolutionized patient care in a variety of serious disorders. Targeted cancer therapies interrupt oncogenic molecular pathways driven by mutations, overexpression, or translocation of specific genes. However, there is concern that the emergence of large-scale genomic data is exceeding our capacity to appropriately analyze and interpret the results.In 2014, the Institute of Medicine convened the Committee on Policy Issues in the Clinical Development and Use of Biomarkers for Molecularly Targeted Therapies. This committee conducted a study to develop recommendations to address diverse and interconnected development, regulatory, clinical practice, and reimbursement issues. The committee conducted an extensive search of the relevant literature and invited testimony from a wide range of experts in the field. The final report of the committee's study and deliberations was released on March 4, 2016, focusing on ways to achieve 10 goals to further advance the development and appropriate clinical use of biomarker tests for molecularly targeted therapies.This article presents an overview of the committee's study and resulting recommendations, which cover establishment of clinical utility, regulatory oversight, coverage and reimbursement, health system data integration, as well as education and access. The committee's recommendations presented and discussed here are fundamentally grounded in the understanding that, when properly validated and appropriately implemented, these assays and corresponding therapies hold considerable promise to enhance the quality of patient care and improve meaningful clinical outcomes. PMID:27069080

  3. Molecularly-Targeted Gold-Based Nanoparticles for Cancer Imaging and Near-Infrared Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Day, Emily Shannon

    2011-12-01

    This thesis advances the use of nanoparticles as multifunctional agents for molecularly-targeted cancer imaging and photothermal therapy. Cancer mortality has remained relatively unchanged for several decades, indicating a significant need for improvements in care. Researchers are evaluating strategies incorporating nanoparticles as exogenous energy absorbers to deliver heat capable of inducing cell death selectively to tumors, sparing normal tissue. Molecular targeting of nanoparticles is predicted to improve photothermal therapy by enhancing tumor retention. This hypothesis is evaluated with two types of nanoparticles. The nanoparticles utilized, silica-gold nanoshells and gold-gold sulfide nanoparticles, can convert light energy into heat to damage cancerous cells. For in vivo applications nanoparticles are usually coated with poly(ethylene glycol) (PEG) to increase blood circulation time. Here, heterobifunctional PEG links nanoparticles to targeting agents (antibodies and growth factors) to provide cell-specific binding. This approach is evaluated through a series of experiments. In vitro, antibody-coated nanoparticles can bind breast carcinoma cells expressing the targeted receptor and act as contrast agents for multiphoton microscopy prior to inducing cell death via photoablation. Furthermore, antibody-coated nanoparticles can bind tissue ex vivo at levels corresponding to receptor expression, suggesting they should bind their target even in the complex biological milieu. This is evaluated by comparing the accumulation of antibody-coated and PEG-coated nanoparticles in subcutaneous glioma tumors in mice. Contrary to expectations, antibody targeting did not yield more nanoparticles within tumors. Nevertheless, these studies established the sensitivity of glioma to photothermal therapy; mice treated with PEG-coated nanoshells experienced 57% complete tumor regression versus no regression in control mice. Subsequent experiments employed intracranial tumors to

  4. The development of molecularly targeted anticancer therapies: an Eli Lilly and Company perspective.

    PubMed

    Perry, William L; Weitzman, Aaron

    2005-03-01

    The ability to identify activated pathways that drive the growth and progression of cancer and to develop specific and potent inhibitors of key proteins in these pathways promises to dramatically change the treatment of cancer: A patient's cancer could be characterized at the molecular level and the information used to select the best treatment options. The development of successful therapies not only requires extensive target validation, but also new approaches to evaluating drug efficacy in animal models and in the clinic compared to the development of traditional cytotoxic agents. This article highlights Eli Lilly and Company's approach to developing targeted therapies, from target identification and validation through evaluation in the clinic. A selection of drugs in the Lilly Oncology pipeline is also discussed. PMID:16166991

  5. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    PubMed Central

    Chen, Zhi-Yi; Wang, Yi-Xiang; Lin, Yan; Zhang, Jin-Shan; Yang, Feng; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy. PMID:24689058

  6. MOLECULARLY TARGETED THERAPIES IN NON-SMALL CELL LUNG CANCER ANNUAL UPDATE 2014

    PubMed Central

    Morgensztern, Daniel; Campo, Meghan J.; Dahlberg, Suzanne E.; Doebele, Robert C.; Garon, Edward; Gerber, David E.; Goldberg, Sarah B.; Hammerman, Peter S.; Heist, Rebecca; Hensing, Thomas; Horn, Leora; Ramalingam, Suresh S.; Rudin, Charles M.; Salgia, Ravi; Sequist, Lecia; Shaw, Alice T.; Simon, George R.; Somaiah, Neeta; Spigel, David R.; Wrangle, John; Johnson, David; Herbst, Roy S.; Bunn, Paul; Govindan, Ramaswamy

    2015-01-01

    There have been significant advances in the understanding of the biology and treatment of non-small cell lung cancer (NSCLC) over the past few years. A number of molecularly targeted agents are in the clinic or in development for patients with advanced NSCLC (Table 1). We are beginning to understand the mechanisms of acquired resistance following exposure to tyrosine kinase inhibitors in patients with oncogene addicted NSCLC. The advent of next generation sequencing has enabled to study comprehensively genomic alterations in lung cancer. Finally, early results from immune checkpoint inhibitors are very encouraging. This review summarizes recent advances in the area of cancer genomics, targeted therapies and immunotherapy. PMID:25535693

  7. The clinical development of molecularly targeted agents in combination with radiation therapy: a pharmaceutical perspective.

    PubMed

    Ataman, Ozlem U; Sambrook, Sally J; Wilks, Chris; Lloyd, Andrew; Taylor, Amanda E; Wedge, Stephen R

    2012-11-15

    This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the clinicaltrials.gov Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, and PubMed databases and then cross-correlated with clinicaltrials.gov protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests that such trials are

  8. The Clinical Development of Molecularly Targeted Agents in Combination With Radiation Therapy: A Pharmaceutical Perspective

    SciTech Connect

    Ataman, Ozlem U.; Sambrook, Sally J.; Wilks, Chris; Lloyd, Andrew; Taylor, Amanda E.; Wedge, Stephen R.

    2012-11-15

    Summary: This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the (clinicaltrials.gov) Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, and PubMed databases and then cross-correlated with (clinicaltrials.gov) protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests that such

  9. CD22ΔE12 as a molecular target for RNAi therapy

    PubMed Central

    Uckun, Fatih M.; Ma, Hong; Cheng, Jianjun; Myers, Dorothea E.; Qazi, Sanjive

    2015-01-01

    B-precursor acute lymphoblastic leukemia (BPL) is the most common form of cancer in children and adolescents. Our recent studies have demonstrated that CD22ΔE12 is a characteristic genetic defect of therapy-refractory clones in pediatric BPL and implicated the CD22ΔE12 genetic defect in the aggressive biology of relapsed or therapy-refractory pediatric BPL. The purpose of the present study was to evaluate the biologic significance of the CD22ΔE12 molecular lesion in BPL and determine if it could serve as a molecular target for RNA interference (RNAi) therapy. Here we report a previously unrecognized causal link between CD22ΔE12 and aggressive biology of human BPL cells by demonstrating that siRNA-mediated knockdown of CD22ΔE12 in primary leukemic B-cell precursors is associated with a marked inhibition of their clonogenicity. Additionally, we report a nanoscale liposomal formulation of CD22ΔE12-specific siRNA with potent in vitro and in vivo anti-leukemic activity against primary human BPL cells as a first-in-class RNAi therapeutic candidate targeting CD22ΔE12. PMID:25659406

  10. Molecular signature of pancreatic adenocarcinoma: an insight from genotype to phenotype and challenges for targeted therapy

    PubMed Central

    Sahin, Ibrahim H; Iacobuzio-Donahue, Christine A; O’Reilly, Eileen M

    2016-01-01

    Introduction Pancreatic adenocarcinoma remains one of the most clinically challenging cancers despite an in-depth characterization of the molecular underpinnings and biology of this disease. Recent whole-genome-wide studies have elucidated the diverse and complex genetic alterations which generate a unique oncogenic signature for an individual pancreatic cancer patient and which may explain diverse disease behavior in a clinical setting. Areas covered In this review article, we discuss the key oncogenic pathways of pancreatic cancer including RAS-MAPK, PI3KCA and TGF-β signaling, as well as the impact of these pathways on the disease behavior and their potential targetability. The role of tumor suppressors particularly BRCA1 and BRCA2 genes and their role in pancreatic cancer treatment are elaborated upon. We further review recent genomic studies and their impact on future pancreatic cancer treatment. Expert opinion Targeted therapies inhibiting pro-survival pathways have limited impact on pancreatic cancer outcomes. Activation of pro-apoptotic pathways along with suppression of cancer-stem-related pathways may reverse treatment resistance in pancreatic cancer. While targeted therapy or a ‘precision medicine’ approach in pancreatic adenocarcinoma remains an elusive challenge for the majority of patients, there is a real sense of optimism that the strides made in understanding the molecular underpinnings of this disease will translate into improved outcomes. PMID:26439702

  11. Opportunities and Challenges in the Era of Molecularly Targeted Agents and Radiation Therapy

    PubMed Central

    2013-01-01

    The first annual workshop for preclinical and clinical development of radiosensitizers took place at the National Cancer Institute on August 8–9, 2012. Radiotherapy is one of the most commonly applied and effective oncologic treatments for solid tumors. It is well recognized that improved clinical efficacy of radiotherapy would make a substantive impact in clinical practice and patient outcomes. Advances in genomic technologies and high-throughput drug discovery platforms have brought a revolution in cancer treatment by providing molecularly targeted agents for various cancers. Development of predictive biomarkers directed toward specific subsets of cancers has ushered in a new era of personalized therapeutics. The field of radiation oncology stands to gain substantial benefit from these advances given the concerted effort to integrate this progress into radiation therapy. This workshop brought together expert clinicians and scientists working in various disease sites to identify the exciting opportunities and expected challenges in the development of molecularly targeted agents in combination with radiation therapy. PMID:23503600

  12. New molecular targeted therapies for advanced non-small-cell lung cancer

    PubMed Central

    Méndez, Míriam; Custodio, Ana; Provencio, Mariano

    2011-01-01

    Non-small-cell lung cancer (NSCLC) is a uniformly fatal disease and most patients will present with advanced stage. Treatment outcomes remain unsatisfactory, with low long-term survival rates. Standard treatment, such as palliative chemotherapy and radiotherapy, offers a median survival not exceeding 1 year. Hence, considerable efforts have started to be made in order to identify new biological agents which may safely and effectively be administered to advanced NSCLC patients. Two cancer cell pathways in particular have been exploited, the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR) pathways. However, novel targeted therapies that interfere with other dysregulated pathways in lung cancer are already in the clinic. This review outlines the most promising research approaches to the treatment of NSCLC, discussed according to the specific molecular pathway targeted. PMID:22263060

  13. Molecular-targeted therapy for chemotherapy-refractory gastric cancer: a case report and literature review.

    PubMed

    Kuo, Hung-Yang; Yeh, Kun-Huei

    2014-07-01

    The prognosis of advanced gastric cancer (AGC) remains poor despite therapeutic advances in recent decades. Several recent positive phase III trials established the efficacy of second-line chemotherapy for metastatic gastric cancer in prolonging overall survival. However, malnutrition and poor performance of AGC in late stages usually preclude such patients from intensive treatment. Many targeted-therapies failed to show a significant survival benefit in AGC, but have regained attention after the positive result of ramucirumab was announced last year. Among all targeted agents, only trastuzumab, a monoclonal antibody against Human epidermal growth factor receptor-2 (HER2) protein, has been proven as having survival benefit by addition to first-line chemotherapy. Herein we reported a patient who benefited from adding trastuzumab to the same second-line combination chemotherapy (paclitaxel, 5-fluorouracil, and leucovorin) upon progression of bulky liver metastases. At least five months of progression-free survival were achieved without any additional toxicity. We also reviewed literature of molecularly-targeted therapy for chemotherapy-refractory gastric cancer, including several large phase III trials (REGARD, GRANITE-1, EXPAND, and REAL-3) published in 2013-2014. PMID:24982389

  14. Biokinetics and dosimetry of target-specific radiopharmaceuticals for molecular imaging and therapy

    NASA Astrophysics Data System (ADS)

    Ferro-Flores, Guillermina; Torres-García, Eugenio; Gonz&Ález-v&Ázquez, Armando; de Murphy, Consuelo Arteaga

    Molecular imaging techniques directly or indirectly monitor and record the spatiotemporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic or therapeutic applications. 99mTc-HYNIC-TOC has shown high stability both in vitro and in vivo and rapid detection of somatostatin receptor-positive tumors. Therapies using radiolabeled anti-CD20 have demonstrated their efficacy in patients with B-cell non-Hodgkin's lymphoma (NHL). The aim of this study was to establish biokinetic models for 99mTc-HYNIC-TOC and 188Re-anti-CD20 and to evaluate their dosimetry as target-specific radiopharmaceuticals. The OLINDA/EXM code was used to calculate patient-specific internal radiation dose estimates. 99mTc-HYNIC-TOC images showed an average tumor/blood ratio of 4.3±0.7 in receptor-positive tumors with an average effective dose of 4.4 mSv. Dosimetric studies indicated that after administration of 5.8 to 7.5 GBq of 188Re-anti-CD20 the absorbed dose to total body would be 0.75 Gy which corresponds to the recommended dose for NHL therapies.

  15. Targeted therapies for cancer

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000902.htm Targeted therapies for cancer To use the sharing features on ... cells so they cannot spread. How Does Targeted Therapy Work? Targeted therapy drugs work in a few ...

  16. Molecular targets of dietary agents for prevention and therapy of cancer.

    PubMed

    Aggarwal, Bharat B; Shishodia, Shishir

    2006-05-14

    While fruits and vegetables are recommended for prevention of cancer and other diseases, their active ingredients (at the molecular level) and their mechanisms of action less well understood. Extensive research during the last half century has identified various molecular targets that can potentially be used not only for the prevention of cancer but also for treatment. However, lack of success with targeted monotherapy resulting from bypass mechanisms has forced researchers to employ either combination therapy or agents that interfere with multiple cell-signaling pathways. In this review, we present evidence that numerous agents identified from fruits and vegetables can interfere with several cell-signaling pathways. The agents include curcumin (turmeric), resveratrol (red grapes, peanuts and berries), genistein (soybean), diallyl sulfide (allium), S-allyl cysteine (allium), allicin (garlic), lycopene (tomato), capsaicin (red chilli), diosgenin (fenugreek), 6-gingerol (ginger), ellagic acid (pomegranate), ursolic acid (apple, pears, prunes), silymarin (milk thistle), anethol (anise, camphor, and fennel), catechins (green tea), eugenol (cloves), indole-3-carbinol (cruciferous vegetables), limonene (citrus fruits), beta carotene (carrots), and dietary fiber. For instance, the cell-signaling pathways inhibited by curcumin alone include NF-kappaB, AP-1, STAT3, Akt, Bcl-2, Bcl-X(L), caspases, PARP, IKK, EGFR, HER2, JNK, MAPK, COX2, and 5-LOX. The active principle identified in fruit and vegetables and the molecular targets modulated may be the basis for how these dietary agents not only prevent but also treat cancer and other diseases. This work reaffirms what Hippocrates said 25 centuries ago, let food be thy medicine and medicine be thy food. PMID:16563357

  17. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy

    PubMed Central

    Chen, Chuan; Wang, Ge

    2015-01-01

    The incidence and mortality of hepatocellular carcinoma (HCC) have fallen dramatically in China and elsewhere over the past several decades. Nonetheless, HCC remains a major public health issue as one of the most common malignant tumors worldwide and one of the leading causes of death caused by cancer in China. Hepatocarcinogenesis is a very complex biological process associated with many environmental risk factors and factors in heredity, including abnormal activation of cellular and molecular signaling pathways such as Wnt/β-catenin, hedgehog, MAPK, AKT, and ERK signaling pathways, and the balance between the activation and inactivation of the proto-oncogenes and anti-oncogenes, and the differentiation of liver cancer stem cells. Molecule-targeted therapy, a new approach for the treatment of liver cancer, blocks the growth of cancer cells by interfering with the molecules required for carcinogenesis and tumor growth, making it both specific and selective. However, there is no one drug completely designed for liver cancer, and further development in the research of liver cancer targeted drugs is now almost stagnant. The purpose of this review is to discuss recent advances in our understanding of the molecular mechanisms underlying the development of HCC and in the development of novel strategies for cancer therapeutics. PMID:26244070

  18. Molecular characterisation of cutaneous melanoma: creating a framework for targeted and immune therapies

    PubMed Central

    Rajkumar, Shivshankari; Watson, Ian R

    2016-01-01

    Large-scale genomic analyses of cutaneous melanoma have revealed insights into the aetiology and heterogeneity of this disease, as well as opportunities to further personalise treatment for patients with targeted and immune therapies. Herein, we review the proposed genomic classification of cutaneous melanoma from large-scale next-generation sequencing studies, including the largest integrative analysis of melanoma from The Cancer Genome Atlas (TCGA) Network. We examine studies that have identified molecular features of melanomas linked to immune checkpoint inhibitor response. In addition, we draw attention to low-frequency actionable mutations and highlight frequent non-coding mutations in melanoma where little is known about their biological function that may provide novel avenues for the development of treatment strategies for melanoma patients. PMID:27336610

  19. Perspectives on the Design of Clinical Trials Combining Transarterial Chemoembolization and Molecular Targeted Therapy

    PubMed Central

    Hsu, Chiun; Po-Ching-Liang; Morita, Satoshi; Hu, Fu-Chang; Cheng, Ann-Lii

    2012-01-01

    Transarterial chemoembolization (TACE) moderately prolongs the survival of patients with intermediate-stage hepatocellular carcinoma. Molecular targeted therapy (MTT) may improve the efficacy of TACE. However, the findings of clinical trials evaluating the efficacy of a combination of TACE and MTT are conflicting. We hypothesized that this disparity can be prevented using alternative study designs. In this review, we classify the pertinent issues of study designs into five domains: primary endpoints, patients, TACE procedures, timing of randomization, and drug administration. Furthermore, we discuss the methods for increasing the success rate by minimizing potentially confounding factors within these five domains. Transarterial chemoembolization (TACE) is the current standard therapy for patients with Barcelona Clinic Liver Cancer (BCLC) intermediate-stage hepatocellular carcinoma (HCC) [1, 2, 3]. The survival benefit of TACE is supported by the results of meta-analysis of clinical trials comparing TACE with other conservative treatments in patients with inoperable HCC [4]. The results showed that the median survival of patients improved from approximately 16 to 20 months following TACE [4, 5]. Although advances in TACE techniques and the use of new embolization agents may improve the efficacy of TACE [6, 7], other approaches are needed to further improve the outcome in HCC patients treated using TACE. Molecular targeted therapy (MTT) has improved the survival of patients with advanced-stage HCC [5, 8]. Therefore, combining MTT and TACE may additionally improve the survival in patients with intermediate-stage HCC. Many molecular targeted agents (MTA) are currently undergoing evaluation in randomized trials (table 1). However, the designs of these trials differ significantly. The results of two trials combining sorafenib and TACE were recently reported. Both trials failed to demonstrate a therapeutic benefit of the combination therapy for time to tumor progression

  20. Mechanistic Insights into Molecular Targeting and Combined Modality Therapy for Aggressive, Localized Prostate Cancer.

    PubMed

    Dal Pra, Alan; Locke, Jennifer A; Borst, Gerben; Supiot, Stephane; Bristow, Robert G

    2016-01-01

    Radiation therapy (RT) is one of the mainstay treatments for prostate cancer (PCa). The potentially curative approaches can provide satisfactory results for many patients with non-metastatic PCa; however, a considerable number of individuals may present disease recurrence and die from the disease. Exploiting the rich molecular biology of PCa will provide insights into how the most resistant tumor cells can be eradicated to improve treatment outcomes. Important for this biology-driven individualized treatment is a robust selection procedure. The development of predictive biomarkers for RT efficacy is therefore of utmost importance for a clinically exploitable strategy to achieve tumor-specific radiosensitization. This review highlights the current status and possible opportunities in the modulation of four key processes to enhance radiation response in PCa by targeting the: (1) androgen signaling pathway; (2) hypoxic tumor cells and regions; (3) DNA damage response (DDR) pathway; and (4) abnormal extra-/intracell signaling pathways. In addition, we discuss how and which patients should be selected for biomarker-based clinical trials exploiting and validating these targeted treatment strategies with precision RT to improve cure rates in non-indolent, localized PCa. PMID:26909338

  1. Mechanistic Insights into Molecular Targeting and Combined Modality Therapy for Aggressive, Localized Prostate Cancer

    PubMed Central

    Dal Pra, Alan; Locke, Jennifer A.; Borst, Gerben; Supiot, Stephane; Bristow, Robert G.

    2016-01-01

    Radiation therapy (RT) is one of the mainstay treatments for prostate cancer (PCa). The potentially curative approaches can provide satisfactory results for many patients with non-metastatic PCa; however, a considerable number of individuals may present disease recurrence and die from the disease. Exploiting the rich molecular biology of PCa will provide insights into how the most resistant tumor cells can be eradicated to improve treatment outcomes. Important for this biology-driven individualized treatment is a robust selection procedure. The development of predictive biomarkers for RT efficacy is therefore of utmost importance for a clinically exploitable strategy to achieve tumor-specific radiosensitization. This review highlights the current status and possible opportunities in the modulation of four key processes to enhance radiation response in PCa by targeting the: (1) androgen signaling pathway; (2) hypoxic tumor cells and regions; (3) DNA damage response (DDR) pathway; and (4) abnormal extra-/intracell signaling pathways. In addition, we discuss how and which patients should be selected for biomarker-based clinical trials exploiting and validating these targeted treatment strategies with precision RT to improve cure rates in non-indolent, localized PCa. PMID:26909338

  2. Development of molecularly targeted therapies in hepatocellular carcinoma: where do we go now?

    PubMed

    Finn, Richard S

    2010-01-15

    Hepatocellular carcinoma (HCC), once considered an orphan disease in the West, has become a global health concern. It is the third leading cause of cancer death worldwide, and its incidence continues to increase. Historically, the development of new systemic agents for advanced HCC has been lacking despite no clear benefit with traditional cytotoxic therapies. Although two randomized studies with sorafenib for the treatment of HCC patients have recently been completed, survival benefits have been modest and highlight the unmet medical need among patients with HCC. Given the clear need, clinical development of novel systemic agents in HCC has begun in earnest. These clinical studies are founded on a growing body of basic and translational science that has identified several potential molecular targets in HCC. The successful development of such targeted agents in the future will be linked to our ability to appropriately select patients for treatment based on their clinical stage (including extent of liver disease and extent of tumor) and on potential predictive markers of response. Here, we review these data in the context of rational drug development in HCC in the front-line setting and in previously treated patients. PMID:20068087

  3. Molecular targeted therapy to improve radiotherapeutic outcomes for non-small cell lung carcinoma

    PubMed Central

    Bhardwaj, Bhaskar; Bhardwaj, Himanshu; Balusu, Sree; Shwaiki, Ali

    2016-01-01

    Effective treatments for non-small cell lung carcinoma (NSCLC) remain elusive. The use of concurrent chemotherapy with radiotherapy (RT) has improved outcomes, but a significant proportion of NSCLC patients are too frail to be able to tolerate an intense course of concurrent chemoradiotherapy. The development of targeted therapies ignited new hope in enhancing radiotherapeutic outcomes. The use of targeted therapies against the epidermal growth factor receptor (EGFR) has offered slight but significant benefits in concurrent use with RT for certain patients in certain situations. However, despite theoretical promise, the use of anti-angiogenics, such as bevacizumab and endostatin, has not proven clinically safe or useful in combination with RT. However, many new targeted agents against new targets are being experimented for combined use with RT. It is hoped that these agents may provide a significant breakthrough in the radiotherapeutic management of NSCLC. The current review provides a brief discussion about the targets, the targeted therapies, the rationale for the use of targeted therapies in combination with RT, and a brief review of the existing data on the subject. PMID:26904572

  4. The Mitochondrial Permeability Transition Pore: A Molecular Target for Amyotrophic Lateral Sclerosis Therapy

    PubMed Central

    Martin, Lee J.

    2009-01-01

    Effective therapies are needed for the treatment of amyotrophic lateral sclerosis (ALS), a fatal type of motor neuron disease. Morphological, biochemical, molecular genetic, and cell/animal model studies suggest that mitochondria have potentially diverse roles in neurodegenerative disease mechanisms and neuronal cell death. In human ALS, abnormalities have been found in mitochondrial structure, mitochondrial respiratory chain enzymes, and mitochondrial cell death proteins indicative of some non-classical form of programmed cell death. Mouse models of ALS are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria. This minireview summarizes work on the how malfunctioning mitochondria might contribute to neuronal death in ALS through the biophysical entity called the mitochondrial permeability pore (mPTP). The major protein components of the mPTP are enriched in mouse motor neurons. Early in the course of disease in ALS mice expressing human mutant superoxide dismutase-1, mitochondria in motor neurons undergo trafficking abnormalities and dramatic remodeling resulting in the formation of mega-mitochondria and coinciding with increased protein carbonyl formation and nitration of mPTP components. The genetic deletion of a major mPTP component, cyclophilin D, has robust effects in ALS mice by delaying disease onset and extending survival. Thus, attention should be directed to the mPTP as rational target for the development of drugs designed to treat ALS. PMID:19651206

  5. [Frontier researches for the development of molecular-targeted therapies for familial Parkinson disease].

    PubMed

    Imai, Yuzuru; Takahashi, Ryosuke

    2009-08-01

    Parkinson disease (PD), is a movement disorder pathologically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the inherited forms of PD account for only 5 to 10% of PD cases, the identification of gene mutations in the genes implicated in familial PD in the past 10 years, including the findings regarding the a-synuclein, Parkin, ubiquitin-C-terminal hydrolase-L1 (UCH-L1), PINK1, DJ-1 and the ATP13A2 genes, has advanced understanding of the molecular mechanisms in each case of genetic PD. Most familial forms of PD develop at an early onset. However, recent identification of the leucine-rich repeat kinase (LRRK) 2 gene for a late-onset PD, the clinicopathological feature of which closely resembles that of sporadic PD, is expected to enable the clarification of the underlying causes of general PD. Recent studies on the physiological and pathological functions of these identified gene products have revealed overlapping pathogenetic pathways. The common features of these aberrant pathways are impaired protein degradation/quality control, mitochondrial dysfunction, and altered vesicle transport. Several attempts have been made towards developing molecular-targeted therapies directed against mitochondria (e.g., antioxidants, permeability transition pore modulators, and mitochondrial biogenesis stimulators), protein quality control and vesicle transport (e.g., gene silencing, immunization of asynuclein, and protofibril-destabilizing reagents). To ensure the successful implementation of such strategies, it is important to understand the events occuring at an early stage of PD. Further, studies using mammalian PD models for pharmacological analysis combined with studies employing lower organisms for genetic analyses such as worm, fly, and yeast will be helpful to determine effective prevention and treatment strategies for PD, which will replace the conventional symptomatic treatments for PD. PMID:19697879

  6. [Challenge to the Development of Molecular Targeted Therapy against a Novel Target Candidate Identified by Antibody Proteomics Technology].

    PubMed

    Nagano, Kazuya

    2016-01-01

    Disease proteomics that systemically analyzes and identifies differentially expressed proteins between healthy and diseased samples is a potentially useful approach for obtaining target proteins for drug development. To date, however, very few target proteins have been identified from this field. A key issue that remains to be resolved is how to correctly identify target proteins from a number of potential candidates. To circumvent this problem, we have developed "antibody proteomics technology" in which a single chain Fv phage antibody library is utilized for proteome analysis. Here, we describe the application of this technology by primarily focusing on Eph receptor A10 (EphA10), a novel breast cancer-related protein that is a promising target for antibody drugs. To establish an effective and safe targeted cancer therapy, it is important that the target is specifically expressed in cancer tissues. Therefore, we attempted to analyze the EphA10 expression profiles. Tissue microarray analysis showed that EphA10 was expressed in all subtypes of breast cancer containing triple negative breast cancer cases. On the other hand, EphA10 was only expressed in testis tissue among 36 kinds of normal tissues. Thus, EphA10 could be a highly cancer-specific protein, making it a promising target for female breast cancer patients. Finally, we examined the anti-tumor effect by anti-EphA10 antibody, aiming for the development of a novel EphA10 targeting therapy. Administration of the antibody showed that tumor volumes were significantly inhibited. Our results suggest that targeting EphA10 in breast cancer cases might be a promising new form of therapy. PMID:26831784

  7. The RET proto-oncogene: a potential target for molecular cancer therapy.

    PubMed

    Pützer, Brigitte M; Drosten, Matthias

    2004-07-01

    The inhibition of activated receptor tyrosine kinases has defined a new era of selective cancer therapy. The value of these approaches has been demonstrated for a growing number of tyrosine kinases. Gain-of-function alterations within the RET proto-oncogene are responsible for the development of medullary, as well as papillary, thyroid carcinoma and make it a candidate for the design of targeted therapies. Recently, various strategies have been used to block the activity of RET in pre-clinical models, providing evidence that RET is a potential target for a selective cancer-therapy approach, especially when considering that the inhibition of RET activity is sufficient to revert neoplastic characteristics. Although the ideal clinically useful therapeutic option has yet to be developed, successes with other selective tyrosine kinase inhibitors encourages further effort. PMID:15242684

  8. Molecular phenotypes in triple negative breast cancer from African American patients suggest targets for therapy.

    PubMed

    Lindner, Robert; Sullivan, Catherine; Offor, Onyinye; Lezon-Geyda, Kimberly; Halligan, Kyle; Fischbach, Neal; Shah, Mansi; Bossuyt, Veerle; Schulz, Vincent; Tuck, David P; Harris, Lyndsay N

    2013-01-01

    suggest that targeted therapy choices should be considered in the context of race. PMID:24260093

  9. Targeted Therapies in Lung Cancer

    PubMed Central

    Chirieac, Lucian R.; Dacic, Sanja

    2010-01-01

    An ongoing research and multiple clinical trials involve new targeted therapies and less aggressive treatment regimens that improve survival in patients with lung cancer. Targeted therapeutic agents are based on the concept of discovering genetic alterations and the signaling pathways altered in cancer and have added significantly to our armamentarium in order to prolong patient survival and minimizing drug toxicity. Among 34 molecularly targeted drugs approved by U.S. Food and Drug Administration (FDA) for treatment of various cancers since 1998 three targeted therapies have been approved for treatment of lung cancer (gefitinib in 2002, erlotinib in 2003, and bevacizumab in 2006). This review focuses on the targeted therapies in lung cancer, the molecular biomarkers that help identify patients that will benefit for these targeted therapies, describes the basic molecular biology principles and selected molecular diagnostic techniques and the pathological features correlated with molecular abnormalities in lung cancer. Lastly, new molecular abnormalities described in lung cancer that are predictive to novel promising targeted agents in various phases of clinical trials are discussed. PMID:20680095

  10. Current Molecular Targeted Therapy in Advanced Gastric Cancer: A Comprehensive Review of Therapeutic Mechanism, Clinical Trials, and Practical Application

    PubMed Central

    Li, Kaichun; Li, Jin

    2016-01-01

    Despite the great progress in the treatment of gastric cancer, it is still the third leading cause of cancer death worldwide. Patients often miss the opportunity for a surgical cure, because the cancer has already developed into advanced cancer when identified. Compared to best supportive care, chemotherapy can improve quality of life and prolong survival time, but the overall survival is often short. Due to the molecular study of gastric cancer, new molecular targeted drugs have entered the clinical use. Trastuzumab, an antibody targeting human epidermal growth factor receptor 2 (HER2), can significantly improve survival in advanced gastric cancer patients with HER2 overexpression. Second-line treatment of advanced gastric cancer with ramucirumab, an antibody targeting VEGFR-2, alone or in combination with paclitaxel, has been proved to provide a beneficial effect. The VEGFR-2 tyrosine kinase inhibitor, apatinib, can improve the survival of advanced gastric cancer patients after second-line chemotherapy failure. Unfortunately, none of the EGFR targeting antibodies (cetuximab or panitumumab), VEGF targeting monoclonal antibodies (bevacizumab), mTOR inhibitor (everolimus), or HGF/MET pathway targeting drugs has a significant survival benefit. Many other clinical trials based on molecular markers are underway. This review will summarize targeted therapies for advanced gastric cancer. PMID:26880889

  11. Current Molecular Targeted Therapy in Advanced Gastric Cancer: A Comprehensive Review of Therapeutic Mechanism, Clinical Trials, and Practical Application.

    PubMed

    Li, Kaichun; Li, Jin

    2016-01-01

    Despite the great progress in the treatment of gastric cancer, it is still the third leading cause of cancer death worldwide. Patients often miss the opportunity for a surgical cure, because the cancer has already developed into advanced cancer when identified. Compared to best supportive care, chemotherapy can improve quality of life and prolong survival time, but the overall survival is often short. Due to the molecular study of gastric cancer, new molecular targeted drugs have entered the clinical use. Trastuzumab, an antibody targeting human epidermal growth factor receptor 2 (HER2), can significantly improve survival in advanced gastric cancer patients with HER2 overexpression. Second-line treatment of advanced gastric cancer with ramucirumab, an antibody targeting VEGFR-2, alone or in combination with paclitaxel, has been proved to provide a beneficial effect. The VEGFR-2 tyrosine kinase inhibitor, apatinib, can improve the survival of advanced gastric cancer patients after second-line chemotherapy failure. Unfortunately, none of the EGFR targeting antibodies (cetuximab or panitumumab), VEGF targeting monoclonal antibodies (bevacizumab), mTOR inhibitor (everolimus), or HGF/MET pathway targeting drugs has a significant survival benefit. Many other clinical trials based on molecular markers are underway. This review will summarize targeted therapies for advanced gastric cancer. PMID:26880889

  12. Cutaneous adverse effects of targeted therapies: Part II: Inhibitors of intracellular molecular signaling pathways.

    PubMed

    Macdonald, James B; Macdonald, Brooke; Golitz, Loren E; LoRusso, Patricia; Sekulic, Aleksandar

    2015-02-01

    The last decade has spawned an exciting new era of oncotherapy in dermatology, including the development of targeted therapies for metastatic melanoma and basal cell carcinoma. Along with skin cancer, deregulation of the PI3K-AKT-mTOR and RAS-RAF-MEK-ERK intracellular signaling pathways contributes to tumorigenesis of a multitude of other cancers, and inhibitors of these pathways are being actively studied. Similar to other classes of targeted therapies, cutaneous adverse effects are among the most frequent toxicities observed with mitogen-activated protein kinase pathway inhibitors, PI3K-AKT-mTOR inhibitors, hedgehog signaling pathway inhibitors, and immunotherapies. Given the rapid expansion of these families of targeted treatments, dermatologists will be essential in offering dermatologic supportive care measures to cancer patients being treated with these agents. Part II of this continuing medical education article reviews skin-related adverse sequelae, including the frequency of occurrence and the implications associated with on- and off-target cutaneous toxicities of inhibitors of the RAS-RAF-MEK-ERK pathway, PI3K-AKT-mTOR pathway, hedgehog signaling pathway, and immunotherapies. PMID:25592339

  13. Molecular regulation of vasculogenic mimicry in tumors and potential tumor-target therapy

    PubMed Central

    Fan, Yue-Zu; Sun, Wei

    2010-01-01

    “Vasculogenic mimicry (VM)”, is a term that describes the unique ability of highly aggressive tumor cells to express a multipotent, stem cell-like phenotype, and form a pattern of vasculogenic-like networks in three-dimensional culture. As an angiogenesis-independent pathway, VM and/or periodic acid-schiff-positive patterns are associated with poor prognosis in tumor patients. Moreover, VM is resistant to angiogenesis inhibitors. Here, we will review the advances in research on biochemical and molecular signaling pathways of VM in tumors and on potential anti-VM therapy strategy. PMID:21160860

  14. Molecularly targeted therapies for advanced or metastatic non-small-cell lung carcinoma

    PubMed Central

    Bayraktar, Soley; Rocha-Lima, Caio M

    2013-01-01

    Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related death in both men and women in the United States. Platinum-based doublet chemotherapy has been a standard for patients with advanced stage disease. Improvements in overall survival and quality of life have been modest. Improved knowledge of the aberrant molecular signaling pathways found in NSCLC has led to the development of biomarkers with associated targeted therapeutics, thus changing the treatment paradigm for many NSCLC patients. In this review, we present a summary of many of the currently investigated biologic targets in NSCLC, discuss their current clinical trial status, and also discuss the potential for development of other targeted agents. PMID:23696960

  15. Molecular classification of gastric cancer: Towards a pathway-driven targeted therapy

    PubMed Central

    Espinoza, Jaime A.; Weber, Helga; García, Patricia; Nervi, Bruno; Garrido, Marcelo; Corvalán, Alejandro H.; Roa, Juan Carlos; Bizama, Carolina

    2015-01-01

    Gastric cancer (GC) is the third leading cause of cancer mortality worldwide. Although surgical resection is a potentially curative approach for localized cases of GC, most cases of GC are diagnosed in an advanced, non-curable stage and the response to traditional chemotherapy is limited. Fortunately, recent advances in our understanding of the molecular mechanisms that mediate GC hold great promise for the development of more effective treatment strategies. In this review, an overview of the morphological classification, current treatment approaches, and molecular alterations that have been characterized for GC are provided. In particular, the most recent molecular classification of GC and alterations identified in relevant signaling pathways, including ErbB, VEGF, PI3K/AKT/mTOR, and HGF/MET signaling pathways, are described, as well as inhibitors of these pathways. An overview of the completed and active clinical trials related to these signaling pathways are also summarized. Finally, insights regarding emerging stem cell pathways are described, and may provide additional novel markers for the development of therapeutic agents against GC. The development of more effective agents and the identification of biomarkers that can be used for the diagnosis, prognosis, and individualized therapy for GC patients, have the potential to improve the efficacy, safety, and cost-effectiveness for GC treatments. PMID:26267324

  16. Catamenial Epilepsy: Discovery of an Extrasynaptic Molecular Mechanism for Targeted Therapy

    PubMed Central

    Reddy, Doodipala Samba

    2016-01-01

    Catamenial epilepsy is a type of refractory epilepsy characterized by seizure clusters around perimenstrual or periovulatory period. The pathophysiology of catamenial epilepsy still remains unclear, yet there are few animal models to study this gender-specific disorder. The pathophysiology of perimenstrual catamenial epilepsy involves the withdrawal of the progesterone-derived GABAergic neurosteroids due to the decline in progesterone level at the time of menstruation. These manifestations can be faithfully reproduced in rodents by specific neuroendocrine manipulations. Since mice and rats, like humans, have ovarian cycles with circulating hormones, they appear to be suitable animal models for studies of perimenstrual seizures. Recently, we created specific experimental models to mimic perimenstrual seizures. Studies in rat and mouse models of catamenial epilepsy show enhanced susceptibility to seizures or increased seizure exacerbations following neurosteroid withdrawal. During such a seizure exacerbation period, there is a striking decrease in the anticonvulsant effect of commonly prescribed antiepileptics, such as benzodiazepines, but an increase in the anticonvulsant potency of exogenous neurosteroids. We discovered an extrasynaptic molecular mechanism of catamenial epilepsy. In essence, extrasynaptic δGABA-A receptors are upregulated during perimenstrual-like neuroendocrine milieu. Consequently, there is enhanced antiseizure efficacy of neurosteroids in catamenial models because δGABA-A receptors confer neurosteroid sensitivity and greater seizure protection. Molecular mechanisms such as these offer a strong rationale for the clinical development of a neurosteroid replacement therapy for catamenial epilepsy. PMID:27147973

  17. Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy

    PubMed Central

    Gill, Harinder; Leung, Anskar Y. H.; Kwong, Yok-Lam

    2016-01-01

    Myelodysplastic syndrome (MDS) is a group of heterogeneous clonal hematopoietic stem cell disorders characterized by cytopenia, ineffective hematopoiesis, and progression to secondary acute myeloid leukemia in high-risk cases. Conventional prognostication relies on clinicopathological parameters supplemented by cytogenetic information. However, recent studies have shown that genetic aberrations also have critical impacts on treatment outcome. Moreover, these genetic alterations may themselves be a target for treatment. The mutation landscape in MDS is shaped by gene aberrations involved in DNA methylation (TET2, DNMT3A, IDH1/2), histone modification (ASXL1, EZH2), the RNA splicing machinery (SF3B1, SRSF2, ZRSR2, U2AF1/2), transcription (RUNX1, TP53, BCOR, PHF6, NCOR, CEBPA, GATA2), tyrosine kinase receptor signaling (JAK2, MPL, FLT3, GNAS, KIT), RAS pathways (KRAS, NRAS, CBL, NF1, PTPN11), DNA repair (ATM, BRCC3, DLRE1C, FANCL), and cohesion complexes (STAG2, CTCF, SMC1A, RAD21). A detailed understanding of the pathogenetic mechanisms leading to transformation is critical for designing single-agent or combinatorial approaches in target therapy of MDS. PMID:27023522

  18. PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes

    PubMed Central

    Pal, Ipsita; Mandal, Mahitosh

    2012-01-01

    The PI3K-Akt pathway is a vital regulator of cell proliferation and survival. Alterations in the PIK3CA gene that lead to enhanced PI3K kinase activity have been reported in many human cancer types, including cancers of the colon, breast, brain, liver, stomach and lung. Deregulation of PI3K causes aberrant Akt activity. Therefore targeting this pathway could have implications for cancer treatment. The first generation PI3K-Akt inhibitors were proven to be highly effective with a low IC50, but later, they were shown to have toxic side effects and poor pharmacological properties and selectivity. Thus, these inhibitors were only effective in preclinical models. However, derivatives of these first generation inhibitors are much more selective and are quite effective in targeting the PI3K-Akt pathway, either alone or in combination. These second-generation inhibitors are essentially a specific chemical moiety that helps to form a strong hydrogen bond interaction with the PI3K/Akt molecule. The goal of this review is to delineate the current efforts that have been undertaken to inhibit the various components of the PI3K and Akt pathway in different types of cancer both in vitro and in vivo. Our focus here is on these novel therapies and their inhibitory effects that depend upon their chemical nature, as well as their development towards clinical trials. PMID:22983389

  19. The transcriptional modulator BCL6 as a molecular target for breast cancer therapy

    PubMed Central

    Walker, Sarah R.; Liu, Suhu; Xiang, Michael; Nicolais, Maria; Hatzi, Katerina; Giannopoulou, Eugenia; Elemento, Olivier; Cerchietti, Leandro; Melnick, Ari; Frank, David A.

    2014-01-01

    Inappropriate expression or activation of transcription factors can drive patterns of gene expression leading to the malignant behavior of breast cancer cells. We have found that the transcriptional repressor BCL6 is highly expressed in breast cancer cell lines, and its locus is amplified in about half of primary breast cancers. To understand how BCL6 regulates gene expression in breast cancer cells, we utilized ChIP-seq to identify the BCL6 binding sites on a genomic scale. This revealed that BCL6 regulates a unique cohort of genes in breast cancer cell lines compared to B cell lymphomas. Furthermore, BCL6 expression promotes the survival of breast cancer cells, and targeting BCL6 with a peptidomimetic inhibitor leads to apoptosis of these cells. Finally, combining a BCL6 inhibitor and a STAT3 inhibitor provided enhanced cell killing in triple negative breast cancer cell lines, suggesting that combination therapy may be particularly useful. Thus, targeting BCL6 alone or in conjunction with other signaling pathways may be a useful therapeutic strategy for treating breast cancer. PMID:24662818

  20. HER2, MET and FGFR2 oncogenic driver alterations define distinct molecular segments for targeted therapies in gastric carcinoma

    PubMed Central

    Liu, Y J; Shen, D; Yin, X; Gavine, P; Zhang, T; Su, X; Zhan, P; Xu, Y; Lv, J; Qian, J; Liu, C; Sun, Y; Qian, Z; Zhang, J; Gu, Y; Ni, X

    2014-01-01

    Background: Gastric cancer (GC) is a leading cause of cancer deaths worldwide. Since the approval of trastuzumab, targeted therapies are emerging as promising treatment options for the disease. This study aimed to explore the molecular segmentation of several known therapeutics targets, human epidermal growth factor receptor 2 (HER2), MET and fibroblast growth factor receptor 2 (FGFR2), within GC using clinically approved or investigational kits and scoring criteria. Knowledge of how these markers are segmented in the same cohort of GC patients could improve future clinical trial designs. Methods: Using immunohistochemistry (IHC) and FISH methods, overexpression and amplification of HER2, FGFR2 and MET were profiled in a cohort of Chinese GC samples. The correlations between anti-tumour sensitivity and the molecular segments of HER2, MET and FGFR2 alterations were further tested in a panel of GC cell lines and the patient-derived GC xenograft (PDGCX) model using the targeted inhibitors. Results: Of 172 GC patients, positivity for HER2, MET and FGFR2 alternations was found in 23 (13.4%), 21 (12.2%) and 9 (5.2%) patients, respectively. Positivity for MET was found in 3 of 23 HER2-positive GC patients. Co-positivity for FGFR2 and MET was found in 1 GC patient, and amplification of the two genes was found in different tumour cells. Our study in a panel of GC cell lines showed that in most cell lines, amplification or high expression of a particular molecular marker was mutually exclusive and in vitro sensitivity to the targeted agents lapatinib, PD173074 and crizotinib was only observed in cell lines with the corresponding high expression of the drugs' target protein. SGC031, an MET-positive PDGCX mouse model, responded to crizotinib but not to lapatinib or PD173074. Conclusions: Human epidermal growth factor receptor 2, MET and FGFR2 oncogenic driver alterations (gene amplification and overexpression) occur in three largely distinct molecular segments in GC. A

  1. Targeting G protein coupled receptor-related pathways as emerging molecular therapies

    PubMed Central

    Ghanemi, Abdelaziz

    2013-01-01

    G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties. PMID:25972730

  2. Targeted molecular therapy of head and neck squamous cell carcinoma with the tyrosine kinase inhibitor vandetanib in a mouse model

    PubMed Central

    Sano, Daisuke; Fooshee, David R.; Zhao, Mei; Andrews, Genevieve A.; Frederick, Mitchell J.; Galer, Chad; Milas, Zvonimir L.; Morrow, Phuong Khanh H.; Myers, Jeffrey N.

    2010-01-01

    Background We investigated the effects of vandetanib, an inhibitor of vascular endothelial growth factor receptor 2 (VEGFR-2) and epidermal growth factor receptor (EGFR), alone and in combination with paclitaxel in an orthotopic mouse model of human head and neck squamous cell carcinoma (HNSCC). Methods The in vitro effects of vandetanib (ZACTIMA™) were assessed in two HNSCC cell lines on cell growth, apoptosis, and receptor and downstream signaling morecule expression and phosphorylation levels. We assessed in vivo effects of vandetanib and/or paclitaxel by measuring tumor cell apoptosis, endothelial cell apoptosis, microvessel density, tumor size, and animal survival. Results In vitro, vandetanib inhibited the phosphorylation of EGFR and its downstream targets in HNSCC cells and inhibited proliferation and induced apoptosis of HNSCC cells and extended survival and inhibited tumor growth in nude mice orthotopically injected with human HNSCC. Conclusion Vandetanib has the potential to be a novel molecular targeted therapy for HNSCC. PMID:20629091

  3. Molecular Profiling to Optimize Treatment in Non-Small Cell Lung Cancer: A Review of Potential Molecular Targets for Radiation Therapy by the Translational Research Program of the Radiation Therapy Oncology Group

    SciTech Connect

    Ausborn, Natalie L.; Le, Quynh Thu; Bradley, Jeffrey D.; Choy, Hak; Dicker, Adam P.; Saha, Debabrata; Simko, Jeff; Story, Michael D.; Torossian, Artour; Lu, Bo

    2012-07-15

    Therapeutic decisions in non-small cell lung cancer (NSCLC) have been mainly based on disease stage, performance status, and co-morbidities, and rarely on histological or molecular classification. Rather than applying broad treatments to unselected patients that may result in survival increase of only weeks to months, research efforts should be, and are being, focused on identifying predictive markers for molecularly targeted therapy and determining genomic signatures that predict survival and response to specific therapies. The availability of such targeted biologics requires their use to be matched to tumors of corresponding molecular vulnerability for maximum efficacy. Molecular markers such as epidermal growth factor receptor (EGFR), K-ras, vascular endothelial growth factor (VEGF), mammalian target of rapamycin (mTOR), and anaplastic lymphoma kinase (ALK) represent potential parameters guide treatment decisions. Ultimately, identifying patients who will respond to specific therapies will allow optimal efficacy with minimal toxicity, which will result in more judicious and effective application of expensive targeted therapy as the new paradigm of personalized medicine develops.

  4. Indocyanine green as effective antibody conjugate for intracellular molecular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Hüttmann, Gereon; Rudnitzki, Florian; Diddens-Tschoeke, Heyke; Zhang, Zhenxi; Rahmanzadeh, Ramtin

    2016-07-01

    The fluorescent dye indocyanine green (ICG) is clinically approved and has been applied for ophthalmic and intraoperative angiography, measurement of cardiac output and liver function, or as contrast agent in cancer surgery. Though ICG is known for its photochemical effects, it has played a minor role so far in photodynamic therapy or techniques for targeted protein-inactivation. Here, we investigated ICG as an antibody-conjugate for the selective inactivation of the protein Ki-67 in the nucleus of cells. Conjugates of the Ki-67 antibody TuBB-9 with different amounts of ICG were synthesized and delivered into HeLa and OVCAR-5 cells through conjugation to the nuclear localization sequence. Endosomal escape of the macromolecular antibodies into the cytoplasm was optically triggered by photochemical internalization with the photosensitizer BPD. The second light irradiation at 690 nm inactivated Ki-67 and subsequently caused cell death. Here, we show that ICG as an antibody-conjugate can be an effective photosensitizing agent. Best effects were achieved with 1.8 ICG molecules per antibody. Conjugated to antibodies, the ICG absorption peaks vary proportionally with concentration. The absorption of ICG above 650 nm within the optical window of tissue opens the possibility of selective Ki-67 inactivation deep inside of tissues.

  5. The emerging molecular pathogenesis of neuroblastoma: implications for improved risk assessment and targeted therapy

    PubMed Central

    2009-01-01

    Neuroblastoma is one of the most common solid tumors of childhood, arising from immature sympathetic nervous system cells. The clinical course of patients with neuroblastoma is highly variable, ranging from spontaneous regression to widespread metastatic disease. Although the outcome for children with cancer has improved considerably during the past decades, the prognosis of children with aggressive neuroblastoma remains dismal. The clinical heterogeneity of neuroblastoma mirrors the biological and genetic heterogeneity of these tumors. Ploidy and MYCN amplification have been used as genetic markers for risk stratification and therapeutic decision making, and, more recently, gene expression profiling and genome-wide DNA copy number analysis have come into the picture as sensitive and specific tools for assessing prognosis. The applica tion of new genetic tools also led to the discovery of an important familial neuroblastoma cancer gene, ALK, which is mutated in approximately 8% of sporadic tumors, and genome-wide association studies have unveiled loci with risk alleles for neuroblastoma development. For some of the genomic regions that are deleted in some neuroblastomas, on 1p, 3p and 11q, candidate tumor suppressor genes have been identified. In addition, evidence has emerged for the contribution of epigenetic disturbances in neuroblastoma oncogenesis. As in other cancer entities, altered microRNA expression is also being recognized as an important player in neuroblastoma. The recent successes in unraveling the genetic basis of neuroblastoma are now opening opportunities for development of targeted therapies. PMID:19638189

  6. Genomic and molecular aberrations in malignant peripheral nerve sheath tumor and their roles in personalized target therapy.

    PubMed

    Yang, Jilong; Du, Xiaoling

    2013-09-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are malignant tumors with a high rate of local recurrence and a significant tendency to metastasize. Its dismal outcome points to the urgent need to establish better therapeutic strategies for patients harboring MPNSTs. The investigations of genomic and molecular aberrations in MPNSTs which detect many chromosomal aberrations, pathway abnormalities, and specific molecular aberrant events would supply multiple potential therapy targets and contribute to achievement of personalized medicine. The involved genes in the significant gains aberrations include BIRC5, CCNE2, DAB2, DDX15, EGFR, DAB2, MSH2, CDK6, HGF, ITGB4, KCNK12, LAMA3, LOXL2, MET, and PDGFRA. The involved genes in the significant deletion aberrations include CDH1, GLTSCR2, EGR1, CTSB, GATA3, SULT2A1, GLTSCR2, HMMR/RHAMM, LICAM2, MMP13, p16/INK4a, RASSF2, NM-23H1, and TP53. These genetic aberrations involve in several important signaling pathways such as TFF, EGFR, ARF, IGF1R signaling pathways. The genomic and molecular aberrations of EGFR, IGF1R, SOX9, EYA4, TOP2A, ETV4, and BIRC5 exhibit great promise as personalized therapeutic targets for MPNST patients. PMID:23830351

  7. Targeted Therapies Combined With Immune Checkpoint Therapy.

    PubMed

    Prieto, Peter A; Reuben, Alexandre; Cooper, Zachary A; Wargo, Jennifer A

    2016-01-01

    The age of personalized medicine continues to evolve within clinical oncology with the arsenal available to clinicians in a variety of malignancies expanding at an exponential rate. The development and advancement of molecular treatment modalities, including targeted therapy and immune checkpoint blockade, continue to flourish. Treatment with targeted therapy (BRAF, MEK, and other small molecule inhibitors) can be associated with swift disease control and high response rates, but limited durability when used as monotherapy. Conversely, treatment with immune checkpoint blockade monotherapy regimens (anti-cytotoxic T-lymphocyte antigen 4 and anti-programmed cell death protein 1/programmed cell death protein 1 ligand) tends to have lower response rates than that observed with BRAF-targeted therapy, although these treatments may offer long-term durable disease control. With the advent of these forms of therapy, there was interest early on in empirically combining targeted therapy with immune checkpoint blockade with the hopes of preserving high response rates and adding durability; however, there is now strong scientific rationale for combining these forms of therapy-and early evidence of synergy in preclinical models of melanoma. Clinical trials combining these strategies are ongoing, and mature data regarding response rates and durability are not yet available. Synergy may ultimately be apparent; however, it has also become clear that complexities exist regarding toxicity when combining these therapies. Nonetheless, this increased appreciation of the complex interplay between oncogenic mutations and antitumor immunity has opened up tremendous opportunities for studying targeted agents and immunotherapy in combination, which extends far beyond melanoma to other solid tumors and also to hematologic malignancies. PMID:27111910

  8. Renal effects of molecular targeted therapies in oncology: a review by the Cancer and the Kidney International Network (C-KIN).

    PubMed

    Launay-Vacher, V; Aapro, M; De Castro, G; Cohen, E; Deray, G; Dooley, M; Humphreys, B; Lichtman, S; Rey, J; Scotté, F; Wildiers, H; Sprangers, B

    2015-08-01

    A number of cancer therapy agents are cleared by the kidney and may affect renal function, including cytotoxic chemotherapy agents, molecular targeted therapies, analgesics, antibiotics, radiopharmaceuticals and radiation therapy, and bone-targeted therapies. Many of these agents can be nephrotoxic, including targeted cancer therapies. The incidence, severity, and pattern of renal toxicities may vary according to the respective target of the drug. Here, we review the renal effects associated with a selection of currenty approved targeted cancer therapies, directed to vascular endothelial growth factor or VEGF receptor(s) (VEGF/VEGFR), epidermal growth factor receptor (EGFR), human epidermal growth factor receptor2 (HER2), BRAF, anaplastic lymphoma kinase (ALK), programmed cell death protein-1 or its ligand (PD-1/PDL-1), receptor activator of nuclear factor kappa-B ligand (RANKL), and mammalian target of rapamycin (mTOR). The early diagnosis and prompt treatment of these renal alterations are essential in the daily practice where molecular targeted therapies have a definitive role in the armamentarium used in many cancers. PMID:25735315

  9. A 2015 update on predictive molecular pathology and its role in targeted cancer therapy: a review focussing on clinical relevance.

    PubMed

    Dietel, M; Jöhrens, K; Laffert, M V; Hummel, M; Bläker, H; Pfitzner, B M; Lehmann, A; Denkert, C; Darb-Esfahani, S; Lenze, D; Heppner, F L; Koch, A; Sers, C; Klauschen, F; Anagnostopoulos, I

    2015-09-01

    In April 2013 our group published a review on predictive molecular pathology in this journal. Although only 2 years have passed many new facts and stimulating developments have happened in diagnostic molecular pathology rendering it worthwhile to present an up-date on this topic. A major technical improvement is certainly given by the introduction of next-generation sequencing (NGS; amplicon, whole exome, whole genome) and its application to formalin-fixed paraffin-embedded (FFPE) tissue in routine diagnostics. Based on this 'revolution' the analyses of numerous genetic alterations in parallel has become a routine approach opening the chance to characterize patients' malignant tumors much more deeply without increasing turn-around time and costs. In the near future this will open new strategies to apply 'off-label' targeted therapies, e.g. for rare tumors, otherwise resistant tumors etc. The clinically relevant genetic aberrations described in this review include mutation analyses of RAS (KRAS and NRAS), BRAF and PI3K in colorectal cancer, KIT or PDGFR alpha as well as BRAF, NRAS and KIT in malignant melanoma. Moreover, we present several recent advances in the molecular characterization of malignant lymphoma. Beside the well-known mutations in NSCLC (EGFR, ALK) a number of chromosomal aberrations (KRAS, ROS1, MET) have become relevant. Only very recently has the clinical need for analysis of BRCA1/2 come up and proven as a true challenge for routine diagnostics because of the genes' special structure and hot-spot-free mutational distribution. The genetic alterations are discussed in connection with their increasingly important role in companion diagnostics to apply targeted drugs as efficient as possible. As another aspect of the increasing number of druggable mutations, we discuss the challenges personalized therapies pose for the design of clinical studies to prove optimal efficacy particularly with respect to combination therapies of multiple targeted drugs and

  10. Genomic Profiling Guides the Choice of Molecular Targeted Therapy of Pancreatic Cancer

    PubMed Central

    Frank, Thomas S.; Sun, Xiaotian; Zhang, Yuqing; Yang, Jingxuan; Fisher, William E.; Gingras, Marie-Claude; Li, Min

    2015-01-01

    Pancreatic cancer has the worst five-year survival rate of all malignancies due to its aggressive progression and resistance to therapy. Current therapies are limited to gemcitabine-based chemotherapeutics, surgery, and radiation. The current trend toward “personalized genomic medicine” has the potential to improve the treatment options for pancreatic cancer. Gene identification and genetic alterations like single nucleotide polymorphisms and mutations will allow physicians to predict the efficacy and toxicity of drugs, which could help diagnose pancreatic cancer, guide neoadjuvant or adjuvant treatment, and evaluate patients’ prognosis. This article reviews the multifaceted roles of genomics and pharmacogenomics in pancreatic cancer. PMID:25890222

  11. Influences of BRAF Inhibitors on the Immune Microenvironment and the Rationale for Combined Molecular and Immune Targeted Therapy.

    PubMed

    Reddy, Sangeetha M; Reuben, Alexandre; Wargo, Jennifer A

    2016-07-01

    The identification of key driver mutations in melanoma has led to the development of targeted therapies aimed at BRAF and MEK, but responses are often limited in duration. There is growing evidence that MAPK pathway activation impairs antitumor immunity and that targeting this pathway may enhance responses to immunotherapies. There is also evidence that immune mechanisms of resistance to targeted therapy exist, providing the rationale for combining targeted therapy with immunotherapy. Preclinical studies have demonstrated synergy in combining these strategies, and combination clinical trials are ongoing. It is, however, becoming clear that additional translational studies are needed to better understand toxicity, proper timing, and sequence of therapy, as well as the utility of multidrug regimens and effects of other targeted agents on antitumor immunity. Insights gained through translational research in preclinical models and clinical studies will provide mechanistic insight into therapeutic response and resistance and help devise rational strategies to enhance therapeutic responses. PMID:27215436

  12. Molecular targeting therapy using bevacizumab for peritoneal metastasis from gastric cancer

    PubMed Central

    Aoyagi, Keishiro; Kouhuji, Kikuo; Miyagi, Motoshi; Kizaki, Junya; Isobe, Taro; Hashimoto, Kousuke; Shirouzu, Kazuo

    2013-01-01

    AIM: To clarify the significance of vascular endothelial growth factor (VEGF) in peritoneal metastasis from gastric cancer, using the gastric cancer cell line MKN-45 compared with the high potential peritoneal dissemination gastric cancer cell line MKN-45P. METHODS: The supernatant of culture medium of MKN-45 cells or MKN-45P cells was collected and the concentrations were measured of various cytokines, matrix metalloproteinases, growth factor and angiogenic factors, including VEGF. We performed an initial pilot study to explore whether bevacizumab, a humanized monoclonal antibody against VEGF, had any suppressive effect on the peritoneal dissemination from gastric cancer in an experimental nude mouse model of peritoneal metastasis. RESULTS: The concentrations of interleukin-6 (IL-6), IL-8, VEGF and matrix metalloproteinase-2 protein in the culture supernatant were each significantly higher than each of those for MKN-45. In the in vivo study, the volume of ascites and the mitotic index were significantly lower in the therapy group than in the non-therapy group. The survival curve of the therapy group was significantly higher than that of the non-therapy group. These results suggested that VEGF was correlated with peritoneal metastasis from gastric cancer. CONCLUSION: Findings suggested that bevacizumab for inhibiting VEGF could suppress peritoneal dissemination from gastric cancer. PMID:24701416

  13. Targeted Therapy for Melanoma.

    PubMed

    Wong, Deborah J L; Ribas, Antoni

    2016-01-01

    Vemurafenib and dabrafenib, two potent tyrosine kinase inhibitors (TKIs) of the BRAF(V600E) kinase, are highly effective in the treatment of a BRAF (V600) -mutant metastatic melanoma. These are selective type I inhibitors (functional against the active conformation of the kinase) of the RAF kinases, which are key players in the mitogen-activated protein kinase (MAPK) pathway. BRAF (V600) mutations are present in approximately 7 % of all cancers, including high frequencies of mutations reported in 50 % of advanced melanomas and 100 % of hairy cell leukemias. As with most targeted therapies, resistance to BRAF inhibitors is an issue, and mechanisms of resistance are varied. Combining BRAF inhibitors with MEK inhibitors such as trametinib delays the development of resistance. Rationally combining targeted therapies to address the mechanism of resistance or combining BRAF inhibitors with other effective therapies such as immunotherapy may result in further improvement in outcomes for patients. PMID:26601866

  14. Voltage-Gated Potassium Channels Kv1.3--Potentially New Molecular Target in Cancer Diagnostics and Therapy.

    PubMed

    Teisseyre, Andrzej; Gąsiorowska, Justyna; Michalak, Krystyna

    2015-01-01

    Voltage-gated potassium channels, Kv1.3, which were discovered in 1984, are integral membrane proteins which are activated ("open") upon change of the cell membrane potential, enabling a passive flux of potassium ions across the cell membrane. The channels are expressed in many different tissues, both normal and cancer. Since 2005 it has been known that the channels are expressed not only in the plasma membrane, but also in the inner mitochondrial membrane. The activity of Kv1.3 channels plays an important role, among others, in setting the cell resting membrane potential, cell proliferation, apoptosis and volume regulation. For some years, these channels have been considered a potentially new molecular target in both the diagnostics and therapy of some cancer diseases. This review article focuses on: 1) changes of expression of the channels in cancer disorders with special regard to correlations between the channels' expression and stage of the disease, 2) influence of inhibitors of Kv1.3 channels on proliferation and apoptosis of cancer cells, 3) possible future applications of Kv1.3 channels' inhibitors in therapy of some cancer diseases. In the last section, the results of studies performed in our Laboratory of Bioelectricity on the influence of selected biologically active plant-derived compounds from the groups of flavonoids and stilbenes and their natural and synthetic derivatives on the activity of Kv1.3 channels in normal and cancer cells are reviewed. A possible application of some compounds from these groups to support therapy of cancer diseases, such as breast, colon and lymph node cancer, and melanoma or chronic lymphocytic leukemia (B-CLL), is announced. PMID:26467143

  15. Molecularly targeted therapy for the treatment of head and neck cancer: a review of the ErbB family inhibitors

    PubMed Central

    Sacco, Assuntina G; Worden, Francis P

    2016-01-01

    The majority of patients with head and neck squamous cell carcinoma (HNSCC) present with locally advanced disease, which requires site-specific combinations of surgery, radiation, and chemotherapy. Despite aggressive therapy, survival outcomes remain poor, and treatment-related morbidity is not negligible. For patients with recurrent or metastatic disease, therapeutic options are further limited and prognosis is dismal. With this in mind, molecularly targeted therapy provides a promising approach to optimizing treatment efficacy while minimizing associated toxicity. The ErbB family of receptors (ie, epidermal growth factor receptor [EGFR], ErbB2/human epidermal growth factor receptor [HER]-2, ErbB3/HER3, and ErbB4/HER4) is known to contribute to oncogenic processes, such as cellular proliferation and survival. EGFR, specifically, is upregulated in more than 90% of HNSCC, has been implicated in radiation resistance, and correlates with poorer clinical outcomes. The central role of EGFR in the pathogenesis of HNSCC suggests that inhibition of this pathway represents an attractive treatment strategy. As a result, EGFR inhibition has been extensively studied, with the emergence of two classes of drug therapy: monoclonal antibodies and tyrosine kinase inhibitors. While the monoclonal antibody cetuximab is currently the only US Food and Drug Administration–approved EGFR inhibitor for the treatment of HNSCC, numerous investigational drugs are being evaluated in clinical trials. This paper will review the role of the ErbB family in the pathogenesis of HNSCC, as well as the evidence-based data for the use of ErbB family inhibition in clinical practice. PMID:27110122

  16. Targeted Radionuclide Therapy of Human Tumors

    PubMed Central

    Gudkov, Sergey V.; Shilyagina, Natalya Yu.; Vodeneev, Vladimir A.; Zvyagin, Andrei V.

    2015-01-01

    Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed. PMID:26729091

  17. Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis

    NASA Astrophysics Data System (ADS)

    Fong, Sylvia; Itahana, Yoko; Sumida, Tomoki; Singh, Jarnail; Coppe, Jean-Philippe; Liu, Yong; Richards, Peter C.; Bennington, James L.; Lee, Nancy M.; Debs, Robert J.; Desprez, Pierre-Yves

    2003-11-01

    Mammary epithelial cells constitutively expressing Id-1 protein are unable to differentiate, acquire the ability to proliferate, and invade the extracellular matrix. In addition, Id-1 is aberrantly over-expressed in aggressive and metastatic breast cancer cells, as well as in human breast tumor biopsies from infiltrating carcinomas, suggesting Id-1 might be an important regulator of breast cancer progression. We show that human metastatic breast cancer cells become significantly less invasive in vitro and less metastatic in vivo when Id-1 is down-regulated by stable transduction with antisense Id-1. Expression of the matrix metalloproteinase MT1-MMP is decreased in proportion to the decrease in Id-1 protein levels, representing a potential mechanism for the reduction of invasiveness. Further, to more accurately recapitulate the biology of and potential therapeutic approaches to tumor metastasis, we targeted Id-1 expression systemically in tumor-bearing mice by using a nonviral approach. We demonstrate significant reduction of both Id-1 and MT1-MMP expressions as well as the metastatic spread of 4T1 breast cancer cells in syngeneic BALB/c mice. In conclusion, our studies have identified Id-1 as a critical regulator of breast cancer progression and suggest the feasibility of developing novel therapeutic approaches to target Id-1 expression to reduce breast cancer metastasis in humans.

  18. Use of molecular targeted agents for the diagnosis, staging and therapy of neuroendocrine malignancy

    PubMed Central

    2010-01-01

    Abstract Imaging of neuroendocrine tumours (NET) poses significant challenges because of the heterogeneous biology of the tumours that are represented by this class of neoplasia. NET can range from benign lesions to highly aggressive cancers. Structural imaging techniques have suboptimal sensitivity in most published series and diagnosis is often delayed until metastatic disease is present. Current guidelines emphasise the importance of functional imaging for evaluating the extent of NET. The mainstay of this type of imaging has been somatostatin receptor scintigraphy (SRS) with [111In]diethylenetriaminepentaacetic acid-octreotide (Octreoscan™). Routine use of single-photon emission computed tomography (SPECT) and particularly of hybrid SPECT/computed tomography (CT) has significantly improved localisation of tumour sites and evaluation of somatostatin receptor (SSTR) expression, which is important for predicting the likelihood of response to somatostatin analogues (SSA). Positron emission tomography (PET) can also now be used for evaluating SSTR expression. There are a number of peptides that have been evaluated but [68Ga]tetraazocyclodecanetetraacetic acid (DOTA)-octreotate (GaTate) PET/CT, which has been shown to be significantly more sensitive for detecting small lesions than Octreoscan™, is now probably the preferred agent because high uptake in known sites of disease provides a diagnostic pair for assessing suitability of patients for [177Lu]DOTA-octreotate (LuTate) peptide receptor radionuclide therapy (PRRT). A range of other radiolabelled SSA has also been used for PRRT. Lesions without SSTR expression require alternative imaging and therapeutic strategies. Although fluorodeoxyglucose (FDG) uptake in low-grade NET is not generally increased relative to normal tissues, the loss of differentiation that often accompanies loss of SSTR expression may be associated with a significant increase in glycolytic metabolism and an accompanying improvement in the

  19. TARGETED THERAPIES FOR PANCREATIC CANCER

    PubMed Central

    Danovi, S A; Wong, H H; Lemoine, N R

    2010-01-01

    Introduction Pancreatic cancer is a devastating malignancy and a leading cause of cancer mortality. Furthermore, early diagnosis represents a serious hurdle for clinicians as symptoms are non-specific and usually manifest in advanced, treatment-resistant stages of the disease. Sources of data Here, we review the rationale and progress of targeted therapies currently under investigation. Areas of agreement At present, chemoradiation regimes are administered palliatively, and produce only marginal survival benefits, underscoring a desperate need for more effective treatment modalities. Areas of controversy Questions have been raised as to whether erlotinib, the only targeted therapy to attain a statistically significant increase in median survival, is cost-effective. Growing points The last decade of research has provided us with a wealth of information regarding the molecular nature of pancreatic cancer, leading to the identification of signalling pathways and their respective components which are critical for the maintenance of the malignant phenotype. Areas timely for developing research These proteins thus represent ideal targets for novel molecular therapies which embody an urgently needed novel treatment strategy. PMID:18753179

  20. What makes y family pols potential candidates for molecular targeted therapies and novel biotechnological applications.

    PubMed

    Tomasso, A; Casari, G; Maga, G

    2014-01-01

    Nature has evolved DNA polymerases (Pols) with different replication fidelity with the purpose of maintaining and faithfully propagating the genetic information. Besides the four classical Pols (Pol α, δ, ε, γ), mammalian cells contain at least twelve specialized Pols whose functions have been discovered recently and are still not completely elucidated. Among them, Pols belonging to the Y family contribute to cell survival by promoting DNA damage tolerance. They are primarily involved in the translesion synthesis (TLS) pathway, incorporating dNTPs in an error-free or error-prone manner, depending on the nature of the DNA lesion. From an evolutionary point of view, their high mutagenic potential seems to guarantee the proper flexibility of vital importance for both adaptation to a changeable environment and evolution of the species. These Pols are subjected to a complex network of regulation, since their uncontrolled access to DNA might promote mutagenesis and neoplastic transformation. Altered expression of Y family is a hallmark of several tumor types. In recent years, the unique structure and properties of Y family Pols have been exploited to design molecules that selectively interfere with the Pol of interest with minimal effect on normal cells. In addition, their distinctive properties have been applied to innovative techniques, such as compartmentalized self-replication (CSR), short-patch CSR, phage display and molecular breeding. These approaches are based on mutant Pols provided with novel and ameliorated features and find applications in various fields, from biotechnology to diagnostics, paleontology and forensic analysis. PMID:24160487

  1. Development and Evaluation of a Fluorescent Antibody-Drug Conjugate for Molecular Imaging and Targeted Therapy of Pancreatic Cancer

    PubMed Central

    Knutson, Steve; Raja, Erum; Bomgarden, Ryan; Nlend, Marie; Chen, Aoshuang; Kalyanasundaram, Ramaswamy; Desai, Surbhi

    2016-01-01

    Antibodies are widely available and cost-effective research tools in life science, and antibody conjugates are now extensively used for targeted therapy, immunohistochemical staining, or in vivo diagnostic imaging of cancer. Significant advances in site-specific antibody labeling technologies have enabled the production of highly characterized and homogenous conjugates for biomedical purposes, and some recent studies have utilized site-specific labeling to synthesize bifunctional antibody conjugates with both imaging and drug delivery properties. While these advances are important for the clinical safety and efficacy of such biologics, these techniques can also be difficult, expensive, and time-consuming. Furthermore, antibody-drug conjugates (ADCs) used for tumor treatment generally remain distinct from conjugates used for diagnosis. Thus, there exists a need to develop simple dual-labeling methods for efficient therapeutic and diagnostic evaluation of antibody conjugates in pre-clinical model systems. Here, we present a rapid and simple method utilizing commercially available reagents for synthesizing a dual-labeled fluorescent ADC. Further, we demonstrate the fluorescent ADC’s utility for simultaneous targeted therapy and molecular imaging of cancer both in vitro and in vivo. Employing non-site-specific, amine-reactive chemistry, our novel biopharmaceutical theranostic is a monoclonal antibody specific for a carcinoembryonic antigen (CEA) biomarker conjugated to both paclitaxel and a near-infrared (NIR), polyethylene glycol modified (PEGylated) fluorophore (DyLight™ 680-4xPEG). Using in vitro systems, we demonstrate that this fluorescent ADC selectively binds a CEA-positive pancreatic cancer cell line (BxPC-3) in immunofluorescent staining and flow cytometry, exhibits efficient internalization kinetics, and is cytotoxic. Model studies using a xenograft of BxPC-3 cells in athymic mice also show the fluorescent ADC’s efficacy in detecting tumors in vivo and

  2. Development and Characterization of Bladder Cancer Patient-Derived Xenografts for Molecularly Guided Targeted Therapy

    PubMed Central

    Lin, Tzu-yin; Davis, Ryan R.; Keck, James; Ghosh, Paramita M.; Gill, Parkash; Airhart, Susan; Bult, Carol; Gandara, David R.; Liu, Edison; de Vere White, Ralph W.

    2015-01-01

    Background The overarching goal of this project is to establish a patient-derived bladder cancer xenograft (PDX) platform, annotated with deep sequencing and patient clinical information, to accelerate the development of new treatment options for bladder cancer patients. Herein, we describe the creation, initial characterization and use of the platform for this purpose. Methods and Findings Twenty-two PDXs with annotated clinical information were established from uncultured unselected clinical bladder cancer specimens in immunodeficient NSG mice. The morphological fidelity was maintained in PDXs. Whole exome sequencing revealed that PDXs and parental patient cancers shared 92–97% of genetic aberrations, including multiple druggable targets. For drug repurposing, an EGFR/HER2 dual inhibitor lapatinib was effective in PDX BL0440 (progression-free survival or PFS of 25.4 days versus 18.4 days in the control, p = 0.007), but not in PDX BL0269 (12 days versus 13 days in the control, p = 0.16) although both expressed HER2. To screen for the most effective MTT, we evaluated three drugs (lapatinib, ponatinib, and BEZ235) matched with aberrations in PDX BL0269; but only a PIK3CA inhibitor BEZ235 was effective (p<0.0001). To study the mechanisms of secondary resistance, a fibroblast growth factor receptor 3 inhibitor BGJ398 prolonged PFS of PDX BL0293 from 9.5 days of the control to 18.5 days (p<0.0001), and serial biopsies revealed that the MAPK/ERK and PIK3CA-AKT pathways were activated upon resistance. Inhibition of these pathways significantly prolonged PFS from 12 day of the control to 22 days (p = 0.001). To screen for effective chemotherapeutic drugs, four of the first six PDXs were sensitive to the cisplatin/gemcitabine combination, and chemoresistance to one drug could be overcome by the other drug. Conclusion The PDX models described here show good correlation with the patient at the genomic level and known patient response to treatment. This supports further

  3. Evaluation of Three Small Molecular Drugs for Targeted Therapy to Treat Nonsmall Cell Lung Cancer

    PubMed Central

    Ni, Jun; Zhang, Li

    2016-01-01

    Objective: To guide the optimal selection among first-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in clinical practice. This review attempted to provide a thorough comparison among three first-generation EGFR-TKIs, namely icotinib, erlotinib, and gefitinib, with regard to their molecular structure, pharmacokinetic parameters, clinical data, adverse reactions, and contraindications. Data Sources: An electronic literature search of the PubMed database and Google Scholar for all the available articles regarding gefitinib, icotinib, and erlotinib in the English language from January 2005 to December 2014 was used. Study Selection: The search terms or keywords included but not limited to “lung cancer”, “nonsmall cell lung cancer (NSCLC)”, “epidemiology”, “EGFR”, “TKIs”, and “optimal selection”. Results: As suggested by this review, even though the three first-generation EGFR-TKIs share the quinazoline structure, erlotinib had the strongest apoptosis induction activity because of its use of a different side-chain. The pharmacokinetic parameters indicated that both erlotinib and icotinib are affected by food. The therapeutic window of erlotinib is narrow, and the recommended dosage is close to the maximum tolerable dosage. Icotinib enjoys a wider therapeutic window, and its concentration in the blood is within a safe dosage range even if it is administered with food. Based on multiple large-scale clinical trials, erlotinib is universally applied as the first-line treatment. In marked contrast, icotinib is available only in China as the second- or third-line therapeutic approach for treating advanced lung cancer. In addition, it exhibits a similar efficacy but better safety profile than gefitinib. Conclusions: Although there is a paucity of literature regarding whether icotinib is superior to erlotinib, its superior toxicity profile, noninferior efficacy, and lower cost indicate that it is a better alternative

  4. Chronic Myeloid Leukemia in the Era of Tyrosine Kinase Inhibitors: An Evolving Paradigm of Molecularly Targeted Therapy.

    PubMed

    Ali, Mohamed A M

    2016-08-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm, characterized by the unrestrained expansion of pluripotent hematopoietic stem cells. CML was the first malignancy in which a unique chromosomal abnormality was identified and a pathophysiologic association was suggested. The hallmark of CML is a reciprocal chromosomal translocation between the long arms of chromosomes 9 and 22, t(9; 22)(q34; q11), creating a derivative 9q+ and a shortened 22q-. The latter, known as the Philadelphia (Ph) chromosome, harbors the breakpoint cluster region-abelson (BCR-ABL) fusion gene, encoding the constitutively active BCR-ABL tyrosine kinase that is necessary and sufficient for initiating CML. The successful implementation of tyrosine kinase inhibitors (TKIs) for the treatment of CML remains a flagship for molecularly targeted therapy in cancer. TKIs have changed the clinical course of CML; however, some patients nonetheless demonstrate primary or secondary resistance to such therapy and require an alternative therapeutic strategy. Therefore, the assessment of early response to treatment with TKIs has become an important tool in the clinical monitoring of CML patients. Although mutations in the BCR-ABL have proven to be the most prominent mechanism of resistance to TKIs, other mechanisms-either rendering the leukemic cells still dependent on BCR-ABL activity or supporting oncogenic properties of the leukemic cells independent of BCR-ABL signaling-have been identified. This article provides an overview of the current understanding of CML pathogenesis; recommendations for diagnostic tools, treatment strategies, and management guidelines; and highlights the BCR-ABL-dependent and -independent mechanisms that contribute to the development of resistance to TKIs. PMID:27220498

  5. TNF-α in a molecularly targeted therapy of psoriasis and psoriatic arthritis.

    PubMed

    Wcisło-Dziadecka, Dominika; Zbiciak-Nylec, Martyna; Brzezińska-Wcisło, Ligia; Mazurek, Urszula

    2016-03-01

    Psoriasis is a chronic immunological skin disease and patients with this disorder typically experience a significant decrease in their quality of life. The disease is traditionally managed with topical and systemic agents (retinoids, ciclosporin A, methotrexate), but these treatment options are often long-term and their effects can be inconsistent and not ideal. The use of biological drugs in dermatological treatment is relatively new and began in the early 2000s. It should be noted that, in most countries, in order for biological treatment to be administered, specific criteria must be met. The current treatment options for psoriasis and psoriatic arthritis include tumour necrosis factor alpha (TNF-α) blockers, interleukin (IL)-12 and IL-23 inhibitors, T cell inhibitors and B cell inhibitors. These classes of biological drugs are characterised by protein structure as well as high molecular weight and their effectiveness is evaluated based on the Psoriasis Area and Severity Index (PASI), Body Surface Area (BSA) and the Dermatology Life Quality Index (DLQI). TNF-α antagonists are one such class of biological drugs which includes infliximad, etanercept and adalimumab. Infliximab is a chimeric protein that is administered via intravenous infusions as a monotherapy in psoriasis vulgaris. Etanercept is indicated for use in both psoriasis vulgaris and psoriatic arthritis and it is the only drug that can be used as a treatment for children under the age of 8 with psoriasis. The drug is administered subcutaneously. Finally, adalimumab is a fully human monoclonal antibody that neutralises both free and membrane-bound TNF-α and is used in the treatment of psoriasis vulgaris and psoriatic arthritis. This article reviews the latest research in the use of TNF-α for the treatment of moderate to severe psoriasis and psoriatic arthritis. The results of research in this field are promising and confirm the effectiveness and safety of biological drugs as dermatological treatments

  6. Safety assessment of molecular targeted therapies in association with radiotherapy in metastatic renal cell carcinoma: a real-life report.

    PubMed

    Langrand-Escure, Julien; Vallard, Alexis; Rivoirard, Romain; Méry, Benoîte; Guy, Jean-Baptiste; Espenel, Sophie; Trone, Jane-Chloé; Ben Mrad, Majed; Diao, Peng; Rancoule, Chloé; Suchaud, Jean-Philippe; Fournel, Pierre; Guillot, Aline; Chargari, Cyrus; Escudier, Bernard; Négrier, Sylvie; Magné, Nicolas

    2016-06-01

    Molecular targeted therapies (TT) are the cornerstone of metastatic renal cell carcinoma (RCC) treatment. There is a paucity of data on the safety of the radiotherapy (RT)-TT association in a sequential or a concomitant setting. The aim of the present study is to retrospectively assess the safety of the RT-TT association. From 2006 to 2014, data from 84 consecutive patients treated with RT and TT for metastatic RCC were retrospectively collected. RT-TT sequential and concomitant associations were, respectively, defined by a time interval of more than five TT half-lives and less than or equal to five TT half-lives between the last TT administration and RT initiation. Toxicities in the fields of RT were assessed systematically. As many patients received several TT and RT courses, 136 RT-TT associations were analyzed, with 66 sequential and 70 concomitant schemes. RT was mainly delivered on bone (75%) and brain metastases (14.7%). TT were tyrosine kinase inhibitors (73.5%), mTOR inhibitors (19.8%), and monoclonal antibodies (6.7%). With a median follow-up of 9.5 months, whatever the sequence, no grade≥4 toxicity was reported. Two grade 3 toxicities were reported with sequential (3%) and concomitant (2.9%) RT-TT, respectively. Sequential or concomitant RT-TT associations in metastatic RCC do not seem to cause major toxicity. PMID:27045782

  7. Targeted molecular imaging in oncology.

    PubMed

    Yang, David J; Kim, E Edmund; Inoue, Tomio

    2006-01-01

    Improvement of scintigraphic tumor imaging is extensively determined by the development of more tumor specific radiopharmaceuticals. Thus, to improve the differential diagnosis, prognosis, planning and monitoring of cancer treatment, several functional pharmaceuticals have been developed. Application of molecular targets for cancer imaging, therapy and prevention using generator-produced isotopes is the major focus of ongoing research projects. Radionuclide imaging modalities (positron emission tomography, PET; single photon emission computed tomography, SPECT) are diagnostic cross-sectional imaging techniques that map the location and concentration of radionuclide-labeled radiotracers. 99mTc- and 68Ga-labeled agents using ethylenedicysteine (EC) as a chelator were synthesized and their potential uses to assess tumor targets were evaluated. 99mTc (t1/2 = 6 hr, 140 keV) is used for SPECT and 68Ga (t1/2 = 68 min, 511 keV) for PET. Molecular targets labeled with Tc-99m and Ga-68 can be utilized for prediction of therapeutic response, monitoring tumor response to treatment and differential diagnosis. Molecular targets for oncological research in (1) cell apoptosis, (2) gene and nucleic acid-based approach, (3) angiogenesis (4) tumor hypoxia, and (5) metabolic imaging are discussed. Numerous imaging ligands in these categories have been developed and evaluated in animals and humans. Molecular targets were imaged and their potential to redirect optimal cancer diagnosis and therapeutics were demonstrated. PMID:16485568

  8. Advances in molecular-based personalized non-small-cell lung cancer therapy: targeting epidermal growth factor receptor and mechanisms of resistance

    PubMed Central

    Jotte, Robert M; Spigel, David R

    2015-01-01

    Molecularly targeted therapies, directed against the features of a given tumor, have allowed for a personalized approach to the treatment of advanced non-small-cell lung cancer (NSCLC). The reversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib had undergone turbulent clinical development until it was discovered that these agents have preferential activity in patients with NSCLC harboring activating EGFR mutations. Since then, a number of phase 3 clinical trials have collectively shown that EGFR-TKI monotherapy is more effective than combination chemotherapy as first-line therapy for EGFR mutation-positive advanced NSCLC. The next generation of EGFR-directed agents for EGFR mutation-positive advanced NSCLC is irreversible TKIs against EGFR and other ErbB family members, including afatinib, which was recently approved, and dacomitinib, which is currently being tested in phase 3 trials. As research efforts continue to explore the various proposed mechanisms of acquired resistance to EGFR-TKI therapy, agents that target signaling pathways downstream of EGFR are being studied in combination with EGFR TKIs in molecularly selected advanced NSCLC. Overall, the results of numerous ongoing phase 3 trials involving the EGFR TKIs will be instrumental in determining whether further gains in personalized therapy for advanced NSCLC are attainable with newer agents and combinations. This article reviews key clinical trial data for personalized NSCLC therapy with agents that target the EGFR and related pathways, specifically based on molecular characteristics of individual tumors, and mechanisms of resistance. PMID:26310719

  9. Combined Antiviral Therapy Using Designed Molecular Scaffolds Targeting Two Distinct Viral Functions, HIV-1 Genome Integration and Capsid Assembly

    PubMed Central

    Khamaikawin, Wannisa; Saoin, Somphot; Nangola, Sawitree; Chupradit, Koollawat; Sakkhachornphop, Supachai; Hadpech, Sudarat; Onlamoon, Nattawat; Ansari, Aftab A; Byrareddy, Siddappa N; Boulanger, Pierre; Hong, Saw-See; Torbett, Bruce E; Tayapiwatana, Chatchai

    2015-01-01

    Designed molecular scaffolds have been proposed as alternative therapeutic agents against HIV-1. The ankyrin repeat protein (AnkGAG1D4) and the zinc finger protein (2LTRZFP) have recently been characterized as intracellular antivirals, but these molecules, used individually, do not completely block HIV-1 replication and propagation. The capsid-binder AnkGAG1D4, which inhibits HIV-1 assembly, does not prevent the genome integration of newly incoming viruses. 2LTRZFP, designed to target the 2-LTR-circle junction of HIV-1 cDNA and block HIV-1 integration, would have no antiviral effect on HIV-1-infected cells. However, simultaneous expression of these two molecules should combine the advantage of preventive and curative treatments. To test this hypothesis, the genes encoding the N-myristoylated Myr(+)AnkGAG1D4 protein and the 2LTRZFP were introduced into human T-cells, using a third-generation lentiviral vector. SupT1 cells stably expressing 2LTRZFP alone or with Myr(+)AnkGAG1D4 showed a complete resistance to HIV-1 in viral challenge. Administration of the Myr(+)AnkGAG1D4 vector to HIV-1-preinfected SupT1 cells resulted in a significant antiviral effect. Resistance to viral infection was also observed in primary human CD4+ T-cells stably expressing Myr(+)AnkGAG1D4, and challenged with HIV-1, SIVmac, or SHIV. Our data suggest that our two anti-HIV-1 molecular scaffold prototypes are promising antiviral agents for anti-HIV-1 gene therapy. PMID:26305555

  10. Targeted therapy in melanoma.

    PubMed

    Kudchadkar, Ragini R; Smalley, Keiran S M; Glass, L Frank; Trimble, James S; Sondak, Vernon K

    2013-01-01

    Since the discovery of activating mutations in the BRAF oncogene in melanoma, there has been remarkable progress in the development of targeted therapies for unresectable and metastatic melanoma. We review the latest developments in our understanding of the role of BRAF/MEK/ERK pathway signaling in melanoma, and the development of inhibitors of this pathway. We also explore alternative mutations seen in melanoma, such as NRAS, KIT, GNAQ, and GNA11, and the drug development that is ongoing based on this biology. Strategies for the management of the vexing clinical problem of BRAF inhibitor resistance, primarily via combination therapy, are outlined. With the recent approval of the BRAF inhibitor vemurafenib for stage IV metastatic melanoma, use of this agent is expanding in the United States. Thus, management of the skin toxicities of this agent, such as squamous cell carcinomas, "acneiform" eruptions, hand-foot syndrome, and panniculitis, will be a growing problem facing dermatologists today. We discuss the toxicities of targeted agents in use for melanoma, in particular the dermatologic effects and the management of these skin toxicities. PMID:23438383

  11. The rationale for targeted therapies in medulloblastoma.

    PubMed

    MacDonald, Tobey J; Aguilera, Dolly; Castellino, Robert C

    2014-01-01

    Medulloblastoma (MB) is the most frequent malignant brain tumor in children. Patients with MB who are classified as having high-risk disease or those with recurrent disease respond poorly to current therapies and have an increased risk of MB-related mortality. Preclinical studies and molecular profiling of MB tumors have revealed upregulation or activation of several key signaling pathways such as the sonic hedgehog and WNT pathways. Although the exact mechanisms underlying MB tumorigenesis remain poorly understood, inhibiting these key pathways with molecularly targeted therapies represents an important approach to improving MB outcomes. Several molecularly targeted therapies are already under clinical investigation in MB patients. We discuss current preclinical and clinical data, as well as data from clinical trials of targeted therapies that are either ongoing or in development for MB. PMID:24305711

  12. Prognosis of metastatic renal cell carcinoma with first-line interferon-α therapy in the era of molecular-targeted therapy.

    PubMed

    Kawano, Yoshiaki; Takahashi, Wataru; Eto, Masatoshi; Kamba, Tomomi; Miyake, Hideaki; Fujisawa, Masato; Kamai, Takao; Uemura, Hirotsugu; Tsukamoto, Taiji; Azuma, Haruhito; Matsubara, Akio; Nishimura, Kazuo; Nakamura, Tsuyoshi; Ogawa, Osamu; Naito, Seiji

    2016-07-01

    The RCC-SELECT study showed the correlation between single nucleotide polymorphisms (SNP) in STAT3 gene and survival in metastatic renal cell carcinoma (mRCC) patients with first-line interferon-α (IFN-α). In that study, even patients with STAT3 SNP linked to shorter overall survival (OS) exhibited remarkably improved prognosis. All 180 patients evaluated in the above study were further analyzed for correlation between OS and demographics/clinicopathological parameters. OS was estimated using the Kaplan-Meier method. Associations between OS and potential prognostic factors were assessed using the log-rank test and the Cox proportional hazards model. The median OS was 42.8 months. Univariate analysis showed that worse Eastern Cooperative Oncology Group-performance status (ECOG-PS), high T stage, regional lymph node metastasis, distant metastasis, higher grade, infiltrative growth pattern, the presence of microscopic vascular invasion (MVI), hypercalcemia, anemia, thrombocytopenia and elevated C-reactive protein were significantly associated with OS. Multivariate analysis revealed that ECOG-PS (hazard ratio [HR] = 3.665, P = 0.0004), hypercalcemia (HR = 6.428, P = 0.0005) and the presence of MVI (HR = 2.668, P = 0.0109) were jointly significant poor prognostic factors. This is the first study analysing prognostic factors of mRCC patients with first-line IFN-α using large cohort of the prospective study. The present study suggests that first-line IFN-α is still a useful therapy for mRCC even in the era of molecular targeted therapy. PMID:27089226

  13. Molecular therapy of pancreatic cancer.

    PubMed

    Plentz, R R; Manns, M P; Greten, T F

    2010-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of mortality and morbidity. The 5-year survival rate remains less than 5% and in contrast to other solid tumors, survial has changed only little in the last decade. Overall PDAC treatment shows only limited response to conventional chemotherapeutic agents. Several trials on therapy are ongoing and new targeted agents are in development to improve the treatment outcome of this deadly disease. However, our review presents the current developments of molecular therapies, supports the translational PDAC research and encourage you to take part in further clinical studies. PMID:20386525

  14. Novel therapies targeting endometriosis.

    PubMed

    Taylor, Hugh S; Osteen, Kevin G; Bruner-Tran, Kaylon L; Lockwood, Charles J; Krikun, Graciela; Sokalska, Anna; Duleba, Antoni J

    2011-09-01

    Endometriosis is an often painful disorder in which the endometrial glands and stroma grow outside the uterus. The disease affects women's quality of life and is a common cause of infertility. In this review, we describe promising new developments in the field based on in vitro assays and rodent models, each of which has the potential to be beneficial in the treatment of this disease. We will specifically describe the role of anti-inflammatory drugs, selective estrogen, or progesterone modulators, statins, antiangiogenic agents, and the potential for targeting stem cells as likely methods to hone in and eliminate endometriosis. The most promising of these potential therapies are currently slated for further testing in both rodent and nonhuman primate trials. PMID:21693775

  15. Novel Therapies Targeting Endometriosis

    PubMed Central

    Osteen, Kevin G.; Bruner-Tran, Kaylon L.; Lockwood, Charles J.; Krikun, Graciela; Sokalska, Anna; Duleba, Antoni J.

    2011-01-01

    Endometriosis is an often painful disorder in which the endometrial glands and stroma grow outside the uterus. The disease affects women’s quality of life and is a common cause of infertility. In this review, we describe promising new developments in the field based on in vitro assays and rodent models, each of which has the potential to be beneficial in the treatment of this disease. We will specifically describe the role of anti-inflammatory drugs, selective estrogen, or progesterone modulators, statins, antiangiogenic agents, and the potential for targeting stem cells as likely methods to hone in and eliminate endometriosis. The most promising of these potential therapies are currently slated for further testing in both rodent and nonhuman primate trials. PMID:21693775

  16. Type of Cancer Treatment: Targeted Therapy

    Cancer.gov

    Information about the role that targeted therapies play in cancer treatment. Includes how targeted therapies work against cancer, who receives targeted therapies, common side effects, and what to expect when having targeted therapies.

  17. Cardiotoxicity associated with targeted cancer therapies

    PubMed Central

    CHEN, ZI; AI, DI

    2016-01-01

    Compared with traditional chemotherapy, targeted cancer therapy is a novel strategy in which key molecules in signaling pathways involved in carcinogenesis and tumor spread are inhibited. Targeted cancer therapy has fewer adverse effects on normal cells and is considered to be the future of chemotherapy. However, targeted cancer therapy-induced cardiovascular toxicities are occasionally critical issues in patients who receive novel anticancer agents, such as trastuzumab, bevacizumab, sunitinib and imatinib. The aim of this review was to discuss these most commonly used drugs and associated incidence of cardiotoxicities, including left ventricular dysfunction, heart failure, hypertension and thromboembolic events, as well as summarize their respective molecular mechanisms of cardiovascular adverse effects. PMID:27123262

  18. Targeted Therapies for Lung Cancer.

    PubMed

    Stinchcombe, Thomas E

    2016-01-01

    Targeted therapies have become standard therapies for patients with non-small cell lung cancer (NSCLC). A phase III trial of carboplatin and paclitaxel with and without bevacizumab in patients with advanced NSCLC with non-squamous histology demonstrated a statistically significant improvement in efficacy. In patients with NSCLC with an activating epidermal growth factor receptor (EGFR) mutation (defined as exon 19 deletion and exon 21 L858R point mutation), phase III trials of EGFR tyrosine kinase inhibitors (TKI) compared to platinum-based chemotherapy have demonstrated superior efficacy in the first-line setting. In patients with NSCLC with anaplastic lymphoma kinase (ALK) rearrangements, phase III trials of crizotinib have demonstrated superior efficacy compared to platinum-pemetrexed in the first-line setting and standard chemotherapy in the second-line setting. A second-generation ALK inhibitor, ceritinib, is available for patients who have progressed after or were intolerant of crizotinib. Crizotinib has also demonstrated activity on patients with ROS1 rearrangements, and BRAF inhibitors (dabrafenib, vemurafenib) have demonstrated activity in patients with NSCLC with BRAF V600E mutation. The oncogenic mutations that are susceptible to targeted therapy are mainly found in non-squamous NSCLC. The development of targeted therapy in patients with squamous NSCLC has been more challenging due to the genomic complexity observed in the squamous histology and the low prevalence of EGFR, ALK, and ROS1 molecular alterations. A phase III trial of cisplatin and gemcitabine with and without necitumumab in patients with advanced NSCLC with squamous histology demonstrated a statistically significant improvement in progression-free and overall survival. PMID:27535394

  19. Targeted therapy for sarcomas

    PubMed Central

    Forscher, Charles; Mita, Monica; Figlin, Robert

    2014-01-01

    Sarcomas are tumors of mesenchymal origin that make up approximately 1% of human cancers. They may arise as primary tumors in either bone or soft tissue, with approximately 11,280 soft tissue tumors and 2,650 bone tumors diagnosed each year in the United States. There are at least 50 different subtypes of soft tissue sarcoma, with new ones described with ever-increasing frequency. One way to look at sarcomas is to divide them into categories on the basis of their genetic make-up. One group of sarcomas has an identifiable, relatively simple genetic signature, such as the X:18 translocation seen in synovial sarcoma or the 11:22 translocation seen in Ewing’s sarcoma. These specific abnormalities often lead to the presence of fusion proteins, such as EWS-FLI1 in Ewing’s sarcoma, which are helpful as diagnostic tools and may become therapeutic targets in the future. Another group of sarcomas is characterized by complex genetic abnormalities as seen in leiomyosarcoma, osteosarcoma, and undifferentiated sarcoma. It is important to keep these distinctions in mind when contemplating the development of targeted agents for sarcomas. Different abnormalities in sarcoma could be divided by tumor subtype or by the molecular or pathway abnormality. However, some existing drugs or drugs in development may interfere with or alter more than one of the presented pathways. PMID:24669185

  20. Molecular Profiling and Targeted Therapy for Advanced Thoracic Malignancies: A Biomarker-Derived, Multiarm, Multihistology Phase II Basket Trial

    PubMed Central

    Lopez-Chavez, Ariel; Thomas, Anish; Rajan, Arun; Raffeld, Mark; Morrow, Betsy; Kelly, Ronan; Carter, Corey Allan; Guha, Udayan; Killian, Keith; Lau, Christopher C.; Abdullaev, Zied; Xi, Liqiang; Pack, Svetlana; Meltzer, Paul S.; Corless, Christopher L.; Sandler, Alan; Beadling, Carol; Warrick, Andrea; Liewehr, David J.; Steinberg, Seth M.; Berman, Arlene; Doyle, Austin; Szabo, Eva; Wang, Yisong; Giaccone, Giuseppe

    2015-01-01

    Purpose We conducted a basket clinical trial to assess the feasibility of such a design strategy and to independently evaluate the effects of multiple targeted agents against specific molecular aberrations in multiple histologic subtypes concurrently. Patients and Methods We enrolled patients with advanced non–small-cell lung cancer (NSCLC), small-cell lung cancer, and thymic malignancies who underwent genomic characterization of oncogenic drivers. Patients were enrolled onto a not-otherwise-specified arm and treated with standard-of-care therapies or one of the following five biomarker-matched treatment groups: erlotinib for EGFR mutations; selumetinib for KRAS, NRAS, HRAS, or BRAF mutations; MK2206 for PIK3CA, AKT, or PTEN mutations; lapatinib for ERBB2 mutations or amplifications; and sunitinib for KIT or PDGFRA mutations or amplification. Results Six hundred forty-seven patients were enrolled, and 88% had their tumors tested for at least one gene. EGFR mutation frequency was 22.1% in NSCLC, and erlotinib achieved a response rate of 60% (95% CI, 32.3% to 83.7%). KRAS mutation frequency was 24.9% in NSCLC, and selumetinib failed to achieve its primary end point, with a response rate of 11% (95% CI, 0% to 48%). Completion of accrual to all other arms was not feasible. In NSCLC, patients with EGFR mutations had the longest median survival (3.51 years; 95% CI, 2.89 to 5.5 years), followed by those with ALK rearrangements (2.94 years; 95% CI, 1.66 to 4.61 years), those with KRAS mutations (2.3 years; 95% CI, 2.3 to 2.17 years), those with other genetic abnormalities (2.17 years; 95% CI, 1.3 to 2.74 years), and those without an actionable mutation (1.85 years; 95% CI, 1.61 to 2.13 years). Conclusion This basket trial design was not feasible for many of the arms with rare mutations, but it allowed the study of the genetics of less common malignancies. PMID:25667274

  1. Targeted Therapies in Epithelial Ovarian Cancer

    PubMed Central

    Dean, Emma; El-Helw, Loaie; Hasan, Jurjees

    2010-01-01

    Molecularly targeted therapy is relatively new to ovarian cancer despite the unquestionable success with these agents in other solid tumours such as breast and colorectal cancer. Advanced ovarian cancer is chemosensitive and patients can survive several years on treatment. However chemotherapy diminishes in efficacy over time whilst toxicities persist. Newer biological agents that target explicit molecular pathways and lack specific chemotherapy toxicities such as myelosuppression offer the advantage of long-term therapy with a manageable toxicity profile enabling patients to enjoy a good quality of life. In this review we appraise the emerging data on novel targeted therapies in ovarian cancer. We discuss the role of these compounds in the front-line treatment of ovarian cancer and in relapsed disease; and describe how the development of predictive clinical, molecular and imaging biomarkers will define the role of biological agents in the treatment of ovarian cancer. PMID:24281034

  2. Molecular target-based treatment of human cancer: summary of the 10th international conference on differentiation therapy.

    PubMed

    Zelent, Arthur; Petrie, Kevin; Chen, Zhu; Lotan, Reuben; Lübbert, Michael; Tallman, Martin S; Ohno, Ryuzo; Degos, Laurent; Waxman, Samuel

    2005-02-15

    The 10th International Conference on Differentiation Therapy was held between April 29 and May 3, 2004, in Shanghai, China. In the tradition of previous conferences from this series, which have been held biannually since the first meeting organized 20 years ago by Samuel Waxman and Giovanni Rossi in Sardinia, the organizers of the 10th International Conference on Differentiation Therapy aimed to gather basic and clinical cancer investigators in a setting of plenary sessions, workshops, and poster presentations to maximize the effective exchange of information and foster the establishment of collaborative interactions. Approximately 300 scientists attended the meeting with a mission to discuss targeted approaches to cancer treatment, which stem from our understanding of basic biological processes and the mechanisms of their deregulation during tumorigenesis. PMID:15734991

  3. MicroRNAs as Molecular Targets for Cancer Therapy: On the Modulation of MicroRNA Expression

    PubMed Central

    Costa, Pedro M.; Pedroso de Lima, Maria C.

    2013-01-01

    The discovery of small RNA molecules with the capacity to regulate messenger RNA (mRNA) stability and translation (and consequently protein synthesis) has revealed an additional level of post-transcriptional gene control. MicroRNAs (miRNAs), an evolutionarily conserved class of small noncoding RNAs that regulate gene expression post-transcriptionally by base pairing to complementary sequences in the 3' untranslated regions of target mRNAs, are part of this modulatory RNA network playing a pivotal role in cell fate. Functional studies indicate that miRNAs are involved in the regulation of almost every biological pathway, while changes in miRNA expression are associated with several human pathologies, including cancer. By targeting oncogenes and tumor suppressors, miRNAs have the ability to modulate key cellular processes that define the cell phenotype, making them highly promising therapeutic targets. Over the last few years, miRNA-based anti-cancer therapeutic approaches have been exploited, either alone or in combination with standard targeted therapies, aiming at enhancing tumor cell killing and, ideally, promoting tumor regression and disease remission. Here we provide an overview on the involvement of miRNAs in cancer pathology, emphasizing the mechanisms of miRNA regulation. Strategies for modulating miRNA expression are presented and illustrated with representative examples of their application in a therapeutic context. PMID:24275848

  4. Targeted Cancer Therapy Systems: An In Silico Study of Radiohalogenated Ligands in the Estrogen Receptor and the Synthesis of a Molecular Toolkit for the Fabrication of Customizable Nanoparticles

    NASA Astrophysics Data System (ADS)

    Barnsley, Kelton K.

    Chemotherapy is often limited by off-target toxicity and the development of multi-drug resistance in response to treatment. Strategies which reduce off-target toxicity by passively or actively targeting cancer cells may improve the efficacy of chemotherapy. Herein, two projects relating to targeted therapy are described. In the first project, the binding modes of 1,1-bis(4-hydroxyphenyl)-2-phenylethylenes (THPEs), a class of synthetic estrogens previously developed by our group, in the human estrogen receptor alpha-ligand binding domain were studied using molecular modeling programs YASARA AutoDock and Schrodinger Glide. The results were internally consistent and supported the observation that a bromine or iodine atom at the 2-position of the THPEs contributes positively to their binding in the estrogen receptor. In the second project, a "molecular toolkit" approach to the synthesis of multifunctional nanoparticles was envisioned. Our hypothesis was that the physical and chemical properties of the final product could be defined by controlling the types and relative amounts of prefunctionalized polymer units (PPUs) as well as the emulsification conditions. The design and syntheses of heterobifunctional linkers and other components for a preliminary molecular toolkit are reported, and the literature on select heterobifunctional aliphatic linkers is examined.

  5. Targeted therapy for gastric cancer.

    PubMed

    Smyth, Elizabeth C; Cunningham, David

    2012-09-01

    For patients with advanced gastric cancer, traditional double or triplet cytotoxic chemotherapy regimens result in a median survival of 9-11 months. As combination therapy is associated with increased survival, but also increased toxicity in a patient population whose performance status often compromised by their malignancy, development of more effective and less toxic treatment choices is mandated. Emerging data from gene expression profiling suggests that differences in pathological appearance and clinical behavior may be due the presence of unique molecular phenotypes. Characterization of the gastric cancer genomic landscape reveals the presence of multiple alterations in expression of receptor tyrosine kinases, which in conjunction with their ligands and downstream effector molecules represent potentially druggable pathways for future drug development. Treatment of HER2 positive gastric cancer with trastuzumab has led to significant gains in overall survival, and further manipulation of this pathway using the novel anti-HER2 directed agents pertuzumab and T-DM1 in addition to dual EGFR/HER2 blockade with lapatinib may yield positive results. In contrast, targeting of the EGFR pathway in combination with chemotherapy in unselected patients has not been fruitful to date, with no significant gains over standard chemotherapy yet demonstrated. Similarly, use of the anti-angiogenic monoclonal antibody bevacizumab was not successful in a large global randomized trial; however intriguing regional variations were seen with respect to efficacy of this drug, leading to calls for a second, regionally stratified study. Careful selection of patient subsets will become a key factor in future clinical trials, as novel targeted agents such as those targeting the MET/HGF and FGFR axes move forward into clinical development. It is hoped that treatment of patients in such molecularly defined groups is will lead to significant gains in survival compared to current treatment

  6. Target Therapy in Lung Cancer.

    PubMed

    Cafarotti, Stefano; Lococo, Filippo; Froesh, Patrizia; Zappa, Francesco; Andrè, Dutly

    2016-01-01

    Lung cancer is an extremely heterogeneous disease, with well over 50 different histological variants recognized under the fourth revision of the World Health Organization (WHO) typing system. Because these variants have differing genetic and biological properties correct classification of lung cancer is necessary to assure that lung cancer patients receive optimum management. Due to the recent understanding that histologic typing and EGFR mutation status are important for target the therapy in lung adenocarcinoma patients there was a great need for a new classification that addresses diagnostic issues and strategic management to allow for molecular testing in small biopsy and cytology specimens. For this reason and in order to address advances in lung cancer treatment an international multidisciplinary classification was proposed by the International Association for the Study of Lung Cancer (IASLC), American Thoracic Society (ATS), and European Respiratory Society (ERS), further increasing the histological heterogeneity and improving the existing WHO-classification. Is now the beginning of personalized therapy era that is ideally finalized to treat each individual case of lung cancer in different way. PMID:26667341

  7. New targeted therapies in pancreatic cancer.

    PubMed

    Seicean, Andrada; Petrusel, Livia; Seicean, Radu

    2015-05-28

    Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways. PMID:26034349

  8. New targeted therapies in pancreatic cancer

    PubMed Central

    Seicean, Andrada; Petrusel, Livia; Seicean, Radu

    2015-01-01

    Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways. PMID:26034349

  9. Intracellular patterns of sialophorin expression define a new molecular classification of breast cancer and represent new targets for therapy

    PubMed Central

    Fu, Q; Cash, S E; Andersen, J J; Kennedy, C R; Madadi, A R; Raghavendra, M; Dietrich, L L; Agger, W A; Shelley, C S

    2014-01-01

    Background: Sialophorin is a transmembrane sialoglycoprotein. Normally, the molecule is only produced by white blood cells where it regulates functions such as intercellular adhesion, intracellular signalling, apoptosis, migration and proliferation. Methods: Normal breast tissue and primary breast tumours were analysed by immunohistochemistry for sialophorin expression. The sialophorin-positive breast cancer cell line MCF7 was engineered to stably express either non-targeted or sialophorin-targeted small interfering RNA (siRNA). Assays were then performed in vitro to assess apoptosis, intracellular adhesion, transendothelial migration and cytotoxicity. An orthotopic mouse model assayed ability to produce tumours in vivo. Results: Normal breast epithelial cells exhibit expression of the N-terminal domain of sialophorin in the cytoplasm but not the nucleus. The majority of these normal cells are also negative for expression of the C-terminal domain. In contrast, malignant breast epithelial cells exhibit N-terminal expression both in the cytoplasm and nucleus and the majority express the C-terminus in the nucleus. Using differential patterns of intracellular expression of the N and C termini of sialophorin, we define six subtypes of breast cancer that are independent of histological and receptor status classification. Targeting sialophorin with siRNA resulted in the MCF7 breast cancer cell line exhibiting increased homotypic adhesion, decreased transendothelial migration, increased susceptibility to apoptosis, increased vulnerability to lysis by natural killer cells and decreased ability to produce tumours in mice. Conclusion: Our results indicate that intracellular patterns of sialophorin expression define a new molecular classification of breast cancer and that sialophorin represents a novel therapeutic target. PMID:24281005

  10. Oral targeted therapy for cancer

    PubMed Central

    Carrington, Christine

    2015-01-01

    SUMMARY Oral targeted therapies are increasingly being used to treat cancer. They work by interfering with specific molecules or pathways involved in tumour growth. It is essential that health professionals managing patients taking these drugs have appropriate training and skills. They should be aware of potential adverse effects and drug interactions, and be able to manage toxicities when they occur. Despite the selectivity of these targeted therapies, they still have serious adverse effects including skin reactions, diarrhoea and altered organ function. PMID:26648656

  11. Advances in the targeted therapy of liposarcoma

    PubMed Central

    Guan, Zhonghai; Yu, Xiongfei; Wang, Haohao; Wang, Haiyong; Zhang, Jing; Li, Guangliang; Cao, Jiang; Teng, Lisong

    2015-01-01

    Liposarcoma (LPS) is the most common type of soft-tissue sarcoma. Complete surgical resection is the only curative means for localized disease; however, both radiation and conventional cytotoxic chemotherapy remain controversial for metastatic or unresectable disease. An increasing number of trials with novel targeted therapy of LPS have provided encouraging data during recent years. This review will provide an overview of the advances in our understanding of LPS and summarize the results of recent trials with novel therapies targeting different genetic and molecular aberrations for different subtypes of LPS. PMID:25609980

  12. Assessment of cytology based molecular analysis to guide targeted therapy in advanced non-small-cell lung cancer

    PubMed Central

    Guo, Lei; Qiu, Tian; Ling, Yun; Cao, Jian; Guo, Huiqin; Zhao, Huan; Li, Lin; Ying, Jianming

    2016-01-01

    To investigate the use of molecular testing on cytological specimens in selecting advanced non-small cell lung cancer (NSCLC) patients who are adequate for targeted treatment, a total of 137 NSCLC cases were analyzed by fluorescence in situ hybridization (FISH) for anaplastic lymphoma kinase (ALK) rearrangements, and Epidermal growth factor receptor (EGFR), kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were evaluated by quantitative real-time PCR (qRT-PCR) platform combining amplification refractory mutation system (ARMS) primers and TaqMan probes. Cytological specimens included 91 fine-needle aspirates, 5 fibreoptic bronchoscopic derived samples and 41 pleural effusions. Among 137 NSCLCs analyzed for ALK FISH, 16 (11.7%, of 137) were detected to harbor ALK rearrangement. FISH positive cases were all defined as adenocarcinoma (ADC) histologic subtype and the FNA samples showed the highest ALK positive rate (13.2%, 12/91). Of the 9 ALK FISH positive patients who received crizotinib treatment, 8 (88.9%) patients exhibited tumor regression. In addition, 60 (44.8%, of 134) cases were found to harbor EGFR mutations and 22 patients with EGFR sensitive mutations who received gefitinib or erlotinib treatment showed a median PFS of 16.0 months. Mutations of KRAS occurred in 8 (6.0%, of 134) cases and this was mutually exclusive from EGFR mutation. Our results demonstrated that ALK FISH and EGFR, KRAS mutational analysis on cytological specimens are sensitive methods for screening advanced stage NSCLC patients who are adequate for targeted treatment. PMID:26789109

  13. Low molecular weight hydroxyethyl chitosan-prednisolone conjugate for renal targeting therapy: synthesis, characterization and in vivo studies.

    PubMed

    He, Xia-kai; Yuan, Zhi-xiang; Wu, Xiao-juan; Xu, Chao-qun; Li, Wan-yu

    2012-01-01

    To further evaluate the potential renal targeting profile of low molecular weight hydroxyethyl chitosan (LMWHC) we developed before, prednisolone (Pre) was conjugated with LMWHC by EDC/NHS chemistry to improve the therapeutic effect of glucocorticoids in vivo. The conjugate was denoted as LMWHC-Pre. The prednisolone content of the conjugate was determined by reversed-phase high-performance liquid chromatography (HPLC) with Kromasil C18 column. The results showed that the average coupling degree of prednisolone to LMWHC was 76.7±3.2 μg·mg(-1). The stability and physicochemical characterization of LMWHC-Pre under various conditions were also investigated. To study the fate of LMWHC-Pre after intravenous (i.v.) administration, fluorescein isothiocyanate (FITC) was coupled to the conjugate to explore the renal targeting efficacy. The in vivo results showed that significant amount of the conjugate was accumulated into the kidneys while negligible signal could be detected when the mixture of FITC-LMWHC and prednisolone was co-administered. The preliminary pharmacodynamics study of LMWHC-Pre showed that the conjugate could effectively alleviate the nephrotic syndrome of rats induced by minimal change nephrosis (MCN) model. Toxicity study also revealed that there was little glucocorticoid-induced osteoporosis by LMWHC-Pre upon 20 days of treatment. From this study, LMWHC-Pre may be employed as an effective potential drug candidate for the treatment of chronic renal disease. PMID:23227122

  14. Low Molecular Weight Hydroxyethyl Chitosan-Prednisolone Conjugate for Renal Targeting Therapy: Synthesis, Characterization and In Vivo Studies

    PubMed Central

    He, Xia-kai; Yuan, Zhi-xiang; Wu, Xiao-juan; Xu, Chao-qun; Li, Wan-yu

    2012-01-01

    To further evaluate the potential renal targeting profile of low molecular weight hydroxyethyl chitosan (LMWHC) we developed before, prednisolone (Pre) was conjugated with LMWHC by EDC/NHS chemistry to improve the therapeutic effect of glucocorticoids in vivo. The conjugate was denoted as LMWHC-Pre. The prednisolone content of the conjugate was determined by reversed-phase high-performance liquid chromatography (HPLC) with Kromasil C18 column. The results showed that the average coupling degree of prednisolone to LMWHC was 76.7±3.2 μg·mg-1. The stability and physicochemical characterization of LMWHC-Pre under various conditions were also investigated. To study the fate of LMWHC-Pre after intravenous (i.v.) administration, fluorescein isothiocyanate (FITC) was coupled to the conjugate to explore the renal targeting efficacy. The in vivo results showed that significant amount of the conjugate was accumulated into the kidneys while negligible signal could be detected when the mixture of FITC-LMWHC and prednisolone was co-administered. The preliminary pharmacodynamics study of LMWHC-Pre showed that the conjugate could effectively alleviate the nephrotic syndrome of rats induced by minimal change nephrosis (MCN) model. Toxicity study also revealed that there was little glucocorticoid-induced osteoporosis by LMWHC-Pre upon 20 days of treatment. From this study, LMWHC-Pre may be employed as an effective potential drug candidate for the treatment of chronic renal disease. PMID:23227122

  15. Gene Therapy Targeting Glaucoma: Where Are We?

    PubMed Central

    Liu, Xuyang; Rasmussen, Carol A.; Gabelt, B’Ann T.; Brandt, Curtis R.; Kaufman, Paul L.

    2010-01-01

    In a chronic disease such as glaucoma, a therapy that provides a long lasting local effect, with minimal systemic side effects, while circumventing the issue of patient compliance, is very attractive. The field of gene therapy is growing rapidly and ocular applications are expanding. Our understanding of the molecular pathogenesis of glaucoma is leading to greater specificity in ocular tissue targeting. Improvements in gene delivery techniques, refinement of vector construction methods, and development of better animal models combine to bring this potential therapy closer to reality. PMID:19539835

  16. [Molecular based targets and endometrial cancer].

    PubMed

    Stoyanov, St; Ananiev, J; Ivanova, K; Velev, V; Todorova, M; Gulubova, M

    2015-01-01

    In recent years, increasing attention has been paid to the rate of spread of endometrial carcinoma, especially in the postmenopausal period. Along with routine diagnostic methods, giving information on the location and progression of the disease, there are some morphological methods determining very accurately the correlations in the development of this type of cancer and his prognosis. Moreover--in recent years, the accumulated information about the molecular profile of this type of cancer made it possible to implement a number of new drugs against the so-called molecular therapy -'targets' in the neoplastic process. Significant proportion of cases show response rates, it is more hope in the development of more successful formulas and target -based therapy. In this review, we present and discuss the role of certain molecular markers as potential indicators of prognosis and development, as well as determining the target treatment of endometrial carcinoma. PMID:25909140

  17. Tamoxifen Resistance: Emerging Molecular Targets

    PubMed Central

    Rondón-Lagos, Milena; Villegas, Victoria E.; Rangel, Nelson; Sánchez, Magda Carolina; Zaphiropoulos, Peter G.

    2016-01-01

    17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein—coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer. PMID:27548161

  18. Tamoxifen Resistance: Emerging Molecular Targets.

    PubMed

    Rondón-Lagos, Milena; Villegas, Victoria E; Rangel, Nelson; Sánchez, Magda Carolina; Zaphiropoulos, Peter G

    2016-01-01

    17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM's biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein-coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer. PMID:27548161

  19. Targeting complement in therapy.

    PubMed

    Kirschfink, M

    2001-04-01

    With increasing evidence that complement activation significantly contributes to the pathogenesis of a large number of inflammatory diseases, strategies that interfere with its deleterious action have become a major focus in pharmacological research. Endogenous soluble complement inhibitors (C1 inhibitor, recombinant soluble complement receptor 1, antibodies) blocking key proteins of the cascade reaction, neutralizing the action of the complement-derived anaphylatoxin C5a, or interfering with complement receptor 3 (CR3, CD18/11b)-mediated adhesion of inflammatory cells to the vascular endothelium have successfully been tested in various animal models over the past years. Promising results consequently led to clinical trials. Furthermore, incorporation of membrane-bound complement regulators (decay-accelerating factor (CD55), membrane co-factor protein (CD46), CD59) in transgenic animals has provided a major step forward in protecting xenografts from hyperacute rejection. At the same time, the poor contribution of complement to the antitumor response, which is caused by multiple resistance mechanisms that hamper the efficacy of antibody-based tumor therapy, is increasingly recognized and requires pharmacologic intervention. First attempts have now been made to interfere with the resistance mechanisms, thereby improving complement-mediated tumor cell destruction. PMID:11414360

  20. Androgen deprivation induces phenotypic plasticity and promotes resistance to molecular targeted therapy in a PTEN-deficient mouse model of prostate cancer.

    PubMed

    De Velasco, Marco A; Tanaka, Motoyoshi; Yamamoto, Yutaka; Hatanaka, Yuji; Koike, Hiroyuki; Nishio, Kazuto; Yoshikawa, Kazuhiro; Uemura, Hirotsugu

    2014-09-01

    Castration-resistant prostate cancer is an incurable heterogeneous disease that is characterized by a complex multistep process involving different cellular and biochemical changes brought on by genetic and epigenetic alterations. These changes lead to the activation or overexpression of key survival pathways that also serve as potential therapeutic targets. Despite promising preclinical results, molecular targeted therapies aimed at such signaling pathways have so far been dismal. In the present study, we used a PTEN-deficient mouse model of prostate cancer to show that plasticity in castration-resistant tumors promotes therapeutic escape. Unlike castration-naïve tumors which depend on androgen receptor and PI3K/AKT signal activation for growth and survival, castration-resistant tumors undergo phenotypic plasticity leading to increased intratumoral heterogeneity. These tumors attain highly heterogeneous phenotypes that are characterized by cancer cells relying on alternate signal transduction pathways for growth and survival, such as mitogen-activated protein kinase and janus kinase/signal transducer and activator of transcription, and losing their dependence on PI3K signaling. These features thus enabled castration-resistant tumors to become insensitive to the therapeutic effects of PI3K/AKT targeted therapy. Overall, our findings provide evidence that androgen deprivation drives phenotypic plasticity in prostate cancer cells and implicate it as a crucial contributor to therapeutic resistance in castration-resistant prostate cancer. Therefore, incorporating intratumoral heterogeneity in a dynamic tumor model as a part of preclinical efficacy determination could improve prediction for response and provide better rationale for the development of more effective therapies. PMID:24986896

  1. Translating gastric cancer genomics into targeted therapies.

    PubMed

    Ang, Yvonne L E; Yong, Wei Peng; Tan, Patrick

    2016-04-01

    Gastric cancer is a common disease with limited treatment options and a poor prognosis. Many gastric cancers harbour potentially actionable targets, including over-expression and mutations in tyrosine kinase pathways. Agents have been developed against these targets with varying success- in particular, the use of trastuzumab in HER2-overexpressing gastric cancers has resulted in overall survival benefits. Gastric cancers also have high levels of somatic mutations, making them candidates for immunotherapy; early work in this field has been promising. Recent advances in whole genome and multi-platform sequencing have driven the development of molecular classification systems, which may in turn guide the selection of patients for targeted treatment. Moving forward, challenges will include the development of appropriate biomarkers to predict responses to targeted therapy, and the application of new molecular classifications into trial development and clinical practice. PMID:26947813

  2. SRC promotes survival and invasion of lung cancers with epidermal growth factor receptor abnormalities and is a potential candidate for molecular-targeted therapy.

    PubMed

    Leung, Elaine Lai-Han; Tam, Issan Yee-San; Tin, Vicky Pui-Chi; Chua, Daniel Tsin-Tien; Sihoe, Alan Dart-Loon; Cheng, Lik-Cheung; Ho, James Chung-Man; Chung, Lap-Ping; Wong, Maria Pik

    2009-06-01

    Molecular-targeted therapy using tyrosine kinase inhibitors against epidermal growth factor receptor (EGFR) is an effective therapy for non-small cell lung cancer that harbor EGFR mutations. This study aimed to investigate the role of Src, a close EGFR associator, as a drug target in NSCLC cells with different EGFR genomic statuses. Src inhibition was achieved using 4-(4'-Phenoxyanilino)-6,7-dimethoxyquinazolinee (SKI-1) and the specificity of action was verified by RNA interference. The results showed that SKI-1 induced significant apoptosis in a dose-dependent manner in cancer cells with high basal Src activation. Activation of FAK and p130Cas was involved in Src-mediated invasion in SKI-1-sensitive cells. SKI-1 inhibited phosphorylation of EGFR as well as EGFR downstream effectors, such as signal transducers and activators of transcription 3/5, extracellular signal-regulated kinase 1/2 and AKT in the mutant cells but not the wild-type cells. This inhibition profile of EGFR implicates that induction of apoptosis and sensitivity of mutant cells to SKI treatment is mediated by EGFR and EGFR downstream pathways. Cotreatment with SKI-1 and gefitinib enhanced apoptosis in cancer cells that contained EGFR mutation and/or amplification. SKI-1 treatment alone induced significant apoptosis in H1975 cells known to be resistant to gefitinib. Src phosphorylation was shown by immunohistochemistry in around 30% of primary lung carcinomas. In 152 adenocarcinomas studied, p-Src was associated with EGFR mutations (P = 0.029). Overall, the findings indicated that Src could be a useful target for treatment of non-small cell lung cancer. Besides EGFR genomic mutations, other forms of EGFR and related family member abnormalities such as EGFR amplification might enhance SKI sensitivity. PMID:19491201

  3. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy.

    PubMed

    Fang, Bernard A; Kovačević, Žaklina; Park, Kyung Chan; Kalinowski, Danuta S; Jansson, Patric J; Lane, Darius J R; Sahni, Sumit; Richardson, Des R

    2014-01-01

    N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein. PMID:24269900

  4. Targeted Therapy and Immunotherapy for Lung Cancer.

    PubMed

    Naylor, Evan C; Desani, Jatin K; Chung, Paul K

    2016-07-01

    Targeted therapy and immunotherapy have changed the treatment paradigm of non-small cell lung cancer (NSCLC). Distinct molecular subtypes of NSCLC have been described over the past 20 years, enabling the emergence of treatments specific to that subtype. Agents targeting the driver mutations in NSCLC have revolutionized the approach to patients with metastatic disease, because oncologists now select a treatment based on the profile of that particular tumor. More recently, an understanding of immune checkpoints has led to the development of checkpoint inhibitors that enable the host immune system to better recognize tumor cells as foreign and to destroy them. PMID:27261918

  5. Extracellular vesicles: Emerging targets for cancer therapy

    PubMed Central

    Vader, Pieter; Breakefield, Xandra O.; Wood, Matthew J.A.

    2014-01-01

    Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, are released by almost all cell types, including tumour cells. Through transfer of their molecular contents, EVs are capable of altering the function of recipient cells. Increasing evidence suggests a key role for EV-mediated intercellular communication in a variety of cellular processes involved in tumour development and progression, including immune suppression, angiogenesis and metastasis. Aspects of EV biogenesis or function are therefore increasingly being considered as targets for anti-cancer therapy. Here, we summarize the current knowledge on the contributions of EVs to cancer pathogenesis and discuss novel therapeutic strategies to target EVs to prevent tumour growth and spread. PMID:24703619

  6. Molecularly Targeted Therapy of Human Hepatocellular Carcinoma Xenografts with Radio-iodinated Anti-VEGFR2 Murine-Human Chimeric Fab

    PubMed Central

    Huang, Jianfei; Tang, Qi; Wang, Changjun; Yu, Huixin; Feng, Zhenqing; Zhu, Jin

    2015-01-01

    Vascular endothelial growth factor receptor 2 (VEGFR2) is traditionally regarded as an important therapeutic target in a wide variety of malignancies, such as hepatocellular carcinoma (HCC). We previously generated a murine-human anti-VEGFR2 chimeric Fab (cFab), named FA8H1, which has the potential to treat VEGFR2-overexpressing solid tumors. Here, we investigated whether FA8H1 can be used as a carrier in molecularly targeted therapy in HCC xenograft models. FA8H1 was labeled with 131I, and two HCC xenograft models were generated using BEL-7402 (high VEGFR2-expressing) and SMMC-7721 (low VEGFR2-expressing) cells, which were selected from five HCC cell lines. The biodistribution of 131I-FA8H1 was determined in both models by Single-Photon Emission Computed Tomography and therapeutic effects were monitored in nude mice bearing BEL-7402 xenografts. Finally, we determined the involvement of necrosis and apoptotic pathways in treated mice using immunohistochemistry. 131I-FA8H1 levels were dramatically reduced in blood and other viscera. The therapeutic effect of 131I-labeled FA8H1 in the BEL-7402 model was significantly better than that by 131I and FA8H1 alone. We observed extensive necrosis in the treated tumors, and both FasL and caspase 3 were up-regulated. Thus, 131I-anti-VEGFR2 cFab has the potential to be used for molecularly targeted treatment of HCC overexpressing VEGFR2. PMID:26021484

  7. Molecular docking study of natural alkaloids as multi-targeted hedgehog pathway inhibitors in cancer stem cell therapy.

    PubMed

    Mayank; Jaitak, Vikas

    2016-06-01

    Cancer is responsible for millions of deaths throughout the world every year. Increased understanding as well as advancements in the therapeutic aspect seems suboptimal to restrict the huge deaths associated with cancer. The major cause responsible for this is high resistance as well as relapse rate associated with cancers. Several evidences indicated that cancer stem cells (CSC) are mainly responsible for the resistance and relapses associated with cancer. Furthermore, agents targeting a single protein seem to have higher chances of resistance than multitargeting drugs. According to the concept of network model, partial inhibition of multiple targets is more productive than single hit agents. Thus, by fusing both the premises that CSC and single hit anticancer drugs, both are responsible for cancer related resistances and screened alkaloids for the search of leads having CSC targeting ability as well as the capability to modulating multiple target proteins. The in silico experimental data indicated that emetine and cortistatin have the ability to modulate hedgehog (Hh) pathway by binding to sonic hedgehog (Hh), smoothened (Smo) and Gli protein, involved in maintenance CSCs. Furthermore, solamargine, solasonine and tylophorine are also seems to be good lead molecules targeting towards CSCs by modulating Hh pathway. Except solamargine and solasonine, other best lead molecules also showed acceptable in silico ADME profile. The predicted lead molecules can be suitably modified to get multitargeting CSC targeting agent to get rid of associate resistances. PMID:26278973

  8. The impact of molecularly targeted therapies upon the understanding of leukemogenesis and the role of hematopoietic stem cell transplantation in acute promyelocytic leukemia.

    PubMed

    Nagai, Sumimasa; Takahashi, Tsuyoshi; Kurokawa, Mineo

    2010-12-01

    Acute promyelocytic leukemia (APL) is a distinct subset of acute myeloid leukemia. An abnormal fusion gene, PML/RARA is detected in approximately 98% of patients with APL. PML/RARA confers long-term self-renewal properties to promyelocytes. All-trans retinoic acid (ATRA) and arsenic trioxide (ATO), which are the major molecularly targeted therapies in APL, affect the PML/RARA fusion protein and cause differentiation and apoptosis of APL cells. Although the leukemia-initiating cells of APL may be present in a myeloid progenitor committed compartment, the precise population of those remains to be elucidated. However, recent studies have demonstrated the effect of ATRA and ATO on APL leukemia-initiating cells. Through these studies, we can understand more deeply how current clinical therapies lead to long-lasting remission of APL. ATRA and ATO have improved the prognosis of APL patients and have changed the role of hematopoietic stem cell transplantation (HSCT). At present, HSCT is not indicated for patients with APL in first complete remission, and considered for patients with relapsed APL. In this review, we discuss the three main topics as follows: the leukemia-initiating cells in APL, the current state-of-the-art treatment for newly diagnosed and relapsed APL, and the role of HSCT in APL patients. PMID:20528759

  9. Targeted Radionuclide Therapy of Melanoma.

    PubMed

    Norain, Abdullah; Dadachova, Ekaterina

    2016-05-01

    An estimated 60,000 individuals in the United States and 132,000 worldwide are yearly diagnosed with melanoma. Until recently, treatment options for patients with stages III-IV metastatic disease were limited and offered marginal, if any, improvement in overall survival. The situation changed with the introduction of B-RAF inhibitors and anti-cytotoxic T-lymphocyte antigen 4 and anti-programmed cell death protein 1 immunotherapies into the clinical practice. With only some patients responding well to the immune therapies and with very serious side effects and high costs of immunotherapy, there is still room for other approaches for the treatment of metastatic melanoma. Targeted radionuclide therapy of melanoma could be divided into the domains of radioimmunotherapy (RIT), radiolabeled peptides, and radiolabeled small molecules. RIT of melanoma is currently experiencing a renaissance with the clinical trials of alpha-emitter (213)Bi-labeled and beta-emitter (188)Rhenium-labeled monoclonal antibodies in patients with metastatic melanoma producing encouraging results. The investigation of the mechanism of efficacy of melanoma RIT points at killing of melanoma stem cells by RIT and involvement of immune system such as complement-dependent cytotoxicity. The domain of radiolabeled peptides for targeted melanoma therapy has been preclinical so far, with work concentrated on radiolabeled peptide analogues of melanocyte-stimulating hormone receptor and on melanin-binding peptides. The field of radiolabeled small molecule produced radioiodinated benzamides that cross the cellular membrane and bind to the intracellular melanin. The recent clinical trial demonstrated measurable antitumor effects and no acute or midterm toxicities. We are hopeful that the targeted radionuclide therapy of metastatic melanoma would become a clinical reality as a stand-alone therapy or in combination with the immunotherapies such as anti-PD1 programmed cell death protein 1 monoclonal antibodies

  10. Epidermal growth factor receptor and K-Ras in non-small cell lung cancer-molecular pathways involved and targeted therapies

    PubMed Central

    de Mello, Ramon Andrade; Marques, Dânia Sofia; Medeiros, Rui; Araújo, António MF

    2011-01-01

    Lung cancer is currently the leading cause of cancer death in Western nations. Non-small cell lung cancer (NSCLC) represents 80% of all lung cancers, and adenocarcinoma is the predominant histological type. Despite the intensive research carried out on this field and therapeutic advances, the overall prognosis of these patients remains unsatisfactory, with a 5-year overall survival rate of less than 15%. Nowadays, pharmacogenetics and pharmacogenomics represent the key to successful treatment. Recent studies suggest the existence of two distinct molecular pathways in the carcinogenesis of lung adenocarcinoma: one associated with smoking and activation of the K-Ras oncogene and the other not associated with smoking and activation of the epidermal growth factor receptor (EGFR). The K-ras mutation is mainly responsible for primary resistance to new molecules which inhibit tyrosine kinase EGFR (erlotinib and gefitinib) and most of the EGFR mutations are responsible for increased tumor sensitivity to these drugs. This article aims to conduct a systematic review of the literature regarding the molecular pathways involving the EGFR, K-Ras and EGFR targeted therapies in NSCLC tumor behavior. PMID:22087435

  11. The influence of subclonal resistance mutations on targeted cancer therapy.

    PubMed

    Schmitt, Michael W; Loeb, Lawrence A; Salk, Jesse J

    2016-06-01

    Clinical oncology is being revolutionized by the increasing use of molecularly targeted therapies. This paradigm holds great promise for improving cancer treatment; however, allocating specific therapies to the patients who are most likely to derive a durable benefit continues to represent a considerable challenge. Evidence continues to emerge that cancers are characterized by extensive intratumour genetic heterogeneity, and that patients being considered for treatment with a targeted agent might, therefore, already possess resistance to the drug in a minority of cells. Indeed, multiple examples of pre-existing subclonal resistance mutations to various molecularly targeted agents have been described, which we review herein. Early detection of pre-existing or emerging drug resistance could enable more personalized use of targeted cancer therapy, as patients could be stratified to receive the therapies that are most likely to be effective. We consider how monitoring of drug resistance could be incorporated into clinical practice to optimize the use of targeted therapies in individual patients. PMID:26483300

  12. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    PubMed Central

    Fulda, Simone

    2011-01-01

    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner. PMID:22655234

  13. Possibility of molecular targeting therapy for the treatment of cancer of unknown primary origin by analysis of intracellular signaling molecules

    PubMed Central

    OHTA, SHOICHIRO; CHO, YUKIKO; SHIBATA, MASAHARU; NAGAI, KIMIHIRO; IIJIMA, TATSUO; SAITO, HITOAKI; ASAKURA, HIROTAKA; KOJIMA, HIROSHI

    2012-01-01

    Recently, antibody-mediated epidermal growth factor receptor (EGFR) blockade has become a major research focus, and a number of clinical studies on this new treatment have been started in the field of clinical oncology. This retrospective study investigated the role of KRAS gene mutations and clinical features for possibilities for new therapies in patients with cancer of unknown primary (CUP). We investigated the role of KRAS, PIK3CA and BRAF gene mutations and clinical features for possibilities for new therapies in patients with CUP. Nine patients with metastases from an unknown primary tumor were included in this retrospective study. The KRAS, BRAF and PI3KCA mutational analyses were carried out by means of PCR using genomic DNA for each PCR reaction. The mutation rate in CUP for codon 12 or 13 of the KRAS gene and for PIK3CA was lower than that in colorectal cancer, while the same mutation rate for BRAF was almost the same in the two; this means that the EGFR antibodies can possibly treat CUP. PMID:22969927

  14. Targets for therapy in ependymoma.

    PubMed

    Shonka, Nicole A

    2011-09-01

    Ependymomas are among the rarest type of glioma and display significant heterogeneity based on patient age and tumor location. Treatment strategies include surgery and radiation, but the use of chemotherapy remains more controversial. Chemotherapy has been widely utilized in the pediatric population due to more aggressive disease in this cohort, and has become of interest in the adult population as well. Unfortunately, relapses are common, and responses to cytotoxic chemotherapy are often disappointing. As a result, attention has turned to specific targets in the pathogenesis of ependymoma. This paper summarizes the current understanding of promising molecular pathways and targets under study for future application in ependymoma. PMID:21445635

  15. Targeted Therapy for Acute Lymphocytic Leukemia

    MedlinePlus

    ... Monoclonal antibodies to treat acute lymphocytic leukemia Targeted therapy for acute lymphocytic leukemia In recent years, new ... These drugs are often referred to as targeted therapy. Some of these drugs can be useful in ...

  16. Current Status of Herbal Medicines in Chronic Liver Disease Therapy: The Biological Effects, Molecular Targets and Future Prospects

    PubMed Central

    Hong, Ming; Li, Sha; Tan, Hor Yue; Wang, Ning; Tsao, Sai-Wah; Feng, Yibin

    2015-01-01

    Chronic liver dysfunction or injury is a serious health problem worldwide. Chronic liver disease involves a wide range of liver pathologies that include fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The efficiency of current synthetic agents in treating chronic liver disease is not satisfactory and they have undesirable side effects. Thereby, numerous medicinal herbs and phytochemicals have been investigated as complementary and alternative treatments for chronic liver diseases. Since some herbal products have already been used for the management of liver diseases in some countries or regions, a systematic review on these herbal medicines for chronic liver disease is urgently needed. Herein, we conducted a review describing the potential role, pharmacological studies and molecular mechanisms of several commonly used medicinal herbs and phytochemicals for chronic liver diseases treatment. Their potential toxicity and side effects were also discussed. Several herbal formulae and their biological effects in chronic liver disease treatment as well as the underlying molecular mechanisms are also summarized in this paper. This review article is a comprehensive and systematic analysis of our current knowledge of the conventional medicinal herbs and phytochemicals in treating chronic liver diseases and on the potential pitfalls which need to be addressed in future study. PMID:26633388

  17. Molecularly targeted therapy for Kaposi's sarcoma in a kidney transplant patient: case report, "what worked and what did not"

    PubMed Central

    Volkow, Patricia; Zinser, Juan W; Correa-Rotter, Ricardo

    2007-01-01

    Background Imatinib is a tyrosine-kinase inhibitor; for which there is limited information regarding its effects on AIDS Kaposi's sarcoma and none in patients with transplant-associated Kaposi's sarcoma. Sirolimus, an immunosuppressive drug used for kidney transplant, exhibits antiangiogenic activity related to impaired production of VEGF (vascular endothelial growth factor), clinical benefit has been reported in Kaposi's sarcoma associated with renal graft. Case Presentation Here we report a case of an 80 year old male, who developed Kaposi's Sarcoma nine months after receiving a living non-related donor kidney transplant at age 74. Three years after treatment with different chemotherapeutic agents for progressive cutaneous Kaposi's Sarcoma with no visceral involvement, he was prescribed Imatinib (200 mg/day for two weeks followed by 400 mg/day) after four weeks of treatment he developed anasarca, further progression of KS and agranulocytosis. Imatinib was discontinued and there was significant clinical recovery. One year later his immunosuppressive therapy was changed to Sirolimus and regression of the Kaposi's sarcoma occurred. Conclusion The lack of benefit and severe toxicity associated with the use of Imatinib in this patient should alert clinicians of potentially adverse consequence of its use in patients with transplant associated Kaposi's sarcoma. On the other hand the positive response seen in this patient to Sirolimus even after a long evolution of Kaposi's sarcoma, multiple chemotherapy regimens and extensive cutaneous disease further suggest it therapeutical utility for transplant associated Kaposi's sarcoma. PMID:17386117

  18. Targeted therapy in gastric cancer.

    PubMed

    Thiel, Alexandra; Ristimäki, Ari

    2015-05-01

    Gastric cancer is often diagnosed at an advanced stage. Although chemotherapy prolongs survival and improves quality of life, the survival of gastric cancer patients with advanced disease is short. Thanks to recent insights into the molecular pathways involved in gastric carcinogenesis, new targeted treatment options have become available for gastric cancer patients. Trastuzumab, an antibody targeted to HER-2, was shown to improve survival of advanced gastric cancer patients harboring HER-2 overexpression due to gene amplification in their tumor cells, and is currently also explored in adjuvant and neoadjuvant settings. Another agent with promising results in clinical trials is ramucirumab, an antibody targeting VEGFR-2. No clear survival benefit, however, were experienced with agents targeting EGFR (cetuximab, panitumumab), VEGF-A (bevacizumab), or mTOR (everolimus). Drugs targeting c-MET/HGF are currently under investigation in biomarker-selected cohorts, with promising results in early clinical trials. This review will summarize the current status of targeted treatment options in gastric cancer. PMID:25706252

  19. Targeted radionuclide therapy--an overview.

    PubMed

    Dash, Ashutosh; Knapp, F F Russ; Pillai, M R A

    2013-09-01

    Radionuclide therapy (RNT) based on the concept of delivering cytotoxic levels of radiation to disease sites is one of the rapidly growing fields of nuclear medicine. Unlike conventional external beam therapy, RNT targets diseases at the cellular level rather than on a gross anatomical level. This concept is a blend of a tracer moiety that mediates a site specific accumulation followed by induction of cytotoxicity with the short-range biological effectiveness of particulate radiations. Knowledge of the biochemical reactions taking place at cellular levels has stimulated the development of sophisticated molecular carriers, catalyzing a shift towards using more specific targeting radiolabelled agents. There is also improved understanding of factors of importance for choice of appropriate radionuclides based on availability, the types of emissions, linear energy transfer (LET), and physical half-life. This article discusses the applications of radionuclide therapy for treatment of cancer as well as other diseases. The primary objective of this review is to provide an overview on the role of radionuclide therapy in the treatment of different diseases such as polycythaemia, thyroid malignancies, metastatic bone pain, radiation synovectomy, hepatocellular carcinoma (HCC), neuroendocrine tumors (NETs), non-Hodgkin's lymphoma (NHL) and others. In addition, recent developments on the systematic approach in designing treatment regimens as well as recent progress, challenges and future perspectives are discussed. An examination of the progress of radionuclide therapy indicates that although a rapid stride has been made for treating hematological tumors, the development for treating solid tumors has, so far, been limited. However, the emergence of novel tumor-specific targeting agents coupled with successful characterization of new target structures would be expected to pave the way for future treatment for such tumors. PMID:24059327

  20. Endoglin-Targeted Cancer Therapy

    PubMed Central

    Seon, Ben K.; Haba, Akinao; Matsuno, Fumihiko; Takahashi, Norihiko; Tsujie, Masanori; She, Xinwei; Harada, Naoko; Uneda, Shima; Tsujie, Tomoko; Toi, Hirofumi; Tsai, Hilda; Haruta, Yuro

    2015-01-01

    Vascular-targeting antiangiogenic therapy (VTAT) of cancer can be advantageous over conventional tumor cell targeted cancer therapy if an appropriate target is found. Our hypothesis is that endoglin (ENG; CD105) is an excellent target in VTAT. ENG is selectively expressed on vascular and lymphatic endothelium in tumors. This allows us to target both tumor-associated vasculature and lymphatic vessels to suppress tumor growth and metastasis. ENG is essential for angiogenesis/vascular development and a co-receptor of TGF-β. Our studies of selected anti-ENG monoclonal antibodies (mAbs) in several animal models and in vitro studies support our hypothesis. These mAbs and/or their immunoconjugates (immunotoxins and radioimmunoconjugates) induced regression of preformed tumors as well as inhibited formation of new tumors. In addition, they suppressed metastasis. Several mechanisms were involved in the suppressive activity of the naked (unconjugated) anti-ENG mAbs. These include direct growth suppression of proliferating endothelial cells, induction of apoptosis, ADCC (antibody-dependent cell-mediated cytotoxicity) and induction of T cell immunity. To facilitate clinical application, we generated a human/mouse chimeric anti-ENG mAb termed c-SN6j and performed studies of pharmacokinetics, toxicology and immunogenicity of c-SN6j in nonhuman primates. No significant toxicity was detected by several criteria and minimal immune response to the murine part of c-SN6j was detected after multiple i.v. injections. The results support our hypothesis that c-SN6j can be safely administered in cancer patients. This hypothesis is supported by the ongoing phase 1 clinical trial of c-SN6j (also known as TRC105) in patients with advanced or metastatic solid cancer in collaboration with Tracon Pharma and several oncologists (NCT00582985). PMID:21034418

  1. Targeted therapy using nanotechnology: focus on cancer

    PubMed Central

    Sanna, Vanna; Pala, Nicolino; Sechi, Mario

    2014-01-01

    Recent advances in nanotechnology and biotechnology have contributed to the development of engineered nanoscale materials as innovative prototypes to be used for biomedical applications and optimized therapy. Due to their unique features, including a large surface area, structural properties, and a long circulation time in blood compared with small molecules, a plethora of nanomaterials has been developed, with the potential to revolutionize the diagnosis and treatment of several diseases, in particular by improving the sensitivity and recognition ability of imaging contrast agents and by selectively directing bioactive agents to biological targets. Focusing on cancer, promising nanoprototypes have been designed to overcome the lack of specificity of conventional chemotherapeutic agents, as well as for early detection of precancerous and malignant lesions. However, several obstacles, including difficulty in achieving the optimal combination of physicochemical parameters for tumor targeting, evading particle clearance mechanisms, and controlling drug release, prevent the translation of nanomedicines into therapy. In spite of this, recent efforts have been focused on developing functionalized nanoparticles for delivery of therapeutic agents to specific molecular targets overexpressed on different cancer cells. In particular, the combination of targeted and controlled-release polymer nanotechnologies has resulted in a new programmable nanotherapeutic formulation of docetaxel, namely BIND-014, which recently entered Phase II clinical testing for patients with solid tumors. BIND-014 has been developed to overcome the limitations facing delivery of nanoparticles to many neoplasms, and represents a validated example of targeted nanosystems with the optimal biophysicochemical properties needed for successful tumor eradication. PMID:24531078

  2. The evolution of combined molecular targeted therapies to advance the therapeutic efficacy in melanoma: a highlight of vemurafenib and cobimetinib

    PubMed Central

    Medina, Theresa M; Lewis, Karl D

    2016-01-01

    Metastatic melanoma is an aggressive, rapidly progressive disease which historically had very few effective treatment options. However, since 2011, the therapeutic landscape of melanoma has undergone a dramatic transformation with two distinct approaches and has catalyzed the successful advancement in the clinical field of immuno-oncology. In addition, the recognition of a key oncogenic driver mutation in melanoma, BRAF, stimulated the development of multiple potent kinase inhibitors which has also influenced the expansion and use of targeted agents in the practice of oncology. Vemurafenib, the initial BRAF inhibitor approved for the treatment of melanoma, was the first agent to demonstrate rapid clinical responses and significantly improved survival which was a clinical breakthrough in the treatment of melanoma. Although exciting and practice changing, the unparalleled responses with vemurafenib are usually not sustained. Further investigations delineated several mechanisms of acquired resistance which are most often mediated by the upregulation of the MAPK pathway. MEK inhibitors, another class of small-molecule inhibitors, were developed as an alternative agent to suppress the MAPK pathway downstream, independent from BRAF activation. Multiple studies have demonstrated the improvement in antitumor activity when MEK inhibitors are used in combination with BRAF inhibitors in the treatment of metastatic melanoma. This is a review of the investigations that led to the US Food and Drug Administration approval in 2015 of the combination of vemurafenib and cobimetinib, adding to the quickly growing armament for the treatment of advanced or metastatic melanoma with a BRAF V600 mutation. PMID:27382311

  3. Molecular Targets for Antiepileptic Drug Development

    PubMed Central

    Meldrum, Brian S.; Rogawski, Michael A.

    2007-01-01

    pathophysiology of epilepsy and the structural and functional characterization of the molecular targets provide many opportunities to create improved epilepsy therapies. PMID:17199015

  4. An overview of targeted cancer therapy.

    PubMed

    Padma, Viswanadha Vijaya

    2015-11-01

    Cancer is a multifactorial disease and is one of the leading causes of death worldwide. The contributing factors include specific genetic background, chronic exposure to various environmental stresses and improper diet. All these risk factors lead to the accumulation of molecular changes or mutations in some important proteins in cells which contributes to the initiation of carcinogenesis. Chemotherapy is an effective treatment against cancer but undesirable chemotherapy reactions and the development of resistance to drugs which results in multi-drug resistance (MDR) are the major obstacles in cancer chemotherapy. Strategies which are in practice with limited success include alternative formulations e.g., liposomes, resistance modulation e.g., PSC833, antidotes/toxicity modifiers e.g., ICRF-187 and gene therapy. Targeted therapy is gaining importance due to its specificity towards cancer cells while sparing toxicity to off-target cells. The scope of this review involves the various strategies involved in targeted therapy like-monoclonal antibodies, prodrug, small molecule inhibitors and nano-particulate antibody conjugates. PMID:26613930

  5. Targeted therapy in gastroesophageal cancers: past, present and future

    PubMed Central

    Woo, Janghee; Cohen, Stacey A.; Grim, Jonathan E.

    2015-01-01

    Gastroesophageal cancer is a significant global problem that frequently presents at an incurable stage and has very poor survival with standard chemotherapy approaches. This review will examine the epidemiology and molecular biology of gastroesophageal cancer and will focus on the key deregulated signaling pathways that have been targeted in the clinic. A comprehensive overview of clinical data highlighting successes and failures with targeted agents will be presented. Most notably, HER2-targeted therapy with the monoclonal antibody trastuzumab has proven beneficial in first-line therapy and has been incorporated into standard practice. Targeting the VEGF pathway has also proven beneficial, and the VEGFR-targeted monoclonal antibody ramucirumab is now approved for second-line therapy. In contrast to these positive results, agents targeting the EGFR and MET pathways have been evaluated extensively in gastroesophageal cancer but have repeatedly failed to show benefit. An increased understanding of the molecular predictors of response to targeted therapies is sorely needed. In the future, improved molecular pathology approaches should subdivide this heterogeneous disease entity to allow individualization of cancer therapy based on integrated and global identification of deregulated signaling pathways. Better patient selection, rational combinations of targeted therapies and incorporation of emerging immunotherapeutic approaches should further improve the treatment of this deadly disease. PMID:26510453

  6. Molecular imaging of oncolytic viral therapy

    PubMed Central

    Haddad, Dana; Fong, Yuman

    2015-01-01

    Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy. PMID:27119098

  7. Molecular imaging of oncolytic viral therapy.

    PubMed

    Haddad, Dana; Fong, Yuman

    2015-01-01

    Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy. PMID:27119098

  8. Introduction to Radiobiology of Targeted Radionuclide Therapy

    PubMed Central

    Pouget, Jean-Pierre; Lozza, Catherine; Deshayes, Emmanuel; Boudousq, Vincent; Navarro-Teulon, Isabelle

    2015-01-01

    During the last decades, new radionuclide-based targeted therapies have emerged as efficient tools for cancer treatment. Targeted radionuclide therapies (TRTs) are based on a multidisciplinary approach that involves the cooperation of specialists in several research fields. Among them, radiobiologists investigate the biological effects of ionizing radiation, specifically the molecular and cellular mechanisms involved in the radiation response. Most of the knowledge about radiation effects concerns external beam radiation therapy (EBRT) and radiobiology has then strongly contributed to the development of this therapeutic approach. Similarly, radiobiology and dosimetry are also assumed to be ways for improving TRT, in particular in the therapy of solid tumors, which are radioresistant. However, extrapolation of EBRT radiobiology to TRT is not straightforward. Indeed, the specific physical characteristics of TRT (heterogeneous and mixed irradiation, protracted exposure, and low absorbed dose rate) differ from those of conventional EBRT (homogeneous irradiation, short exposure, and high absorbed dose rate), and consequently the response of irradiated tissues might be different. Therefore, specific TRT radiobiology needs to be explored. Determining dose–effect correlation is also a prerequisite for rigorous preclinical radiobiology studies because dosimetry provides the necessary referential to all TRT situations. It is required too for developing patient-tailored TRT in the clinic in order to estimate the best dose for tumor control, while protecting the healthy tissues, thereby improving therapeutic efficacy. Finally, it will allow to determine the relative contribution of targeted effects (assumed to be dose-related) and non-targeted effects (assumed to be non-dose-related) of ionizing radiation. However, conversely to EBRT where it is routinely used, dosimetry is still challenging in TRT. Therefore, it constitutes with radiobiology, one of the main challenges of

  9. Targeted therapy for squamous cell lung cancer

    PubMed Central

    Liao, Rachel G.; Watanabe, Hideo; Meyerson, Matthew; Hammerman, Peter S.

    2013-01-01

    SUMMARY Lung squamous cell carcinoma (SqCC) is the second most common subtype of non-small-cell lung cancer and leads to 40,000–50,000 deaths per year in the USA. Management of non-small-cell lung cancer has dramatically changed over the past decade with the introduction of targeted therapeutic agents for genotypically selected individuals with lung adenocarcinoma. These agents lead to improved outcomes, and it has now become the standard of care to perform routine molecular genotyping of lung adenocarcinomas. By contrast, progress in lung SqCC has been modest, and there has yet to be a successful demonstration of targeted therapy in this disease. Here, we review exciting work from ongoing genomic characterization and biomarker validation efforts that have nominated several likely therapeutic targets in lung SqCCs. These studies suggest that targeted therapies are likely to be successful in the treatment of lung SqCCs and should be further explored in both preclinical models and in clinical trials. PMID:23956794

  10. Molecular Pathophysiology of Priapism: Emerging Targets

    PubMed Central

    Anele, Uzoma A.; Morrison, Belinda F.; Burnett, Arthur L.

    2015-01-01

    Priapism is an erectile disorder involving uncontrolled, prolonged penile erection without sexual purpose, which can lead to erectile dysfunction. Ischemic priapism, the most common of the variants, occurs with high prevalence in patients with sickle cell disease. Despite the potentially devastating complications of this condition, management of recurrent priapism episodes historically has commonly involved reactive treatments rather than preventative strategies. Recently, increasing elucidation of the complex molecular mechanisms underlying this disorder, principally involving dysregulation of nitric oxide signaling, has allowed for greater insights and exploration into potential therapeutic targets. In this review, we discuss the multiple molecular regulatory pathways implicated in the pathophysiology of priapism. We also identify the roles and mechanisms of molecular effectors in providing the basis for potential future therapies. PMID:25392014

  11. Bone Sarcomas: From Biology to Targeted Therapies

    PubMed Central

    Gaspar, Nathalie; Di Giannatale, Angela; Geoerger, Birgit; Redini, Françoise; Corradini, Nadège; Enz-Werle, Natacha; Tirode, Franck; Marec-Berard, Perrine; Gentet, Jean-Claude; Laurence, Valérie; Piperno-Neumann, Sophie; Oberlin, Odile; Brugieres, Laurence

    2012-01-01

    Primary malignant bone tumours, osteosarcomas, and Ewing sarcomas are rare diseases which occur mainly in adolescents and young adults. With the current therapies, some patients remain very difficult to treat, such as tumour with poor histological response to preoperative CT (or large initial tumour volume for Ewing sarcomas not operated), patients with multiple metastases at or those who relapsed. In order to develop new therapies against these rare tumours, we need to unveil the key driving factors and molecular abnormalities behind the malignant characteristics and to broaden our understanding of the phenomena sustaining the metastatic phenotype and treatment resistance in these tumours. In this paper, starting with the biology of these tumours, we will discuss potential therapeutic targets aimed at increasing local tumour control, limiting metastatic spread, and finally improving patient survival. PMID:23226965

  12. Targeting the EGF Receptor for Ovarian Cancer Therapy

    PubMed Central

    Zeineldin, Reema; Muller, Carolyn Y.; Stack, M. Sharon; Hudson, Laurie G.

    2010-01-01

    Ovarian carcinoma is the leading cause of death from gynecologic malignancy in the US. Factors such as the molecular heterogeneity of ovarian tumors and frequent diagnosis at advanced stages hamper effective disease treatment. There is growing emphasis on the identification and development of targeted therapies to disrupt molecular pathways in cancer. The epidermal growth factor (EGF) receptor is one such protein target with potential utility in the management of ovarian cancer. This paper will discuss contributions of EGF receptor activation to ovarian cancer pathogenesis and the status of EGF receptor inhibitors and EGF receptor targeted therapies in ovarian cancer treatment. PMID:20066160

  13. Novel targeted therapies in chordoma: an update

    PubMed Central

    Di Maio, Salvatore; Yip, Stephen; Al Zhrani, Gmaan A; Alotaibi, Fahad E; Al Turki, Abdulrahman; Kong, Esther; Rostomily, Robert C

    2015-01-01

    Chordomas are rare, locally aggressive skull base neoplasms known for local recurrence and not-infrequent treatment failure. Current evidence supports the role of maximal safe surgical resection. In addition to open skull-base approaches, the endoscopic endonasal approach to clival chordomas has been reported with favorable albeit early results. Adjuvant radiation is prescribed following complete resection, alternatively for gross residual disease or at the time of recurrence. The modalities of adjuvant radiation therapy reported vary widely and include proton-beam, carbon-ion, fractionated photon radiotherapy, and photon and gamma-knife radiosurgery. As of now, no direct comparison is available, and high-level evidence demonstrating superiority of one modality over another is lacking. While systemic therapies have yet to form part of any first-line therapy for chordomas, a number of targeted agents have been evaluated to date that inhibit specific molecules and their respective pathways known to be implicated in chordomas. These include EGFR (erlotinib, gefitinib, lapatinib), PDGFR (imatinib), mTOR (rapamycin), and VEGF (bevacizumab). This article provides an update of the current multimodality treatment of cranial base chordomas, with an emphasis on how current understanding of molecular pathogenesis provides a framework for the development of novel targeted approaches. PMID:26097380

  14. Targeting antioxidants for cancer therapy.

    PubMed

    Glasauer, Andrea; Chandel, Navdeep S

    2014-11-01

    Cancer cells are characterized by an increase in the rate of reactive oxygen species (ROS) production and an altered redox environment compared to normal cells. Furthermore, redox regulation and redox signaling play a key role in tumorigenesis and in the response to cancer therapeutics. ROS have contradictory roles in tumorigenesis, which has important implications for the development of potential anticancer therapies that aim to modulate cellular redox levels. ROS play a causal role in tumor development and progression by inducing DNA mutations, genomic instability, and aberrant pro-tumorigenic signaling. On the other hand, high levels of ROS can also be toxic to cancer cells and can potentially induce cell death. To balance the state of oxidative stress, cancer cells increase their antioxidant capacity, which strongly suggests that high ROS levels have the potential to actually block tumorigenesis. This fact makes pro-oxidant cancer therapy an interesting area of study. In this review, we discuss the controversial role of ROS in tumorigenesis and especially elaborate on the advantages of targeting ROS scavengers, hence the antioxidant capacity of cancer cells, and how this can be utilized for cancer therapeutics. PMID:25078786

  15. Multiple Molecular Pathways in Melanomagenesis: Characterization of Therapeutic Targets

    PubMed Central

    Palmieri, Giuseppe; Ombra, MariaNeve; Colombino, Maria; Casula, Milena; Sini, MariaCristina; Manca, Antonella; Paliogiannis, Panagiotis; Ascierto, Paolo Antonio; Cossu, Antonio

    2015-01-01

    Molecular mechanisms involved in pathogenesis of malignant melanoma have been widely studied and novel therapeutic treatments developed in recent past years. Molecular targets for therapy have mostly been recognized in the RAS–RAF–MEK–ERK and PI3K–AKT signaling pathways; small-molecule inhibitors were drawn to specifically target key kinases. Unfortunately, these targeted drugs may display intrinsic or acquired resistance and various evidences suggest that inhibition of a single effector of the signal transduction cascades involved in melanoma pathogenesis may be ineffective in blocking the tumor growth. In this sense, a wider comprehension of the multiple molecular alterations accounting for either response or resistance to treatments with targeted inhibitors may be helpful in assessing, which is the most effective combination of such therapies. In the present review, we summarize the known molecular mechanisms underlying either intrinsic and acquired drug resistance either alternative roads to melanoma pathogenesis, which may become targets for innovative anticancer approaches. PMID:26322273

  16. Comprehensive Analysis of the Incidence and Survival Patterns of Lung Cancer by Histologies, Including Rare Subtypes, in the Era of Molecular Medicine and Targeted Therapy

    PubMed Central

    Chang, Jeffrey.S.; Chen, Li-Tzong; Shan, Yan-Shen; Lin, Sheng-Fung; Hsiao, Sheng-Yen; Tsai, Chia-Rung; Yu, Shu-Jung; Tsai, Hui-Jen

    2015-01-01

    Abstract Lung cancer is the third most common cancer in the world and has the highest cancer mortality rate. A worldwide increasing trend of lung adenocarcinoma has been noted. In addition, the identification of epidermal growth factor receptor (EGFR) mutations and the introduction of EGFR inhibitors to successfully treat EGFR mutated non–small cell lung cancers are breakthroughs for lung cancer treatment. The current study evaluated the incidence and survival of lung cancer using data collected by the Taiwan Cancer Registry between 1996 and 2008. The results showed that the most common histologic subtype of lung cancer was adenocarcinoma, followed by squamous cell carcinoma, small cell carcinoma, large cell carcinoma, neuroendocrine tumors, lymphoma, and sarcoma. Overall, the incidence of lung cancer in Taiwan increased significantly from 1996 to 2008. An increased incidence was observed for adenocarcinoma, particularly for women, with an annual percentage change of 5.9, whereas the incidence of squamous cell carcinoma decreased. Among the subtypes of lung cancer, the most rapid increase occurred in neuroendocrine tumors with an annual percentage change of 15.5. From 1996–1999 to 2005–2008, the 1-year survival of adenocarcinoma increased by 10% for men, whereas the 1-, 3-, and 5-year survivals of adenocarcinoma for women increased by 18%, 11%, and 5%, respectively. Overall, the incidence of lung cancer has been increasing in Taiwan, although the trends were variable by subtype. The introduction of targeted therapies was associated with a significantly improved survival for lung adenocarcinoma in Taiwan; however, more studies are needed to explain the rising incidence of lung adenocarcinoma. In addition, it is important to investigate the molecular pathogenesis of the various subtypes of lung cancer to develop novel therapeutic agents.

  17. Adaptive stress signaling in targeted therapy resistance in cancer

    PubMed Central

    Pazarentzos, Evangelos; Bivona, Trever G.

    2015-01-01

    The identification of specific genetic alterations that drive the initiation and progression of cancer and the development of targeted drugs that act against these driver alterations has revolutionized the treatment of many human cancers. While substantial progress has been achieved with the use of such targeted cancer therapies, resistance remains a major challenge that limits the overall clinical impact. Hence, despite progress, new strategies are needed to enhance response and eliminate resistance to targeted cancer therapies in order to achieve durable or curative responses in patients. To date, efforts to characterize mechanisms of resistance have primarily focused on molecular events that mediate primary or secondary resistance in patients. Less is known about the initial molecular response and adaptation that may occur in tumor cells early upon exposure to a targeted agent. Although understudied, emerging evidence indicates that the early adaptive changes by which tumor cells respond to the stress of a targeted therapy may be crucial for tumor cell survival during treatment and the development of resistance. Here, we review recent data illuminating the molecular architecture underlying adaptive stress signaling in tumor cells. We highlight how leveraging this knowledge could catalyze novel strategies to minimize or eliminate targeted therapy resistance, thereby unleashing the full potential of targeted therapies to transform many cancers from lethal to chronic or curable conditions. PMID:25703329

  18. Systemic targeted radionuclide therapy: Potential new areas

    SciTech Connect

    Wong, Jeffrey Y.C. . E-mail: jwong@coh.org

    2006-10-01

    Radiation oncology is entering an exciting new era with therapies being delivered in a targeted fashion through an increasing number of novel approaches. External beam radiotherapy now integrates functional and anatomic tumor imaging to guide delivery of conformal radiation to the tumor target. Systemic targeted radionuclide therapy (STaRT) adds an important new dimension by making available to Radiation oncologist biologically targeted radiation therapy. Impressive clinical results with antibody-targeted radiotherapy, leading to the Food and Drug Administration's approval of two anti-CD20 radiolabeled antibodies, highlight the potential of STaRT. Optimization strategies will further improve the efficacy of STaRT by improving delivery systems, modifying the tumor microenvironment to increase targeted dose, and maximizing dose effect. Ultimately, the greatest potential for STaRT will not be as monotherapy, but as therapy integrated into established multimodality regimens and used as adjuvant or consolidative therapy in patients with minimal or micrometastatic disease.

  19. Evaluation of targeted therapies in advanced breast cancer: the need for large-scale molecular screening and transformative clinical trial designs.

    PubMed

    Fadoukhair, Z; Zardavas, D; Chad, M A; Goulioti, T; Aftimos, P; Piccart, M

    2016-04-01

    Breast cancer (BC) has been classified into four intrinsic subtypes through seminal studies employing gene expression profiling analysis of primary tumours, namely the luminal A and B subtypes, the human epidermal growth factor receptor 2-like subtype and the basal-like subtype. More recently, the emergence of high-throughput genomic sequencing techniques, such as next-generation or massive parallel sequencing has expanded our understanding of the complex genomic landscapes of BC, with marked intertumour heterogeneity seen among different patients. In addition, increasing evidence indicates intratumour heterogeneity, with molecular differences observed within one patient, both spatially and longitudinally. These phenomena have an impact on the clinical development of molecularly targeted agents, with the classical paradigm of population-based clinical trials being no longer efficient. In the era of genomically driven oncology, three complementary tools can accelerate the clinical development of targeted agents for advanced BC as follows: (i) the implementation of molecular profiling of metastatic tumour lesions, as exemplified by the AURORA (Aiming to Understand the Molecular Aberrations in Metastatic Breast Cancer) programme; (ii) serial assessments of circulating tumour DNA, allowing a more thorough molecular interrogation of metastatic tumour burden; and (iii) new innovative clinical trial designs able to address the challenges of the increasing molecular fragmentation of BC. PMID:26119941

  20. Targeting Perciytes for Angiogenic Therapies

    PubMed Central

    Kelly-Goss, Molly R.; Sweat, Rick S.; Stapor, Peter C.; Peirce, Shayn M.; Murfee, Walter L.

    2014-01-01

    In pathological scenarios, such as tumor growth and diabetic retinopathy, blocking angiogenesis would be beneficial. In others, such as myocardial infarction and hypertension, promoting angiogenesis might be desirable. Due to their putative influence on endothelial cells, vascular pericytes have become a topic of growing interest and are increasingly being evaluated as a potential target for angioregulatory therapies. For example, the strategy of manipulating pericyte recruitment to capillaries could result in anti- or pro-angiogenic effects. However, our current understanding of pericytes is limited by knowledge gaps regarding pericyte identity and lineage. To use a music analogy, this review is a “mash-up” that attempts to integrate what we know about pericyte functionality and expression with what is beginning to be elucidated regarding their regenerative potential. We explore the lingering questions regarding pericyte phenotypic identity and lineage. The expression of different pericyte markers (e.g., SMA, Desmin, NG2 and PDGFR-β) varies for different subpopulations and tissues. Previous use of these markers to identify pericytes has suggested potential phenotypic overlaps and plasticity toward other cell phenotypes. Our review chronicles the state of the literature, identifies critical unanswered questions, and motivates future research aimed at understanding this intriguing cell type and harnessing its therapeutic potential. PMID:24267154

  1. Oncogenicity of L-type amino-acid transporter 1 (LAT1) revealed by targeted gene disruption in chicken DT40 cells: LAT1 is a promising molecular target for human cancer therapy

    SciTech Connect

    Ohkawa, Mayumi; Ohno, Yoshiya; Masuko, Kazue; Takeuchi, Akiko; Suda, Kentaro; Kubo, Akihiro; Kawahara, Rieko; Okazaki, Shogo; Tanaka, Toshiyuki; Saya, Hideyuki; Seki, Masayuki; Enomoto, Takemi; Yagi, Hideki; Hashimoto, Yoshiyuki; Masuko, Takashi

    2011-03-25

    Highlights: {yields} We established LAT1 amino-acid transporter-disrupted DT40 cells. {yields} LAT1-disrupted cells showed slow growth and lost the oncogenicity. {yields} siRNA and mAb inhibited human tumor growth in vitro and in vivo. {yields} LAT1 is a promising target molecule for cancer therapy. -- Abstract: L-type amino-acid transporter 1 (LAT1) is the first identified light chain of CD98 molecule, disulfide-linked to a heavy chain of CD98. Following cDNA cloning of chicken full-length LAT1, we have constructed targeting vectors for the disruption of chicken LAT1 gene from genomic DNA of chicken LAT1 consisting of 5.4 kb. We established five homozygous LAT1-disrupted (LAT1{sup -/-}) cell clones, derived from a heterozygous LAT1{sup +/-} clone of DT40 chicken B cell line. Reactivity of anti-chicken CD98hc monoclonal antibody (mAb) with LAT1{sup -/-} DT40 cells was markedly decreased compared with that of wild-type DT40 cells. All LAT1{sup -/-} cells were deficient in L-type amino-acid transporting activity, although alternative-splice variant but not full-length mRNA of LAT1 was detected in these cells. LAT1{sup -/-} DT40 clones showed outstandingly slow growth in liquid culture and decreased colony-formation capacity in soft agar compared with wild-type DT40 cells. Cell-cycle analyses indicated that LAT1{sup -/-} DT40 clones have prolonged cell-cycle phases compared with wild-type or LAT1{sup +/-} DT40 cells. Knockdown of human LAT1 by small interfering RNAs resulted in marked in vitro cell-growth inhibition of human cancer cells, and in vivo tumor growth of HeLa cells in athymic mice was significantly inhibited by anti-human LAT1 mAb. All these results indicate essential roles of LAT1 in the cell proliferation and occurrence of malignant phenotypes and that LAT1 is a promising candidate as a molecular target of human cancer therapy.

  2. Bioengineering Strategies for Designing Targeted Cancer Therapies

    PubMed Central

    Wen, Xuejun

    2014-01-01

    The goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release. The future direction of cancer targeting is a combinatorial approach, in which targeting therapies are designed to use multiple targeting strategies. The combinatorial approach will enable combination therapy for delivery of multiple drugs and dual ligand targeting to improve targeting specificity. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes. PMID:23768509

  3. Site-specific antibody-liposome conjugation through copper-free click chemistry: a molecular biology approach for targeted photodynamic therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Obaid, Girgis; Wang, Yucheng; Kuriakose, Jerrin; Broekgaarden, Mans; Alkhateeb, Ahmed; Bulin, Anne-Laure; Hui, James; Tsourkas, Andrew; Hasan, Tayyaba

    2016-03-01

    Nanocarriers, such as liposomes, have the ability to potentiate photodynamic therapy (PDT) treatment regimens by the encapsulation of high payloads of photosensitizers and enhance their passive delivery to tumors through the enhanced permeability and retention effect. By conjugating targeting moieties to the surface of the liposomal nanoconstructs, cellular selectivity is imparted on them and PDT-based therapies can be performed with significantly higher dose tolerances, as off-target toxicity is simultaneously reduced.1 However, the maximal benefits of conventional targeted nanocarriers, including liposomes, are hindered by practical limitations including chemical instability, non-selective conjugation chemistry, poor control over ligand orientation, and loss of ligand functionality following conjugation, amongst others.2 We have developed a robust, physically and chemically stable liposomal nanoplatform containing benzoporphyrin derivative photosensitizer molecules within the phospholipid bilayer and an optimized surface density of strained cyclooctyne moieties for `click' conjugation to azido-functionalized antibodies.3 The clinical chimeric anti-EGFR antibody Cetuximab is site-specifically photocrosslinked to a recombinant bioengineered that recognizes the antibody's Fc region, containing a terminal azide.4 The copper-free click conjugation of the bioengineered Cetuximab derivative to the optimized photosensitizing liposome provides exceptional control over the antibody's optimal orientation for cellular antigen binding. Importantly, the reaction occurs rapidly under physiological conditions, bioorthogonally (selectively in the presence of other biomolecules) and without the need for toxic copper catalysis.3 Such state-of-the-art conjugation strategies push the boundaries of targeted photodynamic therapy beyond the limitations of traditional chemical coupling techniques to produce more robust and effective targeted therapeutics with applications beyond

  4. Novel Points of Attack for Targeted Cancer Therapy

    PubMed Central

    Røsland, Gro Vatne; Engelsen, Agnete Svendsen Tenfjord

    2015-01-01

    New molecular insight reveals novel points of attack for targeted cancer therapy. The recent advances in cancer genomics and novel insight into the complex biology of cancer make the promise of personalized, targeted cancer medicine closer than ever. The massive parallel sequencing endeavours performed by The Cancer Genome Atlas, the International Cancer Genome Consortium and by numerous individual investigators have provided a comprehensive genomic characterization of a wide range of cancers. The joint efforts enabled by the improved sequencing technology have demonstrated that individual cancers comprise mutational repertoires with only a few frequently recurrent driver genes. Thus, the identification of new drug targets and novel drugs have accelerated and renewed the hopes of personalized cancer therapy achieving clinical reality for a wider range of cancers. Together with cost-effective sequencing technology to perform comprehensive mutational profiling of each individual cancer, this provides the basis for a personalized cancer medicine revolution within the next few years. The aim of this MiniReview is to provide an overview of the history and evolution of targeted cancer therapy, exemplified by molecularly targeted drugs successfully implemented in the clinic. Furthermore, we aim to highlight novel molecular targets for therapeutic intervention, as well as the main present challenges including inter- and intratumor heterogeneity and cellular plasticity in addition to the importance of the tumor micro-environment. Many cancer patients already receive some form of tailored therapy, and recent evidence suggests that novel and highly innovative, targeted approaches are on their way into the clinic. PMID:25154903

  5. Off-label use of targeted therapies in oncology

    PubMed Central

    Levêque, Dominique

    2016-01-01

    Off-label use is defined by the prescription of a marketed drug outside the conditions described in the summary of product characteristics. In oncology, off-label prescribing of targeted therapies may occur in patients with other tumor types expressing the same target. Agents associated to phenotypic approaches such as therapies against the tumoral vasculature (anti-angiogenic drugs) and new immunotherapies (checkpoint inhibitors) also carry the potential of alternative indications or combinations. Off-label use of targeted therapies is little documented and appears to be in the same range than that regarding older drugs with wide variations among agents. When compared with older agents, off-label use of targeted therapies is probably more rational through tumoral genotyping but is faced with a limited clinical support, reimbursement challenges related to the very high pricing and the cost of genotyping or molecular profiling, when applicable. PMID:27081648

  6. Targeted alpha therapy for cancer

    NASA Astrophysics Data System (ADS)

    Allen, Barry J.; Raja, Chand; Rizvi, Syed; Li, Yong; Tsui, Wendy; Zhang, David; Song, Emma; Qu, Chang Fa; Kearsley, John; Graham, Peter; Thompson, John

    2004-08-01

    Targeted alpha therapy (TAT) offers the potential to inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The practicality and efficacy of TAT is tested by in vitro and in vivo studies in melanoma, leukaemia, colorectal, breast and prostate cancers, and by a phase 1 trial of intralesional TAT for melanoma. The alpha-emitting radioisotope used is Bi-213, which is eluted from the Ac-225 generator and chelated to a cancer specific monoclonal antibody (mab) or protein (e.g. plasminogen activator inhibitor-2 PAI2) to form the alpha-conjugate (AC). Stable alpha-ACs have been produced which have been tested for specificity and cytotoxicity in vitro against melanoma (9.2.27 mab), leukaemia (WM60), colorectal (C30.6), breast (PAI2, herceptin), ovarian (PAI2, herceptin, C595), prostate (PAI2, J591) and pancreatic (PAI2, C595) cancers. Subcutaneous inoculation of 1-1.5 million human cancer cells into the flanks of nude mice causes tumours to grow in all mice. Tumour growth is compared for untreated controls, nonspecific AC and specific AC, for local (subcutaneous) and systemic (tail vein or intraperitoneal) injection models. The 213Bi-9.2.27 AC is injected into secondary skin melanomas in stage 4 patients in a dose escalation study to determine the effective tolerance dose, and to measure kinematics to obtain the equivalent dose to organs. In vitro studies show that TAT is one to two orders of magnitude more cytotoxic to targeted cells than non-specific ACs, specific beta emitting conjugates or free isotopes. In vivo local TAT at 2 days post-inoculation completely prevents tumour formation for all cancers tested so far. Intra-lesional TAT can completely regress advanced sc melanoma but is less successful for breast and prostate cancers. Systemic TAT inhibits the growth of sc melanoma xenografts and gives almost complete control of breast and prostate cancer tumour growth. Intralesional doses up to 450 µCi in human

  7. MicroRNAs May Serve as Emerging Molecular Biomarkers for Diagnosis and Prognostic Assessment or as Targets for Therapy in Gastric Cancer.

    PubMed

    Mu, Yong-Ping; Sun, Wen-Jie; Lu, Chuan-Wen; Su, Xiu-Lan

    2015-01-01

    Gastric cancer (GC) is one of the most common cancers, with high incidences in East Asia countries. Most GC patients have been reported with low early diagnosis rate and show extremely poor prognosis. Therefore, it is necessary to develop novel and more sensitive biomarkers to improve early diagnosis and therapy in order to provide longer survival and better quality of life for gastric cancer patients. MicroRNAs (miRNAs) play crucial roles in GC development and progression. miRNAs have emerged as a novel molecular biomarker for cancer diagnosis, prognosis and therapy with surprising stability in tissues, serum or other body fluids. This review summarizes major advances in our current knowledge about potential miRNA biomarkers for GC that have been reported in the past two years. PMID:26163596

  8. Molecular profiling of a case of advanced pancreatic cancer identifies an active and tolerable combination of targeted therapy with backbone chemotherapy

    PubMed Central

    Vanderwalde, Ari; Javadi, Nader; Feldman, Rebecca; Reddy, Sandeep Bobby

    2016-01-01

    Typical survival with common 1st-line regimens for pancreatic cancer range from 6-11 months. We report a case of a patient with stage IVB pancreatic adenocarcinoma treated with gemcitabine and erlotinib who stopped therapy after 3 months without achieving a response due to intolerance. To decide upon additional treatment options, molecular analysis was performed on liver metastasis which revealed KRAS, FBXW7, APC, and ATM mutations, with thymidylate synthase (TS) negativity and PD-1 positivity. Based on this profile of TS negativity and ATM mutation, a combination strategy was devised consisting of capecitabine, oxaliplatin, bevacizumab and vorinostat. The patient had a near complete response to therapy with this regimen. In refractory metastatic pancreatic cancer, responses of this magnitude are rarely seen. To our knowledge, this represents the first demonstrated activity of this combination in the metastatic setting which could prompt further investigation of its use in large scale clinical trials. PMID:27034805

  9. Molecular profiling of a case of advanced pancreatic cancer identifies an active and tolerable combination of targeted therapy with backbone chemotherapy.

    PubMed

    Johnson, Benny; Vanderwalde, Ari; Javadi, Nader; Feldman, Rebecca; Reddy, Sandeep Bobby

    2016-04-01

    Typical survival with common 1(st)-line regimens for pancreatic cancer range from 6-11 months. We report a case of a patient with stage IVB pancreatic adenocarcinoma treated with gemcitabine and erlotinib who stopped therapy after 3 months without achieving a response due to intolerance. To decide upon additional treatment options, molecular analysis was performed on liver metastasis which revealed KRAS, FBXW7, APC, and ATM mutations, with thymidylate synthase (TS) negativity and PD-1 positivity. Based on this profile of TS negativity and ATM mutation, a combination strategy was devised consisting of capecitabine, oxaliplatin, bevacizumab and vorinostat. The patient had a near complete response to therapy with this regimen. In refractory metastatic pancreatic cancer, responses of this magnitude are rarely seen. To our knowledge, this represents the first demonstrated activity of this combination in the metastatic setting which could prompt further investigation of its use in large scale clinical trials. PMID:27034805

  10. Molecular pathways and therapeutic targets in lung cancer

    PubMed Central

    Shtivelman, Emma; Hensing, Thomas; Simon, George R.; Dennis, Phillip A.; Otterson, Gregory A.; Bueno, Raphael; Salgia, Ravi

    2014-01-01

    Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review. PMID:24722523

  11. Integration of Mitochondrial Targeting for Molecular Cancer Therapeutics

    PubMed Central

    Marchetti, Philippe; Guerreschi, Pierre; Mortier, Laurent; Kluza, Jerome

    2015-01-01

    Mitochondrial metabolism greatly influences cancer cell survival, invasion, metastasis, and resistance to many anticancer drugs. Furthermore, molecular-targeted therapies (e.g., oncogenic kinase inhibitors) create a dependence of surviving cells on mitochondrial metabolism. For these reasons, inhibition of mitochondrial metabolism represents promising therapeutic pathways in cancer. This review provides an overview of mitochondrial metabolism in cancer and discusses the limitations of mitochondrial inhibition for cancer treatment. Finally, we present preclinical evidence that mitochondrial inhibition could be associated with oncogenic “drivers” inhibitors, which may lead to innovative drug combinations for improving the efficacy of molecular-targeted therapy. PMID:26713093

  12. Important cellular targets for antimicrobial photodynamic therapy.

    PubMed

    Awad, Mariam M; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2016-09-01

    The persistent problem of antibiotic resistance has created a strong demand for new methods for therapy and disinfection. Photodynamic inactivation (PDI) of microbes has demonstrated promising results for eradication of antibiotic-resistant strains. PDI is based on the use of a photosensitive compound (photosensitizer, PS), which upon illumination with visible light generates reactive species capable of damaging and killing microorganisms. Since photogenerated reactive species are short lived, damage is limited to close proximity of the PS. It is reasonable to expect that the larger the number of damaged targets is and the greater their variety is, the higher the efficiency of PDI is and the lower the chances for development of resistance are. Exact molecular mechanisms and specific targets whose damage is essential for microbial inactivation have not been unequivocally established. Two main cellular components, DNA and plasma membrane, are regarded as the most important PDI targets. Using Zn porphyrin-based PSs and Escherichia coli as a model Gram-negative microorganism, we demonstrate that efficient photoinactivation of bacteria can be achieved without detectable DNA modification. Among the cellular components which are modified early during illumination and constitute key PDI targets are cytosolic enzymes, membrane-bound protein complexes, and the plasma membrane. As a result, membrane barrier function is lost, and energy and reducing equivalent production is disrupted, which in turn compromises cell defense mechanisms, thus augmenting the photoinduced oxidative injury. In conclusion, high PDI antimicrobial effectiveness does not necessarily require impairment of a specific critical cellular component and can be achieved by inducing damage to multiple cellular targets. PMID:27221289

  13. Changing strategies for target therapy in gastric cancer

    PubMed Central

    Lee, Suk-young; Oh, Sang Cheul

    2016-01-01

    In spite of a worldwide decrease in the incidence of gastric cancer, this malignancy still remains one of the leading causes of cancer mortality. Great efforts have been made to improve treatment outcomes in patients with metastatic gastric cancer, and the introduction of trastuzumab has greatly improved the overall survival. The trastuzumab treatment took its first step in opening the era of molecular targeted therapy, however several issues still need to be resolved to increase the efficacy of targeted therapy. Firstly, many patients with metastatic gastric cancer who receive trastuzumab in combination with chemotherapeutic agents develop resistance to the targeted therapy. Secondly, many clinical trials testing novel molecular targeted agents with demonstrated efficacy in other malignancies have failed to show benefit in patients with metastatic gastric cancer, suggesting the importance of the selection of appropriate indications according to molecular characteristics in application of targeted agents. Herein, we review the molecular targeted agents currently approved and in use, and clinical trials in patients with metastatic gastric cancer, and demonstrate the limitations and future direction in treatment of advanced gastric cancer. PMID:26811656

  14. Molecular profiling of childhood cancer: Biomarkers and novel therapies

    PubMed Central

    Saletta, Federica; Wadham, Carol; Ziegler, David S.; Marshall, Glenn M.; Haber, Michelle; McCowage, Geoffrey; Norris, Murray D.; Byrne, Jennifer A.

    2014-01-01

    Background Technological advances including high-throughput sequencing have identified numerous tumor-specific genetic changes in pediatric and adolescent cancers that can be exploited as targets for novel therapies. Scope of review This review provides a detailed overview of recent advances in the application of target-specific therapies for childhood cancers, either as single agents or in combination with other therapies. The review summarizes preclinical evidence on which clinical trials are based, early phase clinical trial results, and the incorporation of predictive biomarkers into clinical practice, according to cancer type. Major conclusions There is growing evidence that molecularly targeted therapies can valuably add to the arsenal available for treating childhood cancers, particularly when used in combination with other therapies. Nonetheless the introduction of molecularly targeted agents into practice remains challenging, due to the use of unselected populations in some clinical trials, inadequate methods to evaluate efficacy, and the need for improved preclinical models to both evaluate dosing and safety of combination therapies. General significance The increasing recognition of the heterogeneity of molecular causes of cancer favors the continued development of molecularly targeted agents, and their transfer to pediatric and adolescent populations. PMID:26675306

  15. Targeted therapies in gastric cancer and future perspectives

    PubMed Central

    Yazici, Ozan; Sendur, M Ali Nahit; Ozdemir, Nuriye; Aksoy, Sercan

    2016-01-01

    Advanced gastric cancer (AGC) is associated with a high mortality rate and, despite multiple new chemotherapy options, the survival rates of patients with AGC remains poor. After the discovery of targeted therapies, research has focused on the new treatment options for AGC. In the last two decades, many targeted molecules were developed against AGC. Currently, two targeted therapy molecules have been approved for patients with AGC. In 2010, trastuzumab was the first molecule shown to improve survival in patients with HER2-positive AGC as part of a first-line combination regimen. In 2014, ramucirumab was the second targeted molecule to improve survival rates and was suggested as treatment for patients with AGC who had progressed after first-line platinum plus fluoropyrimidine with or without anthracycline chemotherapy. Ramucirumab was the first targeted therapy acting as a single agent in patients with advanced gastroesophageal cancers. Although these two molecules were introduced into clinical use, many other promising molecules have been tested in phase I-II trials. It is obvious that in the near future many different targeted therapies will be in use for treatment of AGC. In this review, the current status of targeted therapies in the treatment of AGC and gastroesophageal junction tumors, including HER (2-3) inhibitors, epidermal growth factor receptor inhibitors, tyrosine kinase inhibitors, antiangiogenic agents, c-MET inhibitors, mammalian target of rapamycin inhibitors, agents against other molecular pathways fibroblast growth factor, Claudins, insulin-like growth factor, heat shock proteins, and immunotherapy, will be discussed. PMID:26811601

  16. STIM and Orai proteins as novel targets for cancer therapy. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis.

    PubMed

    Vashisht, Ayushi; Trebak, Mohamed; Motiani, Rajender K

    2015-10-01

    Calcium (Ca(2+)) regulates a plethora of cellular functions including hallmarks of cancer development such as cell cycle progression and cellular migration. Receptor-regulated calcium rise in nonexcitable cells occurs through store-dependent as well as store-independent Ca(2+) entry pathways. Stromal interaction molecules (STIM) and Orai proteins have been identified as critical constituents of both these Ca(2+) influx pathways. STIMs and Orais have emerged as targets for cancer therapeutics as their altered expression and function have been shown to contribute to tumorigenesis. Recent data demonstrate that they play a vital role in development and metastasis of a variety of tumor types including breast, prostate, cervical, colorectal, brain, and skin tumors. In this review, we will retrospect the data supporting a key role for STIM1, STIM2, Orai1, and Orai3 proteins in tumorigenesis and discuss the potential of targeting these proteins for cancer therapy. PMID:26017146

  17. Cytotoxic and targeted therapy for hereditary cancers.

    PubMed

    Iyevleva, Aglaya G; Imyanitov, Evgeny N

    2016-01-01

    There is a number of drugs demonstrating specific activity towards hereditary cancers. For example, tumors in BRCA1/2 mutation carriers usually arise via somatic inactivation of the remaining BRCA allele, which makes them particularly sensitive to platinum-based drugs, PARP inhibitors (PARPi), mitomycin C, liposomal doxorubicin, etc. There are several molecular assays for BRCA-ness, which permit to reveal BRCA-like phenocopies among sporadic tumors and thus extend clinical indications for the use of BRCA-specific therapies. Retrospective data on high-dose chemotherapy deserve consideration given some unexpected instances of cure from metastatic disease among BRCA1/2-mutated patients. Hereditary non-polyposis colorectal cancer (HNPCC) is characterized by high-level microsatellite instability (MSI-H), increased antigenicity and elevated expression of immunosuppressive molecules. Recent clinical trial demonstrated tumor responses in HNPCC patients treated by the immune checkpoint inhibitor pembrolizumab. There are successful clinical trials on the use of novel targeted agents for the treatment or rare cancer syndromes, e.g. RET inhibitors for hereditary medullary thyroid cancer, mTOR inhibitors for tumors arising in patients with tuberous sclerosis (TSC), and SMO inhibitors for basal-cell nevus syndrome. Germ-line mutation tests will be increasingly used in the future for the choice of the optimal therapy, therefore turnaround time for these laboratory procedures needs to be significantly reduced to ensure proper treatment planning. PMID:27555886

  18. Druggable targets in pediatric neurocutaneous melanocytosis: Molecular and drug sensitivity studies in xenograft and ex vivo tumor cell culture to identify agents for therapy

    PubMed Central

    Ruan, Yibing; Kovalchuk, Anna; Jayanthan, Aarthi; Lun, Xueqing; Nagashima, Yoji; Kovalchuk, Olga; Wright, James R.; Pinto, Alfredo; Kirton, Adam; Anderson, Ronald; Narendran, Aru

    2015-01-01

    Background Neurocutaneous melanocytosis (NCM) is a rare congenital disorder that presents with pigmented cell lesions of the brain or leptomeninges in children with large or multiple congenital melanocytic nevi. Although the exact pathological processes involved are currently unclear, NCM appears to arise from an abnormal development of melanoblasts or melanocyte precursors. Currently, it has an extremely poor prognosis due to rapid disease progression and lack of effective treatment modalities. Methods In this study, we report on an experimental approach to examining NCM cells by establishing subcutaneous tumors in nude mice, which can be further expanded for conducting molecular and drug sensitivity experiments. Results Analysis of the NRAS gene-coding sequences of an established NCM cell line (YP-MEL) and NCM patient cells revealed heterogeneity in NRAS Q61K that activated mutation and possibly consequential differential sensitivity to MEK inhibition. Gene expression studies were performed to compare the molecular profiles of NCM cells with normal skin fibroblasts. In vitro cytotoxicity screens of libraries of targeted small-molecule inhibitors revealed prospective agents for further evaluation. Conclusions Our studies provide an experimental platform for the generation of NCM cells for preclinical studies and the production of molecular and in vitro data with which to identify druggable targets for the treatment. PMID:25395461

  19. Comprehensive transcriptomic analysis of molecularly targeted drugs in cancer for target pathway evaluation

    PubMed Central

    Mashima, Tetsuo; Ushijima, Masaru; Matsuura, Masaaki; Tsukahara, Satomi; Kunimasa, Kazuhiro; Furuno, Aki; Saito, Sakae; Kitamura, Masami; Soma-Nagae, Taeko; Seimiya, Hiroyuki; Dan, Shingo; Yamori, Takao; Tomida, Akihiro

    2015-01-01

    Targeted therapy is a rational and promising strategy for the treatment of advanced cancer. For the development of clinical agents targeting oncogenic signaling pathways, it is important to define the specificity of compounds to the target molecular pathway. Genome-wide transcriptomic analysis is an unbiased approach to evaluate the compound mode of action, but it is still unknown whether the analysis could be widely applicable to classify molecularly targeted anticancer agents. We comprehensively obtained and analyzed 129 transcriptomic datasets of cancer cells treated with 83 anticancer drugs or related agents, covering most clinically used, molecularly targeted drugs alongside promising inhibitors of molecular cancer targets. Hierarchical clustering and principal component analysis revealed that compounds targeting similar target molecules or pathways were clustered together. These results confirmed that the gene signatures of these drugs reflected their modes of action. Of note, inhibitors of oncogenic kinase pathways formed a large unique cluster, showing that these agents affect a shared molecular pathway distinct from classical antitumor agents and other classes of agents. The gene signature analysis further classified kinome-targeting agents depending on their target signaling pathways, and we identified target pathway-selective signature gene sets. The gene expression analysis was also valuable in uncovering unexpected target pathways of some anticancer agents. These results indicate that comprehensive transcriptomic analysis with our database (http://scads.jfcr.or.jp/db/cs/) is a powerful strategy to validate and re-evaluate the target pathways of anticancer compounds. PMID:25911996

  20. Molecular Targets for the Treatment of Juvenile Myelomonocytic Leukemia

    PubMed Central

    Liu, Xiaoling; Sabnis, Himalee; Bunting, Kevin D.; Qu, Cheng-Kui

    2012-01-01

    Significant advances in our understanding of the genetic defects and the pathogenesis of juvenile myelomonocytic leukemia (JMML) have been achieved in the last several years. The information gathered tremendously helps us in designing molecular targeted therapies for this otherwise fatal disease. Various approaches are being investigated to target defective pathways/molecules in this disease. However, effective therapy is still lacking. Development of specific target-based drugs for JMML remains a big challenge and represents a promising direction in this field. PMID:22162691

  1. The influence of subclonal resistance mutations on targeted cancer therapy

    PubMed Central

    Schmitt, Michael W.; Loeb, Lawrence A.; Salk, Jesse J.

    2016-01-01

    Clinical oncology is being revolutionized by the increasing use of molecularly targeted therapies. This paradigm holds great promise for improving cancer treatment; however, allocating specific therapies to the patients who are most likely to derive a durable benefit continues to represent a considerable challenge. It is becoming increasingly clear that cancers are characterized by extensive intratumour genetic heterogeneity, and that patients being considered for treatment with a targeted agent might, therefore, already possess resistance to the drug in a minority of cells. Indeed, multiple examples of pre-existing subclonal resistance mutations to various molecularly targeted agents have been described, which we review herein. Early detection of pre-existing or emerging drug resistance could enable more personalized use of targeted cancer therapy, as patients could be stratified to receive the therapies that are most likely to be effective. We consider how monitoring of drug resistance could be incorporated into clinical practice to optimize the use of targeted therapies in individual patients. PMID:26483300

  2. The quest for targeted therapy in fragile X syndrome.

    PubMed

    Zeidler, Shimriet; Hukema, Renate K; Willemsen, Rob

    2015-01-01

    Fragile X syndrome (FXS) is the most common, monogenetic cause of intellectual disability and autism-spectrum disorders. Although there is no effective therapy, greater understanding of disturbed neuronal pathways has introduced options for targeted therapy. But whereas many FXS phenotypes were improved in preclinical studies with drugs targeting these pathways in the FXS mouse model, attempts to translate these animal-model success stories into treatment of patients in clinical trials have been extremely disappointing. Complicating factors, particularly in animal studies, include mouse inbred strains, variability in functional studies between laboratories, publication bias and lack of reliable and objective primary outcome measures in both mice and patients. Possibly most important, however, is one factor that has been little explored: the complexity of the molecular imbalance in FXS and the need to simultaneously target several different disturbed pathways and different cellular compartments. New, well-conceived animal studies should generate more productive approaches in the quest for targeted therapy for FXS. PMID:26294013

  3. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  4. Neuroblastoma: Molecular Pathogenesis and Therapy

    PubMed Central

    Louis, Chrystal U; Shohet, Jason M

    2015-01-01

    Neuroblastoma is a developmental tumor of young children arising from the embryonic sympathoadrenal lineage of the neural crest. Currently neuroblastoma is the primary cause of death from pediatric cancer for children between the age of 1 and 5 years and accounts for approximately 13% of all pediatric cancer mortality. Its clinical impact and its unique biology have made this aggressive malignancy the focus of a large concerted translational research effort. New insights into tumor biology are driving the development of new classification schemas; novel targeted therapeutic approaches include small molecule inhibitors, epigenetic, non-coding RNA, and cell-based immunologic therapies. Recent insights regarding the pathogenesis and biology of neuroblastoma will be placed in context with the current understanding of tumor biology and tumor/host interactions. Systematic classification of patients coupled with therapeutic advances point to a future of improved clinical outcomes for this biologically distinct and highly aggressive pediatric malignancy. PMID:25386934

  5. SCF ubiquitin ligase targeted therapies

    PubMed Central

    Skaar, Jeffrey R.; Pagan, Julia K.; Pagano, Michele

    2015-01-01

    Summary The recent clinical successes of inhibitors of the proteasome for the treatment of cancer have highlighted the therapeutic potential of this protein degradation system. Proteasome inhibitors prevent the degradation of numerous proteins, so increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a large number of processes at the cellular and organismal levels, and their misregulation is implicated in many pathologies. SCF ligases are characterized by a high specificity for their substrates, so they represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This review will explore and discuss potential strategies to target SCF-mediated biology to treat human diseases. PMID:25394868

  6. Targeted photodynamic therapy--a promising strategy of tumor treatment.

    PubMed

    Bugaj, Andrzej M

    2011-07-01

    Targeted therapy is a new promising therapeutic strategy, created to overcome growing problems of contemporary medicine, such as drug toxicity and drug resistance. An emerging modality of this approach is targeted photodynamic therapy (TPDT) with the main aim of improving delivery of photosensitizer to cancer tissue and at the same time enhancing specificity and efficiency of PDT. Depending on the mechanism of targeting, we can divide the strategies of TPDT into "passive", "active" and "activatable", where in the latter case the photosensitizer is activated only in the target tissue. In this review, contemporary strategies of TPDT are described, including new innovative concepts, such as targeting assisted by peptides and aptamers, multifunctional nanoplatforms with navigation by magnetic field or "photodynamic molecular beacons" activatable by enzymes and nucleic acid. The imperative of introducing a new paradigm of PDT, focused on the concepts of heterogeneity and dynamic state of tumor, is also called for. PMID:21547329

  7. Ocular toxicities of MEK inhibitors and other targeted therapies.

    PubMed

    Stjepanovic, N; Velazquez-Martin, J P; Bedard, P L

    2016-06-01

    Many classes of anticancer therapy, including chemotherapeutic agents, hormonal and molecular targeted treatments, can produce ocular toxicity. Novel agents that target different cellular pathways have been related to a wide spectrum of ophthalmologic toxicities that can range from mild to severe, and include conjunctivitis, blurred vision, keratitis and optic neuritis, among others. Special attention has been drawn to the inhibitors of the MEK signaling pathway, due to their sine qua non ocular toxicity, defined as MEK retinopathy and described as symmetrical bilateral disease that develops in a time-dependent and dose-dependent manner. In this review, we discuss ophthalmologic toxicities associated with molecular targeted therapies, with particular focus on MEK retinopathy, including its nomenclature, incidence, symptoms and management. PMID:26951625

  8. Application of MINERVA Monte Carlo simulations to targeted radionuclide therapy.

    PubMed

    Descalle, Marie-Anne; Hartmann Siantar, Christine L; Dauffy, Lucile; Nigg, David W; Wemple, Charles A; Yuan, Aina; DeNardo, Gerald L

    2003-02-01

    Recent clinical results have demonstrated the promise of targeted radionuclide therapy for advanced cancer. As the success of this emerging form of radiation therapy grows, accurate treatment planning and radiation dose simulations are likely to become increasingly important. To address this need, we have initiated the development of a new, Monte Carlo transport-based treatment planning system for molecular targeted radiation therapy as part of the MINERVA system. The goal of the MINERVA dose calculation system is to provide 3-D Monte Carlo simulation-based dosimetry for radiation therapy, focusing on experimental and emerging applications. For molecular targeted radionuclide therapy applications, MINERVA calculates patient-specific radiation dose estimates using computed tomography to describe the patient anatomy, combined with a user-defined 3-D radiation source. This paper describes the validation of the 3-D Monte Carlo transport methods to be used in MINERVA for molecular targeted radionuclide dosimetry. It reports comparisons of MINERVA dose simulations with published absorbed fraction data for distributed, monoenergetic photon and electron sources, and for radioisotope photon emission. MINERVA simulations are generally within 2% of EGS4 results and 10% of MCNP results, but differ by up to 40% from the recommendations given in MIRD Pamphlets 3 and 8 for identical medium composition and density. For several representative source and target organs in the abdomen and thorax, specific absorbed fractions calculated with the MINERVA system are generally within 5% of those published in the revised MIRD Pamphlet 5 for 100 keV photons. However, results differ by up to 23% for the adrenal glands, the smallest of our target organs. Finally, we show examples of Monte Carlo simulations in a patient-like geometry for a source of uniform activity located in the kidney. PMID:12667310

  9. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  10. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    King, Gwendalyn D.; Curtin, James F.; Candolfi, Marianela; Kroeger, Kurt; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted, this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:16457645

  11. Targeted Gene Therapies: Tools, Applications, Optimization

    PubMed Central

    Humbert, Olivier; Davis, Luther; Maizels, Nancy

    2012-01-01

    Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways. PMID:22530743

  12. Peptide-targeted radionuclide therapy for melanoma.

    PubMed

    Miao, Yubin; Quinn, Thomas P

    2008-09-01

    Melanocortin-1 receptor (MC1-R) and melanin are two attractive melanoma-specific targets for peptide-targeted radionuclide therapy for melanoma. Radiolabeled peptides targeting MC1-R/melanin can selectively and specifically target cytotoxic radiation generated from therapeutic radionuclides to melanoma cells for cell killing, while sparing the normal tissues and organs. This review highlights the recent advances of peptide-targeted radionuclide therapy of melanoma targeting MC1-R and melanin. The promising therapeutic efficacies of 188Re-(Arg(11))CCMSH (188Re-[Cys(3,4,10), D-Phe(7),Arg(11)]-alpha-MSH(3-13)), 177Lu- and 212Pb-labeled DOTA-Re(Arg(11))CCMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[ReO-(Cys(3,4,10), D-Phe(7), Arg(11))]-alpha-MSH(3-13)) and 188Re-HYNIC-4B4 (188Re-hydrazinonicotinamide-Tyr-Glu-Arg-Lys-Phe-Trp-His-Gly-Arg-His) in preclinical melanoma-bearing models demonstrate an optimistic outlook for peptide-targeted radionuclide therapy for melanoma. Peptide-targeted radionuclide therapy for melanoma will likely contribute in an adjuvant setting, once the primary tumor has been surgically removed, to treat metastatic deposits and for treatment of end-stage disease. The lack of effective treatments for metastatic melanoma and end-stage disease underscores the necessity to develop and implement new treatment strategies, such as peptide-targeted radionuclide therapy. PMID:18387816

  13. Targeted Therapies in Sarcomas: Challenging the Challenge

    PubMed Central

    Martín Liberal, Juan; Lagares-Tena, Laura; Sáinz-Jaspeado, Miguel; Mateo-Lozano, Silvia; García del Muro, Xavier; Tirado, Oscar M.

    2012-01-01

    Sarcomas are a heterogeneous group of mesenchymal malignancies that very often lead to death. Nowadays, chemotherapy is the only available treatment for most sarcomas but there are few active drugs and clinical results still remain very poor. Thus, there is an imperious need to find new therapeutic alternatives in order to improve sarcoma patient's outcome. During the last years, there have been described a number of new molecular pathways that have allowed us to know more about cancer biology and tumorigenesis. Sarcomas are one of the tumors in which more advances have been made. Identification of specific chromosomal translocations, some important pathways characterization such as mTOR pathway or the insulin-like growth factor pathway, the stunning development in angiogenesis knowledge, and brand new agents like viruses have lead to the development of new therapeutic options with promising results. This paper makes an exhaustive review of preclinical and clinical evidence of the most recent targeted therapies in sarcomas and provides a future view of treatments that may lead to improve prognosis of patients affected with this disease. PMID:22701332

  14. Multimodality Therapy: Bone-Targeted Radioisotope Therapy of Prostate Cancer

    PubMed Central

    Tu, Shi-Ming; Lin, Sue-Hwa; Podoloff, Donald A.; Logothetis, Christopher J.

    2016-01-01

    Accumulating data suggest that bone-seeking radiopharmaceuticals can be used to treat prostate cancer bone metastasis and improve the clinical outcome of patients with advanced prostate cancer. It remains to be elucidated whether radiopharmaceuticals enhance the disruption of the onco-niche or the eradication of micrometastatic cells in the bone marrow. The purpose of this review is to investigate the role of bone-targeted radioisotope therapy in the setting of multimodality therapy for advanced prostate cancer. We examine available data and evaluate whether dose escalation, newer generations, or repeated dosing of radiopharmaceuticals enhance their antitumor effects and whether their combination with hormone ablative therapy, chemotherapy, or novel targeted therapy can improve clinical efficacy. PMID:20551894

  15. Molecular targets of luteolin in cancer

    PubMed Central

    2016-01-01

    Many food-derived phytochemical compounds and their derivatives represent a cornucopia of new anticancer compounds. Despite extensive study of luteolin, the literature has no information on the exact mechanisms or molecular targets through which it deters cancer progression. This review discusses existing data on luteolin’s anticancer activities and then offers possible explanations for and molecular targets of its cancer-preventive action. Luteolin prevents tumor development largely by inactivating several signals and transcription pathways essential for cancer cells. This review also offers insights into the molecular mechanisms and targets through which luteolin either prevents cancer or mediates cancer cell death. PMID:25714651

  16. Molecular therapy of colorectal cancer: progress and future directions.

    PubMed

    Weng, Wenhao; Feng, Junlan; Qin, Huanlong; Ma, Yanlei

    2015-02-01

    Colorectal cancer (CRC) remains one of the most common types of cancer and leading causes of cancer death worldwide. Although the introduction of cytotoxic drugs such as oxaliplatin, irinotecan and fluorouracil has improved the treatment of advanced CRC, the individual response to chemoradiotherapy varies tremendously from one patient to another. However, recent progress in CRC molecular therapies may provide new insight into the treatment of this disease. Currently, components of the EGFR, VEGF, Wnt and NF-kB pathways are the most important targets for CRC therapy. This review chronicles the development of molecular CRC therapies over the past few decades. We also provide an update on the current progress of research concerning the molecular pathways leading to CRC and discuss the possible implications for CRC therapy. PMID:24420815

  17. Targeting Herpetic Keratitis by Gene Therapy

    PubMed Central

    Elbadawy, Hossein Mostafa; Gailledrat, Marine; Desseaux, Carole; Ponzin, Diego; Ferrari, Stefano

    2012-01-01

    Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1) can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis. PMID:23326647

  18. Emerging targets for combination therapy in melanomas.

    PubMed

    Saito, Renata de Freitas; Tortelli, Tharcísio Citrângulo; Jacomassi, Mayara D'Auria; Otake, Andréia Hanada; Chammas, Roger

    2015-11-14

    Cutaneous melanomas are often difficult to treat when diagnosed in advanced stages. Melanoma cells adapt to survive in extreme environmental conditions and are among the tumors with larger genomic instability. Here we discuss some intrinsic and extrinsic mechanisms of resistance of melanoma cells to both conventional and target therapies, such as autophagy, adaptation to endoplasmic reticulum stress, metabolic reprogramming, mechanisms of tumor repopulation and the role of extracellular vesicles in this later phenomenon. These biological processes are potentially targetable and thus provide a platform for research and discovery of new drugs for combination therapy to manage melanoma patient treatment. PMID:26450371

  19. Strategies for targeted antimicrobial photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Verma, Sarika; Sallum, Ulysses; Zheng, Xiang; Hasan, Tayyaba

    2009-06-01

    The photophysics and mechanisms of cell killing by photodynamic therapy (PDT) have been extensively studied in recent years, and PDT has received regulatory approval for the treatment of a number of diseases worldwide. As the application of this treatment modality expands with regard to both anatomical sites and diseases, it is important to develop strategies for enhancing PDT outcomes. Our group has focused on developing targeting strategies to enhance PDT for both cancerous as well as anti-microbial applications. In this article, we will discuss photosensitizer modification and conjugation strategies for targeted antimicrobial photodynamic therapy.

  20. The molecular targets of approved treatments for pulmonary arterial hypertension

    PubMed Central

    Humbert, Marc; Ghofrani, Hossein-Ardeschir

    2016-01-01

    Until recently, three classes of medical therapy were available for the treatment of pulmonary arterial hypertension (PAH)—prostanoids, endothelin receptor antagonists and phosphodiesterase type 5 (PDE5) inhibitors. With the approval of the soluble guanylate cyclase stimulator riociguat, an additional drug class has become available targeting a distinct molecular target in the same pathway as PDE5 inhibitors. Treatment recommendations currently include the use of all four drug classes to treat PAH, but there is a lack of comparative data for these therapies. Therefore, an understanding of the mechanistic differences between these agents is critical when making treatment decisions. Combination therapy is often used to treat PAH and it is therefore important that physicians understand how the modes of action of these drugs may interact to work as complementary partners, or potentially with unwanted consequences. Furthermore, different patient phenotypes mean that patients respond differently to treatment; while a certain monotherapy may be adequate for some patients, for others it will be important to consider alternating or combining compounds with different molecular targets. This review describes how the four currently approved drug classes target the complex pathobiology of PAH and will consider the distinct target molecules of each drug class, their modes of action, and review the pivotal clinical trial data supporting their use. It will also discuss the rationale for combining drugs (or not) from the different classes, and review the clinical data from studies on combination therapy. PMID:26219978

  1. Molecular Approaches to Sarcoma Therapy

    PubMed Central

    Olsen, R. J.; Tarantolo, S. R.

    2002-01-01

    Soft tissue sarcomas comprise a heterogeneous group of aggressive tumors that have a relatively poor prognosis. Although conventional therapeutic regimens can effectively cytoreduce the overall tumor mass, they fail to consistently achieve a curative outcome. Alternative gene-based approaches that counteract the underlying neoplastic process by eliminating the clonal aberrations that potentiate malignant behavior have been proposed. As compared to the accumulation of gene alterations associated with epithelial carcinomas, sarcomas are frequently characterized by the unique presence of a single chromosomal translocation in each histological subtype. Similar to the Philadelphia chromosome associated with CML, these clonal abnormalities result in the fusion of two independent unrelated genes to generate a unique chimeric protein that displays aberrant activity believed to initiate cellular transformation. Secondary gene mutations may provide an additional growth advantage that further contributes to malignant progression. The recent clinical success of the tyrosine kinase inhibitor, STI571, suggests that therapeutic approaches specifically directed against essential survival factors in sarcoma cells may be effective. This review summarizes published approaches targeting a specific molecular mechanism associated with sarcomagenesis. The strategy and significance of published translational studies in six distinct areas are presented. These include: (1) the disruption of chimeric transcription factor activity; (2) inhibition of growth stimulatory post-translational modifications; (3) restoration of tumor suppressor function; (4) interference with angiogenesis; (5) induction of apoptotic pathways; and (6) introduction of toxic gene products. The potential for improving outcomes in sarcoma patients and the conceptual obstacles to be overcome are discussed. PMID:18521343

  2. Mitochondria: a target for cancer therapy

    PubMed Central

    Armstrong, Jeffrey S

    2005-01-01

    Mitochondria, the cells powerhouses, are essential for maintaining cell life, and they also play a major role in regulating cell death, which occurs upon permeabilization of their membranes. Once mitochondrial membrane permeabilization (MMP) occurs, cells die either by apoptosis or necrosis. Key factors regulating MMP include calcium, the cellular redox status (including levels of reactive oxygen species) and the mobilization and targeting to mitochondria of Bcl-2 family members. Contemporary approaches to targeting mitochondria in cancer therapy use strategies that either modulate the action of Bcl-2 family members at the mitochondrial outer membrane or use specific agents that target the mitochondrial inner membrane and the mitochondrial permeability transition (PT) pore. The aim of this review is to describe the major mechanisms regulating MMP and to discuss, with examples, mitochondrial targeting strategies for potential use in cancer therapy. PMID:16331284

  3. Lung cancer biomarkers, targeted therapies and clinical assays

    PubMed Central

    Ersek, Jennifer L.; Kim, Edward S.

    2015-01-01

    Until recently, the majority of genomic cancer research has been in discovery and validation; however, as our knowledge of tumor molecular profiling improves, the idea of genomic application in the clinic becomes increasingly tangible, paralleled with the drug development of newer targeted therapies. A number of profiling methodologies exist to identify biomarkers found within the patient (germ-line DNA) and tumor (somatic DNA). Subsequently, commercially available clinical assays to test for both germ-line and somatic alterations that are prognostic and/or predictive of disease outcome, toxicity or treatment response have significantly increased. This review aims to summarize clinically relevant cancer biomarkers that serve as targets for therapy and their potential relationship to lung cancer. In order to realize the full potential of genomic cancer medicine, it is imperative that clinicians understand these intricate molecular pathways, the therapeutic implication of mutations within these pathways, and the availability of clinical assays to identify such biomarkers. PMID:26629419

  4. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies

    PubMed Central

    Agathangelidis, Andreas; Darzentas, Nikos; Hadzidimitriou, Anastasia; Brochet, Xavier; Murray, Fiona; Yan, Xiao-Jie; Davis, Zadie; van Gastel-Mol, Ellen J.; Tresoldi, Cristina; Chu, Charles C.; Cahill, Nicola; Giudicelli, Veronique; Tichy, Boris; Pedersen, Lone Bredo; Foroni, Letizia; Bonello, Lisa; Janus, Agnieszka; Smedby, Karin; Anagnostopoulos, Achilles; Merle-Beral, Helene; Laoutaris, Nikolaos; Juliusson, Gunnar; di Celle, Paola Francia; Pospisilova, Sarka; Jurlander, Jesper; Geisler, Christian; Tsaftaris, Athanasios; Lefranc, Marie-Paule; Langerak, Anton W.; Oscier, David Graham; Chiorazzi, Nicholas; Belessi, Chrysoula; Davi, Frederic; Rosenquist, Richard; Stamatopoulos, Kostas

    2012-01-01

    Mounting evidence indicates that grouping of chronic lymphocytic leukemia (CLL) into distinct subsets with stereotyped BCRs is functionally and prognostically relevant. However, several issues need revisiting, including the criteria for identification of BCR stereotypy and its actual frequency as well as the identification of “CLL-biased” features in BCR Ig stereotypes. To this end, we examined 7596 Ig VH (IGHV-IGHD-IGHJ) sequences from 7424 CLL patients, 3 times the size of the largest published series, with an updated version of our purpose-built clustering algorithm. We document that CLL may be subdivided into 2 distinct categories: one with stereotyped and the other with nonstereotyped BCRs, at an approximate ratio of 1:2, and provide evidence suggesting a different ontogeny for these 2 categories. We also show that subset-defining sequence patterns in CLL differ from those underlying BCR stereotypy in other B-cell malignancies. Notably, 19 major subsets contained from 20 to 213 sequences each, collectively accounting for 943 sequences or one-eighth of the cohort. Hence, this compartmentalized examination of VH sequences may pave the way toward a molecular classification of CLL with implications for targeted therapeutic interventions, applicable to a significant number of patients assigned to the same subset. PMID:22415752

  5. Molecular genetics and targeted therapeutics in biliary tract carcinoma

    PubMed Central

    Marks, Eric I; Yee, Nelson S

    2016-01-01

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract. PMID:26819503

  6. A monomeric photosensitizer for targeted cancer therapy.

    PubMed

    Liang, Ruizheng; Ma, Lina; Zhang, Lele; Li, Chunyang; Liu, Wendi; Wei, Min; Yan, Dan; Evans, David G; Duan, Xue

    2014-12-11

    A targeted photosensitizer used in photodynamic therapy (PDT) was fabricated by incorporation of zinc phthalocyanine (ZnPc) and folic acid (FA) into polyvinylpyrrolidone (PVP) micelles, which exhibits excellent anticancer performance revealed by both in vitro studies and in vivo tests. PMID:25327438

  7. New PARP targets for cancer therapy

    PubMed Central

    Vyas, Sejal; Chang, Paul

    2015-01-01

    Poly(ADP-ribose) polymerases (PARPs) modify target proteins post-translationally with poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR) using NAD+ as substrate. The best-studied PARPs generate PAR modifications and include PARP1 and the tankyrase PARP5a, both of which are targets for cancer therapy with inhibitors in either clinical trials or preclinical development. There are 15 additional PARPs, the majority of which modify proteins with MAR, and their biology is less well understood. Recent data identify potentially cancer relevant functions for these PARPs, indicating that we need to understand more about these PARPs in order to target them effectively. PMID:24898058

  8. Advances in targeted therapies and new promising targets in esophageal cancer

    PubMed Central

    Belkhiri, Abbes; El-Rifai, Wael

    2015-01-01

    Esophageal cancer, comprising squamous carcinoma and adenocarcinoma, is a leading cause of cancer-related death in the world. Notably, the incidence of esophageal adenocarcinoma has increased at an alarming rate in the Western world. Unfortunately, the standard first-line chemo-radiotherapeutic approaches are toxic and of limited efficacy in the treatment of a significant number of cancer patients. The molecular analysis of cancer cells has uncovered key genetic and epigenetic alterations underlying the development and progression of tumors. These discoveries have paved the way for the emergence of targeted therapy approaches. This review will highlight recent progress in the development of targeted therapies in esophageal cancer. This will include a review of drugs targeting receptor tyrosine kinases and other kinases in esophageal cancer. Additional studies will be required to develop a rational integration of these targeted agents with respect to histologic types of esophageal cancer and the optimal selection of cancer patients who would most likely benefit from targeted therapy. Identification of AURKA and AXL as key molecular players in esophageal tumorigenesis and drug resistance strongly justifies the evaluation of the available drugs against these targets in clinical trials. PMID:25593196

  9. Conotoxins: Molecular and Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Lewis, Richard J.

    Marine molluscs known as cone snails produce beautiful shells and a complex array of over 50,000 venom peptides evolved for prey capture and defence. Many of these peptides selectively modulate ion channels and transporters, making them a valuable source of new ligands for studying the role these targets play in normal and disease physiology. A number of conopeptides reduce pain in animal models, and several are now in pre-clinical and clinical development for the treatment of severe pain often associated with diseases such as cancer. Less than 1% of cone snail venom peptides are pharmacologically characterised.

  10. Overcoming Resistance to Targeted Therapies in Cancer.

    PubMed

    Redmond, Keara L; Papafili, Anastasia; Lawler, Mark; Van Schaeybroeck, Sandra

    2015-12-01

    The recent discovery of oncogenic drivers and subsequent development of novel targeted strategies has significantly added to the therapeutic armamentarium of anti-cancer therapies. Targeting BCR-ABL in chronic myeloid leukemia (CML) or HER2 in breast cancer has led to practice-changing clinical benefits, while promising therapeutic responses have been achieved by precision medicine approaches in EGFR mutant lung cancer, colorectal cancer and BRAF mutant melanoma. However, although initial therapeutic responses to targeted therapies can be substantial, many patients will develop disease progression within 6-12 months. An increasing application of powerful omics-based approaches and improving preclinical models have enabled the rapid identification of secondary resistance mechanisms. Herein, we discuss how this knowledge has translated into rational, novel treatment strategies for relapsed patients in genomically selected cancer populations. PMID:26615134