Science.gov

Sample records for molecule curcumin analog

  1. Targeting JNK by a New Curcumin Analog to Inhibit NF-kB-Mediated Expression of Cell Adhesion Molecules Attenuates Renal Macrophage Infiltration and Injury in Diabetic Mice

    PubMed Central

    Cai, Lu; Ren, Luqing; Tang, Longguang; Wang, Jingying; Zhao, Yunjie; Wang, Yonggang; Liu, Quan; Li, Xiaokun; Liang, Guang

    2013-01-01

    Macrophage infiltration contributes to the pathogenesis of diabetic renal injury. However, the regulatory mechanisms between macrophage infiltration and epithelial cell activation are still unclear. Our previous study found that C66, a novel curcumin analog, was able to inhibit inflammatory cytokine expression in vitro and in vivo. This study further elucidated whether C66 can prevent glucose-induced renal epithelial activation and inflammatory macrophage infiltration by a MAPK/NF-κB medicated mechanism. Our data show that pretreatment with C66 not only significantly reduced high glucose (HG)-induced over-expressions of VCAM-1, ICAM-1 and MCP-1, but also remarkably inhibited NF-κB activation, MAPKs phosphorylation, and subsequently macrophage adhesion in renal epithelial NRK-52E cells. Furthermore, we find that MAPKs, especially JNK, play important roles in HG-induced NF-κB activation, which regulates the over-expression of adhesion molecules in HG-stimulated NRK-52E cells. A molecular docking predicted that C66 may target JNK2, which leads to its anti-inflammatory actions. In vivo, administration of C66 or JNK special inhibitor SP600125 at 5 mg/kg markedly decreased diabetes-induced renal adhesion molecule expression, NF-κB activation, inflammatory cell infiltration, and pathological indexes in the kidneys of diabetic mice. These findings provide a perspective on the renoprotective effects of C66 in diabetes, and outline a novel therapeutic strategy of JNK inhibition for the treatment of diabetic nephropathy. PMID:24260158

  2. Current prospects of synthetic curcumin analogs and chalcone derivatives against mycobacterium tuberculosis.

    PubMed

    Bukhari, Syed Nasir Abbas; Franzblau, Scott G; Jantan, Ibrahim; Jasamai, Malina

    2013-11-01

    Tuberculosis, caused by Mycobacterium tuberculosis, is amongst the foremost infectious diseases. Treatment of tuberculosis is a complex process due to various factors including a patient's inability to persevere with a combined treatment regimen, the difficulty in eradicating the infection in immune-suppressed patients, and multidrug resistance (MDR). Extensive research circumscribing molecules to counteract this disease has led to the identification of many inhibitory small molecules. Among these are chalcone derivatives along with curcumin analogs. In this review article, we summarize the reported literature regarding anti tubercular activity of chalcone derivatives and synthetic curcumin analogs. Our goal is to provide an analysis of research to date in order to facilitate the synthesis of superior antitubercular chalcone derivatives and curcumin analogs. PMID:23305394

  3. Eliminating the Heart from the Curcumin Molecule: Monocarbonyl Curcumin Mimics (MACs)

    PubMed Central

    Shetty, Dinesh; Kim, Yong Joon; Shim, Hyunsuk; Snyder, James P.

    2015-01-01

    Curcumin is a natural product with several thousand years of heritage. Its traditional Asian application to human ailments has been subjected in recent decades to worldwide pharmacological, biochemical and clinical investigations. Curcumin’s Achilles heel lies in its poor aqueous solubility and rapid degradation at pH ~ 7.4. Researchers have sought to unlock curcumin’s assets by chemical manipulation. One class of molecules under scrutiny are the monocarbonyl analogs of curcumin (MACs). A thousand plus such agents have been created and tested primarily against cancer and inflammation. The outcome is clear. In vitro, MACs furnish a 10–20 fold potency gain vs. curcumin for numerous cancer cell lines and cellular proteins. Similarly, MACs have successfully demonstrated better pharmacokinetic (PK) profiles in mice and greater tumor regression in cancer xenografts in vivo than curcumin. The compounds reveal limited toxicity as measured by murine weight gain and histopathological assessment. To our knowledge, MAC members have not yet been monitored in larger animals or humans. However, Phase 1 clinical trials are certainly on the horizon. The present review focuses on the large and evolving body of work in cancer and inflammation, but also covers MAC structural diversity and early discovery for treatment of bacteria, tuberculosis, Alzheimer’s disease and malaria. PMID:25547726

  4. The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity

    PubMed Central

    2010-01-01

    Background We characterized the biologic effects of a novel small molecule STAT3 pathway inhibitor that is derived from the natural product curcumin. We hypothesized this lead compound would specifically inhibit the STAT3 signaling pathway to induce apoptosis in melanoma cells. Results FLLL32 specifically reduced STAT3 phosphorylation at Tyr705 (pSTAT3) and induced apoptosis at micromolar amounts in human melanoma cell lines and primary melanoma cultures as determined by annexin V/propidium iodide staining and immunoblot analysis. FLLL32 treatment reduced expression of STAT3-target genes, induced caspase-dependent apoptosis, and reduced mitochondrial membrane potential. FLLL32 displayed specificity for STAT3 over other homologous STAT proteins. In contrast to other STAT3 pathway inhibitors (WP1066, JSI-124, Stattic), FLLL32 did not abrogate IFN-γ-induced pSTAT1 or downstream STAT1-mediated gene expression as determined by Real Time PCR. In addition, FLLL32 did not adversely affect the function or viability of immune cells from normal donors. In peripheral blood mononuclear cells (PBMCs), FLLL32 inhibited IL-6-induced pSTAT3 but did not reduce signaling in response to immunostimulatory cytokines (IFN-γ, IL 2). Treatment of PBMCs or natural killer (NK) cells with FLLL32 also did not decrease viability or granzyme b and IFN-γ production when cultured with K562 targets as compared to vehicle (DMSO). Conclusions These data suggest that FLLL32 represents a lead compound that could serve as a platform for further optimization to develop improved STAT3 specific inhibitors for melanoma therapy. PMID:20576164

  5. Experimental evidence for curcumin and its analogs for management of diabetes mellitus and its associated complications.

    PubMed

    Rivera-Mancía, Susana; Lozada-García, María Concepción; Pedraza-Chaverri, José

    2015-06-01

    Diabetes mellitus is a serious world health problem and one of the most studied diseases; a major concern about its treatment is that β-cell mass and functionality is hard to restore. In addition, it is frequently associated with severe complications, such as diabetic nephropathy and cardiomyopathy. The anti-inflammatory, anti-oxidative and anti-apoptotic properties of curcumin have made it a promising molecule for the treatment of this pathology; however, its solubility and bioavailability problems are still the subject of multiple studies. To cope with those difficulties, several approaches have been evaluated, such as the development of pharmaceutical formulations and curcumin analogs. This review discusses some of the studied therapeutic targets for curcumin in diabetes as well as the structural characteristics and targets of its analogs. The shortening of the central seven-carbon chain of curcumin has given rise to compounds without glucose-lowering effects but potentially useful for the treatment of diabetes complications; whereas preserving this chain retains the glucose-lowering properties. Most of the analogs discussed here have been recently synthesized and tested in animal models of type 1 diabetes; more studies in models of type 2 diabetes are needed. PMID:25769841

  6. Fluorescent difluoroboron-curcumin analogs: An investigation of the electronic structures and photophysical properties

    NASA Astrophysics Data System (ADS)

    Margar, Sachin N.; Rhyman, Lydia; Ramasami, Ponnadurai; Sekar, Nagaiyan

    2016-01-01

    A comprehensive approach based on the density functional theory method was used to elicit the molecular and photophysical properties of four difluoroboron analogs of curcumin. The ground state geometry optimization, vertical absorption and the first excited state optimization were carried out using the B3LYP/6-31G(d) method. The geometry of the molecules remains planar both in the ground and excited states. There is a good correlation between the observed absorption (maximum deviation of 8%) and emission wavelength (maximum deviation of 22%) with the computed values. Different polarizability parameters were computed and compared with urea. The values obtained for the difluoroboron dyes are larger than those of urea, suggesting considerable charge transfer characteristics of the first excited state. This is further supported by the significant difference in the dipole moment. The outcome of this work should be useful towards the industrial applications of these curcumin-based dyes.

  7. Fluorescent difluoroboron-curcumin analogs: An investigation of the electronic structures and photophysical properties.

    PubMed

    Margar, Sachin N; Rhyman, Lydia; Ramasami, Ponnadurai; Sekar, Nagaiyan

    2016-01-01

    A comprehensive approach based on the density functional theory method was used to elicit the molecular and photophysical properties of four difluoroboron analogs of curcumin. The ground state geometry optimization, vertical absorption and the first excited state optimization were carried out using the B3LYP/6-31G(d) method. The geometry of the molecules remains planar both in the ground and excited states. There is a good correlation between the observed absorption (maximum deviation of 8%) and emission wavelength (maximum deviation of 22%) with the computed values. Different polarizability parameters were computed and compared with urea. The values obtained for the difluoroboron dyes are larger than those of urea, suggesting considerable charge transfer characteristics of the first excited state. This is further supported by the significant difference in the dipole moment. The outcome of this work should be useful towards the industrial applications of these curcumin-based dyes. PMID:26219019

  8. Effect of curcumin analogs onα-synuclein aggregation and cytotoxicity

    PubMed Central

    Jha, Narendra Nath; Ghosh, Dhiman; Das, Subhadeep; Anoop, Arunagiri; Jacob, Reeba S.; Singh, Pradeep K.; Ayyagari, Narasimham; Namboothiri, Irishi N. N.; Maji, Samir K.

    2016-01-01

    Alpha-synuclein (α-Syn) aggregation into oligomers and fibrils is associated with dopaminergic neuron loss occurring in Parkinson’s disease (PD) pathogenesis. Compounds that modulate α-Syn aggregation and interact with preformed fibrils/oligomers and convert them to less toxic species could have promising applications in the drug development efforts against PD. Curcumin is one of the Asian food ingredient which showed promising role as therapeutic agent against many neurological disorders including PD. However, the instability and low solubility makes it less attractive for the drug development. In this work, we selected various curcumin analogs and studied their toxicity, stability and efficacy to interact with different α-Syn species and modulation of their toxicity. We found a subset of curcumin analogs with higher stability and showed that curcumin and its various analogs interact with preformed fibrils and oligomers and accelerate α-Syn aggregation to produce morphologically different amyloid fibrils in vitro. Furthermore, these curcumin analogs showed differential binding with the preformed α-Syn aggregates. The present data suggest the potential role of curcumin analogs in modulating α-Syn aggregation. PMID:27338805

  9. Curcumin analog L3 alleviates diabetic atherosclerosis by multiple effects.

    PubMed

    Zheng, Bin; Yang, Liu; Wen, Caixia; Huang, Xiuwang; Xu, Chenxia; Lee, Kuan-Han; Xu, Jianhua

    2016-03-15

    L3, an analog of curcumin, is a compound isolated from a traditional Chinese medicine Turmeric. In this paper, we aims to explore the efficacy of L3 on diabetic atherosclerosis and the related mechanism. The effect of L3 was studied on glucose and lipid metabolism, antioxidant status, atherosclerosis-related indexes and pathological changes of main organs in the mice model of diabetes induced by streptozotocin and high-fat diet. The results showed that L3 treatment could meliorate dyslipidemia and hyperglycemia, reduce oxidative stress, enhance the activity of antioxidases, increase the nitric oxide level in plasma and aortic arch, decrease the production of reactive oxygen species in pancreas and lectin-like oxidized low-density lipoprotein receptor-1 expression in aortic arch, and meliorate the fatty and atherosclerotic degeneration in aortic arch, thereby preventing the development of diabetes and its complications. These results suggested that L3 can alleviate the diabetic atherosclerosis by multiple effects. This study provided scientific basis for the further research and clinical application of L3. PMID:26852952

  10. Inhibition of HIV-1 by curcumin A, a novel curcumin analog

    PubMed Central

    Kumari, Namita; Kulkarni, Amol A; Lin, Xionghao; McLean, Charlee; Ammosova, Tatiana; Ivanov, Andrey; Hipolito, Maria; Nekhai, Sergei; Nwulia, Evaristus

    2015-01-01

    Despite the remarkable success of combination antiretroviral therapy at curtailing HIV progression, emergence of drug-resistant viruses, chronic low-grade inflammation, and adverse effects of combination antiretroviral therapy treatments, including metabolic disorders collectively present the impetus for development of newer and safer antiretroviral drugs. Curcumin, a phytochemical compound, was previously reported to have some in vitro anti-HIV and anti-inflammatory activities, but poor bioavailability has limited its clinical utility. To circumvent the bioavailability problem, we derivatized curcumin to sustain retro-aldol decomposition at physiological pH. The lead compound derived, curcumin A, showed increased stability, especially in murine serum where it was stable for up to 25 hours, as compared to curcumin that only had a half-life of 10 hours. Both curcumin and curcumin A showed similar inhibition of one round of HIV-1 infection in cultured lymphoblastoid (also called CEM) T cells (IC50=0.7 μM). But in primary peripheral blood mononuclear cells, curcumin A inhibited HIV-1 more potently (IC50=2 μM) compared to curcumin (IC50=12 μM). Analysis of specific steps of HIV-1 replication showed that curcumin A inhibited HIV-1 reverse transcription, but had no effect on HIV-1 long terminal repeat basal or Tat-induced transcription, or NF-κB-driven transcription at low concentrations that affected reverse transcription. Finally, we showed curcumin A induced expression of HO-1 and decreased cell cycle progression of T cells. Our findings thus indicate that altering the core structure of curcumin could yield more stable compounds with potent antiretroviral and anti-inflammatory activities. PMID:26366056

  11. Inhibition of HIV-1 by curcumin A, a novel curcumin analog.

    PubMed

    Kumari, Namita; Kulkarni, Amol A; Lin, Xionghao; McLean, Charlee; Ammosova, Tatiana; Ivanov, Andrey; Hipolito, Maria; Nekhai, Sergei; Nwulia, Evaristus

    2015-01-01

    Despite the remarkable success of combination antiretroviral therapy at curtailing HIV progression, emergence of drug-resistant viruses, chronic low-grade inflammation, and adverse effects of combination antiretroviral therapy treatments, including metabolic disorders collectively present the impetus for development of newer and safer antiretroviral drugs. Curcumin, a phytochemical compound, was previously reported to have some in vitro anti-HIV and anti-inflammatory activities, but poor bioavailability has limited its clinical utility. To circumvent the bioavailability problem, we derivatized curcumin to sustain retro-aldol decomposition at physiological pH. The lead compound derived, curcumin A, showed increased stability, especially in murine serum where it was stable for up to 25 hours, as compared to curcumin that only had a half-life of 10 hours. Both curcumin and curcumin A showed similar inhibition of one round of HIV-1 infection in cultured lymphoblastoid (also called CEM) T cells (IC50=0.7 μM). But in primary peripheral blood mononuclear cells, curcumin A inhibited HIV-1 more potently (IC50=2 μM) compared to curcumin (IC50=12 μM). Analysis of specific steps of HIV-1 replication showed that curcumin A inhibited HIV-1 reverse transcription, but had no effect on HIV-1 long terminal repeat basal or Tat-induced transcription, or NF-κB-driven transcription at low concentrations that affected reverse transcription. Finally, we showed curcumin A induced expression of HO-1 and decreased cell cycle progression of T cells. Our findings thus indicate that altering the core structure of curcumin could yield more stable compounds with potent antiretroviral and anti-inflammatory activities. PMID:26366056

  12. Synthesis and Cytotoxic Evaluation of Monocarbonyl Analogs of Curcumin as Potential Anti‐Tumor Agents

    PubMed Central

    Pan, Zheer; Chen, Chengwei; Zhou, Yeli; Xu, Feng

    2016-01-01

    Abstract Preclinical Research A series of mono‐carbonyl curcumin analogs with different substituents at the 4/4’‐position of the phenyl group were synthesized and screened for in vitro cytotoxicity against a panel of human cancer cell lines using a methyl thiazolyl tetrazolium assay. Several of the curcumin analogs, especially B114, exhibited a wide‐spectrum of anti‐tumor properties in all tested cell lines, indicating their potential in as anti‐cancer lead compounds. Further toxicity testing in the NRK‐52E kidney cell line revealed that the analogs A111, A113, and B114 had comparable or higher safety than curcumin. These data suggested that the introduction of appropriate substituents in the 4/4’‐positions could be a promising approach for curcumin‐based drug design. Drug Dev Res 77 : 43–49, 2016. © 2016 Wiley Periodicals, Inc. PMID:26846154

  13. Perspectives on New Synthetic Curcumin Analogs and their Potential Anticancer Properties

    PubMed Central

    Vyas, Alok; Dandawate, Prasad; Padhye, Subhash; Ahmad, Aamir; Sarkar, Fazlul

    2013-01-01

    Curcumin is the active component of dried rhizome of Curcuma longa, a perennial herb belonging to ginger family, cultivated extensively in south and southeastern tropical Asia. It is widely consumed in the Indian subcontinent, south Asia and Japan in traditional food recipes. Extensive research over last few decades has shown that curcumin is a potent anti-inflammatory agent with powerful therapeutic potential against a variety of cancers. It suppresses proliferation and metastasis of human tumors through regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases and other enzymes. It induces apoptotic cell death and also inhibits proliferation of cancer cells by cell cycle arrest. Pharmacokinetic data has shown that curcumin undergoes rapid metabolism leading to glucuronidation and sulfation in the liver and excretion in the feces, which accounts for its poor systemic bioavailability. The compound has, therefore, been formulated and administered using different drug delivery systems such as liposomes, micelles, polysaccharides, phospholipid complexes and nanoparticles that can overcome the limitation of bioavailability to some extent. Attempts to avoid rapid metabolism of curcumin until now have been met with limited success. This has prompted researchers to look for new synthetic curcumin analogs in order to overcome the drawbacks of limited bioavailability and rapid metabolism, and gain efficacy with reduced toxicity. In this review we provide a summarized account of novel synthetic curcumin formulations and analogs, and the recent progress in the field of cancer prevention and treatment. PMID:23116312

  14. Mosquitocidal Properties of Natural Product Compounds Isolated From Chinese Herbs and Synthetic Analogs of Curcumin

    PubMed Central

    ANSTROM, DAVID M.; ZHOU, XIA; KALK, CODY N.; SONG, BAOAN; LAN, QUE

    2012-01-01

    Because of resistance to current insecticides and to environmental, health, and regulatory concerns, naturally occurring compounds and their derivatives are of increasing interest for the development of new insecticidal compounds against vectors of disease-causing pathogens. Fifty-eight compounds, either extracted and purified from plants native to China or synthetic analogs of curcumin, were evaluated for both their larvicidal activity against Aedes aegypti (L.) and their ability to inhibit binding of cholesterol to Ae. aegypti sterol carrier protein-2 in vitro. Of the compounds tested, curcumin analogs seem especially promising in that of 24 compounds tested five were inhibitors of Ae. aegyptisterol carrier protein-2 with EC50 values ranging from 0.65 to 62.87 μM, and three curcumin analogs exhibited larvicidal activity against fourth instar Ae. aegypti larvae with LC50 values ranging from 17.29 to 27.90 μM. Adding to the attractiveness of synthetic curcumin analogs is the relative ease of synthesizing a large diversity of compounds; only a small fraction of such diversity has been sampled in this study. PMID:22493854

  15. Syntheses and Cytotoxic Properties of the Curcumin Analogs 2,6-Bis(benzylidene)-4-phenylcyclohexanones

    PubMed Central

    Davis, Ryan; Das, Umashankar; Mackay, Hilary; Brown, Toni; Mooberry, Susan L.; Dimmock, Jonathan R.; Lee, Moses; Pati, Hari

    2012-01-01

    Fifteen curcumin analogs were synthesized and tested for in-vitro cytotoxicity towards B16 and L1210 murine cancer cell lines using an MTT assay. Significant activity was discovered for two analogs: 8 (B16 IC50 = 1.6 μM; L1210 IC50 = 0.35 μM) and 9 (B16 IC50 = 0.51 μM; L1210 IC50 = 1.2 μM). Several other analogs exhibited notable cytotoxicity. The data from quantitative structure-activity relationships suggest that large electron-withdrawing substituents placed in the meta-position of the arylidene aryl rings enhance potencies. Compounds 8 and 9 were found using a cell-based assay to have virtually no effects on microtubules at concentrations up to 40 μM. These results suggest that tubulin inhibition is not the principal mechanism by which the curcumin analogs act. PMID:18574852

  16. Interaction of metallic clusters with biologically active curcumin molecules

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev K.; He, Haiying; Liu, Chunhui; Dutta, Ranu; Pandey, Ravindra

    2015-09-01

    We have investigated the interaction of subnano metallic Gd and Au clusters with curcumin, an important biomolecule having pharmacological activity. Gd clusters show different site preference to curcumin and much stronger interaction strength, in support of the successful synthesis of highly stable curcumin-coated Gd nanoparticles as reported recently. It can be attributed to significant charge transfer from the Gd cluster to curcumin together with a relatively strong hybridization of the Gd df-orbitals with curcumin p-orbitals. These results suggest that Gd nanoparticles can effectively be used as delivery carriers for curcumin at the cellular level for therapy and medical imaging applications.

  17. Monocarbonyl analogs of curcumin inhibit growth of antibiotic sensitive and resistant strains of Mycobacterium tuberculosis

    PubMed Central

    Baldwin, Patrick R.; Reeves, Analise Z.; Powell, Kimberly R.; Napier, Ruth J.; Swimm, Alyson I.; Sun, Aiming; Giesler, Kyle; Bommarius, Bettina; Shinnick, Thomas M.; Snyder, James P.; Liotta, Dennis C.; Kalman, Daniel

    2016-01-01

    Tuberculosis (TB) is a major public health concern worldwide with over 2 billion people currently infected. The rise of strains of Mycobacterium tuberculosis (Mtb) that are resistant to some or all first and second line antibiotics, including multidrug-resistant (MDR), extensively drug resistant (XDR) and totally drug resistant (TDR) strains, is of particular concern and new anti-TB drugs are urgently needed. Curcumin, a natural product used in traditional medicine in India, exhibits anti-microbial activity that includes Mtb, however it is relatively unstable and suffers from poor bioavailability. To improve activity and bioavailability, mono-carbonyl analogs of curcumin were synthesized and screened for their capacity to inhibit the growth of Mtb and the related Mycobacterium marinum (Mm). Using disk diffusion and liquid culture assays, we found several analogs that inhibit in vitro growth of Mm and Mtb, including rifampicin-resistant strains. Structure activity analysis of the analogs indicated that Michael acceptor properties are critical for inhibitory activity. However, no synergistic effects were evident between the monocarbonyl analogs and rifampicin on inhibiting growth. Together, these data provide a structural basis for the development of analogs of curcumin with pronounced anti-mycobacterial activity and provide a roadmap to develop additional structural analogs that exhibit more favorable interactions with other anti-TB drugs. PMID:25618016

  18. Curcumin

    PubMed Central

    Chaudhari, Soham P.; Tam, Alison Y.; Barr, Jason A.

    2015-01-01

    Background: Herbal medicines are used by thousands of patients all over the world. However, they can often cause adverse effects. Turmeric, made from the root of Curcuma, longa, is a yellow spice used throughout South Asia for its flavor as well as for its medicinal properties. Curcumin is the main ingredient in turmeric. It is known for downregulating the expression of various proinflammatory cytokines and has been studied for its antiinflammatory mechanism. However, it has also been reported to cause contact dermatitis. Kumkum, a turmeric-based powder applied by Hindu women on their foreheads, has also been found as an allergen. Objective: The authors have reviewed the anti-inflammatory properties of curcumin and reports of contact dermatitis to understand the possible harmful effects of this commonly used spice, while also examining its beneficial role in dermatologic conditions. They aim to increase awareness regarding this common herb and its prevalent use not only in South Asia, but also in North America. Methods: A thorough literature search of the PubMed database was conducted to identify studies that examined the antiinflammatory role of curcumin and its role in contact dermatitis. Results: Eleven studies demonstrate that although curcumin does have antiinflammatory properties, it is an allergen. Conclusion: Curcumin has many valuable properties that can be exploited to treat dermatologic conditions. However, patients and dermatologists must be keen of possible allergic reactions. Further studies are needed to completely understand this widely used herb and its efficacy in dermatology. PMID:26705440

  19. Structurally Modified Curcumin Analogs Inhibit STAT3 Phosphorylation and Promote Apoptosis of Human Renal Cell Carcinoma and Melanoma Cell Lines

    PubMed Central

    Bill, Matthew A.; Nicholas, Courtney; Mace, Thomas A.; Etter, Jonathan P.; Li, Chenglong; Schwartz, Eric B.; Fuchs, James R.; Young, Gregory S.; Lin, Li; Lin, Jiayuh; He, Lei; Phelps, Mitch; Li, Pui-Kai; Lesinski, Gregory B.

    2012-01-01

    The Janus kinase-2 (Jak2)-signal transducer and activator of transcription-3 (STAT3) pathway is critical for promoting an oncogenic and metastatic phenotype in several types of cancer including renal cell carcinoma (RCC) and melanoma. This study describes two small molecule inhibitors of the Jak2-STAT3 pathway, FLLL32 and its more soluble analog, FLLL62. These compounds are structurally distinct curcumin analogs that bind selectively to the SH2 domain of STAT3 to inhibit its phosphorylation and dimerization. We hypothesized that FLLL32 and FLLL62 would induce apoptosis in RCC and melanoma cells and display specificity for the Jak2-STAT3 pathway. FLLL32 and FLLL62 could inhibit STAT3 dimerization in vitro. These compounds reduced basal STAT3 phosphorylation (pSTAT3), and induced apoptosis in four separate human RCC cell lines and in human melanoma cell lines as determined by Annexin V/PI staining. Apoptosis was also confirmed by immunoblot analysis of caspase-3 processing and PARP cleavage. Pre-treatment of RCC and melanoma cell lines with FLLL32/62 did not inhibit IFN-γ-induced pSTAT1. In contrast to FLLL32, curcumin and FLLL62 reduced downstream STAT1-mediated gene expression of IRF1 as determined by Real Time PCR. FLLL32 and FLLL62 significantly reduced secretion of VEGF from RCC cell lines in a dose-dependent manner as determined by ELISA. Finally, each of these compounds inhibited in vitro generation of myeloid-derived suppressor cells. These data support further investigation of FLLL32 and FLLL62 as lead compounds for STAT3 inhibition in RCC and melanoma. PMID:22899991

  20. Structurally modified curcumin analogs inhibit STAT3 phosphorylation and promote apoptosis of human renal cell carcinoma and melanoma cell lines.

    PubMed

    Bill, Matthew A; Nicholas, Courtney; Mace, Thomas A; Etter, Jonathan P; Li, Chenglong; Schwartz, Eric B; Fuchs, James R; Young, Gregory S; Lin, Li; Lin, Jiayuh; He, Lei; Phelps, Mitch; Li, Pui-Kai; Lesinski, Gregory B

    2012-01-01

    The Janus kinase-2 (Jak2)-signal transducer and activator of transcription-3 (STAT3) pathway is critical for promoting an oncogenic and metastatic phenotype in several types of cancer including renal cell carcinoma (RCC) and melanoma. This study describes two small molecule inhibitors of the Jak2-STAT3 pathway, FLLL32 and its more soluble analog, FLLL62. These compounds are structurally distinct curcumin analogs that bind selectively to the SH2 domain of STAT3 to inhibit its phosphorylation and dimerization. We hypothesized that FLLL32 and FLLL62 would induce apoptosis in RCC and melanoma cells and display specificity for the Jak2-STAT3 pathway. FLLL32 and FLLL62 could inhibit STAT3 dimerization in vitro. These compounds reduced basal STAT3 phosphorylation (pSTAT3), and induced apoptosis in four separate human RCC cell lines and in human melanoma cell lines as determined by Annexin V/PI staining. Apoptosis was also confirmed by immunoblot analysis of caspase-3 processing and PARP cleavage. Pre-treatment of RCC and melanoma cell lines with FLLL32/62 did not inhibit IFN-γ-induced pSTAT1. In contrast to FLLL32, curcumin and FLLL62 reduced downstream STAT1-mediated gene expression of IRF1 as determined by Real Time PCR. FLLL32 and FLLL62 significantly reduced secretion of VEGF from RCC cell lines in a dose-dependent manner as determined by ELISA. Finally, each of these compounds inhibited in vitro generation of myeloid-derived suppressor cells. These data support further investigation of FLLL32 and FLLL62 as lead compounds for STAT3 inhibition in RCC and melanoma. PMID:22899991

  1. Autophagy and Apoptosis in Hepatocellular Carcinoma Induced by EF25-(GSH)2: A Novel Curcumin Analog

    PubMed Central

    Zhou, Tao; Ye, Lili; Bai, Yu; Sun, Aiming; Cox, Bryan; Liu, Dahai; Li, Yong; Liotta, Dennis; Snyder, James P.; Fu, Haian; Huang, Bei

    2014-01-01

    Curcumin, a spice component as well as a traditional Asian medicine, has been reported to inhibit proliferation of a variety of cancer cells but is limited in application due to its low potency and bioavailability. Here, we have assessed the therapeutic effects of a novel and water soluble curcumin analog, 3,5-bis(2-hydroxybenzylidene)tetrahydro-4H-pyran-4-one glutathione conjugate [EF25-(GSH)2], on hepatoma cells. Using the MTT and colony formation assays, we determined that EF25-(GSH)2 drastically inhibits the proliferation of hepatoma cell line HepG2 with minimal cytotoxicity for the immortalized human hepatic cell line HL-7702. Significantly, EF25-(GSH)2 suppressed growth of HepG2 xenografts in mice with no observed toxicity to the animals. Mechanistic investigation revealed that EF25-(GSH)2 induces autophagy by means of a biphasic mechanism. Low concentrations (<5 µmol/L) induced autophagy with reversible and moderate cytoplasmic vacuolization, while high concentrations (>10 µmol/L) triggered an arrested autophagy process with irreversible and extensive cytoplasmic vacuolization. Prolonged treatment with EF25-(GSH)2 induced cell death through both an apoptosis-dependent and a non-apoptotic mechanism. Chloroquine, a late stage inhibitor of autophagy which promoted cytoplasmic vacuolization, led to significantly enhanced apoptosis and cytotoxicity when combined with EF25-(GSH)2. Taken together, these data imply a fail-safe mechanism regulated by autophagy in the action of EF25-(GSH)2, suggesting the therapeutic potential of the novel curcumin analog against hepatocellular carcinoma (HCC), while offering a novel and effective combination strategy with chloroquine for the treatment of patients with HCC. PMID:25268357

  2. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy

    PubMed Central

    2011-01-01

    Curcumin has attracted great attention in the therapeutic arsenal in clinical oncology due to its chemopreventive, antitumoral, radiosensibilizing and chemosensibilizing activities against various types of aggressive and recurrent cancers. These malignancies include leukemias, lymphomas, multiple myeloma, brain cancer, melanoma and skin, lung, prostate, breast, ovarian, liver, gastrointestinal, pancreatic and colorectal epithelial cancers. Curcumin mediates its anti-proliferative, anti-invasive and apoptotic effects on cancer cells, including cancer stem/progenitor cells and their progenies, through multiple molecular mechanisms. The oncogenic pathways inhibited by curcumin encompass the members of epidermal growth factor receptors (EGFR and erbB2), sonic hedgehog (SHH)/GLIs and Wnt/β-catenin and downstream signaling elements such as Akt, nuclear factor-kappa B (NF-κB) and signal transducers and activators of transcription (STATs). In counterbalance, the high metabolic instability and poor systemic bioavailability of curcumin limit its therapeutic efficacy in human. Of great therapeutic interest, the selective delivery of synthetic analogs or nanotechnology-based formulations of curcumin to tumors, alone or in combination with other anticancer drugs, may improve their chemopreventive and chemotherapeutic efficacies against cancer progression and relapse. Novel curcumin formulations may also be used to reverse drug resistance, eradicate the total cancer cell mass and improve the anticarcinogenic efficacy of the current anti-hormonal and chemotherapeutic treatments for patients with various aggressive and lethal cancers. PMID:21859497

  3. Chemosensitizing effects of synthetic curcumin analogs on human multi-drug resistance leukemic cells.

    PubMed

    Mapoung, Sariya; Pitchakarn, Pornsiri; Yodkeeree, Supachai; Ovatlarnporn, Chitchamai; Sakorn, Natee; Limtrakul, Pornngarm

    2016-01-25

    Curcumin analogs were synthesized and their multi-drug resistance (MDR) reversing properties were determined in human MDR leukemic (K562/Adr) cells. Four analogs, 1,7-bis-(3,4-dimethoxy-phenyl)-hepta-1,6-diene-3,5-dione (1J), 2,6-bis-(4-hydroxy-3-methoxy-benzylidene)-cyclohexanone (2A), 2,6-bis-(3,4-dihydroxy-benzylidene)-cyclohexanone (2F) and 2,6-bis-(3,4-dimethoxy-benzylidene)-cyclohexanone (2J) markedly increased the sensitivity of K562/Adr cells to paclitaxel (PTX) for 8-, 2-, 8- and 16- folds, respectively and vinblastine (Vin) for 5-, 3-, 12- and 30- folds, respectively. The accumulation of P-gp substrates, Calcein-AM, Rhodamine 123 and Doxorubicin, was significantly increased by 1J (up to 6-, 11- and 22- folds, respectively) and 2J (up to 7-, 12- and 17- folds, respectively). Besides 2A, 2F and 2J dramatically decreased P-gp expression in K562/Adr cells. These results could be summarized in the following way. Analog 1J inhibited only P-gp function, while 2A and 2F inhibited only P-gp expression. Interestingly, 2J exerts inhibition of both P-gp function and expression. The combination index (CI) of combination between 2J and PTX (0.09) or Vin (0.06) in K562/Adr cells indicated strong synergistic effects, which likely due to its MDR reversing activity. Moreover, these analogs showed less cytotoxicity to peripheral mononuclear cells (human) and red blood cells (human and rat) suggesting the safety of analogs for further animal and clinical studies. PMID:26689174

  4. Antitumor Agents 250.† Design and Synthesis of New Curcumin Analogs as Potential Anti-Prostate Cancer Agents

    PubMed Central

    Lin, Li; Shi, Qian; Nyarko, Alexander K.; Bastow, Kenneth F.; Wu, Chin-Chung; Su, Ching-Yuan; Shih, Charles C.-Y; Lee, Kuo-Hsiung

    2008-01-01

    In a continuing study of curcumin analogs as potential drug candidates to treat prostate cancer at both androgen-dependent and androgen-refractory stages, we designed and synthesized over 40 new analogs classified into four series: monophenyl analogs (series A), heterocycle-containing analogs (series B), analogs bearing various substituents on the phenyl rings (series C) and analogs with various linkers (series D). These new compounds were tested for cytotoxicity against two human prostate cancer cell lines, androgen-dependent LNCaP and androgen-independent PC-3. Antiandrogenic activity was also evaluated in LNCaP cells and PC-3 cells transfected with wild-type androgen receptor. Ten compounds possessed potent cytotoxicity against both LNCaP and PC-3 cells; seven only against LNCaP; and one solely against PC-3. This study established an advanced structure-activity relationship (SAR), and these correlations will guide the further design of new curcumin analogs with better anti-prostate cancer activity. PMID:16789753

  5. Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs

    PubMed Central

    2013-01-01

    A diagnosis of advanced ovarian cancer is the beginning of a long and arduous journey for a patient. Worldwide, approximately half of the individuals undergoing therapy for advanced cancer will succumb to the disease, or consequences of treatment. Well-known and widely-used chemotherapeutic agents such as cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin are toxic to both cancer and non-cancerous cells, and have debilitating side effects Therefore, development of new targeted anticancer therapies that can selectively kill cancer cells while sparing the surrounding healthy tissues is essential to develop more effective therapies. We have developed a new class of synthetic curcumin analogs, diarylidenyl-piperidones (DAPs), which have higher anticancer activity and enhanced bio-absorption than curcumin. The DAP backbone structure exhibits cytotoxic (anticancer) activity, whereas the N-hydroxypyrroline (-NOH) moiety found on some variants functions as a cellular- or tissue-specific modulator (antioxidant) of cytotoxicity. The anticancer activity of the DAPs has been evaluated using a number of ovarian cancer cell lines, and the safety has been evaluated in a number of non-cancerous cell lines. Both variations of the DAP compounds showed similar levels of cell death in ovarian cancer cells, however the compounds with the -NOH modification were less toxic to non-cancerous cells. The selective cytotoxicity of the DAP–NOH compounds suggests that they will be useful as safe and effective anticancer agents. This article reviews some of the key findings of our work with the DAP compounds, and compares this to some of the targeted therapies currently used in ovarian cancer therapy. PMID:23663277

  6. Towards Intravenous Drug Delivery: Augmenting the Stability and Dispersity of Bis-Demethoxy Curcumin Analog by Bottom-Up Strategy.

    PubMed

    Francis, Arul Prakash; Ramaprabhu, Sundara; Devasena, Thiyagarajan

    2016-01-01

    Intravenous route is the best strategy to accomplish fastest and highest delivery of drugs. Hydrophobic drugs like curcumin and its analog exhibit disadvantages like low bioavailability, poor absorption and rapid precipitation on intravenous delivery, all leading to its poor therapeutic value. These can be by-passed by enhancing the dispersity, stability and decreasing the size of the drug by nanotization. Thus, with an intention to deliver bis-demethoxy curcumin analog via intravenous route, we have studied the effect of DMSO, ethanol and acetone on the size, size distribution, stability and yield and identified the best solvent in terms of smallest size, narrow size distribution, more stability and high yield of nano bis-demethoxy curcumin analog (NBDMCA). NBDMCA prepared using DMSO showed the lowest mean particle size cum polydispersity index and highest zeta potential when compared to ethanol and acetone. Hence the DMSO based formulation can provide prolonged action and better efficacy at minimal doses. Thus, the DMSO based NBDMCA can emerge as an ideal therapeutic tool for human use. PMID:27398584

  7. Curcumin half analog modulates interleukin-6 and tumor necrosis factor-alpha in inflammatory bowel disease

    PubMed Central

    Kondamudi, Phani Krishna; Kovelamudi, Hemalatha; Nayak, Pawan G.; Rao, Mallikarjuna Chamallamudi; Shenoy, Rekha Raghuveer

    2015-01-01

    Background: The present study was aimed at examining the effect of dehydrozingerone (DHZ), half analogue of curcumin which is the active constituent of turmeric (Curcuma longa) in the di-nitrochlorobenzene (DNCB) induced model for inflammatory bowel disease (IBD). Materials and Methods: Male Wistar rats (200–220 g) were divided into four groups (n = 6). Chemical induction of IBD was done by sensitizing with 300 µL of 20 g/L of DNCB (in acetone) onto the nape of rats for 14 days followed by intra-colonic instillation of 250 µL of DNCB (0.1% DNCB in 50% alcohol) solution on day 15. Rats in Group 1 (normal control) and Group 2 (DNCB control) were treated with vehicle. Rats in Group 3 were treated with DHZ (100 mg/kg, p.o.; 8 days) and Group 4 animals were treated with sulfasalazine (SS) (100 mg/kg, p.o.; 8 days). On 24th day, the rats were killed, colon removed and the macroscopic, biochemical, and histopathological evaluations were performed. Results: The levels of myeloperoxidase, thiobarbituric acid reactive substrate, and nitrite increased significantly (P < 0.05) in the DNCB group whereas reduced significantly in the DHZ and SS treated groups. Serum nitrite levels were found to be insignificant between the different groups. Interleukin-6, tumor necrosis factor-alpha level was significantly high in the DNCB group. Conclusion: These findings show that DHZ can be a promising molecule for the treatment of IBD. PMID:26664018

  8. Inhibition of NF-κB translocation by curcumin analogs induces G0/G1 arrest and downregulates thymidylate synthase in colorectal cancer.

    PubMed

    Rajitha, Balney; Belalcazar, Astrid; Nagaraju, Ganji Purnachandra; Shaib, Walid L; Snyder, James P; Shoji, Mamoru; Pattnaik, Subasini; Alam, Afroz; El-Rayes, Bassel F

    2016-04-10

    Cell cycle progression and DNA synthesis are essential steps in cancer cell growth and resistance. Thymidylate synthase (TS) is a therapeutic target for 5FU. Curcumin is a potent inhibitor of NF-κB. EF31 and UBS109 are potent synthetic analogues of curcumin. We tested the hypothesis that inhibition of NF-κB translocation by curcumin and its analogs EF31 and UBS109 can inhibit cell cycle progression and downregulate TS levels in colorectal cancer (CRC) cell lines. Two CRC cell lines (HCT116 and HT-29) were either untreated (control) or treated with IC50 concentrations of curcumin, EF31 UBS109 led to G0/G1 cell cycle arrest. Treatment with curcumin, EF31 or UBS109 inhibited NF-κB, downregulated survival pathways and inhibited cell cycle progression. Arrest in the G0/G1 phase was associated with downregulation of the transcription factor E2F-1 and its target gene TS. NF-κB over-expression induced E2F-1 and TS protein and mRNA levels in both cell lines. EF31 and UBS109 treatment significantly decreased tumor growth in compared to untreated tumors. EF31 and UBS109 are promising agents for the prevention and treatment of CRC. PMID:26850372

  9. Evaluation of the anti-inflammatory action of curcumin analog (DM1): Effect on iNOS and COX-2 gene expression and autophagy pathways.

    PubMed

    Paulino, Niraldo; Paulino, Amarilis Scremin; Diniz, Susana N; de Mendonça, Sergio; Gonçalves, Ivair D; Faião Flores, Fernanda; Santos, Reginaldo Pereira; Rodrigues, Carina; Pardi, Paulo Celso; Quincoces Suarez, José Agustin

    2016-04-15

    This work describes the anti-inflammatory effect of the curcumin-analog compound, sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate (DM1), and shows that DM1 modulates iNOS and COX-2 gene expression in cultured RAW 264.7 cells and induces autophagy on human melanoma cell line A375. PMID:27010501

  10. Effects of pyridine analogs of curcumin on growth, apoptosis and NF-κB activity in prostate cancer PC-3 cells.

    PubMed

    Wei, Xingchuan; Zhou, Daiying; Wang, Huaqian; Ding, Ning; Cui, Xiao-Xing; Wang, Hong; Verano, Michael; Zhang, Kun; Conney, Allan H; Zheng, Xi; DU, Zhi-Yun

    2013-04-01

    Twelve pyridine analogs of curcumin were studied for their effects on growth and apoptosis in human prostate cancer PC-3 cells. The ability of these compounds to inhibit the transcriptional activity of nuclear factor-kappa B (NF-κB) and the level of phosphorylated extracellular signal-regulated kinases (phospho-ERK1/2) in PC-3 cells was also determined. Treatment of PC-3 cells with the pyridine analogs of curcumin resulted in concentration-dependent growth inhibition and apoptosis stimulation. Only pyridine analogs of curcumin with a tetrahydrothiopyrane-4-one linker (FN compounds) exhibited a strong inhibitory effect on growth and a strong stimulatory effect on apoptosis at low concentrations (≤ 1 μM). Mechanistic studies showed that NF-κB transcriptional activity in PC-3 cells was strongly inhibited by treatment with group FN compounds. Treatment of PC-3 cells with 1 μM FN1 resulted in a decrease of activated ERK1/2. Results from the present study indicate that FN compounds warrant further in vivo studies using suitable animal models of prostate cancer. PMID:23564771

  11. A Newly Designed Curcumin Analog Y20 Mitigates Cardiac Injury via Anti-Inflammatory and Anti-Oxidant Actions in Obese Rats

    PubMed Central

    Liang, Dandan; Xu, Zheng; Skibba, Melissa; Zeng, Chunlai; Li, Xiaokun; Wei, Tiemin; Wu, Lianpin; Liang, Guang

    2015-01-01

    Obesity is strongly associated with the cause of structural and functional changes of the heart in both human and animal models. Oxidative stress and inflammation play a critical role in the development of obesity-induced cardiac disorders. Curcumin is a natural product from Curcuma Longa with multiple bioactivities. In our previous study, in order to reach better anti-inflammatory and anti-oxidant dual activities, we designed a new mono-carbonyl curcumin analog, Y20, via the structural modification with both trifluoromethyl and bromine. This study was designed to investigate the protective effects of Y20 on obesity-induced cardiac injury and its underlying mechanisms. In high fat diet–fed rats, oral administration of Y20 at 20 mg/kg or curcumin at 50 mg/kg significantly decreased the cardiac inflammation and oxidative stress and eventually improved the cardiac remodeling by mitigating cardiac disorganization, hypertrophy, fibrosis and apoptosis. Y20 at 20 mg/kg showed comparable and even stronger bioactivities than curcumin at 50 mg/kg. The beneficial actions of Y20 are closely associated with its ability to increase Nrf2 expression and inhibit NF-κB activation. Taken together, these results suggest that Y20 may have a great therapeutic potential in the treatment of obesity-induced cardiac injury using Nrf2 and NF-κB as the therapeutic targets for treating obesity-related disorders. PMID:25786209

  12. Chitosan-starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog.

    PubMed

    Subramanian, Sindhuja Bala; Francis, Arul Prakash; Devasena, Thiyagarajan

    2014-12-19

    The conventional drug delivery system has serious limitations such as lack of target specificity, altered effects and diminished potency. These limitations can be overcome by using biocompatible polymer as an effective drug delivery system. In this study, bis-demethoxy curcumin analog loaded Chitosan-starch (BDMCA-CS) nanocomposite particles were developed using different ratios of Chitosan and starch (3:1, 1:1 & 1:3) by ionic gelation method. The entrapment efficiency and drug loading capacity were found to be high for the formulation with the ratio 3:1 of BDMCA:CS. Physical characterization of the nanocomposite particles was determined using DLS and FTIR. The morphology of the BDMCA-CS nanocomposite particles were found to be spherical and regular by SEM analysis. In-vitro drug release profile of the BDMCA-CS nanocomposite particles showed a very slow and sustained diffusion controlled release of the drug. The cancer cells targeting ability of the BDMCA-CS nanocomposite particles were confirmed by performing MTT assay on MCF-7 breast cancer cell lines and VERO cell lines. PMID:25263878

  13. Curcumin Resource Database.

    PubMed

    Kumar, Anil; Chetia, Hasnahana; Sharma, Swagata; Kabiraj, Debajyoti; Talukdar, Narayan Chandra; Bora, Utpal

    2015-01-01

    Curcumin is one of the most intensively studied diarylheptanoid, Curcuma longa being its principal producer. This apart, a class of promising curcumin analogs has been generated in laboratories, aptly named as Curcuminoids which are showing huge potential in the fields of medicine, food technology, etc. The lack of a universal source of data on curcumin as well as curcuminoids has been felt by the curcumin research community for long. Hence, in an attempt to address this stumbling block, we have developed Curcumin Resource Database (CRDB) that aims to perform as a gateway-cum-repository to access all relevant data and related information on curcumin and its analogs. Currently, this database encompasses 1186 curcumin analogs, 195 molecular targets, 9075 peer reviewed publications, 489 patents and 176 varieties of C. longa obtained by extensive data mining and careful curation from numerous sources. Each data entry is identified by a unique CRDB ID (identifier). Furnished with a user-friendly web interface and in-built search engine, CRDB provides well-curated and cross-referenced information that are hyperlinked with external sources. CRDB is expected to be highly useful to the researchers working on structure as well as ligand-based molecular design of curcumin analogs. PMID:26220923

  14. Curcumin Resource Database

    PubMed Central

    Kumar, Anil; Chetia, Hasnahana; Sharma, Swagata; Kabiraj, Debajyoti; Talukdar, Narayan Chandra; Bora, Utpal

    2015-01-01

    Curcumin is one of the most intensively studied diarylheptanoid, Curcuma longa being its principal producer. This apart, a class of promising curcumin analogs has been generated in laboratories, aptly named as Curcuminoids which are showing huge potential in the fields of medicine, food technology, etc. The lack of a universal source of data on curcumin as well as curcuminoids has been felt by the curcumin research community for long. Hence, in an attempt to address this stumbling block, we have developed Curcumin Resource Database (CRDB) that aims to perform as a gateway-cum-repository to access all relevant data and related information on curcumin and its analogs. Currently, this database encompasses 1186 curcumin analogs, 195 molecular targets, 9075 peer reviewed publications, 489 patents and 176 varieties of C. longa obtained by extensive data mining and careful curation from numerous sources. Each data entry is identified by a unique CRDB ID (identifier). Furnished with a user-friendly web interface and in-built search engine, CRDB provides well-curated and cross-referenced information that are hyperlinked with external sources. CRDB is expected to be highly useful to the researchers working on structure as well as ligand-based molecular design of curcumin analogs. Database URL: http://www.crdb.in PMID:26220923

  15. Synthesis and optimization of novel allylated mono-carbonyl analogs of curcumin (MACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI) in rats.

    PubMed

    Zhu, Heping; Xu, Tingting; Qiu, Chenyu; Wu, Beibei; Zhang, Yali; Chen, Lingfeng; Xia, Qinqin; Li, Chenglong; Zhou, Bin; Liu, Zhiguo; Liang, Guang

    2016-10-01

    A series of novel symmetric and asymmetric allylated mono-carbonyl analogs of curcumin (MACs) were synthesized using an appropriate synthetic route and evaluated experimentally thru the LPS-induced expression of TNF-α and IL-6. Most of the obtained compounds exhibited improved water solubility as a hydrochloride salt compared to lead molecule 8f. The most active compound 7a was effective in reducing the Wet/Dry ratio in the lungs and protein concentration in bronchoalveolar lavage fluid. Meanwhile, 7a also inhibited mRNA expression of several inflammatory cytokines, including TNF-α, IL-6, IL-1β, and VCAM-1, in Beas-2B cells after Lipopolysaccharide (LPS) challenge. These results suggest that 7a could be therapeutically beneficial for use as an anti-inflammatory agent in the clinical treatment of acute lung injury (ALI). PMID:27240273

  16. Curcumin analog 1, 5-bis (2-trifluoromethylphenyl)-1, 4-pentadien-3-one exhibits enhanced ability on Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity

    SciTech Connect

    Li, Yuan; Zou, Xuan; Cao, Ke; Xu, Jie; Yue, Tingting; Dai, Fang; Zhou, Bo; Lu, Wuyuan; Feng, Zhihui; Liu, Jiankang

    2013-11-01

    Curcumin, a phytochemical agent in the spice turmeric, has received increasing attention for its anticancer, anti-inflammatory and antioxidant properties. However, application of curcumin has been limited due to its insolubility in water and poor bioavailability both clinically and experimentally. In addition, the protective effects and mechanisms of curcumin in eye diseases have been poorly studied. In the present study, we synthesized a curcumin analog, 1, 5-bis (2-trifluoromethylphenyl)-1, 4-pentadien-3-one (C3), which displayed improved protective effect against acrolein-induced toxicity in a human retinal pigment epithelial cell line (ARPE-19). At 5 μM, curcumin completely protected against acrolein-induced cell oxidative damage and preserved GSH levels and mitochondrial function. Surprisingly, C3 displayed a complete protective effect at 0.5 μM, which was much more efficient than curcumin. Both 0.5 μM C3 and 5 μM curcumin induced Nrf2 nuclear translocation and Nrf2 target genes transcription similarly. Experiments using Nrf2 siRNA showed that the protective effects of curcumin and C3 were eliminated by Nrf2 knockdown. Additionally, both curcumin and C3 activated the PI3/Akt pathway, however, Nrf2 activation was independent of this pathway, and therefore, we hypothesized that both curcumin and C3 activated phase II enzymes via directly disrupting the Nrf2/Keap1 complex and promoting Nrf2's nuclear translocation. Since acrolein challenge of ARPE-19 cells has been used as a model of smoking and age-related macular degeneration (AMD), we concluded that the curcumin analog, C3, may be a more promising drug candidate for its potential application for the prevention and treatment of eye diseases, such as AMD. - Highlights: • We examine toxicity effects of cigarette smoking component acrolein in retina cells. • We report a more efficient curcumin analog (C3) protecting cellular function. • Mitochondrial function and phase II enzyme activation are the major

  17. Hybrid curcumin compounds: a new strategy for cancer treatment.

    PubMed

    Teiten, Marie-Hélène; Dicato, Mario; Diederich, Marc

    2014-01-01

    Cancer is a multifactorial disease that requires treatments able to target multiple intracellular components and signaling pathways. The natural compound, curcumin, was already described as a promising anticancer agent due to its multipotent properties and huge amount of molecular targets in vitro. Its translation to the clinic is, however, limited by its reduced solubility and bioavailability in patients. In order to overcome these pharmacokinetic deficits of curcumin, several strategies, such as the design of synthetic analogs, the combination with specific adjuvants or nano-formulations, have been developed. By taking into account the risk-benefit profile of drug combinations, as well as the knowledge about curcumin's structure-activity relationship, a new concept for the combination of curcumin with scaffolds from different natural products or components has emerged. The concept of a hybrid curcumin molecule is based on the incorporation or combination of curcumin with specific antibodies, adjuvants or other natural products already used or not in conventional chemotherapy, in one single molecule. The high diversity of such conjugations enhances the selectivity and inherent biological activities and properties, as well as the efficacy of the parental compound, with particular emphasis on improving the efficacy of curcumin for future clinical treatments. PMID:25514225

  18. Effect of dehydrozingerone, a half analog of curcumin on dexamethasone-delayed wound healing in albino rats.

    PubMed

    Rao, Mallikarjuna C; Sudheendra, Arun T; Nayak, Pawan G; Paul, Piya; Kutty, Gopalan N; Shenoy, Rekha R

    2011-09-01

    Oxidative stress is triggered by the wound which results in the production of reactive oxygen species (ROS), thereby delaying normal wound repair. Therefore, it is important to reduce the level of ROS to improve healing. A known antioxidant, dehydrozingerone (DHZ) was synthesized and selected for the study. The authors aimed to investigate the wound healing action of topical (100 mg/wound) and systemic (100 mg/kg, p. o.). DHZ on different wound models in normal and dexamethasone (DEX)-suppressed healing. Topical DHZ showed a significant (P < 0.05) rise in tensile strength when compared to control in normal healing. Significant (P < 0.05) wound closure was observed from 3 to 9 days in DHZ oral and gel treated groups. There was a significant (P < 0.05) rise in hydroxyproline content with the DHZ treated groups when compared to control. Systemic DHZ exhibited a significant (P < 0.05) increase in lysyl oxidase (LO) levels of 3.73 ± 0.15 nmol of H(2)O(2) when compared to control. In DEX-suppressed healing, showed good pro-healing activity with respect to the parameters mentioned above. DHZ treatment exhibited a parabolic dose response of ROS inhibition with a plateau effect at 75 μM. There was a steady and constant increase in the % NO inhibition with increasing doses of DHZ. Oral DHZ is effective in accelerating the healing process in both normal and dexamethasone-suppressed wounds. Our study suggests that DHZ (half analog of curcumin) supplementation reduces the steroid-induced delay in wound healing. PMID:21567208

  19. A novel double carbonyl analog of curcumin induces the apoptosis of human lung cancer H460 cells via the activation of the endoplasmic reticulum stress signaling pathway.

    PubMed

    Ye, Hui; Wei, Xiaoyan; Wang, Zhankun; Zhang, Shanshan; Ren, Jiye; Yao, Song; Shi, Lingyi; Yang, Lizhu; Qiu, Peihong; Wu, Jianzhang; Liang, Guang

    2016-09-01

    Curcumin can inhibit the growth of a variety of cancer cells; however, its poor bioavailability and pharmacokinetic profiles, which are attributed to its instability under physiological conditions, have limited its application in anticancer therapy. In the present study, we screened a double carbonyl analog of curcumin (A17) and analyzed its effects and mechanism of inducing apoptosis in human lung cancer H460 cells. The results showed that A17 not only induced CHOP expression in human lung cancer H460 cells, but also induced the apoptosis of H460 cells in a dose-responsive manner, and this effect was related to corresponding activation of some important components in the endoplasmic reticulum (ER) stress-mediated apoptosis pathway. When CHOP was knocked down by specific siRNA, A17-induced cell apoptosis was attenuated, thereby further demonstrating that the apoptotic pathway is ER stress‑dependent. Our studies demonstrated that A17 has better stability and antitumor activity than curcumin in H460 cells via an ER stress-mediated mechanism. These results imply that A17 could be further explored as a potential anticancer agent for the treatment of human non-small cell lung cancer (NSCLC). PMID:27431486

  20. The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines

    PubMed Central

    2011-01-01

    Background Curcumin is a naturally occurring phenolic compound shown to have a wide variety of antitumor activities; however, it does not attain sufficient blood levels to do so when ingested. Using structure-based design, a novel compound, FLLL32, was generated from curcumin. FLLL32 possesses superior biochemical properties and more specifically targets STAT3, a transcription factor important in tumor cell survival, proliferation, metastasis, and chemotherapy resistance. In our previous work, we found that several canine and human osteosarcoma (OSA) cell lines, but not normal osteoblasts, exhibit constitutive phosphorylation of STAT3. Compared to curcumin, we hypothesized that FLLL32 would be more efficient at inhibiting STAT3 function in OSA cells and that this would result in enhanced downregulation of STAT3 transcriptional targets and subsequent death of OSA cells. Methods Human and canine OSA cells were treated with vehicle, curcumin, or FLLL32 and the effects on proliferation (CyQUANT®), apoptosis (SensoLyte® Homogeneous AMC Caspase- 3/7 Assay kit, western blotting), STAT3 DNA binding (EMSA), and vascular endothelial growth factor (VEGF), survivin, and matrix metalloproteinase-2 (MMP2) expression (RT-PCR, western blotting) were measured. STAT3 expression was measured by RT-PCR, qRT- PCR, and western blotting. Results Our data showed that FLLL32 decreased STAT3 DNA binding by EMSA. FLLL32 promoted loss of cell proliferation at lower concentrations than curcumin leading to caspase-3- dependent apoptosis, as evidenced by PARP cleavage and increased caspase 3/7 activity; this could be inhibited by treatment with the pan-caspase inhibitor Z-VAD-FMK. Treatment of OSA cells with FLLL32 decreased expression of survivin, VEGF, and MMP2 at both mRNA and protein levels with concurrent decreases in phosphorylated and total STAT3; this loss of total STAT3 occurred, in part, via the ubiquitin-proteasome pathway. Conclusions These data demonstrate that the novel curcumin

  1. Release-Modulated Antioxidant Activity of a Composite Curcumin-Chitosan Polymer.

    PubMed

    O'Toole, Martin G; Soucy, Patricia A; Chauhan, Rajat; Raju, Mandapati V Ramakrishnam; Patel, Dhruvina N; Nunn, Betty M; Keynton, Megan A; Ehringer, William D; Nantz, Michael H; Keynton, Robert S; Gobin, Andrea S

    2016-04-11

    Curcumin is known to have immense therapeutic potential but is hindered by poor solubility and rapid degradation in solution. To overcome these shortcomings, curcumin has been conjugated to chitosan through a pendant glutaric anhydride linker using amide bond coupling chemistry. The hybrid polymer has been characterized by UV-visible, fluorescence, and infrared spectroscopies as well as zeta potential measurements and SEM imaging. The conjugation reactivity was confirmed through gel permeation chromatography and quantification of unconjugated curcumin. An analogous reaction of curcumin with glucosamine, a small molecule analogue for chitosan, was performed and the purified product characterized by mass spectrometry, UV-visible, fluorescence, and infrared spectroscopies. Conjugation of curcumin to chitosan has greatly improved curcumin aqueous solubility and stability, with no significant curcumin degradation detected after one month in solution. The absorbance and fluorescence properties of curcumin are minimally perturbed (λmax shifts of 2 and 5 nm, respectively) by the conjugation reaction. This conjugation strategy required use of one out of two curcumin phenols (one of the main antioxidant functional groups) for covalent linkage to chitosan, thus temporarily attenuating its antioxidant capacity. Hydrolysis-based release of curcumin from the polymer, however, is accompanied by full restoration of curcumin's antioxidant potential. Antioxidant assays show that curcumin radical scavenging potential is reduced by 40% after conjugation, but that full antioxidant potential is restored upon hydrolytic release from chitosan. Release studies show that curcumin is released over 19 days from the polymer and maintains a concentration of 0.23 ± 0.12 μM curcumin/mg polymer/mL solution based on 1% curcumin loading on the polymer. Release studies in the presence of carbonic anhydrase, an enzyme with known phenolic esterase activity, show no significant difference from

  2. Synthesis and biological evaluation of a novel class of curcumin analogs as anti-inflammatory agents for prevention and treatment of sepsis in mouse model.

    PubMed

    Zhao, Chengguang; Zhang, Yali; Zou, Peng; Wang, Jian; He, Wenfei; Shi, Dengjian; Li, Huameng; Liang, Guang; Yang, Shulin

    2015-01-01

    A novel class of asymmetric mono-carbonyl analogs of curcumin (AMACs) were synthesized and screened for anti-inflammatory activity. These analogs are chemically stable as characterized by UV absorption spectra. In vitro, compounds 3f, 3m, 4b, and 4d markedly inhibited lipopolysaccharide (LPS)-induced expression of pro-inflammatory cytokines tumor necrosis factor-α and interleukin-6 in a dose-dependent manner, with IC50 values in low micromolar range. In vivo, compound 3f demonstrated potent preventive and therapeutic effects on LPS-induced sepsis in mouse model. Compound 3f downregulated the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 MAPK and suppressed IκBα degradation, which suggests that the possible anti-inflammatory mechanism of compound 3f may be through downregulating nuclear factor kappa binding (NF-κB) and ERK pathways. Also, we solved the crystal structure of compound 3e to confirm the asymmetrical structure. The quantitative structure-activity relationship analysis reveals that the electron-withdrawing substituents on aromatic ring of lead structures could improve activity. These active AMACs represent a new class of anti-inflammatory agents with improved stability, bioavailability, and potency compared to curcumin. Our results suggest that 3f may be further developed as a potential agent for prevention and treatment of sepsis or other inflammation-related diseases. PMID:25834403

  3. Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells.

    PubMed

    Bhullar, Khushwant S; Jha, Amitabh; Rupasinghe, H P Vasantha

    2015-12-01

    Anticancer activity of a novel curcumin analog (E)-2-(4-hydroxy-3-methoxybenzylidene)-5-((E)-3-(4-hydroxy-3-methoxyphenyl)acryloyl)cyclopentanone (CUR3d) was studied using a human hepatocellular carcinoma cell line (HepG2). The results showed that CUR3d completely inhibits the tumor cell proliferation in a dose- and time-dependent manner. CUR3d at 100 μmol/L activated the pro-apoptotic caspase-3 along with downregulation of anti-apoptotic BIRC5 and Bcl2. CUR3d treatment controlled the cancer cell growth by downregulating the expression of PI3K/Akt (Akt1, Akt2) pathway along with NF-κB. CUR3d down-regulated the members of epidermal growth receptor family (EGFR, ERBB3, ERBB2) and insulin like growth receptors (IGF1, IGF-1R, IGF2). This correlated with the downregulation of G-protein (RHOA, RHOB) and RAS (ATF2, HRAS, KRAS, NRAS) pathway signaling. CUR3d also arrested cell cycle via inhibition of CDK2, CDK4, CDK5, CDK9, MDM2, MDM4 and TERT genes. Cell cycle essential aurora kinases (AURKα, AURKβ) and polo-like kinases (PLK1, PLK2, PLK3) were also modulated by CUR3d. Topoisomerases (TOP2α, TOP2β), important factors in cancer cell immortality, as well as HIF-1α were downregulated following CUR3d treatment. The expression of protein kinase-C family (PRKC-A, PRKC-D, PRKC-E) was also attenuated by CUR3d. The downregulation of histone deacetylases (Class I, II, IV) and PARP I further strengthened the anticancer efficacy of CUR3d. Downregulation of carcinogenic cathepsins (CTSB, CTSD) and heat shock proteins exhibited CUR3d's potency as a potential immunological adjuvant. Finally, the non-toxic manifestation of CUR3d in healthy liver and lung cells along with downregulation of drug resistant gene ABCC1 further warrant need for advance investigations. PMID:26409325

  4. Characterization of the host–guest complex of a curcumin analog with β-cyclodextrin and β-cyclodextrin–gemini surfactant and evaluation of its anticancer activity

    PubMed Central

    Poorghorban, Masoomeh; Das, Umashankar; Alaidi, Osama; Chitanda, Jackson M; Michel, Deborah; Dimmock, Jonathan; Verrall, Ronald; Grochulski, Pawel; Badea, Ildiko

    2015-01-01

    Background Curcumin analogs, including the novel compound NC 2067, are potent cytotoxic agents that suffer from poor solubility, and hence, low bioavailability. Cyclodextrin-based carriers can be used to encapsulate such agents. In order to understand the interaction between the two molecules, the physicochemical properties of the host–guest complexes of NC 2067 with β-cyclodextrin (CD) or β-cyclodextrin–gemini surfactant (CDgemini surfactant) were investigated for the first time. Moreover, possible supramolecular structures were examined in order to aid the development of new drug delivery systems. Furthermore, the in vitro anticancer activity of the complex of NC 2067 with CDgemini surfactant nanoparticles was demonstrated in the A375 melanoma cell line. Methods Physicochemical properties of the complexes formed of NC 2067 with CD or CDgemini surfactant were investigated by synchrotron-based powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Synchrotron-based small- and wide-angle X-ray scattering and size measurements were employed to assess the supramolecular morphology of the complex formed by NC 2067 with CDgemini surfactant. Lastly, the in vitro cell toxicity of the formulations toward A375 melanoma cells at various drug-to-carrier mole ratios were measured by cell viability assay. Results Physical mixtures of NC 2067 and CD or CDgemini surfactant showed characteristics of the individual components, whereas the complex of NC 2067 and CD or CDgemini surfactant presented new structural features, supporting the formation of the host–guest complexes. Complexes of NC 2067 with CDgemini surfactants formed nanoparticles having sizes of 100–200 nm. NC 2067 retained its anticancer activity in the complex with CDgemini surfactant for different drug-to-carrier mole ratios, with an IC50 (half-maximal inhibitory concentration) value comparable to that for NC 2067 without the carrier. Conclusion The formation of

  5. Curcumin Pyrazole and its derivative (N-(3-Nitrophenylpyrazole) Curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of Wild type and Mutant α-Synuclein

    PubMed Central

    Ahsan, Nuzhat; Mishra, Satyendra; Jain, Manish Kumar; Surolia, Avadhesha; Gupta, Sarika

    2015-01-01

    Accumulating evidence suggests that deposition of neurotoxic α-synuclein aggregates in the brain during the development of neurodegenerative diseases like Parkinson’s disease can be curbed by anti-aggregation strategies that either disrupt or eliminate toxic aggregates. Curcumin, a dietary polyphenol exhibits anti-amyloid activity but the use of this polyphenol is limited owing to its instability. As chemical modifications in curcumin confiscate this limitation, such efforts are intensively performed to discover molecules with similar but enhanced stability and superior properties. This study focuses on the inhibitory effect of two stable analogs of curcumin viz. curcumin pyrazole and curcumin isoxazole and their derivatives against α-synuclein aggregation, fibrillization and toxicity. Employing biochemical, biophysical and cell based assays we discovered that curcumin pyrazole (3) and its derivative N-(3-Nitrophenylpyrazole) curcumin (15) exhibit remarkable potency in not only arresting fibrillization and disrupting preformed fibrils but also preventing formation of A11 conformation in the protein that imparts toxic effects. Compounds 3 and 15 also decreased neurotoxicity associated with fast aggregating A53T mutant form of α-synuclein. These two analogues of curcumin described here may therefore be useful therapeutic inhibitors for the treatment of α-synuclein amyloidosis and toxicity in Parkinson’s disease and other synucleinopathies. PMID:25985292

  6. Atomistic study of macroscopic analogs to short-chain molecules

    NASA Astrophysics Data System (ADS)

    Welch, Kyle J.; Kilmer, Clayton S. G.; Corwin, Eric I.

    2015-02-01

    We use a bath of chaotic surface waves in water to mechanically and macroscopically mimic the thermal behavior of a short articulated chain with only nearest-neighbor interactions. The chaotic waves provide isotropic and random agitation to which a temperature can be ascribed, allowing the chain to passively explore its degrees of freedom in analogy to thermal motion. We track the chain in real time and infer end-to-end potentials using Boltzmann statistics. We extrapolate our results, by using Monte Carlo simulations of self-avoiding polymers, to lengths not accessible in our system. In the long-chain limit we demonstrate universal scaling of the statistical parameters of all chains in agreement with well-known predictions for self-avoiding walks. However, we find that the behavior of chains below a characteristic length scale fundamentally differs. We find that short chains have much greater compressional stiffness than would be expected. However, chains rapidly soften as length increases to meet with expected scalings.

  7. Atomistic study of macroscopic analogs to short-chain molecules.

    PubMed

    Welch, Kyle J; Kilmer, Clayton S G; Corwin, Eric I

    2015-02-01

    We use a bath of chaotic surface waves in water to mechanically and macroscopically mimic the thermal behavior of a short articulated chain with only nearest-neighbor interactions. The chaotic waves provide isotropic and random agitation to which a temperature can be ascribed, allowing the chain to passively explore its degrees of freedom in analogy to thermal motion. We track the chain in real time and infer end-to-end potentials using Boltzmann statistics. We extrapolate our results, by using Monte Carlo simulations of self-avoiding polymers, to lengths not accessible in our system. In the long-chain limit we demonstrate universal scaling of the statistical parameters of all chains in agreement with well-known predictions for self-avoiding walks. However, we find that the behavior of chains below a characteristic length scale fundamentally differs. We find that short chains have much greater compressional stiffness than would be expected. However, chains rapidly soften as length increases to meet with expected scalings. PMID:25768524

  8. A soluble class I molecule analogous to mouse Q10 in the horse and related species.

    PubMed

    Lew, A M; Valas, R B; Maloy, W L; Coligan, J E

    1986-01-01

    Horse serum is shown to contain a soluble class I molecule analogous to the secreted Q10 molecule in the mouse. This molecule has several similarities to the recently described mouse Q10 molecule: it is smaller than membrane-bound equine class I molecules; it occurs in a high molecular mass complex of 200-300 kd in serum; and the serum levels of the equine molecule are similar to that of the Q10 molecule (about 30 micrograms/ml). A soluble molecule is also detected in the sera of species related to the horse; it has in fact been found in all the wild members of the order Perissodactyla so far tested. However, it was not detected in the serum of members of the orders Carnivora, Sirenia, Proboscidea, Artiodactyla, and Primates that were tested, nor in the serum of members of the order Rodentia other than in that of the genus Mus. PMID:3519445

  9. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition.

    PubMed

    Song, Ju-Xian; Sun, Yue-Ru; Peluso, Ivana; Zeng, Yu; Yu, Xing; Lu, Jia-Hong; Xu, Zheng; Wang, Ming-Zhong; Liu, Liang-Feng; Huang, Ying-Yu; Chen, Lei-Lei; Durairajan, Siva Sundara Kumar; Zhang, Hong-Jie; Zhou, Bo; Zhang, Hong-Qi; Lu, Aiping; Ballabio, Andrea; Medina, Diego L; Guo, Zhihong; Li, Min

    2016-08-01

    Autophagy dysfunction is a common feature in neurodegenerative disorders characterized by accumulation of toxic protein aggregates. Increasing evidence has demonstrated that activation of TFEB (transcription factor EB), a master regulator of autophagy and lysosomal biogenesis, can ameliorate neurotoxicity and rescue neurodegeneration in animal models. Currently known TFEB activators are mainly inhibitors of MTOR (mechanistic target of rapamycin [serine/threonine kinase]), which, as a master regulator of cell growth and metabolism, is involved in a wide range of biological functions. Thus, the identification of TFEB modulators acting without inhibiting the MTOR pathway would be preferred and probably less deleterious to cells. In this study, a synthesized curcumin derivative termed C1 is identified as a novel MTOR-independent activator of TFEB. Compound C1 specifically binds to TFEB at the N terminus and promotes TFEB nuclear translocation without inhibiting MTOR activity. By activating TFEB, C1 enhances autophagy and lysosome biogenesis in vitro and in vivo. Collectively, compound C1 is an orally effective activator of TFEB and is a potential therapeutic agent for the treatment of neurodegenerative diseases. PMID:27172265

  10. An appraisal on recent medicinal perspective of curcumin degradant: Dehydrozingerone (DZG).

    PubMed

    Hampannavar, Girish A; Karpoormath, Rajshekhar; Palkar, Mahesh B; Shaikh, Mahamadhanif S

    2016-02-15

    Natural products serve as a key source for the design, discovery and development of potentially novel drug like candidates for life threatening diseases. Curcumin is one such medicinally important molecule reported for an array of biological activities. However, it has major drawbacks of very poor bioavailability and solubility. Alternatively, structural analogs and degradants of curcumin have been investigated, which have emerged as promising scaffolds with diverse biological activities. Dehydrozingerone (DZG) also known as feruloylmethane, is one such recognized degradant which is a half structural analog of curcumin. It exists as a natural phenolic compound obtained from rhizomes of Zingiber officinale, which has attracted much attention of medicinal chemists. DZG is known to have a broad range of biological activities like antioxidant, anticancer, anti-inflammatory, anti-depressant, anti-malarial, antifungal, anti-platelet and many others. DZG has also been studied in resolving issues pertaining to curcumin since it shares many structural similarities with curcumin. Considering this, in the present review we have put forward an effort to revise and systematically discuss the research involving DZG with its biological diversity. From literature, it is quite clear that DZG and its structural analogs have exhibited significant potential in facilitating design and development of novel medicinally active lead compounds with improved metabolic and pharmacokinetic profiles. PMID:26796952

  11. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin.

    PubMed

    Szymusiak, Magdalena; Hu, Xiaoyu; Leon Plata, Paola A; Ciupinski, Paulina; Wang, Zaijie Jim; Liu, Ying

    2016-09-10

    Curcumin is a bioactive molecule extracted from Turmeric roots that has been recognized to possess a wide variety of important biological activities. Despite its great pharmacological activities, curcumin is highly hydrophobic, which results in poor bioavailability. We have formulated this hydrophobic compound into stable polymeric nanoparticles (nano-curcumin) to enhance its oral absorption. Pharmacokinetic analysis after oral delivery of nano-curcumin in mice demonstrated approximately 20-fold reduction in dose requirement when compared to unformulated curcumin to achieve comparable plasma and central nervous system (CNS) tissue concentrations. This investigation corroborated our previous study of curcumin functionality of attenuating opioid tolerance and dependence, which shows equivalent efficacy of low-dose (20mg/kg) nano-curcumin and high-dose (400mg/kg) pure curcumin in mice. Furthermore, the highly selective and validated liquid chromatography-mass spectrometry (LC-MS) method was developed to quantify curcumin glucuronide, the major metabolite of curcumin. The results suggest that the presence of curcumin in the CNS is essential for prevention and reversal of opioid tolerance and dependence. PMID:27426105

  12. Preparation and affinity identification of glutamic acid-urea small molecule analogs in prostate cancer

    PubMed Central

    Zhang, Zhiwei; Zhu, Zheng; Yang, Deyong; Fan, Weiwei; Wang, Jianbo; Li, Xiancheng; Chen, Xiaochi; Wang, Qifeng; Song, Xishuang

    2016-01-01

    In recent years, study concerning activity inhibitors of prostate-specific membrane antigen (PSMA) has been concentrated on the glutamic urea (Glu-urea-R) small molecule and its analogs. The present study aimed to synthesize 4 analogs of Glu-urea-R and identify the affinities of these compounds to PSMA. The compounds were synthesized from raw materials, and the experimental procedures of the present study were in accordance with standard techniques under anhydrous and anaerobic conditions. Glu-urea-Lysine (Glu-urea-Lys), Glu-urea-Ornithine (Glu-urea-Orn), Glu-urea-Glutamine (Glu-urea-Gln) and Glu-urea-Asparagine (Glu-urea-Asn) were successfully synthesized, and their structures were confirmed to be as desired using nuclear magnetic resonance spectroscopy and mass spectrometry. An affinity assay was performed to detect the affinity between the various compounds and PSMA expressed from the prostate cancer LNCap cell line. Glu-urea-Gln had the highest affinity to PSMA, followed by Glu-urea-Asn, Glu-urea-Orn and Glu-urea-Lys. In conclusion, the present study demonstrated that Glu-urea-R specifically binds PSMA expressed in the LNCap cell line and inhibits its activity. PMID:27446384

  13. Reversible control of F(1)-ATPase rotational motion using a photochromic ATP analog at the single molecule level.

    PubMed

    Sunamura, Ei-Ichiro; Kamei, Takashi; Konno, Hiroki; Tamaoki, Nobuyuki; Hisabori, Toru

    2014-03-28

    Motor enzymes such as F1-ATPase and kinesin utilize energy from ATP for their motion. Molecular motions of these enzymes are critical to their catalytic mechanisms and were analyzed thoroughly using a single molecule observation technique. As a tool to analyze and control the ATP-driven motor enzyme motion, we recently synthesized a photoresponsive ATP analog with a p-tert-butylazobenzene tethered to the 2' position of the ribose ring. Using cis/trans isomerization of the azobenzene moiety, we achieved a successful reversible photochromic control over a kinesin-microtubule system in an in vitro motility assay. Here we succeeded to control the hydrolytic activity and rotation of the rotary motor enzyme, F1-ATPase, using this photosensitive ATP analog. Subsequent single molecule observations indicated a unique pause occurring at the ATP binding angle position in the presence of cis form of the analog. PMID:24607907

  14. The Curcumin Analog C-150, Influencing NF-κB, UPR and Akt/Notch Pathways Has Potent Anticancer Activity In Vitro and In Vivo

    PubMed Central

    Hackler, László; Ózsvári, Béla; Gyuris, Márió; Sipos, Péter; Fábián, Gabriella; Molnár, Eszter; Marton, Annamária; Faragó, Nóra; Mihály, József; Nagy, Lajos István; Szénási, Tibor; Diron, Andrea; Párducz, Árpád; Kanizsai, Iván; Puskás, László G.

    2016-01-01

    C-150 a Mannich-type curcumin derivative, exhibited pronounced cytotoxic effects against eight glioma cell lines at micromolar concentrations. Inhibition of cell proliferation by C-150 was mediated by affecting multiple targets as confirmed at transcription and protein level. C-150 effectively reduced the transcription activation of NFkB, inhibited PKC-alpha which are constitutively over-expressed in glioblastoma. The effects of C-150 on the Akt/ Notch signaling were also demonstrated in a Drosophila tumorigenesis model. C-150 reduced the number of tumors in Drosophila with similar efficacy to mitoxantrone. In an in vivo orthotopic glioma model, C-150 significantly increased the median survival of treated nude rats compared to control animals. The multi-target action of C-150, and its preliminary in vivo efficacy would render this curcumin analogue as a potent clinical candidate against glioblastoma. PMID:26943907

  15. The Curcumin Analog C-150, Influencing NF-κB, UPR and Akt/Notch Pathways Has Potent Anticancer Activity In Vitro and In Vivo.

    PubMed

    Hackler, László; Ózsvári, Béla; Gyuris, Márió; Sipos, Péter; Fábián, Gabriella; Molnár, Eszter; Marton, Annamária; Faragó, Nóra; Mihály, József; Nagy, Lajos István; Szénási, Tibor; Diron, Andrea; Párducz, Árpád; Kanizsai, Iván; Puskás, László G

    2016-01-01

    C-150 a Mannich-type curcumin derivative, exhibited pronounced cytotoxic effects against eight glioma cell lines at micromolar concentrations. Inhibition of cell proliferation by C-150 was mediated by affecting multiple targets as confirmed at transcription and protein level. C-150 effectively reduced the transcription activation of NFkB, inhibited PKC-alpha which are constitutively over-expressed in glioblastoma. The effects of C-150 on the Akt/ Notch signaling were also demonstrated in a Drosophila tumorigenesis model. C-150 reduced the number of tumors in Drosophila with similar efficacy to mitoxantrone. In an in vivo orthotopic glioma model, C-150 significantly increased the median survival of treated nude rats compared to control animals. The multi-target action of C-150, and its preliminary in vivo efficacy would render this curcumin analogue as a potent clinical candidate against glioblastoma. PMID:26943907

  16. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells

    PubMed Central

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells. PMID:24591829

  17. Spectrometric study on the binding of curcumin with AOT: effect of micelle-to-vesicle transition.

    PubMed

    Zhou, Haibo; Yang, Qianqian; Wang, Xiaoyong

    2014-10-15

    In this work, the role of micelle-to-vesicle transition of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in the binding, stability and antioxidant activity of curcumin has been studied using absorption and fluorescence measurements. As AOT molecules aggregate into micelles and vesicles, curcumin bound with AOT often gives higher intensities of absorption and fluorescence than that of free curcumin. The most enhanced absorption and fluorescence of curcumin induced by AOT vesicles, are attributed to the location of curcumin in their lipid bilayer. The measurement of curcumin anisotropy suggests that the bilayer of AOT vesicles provides curcumin with a more hydrophobic microenvironment than the palisade layer of AOT micelles. The binding constant (Kb) of curcumin with AOT vesicles is three times that of curcumin with AOT micelles. Moreover, AOT vesicles are found to be superior to AOT micelles for enhancing the stability and radical scavenging ability of curcumin. PMID:24837931

  18. Curcumin and Health.

    PubMed

    Pulido-Moran, Mario; Moreno-Fernandez, Jorge; Ramirez-Tortosa, Cesar; Ramirez-Tortosa, Mcarmen

    2016-01-01

    Nowadays, there are some molecules that have shown over the years a high capacity to act against relevant pathologies such as cardiovascular disease, neurodegenerative disorders or cancer. This article provides a brief review about the origin, bioavailability and new research on curcumin and synthetized derivatives. It examines the beneficial effects on health, delving into aspects such as cancer, cardiovascular effects, metabolic syndrome, antioxidant capacity, anti-inflammatory properties, and neurological, liver and respiratory disorders. Thanks to all these activities, curcumin is positioned as an interesting nutraceutical. This is the reason why it has been subjected to several modifications in its structure and administration form that have permitted an increase in bioavailability and effectiveness against different diseases, decreasing the mortality and morbidity associated to these pathologies. PMID:26927041

  19. Determining whether curcumin degradation/condensation is actually bioactivation (Review).

    PubMed

    Jankun, Jerzy; Wyganowska-Świątkowska, Marzena; Dettlaff, Katarzyna; Jelińska, Anna; Surdacka, Anna; Wątróbska-Świetlikowska, Dorota; Skrzypczak-Jankun, Ewa

    2016-05-01

    Curcumin has been shown to exert therapeutic or protective effects against a variety of diseases, such as cancer, pulmonary diseases, neurological, liver, metabolic, autoimmune, cardiovascular diseases and numerous other chronic ailments. Over 116 clinical studies on curcumin in humans were registered with the US National Institutes of Health in 2015. However, it is mystifying how curcumin can be so effective in the treatment of many diseases since it has very low water solubility and bioavailability. Furthermore, curcumin is not stable under various conditions; its degradation or condensation into different bioactive compounds may be responsible for its biological activities rather than curcumin itself. In this review, we provide evidence of curcumin degradation and condensation into different compounds which have or may have health benefits themselves. Literature reviews strongly suggest that these molecules contribute to the observed health benefits, rather than curcumin itself. PMID:26985652

  20. Molecular mechanisms of curcumin action: gene expression.

    PubMed

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. PMID:22996381

  1. Novel dipeptide nanoparticles for effective curcumin delivery

    PubMed Central

    Alam, Shadab; Panda, Jiban J; Chauhan, Virander S

    2012-01-01

    Background: Curcumin, the principal curcuminoid of the popular Indian spice turmeric, has a wide spectrum of pharmaceutical properties such as antitumor, antioxidant, antiamyloid, and anti-inflammatory activity. However, poor aqueous solubility and low bioavailability of curcumin is a major challenge in its development as a useful drug. To enhance the aqueous solubility and bioavailability of curcumin, attempts have been made to encapsulate it in liposomes, polymeric nanoparticles (NPs), lipid-based NPs, biodegradable microspheres, cyclodextrin, and hydrogels. Methods: In this work, we attempted to entrap curcumin in novel self-assembled dipeptide NPs containing a nonprotein amino acid, α, β-dehydrophenylalanine, and investigated the biological activity of dipeptide-curcumin NPs in cancer models both in vitro and in vivo. Results: Of the several dehydrodipeptides tested, methionine-dehydrophenylalanine was the most suitable one for loading and release of curcumin. Loading of curcumin in the dipeptide NPs increased its solubility, improved cellular availability, enhanced its toxicity towards different cancerous cell lines, and enhanced curcumin’s efficacy towards inhibiting tumor growth in Balb/c mice bearing a B6F10 melanoma tumor. Conclusion: These novel, highly biocompatible, and easy to construct dipeptide NPs with a capacity to load and release curcumin in a sustained manner significantly improved curcumin’s cellular uptake without altering its anticancer or other therapeutic properties. Curcumin-dipeptide NPs also showed improved in vitro and in vivo chemotherapeutic efficacy compared to curcumin alone. Such dipeptide-NPs may also improve the delivery of other potent hydrophobic drug molecules that show poor cellular uptake, bioavailability, and efficacy. PMID:22915849

  2. Molecular analogs of the hemihelix: A computational study of chain molecules containing left- and right-handed helices

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2014-08-01

    Using density functional theory (DFT) we design two novel chain molecules containing a left-handed (thia)helicene unit connected to a right-handed (thia)helicene unit via a phosphoroussbnd phosphorous (Psbnd P) bond. These chains represent the molecular analogs of the novel hemihelix structure recently discovered by a group of Harvard University scientists. The HOMO and LUMO levels of the heterochiral chains, termed hemihelicenes, are localized on the left- and right-handed blocks, respectively. In contrast, the frontier orbitals of the chains containing homochiral (thia)helicenes connected by a Psbnd P bond are delocalized all over the chain.

  3. MicroRNA-33b, upregulated by EF24, a curcumin analog, suppresses the epithelial-to-mesenchymal transition (EMT) and migratory potential of melanoma cells by targeting HMGA2.

    PubMed

    Zhang, Pu; Bai, Huiyuan; Liu, Gentao; Wang, Heyong; Chen, Feng; Zhang, Baoshun; Zeng, Panying; Wu, Chengxiang; Peng, Cong; Huang, Changjin; Song, Yang; Song, Erqun

    2015-05-01

    Diphenyl difluoroketone (EF24), a curcumin analog, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. However, the efficacy and modes of action of EF24 on melanoma metastasis remain elusive. In this study, we found that at non-cytotoxic concentrations, EF24 suppressed cell motility and epithelial-to-mesenchymal Transition (EMT) of melanoma cell lines, Lu1205 and A375. EF24 also suppressed HMGA2 expression at mRNA and protein levels. miR-33b directly bound to HMGA2 3' untranslated region (3'-UTR) to suppress its expression as measured by dual-luciferase assay. EF24 increased expression of E-cadherin and decreased STAT3 phosphorylation and expression of the mesenchymal markers, vimentin and N-cadherin. miR-33b inhibition or HMGA2 overexpression reverted EF24-mediated suppression of EMT phenotypes. In addition, EF24 modulated the HMGA2-dependent actin stress fiber formation, focal adhesion assembly and FAK, Src and RhoA activation by targeting miR-33b. Thus, the results suggest that EF24 suppresses melanoma metastasis via upregulating miR-33b and concomitantly reducing HMGA2 expression. The observed activities of EF24 support its further evaluation as an anti-metastatic agent in melanoma therapy. PMID:25725129

  4. Carbon Dioxide Influence on the Thermal Formation of Complex Organic Molecules in Interstellar Ice Analogs

    NASA Astrophysics Data System (ADS)

    Vinogradoff, V.; Duvernay, F.; Fray, N.; Bouilloud, M.; Chiavassa, T.; Cottin, H.

    2015-08-01

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H2O, NH3, CO2, H2CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  5. Using Electron Induced Dissociation (EID) on an LC Time-Scale to Characterize a Mixture of Analogous Small Organic Molecules

    NASA Astrophysics Data System (ADS)

    Prakash, Aruna S.; Smith, Michael J. P.; Kaabia, Zied; Hurst, Glenn; Yan, Ci; Sims, Martin; Bristow, Anthony W. T.; Stokes, Peter; Parker, David; Mosely, Jackie A.

    2012-05-01

    LC ESI FTICR MS of a sample of cediranib identified this pharmaceutical target molecule plus an additional 10 compounds of interest, all of which were less than 10% total ion current (TIC) peak intensity relative to cediranib. LC FTICR tandem mass spectrometry using electron induced dissociation (EID) has been achieved and has proven to be the best way to generate useful product ion information for all of these singly protonated molecules. Cediranib [M + H]+ fragmented by EID to give 29 product ions whereas QTOF-CID generated only one very intense product ion, and linear ion trap-CID, which generated 10 product ions, but all with poor S/N. Twenty-six of the EID product ions were unique to this fragmentation technique alone. By considering the complementary LC-EID and LC-CID data together, all 10 unknown compounds were structurally characterized and proven to be analogous to cediranib. Of particular importance, EID produced unique product ion information for one of the low level cediranib analogues that enabled full characterization of the molecule such that the presence of an extra propylpyrrolidine group was discovered and proven to be located on the pyrrolidine ring of cediranib, solving an analytical problem that could not be solved by collision induced dissociation (CID). Thus, it has been demonstrated that EID is in harmony with the chromatography duty-cycle and the dynamic concentration range of synthetic compounds containing trace impurities, providing crucial analytical information that cannot be obtained by more traditional methodologies.

  6. Curcumin and aging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Curcumin has been used commonly as a spice, food additive, and an herbal medicine worldwide. Known as a bioactive polyphenolic, curcumin has a broad range of beneficial properties to human health. Recently, active research on curcumin with respect to aging and related traits in model organisms has d...

  7. The influence of curcumin and manganese complex of curcumin on cadmium-induced oxidative damage and trace elements status in tissues of mice.

    PubMed

    Eybl, Vladislav; Kotyzová, Dana; Lesetický, Ladislav; Bludovská, Monika; Koutenský, Jaroslav

    2006-01-01

    Curcumin (diferuoyl methane) from turmeric is a well-known biologically active compound. It has been shown to ameliorate oxidative stress and it is considered to be a potent cancer chemopreventive agent. In our previous study the antioxidative effects of curcumin in cadmium exposed animals were demonstrated. Also manganese exerts protective effects in experimental cadmium intoxication. The present study examined the ability of the manganese complex of curcumin (Mn-curcumin) and curcumin to protect against oxidative damage and changes in trace element status in cadmium-intoxicated male mice. Curcumin or Mn-curcumin were administered at equimolar doses (0.14 mmol/kg b.w.) for 3 days, by gastric gavages, dispersed in methylcellulose. One hour after the last dose of antioxidants, cadmium chloride (33 micromol/kg) was administered subcutaneously. Both curcumin and Mn-curcumin prevented the increase of hepatic lipid peroxidation -- expressed as MDA level, induced by cadmium intoxication and attenuated the Cd-induced decrease of hepatic GSH level. No change in hepatic glutathione peroxidase or catalase activities was found in Cd-exposed mice. A decreased GSH-Px activity was measured in curcumin and Mn-curcumin alone treated mice. Neither curcumin nor Mn-curcumin treatment influenced cadmium distribution in the tissues and did not correct the changes in the balance of essential elements caused by Cd-treatment. The treatment with Mn-curcumin increased the Fe and Mn content in the kidneys of both control and Cd-treated mice and Fe and Cu content in the brain of control mice. In conclusion, regarding the antioxidative action, introducing manganese into the curcumin molecule does not potentiate the studied effects of curcumin. PMID:16345010

  8. Measurements of Polyatomic Molecule Formation on an Icy Grain Analog Using Fast Atoms

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Madsunkov, S.; Shortt, B. J.; MacAskill, J. A.; Darrach, M. R.

    2006-01-01

    Carbon dioxide has been produced from the impact of a monoenergetic O(P-3) beam upon a surface cooled to 4.8 K and covered with a CO ice. Using temperature-programmed desorption and mass spectrometer detection, we have detected increasing amounts of CO2 formation with O(P-3) energies of 2, 5, 10, and 14 eV. This is the first measurement of polyatomic molecule formation on a surface with superthermal atoms. The goal of this work is to detect other polyatomic species, such as CH3OH, which can be formed under conditions that simulate the grain temperature, surface coverage, and superthermal atoms present in shock-heated circumstellar and interstellar regions.

  9. Synthesis of Large Molecules in Cometary Ice Analogs: Physical Properties Related to Self-Assembly Processes

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Sandford, Scott A.; Deamer, David W.; Gillette, J. Seb; Zare, Richard N.; Allamandola, Louis J. (Technical Monitor)

    1999-01-01

    The combination of realistic laboratory simulations and infrared observations have revolutionized our understanding of interstellar dust and ice-the main component of comets. Since comets and carbonaceous micrometeorites may have been important sources of volatiles and carbon compounds on the early Earth, their organic composition may be related to the origin of life. Ices on grains in molecular clouds contain a variety of simple molecules. The D/H ratios of the comets Hale-Bopp and Hyakutake are consistent with a primarily interstellar ice mixture. Within the cloud and especially in the presolar nebula through the early solar system, these icy grains would have been photoprocessed by the ultraviolet producing more complex species such as hexamethylenetetramine, polyoxymethylenes, and simple keones. We reported at the 1999 Bioastronomy meeting laboratory simulations studied to identify the types of molecules which could have been generated in pre-cometary ices. Experiments were conducted by forming a realistic interstellar mixed-molecular ice (H2O, CH3OH, NH3 and CO) at approximately 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The gas mixture was typically 100:50:1:1, however when different ratios were used material with similar characteristics was still produced. The residue that remained after warming to room temperature was analyzed by HPLC, and by several mass spectrometric methods. This material contains a rich mixture of complex compounds with mass spectral profiles resembling those found in IDPs and meteorites. Surface tension measurements show that an amphiphilic component is also present. These species do not appear in various controls or in unphotolyzed samples. Residues from the simulations were also dispersed in aqueous media for microscopy. The organic material forms 10-40 gm diameter droplets that fluoresce at 300-450 nm under UV excitation. These droplets have a morphology and internal structure which appear

  10. Interstellar PAH analogs in the laboratory: A step toward the identification and the quantification of organic molecules in space

    NASA Astrophysics Data System (ADS)

    Biennier, L.; Salama, F.; Gupta, M.; O'Keefe, A.

    In spite of recent progress in our understanding of the organic component of interstellar dust, little has been revealed about the identification and the quantification of large organic molecules in space (e.g., column densities of specific molecular species, physical and chemical processes of formation and destruction, etc...). Experimental studies of "true" cosmic organic analogs are essential to address theses issues. In our laboratory, we have developed a dedicated chamber to generate species under space-like conditions (i.e., free, cold, neutral and ionized species). The chamber is combined with a powerful state-of-the-art instrument to characterize the spectral fingerprints of these molecular species. Polycylic Aromatic Hydrocarbon (PAH) molecules are the precursors/building blocks of complex organic molecules and have been the first targets studied using this innovative approach. Our measurements provide data that can now be directly compared to astronomical spectra of the interstellar (IS) extinction curve and of the diffuse interstellar bands (DIBs), both tracers of cosmic organics. The harsh physical conditions of the diffuse IS medium - characterized by a low temperature, an absence of collisions and strong VUV radiation fields - are simulated in the laboratory by associating a free jet expansion with an ionizing discharge that altogether generate a cold plasma expansion in the chamber. The spectra of these organics are measured using two complementary high sensitivity techniques: Cavity Ring Down Spectroscopy (CRDS) and Multiplex Integrated Cavity Output Spectroscopy (MICOS). These two techniques have been applied to the measurement of the electronic spectrum of a set of representative PAHs such as the cold Naphthalene (C10H_8}) cation, neutral Methylnaphthalene (C11H10}), neutral and ionized Acenaphtene (C12H10), neutral Phenanthrene (C14H10), and neutral and ionized Pyrene (C16H10). These experiments provide unique information on the spectra of free

  11. Strategies to enhance the bioavailability of curcumin: a potential antitumor drug

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Chittigori, Joshna; Li, Lian; Samuelson, Lynne; Sandman, Daniel; Kumar, Jayant

    2012-02-01

    Curcumin is a polyphenol which has elicited considerable interest for its antioxidant and anti tumor properties. Although curcumin may be used as potential therapeutic drug, it is very sparingly soluble in water which makes it less bioavailable under physiological conditions. We report two approaches to make curcumin more bioavailable. The first approach involves fabricating colloidal dispersions of curcumin in the range of tens of nanometers. The second approach involves functionalization of curcumin with polyethylene glycol (PEG) to render it water dispersible or soluble. Since curcumin is a fluorescent molecule as well as a potential drug, its interactions with cells have been investigated using one and two photon confocal fluorescence imaging. We have also observed strong interaction between curcumin and metal ions, which may have physiological implications.

  12. Nanotechnology-Applied Curcumin for Different Diseases Therapy

    PubMed Central

    Ghalandarlaki, Negar; Ashkani-Esfahani, Soheil

    2014-01-01

    Curcumin is a lipophilic molecule with an active ingredient in the herbal remedy and dietary spice turmeric. It is used by different folks for treatment of many diseases. Recent studies have discussed poor bioavailability of curcumin because of poor absorption, rapid metabolism, and rapid systemic elimination. Nanotechnology is an emerging field that is potentially changing the way we can treat diseases through drug delivery with curcumin. The recent investigations established several approaches to improve the bioavailability, to increase the plasma concentration, and to enhance the cellular permeability processes of curcumin. Several types of nanoparticles have been found to be suitable for the encapsulation or loading of curcumin to improve its therapeutic effects in different diseases. Nanoparticles such as liposomes, polymeric nanoparticles, micelles, nanogels, niosomes, cyclodextrins, dendrimers, silvers, and solid lipids are emerging as one of the useful alternatives that have been shown to deliver therapeutic concentrations of curcumin. This review shows that curcumin's therapeutic effects may increase to some extent in the presence of nanotechnology. The presented board of evidence focuses on the valuable special effects of curcumin on different diseases and candidates it for future clinical studies in the realm of these diseases. PMID:24995293

  13. Novel delivery system for natural products: Nano-curcumin formulations

    PubMed Central

    Rahimi, Hamid Reza; Nedaeinia, Reza; Sepehri Shamloo, Alireza; Nikdoust, Shima; Kazemi Oskuee, Reza

    2016-01-01

    Objective: Curcumin is extracted from Curcuma longa and regulates the intracellular signal pathways which control the growth of cancerous cell, inflammation, invasion and apoptosis. Curcumin molecules have special intrinsic features that can target the intracellular enzymes, genome (DNA) and messengers (RNA). A wide range of studies have been conducted on the physicochemical traits and pharmacological effects of curcumin on different diseases like cardiovascular diseases, diabetes, cancer, rheumatoid arthritis, Alzheimer’s, inflammatory bowel disease (IBD), and even it has wound healing. Oral bioavailability of curcumin is rather poor, which would certainly put some boundaries in the employment of this drug. Materials and Methods: Bibliographical searches were performed using MEDLINE/ScienceDirect/OVID up to February 2015 using the following keywords (all fields): (“Curcumin” OR “Curcuma longa”) AND [(nanoparticles) OR (Nanomicelles) OR (micro emulsions) OR (liposome) OR (phospholipid). Results: Consequently, for any developments of curcumin in the future, analogues of curcumin that have better bioavailability or substitute formulations are needed crucially. Conclusion: These studies indicated that nanotechnology can formulate curcumin effectively, and this nano-formulated curcumin with a potent ability against various cancer cells, were represented to have better efficacy and bioavailability under in vivo conditions. PMID:27516979

  14. Curcumin nanomedicine: a road to cancer therapeutics.

    PubMed

    Yallapu, Murali M; Jaggi, Meena; Chauhan, Subhash C

    2013-01-01

    Cancer is the second leading cause of death in the United States. Conventional therapies cause widespread systemic toxicity and lead to serious side effects which prohibit their long term use. Additionally, in many circumstances tumor resistance and recurrence is commonly observed. Therefore, there is an urgent need to identify suitable anticancer therapies that are highly precise with minimal side effects. Curcumin is a natural polyphenol molecule derived from the Curcuma longa plant which exhibits anticancer, chemopreventive, chemo- and radio-sensitization properties. Curcumin's widespread availability, safety, low cost and multiple cancer fighting functions justify its development as a drug for cancer treatment. However, various basic and clinical studies elucidate curcumin's limited efficacy due to its low solubility, high rate of metabolism, poor bioavailability and pharmacokinetics. A growing list of nanomedicine(s) using first line therapeutic drugs have been approved or are under consideration by the Food and Drug Administration (FDA) to improve human health. These nanotechnology strategies may help to overcome challenges and ease the translation of curcumin from bench to clinical application. Prominent research is reviewed which shows that advanced drug delivery of curcumin (curcumin nanoformulations or curcumin nanomedicine) is able to leverage therapeutic benefits by improving bioavailability and pharmacokinetics which in turn improves binding, internalization and targeting of tumor(s). Outcomes using these novel drug delivery systems have been discussed in detail. This review also describes the tumor-specific drug delivery system(s) that can be highly effective in destroying tumors. Such new approaches are expected to lead to clinical trials and to improve cancer therapeutics. PMID:23116309

  15. Therapeutic potential of curcumin in digestive diseases

    PubMed Central

    Dulbecco, Pietro; Savarino, Vincenzo

    2013-01-01

    Curcumin is a low-molecular-weight hydrophobic polyphenol that is extracted from turmeric, which possesses a wide range of biological properties including anti-inflammatory, anti-oxidant, anti-proliferative and anti-microbial activities. Despite its diverse targets and substantial safety, clinical applications of this molecule for digestive disorders have been largely limited to case series or small clinical trials. The poor bioavailability of curcumin is likely the major hurdle for its more widespread use in humans. However, complexation of curcumin into phytosomes has recently helped to bypass this problem, as it has been demonstrated that this new lecithin formulation enables increased absorption to a level 29-fold higher than that of traditional curcuminoid products. This allows us to achieve much greater tissue substance delivery using significantly lower doses of curcumin than have been used in past clinical studies. As curcumin has already been shown to provide good therapeutic results in some small studies of both inflammatory and neoplastic bowel disorders, it is reasonable to anticipate an even greater efficacy with the advent of this new technology, which remarkably improves its bioavailability. These features are very promising and may represent a novel and effective therapeutic approach to both functional and organic digestive diseases. PMID:24409053

  16. Therapeutic potential of curcumin in digestive diseases.

    PubMed

    Dulbecco, Pietro; Savarino, Vincenzo

    2013-12-28

    Curcumin is a low-molecular-weight hydrophobic polyphenol that is extracted from turmeric, which possesses a wide range of biological properties including anti-inflammatory, anti-oxidant, anti-proliferative and anti-microbial activities. Despite its diverse targets and substantial safety, clinical applications of this molecule for digestive disorders have been largely limited to case series or small clinical trials. The poor bioavailability of curcumin is likely the major hurdle for its more widespread use in humans. However, complexation of curcumin into phytosomes has recently helped to bypass this problem, as it has been demonstrated that this new lecithin formulation enables increased absorption to a level 29-fold higher than that of traditional curcuminoid products. This allows us to achieve much greater tissue substance delivery using significantly lower doses of curcumin than have been used in past clinical studies. As curcumin has already been shown to provide good therapeutic results in some small studies of both inflammatory and neoplastic bowel disorders, it is reasonable to anticipate an even greater efficacy with the advent of this new technology, which remarkably improves its bioavailability. These features are very promising and may represent a novel and effective therapeutic approach to both functional and organic digestive diseases. PMID:24409053

  17. A magnetically drivable nanovehicle for curcumin with antioxidant capacity and MRI relaxation properties.

    PubMed

    Magro, Massimiliano; Campos, René; Baratella, Davide; Lima, Giuseppina; Holà, Katerina; Divoky, Clemens; Stollberger, Rudolf; Malina, Ondrej; Aparicio, Claudia; Zoppellaro, Giorgio; Zbořil, Radek; Vianello, Fabio

    2014-09-01

    Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be linked to its potent antioxidant capacity. Superparamagnetic maghemite (γ-Fe2 O3 ), called surface-active maghemite nanoparticles (SAMNs) were surface-modified with curcumin molecules, due to the presence of under-coordinated Fe(III) atoms on the nanoparticle surface. The so-obtained curcumin-modified SAMNs (SAMN@curcumin) had a mean size of 13±4 nm. SAMN@curcumin was characterized by transmission and scanning electron microscopy, UV/Vis, FTIR, and Mössbauer spectroscopy, X-ray powder diffraction, bulk susceptibility (SQUID), and relaxometry measurements (MRI imaging). The high negative contrast proclivity of SAMN@curcumin to act as potential contrast agent in MRI screenings was also tested. Moreover, the redox properties of bound curcumin were probed by electrochemistry. SAMN@curcumin was studied in the presence of different electroactive molecules, namely hydroquinone, NADH and ferrocyanide, to assess its redox behavior. Finally, SAMN@curcumin was electrochemically probed in the presence of hydrogen peroxide, demonstrating the stability and reactivity of bound curcumin. PMID:25079005

  18. Curcumin rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection

    PubMed Central

    Eng, Su-Anne; Nathan, Sheila

    2015-01-01

    The tropical pathogen Burkholderia pseudomallei requires long-term parenteral antimicrobial treatment to eradicate the pathogen from an infected patient. However, the development of antibiotic resistance is emerging as a threat to this form of treatment. To meet the need for alternative therapeutics, we proposed a screen of natural products for compounds that do not kill the pathogen, but in turn, abrogate bacterial virulence. We suggest that the use of molecules or compounds that are non-bactericidal (bacteriostatic) will reduce or abolish the development of resistance by the pathogen. In this study, we adopted the established Caenorhabditis elegans-B. pseudomallei infection model to screen a collection of natural products for any that are able to extend the survival of B. pseudomallei infected worms. Of the 42 natural products screened, only curcumin significantly improved worm survival following infection whilst not affecting bacterial growth. This suggested that curcumin promoted B. pseudomallei-infected worm survival independent of pathogen killing. To validate that the protective effect of curcumin was directed toward the pathogen, bacteria were treated with curcumin prior to infection. Worms fed with curcumin-treated bacteria survived with a significantly extended mean-time-to-death (p < 0.0001) compared to the untreated control. In in vitro assays, curcumin reduced the activity of known virulence factors (lipase and protease) and biofilm formation. To determine if other bacterial genes were also regulated in the presence of curcumin, a genome-wide transcriptome analysis was performed on curcumin-treated pathogen. A number of genes involved in iron acquisition and transport as well as genes encoding hypothetical proteins were induced in the presence of curcumin. Thus, we propose that curcumin may attenuate B. pseudomallei by modulating the expression of a number of bacterial proteins including lipase and protease as well as biofilm formation whilst

  19. Curcumin in inflammatory diseases.

    PubMed

    Shehzad, Adeeb; Rehman, Gauhar; Lee, Young Sup

    2013-01-01

    Curcumin (diferuloylmethane), a yellow coloring agent extracted from turmeric is also used as a remedy for the treatment and prevention of inflammatory diseases. Acute and chronic inflammation is a major factor in the progression of obesity, type II diabetes, arthritis, pancreatitis, cardiovascular, neurodegenerative and metabolic diseases, as well as certain types of cancer. Turmeric has a long history of use in Ayurvedic medicine for the treatment of inflammatory disorders. Recent studies on the efficacy and therapeutic applicability of turmeric have suggested that the active ingredient of tumeric is curcumin. Further, compelling evidence has shown that curcumin has the ability to inhibit inflammatory cell proliferation, invasion, and angiogenesis through multiple molecular targets and mechanisms of action. Curcumin is safe, non-toxic, and mediates its anti-inflammatory effects through the down-regulation of inflammatory transcription factors, cytokines, redox status, protein kinases, and enzymes that all promote inflammation. In addition, curcumin induces apoptosis through mitochondrial and receptor-mediated pathways, as well as activation of caspase cascades. In the current study, the anti-inflammatory effects of curcumin were evaluated relative to various chronic inflammatory diseases. Based on the available pharmacological data obtained from in vitro and in vivo research, as well as clinical trials, an opportunity exists to translate curcumin into clinics for the prevention of inflammatory diseases in the near future. PMID:23281076

  20. Unraveling Curcumin Degradation

    PubMed Central

    Gordon, Odaine N.; Luis, Paula B.; Sintim, Herman O.; Schneider, Claus

    2015-01-01

    Curcumin is a dietary anti-inflammatory and chemopreventive agent consisting of two methoxyphenol rings connected by a conjugated heptadienedione chain. Curcumin is unstable at physiological pH and rapidly degrades in an autoxidation reaction to a major bicyclopentadione product in which the 7-carbon chain has undergone oxygenation and double cyclization. Early degradation products (but not the final bicyclopentadione) mediate topoisomerase poisoning and possibly many other activities of curcumin, but it is not known how many and what autoxidation products are formed, nor their mechanism of formation. Here, using [14C2]curcumin as a tracer, seven novel autoxidation products, including two reaction intermediates, were isolated and identified using one- and two-dimensional NMR and mass spectrometry. The unusual spiroepoxide and vinylether reaction intermediates are precursors to the final bicyclopentadione product. A mechanism for the autoxidation of curcumin is proposed that accounts for the addition and exchange of oxygen that have been determined using 18O2 and H218O. Several of the by-products are formed from an endoperoxide intermediate via reactions that are well precedented in lipid peroxidation. The electrophilic spiroepoxide intermediate formed a stable adduct with N-acetylcysteine, suggesting that oxidative transformation is required for biological effects mediated by covalent adduction to protein thiols. The spontaneous autoxidation distinguishes curcumin among natural polyphenolic compounds of therapeutic interest; the formation of chemically diverse reactive and electrophilic products provides a novel paradigm for understanding the polypharmacological effects of curcumin. PMID:25564617

  1. Curcumin phytosomal softgel formulation: Development, optimization and physicochemical characterization.

    PubMed

    Allam, Ahmed N; Komeil, Ibrahim A; Abdallah, Ossama Y

    2015-09-01

    Curcumin, a naturally occurring lipophilic molecule can exert multiple and diverse bioactivities. However, its limited aqueous solubility and extensive presystemic metabolism restrict its bioavailability. Curcumin phytosomes were prepared by a simple solvent evaporation method where free flowing powder was obtained in addition to a newly developed semisolid formulation to increase curcumin content in softgels. Phytosomal powder was characterized in terms of drug content and zeta potential. Thirteen different softgel formulations were developed using oils such as Miglyol 812, castor oil and oleic acid, a hydrophilic vehicle such as PEG 400 and bioactive surfactants such as Cremophor EL and KLS P 124. Selected formulations were characterized in terms of curcumin in vitro dissolution. TEM analysis revealed good stability and a spherical, self-closed structure of curcumin phytosomes in complex formulations. Stability studies of chosen formulations prepared using the hydrophilic vehicle revealed a stable curcumin dissolution pattern. In contrast, a dramatic decrease in curcumin dissolution was observed in case of phytosomes formulated in oily vehicles. PMID:26431106

  2. Curcumin ameliorates experimental autoimmune myasthenia gravis by diverse immune cells.

    PubMed

    Wang, Shan; Li, Heng; Zhang, Min; Yue, Long-Tao; Wang, Cong-Cong; Zhang, Peng; Liu, Ying; Duan, Rui-Sheng

    2016-07-28

    Curcumin is a traditional Asian medicine with diverse immunomodulatory properties used therapeutically in the treatment of many autoimmune diseases. However, the effects of curcumin on myasthenia gravis (MG) remain undefined. Here we investigated the effects and potential mechanisms of curcumin in experimental autoimmune myasthenia gravis (EAMG). Our results demonstrated that curcumin ameliorated the clinical scores of EAMG, suppressed the expression of T cell co-stimulatory molecules (CD80 and CD86) and MHC class II, down-regulated the levels of pro-inflammatory cytokines (IL-17, IFN-γ and TNF-α) and up-regulated the levels of the anti-inflammatory cytokine IL-10, shifted the balance from Th1/Th17 toward Th2/Treg, and increased the numbers of NKR-P1(+) cells (natural killer cell receptor protein 1 positive cells, including NK and NKT cells). Moreover, the administration of curcumin promoted the differentiation of B cells into a subset of B10 cells, increased the anti-R97-166 peptide IgG1 levels and decreased the relative affinity indexes of anti-R97-116 peptide IgG. In summary, curcumin effectively ameliorate EAMG, indicating that curcumin may be a potential candidate therapeutic agent for MG. PMID:27181511

  3. Role of microRNAs in the Therapeutic Effects of Curcumin in Non-Cancer Diseases.

    PubMed

    Momtazi, Amir Abbas; Derosa, Giuseppe; Maffioli, Pamela; Banach, Maciej; Sahebkar, Amirhossein

    2016-08-01

    Curcumin is a bioactive polyphenol occurring in the rhizomes of Curcuma longa. It is well-reputed for its chemopreventive and anticancer properties; however, recent evidence has revealed numerous biological and pharmacological effects of curcumin that are relevant to the treatment of non-cancer diseases. Mechanistically, curcumin exerts its pharmacological effects through anti-inflammatory and antioxidant mechanisms via interaction with different signaling molecules and transcription factors. In addition, epigenetic modulators such as microRNAs (miRs) have emerged as novel targets of curcumin. Curcumin was found to modulate the expression of several pathogenic miRs in brain, ocular, renal, and liver diseases. The present systematic review was conducted to identify miRs that are regulated by curcumin in non-cancer diseases. PMID:27241179

  4. Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes.

    PubMed

    El Khoury, Elsy; Patra, Digambara

    2016-05-01

    Using fluorescence quenching of curcumin in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes by brominated derivatives of fatty acids, the location of curcumin has been studied, which indicates length of hydrocarbon chain has an effect on the location of curcumin in liposomes. Change of fluorescence intensity of curcumin with temperature in the presence of liposomes helps to estimate the phase transition temperature of these liposomes, thus, influence of cholesterol on liposome properties has been studied using curcumin as a molecule probe. The cooperativity due to the interactions between the hydrocarbon chains during melting accelerates the phase transition of DPPC liposomes in the presence of high percentage of cholesterol whereas high percentage of cholesterol generates a rather rigid DMPC liposome over a wide range of temperatures. We used ethanol to induce interdigitation between the hydrophobic chains of the lipids and studied this effect using curcumin as fluorescence probe. As a result of interdigitation, curcumin fluorescence is quenched in liposomes. The compact arrangement of the acyl chains prevents curcumin from penetrating deep near the midplane. In the liquid crystalline phase ethanol introduces a kind of order to the more fluid liposome, and does not leave space for curcumin to be inserted away from water. PMID:26945646

  5. Renoprotective effect of the antioxidant curcumin: Recent findings☆

    PubMed Central

    Trujillo, Joyce; Chirino, Yolanda Irasema; Molina-Jijón, Eduardo; Andérica-Romero, Ana Cristina; Tapia, Edilia; Pedraza-Chaverrí, José

    2013-01-01

    For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China, curcumin is considered as a therapeutic agent used in several foods. Numerous studies have shown that curcumin has broad biological functions particularly antioxidant and antiinflammatory. In fact, it has been established that curcumin is a bifunctional antioxidant; it exerts antioxidant activity in a direct and an indirect way by scavenging reactive oxygen species and inducing an antioxidant response, respectively. The renoprotective effect of curcumin has been evaluated in several experimental models including diabetic nephropathy, chronic renal failure, ischemia and reperfusion and nephrotoxicity induced by compounds such as gentamicin, adriamycin, chloroquine, iron nitrilotriacetate, sodium fluoride, hexavalent chromium and cisplatin. It has been shown recently in a model of chronic renal failure that curcumin exerts a therapeutic effect; in fact it reverts not only systemic alterations but also glomerular hemodynamic changes. Another recent finding shows that the renoprotective effect of curcumin is associated to preservation of function and redox balance of mitochondria. Taking together, these studies attribute the protective effect of curcumin in the kidney to the induction of the master regulator of antioxidant response nuclear factor erythroid-derived 2 (Nrf2), inhibition of mitochondrial dysfunction, attenuation of inflammatory response, preservation of antioxidant enzymes and prevention of oxidative stress. The information presented in this paper identifies curcumin as a promising renoprotective molecule against renal injury. PMID:24191240

  6. Multitargeting by curcumin as revealed by molecular interaction studies

    PubMed Central

    Gupta, Subash C.; Prasad, Sahdeo; Kim, Ji Hye; Patchva, Sridevi; Webb, Lauren J.; Priyadarsini, Indira K.

    2012-01-01

    Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca2+ ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto–enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting

  7. The targets of curcumin.

    PubMed

    Zhou, Hongyu; Beevers, Christopher S; Huang, Shile

    2011-03-01

    Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-kB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer's disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here. PMID:20955148

  8. Targets of curcumin

    PubMed Central

    Zhou, Hongyu; Beevers, Christopher S.; Huang, Shile

    2010-01-01

    Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-κB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer’s disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here. PMID:20955148

  9. Synthesis and Evaluation of the Anti-Oxidant Capacity of Curcumin Glucuronides, the Major Curcumin Metabolites

    PubMed Central

    Choudhury, Ambar K.; Raja, Suganya; Mahapatra, Sanjata; Nagabhushanam, Kalyanam; Majeed, Muhammed

    2015-01-01

    Curcumin metabolites namely curcumin monoglucuronide and curcumin diglucuronide were synthesized using an alternative synthetic approach. The anti-oxidant potential of these curcumin glucuronides was compared with that of curcumin using DPPH scavenging method and Oxygen Radical Absorbance Capacity (ORAC) assay. The results show that curcumin monoglucuronide exhibits 10 fold less anti-oxidant activity (DPPH method) and the anti-oxidant capacity of curcumin diglucuronide is highly attenuated compared to the anti-oxidant activity of curcumin. PMID:26783957

  10. A "roller-wheel" Pt-containing small molecule that outperforms its polymer analogs in organic solar cells

    DOE PAGESBeta

    He, Wenhan; Wu, Qin; Livshits, Maksim Y.; Dickie, Diane A.; Yang, Jianzhong; Quinnett, Rachel; Rack, Jeffrey R.; Qin, Yang

    2016-05-23

    A novel Pt-bisacetylide small molecule (Pt-SM) featuring “roller-wheel” geometry was synthesized and characterized. When compared with conventional Pt-containing polymers and small molecules having “dumbbell” shaped structures, Pt-SM displays enhanced crystallinity and intermolecular π–π interactions, as well as favorable panchromatic absorption behaviors. Furthermore, organic solar cells (OSCs) employing Pt-SM achieve power conversion efficiencies (PCEs) up to 5.9%, the highest reported so far for Pt-containing polymers and small molecules.

  11. Curcumin Nanomedicine: A Road to Cancer Therapeutics

    PubMed Central

    Yallapu, Murali M.; Jaggi, Meena; Chauhan, Subhash C.

    2013-01-01

    Cancer is the second leading cause of death in the United States. Conventional therapies cause widespread systemic toxicity and lead to serious side effects which prohibit their long term use. Additionally, in many circumstances tumor resistance and recurrence is commonly observed. Therefore, there is an urgent need to identify suitable anticancer therapies that are highly precise with minimal side effects. Curcumin is a natural polyphenol molecule derived from the Curcuma longa plant which exhibits anticancer, chemo-preventive, chemo- and radio-sensitization properties. Curcumin’s widespread availability, safety, low cost and multiple cancer fighting functions justify its development as a drug for cancer treatment. However, various basic and clinical studies elucidate curcumin’s limited efficacy due to its low solubility, high rate of metabolism, poor bioavailability and pharmacokinetics. A growing list of nanomedicine(s) using first line therapeutic drugs have been approved or are under consideration by the Food and Drug Administration (FDA) to improve human health. These nanotechnology strategies may help to overcome challenges and ease the translation of curcumin from bench to clinical application. Prominent research is reviewed which shows that advanced drug delivery of curcumin (curcumin nanoformulations or curcumin nanomedicine) is able to leverage therapeutic benefits by improving bioavailability and pharmacokinetics which in turn improves binding, internalization and targeting of tumor(s). Outcomes using these novel drug delivery systems have been discussed in detail. This review also describes the tumor-specific drug delivery system(s) that can be highly effective in destroying tumors. Such new approaches are expected to lead to clinical trials and to improve cancer therapeutics. PMID:23116309

  12. Quantum Chemical and Docking Insights into Bioavailability Enhancement of Curcumin by Piperine in Pepper.

    PubMed

    Patil, Vaishali M; Das, Sukanya; Balasubramanian, Krishnan

    2016-05-26

    We combine quantum chemical and molecular docking techniques to provide new insights into how piperine molecule in various forms of pepper enhances bioavailability of a number of drugs including curcumin in turmeric for which it increases its bioavailability by a 20-fold. We have carried out docking studies of quantum chemically optimized piperine structure binding to curcumin, CYP3A4 in cytochrome P450, p-Glycoprotein and UDP-glucuronosyltransferase (UGT), the enzyme responsible for glucuronosylation, which increases the solubility of curcumin. All of these studies establish that piperine binds to multiple sites on the enzymes and also intercalates with curcumin forming a hydrogen bonded complex with curcumin. The conjugated network of double bonds and the presence of multiple charge centers of piperine offer optimal binding sites for piperine to bind to enzymes such as UDP-GDH, UGT, and CYP3A4. Piperine competes for curcumin's intermolecular hydrogen bonding and its stacking propensity by hydrogen bonding with enolic proton of curcumin. This facilitates its metabolic transport, thereby increasing its bioavailability both through intercalation into curcumin layers through intermolecular hydrogen bonding, and by inhibiting enzymes that cause glucuronosylation of curcumin. PMID:27111639

  13. Immune response modulation by curcumin in a latex allergy model

    PubMed Central

    Kurup, Viswanath P; Barrios, Christy S; Raju, Raghavan; Johnson, Bryon D; Levy, Michael B; Fink, Jordan N

    2007-01-01

    Background There has been a worldwide increase in allergy and asthma over the last few decades, particularly in industrially developed nations. This resulted in a renewed interest to understand the pathogenesis of allergy in recent years. The progress made in the pathogenesis of allergic disease has led to the exploration of novel alternative therapies, which include herbal medicines as well. Curcumin, present in turmeric, a frequently used spice in Asia has been shown to have anti-allergic and inflammatory potential. Methods We used a murine model of latex allergy to investigate the role of curcumin as an immunomodulator. BALB/c mice were exposed to latex allergens and developed latex allergy with a Th2 type of immune response. These animals were treated with curcumin and the immunological and inflammatory responses were evaluated. Results Animals exposed to latex showed enhanced serum IgE, latex specific IgG1, IL-4, IL-5, IL-13, eosinophils and inflammation in the lungs. Intragastric treatment of latex-sensitized mice with curcumin demonstrated a diminished Th2 response with a concurrent reduction in lung inflammation. Eosinophilia in curcumin-treated mice was markedly reduced, co-stimulatory molecule expression (CD80, CD86, and OX40L) on antigen-presenting cells was decreased, and expression of MMP-9, OAT, and TSLP genes was also attenuated. Conclusion These results suggest that curcumin has potential therapeutic value for controlling allergic responses resulting from exposure to allergens. PMID:17254346

  14. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells.

    PubMed

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu; Wu, Jincai; Fang, Jianguo

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. PMID:22634334

  15. Myelopotentiating effect of curcumin in tumor-bearing host: Role of bone marrow resident macrophages

    SciTech Connect

    Vishvakarma, Naveen Kumar; Kumar, Anjani; Kumar, Ajay; Kant, Shiva; Bharti, Alok Chandra; Singh, Sukh Mahendra

    2012-08-15

    The present investigation was undertaken to study if curcumin, which is recognized for its potential as an antineoplastic and immunopotentiating agent, can also influence the process of myelopoiesis in a tumor-bearing host. Administration of curcumin to tumor-bearing host augmented count of bone marrow cell (BMC) accompanied by an up-regulated BMC survival and a declined induction of apoptosis. Curcumin administration modulated expression of cell survival regulatory molecules: Bcl2, p53, caspase-activated DNase (CAD) and p53-upregulated modulator of apoptosis (PUMA) along with enhanced expression of genes of receptors for M-CSF and GM-CSF in BMC. The BMC harvested from curcumin-administered hosts showed an up-regulated colony forming ability with predominant differentiation into bone marrow-derived macrophages (BMDM), responsive for activation to tumoricidal state. The number of F4/80 positive bone marrow resident macrophages (BMM), showing an augmented expression of M-CSF, was also augmented in the bone marrow of curcumin-administered host. In vitro reconstitution experiments indicated that only BMM of curcumin-administered hosts, but not in vitro curcumin-exposed BMM, augmented BMC survival. It suggests that curcumin-dependent modulation of BMM is of indirect nature. Such prosurvival action of curcumin is associated with altered T{sub H1}/T{sub H2} cytokine balance in serum. Augmented level of serum-borne IFN-γ was found to mediate modulation of BMM to produce enhanced amount of monokines (IL-1, IL-6, TNF-α), which are suggested to augment the BMC survival. Taken together the present investigation indicates that curcumin can potentiate myelopoiesis in a tumor-bearing host, which may have implications in its therapeutic utility. Highlights: ► Curcumin augments myelopoiesis in tumor-bearing host. ► Bone marrow resident macrophages mediate curcumin-dependent augmented myelopoiesis. ► Serum borne cytokine are implicated in modulation of bone marrow resident

  16. Curcumin: a natural substance with potential efficacy in Alzheimer’s disease

    PubMed Central

    Potter, Pamela E

    2013-01-01

    Curcumin is a component of turmeric, a spice used in many types of cooking. Epidemiological evidence suggesting that populations that eat food with a substantial amount of curcumin were at lower risk of Alzheimer’s disease (AD) led to the idea that this compound might have a neuroprotective effect. Curcumin has substantial antioxidant and anti-inflammatory effects, and is being used as a potential preventative agent or treatment for many types of cancer. There is evidence to suggest that the addition of curcumin to cultured neuronal cells decreases brain inflammation and protects against β-amyloid-induced neurotoxicity. Curcumin also protects against toxicity when β-amyloid is administered to produce animal models of AD. Curcumin decreases β-amyloid formation from amyloid precursor protein, and also inhibits aggregation of β-amyloid into pleated sheets. Studies in transgenic mice with overproduction of β-amyloid demonstrate a neuroprotective effect of curcumin as well. Cognitive function was also improved in these animal models. Clinical trials of curcumin in AD have not been very promising. It is possible that this is due to poor oral bioavailability of curcumin in humans, and thus several approaches are being developed to improve delivery systems or to create analogs that will mimic the neuroprotective effects and easily reach the brain. The lack of efficacy of curcumin in humans with AD may also result from treating for too short a time or starting treatment too late in the course of the disease, where substantial neuronal death has already occurred and cannot be reversed. Curcumin may be beneficial in protecting against development or progression of AD if taken over the long term and started before symptoms of AD become apparent. PMID:27186134

  17. Chemical and structural features influencing the biological activity of curcumin.

    PubMed

    Priyadarsini, K Indira

    2013-01-01

    Curcumin, a polyphenolic natural product, exhibits therapeutic activity against a number of diseases, attributed mainly to its chemical structure and unique physical, chemical, and biological properties. It is a diferuloyl methane molecule [1,7-bis (4-hydroxy-3- methoxyphenyl)-1,6-heptadiene-3,5-dione)] containing two ferulic acid residues joined by a methylene bridge. It has three important functionalities: an aromatic o-methoxy phenolic group, α, β-unsaturated β-diketo moiety and a seven carbon linker. Extensive research in the last two decades has provided evidence for the role of these different functional groups in its crucial biological activities. A few highlights of chemical structural features associated with the biological activity of curcumin are: The o-methoxyphenol group and methylenic hydrogen are responsible for the antioxidant activity of curcumin, and curcumin donates an electron/ hydrogen atom to reactive oxygen species. Curcumin interacts with a number of biomolecules through non-covalent and covalent binding. The hydrogen bonding and hydrophobicity of curcumin, arising from the aromatic and tautomeric structures along with the flexibility of the linker group are responsible for the non-covalent interactions. The α, β-unsaturated β-diketone moiety covalently interacts with protein thiols, through Michael reaction. The β-diketo group forms chelates with transition metals, there by reducing the metal induced toxicity and some of the metal complexes exhibit improved antioxidant activity as enzyme mimics. New analogues with improved activity are being developed with modifications on specific functional groups of curcumin. The physico-chemical and structural features associated with some of the biological activities of curcumin and important analogues are summarized in this article. PMID:23116315

  18. A comparative study of diastereomeric complexes formed by a prochiral substrate and three structurally analogous chiral molecules on Pt(111)

    NASA Astrophysics Data System (ADS)

    Lemay, Jean-Christian; Dong, Yi; Groves, Michael N.; Demers-Carpentier, Vincent; Goubert, Guillaume; Lafleur-Lambert, Raphaël; Boukouvalas, John; Hammer, Bjørk; McBreen, Peter H.

    2016-04-01

    A comparative study of chemisorbed bimolecular diastereomeric complexes formed by three structurally analogous chiral modifiers and a prochiral substrate on Pt(111) was performed using scanning tunneling microscopy (STM) and density functional theory (DFT) methods. The experiments determine, subject to a number of assumptions, the abundant binding configurations and whether the complexed substrate is organized into pro-S or pro-R states. The overall prochiral ratio (pr) estimated in this manner may be compared in each case to literature values for the enantiomeric ratio (er) observed in catalysis experiments. The experiments were performed using ketopantolactone as the substrate and (R)-1-(1-naphthyl)ethylamine, (R)-N-Methyl-1-(1-naphthyl)ethylamine and (R)-1-naphthyl-1,2-ethanediol as the structurally analogous chiral modifiers. The STM measurements were performed at room temperature to better mimic conditions under which the catalytic studies reported in the literature were performed. The results are discussed in terms of the stereochemical effects of subtle modifications of the structure of the chiral modifier.

  19. Study on interaction of bile salts with curcumin and curcumin embedded in dipalmitoyl-sn-glycero-3-phosphocholine liposome.

    PubMed

    Patra, Digambara; Ahmadieh, Diana; Aridi, Riwa

    2013-10-01

    Curcumin, often used as a food spice, is a natural polyphenol that has various medicinal benefits such as anti-cancer, anti-amyloid, anti-oxidant, and anti-inflammatory properties, among others. The interaction between bile salts having physiological significance and curcumin suggests the aggregation of bile salts dramatically alters the absorption and fluorescence parameters of curcumin. The fluorescence emission maximum as well as the intensity can easily detect critical micellar concentration of sodium cholate and sodium deoxycholate respectively to be 16 and 6mM at room temperature. The mechanism of interaction of curcumin with bile salts has been presented at low, intermediate and high bile salt concentrations and depends on temperature. In the presence of bile salts the DPPH scavenging activity was preserved, though less than in the presence of curcumin alone. The effect of submicellar concentration, 5-50μM, of bile salt with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes in solid gel and liquid crystalline phases has been investigated using curcumin as an embedded probe in the membrane. The curcumin based fluorescence probing method indicates even at very low concentration, ∼5μM, incorporation of monomeric bile salt molecules disorders the membrane properties. Expulsion of curcumin from the membrane in the presence of bile salt is ruled out, suggesting wetting of membrane. Alteration of membrane fluidity by bile salts is found to have an opposing effect in the liquid crystalline phase compared to in the solid gel phase, and is sensitive to the nature of bile salt. The permeability in the liquid crystalline phase decreases in the presence of bile salt. The phase transition temperature of the membrane is influenced by bile salt. PMID:23732808

  20. Dissolution enhancement of curcumin via curcumin-prebiotic inulin nanoparticles.

    PubMed

    Fares, Mohammad M; Salem, Mu'taz Sheikh

    2015-01-01

    Dissolution enhancement of curcumin via prebiotic inulin designed to orally deliver poorly water-soluble curcumin at duodenum low acidity (pH 5.5) was investigated. Different prebiotic inulin-curcumin nanoparticles were synthesized in ethanol-water binary system at different pre-adjusted pH values. Characterization via FTIR, XRD and TGA revealed the formation of curcumin-inulin conjugates, whereas surface morphology via SEM and TEM techniques implied the formation of nanoparticle beads and nanoclusters. Prebiotic inulin-curcumin nanoparticles prepared at pH 7.0 demonstrated a maximum curcumin dissolution enhancement of ≈90% with respect to 30% for curcumin alone at pH 5.5. Power law constant values were in accordance with dissolution enhancement investigations. All samples show Fickian diffusion mechanism. XRD investigations confirm that inulin maintain its crystalline structure in curcumin-inulin conjugate structure, which confirms that it can exert successfully its prebiotic role in the gastrointestinal (GI) tract. Therefore, the use of curcumin-inulin nanoparticles can perform dual-mission in the GI tract at the duodenum environment; release of 90% of curcumin followed by prebiotic activity of inulin, which will probably play a significant role in cancer therapeutics for the coming generations. PMID:25632979

  1. Therapeutic roles of curcumin: lessons learned from clinical trials.

    PubMed

    Gupta, Subash C; Patchva, Sridevi; Aggarwal, Bharat B

    2013-01-01

    Extensive research over the past half century has shown that curcumin (diferuloylmethane), a component of the golden spice turmeric (Curcuma longa), can modulate multiple cell signaling pathways. Extensive clinical trials over the past quarter century have addressed the pharmacokinetics, safety, and efficacy of this nutraceutical against numerous diseases in humans. Some promising effects have been observed in patients with various pro-inflammatory diseases including cancer, cardiovascular disease, arthritis, uveitis, ulcerative proctitis, Crohn's disease, ulcerative colitis, irritable bowel disease, tropical pancreatitis, peptic ulcer, gastric ulcer, idiopathic orbital inflammatory pseudotumor, oral lichen planus, gastric inflammation, vitiligo, psoriasis, acute coronary syndrome, atherosclerosis, diabetes, diabetic nephropathy, diabetic microangiopathy, lupus nephritis, renal conditions, acquired immunodeficiency syndrome, β-thalassemia, biliary dyskinesia, Dejerine-Sottas disease, cholecystitis, and chronic bacterial prostatitis. Curcumin has also shown protection against hepatic conditions, chronic arsenic exposure, and alcohol intoxication. Dose-escalating studies have indicated the safety of curcumin at doses as high as 12 g/day over 3 months. Curcumin's pleiotropic activities emanate from its ability to modulate numerous signaling molecules such as pro-inflammatory cytokines, apoptotic proteins, NF-κB, cyclooxygenase-2, 5-LOX, STAT3, C-reactive protein, prostaglandin E(2), prostate-specific antigen, adhesion molecules, phosphorylase kinase, transforming growth factor-β, triglyceride, ET-1, creatinine, HO-1, AST, and ALT in human participants. In clinical trials, curcumin has been used either alone or in combination with other agents. Various formulations of curcumin, including nanoparticles, liposomal encapsulation, emulsions, capsules, tablets, and powder, have been examined. In this review, we discuss in detail the various human diseases in which the

  2. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    SciTech Connect

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu; Wu, Jincai; Fang, Jianguo

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells. ► Curcumin

  3. Vacuum-UV spectroscopy of interstellar ice analogs. II. Absorption cross-sections of nonpolar ice molecules

    NASA Astrophysics Data System (ADS)

    Cruz-Diaz, G. A.; Muñoz Caro, G. M.; Chen, Y.-J.; Yih, T.-S.

    2014-02-01

    Context. Dust grains in cold circumstellar regions and dark-cloud interiors at 10-20 K are covered by ice mantles. A nonthermal desorption mechanism is invoked to explain the presence of gas-phase molecules in these environments, such as the photodesorption induced by irradiation of ice due to secondary ultraviolet photons. To quantify the effects of ice photoprocessing, an estimate of the photon absorption in ice mantles is required. In a recent work, we reported the vacuum-ultraviolet (VUV) absorption cross sections of nonpolar molecules in the solid phase. Aims: The aim was to estimate the VUV-absorption cross sections of nonpolar molecular ice components, including CH4, CO2, N2, and O2. Methods: The column densities of the ice samples deposited at 8 K were measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. Results: We found that, as expected, solid N2 has the lowest VUV-absorption cross section, which about three orders of magnitude lower than that of other species such as O2, which is also homonuclear. Methane (CH4) ice presents a high absorption near Ly-α (121.6 nm) and does not absorb below 148 nm. Estimating the ice absorption cross sections is essential for models of ice photoprocessing and allows estimating the ice photodesorption rates as the number of photodesorbed molecules per absorbed photon in the ice. Data can be found at http://ghosst.osug.fr/

  4. Curcumin as a Therapeutic Agent in Dementia: A Mini Systematic Review of Human Studies

    PubMed Central

    Boldrini, Annalisa; Cuccomarino, Antonella; Lanati, Niccolò; Barale, Francesco

    2014-01-01

    Dementia is a leading health problem worldwide, with Alzheimer's disease (AD) representing up to 60% of all dementia cases. A growing interest has recently risen on the potential use of natural molecules in this condition. Curcumin is a polyphenolic compound traditionally used in Indian medicine. Several in vitro and in vivo studies have found a protective effect of curcumin in AD. In the present systematic review we aimed to evaluate the state-of-the-art of clinical trials of curcumin in AD. We retrieved three published studies, while there are several ongoing clinical trials. To date there is insufficient evidence to suggest the use of curcumin in dementia patients. Of note, short-term use of curcumin appears to be safe. Several reasons could be responsible for the discrepancy between in vitro and in vivo findings and human trials, such as low bioavailability and poor study design. PMID:24578620

  5. Curcumin as a therapeutic agent in dementia: a mini systematic review of human studies.

    PubMed

    Brondino, Natascia; Re, Simona; Boldrini, Annalisa; Cuccomarino, Antonella; Lanati, Niccolò; Barale, Francesco; Politi, Pierluigi

    2014-01-01

    Dementia is a leading health problem worldwide, with Alzheimer's disease (AD) representing up to 60% of all dementia cases. A growing interest has recently risen on the potential use of natural molecules in this condition. Curcumin is a polyphenolic compound traditionally used in Indian medicine. Several in vitro and in vivo studies have found a protective effect of curcumin in AD. In the present systematic review we aimed to evaluate the state-of-the-art of clinical trials of curcumin in AD. We retrieved three published studies, while there are several ongoing clinical trials. To date there is insufficient evidence to suggest the use of curcumin in dementia patients. Of note, short-term use of curcumin appears to be safe. Several reasons could be responsible for the discrepancy between in vitro and in vivo findings and human trials, such as low bioavailability and poor study design. PMID:24578620

  6. An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Allamandola, L. J.; Sandford, S. A.

    1993-01-01

    Results of an experimental study tracing thermal formaldehyde reactions in astrophysically relevant ices in dense molecular clouds are reported. The formaldehyde chemistry during warm-up of ices containing H2CO and one or more of the molecules H2O, CH3OH, CO, O2, and NH3 were monitored using IR spectroscopy. Conversion of H2CO into residues was observed to start at about 40 K for NH3:H2CO ices and at about 80 K in H2O-rich ices. A total of five different organic products of these reactions were distinguished: POM and reaction products of H2CO and H2O, CH3OH, and NH3. Given the measured reaction paths and efficiencies, it is estimated that on the order of 1 percent of the organics found in the coma of Comet P/Halley could have been produced by thermal formaldehyde reactions taking place in the nucleus.

  7. Dietary curcumin counteracts extracellular transthyretin deposition: insights on the mechanism of amyloid inhibition.

    PubMed

    Ferreira, Nelson; Santos, Sónia A O; Domingues, Maria Rosário M; Saraiva, Maria João; Almeida, Maria Rosário

    2013-01-01

    The transthyretin amyloidoses (ATTR) are devastating diseases characterized by progressive neuropathy and/or cardiomyopathy for which novel therapeutic strategies are needed. We have recently shown that curcumin (diferuloylmethane), the major bioactive polyphenol of turmeric, strongly suppresses TTR fibril formation in vitro, either by stabilization of TTR tetramer or by generating nonfibrillar small intermediates that are innocuous to cultured neuronal cells. In the present study, we aim to assess the effect of curcumin on TTR amyloidogenesis in vivo, using a well characterized mouse model for familial amyloidotic polyneuropathy (FAP). Mice were given 2% (w/w) dietary curcumin or control diet for a six week period. Curcumin supplementation resulted in micromolar steady-state levels in plasma as determined by LC/MS/MS. We show that curcumin binds selectively to the TTR thyroxine-binding sites of the tetramer over all the other plasma proteins. The effect on plasma TTR stability was determined by isoelectric focusing (IEF) and curcumin was found to significantly increase TTR tetramer resistance to dissociation. Most importantly, immunohistochemistry (IHC) analysis of mice tissues demonstrated that curcumin reduced TTR load in as much as 70% and lowered cytotoxicity associated with TTR aggregation by decreasing activation of death receptor Fas/CD95, endoplasmic reticulum (ER) chaperone BiP and 3-nitrotyrosine in tissues. Taken together, our results highlight the potential use of curcumin as a lead molecule for the prevention and treatment of TTR amyloidosis. PMID:23069388

  8. Curcumin: Updated Molecular Mechanisms and Intervention Targets in Human Lung Cancer

    PubMed Central

    Ye, Ming-Xiang; Li, Yan; Yin, Hong; Zhang, Jian

    2012-01-01

    Curcumin, a yellow pigment derived from Curcuma longa Linn, has attracted great interest in the research of cancer during the past decades. Extensive studies documented that curcumin attenuates cancer cell proliferation and promotes apoptosis in vivo and in vitro. Curcumin has been demonstrated to interact with multiple molecules and signal pathways, which makes it a potential adjuvant anti-cancer agent to chemotherapy. Previous investigations focus on the mechanisms of action for curcumin, which is shown to manipulate transcription factors and induce apoptosis in various kinds of human cancer. Apart from transcription factors and apoptosis, emerging studies shed light on latent targets of curcumin against epidermal growth factor receptor (EGFR), microRNAs (miRNA), autophagy and cancer stem cell. The present review predominantly discusses significance of EGFR, miRNA, autophagy and cancer stem cell in lung cancer therapy. Curcumin as a natural phytochemicals could communicate with these novel targets and show synergism to chemotherapy. Additionally, curcumin is well tolerated in humans. Therefore, EGFR-, miRNA-, autophagy- and cancer stem cell-based therapy in the presence of curcumin might be promising mechanisms and targets in the therapeutic strategy of lung cancer. PMID:22489192

  9. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy.

    PubMed

    Dharunya, G; Duraipandy, N; Lakra, Rachita; Korapatti, Purna Sai; Jayavel, R; Kiran, Manikantan Syamala

    2016-01-01

    This paper elucidates the development of a curcumin cross-linked collagen aerogel system with controlled anti-proteolytic activity and pro-angiogenic efficacy. The results of this study showed that in situ cross-linking of curcumin with collagen leads to the development of aerogels with enhanced physical and mechanical properties. The integrity of collagen after cross-linking with curcumin was studied via FTIR spectroscopy. The results confirmed that the cross-linking with curcumin did not induce any structural changes in the collagen. The curcumin cross-linked collagen aerogels exhibited potent anti-proteolytic and anti-microbial activity. Scanning electron and atomic force microscopic analysis of curcumin cross-linked collagen aerogels showed a 3D microstructure that enhanced the adhesion and proliferation of cells. The highly organized geometry of collagen-curcumin aerogels enhanced the permeability and water-retaining ability required for the diffusion of nutrients that aid cellular growth. The pro-angiogenic properties of collagen-curcumin aerogels were ascribed to the cumulative effect of the nutraceutical and the collagen molecule, which augmented the restoration of damaged tissue. Further, these aerogels exhibited controlled anti-proteolytic activity, which makes them suitable 3D scaffolds for biomedical applications. This study provides scope for the development of biocompatible and bioresorbable collagen aerogel systems that use a nutraceutical as a cross-linker for biomedical applications. PMID:27509047

  10. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye

    NASA Astrophysics Data System (ADS)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin was obtained at Δ λ = 10-20 nm. Lippert-Mataga plot of curcumin in different solvents illustrated two sets of linearity which is consistent with the plot of Stokes' shift vs. the ET30. When Stokes's shift in wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent polarity dependency measured by λSFSmax vs. Lippert-Mataga plot or ET30 values offered similar trends as measured via Stokes' shift for protic and aprotic solvents for curcumin. Better linear correlation of λSFSmax vs. π* scale of solvent polarity was found compared to λabsmax or λemmax or Stokes' shift measurements. In Stokes' shift measurement both absorption/excitation as well as emission (fluorescence) spectra are required to compute the Stokes' shift in wavenumber scale, but measurement could be done in a very fast and simple way by taking a single scan of SFS avoiding calculation and obtain information about polarity of the solvent. Curcumin decay properties in all the solvents could be fitted well to a double-exponential decay function.

  11. Thymine and other prebiotic molecules produced from the ultraviolet photo-irradiation of pyrimidine in simple astrophysical ice analogs.

    PubMed

    Materese, Christopher K; Nuevo, Michel; Bera, Partha P; Lee, Timothy J; Sandford, Scott A

    2013-10-01

    The informational subunits of RNA or DNA consist of substituted N-heterocyclic compounds that fall into two groups: those based on purine (C₅H₄N₄) (adenine and guanine) and those based on pyrimidine (C₄H₄N₂) (uracil, cytosine, and thymine). Although not yet detected in the interstellar medium, N-heterocycles, including the nucleobase uracil, have been reported in carbonaceous chondrites. Recent laboratory experiments and ab initio calculations have shown that the irradiation of pyrimidine in ices containing H₂O, NH₃, or both leads to the abiotic production of substituted pyrimidines, including the nucleobases uracil and cytosine. In this work, we studied the methylation and oxidation of pyrimidine in CH₃OH:pyrimidine, H₂O:CH₃OH:pyrimidine, CH₄:pyrimidine, and H₂O:CH₄:pyrimidine ices irradiated with UV photons under astrophysically relevant conditions. The nucleobase thymine was detected in the residues from some of the mixtures. Our results suggest that the abundance of abiotic thymine produced by ice photolysis and delivered to the early Earth may have been significantly lower than that of uracil. Insofar as the delivery of extraterrestrial molecules was important for early biological chemistry on early Earth, these results suggest that there was more uracil than thymine available for emergent life, a scenario consistent with the RNA world hypothesis. PMID:24143868

  12. Curcumin and cancer: barriers to obtaining a health claim.

    PubMed

    Devassy, Jessay G; Nwachukwu, Ifeanyi D; Jones, Peter J H

    2015-03-01

    Curcumin is a highly pleiotropic molecule found in the rhizomes of Curcuma longa (turmeric). It is responsible for the yellow color of turmeric and has been shown to inhibit the proliferation of cancer cells and to be of use in preventing or treating a number of diseases. Curcumin has been shown to modulate multiple cell-signaling pathways simultaneously, thereby mitigating or preventing many different types of cancers, including multiple myeloma and colorectal, pancreatic, breast, prostate, lung, head, and neck cancers, in both animal models and humans. Current therapeutic approaches using a single cancer drug for a single target can be expensive, have serious side effects, or both. Consequently, new approaches to the treatment and prevention of cancer, including the integration of curcumin as a viable treatment strategy where dysregulation of many pathways is involved, are warranted. A methodical review of the evidence was performed to evaluate the effects of curcumin in support of a health claim, as established through the regulatory framework of Health Canada, for a relationship between the consumption of curcumin and the prevention and treatment of cancer. PMID:26024538

  13. Curcumin and genistein additively potentiate G551D-CFTR

    PubMed Central

    Yu, Ying-Chun; Miki, Haruna; Nakamura, Yumi; Hanyuda, Akiko; Matsuzaki, Yohei; Abe, Yoichiro; Yasui, Masato; Tanaka, Kazuhiko; Hwang, Tzyh-Chang; Bompadre, Silvia G.; Sohma, Yoshiro

    2016-01-01

    Background The G551D mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is a common cause of cystic fibrosis (CF). G551D-CFTR is characterized by an extremely low open probability despite its normal trafficking to the plasma membrane. Numerous small molecules have been shown to increase the activity of G551D-CFTR presumably by binding to the CFTR protein. Methods We investigated the effect of curcumin, genistein and their combined application on G551D-CFTR activity using the patch clamp technique. Results Curcumin increased G551D-CFTR whole-cell and single-channel currents less than genistein did at their maximally effective concentrations. However, curcumin further increased the channel activity of G551D-CFTR that had been already maximally potentiated by genistein, up to ~50% of the WT-CFTR level. In addition, the combined application of genistein and curcumin over a lower concentration range synergistically rescued the gating defect of G551D-CFTR. Conclusions The additive effects between curcumin and genistein not only support the hypothesis that multiple mechanisms are involved in the action of CFTR potentiators, but also pose pharmaceutical implications in the development of drugs for CF pharmacotherapy. PMID:21441077

  14. Two-photon fluorescence properties of curcumin as a biocompatible marker for confocal imaging

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Li, Lian; Chaturvedi, Akanksha; Brzostowski, Joseph; Chittigori, Joshna; Pierce, Susan; Samuelson, Lynne A.; Sandman, Daniel; Kumar, Jayant

    2012-05-01

    Two-photon (TP) fluorescence properties of an antioxidant and anti-tumor molecule, curcumin, were investigated. The two-photon absorption (TPA) action cross-section was measured in organic solvents and found to be 6 GM in tetrahydrofuran and 2 GM in dimethyl sulfoxide. The measured TPA cross-section is comparable to that of rhodamine 6G. One-photon and TP confocal microscopy has demonstrated that curcumin is internalized in cells and can be used for imaging applications. Our investigation indicates that curcumin is a viable biocompatible TP fluorescent marker.

  15. Peptide binding motifs associated with MHC molecules common in Chinese rhesus macaques are analogous to those of human HLA supertypes, and include HLA-B27-like alleles

    PubMed Central

    Mothé, Bianca R.; Southwood, Scott; Sidney, John; English, A. Michelle; Wriston, Amanda; Hoof, Ilka; Shabanowitz, Jeffrey; Hunt, Donald F.; Sette, Alessandro

    2013-01-01

    Chinese rhesus macaques are of particular interest in SIV/HIV research as these animals have prolonged kinetics of disease progression to AIDS, compared to their Indian counterparts, suggesting that they may be a better model for HIV. Nevertheless, the specific mechanism(s) accounting for these kinetics remains unclear. The study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide binding motifs, provides valuable information for measuring cellular immune responses and deciphering outcomes of infection and vaccine efficacy. In this study, we have provided detailed characterization of six prevalent Chinese rhesus macaque MHC class I alleles, yielding a combined phenotypic frequency of 29%. The peptide binding specificity of two of these alleles, Mamu-A2*01:02 and -B*010:01, as well as the previously characterized allele Mamu-B*003:01 (and Indian rhesus Mamu-B*003:01), was found to be analogous to that of alleles in the HLA-B27 supertype family. Specific alleles in the HLA-B27 supertype family, including HLA-B*27:05, have been associated with long-term non-progression to AIDS in humans. All six alleles characterized in the present study were found to have specificities analogous to HLA-supertype alleles. These data contribute to the concept that Chinese rhesus macaque MHC immunogenetics is more similar to HLA than their Indian rhesus macaque counterparts, and thereby warrant further studies to decipher the role of these alleles in the context of SIV infection. PMID:23417323

  16. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research.

    PubMed

    Jurenka, Julie S

    2009-06-01

    Curcuma longa (turmeric) has a long history of use in Ayurvedic medicine as a treatment for inflammatory conditions. Turmeric constituents include the three curcuminoids: curcumin (diferuloylmethane; the primary constituent and the one responsible for its vibrant yellow color), demethoxycurcumin, and bisdemethoxycurcumin, as well as volatile oils (tumerone, atlantone, and zingiberone), sugars, proteins, and resins. While numerous pharmacological activities, including antioxidant and antimicrobial properties, have been attributed to curcumin, this article focuses on curcumin's anti-inflammatory properties and its use for inflammatory conditions. Curcumin's effect on cancer (from an anti-inflammatory perspective) will also be discussed; however, an exhaustive review of its many anticancer mechanisms is outside the scope of this article. Research has shown curcumin to be a highly pleiotropic molecule capable of interacting with numerous molecular targets involved in inflammation. Based on early cell culture and animal research, clinical trials indicate curcumin may have potential as a therapeutic agent in diseases such as inflammatory bowel disease, pancreatitis, arthritis, and chronic anterior uveitis, as well as certain types of cancer. Because of curcumin's rapid plasma clearance and conjugation, its therapeutic usefulness has been somewhat limited, leading researchers to investigate the benefits of complexing curcumin with other substances to increase systemic bioavailability. Numerous in-progress clinical trials should provide an even deeper understanding of the mechanisms and therapeutic potential of curcumin. PMID:19594223

  17. Curcumin Protects Neonatal Rat Cardiomyocytes against High Glucose-Induced Apoptosis via PI3K/Akt Signalling Pathway

    PubMed Central

    Yu, Wei; Zha, Wenliang; Ke, Zhiqiang; Min, Qing; Li, Cairong; Sun, Huirong; Liu, Chao

    2016-01-01

    The function of curcumin on NADPH oxidase-related ROS production and cardiac apoptosis, together with the modulation of protein signalling pathways, was investigated in cardiomyocytes. Primary cultures of neonatal rat cardiomyocytes were exposed to 30 mmol/L high glucose with or without curcumin. Cell viability, apoptosis, superoxide formation, the expression of NADPH oxidase subunits, and potential regulatory molecules, Akt and GSK-3β, were assessed in cardiomyocytes. Cardiomyocytes exposure to high glucose led to an increase in both cell apoptosis and intracellular ROS levels, which were strongly prevented by curcumin treatment (10 μM). In addition, treatment with curcumin remarkably suppressed the increased activity of Rac1, as well as the enhanced expression of gp91phox and p47phox induced by high glucose. Lipid peroxidation and SOD were reversed in the presence of curcumin. Furthermore, curcumin treatment markedly inhibited the reduced Bcl-2/Bax ratio elicited by high glucose exposure. Moreover, curcumin significantly increased Akt and GSK-3β phosphorylation in cardiomyocytes treated with high glucose. In addition, LY294002 blocked the effects of curcumin on cardiomyocytes exposure to high glucose. In conclusion, these results demonstrated that curcumin attenuated high glucose-induced cardiomyocyte apoptosis by inhibiting NADPH-mediated oxidative stress and this protective effect is most likely mediated by PI3K/Akt-related signalling pathway. PMID:26989696

  18. Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells.

    PubMed

    Waghela, Bhargav N; Sharma, Anupama; Dhumale, Suhashini; Pandey, Shashibahl M; Pathak, Chandramani

    2015-01-01

    Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy. PMID:25692854

  19. Discovery of Curcumin, a Component of the Golden Spice, and Its Miraculous Biological Activities

    PubMed Central

    Gupta, Subash C; Patchva, Sridevi; Koh, Wonil; Aggarwal, Bharat B

    2012-01-01

    SUMMARY 1. Curcumin is the active ingredient of the dietary spice turmeric and has been consumed for medicinal purposes for thousands of years. Modern science has shown that curcumin modulates various signaling molecules, including inflammatory molecules, transcription factors, enzymes, protein kinases, protein reductases, carrier proteins, cell survival proteins, drug resistance proteins, adhesion molecules, growth factors, receptors, cell-cycle regulatory proteins, chemokines, DNA, RNA, and metal ions. 2. Because of this polyphenol's potential to modulate multiple signaling molecules, it has been reported to possess pleiotropic activities. First shown to have anti-bacterial activity in 1949, curcumin has since been shown to have anti-inflammatory, anti-oxidant, pro-apoptotic, chemopreventive, chemotherapeutic, anti-proliferative, wound healing, anti-nociceptive, anti-parasitic, and anti-malarial properties as well. Animal studies have suggested that curcumin may be active against a wide range of human diseases, including diabetes, obesity, neurologic and psychiatric disorders, and cancer, as well as chronic illnesses affecting the eyes, lungs, liver, kidneys, and gastrointestinal and cardiovascular systems. 3. Although many clinical trials evaluating curcumin's safety and efficacy against human ailments have already been completed, others are still ongoing. Moreover, curcumin is used as a supplement in several countries, including India, Japan, the United States, Thailand, China, Korea, Turkey, South Africa, Nepal, and Pakistan. Although inexpensive, apparently well tolerated, and potentially active, curcumin has yet not been approved for treatment of any human disease. 4. In this article, we discuss the discovery and key biological activities of curcumin, with a particular emphasis on its activities at the molecular, cellular, animal, and human levels. PMID:22118895

  20. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases

    PubMed Central

    Sarkar, Avijit; De, Ronita; Mukhopadhyay, Asish K

    2016-01-01

    Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of beneficial properties e.g., anti-inflammatory, anti-oxidant, anti-cancer, anti-proliferative, anti-fungal and anti-microbial. These pleiotropic activities prompted several research groups to elucidate the role of curcumin in Helicobacter pylori (H. pylori) infection. This is the first review with this heading where we discussed regarding the role of curcumin as an anti-H. pylori agent along with its potential in other gastrointestinal diseases. Based on several in vitro, early cell culture, animal research and few pre-clinical trials, curcumin projected as a potential therapeutic candidate against H. pylori mediated gastric pathogenesis. This review sheds light on the anti-H. pylori effects of curcumin in different models with meticulous emphasis on its anti-oxidant, anti-inflammatory and anti-carcinogenic effects as well as some critical signaling and effecter molecules. Remarkably, non-toxic molecule curcumin fulfills the characteristics for an ideal chemopreventive agent against H. pylori mediated gastric carcinogenesis but the foremost challenge is to obtain the optimum therapeutic levels of curcumin, due to its low solubility and poor bioavailability. Further, we have discussed about the possibilities for improving its efficacy and bioavailability. Lastly, we concluded with the anticipation that in near future curcumin may be used to develop a therapeutic drug against H. pylori mediated gastric ailments through improved formulation or delivery systems, facilitating its enhanced absorption and cellular uptake. PMID:26973412

  1. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases.

    PubMed

    Sarkar, Avijit; De, Ronita; Mukhopadhyay, Asish K

    2016-03-01

    Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of beneficial properties e.g., anti-inflammatory, anti-oxidant, anti-cancer, anti-proliferative, anti-fungal and anti-microbial. These pleiotropic activities prompted several research groups to elucidate the role of curcumin in Helicobacter pylori (H. pylori) infection. This is the first review with this heading where we discussed regarding the role of curcumin as an anti-H. pylori agent along with its potential in other gastrointestinal diseases. Based on several in vitro, early cell culture, animal research and few pre-clinical trials, curcumin projected as a potential therapeutic candidate against H. pylori mediated gastric pathogenesis. This review sheds light on the anti-H. pylori effects of curcumin in different models with meticulous emphasis on its anti-oxidant, anti-inflammatory and anti-carcinogenic effects as well as some critical signaling and effecter molecules. Remarkably, non-toxic molecule curcumin fulfills the characteristics for an ideal chemopreventive agent against H. pylori mediated gastric carcinogenesis but the foremost challenge is to obtain the optimum therapeutic levels of curcumin, due to its low solubility and poor bioavailability. Further, we have discussed about the possibilities for improving its efficacy and bioavailability. Lastly, we concluded with the anticipation that in near future curcumin may be used to develop a therapeutic drug against H. pylori mediated gastric ailments through improved formulation or delivery systems, facilitating its enhanced absorption and cellular uptake. PMID:26973412

  2. PoSSuM v.2.0: data update and a new function for investigating ligand analogs and target proteins of small-molecule drugs.

    PubMed

    Ito, Jun-ichi; Ikeda, Kazuyoshi; Yamada, Kazunori; Mizuguchi, Kenji; Tomii, Kentaro

    2015-01-01

    PoSSuM (http://possum.cbrc.jp/PoSSuM/) is a database for detecting similar small-molecule binding sites on proteins. Since its initial release in 2011, PoSSuM has grown to provide information related to 49 million pairs of similar binding sites discovered among 5.5 million known and putative binding sites. This enlargement of the database is expected to enhance opportunities for biological and pharmaceutical applications, such as predictions of new functions and drug discovery. In this release, we have provided a new service named PoSSuM drug search (PoSSuMds) at http://possum.cbrc.jp/PoSSuM/drug_search/, in which we selected 194 approved drug compounds retrieved from ChEMBL, and detected their known binding pockets and pockets that are similar to them. Users can access and download all of the search results via a new web interface, which is useful for finding ligand analogs as well as potential target proteins. Furthermore, PoSSuMds enables users to explore the binding pocket universe within PoSSuM. Additionally, we have improved the web interface with new functions, including sortable tables and a viewer for visualizing and downloading superimposed pockets. PMID:25404129

  3. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update.

    PubMed

    Ghosh, Shatadal; Banerjee, Sharmistha; Sil, Parames C

    2015-09-01

    The concept of using phytochemicals has ushered in a new revolution in pharmaceuticals. Naturally occurring polyphenols (like curcumin, morin, resveratrol, etc.) have gained importance because of their minimal side effects, low cost and abundance. Curcumin (diferuloylmethane) is a component of turmeric isolated from the rhizome of Curcuma longa. Research for more than two decades has revealed the pleiotropic nature of the biological effects of this molecule. More than 7000 published articles have shed light on the various aspects of curcumin including its antioxidant, hypoglycemic, anti-inflammatory and anti-cancer activities. Apart from these well-known activities, this natural polyphenolic compound also exerts its beneficial effects by modulating different signalling molecules including transcription factors, chemokines, cytokines, tumour suppressor genes, adhesion molecules, microRNAs, etc. Oxidative stress and inflammation play a pivotal role in various diseases like diabetes, cancer, arthritis, Alzheimer's disease and cardiovascular diseases. Curcumin, therefore, could be a therapeutic option for the treatment of these diseases, provided limitations in its oral bioavailability can be overcome. The current review provides an updated overview of the metabolism and mechanism of action of curcumin in various organ pathophysiologies. The review also discusses the potential for multifunctional therapeutic application of curcumin and its recent progress in clinical biology. PMID:26066364

  4. Curcumin-Loaded, Self-Assembled Aloevera Template for Superior Antioxidant Activity and Trans-Membrane Drug Release.

    PubMed

    Kitture, Rohini; Ghosh, Sougata; More, Piyush A; Date, Kalyani; Gaware, Shankar; Datar, Suwarna; Chopade, Balu A; Kale, S N

    2015-06-01

    Fine combination of natural botanical extracts to evaluate and maximize their medicinal efficacy has been studied for long. However, their limited shelf-life, complicated extraction protocols, and difficult compositional analysis have always been a problem. It is due to this that such materials take time to convert them into a proper pharmaceutical technology or product. In this context, we report on synthesis of self-assembled template of one of the most popular natural product, aloevera. This forms a fine porous membrane like structure, in which a natural drug, curcumin has been immobilized/trapped. The so-made curcumin-loaded-aloevera (CLA) structures have been carefully evaluated using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), atomic force microscopy (AFM), UV-vis spectroscopy and fluorescence microscopy. While FTIR shows that there is no chemical interaction between aloevera and curcumin, the pores are finely occupied by curcumin molecules. Fine microscopy structures reveal their distribution and fluorescence microscopy confirm the presence of curcumin within the pores. TGA shows 15% loading of the curcumin in the template and UV-visible spectroscopy data shows independent peaks of both, aloevera (196 nm and 256 nm) and curcumin (423 nm), respectively. When subjected to antioxidant studies, using DPPH assays, CLAs show a synergistically superior DPPH radical scavenging activity as compared to only curcumin and only aloevera extract. Same is true for hydroxyl and NO2 radicals. Trans-membrane release study reveals that there is no significant difference in the amount of curcumin release from CLAs till initial 30 min, however, it increases steadily thereafter. CLA is found to facilitate efficient release of curcumin in 5 h, which is higher as compared to the curcumin alone. PMID:26369010

  5. Suppression of Experimental Choroidal Neovascularization by Curcumin in Mice

    PubMed Central

    Xie, Ping; Zhang, WeiWei; Yuan, Songtao; Chen, Zhiqiang; Yang, Qin; Yuan, DongQing; Wang, Feng; Liu, QingHuai

    2012-01-01

    Purpose To investigate the effects of curcumin on the development of experimental choroidal neovascularization (CNV) with underlying cellular and molecular mechanisms. Methods C57BL/6N mice were pretreated with intraperitoneal injections of curcumin daily for 3 days prior to laser-induced CNV, and the drug treatments were continued until the end of the study. The CNV area was analyzed by fluorescein-labeled dextran angiography of retinal pigment epithelium (RPE)-choroid flat mounts on day 7 and 14, and CNV leakage was evaluated by fluorescein angiography (FA) on day 14 after laser photocoagulation. The infiltration of F4/80 positive macrophages and GR-1 positive granulocytes were evaluated by immunohistochemistry on RPE-choroid flat mounts on day 3. Their expression in RPE-choroid complex was quantified by real-time PCR (F4/80) and Western blotting (GR-1) on day 3. RPE-choroid levels of vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, and intercellular adhesion molecule (ICAM)-1 were examined by ELISA on day 3. Double immunostaining of F4/80 and VEGF was performed on cryo-sections of CNV lesions on day 3. The expression of nuclear factor (NF)-κB and hypoxia-inducible factor (HIF)−1α in the RPE-choroid was determined by Western blotting. Results Curcumin-treated mice had significantly less CNV area (P<0.05) and CNV leakage (P<0.001) than vehicle-treated mice. Curcumin treatment led to significant inhibition of F4/80 positive macrophages (P<0.05) and GR-1 positive granulocytes infiltration (P<0.05). VEGF mainly expressed in F4/80 positive macrophages in laser injury sites, which was suppressed by curcumin treatment (P<0.01). Curcumin inhibited the RPE-choroid levels of TNF-α (P<0.05), MCP-1 (P<0.05) and ICAM-1 (P<0.05), and suppressed the activation of NF-κB in nuclear extracts (P<0.05) and the activation of HIF−1α (P<0.05). Conclusion Curcumin treatment led to the suppression of CNV development

  6. Curcumin inhibits HCV replication by induction of heme oxygenase-1 and suppression of AKT

    PubMed Central

    CHEN, MING-HO; LEE, MING-YANG; CHUANG, JING-JING; LI, YI-ZHEN; NING, SIN-TZU; CHEN, JUNG-CHOU; LIU, YI-WEN

    2012-01-01

    Although hepatitis C virus (HCV) affects approximately 130–170 million people worldwide, no vaccines are available. HCV is an important cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma, leading to the need for liver transplantation. In this study, curcumin, a constituent used in traditional Chinese medicine, has been evaluated for its anti-HCV activity and mechanism, using a human hepatoma cell line containing the HCV genotype 1b subgenomic replicon. Below the concentration of 20% cytotoxicity, curcumin dose-dependently inhibited HCV replication by luciferase reporter gene assay, HCV RNA detection and HCV protein analysis. Under the same conditions, curcumin also dose-dependently induced heme oxygenase-1 with the highest induction at 24 h. Hemin, a heme oxygenase-1 inducer, also inhibited HCV protein expression in a dose-dependent manner. The knockdown of heme oxygenase-1 partially reversed the curcumin-inhibited HCV protein expression. In addition to the heme oxygenase-1 induction, signaling molecule activities of AKT, extracellular signal-regulated kinases (ERK) and nuclear factor-κB (NF-κB) were inhibited by curcumin. Using specific inhibitors of PI3K-AKT, MEK-ERK and NF-κB, the results suggested that only PI3K-AKT inhibition is positively involved in curcumin-inhibited HCV replication. Inhibition of ERK and NF-κB was likely to promote HCV protein expression. In summary, curcumin inhibited HCV replication by heme oxygenase-1 induction and AKT pathway inhibition. Although curcumin also inhibits ERK and NF-κB activities, it slightly increased the HCV protein expression. This result may provide information when curcumin is used as an adjuvant in anti-HCV therapy. PMID:22922731

  7. Molecular dynamics simulations and binding free energy analysis of DNA minor groove complexes of curcumin.

    PubMed

    Koonammackal, Mathew Varghese; Nellipparambil, Unnikrishnan Viswambharan Nair; Sudarsanakumar, Chellappanpillai

    2011-11-01

    Curcumin is a natural phytochemical that exhibits a wide range of pharmacological properties, including antitumor and anticancer activities. The similarity in the shape of curcumin to DNA minor groove binding drugs is the motivation for exploring its binding affinity in the minor grooves of DNA sequences. Interactions of curcumin with DNA have not been extensively examined, while its pharmacological activities have been studied and documented in depth. Curcumin was docked with two DNA duplexes, d(GTATATAC)(2) and d(CGCGATATCGCG)(2), and molecular dynamics simulations of the complexes were performed in explicit solvent to determine the stability of the binding. In all systems, the curcumin is positioned in the minor groove in the A·T region, and was stably bound throughout the simulation, causing only minor modifications to the structural parameters of DNA. Water molecules were found to contribute to the stability of the binding of the ligand. Free energy analyses of the complexes were performed with MM-PBSA, and the binding affinities that were calculated are comparable to the values reported for other similar nucleic acid-ligand systems, indicating that curcumin is a suitable natural molecule for the development of minor groove binding drugs. PMID:21287216

  8. Magnetic purification of curcumin from Curcuma longa rhizome by novel naked maghemite nanoparticles.

    PubMed

    Magro, Massimiliano; Campos, Rene; Baratella, Davide; Ferreira, Maria Izabela; Bonaiuto, Emanuela; Corraducci, Vittorino; Uliana, Maíra Rodrigues; Lima, Giuseppina Pace Pereira; Santagata, Silvia; Sambo, Paolo; Vianello, Fabio

    2015-01-28

    Naked maghemite nanoparticles, namely, surface active maghemite nanoparticles (SAMNs), characterized by a diameter of about 10 nm, possessing peculiar colloidal stability, surface chemistry, and superparamagnetism, present fundamental requisites for the development of effective magnetic purification processes for biomolecules in complex matrices. Polyphenolic molecules presenting functionalities with different proclivities toward iron chelation were studied as probes for testing SAMN suitability for magnetic purification. Thus, the binding efficiency and reversibility on SAMNs of phenolic compounds of interest in the pharmaceutical and food industries, namely, catechin, tyrosine, hydroxytyrosine, ferulic acid, coumaric acid, rosmarinic acid, naringenin, curcumin, and cyanidin-3-glucoside, were evaluated. Curcumin emerged as an elective compound, suitable for magnetic purification by SAMNs from complex matrices. A combination of curcumin, demethoxycurcumin, and bis-demethoxycurcumin was recovered by a single magnetic purification step from extracts of Curcuma longa rhizomes, with a purity >98% and a purification yield of 45%, curcumin being >80% of the total purified curcuminoids. PMID:25584520

  9. BMI1 is downregulated by the natural compound curcumin, but not by bisdemethoxycurcumin and dimethoxycurcumin.

    PubMed

    Adeyeni, Temitope A; Khatwani, Natasha; San, KayKay; Ezekiel, Uthayashanker R

    2016-08-01

    The B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1) locus encodes a 37-kD protein that is a key regulatory component of the polycomb regulatory complex 1 (PRC1). When overexpressed in various cancer types, the BMI1 protein induces cell growth and promotes tumor growth in vitro and in vivo. Curcumin, a major phytochemical in turmeric (Curcuma longa), inhibits the proliferation and survival of many types of cancer cells, both in vitro and in vivo, and has been reported to reduce BMI1 expression in breast cancer cells. In this study, effects of curcumin and two analogs (bisdemethoxycurcumin and dimethoxycurcumin) on BMI1 expression were evaluated in DLD-1 colorectal cancer cells. Bisdemethoxycurcumin (BDMC) is naturally occurring in turmeric, whereas dimethoxycurcumin (DMC) is a synthetic analog of curcumin. All three compounds reduced cell survival, but only the natural compound downregulated BMI1 protein expression; curcumin significantly reduced BMI1 levels more than bisdemethoxycurcumin and dimethoxycurcumin. In addition, curcumin and BDMC inhibit survival of the DLD-1 colorectal cancer cells by inducing apoptosis, whereas DMC inhibits survival by a mechanism other than apoptosis. PMID:27550987

  10. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    SciTech Connect

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra; Galadari, Sehamuddin

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  11. Curcumin: a potential neuroprotective agent in Parkinson's disease.

    PubMed

    Mythri, R B; Bharath, M M Srinivas

    2012-01-01

    Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD. PMID:22211691

  12. The multifaceted role of curcumin in cancer prevention and treatment.

    PubMed

    Shanmugam, Muthu K; Rane, Grishma; Kanchi, Madhu Mathi; Arfuso, Frank; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Tan, Benny K H; Kumar, Alan Prem; Sethi, Gautam

    2015-01-01

    Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers. PMID:25665066

  13. Novel Curcumin Diclofenac Conjugate Enhanced Curcumin Bioavailability and Efficacy in Streptococcal Cell Wall-induced Arthritis.

    PubMed

    Jain, S K; Gill, M S; Pawar, H S; Suresh, Sarasija

    2014-09-01

    Curcumin-diclofenac conjugate as been synthesized by esterification of phenolic group of curcumin with the acid moiety of diclofenac, and characterized by mass spectrometry, NMR, FTIR, DSC, thermogravimetric analysis and X-ray diffraction analysis. The relative solubility of curcumin-diclofenac conjugate, curcumin and diclofenac; stability of curcumin-diclofenac conjugate in intestinal extract; permeability study of curcumin-diclofenac conjugate using the everted rat intestinal sac method; stability of curcumin-diclofenac conjugate in gastrointestinal fluids and in vitro efficacy have been evaluated. In vivo bioavailability of curcumin-diclofenac conjugate and curcumin in Sprague-Dawley rats, and antiarthritic activity of curcumin-diclofenac conjugate, curcumin and diclofenac in modified streptococcal cell wall-induced arthritis model in Balb/c mice to mimic rheumatoid arthritis in humans have also been studied. In all of the above studies, curcumin-diclofenac conjugate exhibited enhanced stability as compared to curcumin; its activity was twice that of diclofenac in inhibiting thermal protein denaturation taken as a measure of in vitro antiinflammatory activity; it enhanced the bioavailability of curcumin by more than five folds, and significantly (P<0.01) alleviated the symptoms of arthritis in streptococcal cell wall-induced arthritis model as compared to both diclofenac and curcumin. PMID:25425755

  14. Lunar Analog

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2009-01-01

    In this viewgraph presentation, a ground-based lunar analog is developed for the return of manned space flight to the Moon. The contents include: 1) Digital Astronaut; 2) Bed Design; 3) Lunar Analog Feasibility Study; 4) Preliminary Data; 5) Pre-pilot Study; 6) Selection of Stockings; 7) Lunar Analog Pilot Study; 8) Bed Design for Lunar Analog Pilot.

  15. Discovery and evaluation of novel anti-inflammatory derivatives of natural bioactive curcumin.

    PubMed

    Zhang, Yali; Jiang, Xin; Peng, Kesong; Chen, Chengwei; Fu, Lili; Wang, Zhe; Feng, Jianpeng; Liu, Zhiguo; Zhang, Huajie; Liang, Guang; Pan, Zheer

    2014-01-01

    Curcumin is a natural active product that has various pharmacological activities such as anti-inflammatory effects. Here, we report the synthesis and evaluation of 34 monocarbonyl curcumin analogs as novel anti-inflammatory agents. Among the analogs, the symmetrical heterocyclic type displayed the strongest inhibition of lipopolysaccharide (LPS)-stimulated expression of pro-inflammatory cytokines in macrophages. Analogs S1-S5 and AS29 reduced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production in a dose-dependent manner and also displayed excellent stability and low cytotoxicity in vitro. In addition, analog S1 dose-dependently inhibited LPS-induced extracellular signal-regulated kinase (ERK) phosphorylation. Furthermore, analogs S1 and S4 displayed a significant protective effect on LPS-induced septic death in mouse models, with 40% and 50% survival rates, respectively. These data demonstrate that the heterocyclic monocarbonyl curcumin analogs have potential therapeutic effects in acute inflammatory diseases. PMID:25395833

  16. Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin.

    PubMed

    Yoon, M J; Kang, Y J; Lee, J A; Kim, I Y; Kim, M A; Lee, Y S; Park, J H; Lee, B Y; Kim, I A; Kim, H S; Kim, S-A; Yoon, A-R; Yun, C-O; Kim, E-Y; Lee, K; Choi, K S

    2014-01-01

    Although curcumin suppresses the growth of a variety of cancer cells, its poor absorption and low systemic bioavailability have limited its translation into clinics as an anticancer agent. In this study, we show that dimethoxycurcumin (DMC), a methylated, more stable analog of curcumin, is significantly more potent than curcumin in inducing cell death and reducing the clonogenicity of malignant breast cancer cells. Furthermore, DMC reduces the tumor growth of xenografted MDA-MB 435S cells more strongly than curcumin. We found that DMC induces paraptosis accompanied by excessive dilation of mitochondria and the endoplasmic reticulum (ER); this is similar to curcumin, but a much lower concentration of DMC is required to induce this process. DMC inhibits the proteasomal activity more strongly than curcumin, possibly causing severe ER stress and contributing to the observed dilation. DMC treatment upregulates the protein levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and Noxa, and the small interfering RNA-mediated suppression of CHOP, but not Noxa, markedly attenuates DMC-induced ER dilation and cell death. Interestingly, DMC does not affect the viability, proteasomal activity or CHOP protein levels of human mammary epithelial cells, suggesting that DMC effectively induces paraptosis selectively in breast cancer cells, while sparing normal cells. Taken together, these results suggest that DMC triggers a stronger proteasome inhibition and higher induction of CHOP compared with curcumin, giving it more potent anticancer effects on malignant breast cancer cells. PMID:24625971

  17. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    PubMed

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products. PMID:25842338

  18. Curcumin reduces brain-infiltrating T lymphocytes after intracerebral hemorrhage in mice.

    PubMed

    Liu, Wei; Yuan, Jichao; Zhu, Haitao; Zhang, Xuan; Li, Lan; Liao, Xiaojun; Wen, Zexian; Chen, Yaxing; Feng, Hua; Lin, Jiangkai

    2016-05-01

    T lymphocytes contribute to inflammation, thereby exacerbating neuronal injury after cerebral ischemia. An increasing amount of evidence indicates that inflammation is a key contributor to intracerebral hemorrhage (ICH)-induced secondary brain injury. Curcumin, a low-molecular-weight curry spice that is derived from the Curcuma longa plant, suppresses T lymphocyte proliferation and migration. Based on these findings, we investigated whether treatment with curcumin would reduce the number of cerebral T lymphocytes in mice with experimentally induced ICH. We found that a large number of T lymphocytes infiltrated the brain at 3days post-ICH. Curcumin significantly improved neurological scores and reduced brain edema in mice with ICH, consistent with a role in reducing neuroinflammation and neurovascular injury. Using flow cytometry, we observed significantly fewer T lymphocytes in brain samples obtained from the curcumin-treated group than in samples obtained from the vehicle-treated group. Moreover, Western blot analysis and immunostaining indicated that treatment with curcumin significantly reduced the expression of a vascular cell adhesion molecule-1 (VCAM-1), interferon-γ (INF-γ) and interleukin-17 (IL-17) in the mouse brain at 72h post-ICH. Our results suggest that administering curcumin may alleviate cerebral inflammation resulting from ICH, at least in part by reducing the infiltration of T lymphocytes into the brain. Therefore, preventing T lymphocytes from infiltrating the brain may become a new strategy for treating clinical ICH. PMID:27026486

  19. Curcumin-inspired cytotoxic 3,5-bis(arylmethylene)-1-(N-(ortho-substituted aryl)maleamoyl)-4-piperidones: A novel group of topoisomerase II alpha inhibitors.

    PubMed

    Jha, Amitabh; Duffield, Katherine M; Ness, Matthew R; Ravoori, Sujatha; Andrews, Gabrielle; Bhullar, Khushwant S; Rupasinghe, H P Vasantha; Balzarini, Jan

    2015-10-01

    Three series of novel 3,5-bis(arylmethylene)-1-(N-(ortho-substituted aryl)maleamoyl)-4-piperidones, designed as simplified analogs of curcumin with maleic diamide tether, were synthesized and bioevaluated. These compounds displayed potent cytotoxicity towards human Molt 4/C8 and CEM T-lymphocytes as well as murine L1210 leukemic cells. In contrast, the related N-arylmaleamic acids possessed little or no cytotoxicity in these three screens. Design of these compounds was based on molecular modeling studies performed on a related series of molecule in a previous study. Representative title compounds were found to be significantly potent in inhibiting the activity of topoisomerase II alpha indicating the possible mode of action of these compounds. These compounds were also potent antioxidants in vitro and attenuated the AAPH triggered peroxyl radical production in human fibroblasts. Various members of these series were also well tolerated in both in vitro and in vivo toxicity analysis. PMID:26456623

  20. A Curcumin Derivative That Inhibits Vinyl Carbamate-Induced Lung Carcinogenesis via Activation of the Nrf2 Protective Response

    PubMed Central

    Shen, Tao; Jiang, Tao; Long, Min; Chen, Jun; Ren, Dong-Mei; Wong, Pak Kin

    2015-01-01

    Abstract Aims: Lung cancer has a high worldwide morbidity and mortality. The employment of chemopreventive agents is effective to reduce lung cancer. Nuclear factor erythroid 2-related factor 2 (Nrf2) mitigates insults from both exogenous and endogenous sources and thus has been verified as a target for chemoprevention. Curcumin has long been recognized as a chemopreventive agent, but poor bioavailability and weak Nrf2 induction have prohibited clinical application. Thus, we have developed new curcumin derivatives and tested their Nrf2 induction. Results: Based on curcumin, we synthesized curcumin analogs with five carbon linkages and established a structure–activity relationship for Nrf2 induction. Among these derivatives, bis[2-hydroxybenzylidene]acetone (BHBA) was one of the most potent Nrf2 inducers with minimal toxicity and improved pharmacological properties and was thus selected for further investigation. BHBA activated the Nrf2 pathway in the canonical Keap1-Cys151-dependent manner. Furthermore, BHBA was able to protect human lung epithelial cells against sodium arsenite [As(III)]-induced cytotoxicity. More importantly, in an in vivo vinyl carbamate-induced lung cancer model in A/J mice, preadministration of BHBA significantly reduced lung adenocarcinoma, while curcumin failed to show any effects even at high doses. Innovation: The curcumin derivative, BHBA, is a potent inducer of Nrf2. It was demonstrated to protect against As(III) toxicity in lung epithelial cells in an Nrf2-dependent manner. Furthermore, compared with curcumin, BHBA displayed improved chemopreventive activities in a carcinogen-induced lung cancer model. Conclusion: Taken together, our results demonstrate that BHBA, a curcumin analog with improved Nrf2-activating and chemopreventive activities both in vitro and in vivo, could be developed into a chemoprotective pharmacological agent. Antioxid. Redox Signal. 23, 651–664. PMID:25891177

  1. Sustained release Curcumin loaded Solid Lipid Nanoparticles

    PubMed Central

    Jourghanian, Parisa; Ghaffari, Solmaz; Ardjmand, Mehdi; Haghighat, Setareh; Mohammadnejad, Mahdieh

    2016-01-01

    Purpose: curcumin is poorly water soluble drug with low bioavailability. Use of lipid systems in lipophilic substances increases solubility and bioavailability of poorly soluble drugs. The aim of this study was to prepare curcumin loaded Solid Lipid Nanoparticles (SLNs) with high loading efficiency, small particle size and prolonged release profile with enhanced antibacterial efficacy. Methods: to synthesize stable SLNs, freeze- Drying was done using mannitol as cryoprotectant. Cholesterol was used as carrier because of good tolerability and biocompatibility. SLNs were prepared using high pressure homogenization method. Results: optimized SLNs had 112 and 163 nm particle size before and after freeze drying, respectively. The prepared SLNs had 71% loading efficiency. 90% of loaded curcumin was released after 48 hours. Morphologic study for formulation was done by taking SEM pictures of curcumin SLNs. Results show the spherical shape of curcumin SLNs. DSC studies were performed to determine prolonged release mechanism. Antimicrobial studies were done to compare the antimicrobial efficacy of curcumin SLNs with free curcumin. DSC studies showed probability of formation of hydrogen bonds between cholesterol and curcumin which resulted in prolonged release of curcumin. Lipid structure of cholesterol could cause enhanced permeability in studied bacteria to increase antibacterial characteristics of curcumin. Conclusion: the designed curcumin SLNs could be candidate for formulation of different dosage forms or cosmeceutical products. PMID:27123413

  2. Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes

    PubMed Central

    Castro, C N; Barcala Tabarrozzi, A E; Winnewisser, J; Gimeno, M L; Antunica Noguerol, M; Liberman, A C; Paz, D A; Dewey, R A; Perone, M J

    2014-01-01

    Type 1 diabetes (T1DM) is a T cell-mediated autoimmune disease that selectively destroys pancreatic β cells. The only possible cure for T1DM is to control autoimmunity against β cell-specific antigens. We explored whether the natural compound curcumin, with anti-oxidant and anti-inflammatory activities, might down-regulate the T cell response that destroys pancreatic β cells to improve disease outcome in autoimmune diabetes. We employed two accelerated autoimmune diabetes models: (i) cyclophosphamide (CYP) administration to non-obese diabetic (NOD) mice and (ii) adoptive transfer of diabetogenic splenocytes into NODscid mice. Curcumin treatment led to significant delay of disease onset, and in some instances prevented autoimmune diabetes by inhibiting pancreatic leucocyte infiltration and preserving insulin-expressing cells. To investigate the mechanisms of protection we studied the effect of curcumin on key immune cell populations involved in the pathogenesis of the disease. Curcumin modulates the T lymphocyte response impairing proliferation and interferon (IFN)-γ production through modulation of T-box expressed in T cells (T-bet), a key transcription factor for proinflammatory T helper type 1 (Th1) lymphocyte differentiation, both at the transcriptional and translational levels. Also, curcumin reduces nuclear factor (NF)-κB activation in T cell receptor (TCR)-stimulated NOD lymphocytes. In addition, curcumin impairs the T cell stimulatory function of dendritic cells with reduced secretion of proinflammatory cytokines and nitric oxide (NO) and low surface expression of co-stimulatory molecules, leading to an overall diminished antigen-presenting cell activity. These in-vitro effects correlated with ex-vivo analysis of cells obtained from curcumin-treated mice during the course of autoimmune diabetes. These findings reveal an effective therapeutic effect of curcumin in autoimmune diabetes by its actions on key immune cells responsible for β cell death. PMID

  3. Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam.

    PubMed

    Van Nong, Hoang; Hung, Le Xuan; Thang, Pham Nam; Chinh, Vu Duc; Vu, Le Van; Dung, Phan Tien; Van Trung, Tran; Nga, Pham Thu

    2016-01-01

    In this report, we present the research results on using the conventional method and microwave technology to extract curcuminoid from turmeric roots originated in different regions of Northern Vietnam. This method is simple, yet economical, non-toxic and still able to achieve high extraction performance to get curcuminoid from turmeric roots. The detailed results on the Raman vibration spectra combined with X-ray powder diffraction and high-performance liquid chromatography/mass spectrometry allowed the evaluation of each batch of curcumin crystalline powder sample received, under the conditions of applied fabrication technology. Also, the absorption and fluorescence spectroscopies of the samples are presented in the paper. The information to be presented in this paper: absorption and fluorescence spectroscopies of the samples; new experimental study results on applied technology to mass-produce curcumin from turmeric rhizomes; comparative study results between fabricated samples and marketing curcumin products-to state the complexity of co-existing crystalline phase in curcumin powder samples. We noticed that, it is possible to use the vibration line at ~959 cm(-1)-characteristic of the ν C=O vibration, and the ~1625 cm(-1) line-characteristic of the ν C=O and ν C=C vibration in curcumin molecules, for preliminary quality assessment of naturally originated curcumin crystalline powder samples. Data on these new optical spectra will contribute to the bringing of detailed information on natural curcumin in Vietnam, serving research purposes and applications of natural curcumin powder and nanocurcumin in Vietnam, as well as being initial materials for the pharmaceutical, cosmetics or functional food industries. PMID:27504245

  4. 2,2'-Fluorine mono-carbonyl curcumin induce reactive oxygen species-Mediated apoptosis in Human lung cancer NCI-H460 cells.

    PubMed

    Liu, Guo-Yun; Zhai, Qiang; Chen, Jia-Zhuang; Zhang, Zhuo-Qing; Yang, Jie

    2016-09-01

    In this paper, we synthesized three fluorine-substituted mono-carbonyl curcumin analogs and evaluated their cytotoxicity against several cancer cells by the MTT assay. The results exhibited that all the three compounds were more active than the leading curcumin. Especially, 2,2'-F mono-carbonyl curcumin, 1a, surfaced as an important lead compound displaying almost 4-fold cytotoxicity relative to curcumin. More importantly, 1a was more stable in (RPMI)-1640 medium and more massive uptake than curcumin, which may be relationship to their cytotoxicity, apoptotic acitivity and reactive oxygen species generation. And then, the generation of reactive oxygen species can disrupt the intracellular redox balance, induce lipid peroxidation, cause the collapse of the mitochondrial membrane potential and ultimately lead to apoptosis. The results not only suggest that 2,2'-F mono-carbonyl curcumin (1a) may cause cancer cells apoptosis through reactive oxygen species-Mediated pathway, but also gives us an important information for design of mono-carbonyl curcumin analog. PMID:27266668

  5. Curcumin-ER Prolonged Subcutaneous Delivery for the Treatment of Non-Small Cell Lung Cancer.

    PubMed

    Ranjan, Amalendu P; Mukerjee, Anindita; Gdowski, Andrew; Helson, Lawrence; Bouchard, Annie; Majeed, Muhammed; Vishwanatha, Jamboor K

    2016-04-01

    Non-small-cell lung cancer therapy is a challenge due to poor prognosis and low survival rate. There is an acute need for advanced therapies having higher drug efficacy, low immunogenicity and fewer side effects which will markedly improve patient compliance and quality of life of cancer patients. The purpose of this study was to develop a novel hybrid curcumin nanoformulation (Curcumin-ER) and evaluate the therapeutic efficacy of this formulation on a non-small cell lung cancer xenograft model. Use of curcumin, a natural anticancer agent, is majorly limited due to its poor aqueous solubility and hence it's low systemic bioavailability. In this paper, we carried out the nanoformulation of Curcumin-ER, optimized the formulation process and determined the anticancer effects of Curcumin-ER against human A549 non-small cell lung cancer using in vitro and in vivo studies. Xenograft tumors in nude mice were treated with 20 mg/kg subcutaneous injection of Curcumin-ER and liposomal curcumin (Lipocurc) twice a week for seven weeks. Results showed that tumor growth was suppressed by 52.1% by Curcumin-ER treatment and only 32.2% by Lipocurc compared to controls. Tumor sections were isolated from murine xenografts and histology and immunohistochemistry was performed. A decrease in expression of NFκB-p65 subunit and proliferation marker, Ki-67 was observed in treated tumors. In addition, a potent anti-angiogenic effect, characterized by reduced expression of annexin A2 protein, was observed in treated tumors. These results establish the effectiveness of Curcumin-ER in regressing human non-small cell lung cancer growth in the xenograft model using subcutaneous route of administration. The therapeutic efficacy of Curcumin-ER highlights the potential of this hybrid nanoformulation in treating patients with non-small cell lung cancer. PMID:27301194

  6. Photoprotective efficiency of PLGA-curcumin nanoparticles versus curcumin through the involvement of ERK/AKT pathway under ambient UV-R exposure in HaCaT cell line.

    PubMed

    Chopra, Deepti; Ray, Lipika; Dwivedi, Ashish; Tiwari, Shashi Kant; Singh, Jyoti; Singh, Krishna P; Kushwaha, Hari Narayan; Jahan, Sadaf; Pandey, Ankita; Gupta, Shailendra K; Chaturvedi, Rajnish Kumar; Pant, Aditya Bhushan; Ray, Ratan Singh; Gupta, Kailash Chand

    2016-04-01

    Curcumin (Cur) has been demonstrated to have wide pharmacological window including anti-oxidant and anti-inflammatory properties. However, phototoxicity under sunlight exposure and poor biological availability limits its applicability. We have synthesized biodegradable and non-toxic polymer-poly (lactic-co-glycolic) acid (PLGA) encapsulated formulation of curcumin (PLGA-Cur-NPs) of 150 nm size range. Photochemically free curcumin generates ROS, lipid peroxidation and induces significant UVA and UVB mediated impaired mitochondrial functions leading to apoptosis/necrosis and cell injury in two different origin cell lines viz., mouse fibroblasts-NIH-3T3 and human keratinocytes-HaCaT as compared to PLGA-Cur-NPs. Molecular docking studies suggested that intact curcumin from nanoparticles, bind with BAX in BIM SAHB site and attenuate it to undergo apoptosis while upregulating anti-apoptotic genes like BCL2. Real time studies and western blot analysis with specific phosphorylation inhibitor of ERK1 and AKT1/2/3 confirm the involvement of ERK/AKT signaling molecules to trigger the survival cascade in case of PLGA-Cur-NPs. Our finding demonstrates that low level sustained release of curcumin from PLGA-Cur-NPs could be a promising way to protect the adverse biological interactions of photo-degradation products of curcumin upon the exposure of UVA and UVB. Hence, the applicability of PLGA-Cur-NPs could be suggested as prolonged radical scavenging ingredient in curcumin containing products. PMID:26803409

  7. Green synthesis of curcumin conjugated nanosilver for the applications in nucleic acid sensing and anti-bacterial activity.

    PubMed

    El Khoury, Elsy; Abiad, Mohamad; Kassaify, Zeina G; Patra, Digambara

    2015-03-01

    Silver nanoparticles (Ag NPs) are often synthesized by chemical and physical methods. Natural and non-toxic molecules are recently being replaced for nanoparticles preparation. In this paper we have used curcumin, which interacts with Ag+ and subsequently synthesizes silver nanoparticles. Further continuation of the reaction often makes aggregation and forms dark brown/black silver oxide. Presence of glycerol in the reaction mixture gives mono-disperse curcumin conjugated Ag NPs, which can be made stable by capping with polyvinylpyrolidone (PVP). XRD data confirm that curcumin conjugated Ag NPs are crystalline in nature with a mean crystalline size of 13.27 nm. The Ag NPs are spherical and in the range of 10-50 nm though their hydrodynamic radius is found to be higher, ∼294 nm, due to polyvinylpyrolidone capping and aggregation of nanoparticles in solution. The production of curcumin conjugated Ag NPs follows first order kinetics and the effect of curcumin concentration during formation of Ag NPs indicates a linear enhancement in the production of Ag NPs with an increase in concentration of curcumin. These curcumin conjugated silver nanoparticles show anti-bacterial activity and can successfully determine nucleic acid (DNA and RNA) in the concentration range 100-1000 ng/mL with a linear regression coefficient >0.997 using Resonance Rayleigh Scattering spectra. PMID:25687098

  8. Stability of curcumin in different solvent and solution media: UV-visible and steady-state fluorescence spectral study.

    PubMed

    Mondal, Satyajit; Ghosh, Soumen; Moulik, Satya P

    2016-05-01

    In aqueous solution, curcumin is photodegradable (light sensitive), it is also self-degradable in the dark. In basic medium, the second process is enhanced. The dark process has been studied in water and also in a number of protic and aprotic solvents, and aqueous solutions of ionic liquids, pluronics, reverse micelles and salt. The kinetics of the process followed the first order rate law; a comparative as well as individual assessment of which has been made. The kinetics of curcumin self-degradation has been found to be fairly dependent on salt (NaCl) concentration. Curcumin molecules in solution may remain in the enol or keto-enol form. From the visible spectral analysis, an estimate of the proportions of these forms in aqueous ethanol medium has been made. The temperature effect on the visible and fluorescence spectra of curcumin has been also studied. The steady state fluorescence anisotropy of the photoactive curcumin has been evaluated in different solvent and solution media. The reversibility of the steady state fluorescence anisotropy of curcumin on heating and cooling conditions has been examined. The results herein presented are new and ought to be useful as the study of physicochemistry of curcumin has been gaining importance in the light of its biological importance. PMID:26985735

  9. Molecular recognition of curcumin (Indian Ayurvedic medicine) by the supramolecular probe, p-t-butyl calix(8)arene

    NASA Astrophysics Data System (ADS)

    Meenakshi, C.; Jayabal, P.; Ramakrishnan, V.

    2014-06-01

    The thermodynamic property of the host-guest complexes formed between the curcumin, component of Indian Ayurvedic medicine turmeric, a drug molecule, with the supra molecule, p-t-butyl calix(8)arene was studied. p-t-Butyl calix(8)arene has been used as a host molecule and curcumin as a guest molecule. Optical absorption spectral studies were carried out to investigate the molecular recognition properties of p-t-butyl calix(8)arene with curcumin. The stochiometry of the host-guest complexes formed and the binding constant were determined. An interesting 1:1 and 4:1 stochiometric host-guest complexes were formed. Job's continuous method of variation and Benesi-Hildebrand expression were used for the determination of binding constant and the stochiometry of the host-guest complex formed.

  10. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Singh, Dheeraj K.; Jagannathan, Ramya; Khandelwal, Puneet; Abraham, Priya Mary; Poddar, Pankaj

    2013-02-01

    Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is an active component of turmeric; it is responsible for its characteristic yellow color and therapeutic potential, but its poor bioavailability remains a major challenge. In order to improve the bioavailability of curcumin, various approaches have been used. One of the possible approaches to increase the bioavailability of curcumin is its conjugation on the surface of metal nanoparticles. Therefore, in the present study, we report the binding of curcumin on the surface of gold nanoparticles (AuNPs). The AuNPs were synthesized by the direct reduction of HAuCl4 using curcumin in the aqueous phase, without the use of any other reducing agents. We found that curcumin acts both as a reducing and capping agent, stabilizing the gold sol for many months. Moreover, these curcumin-capped AuNPs also show good antioxidant activity which was confirmed by the DPPH (2,2-diphenyl-l-picrylhydrazyl) radical test. Thus, the surface functionalization of AuNPs with curcumin may pave a new way of using the curcuminoids towards possible drug delivery and therapeutics. Apart from the experimental study, a detailed quantum chemical calculation using density functional theory (DFT) has been performed, in order to investigate the formation of a complex of curcumin with Au3+ ions in different possible conformational isomeric forms. Our theoretical calculations indicate the evidence of electron transfer from curcumin into the Au center and essentially indicate that as a consequence of complexation, Au3+ ions are reduced to Au0. Our theoretical results also propose that it is the breakage of intramolecular H-bonding that probably leads to the increased availability of curcumin in the presence of gold ions and water molecules.Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is an active component of turmeric; it is responsible for its characteristic yellow color and therapeutic

  11. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation.

    PubMed

    Singh, Dheeraj K; Jagannathan, Ramya; Khandelwal, Puneet; Abraham, Priya Mary; Poddar, Pankaj

    2013-03-01

    Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is an active component of turmeric; it is responsible for its characteristic yellow color and therapeutic potential, but its poor bioavailability remains a major challenge. In order to improve the bioavailability of curcumin, various approaches have been used. One of the possible approaches to increase the bioavailability of curcumin is its conjugation on the surface of metal nanoparticles. Therefore, in the present study, we report the binding of curcumin on the surface of gold nanoparticles (AuNPs). The AuNPs were synthesized by the direct reduction of HAuCl(4) using curcumin in the aqueous phase, without the use of any other reducing agents. We found that curcumin acts both as a reducing and capping agent, stabilizing the gold sol for many months. Moreover, these curcumin-capped AuNPs also show good antioxidant activity which was confirmed by the DPPH (2,2-diphenyl-l-picrylhydrazyl) radical test. Thus, the surface functionalization of AuNPs with curcumin may pave a new way of using the curcuminoids towards possible drug delivery and therapeutics. Apart from the experimental study, a detailed quantum chemical calculation using density functional theory (DFT) has been performed, in order to investigate the formation of a complex of curcumin with Au(3+) ions in different possible conformational isomeric forms. Our theoretical calculations indicate the evidence of electron transfer from curcumin into the Au center and essentially indicate that as a consequence of complexation, Au(3+) ions are reduced to Au(0). Our theoretical results also propose that it is the breakage of intramolecular H-bonding that probably leads to the increased availability of curcumin in the presence of gold ions and water molecules. PMID:23348618

  12. Curcumin-induced fibroblast apoptosis and in vitro wound contraction are regulated by antioxidants and heme oxygenase: implications for scar formation

    PubMed Central

    Scharstuhl, A; Mutsaers, HAM; Pennings, SWC; Szarek, WA; Russel, FGM; Wagener, FADTG

    2009-01-01

    Abstract Fibroblast apoptosis plays a crucial role in normal and pathological scar formation and therefore we studied whether the putative apoptosis-inducing factor curcumin affects fibroblast apoptosis and may function as a novel therapeutic. We show that 25-μM curcumin causes fibroblast apoptosis and that this could be inhibited by co-administration of antioxidants N-acetyl-l-cysteine (NAC), biliverdin or bilirubin, suggesting that reactive oxygen species (ROS) are involved. This is supported by our observation that 25-μM curcumin caused the generation of ROS, which could be completely blocked by addition of NAC or bilirubin. Since biliverdin and bilirubin are downstream products of heme degradation by heme oxygenase (HO), it has been suggested that HO-activity protects against curcumin-induced apoptosis. Interestingly, exposure to curcumin maximally induced HO-1 protein and HO-activity at 10–15 μM, whereas, at a concentration of >20-μM curcumin HO-1-expression and HO-activity was negligible. NAC-mediated inhibition of 25-μM curcumin-induced apoptosis was demonstrated to act in part via restored HO-1-induction, since the rescuing effect of NAC could be reduced by inhibiting HO-activity. Moreover pre-induction of HO-1 using 5-μM curcumin protected fibroblasts against 25-μM curcumin-induced apoptosis. On a functional level, fibroblast-mediated collagen gel contraction, an in vitro wound contraction model, was completely prevented by 25-μM curcumin, while this could be reversed by co-incubation with NAC, an effect that was also partially HO-mediated. In conclusion, curcumin treatment in high doses (>25 μM) may provide a novel way to modulate pathological scar formation through the induction of fibroblast apoptosis, while antioxidants, HO-activity and its effector molecules act as a possible fine-tuning regulator. PMID:18410527

  13. Curcumin Enhances the Anti-Trypanosoma cruzi Activity of Benznidazole-Based Chemotherapy in Acute Experimental Chagas Disease.

    PubMed

    Novaes, Rômulo Dias; Sartini, Marcus Vinicius Pessoa; Rodrigues, João Paulo Ferreira; Gonçalves, Reggiani Vilela; Santos, Eliziária Cardoso; Souza, Raquel Lopes Martins; Caldas, Ivo Santana

    2016-06-01

    Although curcumin can increase the effectiveness of drugs against malaria, combination therapies using the molecule have never been investigated in Chagas disease (ChD). Therefore, we evaluated the efficacy of curcumin as a complementary strategy to benznidazole (Bz)-based chemotherapy in mice acutely infected with Trypanosoma cruzi Eighty-four 12-week-old Swiss mice were equally randomized into seven groups: uninfected (NI), T. cruzi infected and untreated (INF), infected and treated with 100 mg/kg of body weight Bz (B100), 50 mg/kg Bz (B50), 100 mg/kg curcumin (C100), 100 mg/kg Bz plus 100 mg/kg curcumin (B100 plus C100), and 50 mg/kg Bz plus 100 mg/kg curcumin (B50 plus C100). After microscopic identification of blood trypomastigotes (4 days after inoculation), both drugs were administered by gavage once a day for 20 days. Curcumin showed limited antiparasitic, anti-inflammatory, and antioxidant effects when administered alone. When curcumin and Bz were combined, there was a drastic reduction in parasitemia, parasite load, mortality, anti-T. cruzi IgG reactivity, circulating levels of cytokines (gamma interferon [IFN-γ], interleukin 4 [IL-4], and MIP1-α), myocardial inflammation, and morphological and oxidative cardiac injury; these results exceeded the isolated effects of Bz. The combination of Bz and curcumin was also effective at mitigating liver toxicity triggered by Bz, increasing the parasitological cure rate, and preventing infection recrudescence in noncured animals, even when the animals were treated with 50% of the recommended therapeutic dose of Bz. By limiting the toxic effects of Bz and enhancing its antiparasitic efficiency, the combination of the drug with curcumin may be a relevant therapeutic strategy that is possibly better tolerated in ChD treatment than Bz-based monotherapy. PMID:27001816

  14. Therapeutic potential of curcumin in gastrointestinal diseases.

    PubMed

    Rajasekaran, Sigrid A

    2011-02-15

    Curcumin, also known as diferuloylmethane, is derived from the plant Curcuma longa and is the active ingredient of the spice turmeric. The therapeutic activities of curcumin for a wide variety of diseases such as diabetes, allergies, arthritis and other chronic and inflammatory diseases have been known for a long time. More recently, curcumin's therapeutic potential for preventing and treating various cancers is being recognized. As curcumin's therapeutic promise is being explored more systematically in various diseases, it has become clear that, due to its increased bioavailability in the gastrointestinal tract, curcumin may be particularly suited to be developed to treat gastrointestinal diseases. This review summarizes some of the current literature of curcumin's anti-inflammatory, anti-oxidant and anti-cancer potential in inflammatory bowel diseases, hepatic fibrosis and gastrointestinal cancers. PMID:21607160

  15. Therapeutic actions of curcumin in bone disorders.

    PubMed

    Rohanizadeh, Ramin; Deng, Yi; Verron, Elise

    2016-01-01

    Curcumin is the active component of turmeric extract derived from the Curcuma longa plant. In the last decade, curcumin has raised a considerable interest in medicine owing to its negligible toxicity and multiple therapeutic actions including anti-cancer, anti-inflammatory and anti-microbial activities. Among the various molecular targets of curcumin, some are involved in bone remodeling, which strongly suggests that curcumin can affect the skeletal system. The review sheds light on the current and potential applications of curcumin to treat bone disorders characterized by an excessive resorption activity. Within the scope of this review, the novel formulations of curcumin to overcome its physico-chemical and pharmacokinetic constraints are also discussed. PMID:26962450

  16. Future of nano bisdemethoxy curcumin analog: guaranteeing safer intravenous delivery.

    PubMed

    Francis, Arul Prakash; Ganapathy, Selvam; Palla, Venkata Rajsekhar; Murthy, Prakhya Balakrishna; Devasena, Thiyagarajan

    2015-01-01

    The present study deals with the toxicity assessment of NBDMCA in vitro using red cell model and in vivo using rat model. Hemolysis was used as toxicity index in red blood cells. Different concentrations of NBDMCA viz., 20, 40, 60, 80, 100μg/ml in PBS were incubated with the red blood cells of rat. NBDMCA was found to induce less than 3% hemolysis in intact erythrocytes which was far lesser than the accepted threshold of 5%. Hematological cum biochemical parameters along with histopathological analysis and hemolysis were used as toxicity indices in rats. Whole blood of the NBDMCA-treated rats and control rats were analyzed for hematological parameters: erythrocyte count, leukocyte count, leukocyte differential count, hemoglobin, hematocrit, mean cell volume (MCV), mean corpuscular hemoglobin (MCH) using fully automated hematology analyzer. All hematological parameters analyzed were within the normal values in both the groups. Plasma samples were analyzed for biochemical parameters including glucose, blood urea nitrogen (BUN), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), creatinine (Cre), albumin (Alb), total protein (TP), calcium (Ca) and phosphorus (P) using fully automated biochemistry analyzer. Invariably, all the biochemical parameters are significantly similar in both the groups. Gross examination of vital organs like lung, heart, kidney, spleen and brain reveals no detectable abnormalities in NBDMCA-treated animals. Internal organs like heart, brain, lung, liver, spleen and kidneys of the experimental animals were collected and fixed in 10% formalin, processed in vacuum infiltration tissue processor, embedded with paraffin wax and sectioned at approximately 5μm thick, stained with hematoxylin and eosin. The sections were examined and imaged through light microscopy. NBDMCA did not produce any significant changes in the histoarchitecture of all the organs studied. Heart, aorta, brain, lung, liver, kidney and spleen showed normal pathology report. The histopathological data correlated with the biochemical results indicating normal hepatocellular and nephrotic function. Our investigation clearly revealed that NBDMCA is hemocompatible in vitro and also safe to vital organs in vivo. We conclude that NBDMCA is non-toxic and safe and can be promoted as an ideal therapeutic tool for human use. PMID:25596481

  17. Small molecule tolfenamic acid and dietary spice curcumin treatment enhances antiproliferative effect in pancreatic cancer cells via suppressing Sp1, disrupting NF-kB translocation to nucleus and cell cycle phase distribution.

    PubMed

    Basha, Riyaz; Connelly, Sarah F; Sankpal, Umesh T; Nagaraju, Ganji Purnachandra; Patel, Hassaan; Vishwanatha, Jamboor K; Shelake, Sagar; Tabor-Simecka, Leslie; Shoji, Mamoru; Simecka, Jerry W; El-Rayes, Bassel

    2016-05-01

    Combination of dietary/herbal spice curcumin (Cur) and COX inhibitors has been tested for improving therapeutic efficacy in pancreatic cancer (PC). The objective of this study was to identify agent with low toxicity and COX-independent mechanism to induce PC cell growth inhibition when used along with Cur. Anticancer NSAID, tolfenamic acid (TA) and Cur combination were evaluated using PC cell lines. L3.6pl and MIA PaCa-2 cells were treated with Cur (5-25μM) or TA (25-100μM) or combination of Cur (7.5μM) and TA (50μM). Cell viability was measured at 24-72h posttreatment using CellTiter-Glo kit. While both agents showed a steady/consistent effect, Cur+TA caused higher growth inhibition. Antiproliferative effect was compared with COX inhibitors, Ibuprofen and Celebrex. Cardiotoxicity was assessed using cordiomyocytes (H9C2). The expression of Sp proteins, survivin and apoptotic markers (western blot), caspase 3/7 (caspase-Glo kit), Annexin-V staining (flow cytometry), reactive oxygen species (ROS) and cell cycle phase distribution (flow cytometry) was measured. Cells were treated with TNF-α, and NF-kB translocation from cytoplasm to nucleus was evaluated (immunofluorescence). When compared to individual agents, combination of Cur+TA caused significant increase in apoptotic markers, ROS levels and inhibited NF-kB translocation to nucleus. TA caused cell cycle arrest in G0/G1, and the combination treatment showed mostly DNA synthesis phase arrest. These results suggest that combination of Cur+TA is less toxic and effectively enhance the therapeutic efficacy in PC cells via COX-independent mechanisms. PMID:27133426

  18. Pictorial Analogies XII: Stoichiometric Calculations.

    ERIC Educational Resources Information Center

    Fortman, John J.

    1994-01-01

    Pictorial analogies that demonstrate concepts of amounts allow instructors to teach that in stoichiometric problems, the number--or moles--of molecules of a chemical is what matters, even though it must be measured in masses or volumes. Analogies to stoichiometric relationships include the ratio of four wheels to one body in making wagons and…

  19. Advances in clinical study of curcumin.

    PubMed

    Yang, Chunfen; Su, Xun; Liu, Anchang; Zhang, Lin; Yu, Aihua; Xi, Yanwei; Zhai, Guangxi

    2013-01-01

    Curcumin has been estimated as a potential agent for many diseases and attracted great attention owing to its various pharmacological activities, including anti-cancer, and anti-inflammatory. Now curcumin is being applied to a number of patients with breast cancer, rheumatoid arthritis, Alzheimer's disease, colorectal cancer, psoriatic, etc. Several clinical trials have stated that curcumin is safe enough and effective. The objective of this article was to summarize the clinical studies of curcumin, and give a reference for future studies. PMID:23116307

  20. Development of curcumin nanocrystal: physical aspects.

    PubMed

    Rachmawati, Heni; Al Shaal, Loaye; Müller, Rainer H; Keck, Cornelia M

    2013-01-01

    Curcumin, a naturally occuring polyphenolic phytoconstituent, is isolated from the rhizomes of Curcuma longa Linn. (Zingiberaceae). It is water insoluble under acidic or neutral conditions but dissolves in alkaline environment. In neutral or alkaline conditions, curcumin is highly unstable undergoing rapid hydrolytic degradation to feruloyl methane and ferulic acid. Thus, the use of curcumin is limited by its poor aqueous solubility in acidic or neutral conditions and instability in alkaline pH. In the present study, curcumin nanocrystals were prepared using high-pressure homogenization, to improve its solubility. Five different stabilizers [polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), d-α-tocopherol polyethylene glycol 1000 succinate (TPGS), sodium dodecyl sulfate (SDS), carboxymethylcellulose sodium salt] possessing different stabilization mechanism were investigated. The nanoparticles were characterized with regard to size, surface charge, shape and morphology, thermal property, and crystallinity. A short-term stability study was performed storing the differently stabilized nanoparticles at 4°C and room temperature. PVA, PVP, TPGS, and SDS successfully produced curcumin nanoparticle with the particle size in the range of 500-700 nm. PVA, PVP, and TPGS showed similar performance in preserving the curcumin nanosuspension stability. However, PVP is the most efficient polymer to stabilize curcumin nanoparticle. This study illustrates that the developed curcumin nanoparticle held great potential as a possible approach to improve the curcumin solubility then enhancing bioavailability. PMID:23047816

  1. Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: relation to oxidative stress.

    PubMed

    Trujillo, Joyce; Molina-Jijón, Eduardo; Medina-Campos, Omar Noel; Rodríguez-Muñoz, Rafael; Reyes, José Luis; Loredo, María L; Barrera-Oviedo, Diana; Pinzón, Enrique; Rodríguez-Rangel, Daniela Saraí; Pedraza-Chaverri, José

    2016-01-01

    Curcumin is a polyphenol and cisplatin is an antineoplastic agent that induces nephrotoxicity associated with oxidative stress, apoptosis, fibrosis and decrease in renal tight junction (TJ) proteins. The potential effect of curcumin against alterations in TJ structure and function has not been evaluated in cisplatin-induced nephrotoxicity. The present study explored whether curcumin is able to prevent the cisplatin-induced fibrosis and decreased expression of the TJ and adherens junction (AJ) proteins occludin, claudin-2 and E-cadherin in cisplatin-induced nephrotoxicity. Curcumin (200 mg kg(-1)) was administered in three doses, and rats were sacrificed 72 h after cisplatin administration. Curcumin was able to scavenge, in a concentration-dependent way, superoxide anion, hydroxyl radical, peroxyl radical, singlet oxygen, peroxynitrite anion, hypochlorous acid and hydrogen peroxide. Cisplatin-induced renal damage was associated with alterations in plasma creatinine, expression of neutrophil gelatinase-associated lipocalin and of kidney injury molecule-1, histological damage, increase in apoptosis, fibrosis (evaluated by transforming growth factor β1, collagen I and IV and α-smooth muscle actin expressions), increase in oxidative/nitrosative stress (evaluated by Hsp70/72 expression, protein tyrosine nitration, superoxide anion production in isolated glomeruli and proximal tubules, and protein levels of NADPH oxidase subunits p47(phox) and gp91(phox), protein kinase C β2, and Nrf2) as well as by decreased expression of occludin, claudin-2, β-catenin and E-cadherin. Curcumin treatment prevented all the above-described alterations. The protective effect of curcumin against cisplatin-induced fibrosis and decreased proteins of the TJ and AJ was associated with the prevention of glomerular and proximal tubular superoxide anion production induced by NADPH oxidase activity. PMID:26467482

  2. A Randomized Double-Blind Placebo-Controlled Phase IIB Trial of Curcumin in Oral Leukoplakia.

    PubMed

    Kuriakose, Moni Abraham; Ramdas, Kunnambath; Dey, Bindu; Iyer, Subramanya; Rajan, Gunaseelan; Elango, Kalavathy K; Suresh, Amritha; Ravindran, Divya; Kumar, Rajneesh R; R, Prathiba; Ramachandran, Surya; Kumar, Nisha Asok; Thomas, Gigi; Somanathan, Thara; Ravindran, Hiran K; Ranganathan, Kannan; Katakam, Sudhakar Babu; Parashuram, Shivashankar; Jayaprakash, Vijayvel; Pillai, M Radhakrishna

    2016-08-01

    Oral leukoplakia is a potentially malignant lesion of the oral cavity, for which no effective treatment is available. We investigated the effectiveness of curcumin, a potent inhibitor of NF-κB/COX-2, molecules perturbed in oral carcinogenesis, to treat leukoplakia. Subjects with oral leukoplakia (n = 223) were randomized (1:1 ratio) to receive orally, either 3.6 g/day of curcumin (n = 111) or placebo (n = 112), for 6 months. The primary endpoint was clinical response obtained by bi-dimensional measurement of leukoplakia size at recruitment and 6 months. Histologic response, combined clinical and histologic response, durability and effect of long-term therapy for an additional six months in partial responders, safety and compliance were the secondary endpoints. Clinical response was observed in 75 (67.5%) subjects [95% confidence interval (CI), 58.4-75.6] in the curcumin and 62 (55.3%; 95% CI, 46.1-64.2) in placebo arm (P = 0.03). This response was durable, with 16 of the 18 (88.9%; 95% CI, 67.2-96.9) subjects with complete response in curcumin and 7 of 8 subjects (87.5%) in placebo arm, demonstrating no relapse after 6 months follow-up. Difference in histologic response between curcumin and placebo was not significant (HR, 0.88, 95% CI, 0.45-1.71; P = 0.71). Combined clinical and histologic response assessment indicated a significantly better response with curcumin (HR, 0.50; 95% CI, 0.27-0.92; P = 0.02). Continued therapy, in subjects with partial response at 6 months, did not yield additional benefit. The treatment did not raise any safety concerns. Treatment of oral leukoplakia with curcumin (3.6 g for six months), thus was well tolerated and demonstrated significant and durable clinical response for 6 months. Cancer Prev Res; 9(8); 683-91. ©2016 AACR. PMID:27267893

  3. Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications.

    PubMed

    Massaro, M; Amorati, R; Cavallaro, G; Guernelli, S; Lazzara, G; Milioto, S; Noto, R; Poma, P; Riela, S

    2016-04-01

    Covalently functionalized halloysite nanotubes (HNTs) were successfully employed as dual-responsive nanocarriers for curcumin (Cur). Particularly, we synthesized HNT-Cur prodrug with a controlled curcumin release on dependence of both intracellular glutathione (GSH) and pH conditions. In order to obtain HNT-Cur produgs, halloysite was firstly functionalized with cysteamine through disulphide linkage. Afterwards, curcumin molecules were chemically conjugated to the amino end groups of halloysite via Schiff's base formation. The successful functionalization of halloysite was proved by thermogravimetric analysis, FT-IR spectroscopy, dynamic light scattering and scanning electron microscopy. Experimental data confirmed the presence of curcumin on HNT external surface. Moreover, we investigated the kinetics of curcumin release by UV-vis spectroscopy, which highlighted that HNT-Cur prodrug possesses dual stimuli-responsive ability upon exposure to GSH-rich or acidic environment. In vitro antiproliferative and antioxidant properties of HNT-Cur prodrug were studied with the aim to explore their potential applications in pharmaceutics. This work puts forward an efficient strategy to prepare halloysite based nanocarriers with controlled drug delivery capacity through direct chemical grafting with stimuli-responsive linkage. PMID:26812638

  4. Curcumin: A new candidate for melanoma therapy?

    PubMed

    Mirzaei, Hamed; Naseri, Gholamreza; Rezaee, Ramin; Mohammadi, Mohsen; Banikazemi, Zarrin; Mirzaei, Hamid Reza; Salehi, Hossein; Peyvandi, Mostafa; Pawelek, John M; Sahebkar, Amirhossein

    2016-10-15

    Melanoma remains among the most lethal cancers and, in spite of great attempts that have been made to increase the life span of patients with metastatic disease, durable and complete remissions are rare. Plants and plant extracts have long been used to treat a variety of human conditions; however, in many cases, effective doses of herbal remedies are associated with serious adverse effects. Curcumin is a natural polyphenol that shows a variety of pharmacological activities including anti-cancer effects, and only minimal adverse effects have been reported for this phytochemical. The anti-cancer effects of curcumin are the result of its anti-angiogenic, pro-apoptotic and immunomodulatory properties. At the molecular and cellular level, curcumin can blunt epithelial-to-mesenchymal transition and affect many targets that are involved in melanoma initiation and progression (e.g., BCl2, MAPKS, p21 and some microRNAs). However, curcumin has a low oral bioavailability that may limit its maximal benefits. The emergence of tailored formulations of curcumin and new delivery systems such as nanoparticles, liposomes, micelles and phospholipid complexes has led to the enhancement of curcumin bioavailability. Although in vitro and in vivo studies have demonstrated that curcumin and its analogues can be used as novel therapeutic agents in melanoma, curcumin has not yet been tested against melanoma in clinical practice. In this review, we summarized reported anti-melanoma effects of curcumin as well as studies on new curcumin formulations and delivery systems that show increased bioavailability. Such tailored delivery systems could pave the way for enhancement of the anti-melanoma effects of curcumin. PMID:27280688

  5. New Difluoro Knoevenagel Condensates of Curcumin, Their Schiff Bases and Copper Complexes as Proteasome Inhibitors and Apoptosis Inducers in Cancer Cells

    PubMed Central

    Padhye, Subhash; Yang, Huanjie; Jamadar, Abeda; Cui, Qiuzhi Cindy; Chavan, Deepak; Dominiak, Kristin; McKinney, Jaclyn; Banerjee, Sanjeev; Dou, Q. Ping; Sarkar, Fazlul H.

    2013-01-01

    Purpose Emerging evidence clearly suggests the potential chemopreventive and anti-tumor activity of a well known “natural agent” curcumin. However, studies have shown that curcumin is not readily bioavailable, and thus the tissue bioavailability of curcumin is also poor except for gastrointestinal track. Because of the potential biological activity of curcumin, many studies have attempted for making a better analog of cucumin that is equally effective or better with increased bioavailability, which was the purpose of our current study. Methods We have designed and synthesized new difluoro Knoevenagel condensates of curcumin and Schiff bases along with their copper (II) complexes and evaluated their biological activities with respect to the inhibitory effects on purified rabbit 26S proteasome, and growth inhibition and induction of apoptosis in colon and pancreatic cancer cell lines. Results All copper complexes possess distorted square planar geometries with 1:1 metal to ligand stoichiometry with reversible copper redox couple. The difluoro compound CDF exhibited inhibitory effects on purified rabbit 20S proteasome or cellular 26S proteasome, and caused both growth inhibition of cancer cell lines and induced apoptotic cell death in our preliminary assessment. Conclusion Our results suggest that our newly synthesized classes of curcumin analogs could be useful as chemopreventive and/or therapeutic agents against cancers. PMID:19421843

  6. Clinical utility of curcumin extract.

    PubMed

    Asher, Gary N; Spelman, Kevin

    2013-01-01

    Turmeric root has been used medicinally in China and India for thousands of years. The active components are thought to be the curcuminoids, primarily curcumin, which is commonly available worldwide as a standardized extract. This article reviews the pharmacology of curcuminoids, their use and efficacy, potential adverse effects, and dosage and standardization. Preclinical studies point to mechanisms of action that are predominantly anti-inflammatory and antineoplastic, while early human clinical trials suggest beneficial effects for dyspepsia, peptic ulcer, inflammatory bowel disease, rheumatoid arthritis, osteoarthritis, uveitis, orbital pseudotumor, and pancreatic cancer. Curcumin is well-tolerated; the most common side effects are nausea and diarrhea. Theoretical interactions exist due to purported effects on metabolic enzymes and transport proteins, but clinical reports do not support any meaningful interactions. Nonetheless, caution, especially with chemotherapy agents, is advised. Late-phase clinical trials are still needed to confirm most beneficial effects. PMID:23594449

  7. Turmeric (curcumin) remedies gastroprotective action

    PubMed Central

    Yadav, Santosh Kumar; Sah, Ajit Kumar; Jha, Rajesh Kumar; Sah, Phoolgen; Shah, Dev Kumar

    2013-01-01

    The purpose of this review is to summarize the pertinent literature published in the present era regarding the antiulcerogenic property of curcumin against the pathological changes in response to ulcer effectors (Helicobacter pylori infection, chronic ingestion of non-steroidal anti-inflammatory drugs, and exogenous substances). The gastrointestinal problems caused by different etiologies was observed to be associated with the alterations of various physiologic parameters such as reactive oxygen species, nitric oxide synthase, lipid peroxidation, and secretion of excessive gastric acid. Gastrointestinal ulcer results probably due to imbalance between the aggressive and the defensive factors. In 80% of the cases, gastric ulcer is caused primarily due to the use of non-steroidal anti-inflammatory category of drug, 10% by H. pylori, and about 8-10% by the intake of very spicy and fast food. Although a number of antiulcer drugs and cytoprotectants are available, all these drugs have side effects and limitations. In the recent years a widespread search has been launched to identify new antiulcer drugs from synthetic and natural resources. An Indian dietary derivative (curcumin), a yellow pigment found in the rhizome of Curcuma longa, has been widely used for the treatment of several diseases. Epidemiologically, it was suggested that curcumin might reduce the risk of inflammatory disorders, such as cancer and ulcer. These biological effects are attributed to its anti-inflammatory and antioxidant activities. It can, therefore, be reported from the literature that curcumin PRevents gastrointestinal-induced ulcer and can be recommended as a novel drug for ulcer treatment. PMID:23922455

  8. Curcumin as a wound healing agent.

    PubMed

    Akbik, Dania; Ghadiri, Maliheh; Chrzanowski, Wojciech; Rohanizadeh, Ramin

    2014-10-22

    Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anti-coagulant and anti-infective effects. Curcumin has also been shown to have significant wound healing properties. It acts on various stages of the natural wound healing process to hasten healing. This review summarizes and discusses recently published papers on the effects of curcumin on skin wound healing. The highlighted studies in the review provide evidence of the ability of curcumin to reduce the body's natural response to cutaneous wounds such as inflammation and oxidation. The recent literature on the wound healing properties of curcumin also provides evidence for its ability to enhance granulation tissue formation, collagen deposition, tissue remodeling and wound contraction. It has become evident that optimizing the topical application of curcumin through altering its formulation is essential to ensure the maximum therapeutical effects of curcumin on skin wounds. PMID:25200875

  9. Curcumin: a boon to colonic diseases.

    PubMed

    Sareen, Rashmi; Jain, Nitin; Pandit, Vinay

    2013-09-01

    Curcumin, a natural polyphenolic compound present in turmeric, exhibited multiple pharmacological activities. Extensive studies in last two decade suggested that curcumin possesses anti-inflammatory, anticancer, antiviral, anti-amyloid, antiarthritic and antioxidant properties. The mechanism for these effects involves modulation of several signaling transduction pathways. Various clinical studies have suggested that curcumin might be a potential candidate for the prevention and/or treatment of a variety of colonic diseases such as ulcerative colitis, Crohn's disease and colonic cancer. However, several evidences suggested the role of curcumin in multiple diseases, but the major challenge is to obtain optimum therapeutic levels of curcumin due to its low solubility and poor bioavailability. Improved absorption and cellular uptake of curcumin can be achieved through alteration in formulation properties and novel approaches in delivery systems. This review presents an overview of the background of curcumin, pharmacology, pharmacokinetics, clinical evidence in chemoprevention of bowel diseases and recent approaches to deliver curcumin for improved cellular uptake and bioavailability. PMID:23768171

  10. New perspectives of curcumin in cancer prevention

    PubMed Central

    Park, Wungki; Amin, A.R.M Ruhul; Chen, Zhuo Georgia; Shin, Dong M.

    2013-01-01

    Numerous natural compounds have been extensively investigated for their potential for cancer prevention over decades. Curcumin, from Curcuma longa, is a highly promising natural compound that can be potentially used for chemoprevention of multiple cancers. Curcumin modulates multiple molecular pathways involved in the lengthy carcinogenesis process to exert its chemopreventive effects through several mechanisms: promoting apoptosis, inhibiting survival signals, scavenging reactive oxidative species (ROS), and reducing the inflammatory cancer microenvironment. Curcumin fulfills the characteristics for an ideal chemopreventive agent with its low toxicity, affordability, and easy accessibility. Nevertheless, the clinical application of curcumin is currently compromised by its poor bioavailability. Here we review the potential of curcumin in cancer prevention, its molecular targets, and action mechanisms. Finally, we suggest specific recommendations to improve its efficacy and bioavailability for clinical applications. PMID:23466484

  11. Oral bioavailability of curcumin: problems and advancements.

    PubMed

    Liu, Weidong; Zhai, Yingjie; Heng, Xueyuan; Che, Feng Yuan; Chen, Wenjun; Sun, Dezhong; Zhai, Guangxi

    2016-09-01

    Curcumin is a natural compound of Curcuma longa L. and has shown many pharmacological activities such as anti-inflammatory, anti-oxidant in both preclinical and clinical studies. Moreover, curcumin has hepatoprotective, neuroprotective activities and protects against myocardial infarction. Particularly, curcumin has also demonstrated favorite anticancer efficacy. But limiting factors such as its extremely low oral bioavailability hampers its application as therapeutic agent. Therefore, many technologies have been developed and applied to overcome this limitation. This review described the main physicochemical properties of curcumin and summarized the recent studies in the design and development of oral delivery systems for curcumin to enhance the solubility and oral bioavailability, including liposomes, nanoparticles and polymeric micelles, phospholipid complexes, and microemulsions. PMID:26942997

  12. Cooking enhances curcumin anti-cancerogenic activity through pyrolytic formation of "deketene curcumin".

    PubMed

    Dahmke, Indra N; Boettcher, Stefan P; Groh, Matthias; Mahlknecht, Ulrich

    2014-05-15

    Curcumin is widely used in traditional Asian kitchen as a cooking ingredient. Despite its low bioavailability, epidemiological data, on low cancer incidence in Asia, suggest beneficial health effects of this compound. Therefore, the question arose whether cooking modifies the anti-cancerogenic effects of curcumin. To evaluate this, we pyrolysed curcumin with and without coconut fat or olive oil, and analysed the products by high-performance liquid chromatography (HPLC). A number of more hydrophilic curcumin isoforms and decomposition products, including a compound later identified by nuclear magnetic resonance spectroscopy (NMR) as "deketene curcumin" (1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one), formerly described as a synthetic curcumin derivative, were detected. Additionally, we proved that deketene curcumin, compared to curcumin, exhibits higher toxicity on B78H1 melanoma cells resulting in G2 arrest. In conclusion, deketene curcumin is formed as a consequence of pyrolysis during common household cooking, showing stronger anti-cancer effects than curcumin. Moreover, we propose a chemical reaction-pathway for this process. PMID:24423564

  13. Curcumin protects against nicotine-induced stress during protein malnutrition in female rat through immunomodulation with cellular amelioration.

    PubMed

    Maiti, Moumita; Chattopadhyay, Krishna; Verma, Mukesh; Chattopadhyay, Brajadulal

    2015-12-01

    Nicotine aggravates many chronic inflammatory disorders in females under the protein-malnourished conditions because women are more susceptible to nicotine-induced diseases due to their low innate immunity. Although curcumin have been found to obliterate the nicotine-induced disorders through its anti-nicotinic activity under the protein-malnourished condition, the exact mechanism of protective action of curcumin is still unclear. Female Wister rats maintained under the normal and protein-restricted diets in two separate groups were injected with the effective dose of nicotine-tartrate (2.5 mg/kg body weight/day, subcutaneously) and supplemented with the effective dose of curcumin (80 mg/kg body weight/day, orally) for 21 days. The morphology of red blood cells (RBCs), molecular docking, lipid profile and activities of antioxidant enzymes in tissues, cytokines profiling (T helper cell type 1; and T helper cell type 2), mRNA and protein expression of cytokines, transcription factors (activator protein 1), regulatory molecule (P(53)), growth factors (Granulocyte-macrophage colony-stimulating factor; Transforming growth factor beta) were determined to establish the mechanism of actions of curcumin against the nicotine-mediated stress in the protein-malnourished rats. This study revealed that curcumin bound to the Histidine 87 residues of haemoglobin with a greater binding affinity and significantly protected the RBCs against nicotine-induced damage. Furthermore, the nicotine-mediated disruption of Th1/Th2 balance through upregulation and downregulation of different factors was effectively restored by curcumin under the protein-malnourished conditions. The study demonstrated that curcumin was a potent protective compound against the nicotine-induced stress and offered a probable biochemical and immunomodulatory mechanism of protective action of curcumin. PMID:26559197

  14. QSAR study of curcumine derivatives as HIV-1 integrase inhibitors.

    PubMed

    Gupta, Pawan; Sharma, Anju; Garg, Prabha; Roy, Nilanjan

    2013-03-01

    A QSAR study was performed on curcumine derivatives as HIV-1 integrase inhibitors using multiple linear regression. The statistically significant model was developed with squared correlation coefficients (r(2)) 0.891 and cross validated r(2) (r(2) cv) 0.825. The developed model revealed that electronic, shape, size, geometry, substitution's information and hydrophilicity were important atomic properties for determining the inhibitory activity of these molecules. The model was also tested successfully for external validation (r(2) pred = 0.849) as well as Tropsha's test for model predictability. Furthermore, the domain analysis was carried out to evaluate the prediction reliability of external set molecules. The model was statistically robust and had good predictive power which can be successfully utilized for screening of new molecules. PMID:23286784

  15. Relevance of the anti-inflammatory properties of curcumin in neurodegenerative diseases and depression.

    PubMed

    Tizabi, Yousef; Hurley, Laura L; Qualls, Zakiya; Akinfiresoye, Luli

    2014-01-01

    This review is an attempt to summarize our current understanding of curcumin's potential as a neuroprotectant and an antidepressant. This dual property confers a unique advantage to this herbal medication, believed to be devoid of any major side effects, to combat commonly observed co-morbid conditions of a neurodegenerative and a neuropsychiatric disorder. Moreover, in line with the theme of this series, the role of inflammation and stress in these diseases and possible anti-inflammatory effects of curcumin, as well as its interaction with signal transduction proteins as a common denominator in its varied mechanisms of action, are also discussed. Thus, following a brief introduction of curcumin's pharmacology, we present research suggesting how its anti-inflammatory properties have therapeutic potential in treating a devastating neurological disorder (Parkinson's disease = PD) and a debilitating neuropsychiatric disorder (major depressive disorder = MDD). It is concluded that curcumin, or better yet, an analog with better and longer bioavailability could be of important therapeutic potential in PD and/or major depression. PMID:25514226

  16. Triazole-curcuminoids: A new class of derivatives for 'tuning' curcumin bioactivities?

    PubMed

    Caprioglio, Diego; Torretta, Simone; Ferrari, Maila; Travelli, Cristina; Grolla, Ambra A; Condorelli, Fabrizio; Genazzani, Armando A; Minassi, Alberto

    2016-01-15

    Curcumin is a unique blend of pharmacophores responsible for the pleiotropy of this natural pigment. In the present study we have replaced the 1,3-dicarbonyl moiety with a 1,2,3-triazole ring to furnish a new class of triazole-curcuminoids as a possible strategy to generate new compounds with different potency and selectivity compared to curcumin. We obtained a proof-of-principle library of 28 compounds tested for their cytotoxicity (SY-SY5Y and HeLa cells) and for their ability to inhibit NF-κB. Furthermore, we also generated 1,3-dicarbonyl curcuminoids of selected click compounds. Triazole-curcuminoids lost their ability to be Michael's acceptors, yet maintained some of the features of the parent compounds and disclosed new ones. In particular, we found that some compounds were able to inhibit NF-κB without showing cytotoxicity, while others, unlike curcumin, activated NF-κB signalling. This validates the hypothesis that click libraries can be used to investigate the biological activities of curcumin as well as generate analogs with selected features. PMID:26705144

  17. Curcumin and its analogues: a potential natural compound against HIV infection and AIDS.

    PubMed

    Prasad, Sahdeo; Tyagi, Amit K

    2015-11-01

    No safe and effective cure currently exists for human immunodeficiency virus (HIV). However, antiretroviral therapy can prolong the lives of HIV patients and lowers the secondary infections. Natural compounds, which are considered to be pleiotropic molecules, could be useful against HIV. Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), can be used for the treatment of several diseases including HIV-AIDS because of its antioxidant, anti-inflammatory, anticancer, antiviral, and antibacterial nature. In this review we have summarized that how curcumin and its analogues inhibit the infection and replication of viral genes and prevent multiplicity of HIV. They are inhibitors of HIV protease and integrase. Curcumin also inhibits Tat transactivation of the HIV1-LTR genome, inflammatory molecules (interleukins, TNF-α, NF-κB, COX-2) and HIV associated various kinases including tyrosine kinase, PAK1, MAPK, PKC, cdk and others. In addition, curcumin enhances the effect of conventional therapeutic drugs and minimizes their side effects. PMID:26404185

  18. A curcumin activated carboxymethyl cellulose-montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media.

    PubMed

    Madusanka, Nadeesh; de Silva, K M Nalin; Amaratunga, Gehan

    2015-12-10

    A novel curcumin activated carboxymethylcellulose-montmorillonite nanocomposite is reported. A superabsorbent biopolymer; carboxymethyl cellulose (CMC) was used as an emulsifier for curcumin which is a turmeric derived water insoluble polyphenolic compound with antibacterial/anti-cancer properties. Montmorillonite (MMT) nanoclay was incorporated in the formulation as a matrix material which also plays a role in release kinetics. It was observed that water solubility of curcumin in the nanocomposite has significantly increased (60% release within 2h and 30 min in distilled water at pH 5.4) compared to pure curcumin. The prepared curcumin activated carboxymethylcellulose-montmorillonite nanocomposite is suitable as a curcumin carrier having enhanced release and structural properties. PMID:26428174

  19. Analog earthquakes

    SciTech Connect

    Hofmann, R.B.

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.

  20. Cytoprotective mechanism of action of curcumin against cataract.

    PubMed

    Raman, Thiagarajan; Ramar, Manikandan; Arumugam, Munusamy; Nabavi, Seyed Mohammad; Varsha, Mosur Kumaraswamy Nagarajan Sai

    2016-06-01

    This review discusses the relationship between oxidative stress and cataract formation, molecular mechanism of curcumin action and potential benefits of treatment with the antioxidant curcumin. The first section deals with curcumin and endogenous antioxidants. The second section focuses on the action of curcumin on lipid peroxidation. Calcium homeostasis and curcumin will be discussed in the third section. The fourth section discusses the role of crystallin proteins that are responsible for maintaining lens transparency and the role of curcumin in regulating crystallin expression. The interaction of curcumin with transcription factors will be dealt in the fifth section. The final section will focus on the effect of curcumin on aldose reductase, which is associated with hyperglycemia and cataract. One of the strongest antioxidants is curcumin which has been shown to be very effective against cataract. This compound is better than other antioxidants in preventing cataract but its limited bioavailability can be addressed by employing nanotechnology. PMID:26894964

  1. Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells.

    PubMed

    Hatamie, Shadie; Akhavan, Omid; Sadrnezhaad, Sayed Khatiboleslam; Ahadian, Mohammad Mahdi; Shirolkar, Mandar M; Wang, Haiqian Q

    2015-10-01

    Curcumin (as a natural reductant material) was utilized for green reduction and functionalization of chemically exfoliated graphene oxide (GO) sheets. The π-π attachment of the curcumin molecules onto the curcumin-reduced graphene oxide (rGO) sheets was confirmed by Raman and Fourier transform infrared spectroscopies. Zeta potential of the GO sheets decreased from about -40 mV to -20 mV, after the green reduction and functionalization. The probable cytotoxicity of the curcumin-rGO sheets was studied through their interactions with two human breast cancer cell lines (MDA-MB-231 and SKBR3 cell lines) and a normal cell line (mouse fibroblast L929 cell line). The curcumin-rGO sheet with concentrations <70 μg/mL in the cell culture medium, not only exhibited no significant toxicity and/or cell morphological changes, but also caused some cell growths (~25% after 48 h incubation time). Nevertheless, at 70 μg/mL, initiation of some cell morphological changes was observed. At higher concentrations (e.g., 100 μg/mL), some slight cytotoxic effects (resulting in ~15-25% cell destruction) were detected by MTT assay. In addition, the interaction of the rGO sheets and cells resulted in apoptosis as well as morphological transformation of the cells (from elongated to roundup morphology). These results indicated the concentration-dependent toxicity of functionalized-rGO nanomaterials (here, curcumin-rGO) at the threshold concentration of ~100 μg/mL. PMID:26117780

  2. Curcumin-Eudragit® E PO solid dispersion: A simple and potent method to solve the problems of curcumin.

    PubMed

    Li, Jinglei; Lee, Il Woo; Shin, Gye Hwa; Chen, Xiguang; Park, Hyun Jin

    2015-08-01

    Using a simple solution mixing method, curcumin was dispersed in the matrix of Eudragit® E PO polymer. Water solubility of curcumin in curcumin-Eudragit® E PO solid dispersion (Cur@EPO) was greatly increased. Based on the results of several tests, curcumin was demonstrated to exist in the polymer matrix in amorphous state. The interaction between curcumin and the polymer was investigated through Fourier transform infrared spectroscopy and (1)H NMR which implied that OH group of curcumin and carbonyl group of the polymer involved in the H bonding formation. Cur@EPO also provided protection function for curcumin as verified by the pH challenge and UV irradiation test. The pH value influenced curcumin release profile in which sustained release pattern was revealed. Additionally, in vitro transdermal test was conducted to assess the potential of Cur@EPO as a vehicle to deliver curcumin through this alternative administration route. PMID:26073546

  3. Nanocomplexation between curcumin and soy protein isolate: influence on curcumin stability/bioaccessibility and in vitro protein digestibility.

    PubMed

    Chen, Fei-Ping; Li, Bian-Sheng; Tang, Chuan-He

    2015-04-01

    The complexation of nanoparticles in unheated and heated (at 75-95°) soy protein isolate (SPI) with curcumin and the effects on curcumin stability/bioaccessibility and in vitro protein digestibility were investigated. The nanoparticles did not display noticeable changes in size and morphology upon nanocomplexation with curcumin, except their surface hydrophobicity. The encapsulation efficiency of curcumin progressively decreased with increasing initial curcumin concentration in the dispersion, while the load amount linearly increased. The solubility of curcumin in water was enhanced by the complexation above 98000-fold (vs free curcumin in water). The formation of the nanocomplexes considerably improved the storage stability of curcumin. In vitro simulated digestion experiments indicated that the complexation also improved the bioaccessibility of curcumin; the bioaccessibility was greatly impaired by hydrolysis-induced protein aggregation. Addtionally, the nanocomplexation significantly improved the in vitro protein digestibility of both unheated and heated SPI. PMID:25779681

  4. Excretion of NaCl and KCl loads in mosquitoes. 2. Effects of the small molecule Kir channel modulator VU573 and its inactive analog VU342

    PubMed Central

    Rouhier, Matthew F.; Hine, Rebecca M.; Park, Seokhwan Terry; Raphemot, Rene; Denton, Jerod; Piermarini, Peter M.

    2014-01-01

    The effect of two small molecules VU342 and VU573 on renal functions in the yellow fever mosquito Aedes aegypti was investigated in vitro and in vivo. In isolated Malpighian tubules, VU342 (10 μM) had no effect on the transepithelial secretion of Na+, K+, Cl−, and water. In contrast, 10 μM VU573 first stimulated and then inhibited the transepithelial secretion of fluid when the tubules were bathed in Na+-rich or K+-rich Ringer solution. The early stimulation was blocked by bumetanide, suggesting the transient stimulation of Na-K-2Cl cotransport, and the late inhibition of fluid secretion was consistent with the known block of AeKir1, an Aedes inward rectifier K+ channel, by VU573. VU342 and VU573 at a hemolymph concentration of about 11 μM had no effect on the diuresis triggered by hemolymph Na+ or K+ loads. VU342 at a hemolymph concentration of 420 μM had no effect on the diuresis elicited by hemolymph Na+ or K+ loads. In contrast, the same concentration of VU573 significantly diminished the Na+ diuresis by inhibiting the urinary excretion of Na+, Cl−, and water. In K+-loaded mosquitoes, 420 μM VU573 significantly diminished the K+ diuresis by inhibiting the urinary excretion of K+, Na+, Cl−, and water. We conclude that 1) the effects of VU573 observed in isolated Malpighian tubules are overwhelmed in vivo by the diuresis triggered with the coinjection of Na+ and K+ loads, and 2) at a hemolymph concentration of 420 μM VU573 affects Kir channels systemically, including those that might be involved in the release of diuretic hormones. PMID:25056106

  5. Excretion of NaCl and KCl loads in mosquitoes. 2. Effects of the small molecule Kir channel modulator VU573 and its inactive analog VU342.

    PubMed

    Rouhier, Matthew F; Hine, Rebecca M; Park, Seokhwan Terry; Raphemot, Rene; Denton, Jerod; Piermarini, Peter M; Beyenbach, Klaus W

    2014-10-01

    The effect of two small molecules VU342 and VU573 on renal functions in the yellow fever mosquito Aedes aegypti was investigated in vitro and in vivo. In isolated Malpighian tubules, VU342 (10 μM) had no effect on the transepithelial secretion of Na(+), K(+), Cl(-), and water. In contrast, 10 μM VU573 first stimulated and then inhibited the transepithelial secretion of fluid when the tubules were bathed in Na(+)-rich or K(+)-rich Ringer solution. The early stimulation was blocked by bumetanide, suggesting the transient stimulation of Na-K-2Cl cotransport, and the late inhibition of fluid secretion was consistent with the known block of AeKir1, an Aedes inward rectifier K(+) channel, by VU573. VU342 and VU573 at a hemolymph concentration of about 11 μM had no effect on the diuresis triggered by hemolymph Na(+) or K(+) loads. VU342 at a hemolymph concentration of 420 μM had no effect on the diuresis elicited by hemolymph Na(+) or K(+) loads. In contrast, the same concentration of VU573 significantly diminished the Na(+) diuresis by inhibiting the urinary excretion of Na(+), Cl(-), and water. In K(+)-loaded mosquitoes, 420 μM VU573 significantly diminished the K(+) diuresis by inhibiting the urinary excretion of K(+), Na(+), Cl(-), and water. We conclude that 1) the effects of VU573 observed in isolated Malpighian tubules are overwhelmed in vivo by the diuresis triggered with the coinjection of Na(+) and K(+) loads, and 2) at a hemolymph concentration of 420 μM VU573 affects Kir channels systemically, including those that might be involved in the release of diuretic hormones. PMID:25056106

  6. Biological activity of a small molecule indole analog, 1-[(1H-indol-3-yl)methylene]-2-phenylhydrazine (HMPH), in chronic inflammation.

    PubMed

    Misra, Chandra Sekhar; Gejjalagere Honnappa, Chethan; Jitta, Srinivas Reddy; Gourishetti, Karthik; Daram, Prasanthi; Singh, Mahendra Pal; Hosur Shrungeswara, Akhila; Nayak, Yogendra; Unnikrishnan, Mazhuvancherry Kesavan

    2016-01-25

    A synthetic small molecule, 1-[(1H-indol-3-yl)methylene]-2-phenylhydrazine (HMPH) was conveniently synthesised by a one-step reaction, purified and characterised by chromatographic and spectroscopic methods. HMPH scavenged free radicals and inhibited lipopolysaccharide (LPS)-induced ROS generation and NO release in RAW-264.7 cells without signs of any detectable cytotoxicity. HMPH inhibited lipid peroxidation (LPO) with IC50 of 135 ± 9 as against 58 ± 8 μM for α-tocopherol. Further, HMPH (>50 μM) significantly reduced the LPS-induced TNF-α release in mouse peritoneal macrophages and in human peripheral blood mononuclear cells (PBMCs). HMPH did not show any visible signs of toxicity in rats up to 400 mg/kg/intraperitoneal and 2000 mg/kg/oral. HMPH at 25 and 50 mg/kg attenuated neutrophil infiltration in air-pouch lavage and bronchoalveolar lavage (BAL) in rat models. HMPH also reduced myeloperoxidase (MPO), nitrite and TNF-α in air-pouch lavage in addition to MPO in plasma. HMPH reduced acute paw-inflammation in carrageenan-induced paw-edema. HMPH consistently decreased both ipsilateral and contralateral paw inflammation, minimised the clinical scores of arthritis, prevented body weight (B.wt.) loss, attenuated serum C-reactive protein (C-RP) and rheumatoid factors (RF) in rat model of adjuvant-induced arthritis. Histopathology and radio-graphical reports show that HMPH reduced bone erosion in both ipsilateral and contralateral paw joints. Failure to inhibit COX suggests that effectiveness of HMPH in both acute and chronic inflammation is mediated by a multimodal mechanism involving modulation of immunity, attenuating TNF-α, protecting bone attrition and reducing oxidative stress. PMID:26549477

  7. Curcumin Implants, not Curcumin Diet Inhibits Estrogen-Induced Mammary Carcinogenesis in ACI Rats

    PubMed Central

    Bansal, Shyam S.; kausar, Hina; Vadhanam, Manicka V.; Ravoori, Srivani; Pan, Jianmin; Rai, Shesh N.; Gupta, Ramesh C.

    2014-01-01

    Curcumin is widely known for its anti-oxidant, anti-inflammatory and anti-proliferative activities in cell culture studies. However, poor oral bioavailability limited its efficacy in animal and clinical studies. Recently, we developed polymeric curcumin implants that circumvents oral bioavailability issues, and tested their potential against 17β-estradiol (E2)-mediated mammary tumorigenesis. Female ACI rats were administered curcumin either via diet (1,000 ppm) or via polymeric curcumin implants (two 2-cm; 200 mg each; 20% drug load) 4 days prior to grafting a subcutaneous E2 silastic implant (1.2 cm, 9 mg E2). Implants were changed after 4½ months to provide higher curcumin dose at the appearance of palpable tumors. The animals were euthanized after 3 weeks, 3 months and after the tumor incidence reached >80% (~6 months) in control animals. The curcumin administered via implants resulted in significant reduction in both the tumor multiplicity (2±1 vs 5±3; p=0.001) and tumor volume (184±198 mm3 vs 280±141 mm3; p=0.0283); the dietary curcumin, however, was ineffective. Dietary curcumin increased hepatic CYP1A and CYP1B1 activities without any effect on CYP3A4 activity whereas curcumin implants increased both CYP1A and CYP3A4 activities but decreased CYP1B1 activity in presence of E2. Since CYP1A and 3A4 metabolize most of the E2 to its non-carcinogenic 2-OH metabolite and CYP1B1 produces potentially carcinogenic 4-OH metabolite, favorable modulation of these CYPs via systemically delivered curcumin could be one of the potential mechanisms. The analysis of plasma and liver by HPLC showed substantially higher curcumin levels via implants versus the dietary route despite substantially higher dose administered. PMID:24501322

  8. Curcumin nanoformulations: a future nanomedicine for cancer

    PubMed Central

    Yallapu, Murali M; Jaggi, Meena; Chauhan, Subhash C

    2011-01-01

    Curcumin, a natural diphenolic compound derived from turmeric Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion, apoptosis and cell death, revealing its anticancer potential. In this review, we focus on the design and development of nanoparticles, self-assemblies, nanogels, liposomes and complex fabrication for sustained and efficient curcumin delivery. We also discuss the anticancer applications and clinical benefits of nanocurcumin formulations. Only a few novel multifunctional and composite nanosystem strategies offer simultaneous therapy as well as imaging characteristics. We also summarize the challenges to developing curcumin delivery platforms and up-to-date solutions for improving curcumin bioavailability and anticancer potential for therapy. PMID:21959306

  9. Triptycene analogs

    NASA Technical Reports Server (NTRS)

    Hua, Duy (Inventor); Perchellet, Jean-Pierre (Inventor)

    2004-01-01

    This invention provides analogs of triptycene which are useful as anticancer drugs, as well as for other uses. The potency of these compounds is in a similar magnitude as daunomycin, a currently used anticancer drug. Each compound of the invention produces one or more desired effects (blocking nucleoside transport, inhibiting nucleic acid or protein syntheses, decreasing the proliferation and viability of cancer cells, inducing DNA fragmentation or retaining their effectiveness against multidrug-resistant tumor cells).

  10. Comparative docking and CoMFA analysis of curcumine derivatives as HIV-1 integrase inhibitors.

    PubMed

    Gupta, Pawan; Garg, Prabha; Roy, Nilanjan

    2011-08-01

    The docking studies and comparative molecular field analysis (CoMFA) were performed on highly active molecules of curcumine derivatives against 3' processing activity of HIV-1 integrase (IN) enzyme. The optimum CoMFA model was selected with statistically significant cross-validated r(2) value of 0.815 and non-cross validated r (2) value of 0.99. The common pharmacophore of highly active molecules was used for screening of HIV-1 IN inhibitors. The high contribution of polar interactions in pharmacophore mapping is well supported by docking and CoMFA results. The results of docking, CoMFA, and pharmacophore mapping give structural insights as well as important binding features of curcumine derivatives as HIV-1 IN inhibitors which can provide guidance for the rational design of novel HIV-1 IN inhibitors. PMID:21327540

  11. Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats

    SciTech Connect

    Rashid, Kahkashan; Sil, Parames C.

    2015-02-01

    The phytochemical, curcumin, has been reported to play many beneficial roles. However, under diabetic conditions, the detail mechanism of its beneficial action in the glucose homeostasis regulatory organ, pancreas, is poorly understood. The present study has been designed and carried out to explore the role of curcumin in the pancreatic tissue of STZ induced and cellular stress mediated diabetes in eight weeks old male Wistar rats. Diabetes was induced with a single intraperitoneal dose of STZ (65 mg/kg body weight). Post to diabetes induction, animals were treated with curcumin at a dose of 100 mg/kg body weight for eight weeks. Underlying molecular and cellular mechanism was determined using various biochemical assays, DNA fragmentation, FACS, histology, immunoblotting and ELISA. Treatment with curcumin reduced blood glucose level, increased plasma insulin and mitigated oxidative stress related markers. In vivo and in vitro experimental results revealed increased levels of proinflammatory cytokines (TNF-α, IL1-β and IFN-γ), reduced level of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2) along with enhanced levels of signaling molecules of ER stress dependent and independent apoptosis (cleaved Caspase-12/9/8/3) in STZ administered group. Treatment with curcumin ameliorated all the adverse changes and helps the organ back to its normal physiology. Results suggest that curcumin protects pancreatic beta-cells by attenuating inflammatory responses, and inhibiting ER/mitochondrial dependent and independent pathways of apoptosis and crosstalk between them. This uniqueness and absence of any detectable adverse effect proposes the possibility of using this molecule as an effective protector in the cellular stress mediated diabetes mellitus. - Highlights: • STZ induced cellular stress plays a vital role in pancreatic dysfunction. • Cellular stress causes inflammation, pancreatic islet cell death and diabetes. • Deregulation of Nrf-2

  12. Structural and Spectral Properties of Curcumin and Metal- Curcumin Complex Derived from Turmeric (Curcuma longa)

    NASA Astrophysics Data System (ADS)

    Bich, Vu Thi; Thuy, Nguyen Thi; Binh, Nguyen Thanh; Huong, Nguyen Thi Mai; Yen, Pham Nguyen Dong; Luong, Tran Thanh

    Structural and spectral properties of curcumin and metal- curcumin complex derived from turmeric (Curcuma longa) were studied by SEM and vibrational (FTIR and Raman) techniques. By comparison between curcumin commercial, fresh turmeric and a yellow powder obtained via extraction and purification of turmeric, we have found that this insoluble powder in water is curcumin. The yellow compound could complex with certain ion metal and this metal-curcumin coloring complex is water soluble and capable of producing varying hues of the same colors and having antimicrobial, cytotoxicity activities for use in foodstuffs and pharmacy. The result also demonstrates that Micro-Raman spec-troscopy is a valuable non-destructive tool and fast for investigation of a natural plant even when occurring in low concentrations.

  13. Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells.

    PubMed

    Sarika, P R; James, Nirmala Rachel; Kumar, P R Anil; Raj, Deepa K; Kumary, T V

    2015-12-10

    Curcumin is conjugated to gum arabic, a highly water soluble polysaccharide to enhance the solubility and stability of curcumin. Conjugation of curcumin to gum arabic is confirmed by (1)H NMR, fluorescence and UV spectroscopy studies. The conjugate self assembles to spherical nano-micelles (270 ± 5 nm) spontaneously, when dispersed in aqueous medium. Spherical morphology of the self assembled conjugate is evidenced by field emission scanning electron microscopy and transmission electron microscopy. The self assembly of the amphiphilic conjugate into micelle in aqueous medium significantly enhances the solubility (900 fold of that of free curcumin) and stability of curcumin in physiological pH. The anticancer activity of the conjugate micelles is found to be higher in human hepatocellular carcinoma (HepG2) cells than in human breast carcinoma (MCF-7) cells. The conjugate exhibits enhanced accumulation and toxicity in HepG2 cells due to the targeting efficiency of the galactose groups present in gum arabic. PMID:26428113

  14. Curcumin directly inhibits the transport activity of GLUT1.

    PubMed

    Gunnink, Leesha K; Alabi, Ola D; Kuiper, Benjamin D; Gunnink, Stephen M; Schuiteman, Sam J; Strohbehn, Lauren E; Hamilton, Kathryn E; Wrobel, Kathryn E; Louters, Larry L

    2016-06-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin's inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. PMID:27039889

  15. Curcumin is an in vivo inhibitor of angiogenesis.

    PubMed Central

    Arbiser, J. L.; Klauber, N.; Rohan, R.; van Leeuwen, R.; Huang, M. T.; Fisher, C.; Flynn, E.; Byers, H. R.

    1998-01-01

    BACKGROUND: Curcumin is a small-molecular-weight compound that is isolated from the commonly used spice turmeric. In animal models, curcumin and its derivatives have been shown to inhibit the progression of chemically induced colon and skin cancers. The genetic changes in carcinogenesis in these organs involve different genes, but curcumin is effective in preventing carcinogenesis in both organs. A possible explanation for this finding is that curcumin may inhibit angiogenesis. MATERIALS AND METHODS: Curcumin was tested for its ability to inhibit the proliferation of primary endothelial cells in the presence and absence of basic fibroblast growth factor (bFGF), as well as its ability to inhibit proliferation of an immortalized endothelial cell line. Curcumin and its derivatives were subsequently tested for their ability to inhibit bFGF-induced corneal neovascularization in the mouse cornea. Finally, curcumin was tested for its ability to inhibit phorbol ester-stimulated vascular endothelial growth factor (VEGF) mRNA production. RESULTS: Curcumin effectively inhibited endothelial cell proliferation in a dose-dependent manner. Curcumin and its derivatives demonstrated significant inhibition of bFGF-mediated corneal neovascularization in the mouse. Curcumin had no effect on phorbol ester-stimulated VEGF production. CONCLUSIONS: These results indicate that curcumin has direct antiangiogenic activity in vitro and in vivo. The activity of curcumin in inhibiting carcinogenesis in diverse organs such as the skin and colon may be mediated in part through angiogenesis inhibition. Images Fig. 2 PMID:10780880

  16. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway.

    PubMed

    Ding, Lili; Li, Jinmei; Song, Baoliang; Xiao, Xu; Zhang, Binfeng; Qi, Meng; Huang, Wendong; Yang, Li; Wang, Zhengtao

    2016-08-01

    Obesity and its major co-morbidity, type 2 diabetes, have reached an alarming epidemic prevalence without an effective treatment available. It has been demonstrated that inhibition of SREBP pathway may be a useful strategy to treat obesity with type 2 diabetes. Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acid and triglyceride. In current study, we identified a small molecule, curcumin, inhibited the SREBP expression in vitro. The inhibition of SREBP by curcumin decreased the biosynthesis of cholesterol and fatty acid. In vivo, curcumin ameliorated HFD-induced body weight gain and fat accumulation in liver or adipose tissues, and improved serum lipid levels and insulin sensitivity in HFD-induced obese mice. Consistently, curcumin regulates SREBPs target genes and metabolism associated genes in liver or adipose tissues, which may directly contribute to the lower lipid level and improvement of insulin resistance. Take together, curcumin, a major active component of Curcuma longa could be a potential leading compound for development of drugs for the prevention of obesity and insulin resistance. PMID:27208389

  17. CURCUMIN ENHANCES PARAQUAT-INDUCED APOPTOSIS OF N27 MESENCEPHALIC CELLS VIA THE GENERATION OF REACTIVE OXYGEN SPECIES

    PubMed Central

    Ortiz-Ortiz, Miguel A.; Morán, José M.; Bravosanpedro, Jose M.; González-Polo, Rosa A.; Niso-Santano, Mireia; Anantharam, Vellareddy; Kanthasamy, Anumantha G.; Soler, Germán; Fuentes, José M.

    2009-01-01

    Curcumin, the active compound of the rhizome of Curcuma longa has anti-inflammatory, antioxidant and antiproliferative activities. This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. While curcumin has been identified as an activator of apopotosis in several cell lines, the mechanism by which it initiates apoptosis, however, remains poorly understood. We considered curcumin from the point of view of its ability to protect against oxidative stress, the latter being one factor strongly implicated in the development of Parkinson’s disease. Althougth the etiology of Parkinson’s disease remains unknown, epidemiological studies have linked exposure to pesticides such paraquat to an increased risk of developing the condition. Analysis of the neurotoxic properties of these pesticide compounds has been focused on their ability to induce oxidative stress in neural cells. Given curcumin’s capacity to protect against oxidative stress, it has been considered as a potential therapeutic agent for neurodegenerative diseases such as Parkinson’s disease that involve an oxidative stress component. In the present report we describe the effect of curcumin in paraquat-mediated apoptosis of N27 mesencepahlic cells. We show that subtoxic concentrations of curcumin sensitize N27 mesencephalic cells to paraquat-mediated apoptosis. PMID:19660496

  18. Electron Paramagnetic Resonance Study of the Free Radical Scavenging Capacity of Curcumin and Its Demethoxy and Hydrogenated Derivatives.

    PubMed

    Morales, Noppawan Phumala; Sirijaroonwong, Srisuporn; Yamanont, Paveena; Phisalaphong, Chada

    2015-01-01

    The quantitative free radical scavenging capacity of curcumin and its demethoxy derivatives (demethoxycurcumin (Dmc) and bisdemethoxycurcumin (Bdmc)) and hydrogenated derivatives (tetrahydrocurcumin (THC), hexahydrocurcumin (HHC) and octahydrocurcumin (OHC)) towards 1,1-diphenyl-2-picryl hydrazyl (DPPH), nitric oxide radical (NO), hydroxyl radical (HO(·)) and superoxide anion radical (O2(·)) were investigated by electron paramagnetic resonance (EPR) spectroscopy. One mole of the hydrogenated derivatives scavenged about 4 mol of the DPPH radical, while curcumin and Dmc scavenged about 3 mol of the DPPH radical. Curcumin and THC showed moderate scavenging activity towards NO, yielding 200 mmol of NO scavenged per 1 mol of the scavenger. In contrast, curcumin and its derivatives showed very low scavenging activity towards HO(·) and O2(·), yielding approximately only 3-12 mmol scavenged per 1 mol of the tested compounds. Our results suggest that curcumin and its derivatives principally act as chain breaking antioxidants rather than as direct free radical scavengers. Furthermore, we showed that the ortho-methoxyphenolic group and the heptadione linkage of these molecules greatly contributed to their DPPH and NO scavenging activity. PMID:26424013

  19. Interaction of Curcumin with PEO-PPO-PEO block copolymers: a molecular dynamics study.

    PubMed

    Samanta, Susruta; Roccatano, Danilo

    2013-03-21

    Curcumin, a naturally occurring drug molecule, has been extensively investigated for its various potential usages in medicine. Its water insolubility and high metabolism rate require the use of drug delivery systems to make it effective in the human body. Among various types of nanocarriers, block copolymer based ones are the most effective. These polymers are broadly used as drug-delivery systems, but the nature of this process is poorly understood. In this paper, we propose a molecular dynamics simulation study of the interaction of Curcumin with block copolymer based on polyethylene oxide (PEO) and polypropylene oxide (PPO). The study has been conducted considering the smallest PEO and PPO oligomers and multiple chains of the block copolymer Pluronic P85. Our study shows that the more hydrophobic 1,2-dimethoxypropane (DMP) molecules and PPO block preferentially coat the Curcumin molecule. In the case of the Pluronic P85, simulation shows formation of a drug-polymer aggregate within 50 ns. This process leaves exposed the PEO part of the polymers, resulting in better solvation and stability of the drug in water. PMID:23441964

  20. Curcumin prevents indomethacin-induced gastropathy in rats

    PubMed Central

    Thong-Ngam, Duangporn; Choochuai, Sakonwan; Patumraj, Suthiluk; Chayanupatkul, Maneerat; Klaikeaw, Naruemon

    2012-01-01

    AIM: To investigate the effects of curcumin on gastric microcirculation and inflammation in rats with indomethacin-induced gastric damage. METHODS: Male Sprague-Dawley rats were randomly divided into three groups. Group 1 (control group, n = 5) was fed with olive oil and 5% NaHCO3- (vehicle). Group 2 [indomethacin (IMN) group, n = 5] was fed with olive oil 30 min prior to indomethacin 150 mg/kg body weight (BW) dissolved in 5% NaHCO3- at time 0th and 4th h. Group 3 (IMN + Cur group, n = 4) was fed with curcumin 200 mg/kg BW dissolved in olive oil 0.5 mL, 30 min prior to indomethacin at 0th and 4th h. Leukocyte-endothelium interactions at postcapillary venules were recorded after acridine orange injection. Blood samples were determined for intercellular adhesion molecule (ICAM)-1 and tumor necrosis factor (TNF)-α levels using enzyme linked immunosorbent assay method. Finally, the stomach was removed for histopathological examination for gastric lesions and grading for neutrophil infiltration. RESULTS: In group 2, the leukocyte adherence in postcapillary venules was significantly increased compared to the control group (6.40 ± 2.30 cells/frame vs 1.20 ± 0.83 cells/frame, P = 0.001). Pretreatment with curcumin caused leukocyte adherence to postcapillary venule to decline (3.00 ± 0.81 cells/frame vs 6.40 ± 2.30 cells/frame, P = 0.027). The levels of ICAM-1 and TNF-α increased significantly in the indomethacin-treated group compared with the control group (1106.50 ± 504.22 pg/mL vs 336.93 ± 224.82 pg/mL, P = 0.011 and 230.92 ± 114.47 pg/mL vs 47.13 ± 65.59 pg/mL, P = 0.009 respectively). Pretreatment with curcumin significantly decreased the elevation of ICAM-1 and TNF-α levels compared to treatment with indomethacin alone (413.66 ± 147.74 pg/mL vs 1106.50 ± 504.22 pg/mL, P = 0.019 and 58.27 ± 67.74 pg/mL vs 230.92 ± 114.47 pg/mL, P = 0.013 respectively). The histological appearance of the stomach in the control group was normal. In the indomethacin

  1. Curcumin directly inhibits the transport activity of GLUT1

    PubMed Central

    Gunnink, Leesha K.; Alabi, Ola D.; Kuiper, Benjamin D.; Gunnink, Stephen M.; Schuiteman, Sam J.; Strohbehn, Lauren E.; Hamilton, Kathryn E.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin’s inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. PMID:27039889

  2. Effect of solvent on the excited-state photophysical properties of curcumin.

    PubMed

    Khopde, S M; Priyadarsini, K I; Palit, D K; Mukherjee, T

    2000-11-01

    Photophysical properties of curcumin, 1,7-bis-(4-hydroxy-3-methoxy phenyl)-1,6-heptadiene-2,5-dione, a pigment found in the rhizomes of Curcuma longa (turmeric) have been studied in different kinds of organic solvent and also in Triton X-100 aqueous micellar media using time-resolved fluorescence and transient absorption techniques having pico and nanosecond time resolution, in addition to steady-state absorption and fluorescence spectroscopic techniques. Steady-state absorption and fluorescence characteristics of curcumin have been found to be sensitive to the solvent characteristics. Large change (delta mu = 6.1 Debye) in dipole moments due to photoexcitation to the excited singlet state (S1) indicates strong intramolecular charge transfer character of the latter. Curcumin is a weakly fluorescent molecule and the fluorescence decay properties in most of the solvents could be fitted well to a double-exponential decay function. The shorter component having lifetime in the range 50-350 ps and percent contribution of amplitude more than 90% in different solvents may be assigned to the enol form, whereas the longer component, having lifetime in the range 500-1180 ps with less than 10% contribution may be assigned to the di-keto form of curcumin. Our nuclear magnetic resonance study in CDCl3 and dimethyl sulfoxide-D6 also supports the fact that the enol form is present in the solution by more than about 95% in these solvents. Excited singlet (S1) and triplet (T1) absorption spectrum and decay kinetics have been characterized by pico and nanosecond laser flash photolysis. Quantum yield of the triplet is low (phi T < or = 0.12). Both the fluorescence and triplet quantum yields being low (phi f + phi T < 0.18), the photophysics of curcumin is dominated by the energy relaxation mechanism via the internal conversion process. PMID:11107847

  3. Curcumin delivery from poly(acrylic acid-co-methyl methacrylate) hollow microparticles prevents dopamine-induced toxicity in rat brain synaptosomes.

    PubMed

    Yoncheva, Krassimira; Kondeva-Burdina, Magdalena; Tzankova, Virginia; Petrov, Petar; Laouani, Mohamed; Halacheva, Silvia S

    2015-01-01

    The potential of poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) copolymers to form hollow particles and their further formulation as curcumin delivery system have been explored. The particles were functionalized by crosslinking the acrylic acid groups via bis-amide formation with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP) which simultaneously incorporated reversibility due to the presence of disulfide bonds within the crosslinker. Optical micrographs showed the formation of spherical hollow microparticles with a size ranging from 1 to 7 μm. Curcumin was loaded by incubation of its ethanol solution with aqueous dispersions of the cross-linked particles and subsequent evaporation of the ethanol. Higher loading was observed in the microparticles with higher content of hydrophobic PMMA units indicating its influence upon the loading of hydrophobic molecules such as curcumin. The in vitro release studies in a phosphate buffer showed no initial burst effect and sustained release of curcumin that correlated with the swelling of the particles under these conditions. The capacity of encapsulated and free curcumin to protect rat brain synaptosomes against dopamine-induced neurotoxicity was examined. The encapsulated curcumin showed greater protective effects in rat brain synaptosomes as measured by synaptosomal viability and increased intracellular levels of glutathione. PMID:25839414

  4. A combined omics approach to evaluate the effects of dietary curcumin on colon inflammation in the Mdr1a(-/-) mouse model of inflammatory bowel disease.

    PubMed

    Cooney, Janine M; Barnett, Matthew P G; Dommels, Yvonne E M; Brewster, Diane; Butts, Christine A; McNabb, Warren C; Laing, William A; Roy, Nicole C

    2016-01-01

    The aim of this study was to provide insight into how curcumin reduces colon inflammation in the Mdr1a(-/-) mouse model of human inflammatory bowel disease using a combined transcriptomics and proteomics approach. Mdr1a(-/-) and FVB control mice were randomly assigned to an AIN-76A (control) diet or AIN-76A+0.2% curcumin. At 21 or 24weeks of age, colonic histological injury score (HIS) was determined, colon mRNA transcript levels were assessed using microarrays and colon protein expression was measured using 2D gel electrophoresis and LCMS protein identification. Colonic HIS of Mdr1a(-/-) mice fed the AIN-76A diet was higher (P<.001) than FVB mice fed the same diet; the curcumin-supplemented diet reduced colonic HIS (P<.05) in Mdr1a(-/-) mice. Microarray and proteomics analyses combined with new data analysis tools, such as the Ingenuity Pathways Analysis regulator effects analysis, showed that curcumin's antiinflammatory activity in Mdr1a(-/-) mouse colon may be mediated by activation of α-catenin, which has not previously been reported. We also show evidence to support curcumin's action via multiple molecular pathways including reduced immune response, increased xenobiotic metabolism, resolution of inflammation through decreased neutrophil migration and increased barrier remodeling. Key transcription factors and other regulatory molecules (ERK, FN1, TNFSF12 and PI3K complex) activated in inflammation were down-regulated by dietary intervention with curcumin. PMID:26437580

  5. Solvent dependent photophysical properties of dimethoxy curcumin

    NASA Astrophysics Data System (ADS)

    Barik, Atanu; Indira Priyadarsini, K.

    2013-03-01

    Dimethoxy curcumin (DMC) is a methylated derivative of curcumin. In order to know the effect of ring substitution on photophysical properties of curcumin, steady state absorption and fluorescence spectra of DMC were recorded in organic solvents with different polarity and compared with those of curcumin. The absorption and fluorescence spectra of DMC, like curcumin, are strongly dependent on solvent polarity and the maxima of DMC showed red shift with increase in solvent polarity function (Δf), but the above effect is prominently observed in case of fluorescence maxima. From the dependence of Stokes' shift on solvent polarity function the difference between the excited state and ground state dipole moment was estimated as 4.9 D. Fluorescence quantum yield (ϕf) and fluorescence lifetime (τf) of DMC were also measured in different solvents at room temperature. The results indicated that with increasing solvent polarity, ϕf increased linearly, which has been accounted for the decrease in non-radiative rate by intersystem crossing (ISC) processes.

  6. Effect of Curcumin in Experimental Peritonitis.

    PubMed

    D, Savitha; Mani, Indu; Ravikumar, Gayatri; Avadhany, Sandhya T

    2015-12-01

    Despite medical advancements, the inflammatory cascade and oxidative stress worsen the prognosis in most cases of peritonitis. Curcumin has emerged as a potential antioxidant and anti-inflammatory agent in few of the acute inflammatory and infective conditions. We examined the effect of intraperitoneal injection of curcumin in endotoxin-induced peritonitis in rats. The blood and peritoneal fluid samples were collected at 3 and 24 h following the induction of peritonitis. Animals were sacrificed at 24 h and the organs preserved. The histopathological report of lung, liver, and intestines in the curcumin-treated rats showed maintenance of tissue architecture to a large extent compared to the control group which showed massive congestion, hemorrhage, and necrosis. The blood and peritoneal fluid total count and differential neutrophil counts were significantly higher at 24 h of induction of peritonitis. Serum amyloid assay and lipid peroxidation were significantly lower, and myeloperoxidase assay was higher in the curcumin-treated group at the end of 24 h; thus, curcumin probably demonstrated a neutrophil-mediated immunopotentiation and anti-inflammatory action thereby protecting the animal from endotoxemia-induced multi-organ damage. PMID:26884658

  7. Solvent dependent photophysical properties of dimethoxy curcumin.

    PubMed

    Barik, Atanu; Indira Priyadarsini, K

    2013-03-15

    Dimethoxy curcumin (DMC) is a methylated derivative of curcumin. In order to know the effect of ring substitution on photophysical properties of curcumin, steady state absorption and fluorescence spectra of DMC were recorded in organic solvents with different polarity and compared with those of curcumin. The absorption and fluorescence spectra of DMC, like curcumin, are strongly dependent on solvent polarity and the maxima of DMC showed red shift with increase in solvent polarity function (Δf), but the above effect is prominently observed in case of fluorescence maxima. From the dependence of Stokes' shift on solvent polarity function the difference between the excited state and ground state dipole moment was estimated as 4.9 D. Fluorescence quantum yield (φ(f)) and fluorescence lifetime (τ(f)) of DMC were also measured in different solvents at room temperature. The results indicated that with increasing solvent polarity, φ(f) increased linearly, which has been accounted for the decrease in non-radiative rate by intersystem crossing (ISC) processes. PMID:23314392

  8. Curcumin Ameliorates Ischemia-Induced Limb Injury Through Immunomodulation

    PubMed Central

    Liu, Yang; Chen, Lianyu; Shen, Yi; Tan, Tao; Xie, Nanzi; Luo, Ming; Li, Zhihong; Xie, Xiaoyun

    2016-01-01

    Background The prevalence of peripheral arterial disease (PAD) is increasing worldwide. Currently, there is no effective treatment for PAD. Curcumin is an ingredient of turmeric that has antioxidant, anti-inflammation, and anticancer properties. In the present study we investigated the potential effect of curcumin in protecting against ischemic limb injury. Material/Methods We used an established hindlimb ischemia mouse model in our study. Curcumin was administrated through intraperitoneal (I.P.) injection. Immunohistochemical staining and ELISA assays were performed. Treadmill training was used to evaluate skeletal muscle functions of animals. Results Our experiments using in vivo treadmill training showed that curcumin treatment improved the running capacity of animals after ischemic injury. Histological analysis revealed that curcumin treatment significantly reduced the skeletal muscle damage and fibrosis associated with ischemic injury. In order to determine the cellular and molecular mechanisms underlying curcumin-mediated tissue protection, immunohistochemical staining and ELISA assays were performed. The results showed that curcumin treatment led to less macrophage infiltration and less local inflammatory responses as demonstrated by decreasing TNF-α, IL-1, and IL-6 levels. Further immunofluorescent staining of tissue slides indicated that curcumin treatment inhibited the NF-κB signaling pathway. Finally, curcumin can inhibit NF-κB activation induced by LPS in macrophages. Conclusions Our study results show that curcumin treatment can ameliorate hindlimb injury following ischemic surgery, which suggests that curcumin could be used for PAD treatment. PMID:27302110

  9. Curcumin nanoemulsion for transdermal application: formulation and evaluation.

    PubMed

    Rachmawati, Heni; Budiputra, Dewa Ken; Mauludin, Rachmat

    2015-04-01

    The aim of this work is to develop a curcumin nanoemulsion for transdermal delivery. The incorporation of curcumin inside a nanoglobul should improve curcumin stability and permeability. A nanoemulsion was prepared by the self-nanoemulsification method, using an oil phase of glyceryl monooleate, Cremophor RH40 and polyethylene glycol 400. Evaluation of the nanoemulsion included analysis of particle size, polydispersity index, zeta potential, physical stability, Raman spectrum and morphology. In addition, the physical performance of the nanoemulsion in Viscolam AT 100P gel was studied. A modified vertical diffusion cell and shed snake skin of Python reticulatus were used to study the in vitro permeation of curcumin. A spontaneously formed stable nanoemulsion has a loading capacity of 350 mg curcumin/10 g of oil phase. The mean droplet diameter, polydispersity index and zeta potential of optimized nanoemulsion were 85.0 ± 1.5 nm, 0.18 ± 0.0 and -5.9 ± 0.3 mV, respectively. Curcumin in a nanoemulsion was more stable than unencapsulated curcumin. Furthermore, nanoemulsification significantly improved the permeation flux of curcumin from the hydrophilic matrix gel; the release kinetic of curcumin changed from zero order to a Higuchi release profile. Overall, the developed nanoemulsion system not only improved curcumin permeability but also protected the curcumin from chemical degradation. PMID:24502271

  10. Curcumin Ameliorates Ischemia-Induced Limb Injury Through Immunomodulation.

    PubMed

    Liu, Yang; Chen, Lianyu; Shen, Yi; Tan, Tao; Xie, Nanzi; Luo, Ming; Li, Zhihong; Xie, Xiaoyun

    2016-01-01

    BACKGROUND The prevalence of peripheral arterial disease (PAD) is increasing worldwide. Currently, there is no effective treatment for PAD. Curcumin is an ingredient of turmeric that has antioxidant, anti-inflammation, and anticancer properties. In the present study we investigated the potential effect of curcumin in protecting against ischemic limb injury. MATERIAL AND METHODS We used an established hindlimb ischemia mouse model in our study. Curcumin was administrated through intraperitoneal (I.P.) injection. Immunohistochemical staining and ELISA assays were performed. Treadmill training was used to evaluate skeletal muscle functions of animals. RESULTS Our experiments using in vivo treadmill training showed that curcumin treatment improved the running capacity of animals after ischemic injury. Histological analysis revealed that curcumin treatment significantly reduced the skeletal muscle damage and fibrosis associated with ischemic injury. In order to determine the cellular and molecular mechanisms underlying curcumin-mediated tissue protection, immunohistochemical staining and ELISA assays were performed. The results showed that curcumin treatment led to less macrophage infiltration and less local inflammatory responses as demonstrated by decreasing TNF-α, IL-1, and IL-6 levels. Further immunofluorescent staining of tissue slides indicated that curcumin treatment inhibited the NF-κB signaling pathway. Finally, curcumin can inhibit NF-kB activation induced by LPS in macrophages. CONCLUSIONS Our study results show that curcumin treatment can ameliorate hindlimb injury following ischemic surgery, which suggests that curcumin could be used for PAD treatment. PMID:27302110

  11. Polyhydroxycurcuminoids but not curcumin upregulate neprilysin and can be applied to the prevention of Alzheimer's disease.

    PubMed

    Chen, Po-Ting; Chen, Zih-Ten; Hou, Wen-Chi; Yu, Lung-Chih; Chen, Rita P-Y

    2016-01-01

    Neprilysin (NEP) is the most important Aβ-degrading enzyme. Its expression level decreases with age and inversely correlated with amyloid accumulation, suggesting its correlation with the late-onset of Alzheimer's disease. Recently, many reports showed that upregulating NEP level is a promising strategy in the prevention and therapy of Alzheimer's disease. Here, we used a sensitive fluorescence-based Aβ digestion assay to screen 25 curcumin analogs for their ability to upregulate NEP activity. To our surprise, four compounds, dihydroxylated curcumin, monohydroxylated demethoxycurcumin, and mono- and di-hydroxylated bisdemethoxycurcumin, increased NEP activity, while curcumin did not. The ability of these polyhydroxycurcuminoids to upregulate NEP was further confirmed by mRNA and protein expression levels in the cell and mouse models. Finally, feeding monohydroxylated demethoxycurcumin (also named demethylcurcumin) or dihydroxylated bisdemethoxycurcumin (also named bisdemethylcurcumin) to APPswe/PS1dE9 double transgenic mice upregulated NEP levels in the brain and reduced Aβ accumulation in the hippocampus and cortex. These polyhydroxycurcuminoids offer hope in the prevention of Alzheimer's disease. PMID:27407064

  12. Efficient separation of curcumin, demethoxycurcumin, and bisdemethoxycurcumin from turmeric using supercritical fluid chromatography: From analytical to preparative scale.

    PubMed

    Song, Wei; Qiao, Xue; Liang, Wen-fei; Ji, Shuai; Yang, Lu; Wang, Yuan; Xu, Yong-wei; Yang, Ying; Guo, De-an; Ye, Min

    2015-10-01

    Curcumin is the major constituent of turmeric (Curcuma longa L.). It has attracted widespread attention for its anticancer and anti-inflammatory activities. The separation of curcumin and its two close analogs, demethoxycurcumin and bisdemethoxycurcumin, has been challenging by conventional techniques. In this study, an environmentally friendly method based on supercritical fluid chromatography was established for the rapid and facile separation of the three curcuminoids directly from the methanol extract of turmeric. The method was first developed and optimized by ultra performance convergence chromatography, and was then scaled up to preparative supercritical fluid chromatography. Eluted with supercritical fluid CO2 containing 8-15% methanol (containing 10 mM oxalic acid) at a flow rate of 80 mL/min, curcumin, demethoxycurcumin and bisdemethoxycurcumin could be well separated on a Viridis BEH OBD column (Waters, 250 mm × 19 mm, 5 μm) within 6.5 min. As a result, 20.8 mg of curcumin (97.9% purity), 7.0 mg of demethoxycurcumin (91.1%), and 4.6 mg of bisdemethoxycurcumin (94.8%) were obtained after a single step of supercritical fluid chromatography separation with a mean recovery of 76.6%. Showing obvious advantages in low solvent consumption, large sample loading, and easy solvent removal, supercritical fluid chromatography was proved to be a superior technique for the efficient separation of natural products. PMID:26256681

  13. Polymer-Coated Magnetic Nanoparticles for Curcumin Delivery to Cancer Cells.

    PubMed

    Mancarella, Serena; Greco, Valentina; Baldassarre, Francesca; Vergara, Daniele; Maffia, Michele; Leporatti, Stefano

    2015-10-01

    The new goal of anticancer agent research is the screening of natural origin drugs with lower systemic adverse effects than synthetic compounds. Here, we focus on curcumin, an important polyphenolic pigment classically used as spice in the Indian cuisine. The molecule has high pleiotropic activities including strong antioxidant and anti-inflammatory properties. However, its clinical potential is limited due its low solubility and bioavailability. We have developed a layer by layer functionalization of Fe3 O4 nanoparticles (nano-Fe3 O4 ) by coating biodegradable polyelectrolyte multilayers such as Dextran (DXS) and Poly(l-lysine) (PLL). Physico-chemical studies were performed to obtain a high upload of curcumin in Fe3 O4 nanoparticles. Nano-Fe3 O4 were then tested against an ovarian cancer cell line, SKOV-3, to demonstrate their therapeutic efficacy. PMID:26085082

  14. The effect of the water on the curcumin tautomerism: A quantitative approach

    NASA Astrophysics Data System (ADS)

    Manolova, Yana; Deneva, Vera; Antonov, Liudmil; Drakalska, Elena; Momekova, Denitsa; Lambov, Nikolay

    2014-11-01

    The tautomerism of curcumin has been investigated in ethanol/water binary mixtures by using UV-Vis spectroscopy and advanced quantum-chemical calculations. The spectral changes were processed by using advanced chemometric procedure, based on resolution of overlapping bands technique. As a result, molar fractions of the tautomers and their individual spectra have been estimated. It has been shown that in ethanol the enol-keto tautomer only is presented. The addition of water leads to appearance of a new spectral band, which was assigned to the diketo tautomeric form. The results show that in 90% water/10% ethanol the diketo form is dominating. The observed shift in the equilibrium is explained by the quantum chemical calculations, which show that water molecules stabilize diketo tautomer through formation of stable complexes. To our best knowledge we report for the first time quantitative data for the tautomerism of curcumin and the effect of the water.

  15. Hydrophobic hydration driven self-assembly of curcumin in water: Similarities to nucleation and growth under large metastability, and an analysis of water dynamics at heterogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Hazra, Milan Kumar; Roy, Susmita; Bagchi, Biman

    2014-11-01

    As the beneficial effects of curcumin have often been reported to be limited to its small concentrations, we have undertaken a study to find the aggregation properties of curcumin in water by varying the number of monomers. Our molecular dynamics simulation results show that the equilibrated structure is always an aggregated state with remarkable structural rearrangements as we vary the number of curcumin monomers from 4 to 16 monomers. We find that the curcumin monomers form clusters in a very definite pattern where they tend to aggregate both in parallel and anti-parallel orientation of the phenyl rings, often seen in the formation of β-sheet in proteins. A considerable enhancement in the population of parallel alignments is observed with increasing the system size from 12 to 16 curcumin monomers. Due to the prevalence of such parallel alignment for large system size, a more closely packed cluster is formed with maximum number of hydrophobic contacts. We also follow the pathway of cluster growth, in particular the transition from the initial segregated to the final aggregated state. We find the existence of a metastable structural intermediate involving a number of intermediate-sized clusters dispersed in the solution. We have constructed a free energy landscape of aggregation where the metatsable state has been identified. The course of aggregation bears similarity to nucleation and growth in highly metastable state. The final aggregated form remains stable with the total exclusion of water from its sequestered hydrophobic core. We also investigate water structure near the cluster surface along with their orientation. We find that water molecules form a distorted tetrahedral geometry in the 1st solvation layer of the cluster, interacting rather strongly with the hydrophilic groups at the surface of the curcumin. The dynamics of such quasi-bound water molecules near the surface of curcumin cluster is considerably slower than the bulk signifying a restricted

  16. Transdermal delivery of curcumin via microemulsion.

    PubMed

    Sintov, Amnon C

    2015-03-15

    The objective of this study was to evaluate the transdermal delivery potential of a new curcumin-containing microemulsion system. Three series of experiments were carried out to comprehend the system characteristics: (a) examining the influence of water content on curcumin permeation, (b) studying the effect of curcumin loading on its permeability, and (c) assessing the contribution of the vesicular nature of the microemulsion on permeability. The skin permeability of curcumin from microemulsions, which contained 5%, 10%, and 20% of water content (1% curcumin), was measured in vitro using excised rat skin. It has been shown that the permeability coefficient of CUR in a formulation containing 10% aqueous phase (ME-10) was twofold higher than the values obtained for formulations with 5% and 20% water (Papp=0.116 × 10(-3)± 0.052 × 10(-3)vs. 0.043 × 10(-3)± 0.022 × 10(-3) and 0.047 × 10(-3)± 0.025 × 10(-3)cm/h, respectively. A reasonable explanation for this phenomenon may be the reduction of both droplet size and droplets' concentration in the microemulsion as the aqueous phase decreased from 20% to 5%. It has also been shown that a linear correlation exists between the decrease in droplet size and the increase of curcumin loading in the microemulsion. In addition, it has been demonstrated that a micellar system, S/O-mix, and a plain solution of curcumin resulted in a significantly lower curcumin permeation relative to that presented by the microemulsion, Papp=0.018 × 10(-3)± 0.011 × 10(-3), 0.005 × 10(-3)± 0.002 × 10(-3), and 0.002 × 10(-3)± 0.000 × 10(-3)cm/h, respectively, vs. 0.110 × 10(-3)± 0.021 × 10(-3)cm/h for the microemulsion. The enhancement ratio (ER=Jss-ME/Jss-solution) of CUR permeated via 1% loaded microemulsion was 55. PMID:25655717

  17. Inhibition of LPS-induced production of inflammatory factors in the macrophages by mono-carbonyl analogues of curcumin

    PubMed Central

    Liang, Guang; Zhou, Huiping; Wang, Yi; Gurley, Emily C; Feng, Biao; Chen, Li; Xiao, Jian; Yang, Shulin; Li, Xiaokun

    2009-01-01

    Curcumin (diferuloylmethane) is an orange–yellow compound from turmeric (Curcuma longa), a spice found in curry powder. Traditionally known for its anti-inflammatory effects, curcumin has established itself in the last two decades to be a potent immunomodulatory agent that can regulate the activation of a variety of immunocytes and the expression of inflammatory factors. Considering that the β-diketone moiety of curcumin may result in its instability and poor metabolic property, we previously designed a series of mono-carbonyl analogues of curcumin with enhanced stability by deleting this moiety. These compounds demonstrate improved pharmacokinetic profiles both in vitro and in vivo. In this study, we reported a total of 44 mono-carbonyl analogues, which have been evaluated for the inhibitory activities against LPS-induced TNF-α and IL-6 release in the macrophages. Based on the screening results of these analogues, five active compounds A01, A03, A13, B18 and C22 were investigated to inhibit TNF-α and IL-6 release in a dose-dependent manner, three of which further demonstrated inhibitory effects on LPS-induced TNF-α, IL-1β, IL-6, MCP-1, COX-2, PGES, iNOS and p65 NF-κB mRNA production. The results indicated that these mono-carbonyl analogues may possess anti-inflammatory activities similar to curcumin despite the absence of the β-diketone. These mono-carbonyl analogues may be a favourable alternative for the development of curcumin-based anti-inflammatory drugs both pharmacokinetically and pharmacologically. We further examined the biological properties of A13, the only hydrosoluble analogue when combined with hydrochloric acid. The results showed a dose-dependent inhibition of LPS-induced cytokine production. These data further indicated that compound A13 may be explored as a promising anti-inflammatory molecule. PMID:19243473

  18. Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions.

    PubMed

    Barik, Atanu; Mishra, Beena; Shen, Liang; Mohan, Hari; Kadam, R M; Dutta, S; Zhang, Hong-Yu; Priyadarsini, K Indira

    2005-09-15

    A mononuclear (1:1) copper complex of curcumin, a phytochemical from turmeric, was synthesized and examined for its superoxide dismutase (SOD) activity. The complex was characterized by elemental analysis, IR, NMR, UV-VIS, EPR, mass spectroscopic methods and TG-DTA, from which it was found that a copper atom is coordinated through the keto-enol group of curcumin along with one acetate group and one water molecule. Cyclic voltammetric studies of the complex showed a reversible Cu(2+)/Cu(+) couple with a potential of 0.402 V vs NHE. The Cu(II)-curcumin complex is soluble in lipids and DMSO, and insoluble in water. It scavenges superoxide radicals with a rate constant of 1.97 x 10(5) M(-1) s(-1) in DMSO determined by stopped-flow spectrometer. Subsequent to the reaction with superoxide radicals, the complex was found to be regenerated completely, indicating catalytic activity in neutralizing superoxide radicals. Complete regeneration of the complex was observed, even when the stoichiometry of superoxide radicals was 10 times more than that of the complex. This was further confirmed by EPR monitoring of superoxide radicals. The SOD mimicking activity of the complex was determined by xanthine/xanthine oxidase assay, from which it has been found that 5 microg of the complex is equivalent to 1 unit of SOD. The complex inhibits radiation-induced lipid peroxidation and shows radical-scavenging ability. It reacts with DPPH radicals with rate constant 10 times less than that of curcumin. Pulse radiolysis-induced one-electron oxidation of the complex by azide radicals in TX-100 micellar solutions produced strongly absorbing ( approximately 500 nm) phenoxyl radicals, indicating that the phenolic moiety of curcumin remained intact on complexation with copper. The results confirm that the new Cu(II)-curcumin complex possesses SOD activity, free radical neutralizing ability, and antioxidant potential. Quantum chemical calculations with density functional theory have been performed

  19. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review.

    PubMed

    Mahmood, Kashif; Zia, Khalid Mahmood; Zuber, Mohammad; Salman, Mahwish; Anjum, Muhammad Naveed

    2015-11-01

    Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anticoagulant and anti-infective effects. This review summarizes and discusses recently published papers on the key biomedical applications of curcumin based materials. The highlighted studies in the review provide evidence of the ability of curcumin to show the significant vitro antioxidant, diabetic complication, antimicrobial, neuroprotective, anti-cancer activities and detection of hypochlorous acid, wound healing, treatment of major depression, healing of paracentesis, and treatment of carcinoma and optical detection of pyrrole properties. Hydrophobic nature of this polyphenolic compound along with its rapid metabolism, physicochemical and biological instability contribute to its poor bioavailability. To redress these problems several approaches have been proposed like encapsulation of curcumin in liposomes and polymeric micelles, inclusion complex formation with cyclodextrin, formation of polymer-curcumin conjugates, etc. PMID:26391597

  20. Curcumin suppresses migration and invasion of human endometrial carcinoma cells

    PubMed Central

    CHEN, QIAN; GAO, QING; CHEN, KUNLUN; WANG, YIDONG; CHEN, LIJUAN; LI, XU

    2015-01-01

    Curcumin, a widely used Chinese herbal medicine, has historically been used in anti-cancer therapies. However, the anti-metastatic effect and molecular mechanism of curcumin in endometrial carcinoma (EC) are still poorly understood. The purpose of this study was to detect the anti-metastatic effects of curcumin and the associated mechanism(s) in EC. Based on assays carried out in EC cell lines, it was observed that curcumin inhibited EC cell migration and invasion in vitro. Furthermore, following treatment with curcumin for 24 h, there was a decrease in the expression levels of matrix metalloproteinase (MMP)-2 and -9 as well as proteinase activity in EC cells. Moreover, curcumin treatment significantly decreased the levels of the phosphorylated form of extracellular signal-regulated kinase (ERK) 1/2. MEK1 overexpression partially blocked the anti-metastatic effects of curcumin. Combined treatment with ERK inhibitor U0126 and curcumin resulted in a synergistic reduction in MMP-2/-9 expression; the invasive capabilities of HEC-1B cells were also inhibited. In conclusion, curcumin inhibits tumor cell migration and invasion by reducing the expression and activity of MMP-2/9 via the suppression of the ERK signaling pathway, suggesting that curcumin is a potential therapeutic agent for EC. PMID:26622667

  1. Comparative conformational analysis of peptide T analogs

    NASA Astrophysics Data System (ADS)

    Akverdieva, Gulnare; Godjayev, Niftali; Akyuz, Sevim

    2009-01-01

    A series of peptide T analogs were investigated within the molecular mechanics framework. In order to determine the role of the aminoacid residues in spatial formation of peptide T the conformational peculiarities of the glycine-substituted analogs were investigated. The conformational profiles of some biologically tested analogs of this peptide were determined independently. The received data permit to assess the active form of this peptide. It is characterized by β-turn at the C-terminal physiologically active pentapeptide fragment of peptide molecule. The received results are important for the investigation of the structure-activity relationship and may be used at design of a rigid-molecule drug against HIV.

  2. Encapsulation of curcumin in cyclodextrin-metal organic frameworks: Dissociation of loaded CD-MOFs enhances stability of curcumin.

    PubMed

    Moussa, Zeinab; Hmadeh, Mohamad; Abiad, Mohamad G; Dib, Omar H; Patra, Digambara

    2016-12-01

    Curcumin has been successfully encapsulated in cyclodextrin-metal organic frameworks (CD-MOFs) without altering their crystallinity. The interaction between curcumin and CD-MOFs is strong through hydrogen bond type interaction between the OH group of cyclodextrin of CD-MOFs and the phenolic hydroxyl group of the curcumin. Interestingly, dissolving the curcumin loaded CD-MOFs crystals in water results in formation of a unique complex between curcumin, γCD and potassium cations. In fact, the initial interaction between curcumin and CD-MOF is crucial for the formation of the latter. This new complex formed in alkaline media at pH 11.5 has maximum absorbance at 520nm and emittance at 600nm. Most importantly, the stability of curcumin in this complex was enhanced by at least 3 orders of magnitude compared to free curcumin and curcumin:γ-CD at pH 11.5. These results suggest a promising benign system of CD-MOFs, which can be used to store and stabilize curcumin for food applications. PMID:27374559

  3. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles.

    PubMed

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P

    2014-10-01

    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release

  4. Curcumin inhibits the replication of enterovirus 71 in vitro.

    PubMed

    Qin, Ying; Lin, Lexun; Chen, Yang; Wu, Shuo; Si, Xiaoning; Wu, Heng; Zhai, Xia; Wang, Yan; Tong, Lei; Pan, Bo; Zhong, Xiaoyan; Wang, Tianying; Zhao, Wenran; Zhong, Zhaohua

    2014-08-01

    Human enterovirus 71 (EV71) is the main causative pathogen of hand, foot, and mouth disease (HFMD) in children. The epidemic of HFMD has been a public health problem in Asia-Pacific region for decades, and no vaccine and effective antiviral medicine are available. Curcumin has been used as a traditional medicine for centuries to treat a diversity of disorders including viral infections. In this study, we demonstrated that curcumin showed potent antiviral effect again EV71. In Vero cells infected with EV71, the addition of curcumin significantly suppressed the synthesis of viral RNA, the expression of viral protein, and the overall production of viral progeny. Similar with the previous reports, curcumin reduced the production of ROS induced by viral infection. However, the antioxidant property of curcumin did not contribute to its antiviral activity, since N-acetyl-l-cysteine, the potent antioxidant failed to suppress viral replication. This study also showed that extracellular signal-regulated kinase (ERK) was activated by either viral infection or curcumin treatment, but the activated ERK did not interfere with the antiviral effect of curcumin, indicating ERK is not involved in the antiviral mechanism of curcumin. Unlike the previous reports that curcumin inhibited protein degradation through ubiquitin-proteasome system (UPS), we found that curcumin had no impact on UPS in control cells. However, curcumin did reduce the activity of proteasomes which was increased by viral infection. In addition, the accumulation of the short-lived proteins, p53 and p21, was increased by the treatment of curcumin in EV71-infected cells. We further probed the antiviral mechanism of curcumin by examining the expression of GBF1 and PI4KB, both of which are required for the formation of viral replication complex. We found that curcumin significantly reduced the level of both proteins. Moreover, the decreased expression of either GBF1 or PI4KB by the application of siRNAs was sufficient

  5. Curcumin inhibits the replication of enterovirus 71 in vitro

    PubMed Central

    Qin, Ying; Lin, Lexun; Chen, Yang; Wu, Shuo; Si, Xiaoning; Wu, Heng; Zhai, Xia; Wang, Yan; Tong, Lei; Pan, Bo; Zhong, Xiaoyan; Wang, Tianying; Zhao, Wenran; Zhong, Zhaohua

    2014-01-01

    Human enterovirus 71 (EV71) is the main causative pathogen of hand, foot, and mouth disease (HFMD) in children. The epidemic of HFMD has been a public health problem in Asia-Pacific region for decades, and no vaccine and effective antiviral medicine are available. Curcumin has been used as a traditional medicine for centuries to treat a diversity of disorders including viral infections. In this study, we demonstrated that curcumin showed potent antiviral effect again EV71. In Vero cells infected with EV71, the addition of curcumin significantly suppressed the synthesis of viral RNA, the expression of viral protein, and the overall production of viral progeny. Similar with the previous reports, curcumin reduced the production of ROS induced by viral infection. However, the antioxidant property of curcumin did not contribute to its antiviral activity, since N-acetyl-l-cysteine, the potent antioxidant failed to suppress viral replication. This study also showed that extracellular signal-regulated kinase (ERK) was activated by either viral infection or curcumin treatment, but the activated ERK did not interfere with the antiviral effect of curcumin, indicating ERK is not involved in the antiviral mechanism of curcumin. Unlike the previous reports that curcumin inhibited protein degradation through ubiquitin–proteasome system (UPS), we found that curcumin had no impact on UPS in control cells. However, curcumin did reduce the activity of proteasomes which was increased by viral infection. In addition, the accumulation of the short-lived proteins, p53 and p21, was increased by the treatment of curcumin in EV71-infected cells. We further probed the antiviral mechanism of curcumin by examining the expression of GBF1 and PI4KB, both of which are required for the formation of viral replication complex. We found that curcumin significantly reduced the level of both proteins. Moreover, the decreased expression of either GBF1 or PI4KB by the application of siRNAs was

  6. Plasma Proteins Interaction with Curcumin Nanoparticles: Implications in Cancer Therapeutics

    PubMed Central

    Yallapu, Murali M.; Ebeling, Mara C.; Jaggi, Meena; Chauhan, Subhash C.

    2014-01-01

    Curcumin, a natural bioactive polyphenol, has been widely investigated as a conventional medicine for centuries. Over the past two decades, major pre-clinical and clinical trials have demonstrated its safe therapeutic profile but clinical translation has been hampered due to rapid degradation, poor water solubility, bioavailability and pharmaco-kinetics. To overcome such translational issues, many laboratories have focused on developing curcumin nanoformulations for cancer therapeutics. In this review, we discuss the evolution of curcumin nanomedicine in cancer therapeutics, the possible interactions between the surface of curcumin nanoparticles and plasma proteins, the role of nanoparticle-protein complex architecture parameters, and the rational design of clinically useful curcumin nanoformulations. Considering all the biologically relevant phenomena, curcumin nanoformulations can be developed as a new neutraceutical or pharmaceutical agent. PMID:23566382

  7. Enhanced solubilization of curcumin in mixed surfactant vesicles.

    PubMed

    Kumar, Arun; Kaur, Gurpreet; Kansal, S K; Chaudhary, Ganga Ram; Mehta, S K

    2016-05-15

    Self-assemblies of equimolar double and single chain mixed ionic surfactants, with increasing numbers of carbon atoms of double chain surfactant, were analyzed on the basis of fluorescence and conductivity results. Attempts were also made to enhance the solubilization of curcumin in aqueous equimolar mixed surfactant systems. Mixed surfactant assembly was successful in retarding the degradation of curcumin in alkaline media (only 25-28 40% degraded in 10h at pH 13). Fluorescence spectroscopy and fluorescence quenching methods were employed to predict the binding position and mechanism of curcumin with self-assemblies. Results indicate that the interactions take place according to both dynamic and static quenching mechanisms and curcumin was distributed in a palisade layer of mixed aggregates. Antioxidant activity (using DPPH radical) and biocompatibility (using calf-thymus DNA) of curcumin-loaded mixed surfactant formulations were also evaluated. The prepared systems improved the stability, solubility and antioxidant activity of curcumin and additionally are biocompatible. PMID:26776022

  8. Biological and therapeutic activities, and anticancer properties of curcumin

    PubMed Central

    PERRONE, DONATELLA; ARDITO, FATIMA; GIANNATEMPO, GIOVANNI; DIOGUARDI, MARIO; TROIANO, GIUSEPPE; LO RUSSO, LUCIO; DE LILLO, ALFREDO; LAINO, LUIGI; LO MUZIO, LORENZO

    2015-01-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis. PMID:26640527

  9. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Abdul Kadir, Habsah; Hassandarvish, Pouya; Tajik, Hassan; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent. PMID:24877064

  10. Curcumin prevents human dendritic cell response to immune stimulants

    SciTech Connect

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2008-09-26

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14{sup +} monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4{sup +} T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant.

  11. Curcumin prevents human dendritic cell response to immune stimulants

    PubMed Central

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2012-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14+ monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing naïve CD4+ T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant. PMID:18639521

  12. Antioxidant and radical scavenging properties of curcumin.

    PubMed

    Ak, Tuba; Gülçin, Ilhami

    2008-07-10

    Curcumin (diferuoyl methane) is a phenolic compound and a major component of Curcuma longa L. In the present paper, we determined the antioxidant activity of curcumin by employing various in vitro antioxidant assays such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH*) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by the Fe(3+)-Fe(2+) transformation method, superoxide anion radical scavenging by the riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe(2+)) chelating activities. Curcumin inhibited 97.3% lipid peroxidation of linoleic acid emulsion at 15 microg/mL concentration (20 mM). On the other hand, butylated hydroxyanisole (BHA, 123 mM), butylated hydroxytoluene (BHT, 102 mM), alpha-tocopherol (51 mM) and trolox (90 mM) as standard antioxidants indicated inhibition of 95.4, 99.7, 84.6 and 95.6% on peroxidation of linoleic acid emulsion at 45 microg/mL concentration, respectively. In addition, curcumin had an effective DPPH* scavenging, ABTS*(+) scavenging, DMPD*(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, BHA, BHT, alpha-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. According to the present study, curcumin can be used in the pharmacological and food industry because of these properties. PMID:18547552

  13. Peptide micelle-mediated curcumin delivery for protection of islet β-cells under hypoxia.

    PubMed

    Han, Jaesik; Oh, Jungju; Ihm, Sung-Hee; Lee, Minhyung

    2016-08-01

    Islet transplantation is one of many therapeutic approaches for the treatment of diabetes. During transplant procedures, the isolated islets are subjected to hypoxic conditions, and undergo the apoptotic process. Curcumin has a cytoprotective effect, and may therefore be useful for the protection of islets under hypoxia. However, curcumin is hydrophobic, and an efficient curcumin carrier is required for effective treatment. In this study, R3V6 peptide micelles, composed of a 3-arginine stretch and 6-valine stretch, were evaluated as a curcumin carrier to INS-1 insulinoma cells. Curcumin was loaded into R3V6 micelles at a weight ratio of 10:3 (R3V6:curcumin). The size and surface charge of the curcumin-loaded R3V6 micelles (R3V6-curcumin) were approximately 250 nm and 17.49 mV, respectively. R3V6-curcumin delivered curcumin to the INS-1 cells more efficiently than either curcumin alone or a simple mixture of R3V6 and curcumin. MTT assay indicated that under hypoxia, R3V6-curcumin protected INS-1 cells more efficiently than curcumin alone. TUNEL and reactive oxygen species (ROS) assays suggested that R3V6-curcumin reduced INS-1 cell apoptosis under hypoxia. These results demonstrate that R3V6 peptide micelles are an effective carrier of curcumin, and that R3V6-curcumin may improve the viability of pancreatic β-cells in islet transplantation. PMID:26768151

  14. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells.

    PubMed

    Uğuz, Abdülhadi Cihangir; Öz, Ahmi; Nazıroğlu, Mustafa

    2016-08-01

    Neurological diseases such as Alzheimer's and Parkinson's diseases are incurable progressive neurological disorders caused by the degeneration of neuronal cells and characterized by motor and non-motor symptoms. Curcumin, a turmeric product, is an anti-inflammatory agent and an effective reactive oxygen and nitrogen species scavenging molecule. Hydrogen peroxide (H2O2) is the main source of oxidative stress, which is claimed to be the major source of neurological disorders. Hence, in this study we aimed to investigate the effect of curcumin on Ca(2+) signaling, oxidative stress parameters, mitochondrial depolarization levels and caspase-3 and -9 activities that are induced by the H2O2 model of oxidative stress in SH-SY5Y neuronal cells. SH-SY5Y neuronal cells were divided into four groups namely, the control, curcumin, H2O2, and curcumin + H2O2 groups. The dose and duration of curcumin and H2O2 were determined from published data. The cells in the curcumin, H2O2, and curcumin + H2O2 groups were incubated for 24 h with 5 µM curcumin and 100 µM H2O2. Lipid peroxidation and cytosolic free Ca(2+) concentrations were higher in the H2O2 group than in the control group; however, their levels were lower in the curcumin and curcumin + H2O2 groups than in the H2O2 group alone. Reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) values were lower in the H2O2 group although they were higher in the curcumin and curcumin + H2O2 groups than in the H2O2 group. Caspase-3 activity was lower in the curcumin group than in the H2O2 group. In conclusion, curcumin strongly induced modulator effects on oxidative stress, intracellular Ca(2+) levels, and the caspase-3 and -9 values in an experimental oxidative stress model in SH-SY5Y cells. PMID:26608462

  15. Curcumin: A Natural Lead for Potential New Drug Candidates.

    PubMed

    Oliveira, Ana Sofia; Sousa, Emília; Vasconcelos, Maria Helena; Pinto, Madalena

    2015-01-01

    Curcumin (1) is a secondary metabolite of turmeric, derived from Curcuma longa L. and was shown to have many biological activities. One of the most interesting properties of curcumin (1) is the antitumour activity allied with the ability to act as a multidrug resistance (MDR) modulator. Several curcumin derivatives have been synthesized with the purpose of discovering more information about the mechanisms of action, to establish structure-activity relationships (SAR), and to overcome pharmacokinetic problems. Over the past few decades, more potent and more stable curcumin derivatives have emerged with potential as drug candidates. Some important SAR studies pointed out that the unstable α,β-unsaturated diketone linker present in curcumin (1) may not be necessary for the antitumour activity; generally, shorter linkers result in more potent compounds than curcumin (1); the type of substituents and their substitution pattern are crucial regarding the biological activities of interest. Overall, the structure of curcumin (1) may represent an important basis for the development of more effective therapeutic agents, particularly in chemotherapy, as reflected by ongoing clinical trials. This article aims to review the synthesis and biological activities of curcumin (1) and derivatives, highlighting the MDR modulation properties of curcumin (1), since these effects makes this natural product a promising lead compound for the development of new anticancer drugs. PMID:26511469

  16. Curcuma Contra Cancer? Curcumin and Hodgkin’s Lymphoma

    PubMed Central

    Kewitz, Stefanie; Volkmer, Ines; Staege, Martin S.

    2013-01-01

    Curcumin, a phytochemical isolated from curcuma plants which are used as coloring ingredient for the preparation of curry powder, has several activities which suggest that it might be an interesting drug for the treatment or prevention of cancer. Curcumin targets different pathways which are involved in the malignant phenotype of tumor cells, including the nuclear factor kappa B (NFKB) pathway. This pathway is deregulated in multiple tumor entities, including Hodgkin’s lymphoma (HL). Indeed, curcumin can inhibit growth of HL cell lines and increases the sensitivity of these cells for cisplatin. In this review we summarize curcumin activities with special focus on possible activities against HL cells. PMID:24665206

  17. Highly Loaded, Sustained-Release Microparticles of Curcumin for Chemoprevention

    PubMed Central

    SHAHANI, KOMAL; PANYAM, JAYANTH

    2014-01-01

    Curcumin, a dietary polyphenol, has preventive and therapeutic potential against several diseases. Because of the chronic nature of many of these diseases, sustained-release dosage forms of curcumin could be of significant clinical value. However, extreme lipophilicity and instability of curcumin are significant challenges in its formulation development. The objectives of this study were to fabricate an injectable microparticle formulation that can sustain curcumin release over a 1-month period and to determine its chemopreventive activity in a mouse model. Microparticles were fabricated using poly(D, L-lactide-co-glycolide) polymer. Conventional emulsion solvent evaporation method of preparing microparticles resulted in crystallization of curcumin outside of microparticles and poor entrapment (~1%, w/w loading). Rapid solvent removal using vacuum dramatically increased drug entrapment (~38%, w/w loading; 76% encapsulation efficiency). Microparticles sustained curcumin release over 4 weeks in vitro, and drug release rate could be modulated by varying the polymer molecular weight and/or composition. A single subcutaneous dose of microparticles sustained curcumin liver concentration for nearly a month in mice. Hepatic glutathione-s-transferase and cyclooxygenase-2 activities, biomarkers for chemoprevention, were altered following treatment with curcumin microparticles. The results of these studies suggest that sustained-release microparticles of curcumin could be a novel and effective approach for cancer chemoprevention. PMID:21547911

  18. Curcumin improves liver damage in male mice exposed to nicotine

    PubMed Central

    Salahshoor, Mohammadreza; Mohamadian, Sabah; Kakabaraei, Seyran; Roshankhah, Shiva; Jalili, Cyrus

    2015-01-01

    The color of turmeric (薑黃 jiāng huáng) is because of a substance called curcumin. It has different pharmacological effects, such as antioxidant and anti-inflammatory properties. Nicotine is a major pharmacologically active substance in cigarette smoke. It is mainly metabolized in the liver and causes devastating effects. This study was designed to evaluate the protective role of curcumin against nicotine on the liver in mice. Forty-eight mice were equally divided into eight groups; control (normal saline), nicotine (2.5 mg/kg), curcumin (10, 30, and 60 mg/kg) and curcumin plus nicotine-treated groups. Curcumin, nicotine, and curcumin plus nicotine (once a day) were intraperitoneally injected for 4 weeks. The liver weight and histology, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum nitric oxide levels have been studied. The results indicated that nicotine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein, liver enzymes level, and blood serum nitric oxide level compared with the saline group (p < 0.05). However, curcumin and curcumin plus nicotine administration substantially increased liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes, and nitric oxide levels in all groups compared with the nicotine group (p < 0.05). Curcumin demonstrated its protective effect against nicotine-induced liver toxicity. PMID:27114942

  19. Curcumin improves liver damage in male mice exposed to nicotine.

    PubMed

    Salahshoor, Mohammadreza; Mohamadian, Sabah; Kakabaraei, Seyran; Roshankhah, Shiva; Jalili, Cyrus

    2016-04-01

    The color of turmeric ( jiāng huáng) is because of a substance called curcumin. It has different pharmacological effects, such as antioxidant and anti-inflammatory properties. Nicotine is a major pharmacologically active substance in cigarette smoke. It is mainly metabolized in the liver and causes devastating effects. This study was designed to evaluate the protective role of curcumin against nicotine on the liver in mice. Forty-eight mice were equally divided into eight groups; control (normal saline), nicotine (2.5 mg/kg), curcumin (10, 30, and 60 mg/kg) and curcumin plus nicotine-treated groups. Curcumin, nicotine, and curcumin plus nicotine (once a day) were intraperitoneally injected for 4 weeks. The liver weight and histology, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum nitric oxide levels have been studied. The results indicated that nicotine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein, liver enzymes level, and blood serum nitric oxide level compared with the saline group (p < 0.05). However, curcumin and curcumin plus nicotine administration substantially increased liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes, and nitric oxide levels in all groups compared with the nicotine group (p < 0.05). Curcumin demonstrated its protective effect against nicotine-induced liver toxicity. PMID:27114942

  20. In Silico Inhibition Studies of Jun-Fos-DNA Complex Formation by Curcumin Derivatives

    PubMed Central

    Kumar, Anil; Bora, Utpal

    2012-01-01

    Activator protein-1 (AP1) is a transcription factor that consists of the Jun and Fos family proteins. It regulates gene expression in response to a variety of stimuli and controls cellular processes including proliferation, transformation, inflammation, and innate immune responses. AP1 binds specifically to 12-O-tetradecanoylphorbol-13-acetate (TPA) responsive element 5′-TGAG/CTCA-3′ (AP1 site). It has been found constitutively active in breast, ovarian, cervical, and lung cancers. Numerous studies have shown that inhibition of AP1 could be a promising strategy for cancer therapeutic applications. The present in silico study provides insights into the inhibition of Jun-Fos-DNA complex formation by curcumin derivatives. These derivatives interact with the amino acid residues like Arg155 and Arg158 which play a key role in binding of Jun-Fos complex to DNA (AP1 site). Ala151, Ala275, Leu283, and Ile286 were the residues present at binding site which could contribute to hydrophobic contacts with inhibitor molecules. Curcumin sulphate was predicted to be the most potent inhibitor amongst all the natural curcumin derivatives docked. PMID:25374685

  1. Recombinant IκBα-loaded curcumin nanoparticles for improved cancer therapeutics

    NASA Astrophysics Data System (ADS)

    Banerjee, Subhamoy; Sahoo, Amaresh Kumar; Chattopadhyay, Arun; Sankar Ghosh, Siddhartha

    2014-08-01

    The field of recombinant protein therapeutics has been evolving rapidly, making significant impact on clinical applications for several diseases, including cancer. However, the functional aspects of proteins rely exclusively on their structural integrity, in which nanoparticle mediated delivery offers unique advantages over free proteins. In the present work, a novel strategy has been developed where the nanoparticles (NPs) used for the delivery of the recombinant protein could contribute to enhancing the therapeutic efficacy of the recombinant protein. The transcription factor, NFκB, involved in cell growth and its inhibitor, IκBα, regulates its proliferation. Another similar naturally available molecule, which inhibits the function of NFκB, is curcumin. Hence, we have developed a ‘green synthesis’ method for preparing water-soluble curcumin nanoparticles to stabilize recombinant IκBα protein. The NPs were characterized by UV-vis and fluorescence spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering before administration into human cervical carcinoma (HeLa) and glioblastoma (U87MG) cells. Experimental results demonstrated that this combined module had enhanced therapeutic efficacy, causing apoptotic cell death, which was confirmed by cytotoxicity assay and flowcytometry analyses. The expression of apoptotic genes studied by semi-quantitative reverse transcription PCR delineated the molecular pathways involved in cell death. Thus, our study revealed that the functional delivery of recombinant IκBα-loaded curcumin NPs has promise as a natural-product-based protein therapeutics against cancer cells.

  2. Stabilization of diketo tautomer of curcumin by premicellar anionic surfactants: UV-Visible, fluorescence, tensiometric and TD-DFT evidences

    NASA Astrophysics Data System (ADS)

    Dutta, Anisha; Boruah, Bornali; Manna, Arun K.; Gohain, Biren; Saikia, Palash M.; Dutta, Robin K.

    2013-03-01

    A newly observed UV band of aqueous curcumin, a biologically important molecule, in presence of anionic surfactants, viz., sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and sodium dodecylsulfonate (SDSN) in buffered aqueous solutions has been studied experimentally and theoretically. The 425 nm absorption band of curcumin disappears and a new UV-band is observed at 355 nm on addition of the surfactants in the submicellar concentration range which is reversed as the surfactant concentration approaches the critical micelle concentration (CMC). The observed spectral absorption, fluorescence intensity and surface tension behavior, under optimal experimental conditions of submicellar concentration ranges of the surfactants in the pH range of 2.00-7.00, indicate that the new band is due to the β-diketo tautomer of curcumin stabilized by interactions between curcumin and the anionic surfactants. The stabilization of the diketo tautomer by submicellar anionic surfactants described here as well as by submicellar cationic surfactant, reported recently, is unique as this is the only such behavior observed in presence of submicellar surfactants of both charge types. The experimental results are in good agreement with the theoretical calculations using ab initio density functional theory combined with time dependent density functional theory (TD-DFT) calculations.

  3. Potential Therapeutic Effects of Curcumin, the Anti-inflammatory Agent, Against Neurodegenerative, Cardiovascular, Pulmonary, Metabolic, Autoimmune and Neoplastic Diseases

    PubMed Central

    Aggarwal, Bharat B.; Harikumar, Kuzhuvelil B.

    2009-01-01

    Although safe in most cases, ancient treatments are ignored because neither their active component nor their molecular targets are well defined. This is not the case, however, with curcumin, a yellow-pigment substance and component of turmeric (Curcuma longa), which was identified more than a century ago. For centuries it has been known that turmeric exhibits anti-inflammatory activity, but extensive research performed within the past two decades has shown that the this activity of turmeric is due to curcumin, a diferuloylmethane. This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. The process of inflammation has been shown to play a major role in most chronic illnesses, including neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. In the current review, we provide evidence for the potential role of curcumin in the prevention and treatment of various pro-inflammatory chronic diseases. These features, combined with the pharmacological safety and negligible cost, render curcumin an attractive agent to explore further. PMID:18662800

  4. Plasmonic nanostructures: artificial molecules.

    PubMed

    Wang, Hui; Brandl, Daniel W; Nordlander, Peter; Halas, Naomi J

    2007-01-01

    This Account describes a new paradigm for the relationship between the geometry of metallic nanostructures and their optical properties. While the interaction of light with metallic nanoparticles is determined by their collective electronic or plasmon response, a compelling analogy exists between plasmon resonances of metallic nanoparticles and wave functions of simple atoms and molecules. Based on this insight, an entire family of plasmonic nanostructures, artificial molecules, has been developed whose optical properties can be understood within this picture: nanoparticles (nanoshells, nanoeggs, nanomatryushkas, nanorice), multi-nanoparticle assemblies (dimers, trimers, quadrumers), and a nanoparticle-over-metallic film, an electromagnetic analog of the spinless Anderson model. PMID:17226945

  5. Protective effects of dendrosomal curcumin on an animal metastatic breast tumor.

    PubMed

    Farhangi, Baharak; Alizadeh, Ali Mohammad; Khodayari, Hamid; Khodayari, Saeed; Dehghan, Mohammad Javad; Khori, Vahid; Heidarzadeh, Alemeh; Khaniki, Mahmood; Sadeghiezadeh, Majid; Najafi, Farhood

    2015-07-01

    Curcumin has been shown to inhibit migration and invasion of cancer angiogenesis via interacting with key regulatory molecules like NF-κB. Rapidly metabolized and conjugated in the liver, curcumin has the limited systemic bioavailability. Previous results have shown a new light of potential biocompatibility, biodegradability, as well as anti-cancer effects of dendrosomal curcumin (DNC) in biological systems. The present study aims to deliberate the protective effects of DNC on metastatic breast tumor in vitro and in vivo. After the dosing procedure, twenty-seven female mice were divided into 40 and 80mg/kg groups of DNC, along with a control group to investigate the anti-metastatic effects of DNC on mammary tumor-bearing mice. In vitro results showed that the different concentrations of DNC reduced the migration and the adhesion of 4T1 cells after 24h (P<0.05). Under the dosing procedure, DNC was safe at 80mg/kg and lower doses. The treated DNC animals had a higher survival rate and lower metastatic signs (14%) compared to control (100%) (P<0.05). The metastatic tumors were more common in control mice than the treated groups in the lung, the liver and the sternum tissues. Animals treated with DNC had smaller tumor volume in comparison with control group (P<0.05). Final mean tumor volume reached to approximately 1.11, 0.31 and 0.27cm(3) in the control, and 40 and 80mg/kg DNC groups, respectively (P<0.05). Furthermore, suppression of NF-κB expression by DNC led to down-regulation of VEGF, COX-2, and MMP-9 expressions in the breast tumor, the lung, the brain, the spleen and the liver tissues (P<0.05). These outcomes indicate that dendrosomal curcumin has a chemoprotective effect on the breast cancer metastasis through suppression of NF-κB and its regulated gene products. PMID:25863259

  6. Galactosylated alginate-curcumin micelles for enhanced delivery of curcumin to hepatocytes.

    PubMed

    P R, Sarika; James, Nirmala Rachel; Kumar P R, Anil; K Raj, Deepa

    2016-05-01

    Galactosylated alginate-curcumin conjugate (LANH2-Alg Ald-Cur) is synthesized for targeted delivery of curcumin to hepatocytes exploiting asialoglycoprotein receptor (ASGPR) on hepatocytes. The synthetic procedure includes oxidation of alginate (Alg), modification of lactobionic acid (LA), grafting of targeting group (modified lactobinic acid, LANH2) and conjugation of curcumin to alginate. Alginate-curcumin conjugate (Alg-Cur) without targeting group is also prepared for the comparison of properties. LANH2-Alg Ald-Cur self assembles to micelle with diameter of 235±5nm and zeta potential of -29mV in water. Cytotoxicity analysis demonstrates enhanced toxicity of LANH2-Alg Ald-Cur over Alg-Cur on HepG2 cells. Cellular uptake studies confirm that LANH2-Alg Ald-Cur can selectively recognize HepG2 cells and shows higher internalization than Alg-Cur conjugate. Results indicate that LANH2-Alg Ald-Cur conjugate micelles are suitable candidates for targeted delivery of curcumin to HepG2 cells. PMID:26774374

  7. Mass-spectrometric identification of T-kininogen I/thiostatin as an acute-phase inflammatory protein suppressed by curcumin and capsaicin.

    PubMed

    Joe, Bina; Nagaraju, Anitha; Gowda, Lalitha R; Basrur, Venkatesha; Lokesh, Belur R

    2014-01-01

    Curcumin and capsaicin are dietary xenobiotics with well-documented anti-inflammatory properties. Previously, the beneficial effect of these spice principles in lowering chronic inflammation was demonstrated using a rat experimental model for arthritis. The extent of lowering of arthritic index by the spice principles was associated with a significant shift in macrophage function favoring the reduction of pro-inflammatory molecules such as reactive oxygen species and production and release of anti-inflammatory metabolites of arachidonic acid. Beyond the cellular effects on macrophage function, oral administration of curcumin and capsaicin caused alterations in serum protein profiles of rats injected with adjuvant to develop arthritis. Specifically, a 72 kDa acidic glycoprotein, GpA72, which was elevated in pre-arthritic rats, was significantly lowered by feeding either curcumin or capsaicin to the rats. Employing the tandem mass spectrometric approach for direct sequencing of peptides, here we report the identification of GpA72 as T-kininogen I also known as Thiostatin. Since T-kininogen I is an early acute-phase protein, we additionally tested the efficiency of curcumin and capsaicin to mediate the inflammatory response in an acute phase model. The results demonstrate that curcumin and capsaicin lower the acute-phase inflammatory response, the molecular mechanism for which is, in part, mediated by pathways associated with the lowering of T-kininogen I. PMID:25299597

  8. Intranasal curcumin ameliorates airway inflammation and obstruction by regulating MAPKinase activation (p38, Erk and JNK) and prostaglandin D2 release in murine model of asthma.

    PubMed

    Subhashini; Chauhan, Preeti S; Dash, D; Paul, B N; Singh, Rashmi

    2016-02-01

    Asthma, a multifactorial, chronic inflammatory disease encompasses multiple complex pathways releasing number of mediators by activated mast cells, eosinophils and T lymphocytes, leading to its severity. Presently available medications are associated with certain limitations, and hence, it is imperative to search for anti-inflammatory drug preferably targeting signaling cascades involved in inflammation thereby suppressing inflammatory mediators without any side effect. Curcumin, an anti-inflammatory molecule with potent anti-asthmatic potential has been found to suppress asthmatic features by inhibiting airway inflammation and bronchoconstriction if administered through nasal route. The present study provides new insight towards anti-asthmatic potential of intranasal curcumin at lower doses (2.5 and 5.0mg/kg) in Balb/c mice sensitized and challenged with ovalbumin (OVA) which is effective in inhibiting airway inflammation. These investigations suggest that intranasal curcumin (2.5 and 5.0mg/kg) regulates airway inflammation and airway obstruction mainly by modulating cytokine levels (IL-4, 5, IFN-ƴ and TNF-α) and sPLA2 activity thereby inhibiting PGD2 release and COX-2 expression. Further, the suppression of p38 MAPK, ERK 42/44 and JNK54/56 activation elucidate the mechanism behind the inhibitory role of intranasal curcumin in asthma progression. Thus, curcumin could be better alternative for the development of nasal formulations and inhalers in near future. PMID:26761722

  9. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.

    PubMed

    Chen, Fei-Ping; Ou, Shi-Yi; Tang, Chuan-He

    2016-06-22

    Using soy protein isolate (SPI) and soy-soluble polysaccharides (SSPS) as polymer matrixes, this study reported a novel process to fabricate unique core-shell complex (nano)particles to perform as carriers for curcumin (a typical poorly soluble bioactive). In the process, curcumin-SPI nanocomplexes were first formed at pH 7.0 and then coated by SSPS. At this pH, the core-shell complex was formed in a way the SPI nanoparticles might be incorporated into the interior of SSPS molecules without distinctly affecting the size and morphology of particles. The core-shell structure was distinctly changed by adjusting pH from 7.0 to 4.0. At pH 4.0, SSPS was strongly bound to the surface of highly aggregated SPI nanoparticles, and as a consequence, much larger complexes were formed. The bioaccessibility of curcumin in the SPI-curcumin complexes was unaffected by the SSPS coating. However, the core-shell complex formation greatly improved the thermal stability and controlled release properties of encapsulated curcumin. The improvement was much better at pH 4.0 than that at pH 7.0. All of the freeze-dried core-shell complex preparations exhibited good redispersion behavior. The findings provide a simple approach to fabricate food-grade delivery systems for improved water dispersion, heat stability, and even controlled release of poorly soluble bioactives. PMID:27243766

  10. Mass-Spectrometric Identification of T-Kininogen I/Thiostatin as an Acute-Phase Inflammatory Protein Suppressed by Curcumin and Capsaicin

    PubMed Central

    Joe, Bina; Nagaraju, Anitha; Gowda, Lalitha R.; Basrur, Venkatesha; Lokesh, Belur R.

    2014-01-01

    Curcumin and capsaicin are dietary xenobiotics with well-documented anti-inflammatory properties. Previously, the beneficial effect of these spice principles in lowering chronic inflammation was demonstrated using a rat experimental model for arthritis. The extent of lowering of arthritic index by the spice principles was associated with a significant shift in macrophage function favoring the reduction of pro-inflammatory molecules such as reactive oxygen species and production and release of anti-inflammatory metabolites of arachidonic acid. Beyond the cellular effects on macrophage function, oral administration of curcumin and capsaicin caused alterations in serum protein profiles of rats injected with adjuvant to develop arthritis. Specifically, a 72 kDa acidic glycoprotein, GpA72, which was elevated in pre-arthritic rats, was significantly lowered by feeding either curcumin or capsaicin to the rats. Employing the tandem mass spectrometric approach for direct sequencing of peptides, here we report the identification of GpA72 as T-kininogen I also known as Thiostatin. Since T-kininogen I is an early acute-phase protein, we additionally tested the efficiency of curcumin and capsaicin to mediate the inflammatory response in an acute phase model. The results demonstrate that curcumin and capsaicin lower the acute-phase inflammatory response, the molecular mechanism for which is, in part, mediated by pathways associated with the lowering of T-kininogen I. PMID:25299597

  11. One pot synthesis, structural and spectral analysis of some symmetrical curcumin analogues catalyzed by calcium oxide under microwave irradiation

    NASA Astrophysics Data System (ADS)

    Elavarasan, S.; Bhakiaraj, D.; Chellakili, B.; Elavarasan, T.; Gopalakrishnan, M.

    2012-11-01

    A series of sixteen number of curcumin analogues have been synthesized under microwave irradiation using calcium oxide as a catalyst. The synthesized compounds have been characterized using FT-IR, MS, elemental analysis, 1H and 13C NMR spectroscopic techniques. The UV-Vis absorption studies for these compounds have been studied in order to provide the electronic transitions taking place in the molecule. When compared to the curcumin ((1E,4Z,6E)-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one), the absorption maxima, λmax for all the synthesized curcumin analogues with a variety of substituents gets blue shifted i.e., hypsochromic shift was observed. This shift may be assigned to the change of dipole moment within the solvated molecule. Theoretical calculations regarding the optimization of the synthesized molecules, electronic properties like highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and mapped electron density surface diagrams were done. The geometrical energy, dipole moments and heat of formation values have also been calculated using the ArgusLab package by AM1 semi-empirical method.

  12. Science Teachers' Analogical Reasoning

    NASA Astrophysics Data System (ADS)

    Mozzer, Nilmara Braga; Justi, Rosária

    2013-08-01

    Analogies can play a relevant role in students' learning. However, for the effective use of analogies, teachers should not only have a well-prepared repertoire of validated analogies, which could serve as bridges between the students' prior knowledge and the scientific knowledge they desire them to understand, but also know how to introduce analogies in their lessons. Both aspects have been discussed in the literature in the last few decades. However, almost nothing is known about how teachers draw their own analogies for instructional purposes or, in other words, about how they reason analogically when planning and conducting teaching. This is the focus of this paper. Six secondary teachers were individually interviewed; the aim was to characterize how they perform each of the analogical reasoning subprocesses, as well as to identify their views on analogies and their use in science teaching. The results were analyzed by considering elements of both theories about analogical reasoning: the structural mapping proposed by Gentner and the analogical mechanism described by Vosniadou. A comprehensive discussion of our results makes it evident that teachers' content knowledge on scientific topics and on analogies as well as their pedagogical content knowledge on the use of analogies influence all their analogical reasoning subprocesses. Our results also point to the need for improving teachers' knowledge about analogies and their ability to perform analogical reasoning.

  13. Curcumin and Diabetes: A Systematic Review

    PubMed Central

    Zhang, Dong-wei; Fu, Min; Gao, Si-Hua; Liu, Jun-Li

    2013-01-01

    Turmeric (Curcuma longa), a rhizomatous herbaceous perennial plant of the ginger family, has been used for the treatment of diabetes in Ayurvedic and traditional Chinese medicine. The active component of turmeric, curcumin, has caught attention as a potential treatment for diabetes and its complications primarily because it is a relatively safe and inexpensive drug that reduces glycemia and hyperlipidemia in rodent models of diabetes. Here, we review the recent literature on the applications of curcumin for glycemia and diabetes-related liver disorders, adipocyte dysfunction, neuropathy, nephropathy, vascular diseases, pancreatic disorders, and other complications, and we also discuss its antioxidant and anti-inflammatory properties. The applications of additional curcuminoid compounds for diabetes prevention and treatment are also included in this paper. Finally, we mention the approaches that are currently being sought to generate a “super curcumin” through improvement of the bioavailability to bring this promising natural product to the forefront of diabetes therapeutics. PMID:24348712

  14. Curcumin and tumor immune-editing: resurrecting the immune system.

    PubMed

    Bose, Sayantan; Panda, Abir Kumar; Mukherjee, Shravanti; Sa, Gaurisankar

    2015-01-01

    Curcumin has long been known to posses medicinal properties and recent scientific studies have shown its efficacy in treating cancer. Curcumin is now considered to be a promising anti-cancer agent and studies continue on its molecular mechanism of action. Curcumin has been shown to act in a multi-faceted manner by targeting the classical hallmarks of cancer like sustained proliferation, evasion of apoptosis, sustained angiogenesis, insensitivity to growth inhibitors, tissue invasion and metastasis etc. However, one of the emerging hallmarks of cancer is the avoidance of immune system by tumors. Growing tumors adopt several strategies to escape immune surveillance and successfully develop in the body. In this review we highlight the recent studies that show that curcumin also targets this process and helps restore the immune activity against cancer. Curcumin mediates several processes like restoration of CD4(+)/CD8(+) T cell populations, reversal of type-2 cytokine bias, reduction of Treg cell population and suppression of T cell apoptosis; all these help to resurrect tumor immune surveillance that leads to tumor regression. Thus interaction of curcumin with the immune system is also an important feature of its multi-faceted modes of action against cancer. Finally, we also point out the drawbacks of and difficulties in curcumin administration and indicate the use of nano-formulations of curcumin for better therapeutic efficacy. PMID:26464579

  15. Curcumin: a novel treatment for skin-related disorders.

    PubMed

    Nguyen, Tuyet A; Friedman, Adam J

    2013-10-01

    Curcumin, or diferuloylmethane, is a crystalline compound which gives the East Asian spice turmeric its bright yellow color. The medicinal properties of this spice have been referenced in numerous countries and cultures throughout the world. Today, there is growing scientific evidence suggesting curcumin's utility in the treatment of chronic pain, inflammatory dermatoses, acceleration of wound closure, skin infections, as well as cosmetic ailments such as dyspigmentation. In addition, curcumin may have a protective role against various pollutants and cytotoxic agents, indicating that it may be beneficial in a mitigational or prophylaxis role. Although turmeric has been used for thousands of years in alternative medicine, curcumin has yet to emerge as a component of our mainstream dermatologic therapeutic armamentarium. Interestingly, curcumin provides an ideal alternative to current therapies because of its relative safety profile even at high doses. Although the advantageous properties of curcumin in medicine are well established, its therapeutic potential thus far has been limited because of its poor oral bioavailablity. Topical administration of curcumin can directly deliver it to the affected tissue making it useful in treating skin-related disorders. However, limitations still exist such as the cosmetically unpleasing bright yellow-orange color, its poor solubility, and its poor stability at a high pH. Here the current literature detailing the potential and current use of curcumin in dermatology is reviewed. PMID:24085048

  16. Cancer-linked targets modulated by curcumin

    PubMed Central

    Hasima, Noor; Aggarwal, Bharat B

    2012-01-01

    In spite of major advances in oncology, the World Health Organization predicts that cancer incidence will double within the next two decades. Although it is well understood that cancer is a hyperproliferative disorder mediated through dysregulation of multiple cell signaling pathways, most cancer drug development remains focused on modulation of specific targets, mostly one at a time, with agents referred to as “targeted therapies,” “smart drugs,” or “magic bullets.” How many cancer targets there are is not known, and how many targets must be attacked to control cancer growth is not well understood. Although more than 90% of cancer-linked deaths are due to metastasis of the tumor to vital organs, most drug targeting is focused on killing the primary tumor. Besides lacking specificity, the targeted drugs induce toxicity and side effects that sometimes are greater problems than the disease itself. Furthermore, the cost of some of these drugs is so high that most people cannot afford them. The present report describes the potential anticancer properties of curcumin, a component of the Indian spice turmeric (Curcuma longa), known for its safety and low cost. Curcumin can selectively modulate multiple cell signaling pathways linked to inflammation and to survival, growth, invasion, angiogenesis, and metastasis of cancer cells. More clinical trials of curcumin are needed to prove its usefulness in the cancer setting. PMID:23301199

  17. Heterocyclic Curcumin Derivatives of Pharmacological Interest: Recent Progress.

    PubMed

    Martinez-Cifuentes, Maximiliano; Weiss-Lopez, Boris; Santos, Leonardo S; Araya-Maturana, Ramiro

    2015-01-01

    Curcumin, a natural yellow polyphenol, is isolated from the herb Curcuma longa L. (turmeric), a member of the ginger family. It has been extensively studied due to their multiple pharmacological properties. Nevertheless, curcumin has disadvantages such as poor water solubility, poor bioavailability and rapid metabolism, which has prompted the search for analogues that overcome these shortcomings while maintaining or improving their good pharmacological properties. Among the main curcumin analogues that have been developed, the heterocyclic curcuminoids show a high interest. In this review, we describe recent progress in the synthesis and pharmacological properties of new heterocyclic curcumin derivatives. The most recent developments in anti-cancer, anti-Alzheimer, anti-bacterial and anti-oxidants heterocyclic curcumin derivatives are covered. PMID:25915614

  18. The chemistry of curcumin: from extraction to therapeutic agent.

    PubMed

    Priyadarsini, Kavirayani Indira

    2014-01-01

    Curcumin, a pigment from turmeric, is one of the very few promising natural products that has been extensively investigated by researchers from both the biological and chemical point of view. While there are several reviews on the biological and pharmacological effects of curcumin, chemistry reviews are comparatively scarcer. In this article, an overview of different aspects of the unique chemistry research on curcumin will be discussed. These include methods for the extraction from turmeric, laboratory synthesis methods, chemical and photochemical degradation and the chemistry behind its metabolism. Additionally other chemical reactions that have biological relevance like nucleophilic addition reactions, and metal chelation will be discussed. Recent advances in the preparation of new curcumin nanoconjugates with metal and metal oxide nanoparticles will also be mentioned. Directions for future investigations to be undertaken in the chemistry of curcumin have also been suggested. PMID:25470276

  19. Polymeric Curcumin Nanoparticle Pharmacokinetics and Metabolism in Bile Duct Cannulated Rats

    PubMed Central

    Zou, Peng; Helson, Lawrence; Maitra, Anirban; Stern, Stephan T.; McNeil, Scott E.

    2013-01-01

    The objective of this study was to compare the pharmacokinetics and metabolism of polymeric nanoparticle encapsulated (nanocurcumin), and solvent solubilized curcumin formulations in Sprague Dawley (SD) rats. Nanocurcumin is currently under development for cancer therapy. Since free, unencapsulated curcumin is rapidly metabolized and excreted in rats, upon i.v. administration of nanocurcumin only nanoparticle encapsulated curcumin can be detected in plasma samples. Hence, the second objective of this study was to utilize the metabolic instability of curcumin to assess in vivo drug release from nanocurcumin. Nanocurcumin and solvent solubilized curcumin were administered at 10 mg curcumin/kg by jugular vein to bile duct-cannulated male SD rats (n = 5). Nanocurcumin increased the plasma Cmax of curcumin 1749 fold relative to the solvent solubilized curcumin. Nanocurcumin also increased the relative abundance of curcumin and glucuronides in bile, but did not dramatically alter urine and tissue metabolite profiles. The observed increase in biliary and urinary excretion of both curcumin and metabolites for the nanocurcumin formulation suggested rapid, “burst” release of curcumin. Although the burst release observed in this study is a limitation for targeted tumor delivery, nanocurcumin still exhibits major advantages over solvent solubilized curcumin, as the nanoformulation does not result in the lung accumulation observed for the solvent solubilized curcumin and increases overall systemic curcumin exposure. Additionally, the remaining encapsulated curcumin fraction following burst release is available for tumor delivery via the enhanced permeation and retention effect commonly observed for nanoparticle formulations. PMID:23534919

  20. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin.

    PubMed

    Kumar, Sunny; Kesharwani, Siddharth S; Mathur, Himanshi; Tyagi, Mohit; Bhat, G Jayarama; Tummala, Hemachand

    2016-01-20

    Curcumin is a natural dietary compound with demonstrated potential in preventing/treating several chronic diseases in animal models. However, this success is yet to be translated to humans mainly because of its poor oral bioavailability caused by extremely low water solubility. This manuscript demonstrates that water insoluble curcumin (~1μg/ml) forms highly aqueous soluble complexes (>2mg/ml) with a safe pH sensitive polymer, poly(butyl-methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl-methacrylate) when precipitated together in water. The complexation process was optimized to enhance curcumin loading by varying several formulation factors. Acetone as a solvent and polyvinyl alcohol as a stabilizer with 1:2 ratio of drug to polymer yielded complexes with relatively high loading (~280μg/ml) and enhanced solubility (>2mg/ml). The complexes were amorphous in solid and were soluble only in buffers with pHs less than 5.0. Hydrogen bond formation and hydrophobic interactions between curcumin and the polymer were recorded by infrared spectroscopy and nuclear magnetic resonance spectroscopy, respectively. Molecular complexes of curcumin were more stable at various pHs compared to unformulated curcumin. In mice, these complexes increased peak plasma concentration of curcumin by 6 times and oral bioavailability by ~20 times. This is a simple, economic and safer strategy of enhancing the oral bioavailability of curcumin. PMID:26588875

  1. Polyhydroxycurcuminoids but not curcumin upregulate neprilysin and can be applied to the prevention of Alzheimer’s disease

    PubMed Central

    Chen, Po-Ting; Chen, Zih-ten; Hou, Wen-Chi; Yu, Lung-Chih; Chen, Rita P.-Y.

    2016-01-01

    Neprilysin (NEP) is the most important Aβ-degrading enzyme. Its expression level decreases with age and inversely correlated with amyloid accumulation, suggesting its correlation with the late-onset of Alzheimer’s disease. Recently, many reports showed that upregulating NEP level is a promising strategy in the prevention and therapy of Alzheimer’s disease. Here, we used a sensitive fluorescence-based Aβ digestion assay to screen 25 curcumin analogs for their ability to upregulate NEP activity. To our surprise, four compounds, dihydroxylated curcumin, monohydroxylated demethoxycurcumin, and mono- and di-hydroxylated bisdemethoxycurcumin, increased NEP activity, while curcumin did not. The ability of these polyhydroxycurcuminoids to upregulate NEP was further confirmed by mRNA and protein expression levels in the cell and mouse models. Finally, feeding monohydroxylated demethoxycurcumin (also named demethylcurcumin) or dihydroxylated bisdemethoxycurcumin (also named bisdemethylcurcumin) to APPswe/PS1dE9 double transgenic mice upregulated NEP levels in the brain and reduced Aβ accumulation in the hippocampus and cortex. These polyhydroxycurcuminoids offer hope in the prevention of Alzheimer’s disease. PMID:27407064

  2. Natural derivatives of curcumin attenuate the Wnt/{beta}-catenin pathway through down-regulation of the transcriptional coactivator p300

    SciTech Connect

    Ryu, Min-Jung; Cho, Munju; Song, Jie-Young; Yun, Yeon-Sook; Choi, Il-Whan; Kim, Dong-Eun; Park, Byeoung-Soo; Oh, Sangtaek

    2008-12-26

    Curcumin, a component of turmeric (Curcuma longa), has been reported to suppress {beta}-catenin response transcription (CRT), which is aberrantly activated in colorectal cancer. However, the effects of its natural analogs (demethoxycurcumin [DMC] and bisdemethoxycurcumin [BDMC]) and metabolite (tetrahydrocurcumin [THC]) on the Wnt/{beta}-catenin pathway have not been investigated. Here, we show that DMC and BDMC suppressed CRT that was activated by Wnt3a conditioned-medium (Wnt3a-CM) without altering the level of intracellular {beta}-catenin, and inhibited the growth of various colon cancer cells, with comparable potency to curcumin. Additionally, DMC and BDMC down-regulated p300, which is a positive regulator of the Wnt/{beta}-catenin pathway. Notably, THC also inhibited CRT and cell proliferation, but to a much lesser degree than curcumin, DMC, or BDMC, indicating that the conjugated bonds in the central seven-carbon chain of curcuminoids are essential for the inhibition of Wnt/{beta}-catenin pathway and the anti-proliferative activity of curcuminoids. Thus, our findings suggest that curcumin derivatives inhibit the Wnt/{beta}-catenin pathway by decreasing the amount of the transcriptional coactivator p300.

  3. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase.

    PubMed

    Jayakumar, Sundarraj; Patwardhan, R S; Pal, Debojyoti; Sharma, Deepak; Sandur, Santosh K

    2016-09-01

    Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratio and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. PMID:27381867

  4. Can Small Chemical Modifications of Natural Pan-inhibitors Modulate the Biological Selectivity? The Case of Curcumin Prenylated Derivatives Acting as HDAC or mPGES-1 Inhibitors.

    PubMed

    Iranshahi, Mehrdad; Chini, Maria Giovanna; Masullo, Milena; Sahebkar, Amirhossein; Javidnia, Azita; Chitsazian Yazdi, Mahsa; Pergola, Carlo; Koeberle, Andreas; Werz, Oliver; Pizza, Cosimo; Terracciano, Stefania; Piacente, Sonia; Bifulco, Giuseppe

    2015-12-24

    Curcumin, or diferuloylmethane, a polyphenolic molecule isolated from the rhizome of Curcuma longa, is reported to modulate multiple molecular targets involved in cancer and inflammatory processes. On the basis of its pan-inhibitory characteristics, here we show that simple chemical modifications of the curcumin scaffold can regulate its biological selectivity. In particular, the curcumin scaffold was modified with three types of substituents at positions C-1, C-8, and/or C-8' [C5 (isopentenyl, 5-8), C10 (geranyl, 9-12), and C15 (farnesyl, 13, 14)] in order to make these molecules more selective than the parent compound toward two specific targets: histone deacetylase (HDAC) and microsomal prostaglandin E2 synthase-1 (mPGES-1). From combined in silico and in vitro analyses, three selective inhibitors by proper substitution at position 8 were revealed. Compound 13 has improved HDAC inhibitory activity and selectivity with respect to the parent compound, while 5 and 9 block the mPGES-1 enzyme. We hypothesize about the covalent interaction of curcumin, 5, and 9 with the mPGES-1 binding site. PMID:26588603

  5. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  6. Synthetic analogs of bacterial quorum sensors

    SciTech Connect

    Iyer, Rashi S.; Ganguly, Kumkum; Silks, Louis A.

    2013-01-08

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  7. Synthetic analogs of bacterial quorum sensors

    DOEpatents

    Iyer, Rashi; Ganguly, Kumkum; Silks, Louis A.

    2011-12-06

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  8. Polarization dependent two-photon absorption spectroscopy on a naturally occurring biomarker (curcumin) in solution: A theoretical-experimental study

    NASA Astrophysics Data System (ADS)

    Tiburcio-Moreno, Jose A.; Alvarado-Gil, J. J.; Diaz, Carlos; Echevarria, Lorenzo; Hernández, Florencio E.

    2013-09-01

    We report on the theoretical-experimental analysis of the two-photon absorption (TPA) and two-photon circular-linear dichroism (TPCLD) spectra of (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin) in Tetrahydrofuran (THF) solution. The measurement of the full TPA spectrum of this molecule reveals a maximum TPA cross-section at 740 nm, i.e. more than 10 times larger than the maximum reported in the literature at 800 nm for the application of curcumin in bioimaging. The TPCLD spectrum exposes the symmetry of the main excited-states involved in the two-photon excitation process. TD-DFT calculations support the experimental results. These outcomes are expected to expand the application of natural-occurring dyes in bioimaging.

  9. Curcumin counteracts loss of force and atrophy of hindlimb unloaded rat soleus by hampering neuronal nitric oxide synthase untethering from sarcolemma

    PubMed Central

    Vitadello, Maurizio; Germinario, Elena; Ravara, Barbara; Libera, Luciano Dalla; Danieli-Betto, Daniela; Gorza, Luisa

    2014-01-01

    Antioxidant administration aimed to antagonize the development and progression of disuse muscle atrophy provided controversial results. Here we investigated the effects of curcumin, a vegetal polyphenol with pleiotropic biological activity, because of its ability to upregulate glucose-regulated protein 94 kDa (Grp94) expression in myogenic cells. Grp94 is a sarco-endoplasmic reticulum chaperone, the levels of which decrease significantly in unloaded muscle. Rats were injected intraperitoneally with curcumin and soleus muscle was analysed after 7 days of hindlimb unloading or standard caging. Curcumin administration increased Grp94 protein levels about twofold in muscles of ambulatory rats (P < 0.05) and antagonized its decrease in unloaded ones. Treatment countered loss of soleus mass and myofibre cross-sectional area by approximately 30% (P ≤ 0.02) and maintained a force–frequency relationship closer to ambulatory levels. Indexes of muscle protein and lipid oxidation, such as protein carbonylation, revealed by Oxyblot, and malondialdehyde, measured with HPLC, were significantly blunted in unloaded treated rats compared to untreated ones (P = 0.01). Mechanistic involvement of Grp94 was suggested by the disruption of curcumin-induced attenuation of myofibre atrophy after transfection with antisense grp94 cDNA and by the drug-positive effect on the maintenance of the subsarcolemmal localization of active neuronal nitric oxide synthase molecules, which were displaced to the sarcoplasm by unloading. The absence of additive effects after combined administration of a neuronal nitric oxide synthase inhibitor further supported curcumin interference with this pro-atrophic pathway. In conclusion, curcumin represents an effective and safe tool to upregulate Grp94 muscle levels and to maintain muscle function during unweighting. PMID:24710058

  10. Curcumin pretreatment mediates antidiabetogenesis via functional regulation of adrenergic receptor subtypes in the pancreas of multiple low-dose streptozotocin-induced diabetic rats.

    PubMed

    Naijil, George; Anju, T R; Jayanarayanan, S; Paulose, C S

    2015-09-01

    Lifestyle modification pivoting on nutritional management holds tremendous potential to meet the challenge of management of diabetes. The current study hypothesizes that regular uptake of curcumin lowers the incidence of diabetes by functional regulation of pancreatic adrenergic receptor subtypes. The specific objective of the study was to identify the regulatory pathways implicated in the antidiabetogenesis effect of curcumin in multiple low-dose streptozotocin (MLD-STZ)-induced diabetic Wistar rats. Administration of MLD-STZ to curcumin-pretreated rats induced a prediabetic condition. Scatchard analysis, real-time polymerase chain reaction, and confocal microscopic studies confirmed a significant increase in α2-adrenergic receptor expression in the pancreas of diabetic rats. Pretreatment with curcumin significantly decreased α2-adrenergic receptor expression. The diabetic group showed a significant decrease in the expression of β-adrenergic receptors when compared with control. Pretreatment significantly increased β-adrenergic receptor expression to near control. When compared with the diabetic rats, a significant up-regulation of CREB, phospholipase C, insulin receptor, and glucose transporter 2 were observed in the pretreated group. Curcumin pretreatment was also able to maintain near control levels of cyclic adenosine monophosphate, cyclic guanosine monophosphate, and inositol triphosphate. These results indicate that a marked decline in α2-adrenergic receptor function relents sympathetic inhibition of insulin release. It also follows that escalated signaling through β-adrenergic receptors mediates neuronal stimulation of hyperglycemia-induced β-cell compensatory response. Curcumin-mediated functional regulation of adrenergic receptors and modulation of key cell signaling molecules improve pancreatic glucose sensing, insulin gene expression, and insulin secretion. PMID:26255758

  11. Curcumin modulates leukocyte and platelet adhesion in murine sepsis

    PubMed Central

    Vachharajani, Vidula; Wang, Si-Wei; Mishra, Nilamadhab; El-Gazzar, Mohammad; Yoza, Barbara; McCall, Charles

    2010-01-01

    Objective Circulating cell-endothelial cell interaction in sepsis is a rate-determining factor in organ dysfunction, and interventions targeting this process have a potential therapeutic value. In this project, we examined whether curcumin, an active ingredient of turmeric and an anti-inflammatory agent, could disrupt interactions between circulating blood cells and endothelium and improve survival in a murine model of sepsis. Methods Mice were subjected to cecal ligation and puncture (CLP) to induce sepsis vs. sham surgery. We studied leukocyte and platelet adhesion in cerebral microcirculation using intravital fluorescent video microscopy technique, blood brain barrier dysfunction using Evans Blue leakage method, P-selectin expression using dual radiolabeling technique and survival in mice subjected to Sham, CLP and CLP with curcumin pre-treatment (CLP+Curcumin). Results Curcumin significantly attenuated leukocyte and platelet adhesion in cerebral microcirculation, Evans Blue leakage in the brain tissue and improved survival in mice with CLP. P-selectin expression in mice with CLP+Curcumin was significantly attenuated compared to CLP in various microcirculatory beds including brain. Reduction in platelet adhesion was predominantly via modulation of endothelium by curcumin. Conclusion Curcumin pre-treatment modulates leukocyte and platelet adhesion and blood brain barrier dysfunction in mice with CLP via P-selectin expression and improves survival in mice with CLP. PMID:20690979

  12. Curcumin treatment provides protection against Trypanosoma cruzi infection

    PubMed Central

    Zhao, Dazhi; Weiss, Louis M.; Tanowitz, Herbert B.

    2013-01-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, causes an acute myocarditis and chronic cardiomyopathy. The current therapeutic agents for this disease are not always effective and often have severe side effects. Curcumin, a plant polyphenol, has demonstrated a wide range of potential therapeutic effects. In this study, we examined the effect of curcumin on T. cruzi infection in vitro and in vivo. Curcumin pretreatment of fibroblasts inhibited parasite invasion. Treatment reduced the expression of the low density lipoprotein receptor, which is involved in T. cruzi host cell invasion. Curcumin treatment of T. cruzi-infected CD1 mice reduced parasitemia and decreased the parasitism of infected heart tissue. This was associated with a significant reduction in macrophage infiltration and inflammation in both the heart and liver; moreover, curcumin-treated infected mice displayed a 100% survival rate in contrast to the 60% survival rate commonly observed in untreated infected mice. These data are consistent with curcumin modulating infection-induced changes in signaling pathways involved in inflammation, oxidative stress, and apoptosis. These data suggest that curcumin and its derivatives could be a suitable drug for the amelioration of chagasic heart disease. PMID:22215192

  13. Overdose Intake of Curcumin Initiates the Unbalanced State of Bodies.

    PubMed

    Qiu, Peiyu; Man, Shuli; Li, Jing; Liu, Jing; Zhang, Liming; Yu, Peng; Gao, Wenyuan

    2016-04-01

    Curcumin is the major active component of turmeric and widely used as a spice and coloring agent in food. However, its safety evaluation has been little investigated. To evaluate the 90-day subchronic toxicity of curcumin in rats, its general observation, clinical biochemistry, pathology, and metabolomics were evaluated. The results showed that curcumin induced liver injury through the generation of the overexpression of reactive oxygen species (ROS) and pro-inflammatory cytokines IL-6 and the decreases of the levels of antioxidant enzyme SOD and detoxified enzyme GST. Meanwhile, for the self-protection of rats, curcumin treatment activated the transcription of Nrf-2 and elevated the expression of HO-1 to reduce tissue damage. Furthermore, curcumin significantly increased key mRNA levels of HK2, PKM2, LDHA, CES, Cpt1, Cpt2, FASN, and ATP5b and decreased levels of GLUT2 and ACC1 to enhance glycolysis and inhibit lipid metabolism and TCA cycle. Therefore, overdose or long-term intake of curcumin could initiate the unbalanced state of bodies through oxidative stress, inflammation, and metabolic disorders, which induces liver injury. Intermittent administration of curcumin is necessary in our daily lives. PMID:26978516

  14. Effect of curcumin on aging retinal pigment epithelial cells.

    PubMed

    Zhu, Wei; Wu, Yan; Meng, Yi-Fang; Wang, Jin-Yu; Xu, Ming; Tao, Jian-Jun; Lu, Jiong

    2015-01-01

    Age-related macular degeneration (AMD) is now one of the leading causes of blindness in the elderly population. The antioxidative effects of curcumin on aging retinal pigment epithelial (RPE) cells are still unclear. We conducted an in vitro study to investigate the effects of curcumin on aging RPE cells. A pulsed H2O2 exposure aging model was adopted. Aging RPE cells were treated with curcumin 20 µM, 40 µM, and 80 µM. Apoptosis of RPE cells was analyzed by flow cytometry. The intracellular reactive oxygen species concentration was detected using a specific probe and apoptosis-associated proteins were detected by Western blot. Expression of oxidative biomarkers, including superoxide dismutase, maleic dialdehyde, and glutathione, was detected commercially available assay kits. Compared with normal cells, lower cell viability, higher apoptosis rates, and more severe oxidation status were identified in the aging RPE cell model. Curcumin improved cell viability and decreased apoptosis and oxidative stress. Further, curcumin had a significant influence on expression of apoptosis-associated proteins and oxidative stress biomarkers. In conclusion, treatment with curcumin was able to regulate proliferation, oxidative stress, and apoptosis in aging RPE cells. Accordingly, application of curcumin may be a novel strategy to protect against age-related change in AMD. PMID:26445530

  15. Curcumin stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity.

    PubMed

    Berger, Allan L; Randak, Christoph O; Ostedgaard, Lynda S; Karp, Philip H; Vermeer, Daniel W; Welsh, Michael J

    2005-02-18

    Compounds that enhance either the function or biosynthetic processing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel may be of value in developing new treatments for cystic fibrosis (CF). Previous studies suggested that the herbal extract curcumin might affect the processing of a common CF mutant, CFTR-DeltaF508. Here, we tested the hypothesis that curcumin influences channel function. Curcumin increased CFTR channel activity in excised, inside-out membrane patches by reducing channel closed time and prolonging the time channels remained open. Stimulation was dose-dependent, reversible, and greater than that observed with genistein, another compound that stimulates CFTR. Curcumin-dependent stimulation required phosphorylated channels and the presence of ATP. We found that curcumin increased the activity of both wild-type and DeltaF508 channels. Adding curcumin also increased Cl(-) transport in differentiated non-CF airway epithelia but not in CF epithelia. These results suggest that curcumin may directly stimulate CFTR Cl(-) channels. PMID:15582996

  16. The Potential of Curcumin in Treatment of Spinal Cord Injury.

    PubMed

    Sanivarapu, Raghavendra; Vallabhaneni, Vijayalakshmi; Verma, Vivek

    2016-01-01

    Current treatment for spinal cord injury (SCI) is supportive at best; despite great efforts, the lack of better treatment solutions looms large on neurological science and medicine. Curcumin, the active ingredient in turmeric, a spice known for its medicinal and anti-inflammatory properties, has been validated to harbor immense effects for a multitude of inflammatory-based diseases. However, to date there has not been a review on curcumin's effects on SCI. Herein, we systematically review all known data on this topic and juxtapose results of curcumin with standard therapies such as corticosteroids. Because all studies that compare the two show superior results for curcumin over corticosteroids, it could be true that curcumin better acts at the inflammatory source of SCI-mediated neurological injury, although this question remains unanswered in patients. Because curcumin has shown improvements from current standards of care in other diseases with few true treatment options (e.g., osteoarthritis), there is immense potential for this compound in treating SCI. We critically and systematically summarize available data, discuss clinical implications, and propose further testing of this well-tolerated compound in both the preclinical and the clinical realms. Analyzing preclinical data from a clinical perspective, we hope to create awareness of the incredible potential that curcumin shows for SCI in a patient population that direly needs improvements on current therapy. PMID:27298735

  17. Curcumin inhibits HIV-1 by promoting Tat protein degradation.

    PubMed

    Ali, Amjad; Banerjea, Akhil C

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected HEK-293T cells showed a dose and time dependent degradation of Tat protein. Contrary to this HIV-1 Gag which is a properly folded protein, remained unaffected with curcumin. Semi-quantitative RT-PCR analysis showed that curcumin treatment did not affect Tat gene transcription. Curcumin increased the rate of Tat protein degradation as shown by cycloheximide (CHX) chase assay. Degradation of the Tat protein is accomplished through proteasomal pathway as proteasomal inhibitor MG132 blocked Tat degradation. Curcumin also decreased Tat mediated LTR promoter transactivation and inhibited virus production from HIV-1 infected cells. Taken together our study reveals a novel observation that curcumin causes potent degradation of Tat which may be one of the major mechanisms behind its anti HIV activity. PMID:27283735

  18. Curcumin inhibits HIV-1 by promoting Tat protein degradation

    PubMed Central

    Ali, Amjad; Banerjea, Akhil C.

    2016-01-01

    HIV-1 Tat is an intrinsically unfolded protein playing a pivotal role in viral replication by associating with TAR region of viral LTR. Unfolded proteins are degraded by 20S proteasome in an ubiquitin independent manner. Curcumin is known to activate 20S proteasome and promotes the degradation of intrinsically unfolded p53 tumor suppressor protein. Since HIV-1 Tat protein is largerly unfolded, we hypothesized that Tat may also be targeted through this pathway. Curcumin treated Tat transfected HEK-293T cells showed a dose and time dependent degradation of Tat protein. Contrary to this HIV-1 Gag which is a properly folded protein, remained unaffected with curcumin. Semi-quantitative RT-PCR analysis showed that curcumin treatment did not affect Tat gene transcription. Curcumin increased the rate of Tat protein degradation as shown by cycloheximide (CHX) chase assay. Degradation of the Tat protein is accomplished through proteasomal pathway as proteasomal inhibitor MG132 blocked Tat degradation. Curcumin also decreased Tat mediated LTR promoter transactivation and inhibited virus production from HIV-1 infected cells. Taken together our study reveals a novel observation that curcumin causes potent degradation of Tat which may be one of the major mechanisms behind its anti HIV activity. PMID:27283735

  19. The Potential of Curcumin in Treatment of Spinal Cord Injury

    PubMed Central

    Sanivarapu, Raghavendra; Vallabhaneni, Vijayalakshmi; Verma, Vivek

    2016-01-01

    Current treatment for spinal cord injury (SCI) is supportive at best; despite great efforts, the lack of better treatment solutions looms large on neurological science and medicine. Curcumin, the active ingredient in turmeric, a spice known for its medicinal and anti-inflammatory properties, has been validated to harbor immense effects for a multitude of inflammatory-based diseases. However, to date there has not been a review on curcumin's effects on SCI. Herein, we systematically review all known data on this topic and juxtapose results of curcumin with standard therapies such as corticosteroids. Because all studies that compare the two show superior results for curcumin over corticosteroids, it could be true that curcumin better acts at the inflammatory source of SCI-mediated neurological injury, although this question remains unanswered in patients. Because curcumin has shown improvements from current standards of care in other diseases with few true treatment options (e.g., osteoarthritis), there is immense potential for this compound in treating SCI. We critically and systematically summarize available data, discuss clinical implications, and propose further testing of this well-tolerated compound in both the preclinical and the clinical realms. Analyzing preclinical data from a clinical perspective, we hope to create awareness of the incredible potential that curcumin shows for SCI in a patient population that direly needs improvements on current therapy. PMID:27298735

  20. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    PubMed Central

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  1. Parenterally administrable nano-micelles of 3,4-difluorobenzylidene curcumin for treating pancreatic cancer.

    PubMed

    Kesharwani, Prashant; Banerjee, Sanjeev; Padhye, Subhash; Sarkar, Fazlul H; Iyer, Arun K

    2015-08-01

    Pancreatic cancer remains one of the most devastating diseases in terms of patient mortality rates for which current treatment options are very limited. 3,4-Difluorobenzylidene curcumin (CDF) is a nontoxic analog of curcumin (CMN) developed in our laboratory, which exhibits extended circulation half-life, while maintaining high anticancer activity and improved pancreas specific accumulation in vivo, compared with CMN. CDF however has poor aqueous solubility and its dose escalation for systemic administration remains challenging. We have engineered self-assembling nano-micelles of amphiphilic styrene-maleic acid copolymer (SMA) with CDF by non-covalent hydrophobic interactions. The SMA-CDF nano-micelles were characterized for size, charge, drug loading, release, serum stability, and in vitro anticancer activity. The SMA-CDF nano-micelles exhibited tunable CDF loading from 5 to 15% with excellent aqueous solubility, stability, favorable hemocompatibility and sustained drug release characteristics. The outcome of cytotoxicity testing of SMA-CDF nano-micelles on MiaPaCa-2 and AsPC-1 pancreatic cancer cell lines revealed pronounced antitumor response due to efficient intracellular trafficking of the drug loaded nano-micelles. Additionally, the nano-micelles are administrable via the systemic route for future in vivo studies and clinical translation. The currently developed SMA based nano-micelles thus portend to be a versatile carrier for dose escalation and targeted delivery of CDF, with enhanced therapeutic margin and safety. PMID:26037703

  2. Curcumin shows excellent therapeutic effect on psoriasis in mouse model.

    PubMed

    Kang, Di; Li, Bowen; Luo, Lei; Jiang, Wenbing; Lu, Qiumin; Rong, Mingqing; Lai, Ren

    2016-04-01

    Curcumin is an active herbal ingredient possessing surprisingly wide range of beneficial properties, including anti-inflammatory, antioxidant, chemopreventive and chemotherapeutic activity. Recently, it has been reported to exhibit inhibitory activity on potassium channel subtype Kv1.3. As Kv1.3 channels are mainly expressed in T cells and play a key role in psoriasis, the effects of curcumin were investigated on inflammatory factors secretion in T cells and psoriasis developed in keratin (K) 14-vascular endothelial growth factor (VEGF) transgenic mouse model. Results showed that, 10 μM of curcumin significantly inhibited secretion of inflammatory factors including interleukin (IL)-17,IL-22, IFN-γ, IL-2, IL-8 and TNF-α in T cells by 30-60% in vitro. Notably, more than 50% of T cells proliferation was inhibited by application of 100 μM curcumin. Compared with severe psoriatic symptoms observed in the negative control mice, all psoriasis indexes including ear redness, weight, thickness and lymph node weight were significantly improved by oral application of curcumin in treatment mouse group. Histological examination indicated that curcumin had anti-inflammatory function in the experimental animals. More than 50% level of inflammatory factors including TNF-α, IFN-γ, IL-2, IL-12, IL-22 and IL-23 in mouse serum was decreased by curcumin treatment as well as cyclosporine. Compared with renal fibrosis observed in the mouse group treated by cyclosporine, no obvious side effect in mouse kidney was found after treated by curcumin. Taken together, curcumin, with high efficacy and safety, has a great potential to treat psoriasis. PMID:26826458

  3. Gelsolin Amyloidogenesis Is Effectively Modulated by Curcumin and Emetine Conjugated PLGA Nanoparticles

    PubMed Central

    Goel, Surbhi; Kundu, Bishwajit; Mishra, Prashant; Fnu, Ashish

    2015-01-01

    Small molecule based therapeutic intervention of amyloids has been limited by their low solubility and poor pharmacokinetic characteristics. We report here, the use of water soluble poly lactic-co-glycolic acid (PLGA)-encapsulated curcumin and emetine nanoparticles (Cm-NPs and Em-NPs, respectively), as potential modulators of gelsolin amyloidogenesis. Using the amyloid-specific dye Thioflavin T (ThT) as an indicator along with electron microscopic imaging we show that the presence of Cm-NPs augmented amyloid formation in gelsolin by skipping the pre-fibrillar assemblies, while Em-NPs induced non-fibrillar aggregates. These two types of aggregates differed in their morphologies, surface hydrophobicity and secondary structural signatures, confirming that they followed distinct pathways. In spite of differences, both these aggregates displayed reduced toxicity against SH-SY5Y human neuroblastoma cells as compared to control gelsolin amyloids. We conclude that the cytotoxicity of gelsolin amyloids can be reduced by either stalling or accelerating its fibrillation process. In addition, Cm-NPs increased the fibrillar bulk while Em-NPs defibrillated the pre-formed gelsolin amyloids. Moreover, amyloid modulation happened at a much lower concentration and at a faster rate by the PLGA encapsulated compounds as compared to their free forms. Thus, besides improving pharmacokinetic and biocompatible properties of curcumin and emetine, PLGA conjugation elevates the therapeutic potential of both small molecules against amyloid fibrillation and toxicity. PMID:25996685

  4. Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment.

    PubMed

    Zanotto-Filho, Alfeu; Coradini, Karine; Braganhol, Elizandra; Schröder, Rafael; de Oliveira, Cláudia Melo; Simões-Pires, André; Battastini, Ana Maria Oliveira; Pohlmann, Adriana Raffin; Guterres, Sílvia Stanisçuaski; Forcelini, Cassiano Mateus; Beck, Ruy Carlos Ruver; Moreira, José Cláudio Fonseca

    2013-02-01

    In this study, we developed curcumin-loaded lipid-core nanocapsules (C-LNCs) in an attempt to improve the antiglioma activity of this polyphenol. C-LNC showed nanotechnological properties such as nanometric mean size (196 nm), 100% encapsulation efficiency, polydispersity index below 0.1, and negative zeta potential. The in vitro release assays demonstrated a controlled release of curcumin from lipid-core nanocapsules. In C6 and U251MG gliomas, C-LNC promoted a biphasic delivery of curcumin: the first peak occurred early in the treatment (1-3h), whereas the onset of the second phase occurred after 48 h. In C6 cells, the cytotoxicity of C-LNC was comparable to non-encapsulated curcumin only after 96 h, whereas C-LNCs were more cytotoxic than non-encapsulated curcumin after 24h of incubation in U251MG. Induction of G2/M arrest and autophagy were observed in C-LNC as well as in free-curcumin treatments. In rats bearing C6 gliomas, C-LNC (1.5mg/kg/day, i.p.) decreased the tumor size and malignance and prolonged animal survival when compared to same dose of non-encapsulated drug. In addition, serum markers of tissue toxicity and histological parameters were not altered. Considered overall, the data suggest that the nanoencapsulation of curcumin in LNC is an important strategy to improve its pharmacological efficacy in the treatment of gliomas. PMID:23219677

  5. Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: the Golden Pigment from Golden Spice

    PubMed Central

    Prasad, Sahdeo; Tyagi, Amit K.

    2014-01-01

    Curcumin (diferuloylmethane) is a yellow pigment present in the spice turmeric (Curcuma longa) that has been associated with antioxidant, anti-inflammatory, anticancer, antiviral, and antibacterial activities as indicated by over 6,000 citations. In addition, over one hundred clinical studies have been carried out with curcumin. One of the major problems with curcumin is perceived to be the bioavailability. How curcumin should be delivered in vivo, how bioavailable is it, how well curcumin is absorbed and how it is metabolized, is the focus of this review. Various formulations of curcumin that are currently available are also discussed. PMID:24520218

  6. Engineered Protein Polymer-Gold Nanoparticle Hybrid Materials for Small Molecule Delivery

    PubMed Central

    Dai, Min; Frezzo, JA; Sharma, E; Chen, R; Singh, N; Yuvienco, C; Caglar, E; Xiao, S; Saxena, A; Montclare, JK

    2016-01-01

    We have fabricated protein polymer-gold nanoparticle (P-GNP) nanocomposites that exhibit enhanced binding and delivery properties of the small hydrophobic molecule drug, curcumin, to the model breast cancer cell line, MCF-7. These hybrid biomaterials are constructed via in situ GNP templated-synthesis with genetically engineered histidine tags. The P-GNP nanocomposites exhibit enhanced small molecule loading, sustained release and increased uptake by MCF-7 cells. When compared to the proteins polymers alone, the P-GNPs demonstrate a greater than 7-fold increase in curcumin binding, a nearly 50% slower release profile and more than 2-fold increase in cellular uptake of curcumin. These results suggest that P-GNP nanocomposites serve as promising candidates for drug delivery vehicles. PMID:27081576

  7. Dendrimer-curcumin conjugate: a water soluble and effective cytotoxic agent against breast cancer cell lines.

    PubMed

    Debnath, Shawon; Saloum, Darin; Dolai, Sukanta; Sun, Chong; Averick, Saadyah; Raja, Krishnaswami; Fata, Jimmie E

    2013-12-01

    Curcumin, which is derived from the plant Curcuma longa, has received considerable attention as a possible anti-cancer agent. In cell culture, curcumin is capable of inducing apoptosis in cancer cells at concentrations that do not affect normal cells. One draw-back holding curcumin back from being an effective anti-cancer agent in humans is that it is almost completely insoluble in water and therefore has poor absorption and subsequently poor bioavailability. Here we have generated a number of curcumin derivatives (tetrahydro-curcumin, curcumin mono-carboxylic acid, curcumin mono-galactose, curcumin mono-alkyne and dendrimer-curcumin conjugate) to test whether any of them display both cytotoxicity and water solubility. Of those tested only dendrimer-curcumin conjugate exhibited both water solubility and cytotoxicity against SKBr3 and BT549 breast cancer cells. When compared to curcumin dissolved in DMSO, dendrimer-curcumin conjugate dissolved in water was significantly more effective in inducing cytotoxicity, as measured by the MTT assay and effectively induced cellular apoptosis measured by caspase-3 activation. Since dendrimer-curcumin conjugate is water soluble and capable of inducing potent cytotoxic effects on breast cancer cell lines, it may prove to be an effective anti-cancer therapy to be used in humans. PMID:23387971

  8. Curcumin Nanoformulation for Cervical Cancer Treatment

    PubMed Central

    Zaman, Mohd S.; Chauhan, Neeraj; Yallapu, Murali M.; Gara, Rishi K.; Maher, Diane M.; Kumari, Sonam; Sikander, Mohammed; Khan, Sheema; Zafar, Nadeem; Jaggi, Meena; Chauhan, Subhash C.

    2016-01-01

    Cervical cancer is one of the most common cancers among women worldwide. Current standards of care for cervical cancer includes surgery, radiation, and chemotherapy. Conventional chemotherapy fails to elicit therapeutic responses and causes severe systemic toxicity. Thus, developing a natural product based, safe treatment modality would be a highly viable option. Curcumin (CUR) is a well-known natural compound, which exhibits excellent anti-cancer potential by regulating many proliferative, oncogenic, and chemo-resistance associated genes/proteins. However, due to rapid degradation and poor bioavailability, its translational and clinical use has been limited. To improve these clinically relevant parameters, we report a poly(lactic-co-glycolic acid) based curcumin nanoparticle formulation (Nano-CUR). This study demonstrates that in comparison to free CUR, Nano-CUR effectively inhibits cell growth, induces apoptosis, and arrests the cell cycle in cervical cancer cell lines. Nano-CUR treatment modulated entities such as miRNAs, transcription factors, and proteins associated with carcinogenesis. Moreover, Nano-CUR effectively reduced the tumor burden in a pre-clinical orthotopic mouse model of cervical cancer by decreasing oncogenic miRNA-21, suppressing nuclear β-catenin, and abrogating expression of E6/E7 HPV oncoproteins including smoking compound benzo[a]pyrene (BaP) induced E6/E7 and IL-6 expression. These superior pre-clinical data suggest that Nano-CUR may be an effective therapeutic modality for cervical cancer. PMID:26837852

  9. Curcumin: a Polyphenol with Molecular Targets for Cancer Control.

    PubMed

    Qadir, Muhammad Imran; Naqvi, Syeda Tahira Qousain; Muhammad, Syed Aun

    2016-01-01

    Curcumin, is a polyphenol from Curcuma longa (turmeric plant), is a polyphenol that belongs to the ginger family which has long been used in Ayurveda medicines to treat various diseases such as asthma, anorexia, coughing, hepatic diseases, diabetes, heart diseases, wound healing and Alzheimer's. Various studies have shown that curcumin has anti-infectious, anti-inflammatory, anti-oxidant, hepatoprotective, thrombosuppressive, cardio protective, anti-arthritic, chemo preventive and anti-carcinogenic activities. It may suppress both initiation and progression stages of cancer. Anticancer activity of curcumin is due to negative regulation of inflammatory cytokines, transcription factors, protein kinases, reactive oxygen species (ROS) and oncogenes. This review focuses on the different targets of curcumin to treat cancer. PMID:27356682

  10. Small molecule RL71 targets SERCA2 at a novel site in the treatment of human colorectal cancer

    PubMed Central

    Gao, Jian; Li, Jiahuang; Fan, Lu; Xiang, Gang; Wang, Xingqi; Wang, Xiaoning; Wu, Xuefeng; Sun, Yang; Wu, Xudong; Liang, Guang; Shen, Yan; Xu, Qiang

    2015-01-01

    While targeted agents are an important part of the treatment arsenal for colorectal cancer, there is still a lack of efficient small-molecule targeted agents based on the understanding of pathogenic molecular mechanisms. In this study, curcumin analog RL71 displayed potent cytotoxicity towards human colon cancer cells with an IC50 of 0.8 μM in SW480 cells and inhibited xenotransplanted tumor growth in a dose-dependent manner. Using affinity chromatography, we identified sarco/endoplasmic reticulum calcium-ATPase (SERCA) 2 as the binding target of RL71. Most notably, RL71 demonstrated special binding to SERCA2 at a novel site with the lowest estimated free energy −8.89 kcal mol−1, and the SERCA2 residues critical for RL71 binding were identified. RL71 suppressed the Ca2+-ATPase activity of SERCA2 both in vitro and in vivo, accompanied by the induction of endoplasmic reticulum stress leading to apoptosis and G2/M cycle arrest in SW480 cells. In addition, RL71 showed synergistic cytotoxicity with the pan-SERCA inhibitor thapsigargin. These results suggest that RL71 could be a selective small-molecule inhibitor of SERCA2, and that it may serve as a lead compound for the study of targeted colorectal cancer therapy. PMID:26608678

  11. A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma

    PubMed Central

    Sharma, Sandeep; Ying, Zhe; Gomez-Pinilla, Fernando

    2011-01-01

    We have assessed potential mechanisms associated with the deleterious effects of TBI on the integrity of plasma membranes in the hippocampus, together with consequences for behavioral function. In addition, we have investigated the efficacy of a dietary intervention based on a pyrazole curcumin derivative with demonstrated bioactivity and brain absorption, to re-establish membrane integrity. We report that moderate fluid percussion injury (FPI) increases levels of 4-Hydroxynonenal (HNE), an intermediary for the harmful effects of lipid peroxidation on neurons. A more direct action of FPI on membrane homeostasis was evidenced by a reduction in calcium-independent phospholipase A2 (iPLA2) important for metabolism of membrane phospholipids such as DHA, and an increase in the fatty acid transport protein (FATP) involved in translocation of long-chain fatty acids across the membrane. A potential association between membrane disruption and neuronal function was suggested by reduced levels of the NR2B subunit of the transmembrane NMDA receptor, in association with changes in iPLA2 and syntaxin-3 (STX-3, involved in the action of membrane DHA on synaptic membrane expansion). In addition, changes in iPLA2, 4-HNE, and STX-3 were proportional to reduced performance in a spatial learning task. In turn, the dietary supplementation with the curcumin derivative counteracted all the effects of FPI, effectively restoring parameters of membrane homeostasis. Results show the potential of the curcumin derivative to promote membrane homeostasis following TBI, which may foster a new line of non-invasive therapeutic treatments for TBI patients by endogenous up-regulation of molecules important for neural repair and plasticity. PMID:20816821

  12. Nonvolatile Analog Memory

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C. (Inventor)

    2007-01-01

    A nonvolatile analog memory uses pairs of ferroelectric field effect transistors (FFETs). Each pair is defined by a first FFET and a second FFET. When an analog value is to be stored in one of the pairs, the first FFET has a saturation voltage applied thereto, and the second FFET has a storage voltage applied thereto that is indicative of the analog value. The saturation and storage voltages decay over time in accordance with a known decay function that is used to recover the original analog value when the pair of FFETs is read.

  13. Analog synthetic biology.

    PubMed

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  14. Formulation of nanotized curcumin and demonstration of its antimalarial efficacy

    PubMed Central

    Ghosh, Aparajita; Banerjee, Tanushree; Bhandary, Suman; Surolia, Avadhesha

    2014-01-01

    Aim The present study was conducted to overcome the disadvantages associated with the poor water solubility and low bioavailability of curcumin by synthesizing nanotized curcumin and demonstrating its efficacy in treating malaria. Materials and methods Nanotized curcumin was prepared by a modified emulsion-diffusion-evaporation method and was characterized by means of transmission electron microscopy, atomic force microscopy, dynamic light scattering, Zetasizer, Fourier transform infrared spectroscopy, and differential thermal analysis. The novelty of the prepared nanoformulation lies in the fact that it was devoid of any polymeric matrices used in conventional carriers. The antimalarial efficacy of the prepared nanotized curcumin was then checked both in vitro and in vivo. Results The nanopreparation was found to be non-toxic and had a particle size distribution of 20–50 nm along with improved aqueous dispersibility and an entrapment efficiency of 45%. Nanotized curcumin (half maximal inhibitory concentration [IC50]: 0.5 μM) was also found to be ten-fold more effective for growth inhibition of Plasmodium falciparum in vitro as compared to its native counterpart (IC50: 5 μM). Oral bioavailability of nanotized curcumin was found to be superior to that of its native counterpart. Moreover, when Plasmodium berghei-infected mice were orally treated with nanotized curcumin, it prolonged their survival by more than 2 months with complete clearance of parasites in comparison to the untreated animals, which survived for 8 days only. Conclusion Nanotized curcumin holds a considerable promise in therapeutics as demonstrated here for treating malaria as a test system. PMID:25484584

  15. Intranasal curcumin and its evaluation in murine model of asthma.

    PubMed

    Subhashini; Chauhan, Preeti S; Kumari, Sharda; Kumar, Jarajana Pradeep; Chawla, Ruchi; Dash, D; Singh, Mandavi; Singh, Rashmi

    2013-11-01

    Curcumin, a phytochemical present in turmeric, rhizome of Curcuma longa, has been shown to have a wide variety of pharmacological activities including anti-inflammatory, anti-allergic and anti-asthmatic properties. Curcumin is known for its low systemic bioavailability and rapid metabolization through oral route and has limited its applications. Over the recent decades, the interest in intranasal delivery as a non-invasive route for drugs has increased as target tissue for drug delivery since nasal mucosa offers numerous benefits. In this study, we evaluated intranasal curcumin following its absorption through nasal mucosa by a sensitive and validated high-performance liquid chromatography (HPLC) method for the determination of intranasal curcumin in mouse blood plasma and lung tissue. Intranasal curcumin has been detected in plasma after 15 min to 3 h at pharmacological dose (5 mg/kg, i.n.), which has shown anti-asthmatic potential by inhibiting bronchoconstriction and inflammatory cell recruitment to the lungs. At considerably lower doses has proved better than standard drug disodium cromoglycate (DSCG 50 mg/kg, i.p.) by affecting inflammatory cell infiltration and histamine release in mouse model of asthma. HPLC detection revealed that curcumin absorption in lungs has started after 30 min following intranasal administration and retained till 3h then declines. Present investigations suggest that intranasal curcumin (5.0 mg/kg, i.n.) has effectively being absorbed and detected in plasma and lungs both and suppressed airway inflammations at lower doses than the earlier doses used for detection (100-200 mg/kg, i.p.) for pharmacological studies (10-20 mg/kg, i.p.) in mouse model of asthma. Present study may prove the possibility of curcumin as complementary medication in the development of nasal drops to prevent airway inflammations and bronchoconstrictions in asthma without any side effect. PMID:24021755

  16. Enhancement of wound healing by curcumin in animals.

    PubMed

    Sidhu, G S; Singh, A K; Thaloor, D; Banaudha, K K; Patnaik, G K; Srimal, R C; Maheshwari, R K

    1998-01-01

    Tissue repair and wound healing are complex processes that involve inflammation, granulation, and remodeling of the tissue. In this study, we evaluated the in vivo effects of curcumin (difeurloylmethane), a natural product obtained from the rhizomes of Curcuma longa on wound healing in rats and guinea pigs. We observed faster wound closure of punch wounds in curcumin-treated animals in comparison with untreated controls. Biopsies of the wound showed reepithelialization of the epidermis and increased migration of various cells including myofibroblasts, fibroblasts, and macrophages in the wound bed. Multiple areas within the dermis showed extensive neovascularization, and Masson's Trichrome staining showed greater collagen deposition in curcumin-treated wounds. Immunohistochemical localization of transforming growth factor-beta1 showed an increase in curcumin-treated wounds as compared with untreated wounds. In situ hybridization and polymerase chain reaction analysis also showed an increase in the mRNA transcripts of transforming growth factor-beta1 and fibronectin in curcumin-treated wounds. Because transforming growth factor-beta1 is known to enhance wound healing, it may be possible that transforming growth factor-beta1 plays an important role in the enhancement of wound healing by curcumin. PMID:9776860

  17. Curcumin AntiCancer Studies in Pancreatic Cancer.

    PubMed

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-01-01

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC. PMID:27438851

  18. Conundrum and therapeutic potential of curcumin in drug delivery.

    PubMed

    Kumar, Anil; Ahuja, Alka; Ali, Javed; Baboota, Sanjula

    2010-01-01

    Turmeric, the source of the polyphenolic active compound curcumin (diferuloylmethane), has been used extensively in traditional medicine since ancient times as a household remedy against various diseases, including hepatic disorders, cough, sinusitis, rheumatism, and biliary disorders. In the past few decades, a number of studies have been done on curcumin showing its potential role in treating inflammatory disorders, cardiovascular disease, cancer, AIDS, and neurological disorders. However, the main drawback associated with curcumin is its poor aqueous solubility and stability in gastrointestinal fluids, which leads to poor bioavailability. Multifarious novel drug-delivery approaches, including microemulsions, nanoemulsions, liposomes, solid lipid nanoparticles, microspheres, solid dispersion, polymeric nanoparticles, and self-microemulsifying drug-delivery systems have been used to enhance the bioavailability and tissue-targeting ability of curcumin. These attempts have revealed promising results for enhanced bioavailability and targeting to disease such as cancer, but more extensive research on tissue-targeting and stability-related issues is needed. Tissue targeting and enhanced bioavailability of curcumin using novel drug-delivery methods with minimum side effects will in the near future bring this promising natural product to the forefront of therapy for the treatment of human diseases such as cancer and cardiovascular ailments. We provide a detailed analysis of prominent research in the field of curcumin drug delivery with special emphasis on bioavailability-enhancement approaches and novel drug-delivery system approaches. PMID:20932240

  19. Curcumin-Loaded PLA Nanoparticles: Formulation and Physical Evaluation.

    PubMed

    Rachmawati, Heni; Yanda, Yulia L; Rahma, Annisa; Mase, Nobuyuki

    2016-01-01

    Curcumin is a polyphenolic compound derived from Curcuma domestica (Zingiberaceae) that possesses diverse pharmacological effects including anti-inflammatory, antioxidant, antimicrobial, and anticarcinogenic activities. Although phase I clinical trials have shown curcumin as a safe drug even at high doses (12 g/day) in humans, poor bioavaibility largely limits its pharmacological activity. Nanoencapsulation in biodegradable polymers is a promising alternative to improve curcumin bioavaibility. In this study, curcumin was encapsulated in biodegradable polymer poly-(lactic acid) (PLA) nanoparticles via the emulsification-solvent evaporation method. Optimization of selected parameters of this method including the type of solvent, surfactant concentration, drug loading, sonication time, and centrifugation speed, were performed to obtain polymeric nano-carriers with optimum characteristics. Dichloromethane was used as the solvent and vitamin E polyethylene glycol succinate (TPGS) was used as the surfactant. Four minutes of sonication time and centrifugation at 10500 rpm were able to produce spherical nanoparticles with average size below 300 nm. The highest encapsulation efficiency was found on PLA nanoparticles containing 5% of curcumin at 89.42 ± 1.04%. The particle size, polydispersity index, zeta potential of 5% curcumin-PLA nanoparticles were 387.50 ± 58.60 nm, 0.289 ± 0.047, and -1.12 mV, respectively. Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) studies showed partial interaction between the drug and polymer. PMID:27110509

  20. Curcumin AntiCancer Studies in Pancreatic Cancer

    PubMed Central

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-01-01

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC. PMID:27438851

  1. Study of curcumin immunomodulatory effects on reactive astrocyte cell function.

    PubMed

    Seyedzadeh, Mir Hadi; Safari, Zohreh; Zare, Ahad; Gholizadeh Navashenaq, Jamshid; Razavi, Seyed Alireza; Kardar, Gholam Ali; Khorramizadeh, Mohammad Reza

    2014-09-01

    Multiple sclerosis (MS) is considered an inflammatory and neurodegenerative disease of the central nervous system (CNS) which most often presents as relapsing-remitting episodes. Recent evidence suggests that activated astrocytes play a dual functional role in CNS inflammatory disorders such as MS. In this study, we tried to induce anti-inflammatory functions of astrocytes by curcumin. The effects of curcumin were examined on human a astrocyte cell line (U373-MG) induced by lipopolysaccharide (LPS) in vitro. Matrix metalloproteinase (MMP)-9 activity was assessed by gelatin zymography. Cytokine levels were evaluated by quantitative ELISA method and mRNA expression was measured by real-time PCR. We found that curcumin decreased the release of IL-6 and reduced MMP-9 enzyme activity. It down-regulated MCP-1 mRNA expression too. However, curcumin did not have significant effects on the expression of neurotrophin (NT)-3 and insulin-like growth factor (IGF)-1 mRNAs. Results suggest that curcumin might beneficially affect astrocyte population in CNS neuroinflammatory environment lean to anti-inflammatory response and help to components in respects of CNS repair. Our findings offer curcumin as a new therapeutic agent with the potential of regulating astrocyte-mediated inflammatory diseases in the CNS. PMID:24998635

  2. Curcumin-Loaded PLA Nanoparticles: Formulation and Physical Evaluation

    PubMed Central

    Rachmawati, Heni; Yanda, Yulia L.; Rahma, Annisa; Mase, Nobuyuki

    2016-01-01

    Curcumin is a polyphenolic compound derived from Curcuma domestica (Zingiberaceae) that possesses diverse pharmacological effects including anti-inflammatory, antioxidant, antimicrobial, and anticarcinogenic activities. Although phase I clinical trials have shown curcumin as a safe drug even at high doses (12 g/day) in humans, poor bioavaibility largely limits its pharmacological activity. Nanoencapsulation in biodegradable polymers is a promising alternative to improve curcumin bioavaibility. In this study, curcumin was encapsulated in biodegradable polymer poly-(lactic acid) (PLA) nanoparticles via the emulsification-solvent evaporation method. Optimization of selected parameters of this method including the type of solvent, surfactant concentration, drug loading, sonication time, and centrifugation speed, were performed to obtain polymeric nano-carriers with optimum characteristics. Dichloromethane was used as the solvent and vitamin E polyethylene glycol succinate (TPGS) was used as the surfactant. Four minutes of sonication time and centrifugation at 10500 rpm were able to produce spherical nanoparticles with average size below 300 nm. The highest encapsulation efficiency was found on PLA nanoparticles containing 5% of curcumin at 89.42 ± 1.04%. The particle size, polydispersity index, zeta potential of 5% curcumin-PLA nanoparticles were 387.50 ± 58.60 nm, 0.289 ± 0.047, and −1.12 mV, respectively. Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) studies showed partial interaction between the drug and polymer. PMID:27110509

  3. Effect of curcumin on diabetic rat model of cerebral ischemia.

    PubMed

    Miao, Mingsan; Cheng, Bolin; Li, Min

    2015-01-01

    To investigate the effect of curcumin on cerebral ischemia in diabetic rats the effects and features. intravenous injection alloxan diabetes model, to give alloxan first seven days the tail measured blood glucose value, the election successful model rats were fed with large, medium and small doses of curcumin suspension, Shenqijiangtang suspension and the same volume of saline, administered once daily. The first 10 days after administration 2h (fasting 12h) rat tail vein blood glucose values measured in the first 20 days after administration of 2h (fasting 12h), do cerebral ischemia surgery; rapid carotid artery blood after 30min rats were decapitated, blood serum, blood glucose and glycated serum protein levels; take part of the brain homogenates plus nine times the amount of normal saline, made 10 percent of brain homogenates. Another part of the brain tissue, in the light microscope observation of pathological tissue. Compared with model group, large, medium and small doses of curcumin can significantly lower blood sugar and glycated serum protein levels, significantly reduced brain homogenates lactic acid content and lactate dehydrogenase activity; large, medium-dose curcumin can significantly increase brain homogenates Na(+)-K(+)-ATP activity, dose curcumin can significantly improve brain homogenates Ca(+)-Mg(+)- ATP activity. Curcumin can reduce blood sugar in diabetic rat model of cerebral ischemia and improve brain energy metabolism, improve their brain tissue resistance to ischemia and hypoxia, cerebral ischemia in diabetic rats have a good drop the role of sugar and protect brain tissue. PMID:25631517

  4. The effect of curcumin (turmeric) on Alzheimer's disease: An overview

    PubMed Central

    Mishra, Shrikant; Palanivelu, Kalpana

    2008-01-01

    This paper discusses the effects of curcumin on patients with Alzheimer's disease (AD). Curcumin (Turmeric), an ancient Indian herb used in curry powder, has been extensively studied in modern medicine and Indian systems of medicine for the treatment of various medical conditions, including cystic fibrosis, haemorrhoids, gastric ulcer, colon cancer, breast cancer, atherosclerosis, liver diseases and arthritis. It has been used in various types of treatments for dementia and traumatic brain injury. Curcumin also has a potential role in the prevention and treatment of AD. Curcumin as an antioxidant, anti-inflammatory and lipophilic action improves the cognitive functions in patients with AD. A growing body of evidence indicates that oxidative stress, free radicals, beta amyloid, cerebral deregulation caused by bio-metal toxicity and abnormal inflammatory reactions contribute to the key event in Alzheimer's disease pathology. Due to various effects of curcumin, such as decreased Beta-amyloid plaques, delayed degradation of neurons, metal-chelation, anti-inflammatory, antioxidant and decreased microglia formation, the overall memory in patients with AD has improved. This paper reviews the various mechanisms of actions of curcumin in AD and pathology. PMID:19966973

  5. PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα.

    PubMed

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena; Tian, Xuebi; Liu, Ying; Wang, Zaijie Jim

    2016-01-01

    Opioid-induced hyperalgesia (OIH) is one of the major problems associated with prolonged use of opioids for the treatment of chronic pain. Effective treatment for OIH is lacking. In this study, we examined the efficacy and preliminary mechanism of curcumin in attenuating OIH. We employed a newly developed PLGA-curcumin nanoformulation (PLGA-curcumin) in order to improve the solubility of curcumin, which has been a major obstacle in properly characterizing curcumin's mechanism of action and efficacy. We found that curcumin administered intrathecally or orally significantly attenuated hyperalgesia in mice with morphine-induced OIH. Furthermore, we demonstrated that the effects of curcumin on OIH correlated with the suppression of chronic morphine-induced CaMKIIα activation in the superficial laminae of the spinal dorsal horn. These data suggest that PLGA-curcumin may reverse OIH possibly by inhibiting CaMKIIα and its downstream signaling. PMID:26744842

  6. Curcumin Suppresses Soluble Tau Dimers and Corrects Molecular Chaperone, Synaptic, and Behavioral Deficits in Aged Human Tau Transgenic Mice*

    PubMed Central

    Ma, Qiu-Lan; Zuo, Xiaohong; Yang, Fusheng; Ubeda, Oliver J.; Gant, Dana J.; Alaverdyan, Mher; Teng, Edmond; Hu, Shuxin; Chen, Ping-Ping; Maiti, Panchanan; Teter, Bruce; Cole, Greg M.; Frautschy, Sally A.

    2013-01-01

    The mechanisms underlying Tau-related synaptic and cognitive deficits and the interrelationships between Tau species, their clearance pathways, and synaptic impairments remain poorly understood. To gain insight into these mechanisms, we examined these interrelationships in aged non-mutant genomic human Tau mice, with established Tau pathology and neuron loss. We also examined how these interrelationships changed with an intervention by feeding mice either a control diet or one containing the brain permeable beta-amyloid and Tau aggregate binding molecule curcumin. Transgene-dependent elevations in soluble and insoluble phospho-Tau monomer and soluble Tau dimers accompanied deficits in behavior, hippocampal excitatory synaptic markers, and molecular chaperones (heat shock proteins (HSPs)) involved in Tau degradation and microtubule stability. In human Tau mice but not control mice, HSP70, HSP70/HSP72, and HSP90 were reduced in membrane-enriched fractions but not in cytosolic fractions. The synaptic proteins PSD95 and NR2B were reduced in dendritic fields and redistributed into perikarya, corresponding to changes observed by immunoblot. Curcumin selectively suppressed levels of soluble Tau dimers, but not of insoluble and monomeric phospho-Tau, while correcting behavioral, synaptic, and HSP deficits. Treatment increased PSD95 co-immunoprecipitating with NR2B and, independent of transgene, increased HSPs implicated in Tau clearance. It elevated HSP90 and HSC70 without increasing HSP mRNAs; that is, without induction of the heat shock response. Instead curcumin differentially impacted HSP90 client kinases, reducing Fyn without reducing Akt. In summary, curcumin reduced soluble Tau and elevated HSPs involved in Tau clearance, showing that even after tangles have formed, Tau-dependent behavioral and synaptic deficits can be corrected. PMID:23264626

  7. Analog synthetic biology

    PubMed Central

    Sarpeshkar, R.

    2014-01-01

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog–digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA–protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations. PMID:24567476

  8. Analog pulse processor

    DOEpatents

    Wessendorf, Kurt O.; Kemper, Dale A.

    2003-06-03

    A very low power analog pulse processing system implemented as an ASIC useful for processing signals from radiation detectors, among other things. The system incorporates the functions of a charge sensitive amplifier, a shaping amplifier, a peak sample and hold circuit, and, optionally, an analog to digital converter and associated drivers.

  9. Challenges in Using Analogies

    ERIC Educational Resources Information Center

    Lin, Shih-Yin; Singh, Chandralekha

    2011-01-01

    Learning physics requires understanding the applicability of fundamental principles in a variety of contexts that share deep features. One way to help students learn physics is via analogical reasoning. Students can be taught to make an analogy between situations that are more familiar or easier to understand and another situation where the same…

  10. Hydraulic Capacitor Analogy

    ERIC Educational Resources Information Center

    Baser, Mustafa

    2007-01-01

    Students have difficulties in physics because of the abstract nature of concepts and principles. One of the effective methods for overcoming students' difficulties is the use of analogies to visualize abstract concepts to promote conceptual understanding. According to Iding, analogies are consistent with the tenets of constructivist learning…

  11. Curcumin homing to the nucleolus: mechanism for initiation of an apoptotic program.

    PubMed

    Ghosh, Mistuni; Ryan, Robert O

    2014-11-01

    Curcumin is a plant-derived polyphenol that displays antitumor properties. Incubation of cultured SF-767 glioma cells with curcumin gave rise to intense intranuclear foci of curcumin fluorescence. In vitro studies revealed that nuclear homing by curcumin is not a result of DNA/chromatin binding. On the other hand, curcumin fluorescence colocalized with nucleophosmin, a nucleolus marker protein. To determine the temporal relationship between curcumin-induced apoptosis and nucleolar homing, confocal live cell imaging was performed. The data show that curcumin localization to the nucleolus occurs prior to cell surface exposure of phosphatidylserine. In studies of the mechanism of curcumin-induced apoptosis in SF-767 cells, its effect on the subcellular location of p14(ARF) was determined. Whereas p14(ARF) was confined to the nucleolus in untreated cells, 2 h following incubation with curcumin, it displayed a diffuse nuclear distribution. Given the role of nuclear p14(ARF) in binding the E3 ubiquitin ligase, mouse double minute 2 homolog (MDM2), the effect of curcumin treatment on cellular levels of the tumor suppressor protein, p53, was examined. Between 2 and 4 h following curcumin treatment, p53 levels increased with maximum levels reached by 8 h. Thus, curcumin homing to the nucleolus induces redistribution of p14(ARF) to the nucleoplasm where interaction with MDM2 leads to stabilization of p53, with subsequent initiation of apoptosis. PMID:25172633

  12. Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Curcumin is an antioxidant extracted from the root of the turmeric plant. We examined the antioxidant effect and lifespan extension of curcumin in Drosophila. To ascertain the antioxidant effects of curcumin with regard to lifespan extension and the response to reactive oxygen species, female and ma...

  13. Curcumin reduces injury progression in a rat comb burn model.

    PubMed

    Singer, Adam J; Taira, Breena R; Lin, Fubao; Lim, Taeho; Anderson, Ryon; McClain, Steve A; Clark, Richard A F

    2011-01-01

    The oriental spice curcumin has anti-inflammatory and antioxidant effects. When given orally before injury, curcumin reduces burn progression in a rat comb burn model. The authors hypothesized that intravenous administration of curcumin after injury would reduce burn progression and that its effects are mediated through iron chelation. Two comb burns were created on the dorsum of Sprague-Dawley rats (weight, 300 g) using a brass comb with four rectangular prongs preheated in boiling water and applied for 30 seconds resulting in four rectangular 10 × 20 mm full-thickness burns separated by three 5 × 20 mm unburned interspaces (zone of ischemia). Animals were randomized to receive one of four doses of crude curcumin or one of six doses of purified curcumin intravenously 1 and 24 hours after injury. Another set of animals were randomized to deferoxamine or control vehicle. Wounds were observed at 7 days after injury for visual evidence of necrosis in the unburned interspaces. Full-thickness biopsies from the interspaces were evaluated with Hematoxylin and Eosin staining 7 days after injury for evidence of necrosis. The percentage of unburned interspaces undergoing necrosis at 1 week by purified curcumin doses was 0 μg/kg, 74%; 0.3 μg/kg, 58%; 1 μg/kg, 53%; 3 μg/kg, 37%; 10 μg/kg, 63%; 30 μg/kg, 53%; and 100 μg/kg, 26%. The differences among the groups were significant (P = .03). When compared with controls, the 1 and 3 μg/kg curcumin treatment groups had significantly less progression of interspaces to necrosis (P = .04 and .002) as did the 30 and 100 μg/kg treatment groups (P = .03 and <.001). Deferoxamine did not reduce burn progression. When administered intravenously 1 and 24 hours after injury, both crude and purified curcumin reduce the percentage of unburned interspaces that undergo necrosis in a rat hot comb burn model. The effects of purified curcumin appear to be bimodal, suggesting more than one mechanism of action. The effects of curcumin do not

  14. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    SciTech Connect

    Yu, Teng; Ji, Jiang; Guo, Yong-li

    2013-11-08

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.

  15. Anticandidal activity of curcumin and methyl cinnamaldehyde.

    PubMed

    Khan, Neelofar; Shreaz, Sheikh; Bhatia, Rimple; Ahmad, Sheikh Imran; Muralidhar, Sumathi; Manzoor, Nikhat; Khan, Luqman Ahmad

    2012-04-01

    Cinnamaldehyde, its derivatives and curcumin are reported to have strong antifungal activity. In this work we report and compare anticandidal activity of curcumin (CUR) and α-methyl cinnamaldehyde (MCD) against 38 strains of Candida (3; standard, fluconazole sensitive, 24; clinical, fluconazole sensitive, 11; clinical, fluconazole resistant). The minimum inhibitory concentrations (MIC₉₀) of CUR ranged from 250 to 650 μg/ml for sensitive strains and from 250 to 500 μg/ml for resistant strains. MIC₉₀ of MCD varied between 100 and 250 μg/ml and 100-200 μg/ml for sensitive and resistant strains, respectively. Higher activity of MCD as compared to CUR was further reinforced by spot assays and growth curve studies. At their respective MIC₉₀ values, in the presence of glucose, average inhibition of H+-efflux caused by CUR and MCD against standard, clinical and resistant isolates was 24%, 31%, 32% and 54%, 52%, 54%, respectively. Inhibition of H+-extrusion leads to intracellular acidification and cell death, average pHi for control, CUR and MCD exposed cells was 6.68, 6.39 and 6.20, respectively. Scanning electron micrographs of treated cells show more extensive damage in case of MCD. Haemolytic activity of CUR and MCD at their highest MIC was 11.45% and 13.00%, respectively as against 20% shown by fluconazole at typical MIC of 30 μg/ml. In conclusion, this study shows significant anticandidal activity of CUR and MCD against both azole-resistant and sensitive clinical isolates, MCD is found to be more effective. PMID:22178679

  16. Meat analog: a review.

    PubMed

    Malav, O P; Talukder, S; Gokulakrishnan, P; Chand, S

    2015-01-01

    The health-conscious consumers are in search of nutritious and convenient food item which can be best suited in their busy life. The vegetarianism is the key for the search of such food which resembles the meat in respect of nutrition and sensory characters, but not of animal origin and contains vegetable or its modified form, this is the point when meat analog evolved out and gets shape. The consumers gets full satisfaction by consumption of meat analog due to its typical meaty texture, appearance and the flavor which are being imparted during the skilled production of meat analog. The supplement of protein in vegetarian diet through meat alike food can be fulfilled by incorporating protein-rich vegetative food grade materials in meat analog and by adopting proper technological process which can promote the proper fabrication of meat analog with acceptable meat like texture, appearance, flavor, etc. The easily available vegetables, cereals, and pulses in India have great advantages and prospects to be used in food products and it can improve the nutritional and functional characters of the food items. The various form and functional characters of food items are available world over and attracts the meat technologists and the food processors to bring some innovativeness in meat analog and its presentation and marketability so that the acceptability of meat analog can be overgrown by the consumers. PMID:24915320

  17. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    NASA Astrophysics Data System (ADS)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%–60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  18. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity.

    PubMed

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity. PMID:27454207

  19. Curcumin delivered through bovine serum albumin/polysaccharides multilayered microcapsules.

    PubMed

    Paşcalău, V; Soritau, O; Popa, F; Pavel, C; Coman, V; Perhaita, I; Borodi, G; Dirzu, N; Tabaran, F; Popa, C

    2016-01-01

    The aim of the paper is to obtain and characterize k-carrageenan-chitosan dual hydrogel multilayers shell BSA gel microcapsules, as a carrier for curcumin, and as a possible antitumoral agent in biological studies. We used the CaCO3 template to synthesize non-toxic CaCO3/BSA particles as microtemplates by coprecipitating a CaCl2 solution that contains dissolved BSA, with an equimolar Na2CO3 solution. The microcapsules shell is assembled through a layer-by-layer deposition technique of calcium cross-linked k-carrageenan hydrogel alternating with polyelectrolite complex hydrogel formed via electrostatic interactions between k-carrageenan and chitosan. After the removal of CaCO3 through Ca(2+) complexation with EDTA, and by a slightly treatment with HCl diluted solution, the BSA core is turned into a BSA gel through a thermal treatment. The BSA gel microcapsules were then loaded with curcumin, through a diffusion process from curcumin ethanolic solution. All the synthesized particles and microcapsules were stucturally characterized by: Fourier Transform Infrared Spectroscopy, UV-Vis Spectrometry, X-ray diffraction, thermal analysis, fluorescence spectroscopy, fluorescence optical microscopy, confocal laser scanning microscopy and scanning electron microscopy. The behavior of curcumin loaded microcapsules in media of different pH (SGF, SIF and PBS) was studied in order to reveal the kinetics and the release profile of curcumin. The in vitro evaluation of the antitumoral activity of encapsulated curcumin microcapsules on HeLa cell line and the primary culture of mesenchymal stem cells is the main reason of the microcapsules synthesis as BSA-based vehicle meant to enhance the biodisponibility of curcumin, whose anti-tumor, anti-oxidant and anti-inflammatory properties are well known. PMID:26350520

  20. PEGylated Exendin-4, a Modified GLP-1 Analog Exhibits More Potent Cardioprotection than Its Unmodified Parent Molecule on a Dose to Dose Basis in a Murine Model of Myocardial Infarction

    PubMed Central

    Sun, Zhongchan; Tong, Guang; Kim, Tae Hyung; Ma, Nan; Niu, Gang; Cao, Feng; Chen, Xiaoyuan

    2015-01-01

    A Site-specifically PEGylated exendin-4 (denoted as PEG-Ex4) is an exendin-4 (denoted as Ex4) analog we developed by site-specific PEGylation of exendin-4 with a high molecular weight trimeric poly(ethylene glycol) (tPEG). It has been shown to possess prolonged half-life in vivo with similar receptor binding affinity compared to unmodified exendin-4 by our previous work. This study is sought to test whether PEG-Ex4 is suitable for treating myocardial infarction (MI). In the MI model, PEG-Ex4 was administered every 3 days while equivalent amount of Ex4 was administered every 3 days or twice daily. Animal survival rate, heart function, remodeling and neoangiogenesis were evaluated and compared. Tube formation was examined in endothelial cells. In addition, Western blotting and histology were performed to determine the markers of cardiac hypertrophy and angiogenesis and to explore the possible molecular mechanism involved. PEG-Ex4 and Ex4 showed comparable binding affinity to GLP-1 receptor. In MI mice, PEG-Ex4 given at 3 days interval achieved similar extent of protection as Ex4 given twice daily, while Ex4 given at 3 days interval failed to produce protection. PEG-Ex4 elevated endothelial tube formation in vitro and capillary density in the border area of MI. PEG-Ex4 increased Akt activity and VEGF production in a GLP-1R dependent manner in endothelial cells and antagonism of GLP-1R, Akt or VEGF abolished the protection of PEG-Ex4 in the MI model. PEG-Ex4 is a potent long-acting GLP-1 receptor agonist for the treatment of chronic heart disease. Its protection might be attributed to enhanced angiogenesis mediated by the activation of Akt and VEGF. PMID:25553112

  1. Positron binding to molecules

    NASA Astrophysics Data System (ADS)

    Danielson, J. R.

    2011-05-01

    While there is theoretical evidence that positrons can bind to atoms, calculations for molecules are much less precise. Unfortunately, there have been no measurements of positron-atom binding, due primarily to the difficulty in forming positron-atom bound states in two-body collisions. In contrast, positrons attach to molecules via Feshbach resonances (VFR) in which a vibrational mode absorbs the excess energy. Using a high-resolution positron beam, this VFR process has been studied to measure binding energies for more than 40 molecules. New measurements will be described in two areas: positron binding to relatively simple molecules, for which theoretical calculations appear to be possible; and positron binding to molecules with large permanent dipole moments, which can be compared to analogous, weakly bound electron-molecule (negative-ion) states. Binding energies range from 75 meV for CS2 (no dipole moment) to 180 meV for acetonitrile (CH3CN). Other species studied include aldehydes and ketones, which have permanent dipole moments in the range 2.5 - 3.0 debye. The measured binding energies are surprisingly large (by a factor of 10 to 100) compared to those for the analogous negative ions, and these differences will be discussed. New theoretical calculations for positron-molecule binding are in progress, and a recent result for acetonitrile will be discussed. This ability to compare theory and experiment represents a significant step in attempts to understand positron binding to matter. In collaboration with A. C. L. Jones, J. J. Gosselin, and C. M. Surko, and supported by NSF grant PHY 07-55809.

  2. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  3. Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy.

    PubMed

    Ramasamy, Thamil Selvee; Ayob, Ain Zubaidah; Myint, Hsu Hsu Lynn; Thiagarajah, Sharmanee; Amini, Farahnaz

    2015-01-01

    Colorectal cancer is one of the commonest cancers in the world and it is also a common cause of cancer-related death worldwide. Despite advanced treatment strategies, the disease is rarely cured completely due to recurrence. Evidence shows that this is due to a small population of cells, called cancer stem cells (CSCs), in the tumour mass that have the self-renewal and differentiation potential to give rise to a new tumour population. Many pre-clinical and clinical studies have used curcumin and its analogues as anti-cancer agents in various types of cancer, including colorectal cancer. Intriguingly, curcumin and its analogues have also recently been shown to be effective in lowering tumour recurrence by targeting the CSC population, hence inhibiting tumour growth. In this review, we highlight the efficacy of curcumin and its analogues in targeting colorectal CSC and also the underlying molecular mechanism involved. Curcumin, in the presence or absence of other anti-cancer agents, has been shown to reduce the size of tumour mass and growth in both in vivo and in vitro studies by affecting many intracellular events that are associated with cancer progression and CSC formation. An insight into the molecular mechanism has unraveled the mode of action via which curcumin could affect the key regulators in CSC, importantly; (1) the signaling pathways, including Wnt/β-catenin, Sonic Hedgehog, Notch and PI3K/Akt/mTOR, (2) microRNA and (3) the epithelial-mesenchymal transition at multiple levels. Therefore, curcumin could play a role as chemosensitiser whereby the colorectal CSCs are now sensitised towards the anti-cancer therapy, therefore, combination therapy using anti-cancer agent with curcumin could be much more effective than treatment using a single cancer agent. This potential treatment modality can be further developed by employing an effective delivery system using a nanotechnology based approach to treat colorectal cancer. PMID:26457069

  4. Curcumin Modulates DNA Methylation in Colorectal Cancer Cells

    PubMed Central

    Link, Alexander; Balaguer, Francesc; Shen, Yan; Lozano, Juan Jose; Leung, Hon-Chiu E.; Boland, C. Richard; Goel, Ajay

    2013-01-01

    Aim Recent evidence suggests that several dietary polyphenols may exert their chemopreventive effect through epigenetic modifications. Curcumin is one of the most widely studied dietary chemopreventive agents for colon cancer prevention, however, its effects on epigenetic alterations, particularly DNA methylation, remain unclear. Using systematic genome-wide approaches, we aimed to elucidate the effect of curcumin on DNA methylation alterations in colorectal cancer cells. Materials and Methods To evaluate the effect of curcumin on DNA methylation, three CRC cell lines, HCT116, HT29 and RKO, were treated with curcumin. 5-aza-2′-deoxycytidine (5-aza-CdR) and trichostatin A treated cells were used as positive and negative controls for DNA methylation changes, respectively. Methylation status of LINE-1 repeat elements, DNA promoter methylation microarrays and gene expression arrays were used to assess global methylation and gene expression changes. Validation was performed using independent microarrays, quantitative bisulfite pyrosequencing, and qPCR. Results As expected, genome-wide methylation microarrays revealed significant DNA hypomethylation in 5-aza-CdR-treated cells (mean β-values of 0.12), however, non-significant changes in mean β-values were observed in curcumin-treated cells. In comparison to mock-treated cells, curcumin-induced DNA methylation alterations occurred in a time-dependent manner. In contrast to the generalized, non-specific global hypomethylation observed with 5-aza-CdR, curcumin treatment resulted in methylation changes at selected, partially-methylated loci, instead of fully-methylated CpG sites. DNA methylation alterations were supported by corresponding changes in gene expression at both up- and down-regulated genes in various CRC cell lines. Conclusions Our data provide previously unrecognized evidence for curcumin-mediated DNA methylation alterations as a potential mechanism of colon cancer chemoprevention. In contrast to non

  5. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  6. A novel diblock of copolymer of (monomethoxy poly [ethylene glycol]-oleate) with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells

    PubMed Central

    Erfani-Moghadam, Vahid; Nomani, Alireza; Zamani, Mina; Yazdani, Yaghoub; Najafi, Farhood; Sadeghizadeh, Majid

    2014-01-01

    Curcumin is a potent natural anticancer agent, but its effectiveness is limited by properties such as very low solubility, high rate of degradation, and low rate of absorption of its hydrophobic molecules in vivo. To date, various nanocarriers have been used to improve the bioavailability of this hydrophobic biomaterial. This study investigates the encapsulation of curcumin in a novel nanostructure of monomethoxy poly(ethylene glycol)-oleate (mPEG-OA) and its anticancer effect. Tests were done to determine the critical micelle concentration (CMC), encapsulation efficiency, drug-loading efficiency, and cytotoxicity (against U87MG brain carcinoma cells and HFSF-PI3 cells as normal human fibroblasts) of some nanodevice preparations. The results of fluorescence microscopy and cell-cycle analyses indicated that the in vitro bioavailability of the encapsulated curcumin was significantly greater than that of free curcumin. Cytotoxicity evaluations showed that half maximal inhibitory concentrations of free curcumin and curcumin-loaded mPEG-OA for the U87MG cancer cell line were 48 μM and 24 μM, respectively. The Annexin-V-FLUOS assay was used to quantify the apoptotic effect of the prepared nanostructures. Apoptosis induction was observed in a dose-dependent manner after curcumin-loaded mPEG-OA treatments. Two common self-assembling structures, micelles and polymersomes, were observed by atomic force microscopy and dynamic light scattering, and the abundance of each structure was dependent on the concentration of the diblock copolymer. The mPEG-OA micelles had a very low CMC (13.24 μM or 0.03 g/L). Moreover, atomic force microscopy and dynamic light scattering showed that the curcumin-loaded mPEG-OA polymersomes had very stable structures, and at concentrations 1,000 times less than the CMC, at which the micelles disappear, polymersomes were the dominant structures in the dispersion with a reduced size distribution below 150 nm. Overall, the results from these tests

  7. Curcumin alleviates cisplatin-induced learning and memory impairments.

    PubMed

    Oz, Mehmet; Nurullahoglu Atalik, K Esra; Yerlikaya, F Humeyra; Demir, Enver Ahmet

    2015-09-01

    The present study has been designed to investigate the role of curcumin on cisplatin-inducedcognitive impairment and to reveal mechanisms of cisplatin's detrimental actions on cognition in rats. Animals were treated with cisplatin (5mg/kg/week) and/or curcumin (300mg/kg/day) for 5weeks. Morris water maze test was used to assess spatial learning and memory. Enzymatic activities of acetylcholinesterase (AChE) and superoxide dismutase (SOD) were evaluated from hippocampus and plasma samples, and malondialdehyde (MDA), which is the end-product of lipid peroxidation, was determined by a colorimetric method. Our results showed that cisplatin (5mg/kg/week, 5weeks) caused learning and memory deficits, elevated MDA content, decreased SOD activity in the hippocampus and plasma, and AChE activity in the hippocampus. Curcumin improved learning and memory in rats with administration of cisplatin. In addition, curcumin significantly reduced the level of MDA and increased the activities of SOD and AChE. Taken together, our findings indicate that curcumin ameliorates cisplatin-induced spatial learning and memory impairment, possibly through restored cholinergic function and enhanced oxidative status. PMID:25982942

  8. Curcumin protects against ischemic spinal cord injury: The pathway effect.

    PubMed

    Zhang, Jinhua; Wei, Hao; Lin, Meimei; Chen, Chunmei; Wang, Chunhua; Liu, Maobai

    2013-12-25

    Inducible nitric oxide synthase and N-methyl-D-aspartate receptors have been shown to participate in nerve cell injury during spinal cord ischemia. This study observed a protective effect of curcumin on ischemic spinal cord injury. Models of spinal cord ischemia were established by ligating the lumbar artery from the left renal artery to the bifurcation of the abdominal aorta. At 24 hours after model establishment, the rats were intraperitoneally injected with curcumin. Reverse transcription-polymerase chain reaction and immunohistochemical results demonstrated that after spinal cord ischemia, inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression significantly increased. However, curcumin significantly decreased inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression in the ischemic spinal cord. Tarlov scale results showed that curcumin significantly improved motor function of the rat hind limb after spinal cord ischemia. The results demonstrate that curcumin exerts a neuroprotective fect against ischemic spinal cord injury by decreasing inducible nitric oxide synthase and N-methyl-D-aspartate receptor expression. PMID:25206661

  9. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    PubMed

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis. PMID:27423629

  10. A unique mechanism of curcumin inhibition on F1 ATPase.

    PubMed

    Sekiya, Mizuki; Hisasaka, Ryosuke; Iwamoto-Kihara, Atsuko; Futai, Masamitsu; Nakanishi-Matsui, Mayumi

    2014-10-01

    ATP synthase (F-ATPase) function depends upon catalytic and rotation cycles of the F1 sector. Previously, we found that F1 ATPase activity is inhibited by the dietary polyphenols, curcumin, quercetin, and piceatannol, but that the inhibitory kinetics of curcumin differs from that of the other two polyphenols (Sekiya et al., 2012, 2014). In the present study, we analyzed Escherichia coli F1 ATPase rotational catalysis to identify differences in the inhibitory mechanism of curcumin versus quercetin and piceatannol. These compounds did not affect the 120° rotation step for ATP binding and ADP release, though they significantly increased the catalytic dwell duration for ATP hydrolysis. Analysis of wild-type F1 and a mutant lacking part of the piceatannol binding site (γΔ277-286) indicates that curcumin binds to F1 differently from piceatannol and quercetin. The unique inhibitory mechanism of curcumin is also suggested from its effect on F1 mutants with defective β-γ subunit interactions (γMet23 to Lys) or β conformational changes (βSer174 to Phe). These results confirm that smooth interaction between each β subunit and entire γ subunit in F1 is pertinent for rotational catalysis. PMID:25230139

  11. Curcumin ameliorates streptozotocin-induced heart injury in rats.

    PubMed

    Abo-Salem, Osama M; Harisa, Gamaleldin I; Ali, Tarek M; El-Sayed, El-Sayed M; Abou-Elnour, Fatma M

    2014-06-01

    Heart failure (HF) is one of diabetic complications. This work was designed to investigate the possible modulatory effect of curcumin against streptozotocin-induced diabetes and consequently HF in rats. Rats were divided into control, vehicle-treated, curcumin-treated, diabetic-untreated, diabetic curcumin-treated, and diabetic glibenclamide-treated groups. Animal treatment was started 5 days after induction of diabetes and extended for 6 weeks. Diabetic rats showed significant increase in serum glucose, triglycerides, total cholesterol, low-density lipoprotein-cholesterol, very low density lipoprotein-cholesterol, nitric oxide, lactate dehydrogenase, cardiac malondialdehyde, plasma levels of interleukin-6, and tumor necrosis factor-alpha, and also showed marked decrease in serum high-density lipoprotein-cholesterol, cardiac reduced glutathione, and cardiac antioxidant enzymes (catalase, superoxide dismutase, and glutathione-S-transferase). However, curcumin or glibenclamide treatment significantly mitigated such changes. In conclusion, curcumin has a beneficial therapeutic effect in diabetes-induced HF, an effect that might be attributable to its antioxidant and suppressive activity on cytokines. PMID:24760747

  12. Lipid Based Nanosystems for Curcumin: Past, Present and Future.

    PubMed

    Nayak, Aditya P; Mills, Tom; Norton, Ian

    2016-01-01

    Curcumin is one of the principle bioactive compounds used in the ayurvedic medicine system that has the history of over 5000 years for human use. Curcumin an "Indian Gold" is used to treat simple ailments like the common cold to severe life threatening diseases like cancer, and HIV. Though its contribution is immense for the health protection and disease prevention, its clinical use is limited due to its susceptible nature to alkaline pH, high temperature, presence of oxygen and light. Hence it becomes extremely difficult to maintain its bioactivity during processing, storage and consumption. Recent advancements in the application of nanotechnology to curcumin offer an opportunity to enhance its stability, bioactivity and to overcome its pharmacokinetic mismatch. This in turn helps to bridge the gaps that exist between its bench top research data to its clinical findings. Among the various types of nano/micro delivery systems, lipid based delivery systems are well studied and are the best suited delivery systems to enhance the stability and pharmacokinetic profile of curcumin both for pharma and the food application. In the current review, effort will be made to recapitulate the work done in the past to use lipid based delivery systems (liposomes, solid lipid nanoparticles, and emulsions) to enhance the application of curcumin for health promotion and disease prevention. Further, future prospects for the utilization of these lipid-based delivery systems will be discussed in detail. PMID:27306091

  13. Antimicrobial activity of curcumin-loaded myristic acid microemulsions against Staphylococcus epidermidis.

    PubMed

    Liu, Chi-Hsien; Huang, Hsin-Ying

    2012-01-01

    The bactericidal properties of myristic acid and curcumin were revealed in a number of studies. However, whether curcumin-loaded myristic acid microemulsions can be used to inhibit Staphylococcus epidermidis, which causes nosocomial infections, has not been reported. Our aim was to develop curcumin-loaded myristic acid microemulsions to inhibit S. epidermidis on the skin. The interfacial tension, size distribution, and viscosity data of the microemulsions were characterized to elucidate the physicochemical properties of the curcumin microemulsions. Curcumin distribution in neonate pig skin was visualized using confocal laser scanning microscopy. Dermal curcumin accumulation (326 µg/g skin) and transdermal curcumin penetration (87 µg/cm(2)/d) were obtained with the microemulsions developed herein. Curcumin at the concentration of 0.86 µg/mL in the myristic acid microemulsion could inhibit 50% of the bacterial growth, which was 12 times more effective than curcumin dissolved in dimethyl sulfoxide (DMSO). The cocktail combination of myristic acid and curcumin in the microemulsion carrier synergistically inhibited the growth of S. epidermidis. The results we obtained highlight the potential of using curcumin-loaded microemulsions as an alternative treatment for S. epidermidis-associated diseases and acne vulgaris. PMID:22976319

  14. Actin-curcumin interaction: insights into the mechanism of actin polymerization inhibition.

    PubMed

    Dhar, Gopa; Chakravarty, Devlina; Hazra, Joyita; Dhar, Jesmita; Poddar, Asim; Pal, Mahadeb; Chakrabarti, Pinak; Surolia, Avadhesha; Bhattacharyya, Bhabatarak

    2015-02-01

    Curcumin, derived from rhizomes of the Curcuma longa plant, is known to possess a wide range of medicinal properties. We have examined the interaction of curcumin with actin and determined their binding and thermodynamic parameters using isothermal titration calorimetry. Curcumin is weakly fluorescent in aqueous solution, and binding to actin enhances fluorescence several fold with a large blue shift in the emission maximum. Curcumin inhibits microfilament formation, which is similar to its role in inhibiting microtubule formation. We synthesized a series of stable curcumin analogues to examine their affinity for actin and their ability to inhibit actin self-assembly. Results show that curcumin is a ligand with two symmetrical halves, each of which possesses no activity individually. Oxazole, pyrazole, and acetyl derivatives are less effective than curcumin at inhibiting actin self-assembly, whereas a benzylidiene derivative is more effective. Cell biology studies suggest that disorganization of the actin network leads to destabilization of filaments in the presence of curcumin. Molecular docking reveals that curcumin binds close to the cytochalasin binding site of actin. Further molecular dynamics studies reveal a possible allosteric effect in which curcumin binding at the "barbed end" of actin is transmitted to the "pointed end", where conformational changes disrupt interactions with the adjacent actin monomer to interrupt filament formation. Finally, the recognition and binding of actin by curcumin is yet another example of its unique ability to target multiple receptors. PMID:25564154

  15. Inhibition of curcumin on myeloid-derived suppressor cells is requisite for controlling lung cancer.

    PubMed

    Liu, Dan; You, Ming; Xu, Yujun; Li, Fanlin; Zhang, Dongya; Li, Xiujun; Hou, Yayi

    2016-10-01

    Lung cancer remains the leading cause of cancer mortality. Myeloid-derived suppressor cells (MDSCs) are potent immune-suppressive cells and present in most cancer patients. Recently, several studies have shown that curcumin inhibits the expansion of MDSCs in some cancers. However, it is not clear how curcumin modulates the suppressive function of MDSCs, and whether curcumin achieves anti-tumor effects via regulating the expansion of MDSCs in lung cancer. Here, our results showed that curcumin significantly inhibited tumor growth in a Lewis lung carcinoma (LLC) isogenic tumor model. Curcumin reduced the accumulation of MDSCs in spleen and tumor tissue in LLC isogenic model. And curcumin promoted the maturation and differentiation of MDSCs in tumor tissue. Notably, curcumin inhibited the expression level of immune suppressive factors of MDSCs, arginase-1 (Arg-1) and ROS, in purified MDSCs from tumor tissue in vivo. Expectedly, curcumin also inhibited the immunosuppressive function of isolated MDSCs from tumor tissue and spleen of tumor bearing mice in vitro. Moreover, curcumin decreased the level of IL-6 in the tumor tissue and serum from LLC-bearing mice. Taken together, curcumin indeed possesses anti-cancer effect and inhibits the accumulation and function of MDSCs. And curcumin reduces the level of IL-6 in tumor-bearing mice to impair the expansion and function of MDSCs. These results suggest that inhibition of MDSCs in tumor is requisite for controlling lung cancer. PMID:27497194

  16. Electrical Circuits and Water Analogies

    ERIC Educational Resources Information Center

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  17. Polymeric nanogel formulations of nucleoside analogs

    PubMed Central

    Vinogradov, Serguei V

    2008-01-01

    Nanogels are colloidal microgel carriers that have been introduced recently as a prospective drug delivery system for nucleotide therapeutics. The crosslinked protonated polymer network of nanogels binds oppositely charged drug molecules, encapsulating them into submicron particles with a core-shell structure. The nanogel network also provides a suitable template for chemical engineering, surface modification and vectorisation. This review reveals recent attempts to develop novel drug formulations of nanogels with antiviral and antiproliferative nucleoside analogs in the active form of 5′-triphosphates; discusses structural approaches to the optimisation of nanogel properties, and; discusses the development of targeted nanogel drug formulations for systemic administration. Notably, nanogels can improve the CNS penetration of nucleoside analogs that are otherwise restricted from passing across the blood–brain barrier. The latest findings reviewed here demonstrate an efficient intracellular release of nucleoside analogs, encouraging further applications of nanogel carriers for targeted drug delivery. PMID:17184158

  18. Curcumin Reduces Amyloid Fibrillation of Prion Protein and Decreases Reactive Oxidative Stress

    PubMed Central

    Lin, Chi-Fen; Yu, Kun-Hua; Jheng, Cheng-Ping; Chung, Raymond; Lee, Cheng-I

    2013-01-01

    Misfolding and aggregation into amyloids of the prion protein (PrP) is responsible for the development of fatal transmissible neurodegenerative diseases. Various studies on curcumin demonstrate promise for the prevention of Alzheimer’s disease and inhibition of PrPres accumulation. To evaluate the effect of curcumin on amyloid fibrillation of prion protein, we first investigated the effect of curcumin on mouse prion protein (mPrP) in a cell-free system. Curcumin reduced the prion fibril formation significantly. Furthermore, we monitored the change in apoptosis and reactive oxygen species (ROS) level upon curcumin treatment in mouse neuroblastoma cells (N2a). Curcumin effectively rescues the cells from apoptosis and decreases the ROS level caused by subsequent co-incubation with prion amyloid fibrils. The assays in cell-free mPrP and in N2a cells of this work verified the promising effect of curcumin on the prevention of transmissible neurodegenerative diseases. PMID:25437204

  19. PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα

    PubMed Central

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena; Tian, Xuebi; Liu, Ying; Wang, Zaijie Jim

    2016-01-01

    Opioid-induced hyperalgesia (OIH) is one of the major problems associated with prolonged use of opioids for the treatment of chronic pain. Effective treatment for OIH is lacking. In this study, we examined the efficacy and preliminary mechanism of curcumin in attenuating OIH. We employed a newly developed PLGA-curcumin nanoformulation (PLGA-curcumin) in order to improve the solubility of curcumin, which has been a major obstacle in properly characterizing curcumin’s mechanism of action and efficacy. We found that curcumin administered intrathecally or orally significantly attenuated hyperalgesia in mice with morphine-induced OIH. Furthermore, we demonstrated that the effects of curcumin on OIH correlated with the suppression of chronic morphine-induced CaMKIIα activation in the superficial laminae of the spinal dorsal horn. These data suggest that PLGA-curcumin may reverse OIH possibly by inhibiting CaMKIIα and its downstream signaling. PMID:26744842

  20. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency

    NASA Astrophysics Data System (ADS)

    Nagahama, Koji; Utsumi, Tomoya; Kumano, Takayuki; Maekawa, Saeko; Oyama, Naho; Kawakami, Junji

    2016-08-01

    Curcumin has received immense attention over the past decades because of its diverse biological activities and recognized as a promising drug candidate in a large number of diseases. However, its clinical application has been hindered due to extremely low aqueous solubility, chemical stability, and cellular uptake. In this study, we discovered quite a new function of curcumin, i.e. pH-responsive endosomal disrupting activity, derived from curcumin’s self-assembly. We selected anticancer activity as an example of biological activities of curcumin, and investigated the contribution of pH-responsive property to its anticancer activity. As a result, we demonstrated that the pH-responsive property significantly enhances the anticancer activity of curcumin. Furthermore, we demonstrated a utility of the pH-responsive property of curcumin as delivery nanocarriers for doxorubicin toward combination cancer therapy. These results clearly indicate that the smart curcumin assemblies act as promising nanoplatform for development of curcumin-based therapeutics.

  1. Effect of Curcumin Against Proteus mirabilis During Crystallization of Struvite from Artificial Urine.

    PubMed

    Prywer, Jolanta; Torzewska, Agnieszka

    2012-01-01

    We investigated the activity of curcumin against Proteus mirabilis and the struvite crystallization in relation to urinary stones formation. In order to evaluate an activity of curcumin we performed an in vitro experiment of struvite growth from artificial urine. The crystallization process was induced by Proteus mirabilis to mimic the real urinary tract infection, which usually leads to urinary stone formation. The results demonstrate that curcumin exhibits the effect against Proteus mirabilis inhibiting the activity of urease-an enzyme produced by these microorganisms. Addition of curcumin increases the induction time and decreases the efficiency of growth of struvite compared with the absence of curcumin. Interestingly, the addition of curcumin does not affect the crystal morphology and habit. In conclusion, curcumin has demonstrated its significant potential to be further investigated for its use in the case of struvite crystallization induced for the growth by Proteus mirabilis in relation to urinary stone formation. PMID:21808656

  2. A Potential Role of the Curry Spice Curcumin in Alzheimer’s Disease

    PubMed Central

    Ringman, John M.; Frautschy, Sally A.; Cole, Gregory M.; Masterman, Donna L.; Cummings, Jeffrey L.

    2005-01-01

    There is substantial in-vitro data indicating that curcumin has antioxidant, anti-inflammatory, and anti-amyloid activity. In addition, studies in animal models of Alzheimer’s disease (AD) indicate a direct effect of curcumin in decreasing the amyloid pathology of AD. As the widespread use of curcumin as a food additive and relatively small short-term studies in humans suggest safety, curcumin is a promising agent in the treatment and/or prevention of AD. Nonetheless, important information regarding curcumin bioavailability, safety and tolerability, particularly in an elderly population is lacking. We are therefore performing a study of curcumin in patients with AD to gather this information in addition to data on the effect of curcumin on biomarkers of AD pathology. PMID:15974909

  3. Sensitizing nanoparticle based platinum(IV) drugs by curcumin for better chemotherapy.

    PubMed

    Kang, Xiang; Zhao, Chen; Yan, Lesan; Qi, Ruogu; Jing, Xiabin; Wang, Zehua

    2016-09-01

    A polymer-cisplatin(IV) conjugate was prepared by attaching Pt(IV)-COOH to a biodegradable amphiphilic block copolymer containing pendant OH groups. The conjugate can assemble into micelles (M(Pt)) with a mean diameter of ca. 169nm. Further, curcumin (CM) was used to sensitize platinum drug based nanoparticles to overcome cisplatin resistance and enhance antitumor efficacy. In vitro studies showed that M(Pt)/CM combinations had great synergistic effect both on cisplatin sensitive and cisplatin resistant cell lines (A2780 and A2780DDP). In vivo studies showed that M(Pt)/CM had a much lower systemic toxicity and an enhanced antitumor efficacy compared to cisplatin alone or the corresponding cisplatin/CM combinations. Therefore, polymer-cisplatin(IV) conjugate with small molecules that serve as a non-cytotoxic or minimally cytotoxic sensitizer or enhancer provide a promising strategy, which may have potential clinical implications in the near future. PMID:27311131

  4. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles.

    PubMed

    Bhandari, Rohit; Gupta, Prachi; Dziubla, Thomas; Hilt, J Zach

    2016-10-01

    Magnetic iron oxide nanoparticles have been well known for their applications in magnetic resonance imaging (MRI), hyperthermia, targeted drug delivery, etc. The surface modification of these magnetic nanoparticles has been explored extensively to achieve functionalized materials with potential application in biomedical, environmental and catalysis field. Herein, we report a novel and versatile single step methodology for developing curcumin functionalized magnetic Fe3O4 nanoparticles without any additional linkers, using a simple coprecipitation technique. The magnetic nanoparticles (MNPs) were characterized using transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy and thermogravimetric analysis. The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB) molecule. PMID:27287099

  5. Synergistic effects of curcumin and bevacizumab on cell signaling pathways in hepatocellular carcinoma.

    PubMed

    Gao, Jian-Zhi; DU, Jing-Li; Wang, Yong-Ling; Li, Jia; Wei, Li-Xin; Guo, Ming-Zhou

    2015-01-01

    The aim of the present study was to explore the effects of curcumin in combination with bevacizumab on the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR)/K-ras pathway in hepatocellular carcinoma. A total of 30 Sprague Dawley (SD) rats were randomly divided into five groups: Control, model, curcumin, VEGF blocker, and curcumin + VEGF blocker groups. The mRNA levels of VEGF and VEGFR in all groups were subsequently measured by quantitative reverse transcriptase-polymerase chain reaction and the protein expression of K-ras was detected by western blot analysis. Compared with the control group, the mRNA levels of VEGF and VEGFR were revealed to be significantly increased in the model, curcumin and VEGF blocker groups. The VEGF mRNA levels in the curcumin, VEGF blocker and curcumin + VEGF blocker groups were all decreased when compared with the model group. In addition, the VEGF mRNA levels in the curcumin + VEGF blocker group were significantly lower compared with the curcumin group (P<0.05). The VEGF mRNA levels in the curcumin, VEGF blocker and curcumin + VEGF blocker groups were decreased when compared with the model group (P=0.0001). No significant differences in VEGF mRNA levels were identified between the VEGF blocker and curcumin groups (P=0.863), whereas the VEGF mRNA levels in the curcumin + VEGF blocker group were significantly lower than that of the curcumin group (P=0.025). Curcumin and the VEGF blocker are each capable of inhibiting hepatocellular carcinoma progression by regulating the VEGF/VEGFR/K-ras pathway. The combination of the two compounds has a synergistic effect on the inhibition of the effects of the VEGF signaling pathways in hepatocellular carcinoma progression. PMID:25435978

  6. Synergistic effects of curcumin and bevacizumab on cell signaling pathways in hepatocellular carcinoma

    PubMed Central

    GAO, JIAN-ZHI; DU, JING-LI; WANG, YONG-LING; LI, JIA; WEI, LI-XIN; GUO, MING-ZHOU

    2015-01-01

    The aim of the present study was to explore the effects of curcumin in combination with bevacizumab on the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR)/K-ras pathway in hepatocellular carcinoma. A total of 30 Sprague Dawley (SD) rats were randomly divided into five groups: Control, model, curcumin, VEGF blocker, and curcumin + VEGF blocker groups. The mRNA levels of VEGF and VEGFR in all groups were subsequently measured by quantitative reverse transcriptase-polymerase chain reaction and the protein expression of K-ras was detected by western blot analysis. Compared with the control group, the mRNA levels of VEGF and VEGFR were revealed to be significantly increased in the model, curcumin and VEGF blocker groups. The VEGF mRNA levels in the curcumin, VEGF blocker and curcumin + VEGF blocker groups were all decreased when compared with the model group. In addition, the VEGF mRNA levels in the curcumin + VEGF blocker group were significantly lower compared with the curcumin group (P<0.05). The VEGF mRNA levels in the curcumin, VEGF blocker and curcumin + VEGF blocker groups were decreased when compared with the model group (P=0.0001). No significant differences in VEGF mRNA levels were identified between the VEGF blocker and curcumin groups (P=0.863), whereas the VEGF mRNA levels in the curcumin + VEGF blocker group were significantly lower than that of the curcumin group (P=0.025). Curcumin and the VEGF blocker are each capable of inhibiting hepatocellular carcinoma progression by regulating the VEGF/VEGFR/K-ras pathway. The combination of the two compounds has a synergistic effect on the inhibition of the effects of the VEGF signaling pathways in hepatocellular carcinoma progression. PMID:25435978

  7. Controlled release of curcumin from curcumin-loaded nanomicelles to prevent peritendinous adhesion during Achilles tendon healing in rats

    PubMed Central

    Zhang, Weizhong; Li, Xuanyi; Comes Franchini, Mauro; Xu, Ke; Locatelli, Erica; Martin, Robert C; Monaco, Ilaria; Li, Yan; Cui, Shusen

    2016-01-01

    We introduced curcumin-loaded nanomicelles into a tendon-healing model to evaluate their effects on tendon healing and adhesion. Three groups consisting of 36 rats underwent rupture and repair of the Achilles tendon. The treatment group received an injection of curcumin-loaded nanomicelles (gold nanorods [GNRs]-1/curcumin in polymeric nanomicelles [curc@PMs] at a dosage of 0.44 mg curcumin/kg in 0.1 mL saline) into the surgical site and exposed to laser postoperatively at weeks 1, 2, and 3, for three times 10 seconds each, on the surgical site in the rats that underwent tendon rupture and repair, while the other two groups received 0.44 mg curcumin/kg in 0.1 mL saline and 0.1 mL of saline, respectively. The specimens were harvested at 4 weeks and subjected to biomechanical and histological evaluation. The scoring results of tendon adhesion indicated that GNRs-1/curc@PMs group was in the lowest grade of peritendinous adhesions compared to the other groups. Histological assessment further confirmed the preventive effect of GNRs-1/curc@PMs on tendon adhesion. These findings indicated greater tendon strength with less adhesion in the group treated with GNRs-1/curc@PMs combined with laser exposure, and that nanoparticle-based therapy may be applied to prevent adhesion in clinical patients. PMID:27382278

  8. Curcumin for maintenance of remission in ulcerative colitis

    PubMed Central

    Garg, Sushil K; Ahuja, Vineet; Sankar, Mari Jeeva; Kumar, Atul; Moss, Alan C

    2014-01-01

    Background Ulcerative colitis (UC) is a chronic inflammatory condition of the colon characterized by episodes of disease activity and symptom-free remission. There is paucity of evidence regarding the efficacy and safety of complementary or alternative medicines for the management of UC. Curcumin, an anti-inflammatory agent, has been used in many chronic inflammatory conditions such as rheumatoid arthritis, esophagitis and post-surgical inflammation. The efficacy of this agent for maintenance of remission in patients with UC has not been systematically evaluated. Objectives The primary objective was to systematically review the efficacy and safety of curcumin for maintenance of remission in UC. Search methods A computer-assisted literature search of MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, and the Cochrane Inflammatory Bowel Disease Specialized Trial Register was performed on July 11, 2012 to identify relevant publications. Proceedings from major gastroenterology meetings and references from published articles were also searched to identify additional studies. Selection criteria Randomized placebo-controlled trials (RCT) of curcumin for maintenance of remission in UC were included. Studies included patients (of any age) who were in remission at the time of recruitment. Co-interventions were allowed. Data collection and analysis Two authors independently extracted data and assessed the methodological quality of the included studies using the Cochrane risk of bias tool. Data were analyzed using Review Manager (RevMan 5.1). We calculated the relative risk (RR) and 95% confidence interval (95% CI) for each dichotomous outcome. For continuous outcomes we calculated the mean difference (MD) and 95% CI. Main results Only one trial (89 patients) fulfilled the inclusion criteria. This trial randomized 45 patients to curcumin and 44 patients to placebo. All patients received treatment with sulfasalazine or mesalamine. The study was rated as low

  9. Microencapsulation of curcumin in PLGA microcapsules by coaxial flow focusing

    NASA Astrophysics Data System (ADS)

    Lei, Fan; Si, Ting; Luo, Xisheng; Xu, Ronald X.

    2014-03-01

    Curcumin-loaded PLGA microcapsules are fabricated by a liquid-driving coaxial flow focusing device. In the process, a stable coaxial cone-jet configuration is formed under the action of a coflowing liquid stream and the coaxial liquid jet eventually breaks up into microcapsules because of flow instability. This process can be well controlled by adjusting the flow rates of three phases including the driving PVA water solution, the outer PLGA ethyl acetate solution and the inner curcumin propylene glycol solution. Confocal and SEM imaging methods clearly indicate the core-shell structure of the resultant microcapsules. The encapsulation rate of curcumin in PLGA is measured to be more than 70%, which is much higher than the tranditional methods such as emulsion. The size distribution of resultant microcapsules under different conditions is presented and compared. An in vitro release simulation platform is further developed to verify the feasibility and reliability of the method.

  10. Effect of different curcumin dosages on human gall bladder.

    PubMed

    Rasyid, Abdul; Rahman, Abdul Rashid Abdul; Jaalam, Kamaruddin; Lelo, Aznan

    2002-01-01

    Our previous study demonstrated that curcumin, an active compound of Curcuma xanthorrhiza and C. domestica, produces a positive cholekinetic effect. A 20 mg amount of curcumin is capable of contracting the gall bladder by up to 29% within an observation time of 2 h. The aim of the current study was to define the dosage of curcumin capable of producing a 50% contraction of the gall bladder, and to determine if there is a linear relationship between doubling the curcumin dosage and the doubling of gall bladder contraction. A randomised, single-blind, three-phase, crossover-designed examination was carried out on 12 healthy volunteers. Ultrasonography was carried out serially to measure the gall bladder volume. The data obtained was analysed by analysis of variance (ANOVA). The fasting volumes of gall bladders were similar (P > 0.50), with 17.28 +/- 5.47 mL for 20 mg curcumin, 18.34 +/- 3.75 mL for 40 mg and 18.24 +/- 3.72 mL for 80 mg. The percentage decrease in gall bladder volume 2 h after administration of 20, 40 and 80 mg was 34.10 +/- 10.16, 51.15 +/- 8.08 and 72.25 +/- 8.22, respectively, which was significantly different (P < 0.01). On the basis of the present findings, it appears that the dosage of cucumin capable of producing a 50% contraction of the bladder was 40 mg. This study did not show any linear relationship between doubling curcumin dosage and the doubling of gall bladder contraction. PMID:12495265

  11. Acetal-linked polymeric prodrug micelles for enhanced curcumin delivery.

    PubMed

    Li, Man; Gao, Min; Fu, Yunlan; Chen, Chao; Meng, Xuan; Fan, Aiping; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2016-04-01

    On-demand curcumin delivery via stimuli-responsive micellar nanocarriers holds promise for addressing its solubility and stability problem. Polymer-curcumin prodrug conjugate micelle is one of such nanosystems. The diversity of linker and conjugation chemistry enabled the generation and optimization of different curcumin micelles with tunable stimuli-responsiveness and delivery efficiency. The aim of the current work was to generate and assess acetal-linked polymeric micelles to enrich the pH-responsive curcumin delivery platforms. Curcumin was slightly modified prior to conjugating to amphiphilic methoxy poly(ethylene glycol)-poly(lactic acid) (mPEG-PLA) copolymer via an acetal bond, whereas an ester bond-linked conjugate was used as the control. The acetal-containing micelles showed a hydrodynamic diameter of 91.1 ± 2.9(nm) and the accompanying core size of 63.5 ± 7.1 (nm) with a zeta potential of -10.9 ± 0.7(mV). Both control and pH-labile micelles displayed similar critical micelle concentration at 1.6 μM. The acetal-containing nanocarriers exhibited a pH-dependent drug release behavior, which was faster at lower pH values. The cytotoxicity study in HepG2 cells revealed a significantly lower IC50 at 51.7 ± 9.0(μM) for acetal-linked micelles in contrast to the control at 103.0 ± 17.8(μM), but the polymer residue showed no cytotoxicity upon drug release. The acetal-linked micellar nanocarrier could be a useful addition to the spectrum of currently available stimuli-responsive curcumin nano-formulations. PMID:26731193

  12. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  13. Digital and analog communication systems

    NASA Technical Reports Server (NTRS)

    Shanmugam, K. S.

    1979-01-01

    The book presents an introductory treatment of digital and analog communication systems with emphasis on digital systems. Attention is given to the following topics: systems and signal analysis, random signal theory, information and channel capacity, baseband data transmission, analog signal transmission, noise in analog communication systems, digital carrier modulation schemes, error control coding, and the digital transmission of analog signals.

  14. Analogical Reasoning in Geometry Education

    ERIC Educational Resources Information Center

    Magdas, Ioana

    2015-01-01

    The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…

  15. Electrical analogous in viscoelasticity

    NASA Astrophysics Data System (ADS)

    Ala, Guido; Di Paola, Mario; Francomano, Elisa; Li, Yan; Pinnola, Francesco P.

    2014-07-01

    In this paper, electrical analogous models of fractional hereditary materials are introduced. Based on recent works by the authors, mechanical models of materials viscoelasticity behavior are firstly approached by using fractional mathematical operators. Viscoelastic models have elastic and viscous components which are obtained by combining springs and dashpots. Various arrangements of these elements can be used, and all of these viscoelastic models can be equivalently modeled as electrical circuits, where the spring and dashpot are analogous to the capacitance and resistance, respectively. The proposed models are validated by using modal analysis. Moreover, a comparison with numerical experiments based on finite difference time domain method shows that, for long time simulations, the correct time behavior can be obtained only with modal analysis. The use of electrical analogous in viscoelasticity can better reveal the real behavior of fractional hereditary materials.

  16. Resveratrol and curcumin synergistically induces apoptosis in cigarette smoke condensate transformed breast epithelial cells through a p21(Waf1/Cip1) mediated inhibition of Hh-Gli signaling.

    PubMed

    Mohapatra, Purusottam; Satapathy, Shakti Ranjan; Siddharth, Sumit; Das, Dipon; Nayak, Anmada; Kundu, Chanakya Nath

    2015-09-01

    Combination therapy using two or more small molecule inhibitors of aberrant signaling cascade in aggressive breast cancers is a promising therapeutic strategy over traditional monotherapeutic approaches. Here, we have studied the synergistic mechanism of resveratrol and curcumin induced apoptosis using in vitro (cigarette smoke condensate mediated transformed breast epithelial cell, MCF-10A-Tr) and in vivo (tumor xenograft mice) model system. Resveratrol exposure increased the intracellular uptake of curcumin in a dose dependent manner and caused apoptosis in MCF-10A-Tr cells. Approximately, ten fold lower IC50 value was noted in cells treated with the combination of resveratrol (3μM) and curcumin (3μM) in comparison to 30μM of resveratrol or curcumin alone. Resveratrol+curcumin combination caused apoptosis by increasing Bax/Bcl-xL ratio, Cytochrome C release, cleaved product of PARP and caspase 3 in cells. Interestingly, this combination unaltered the protein expressions of WNT-TCF and Notch signaling components, β-catenin and cleaved notch-1 val1744, respectively. Furthermore, the combination also significantly decreased the intermediates of Hedgehog-Gli cascade including SMO, SHH, Gli-1, c-MYC, Cyclin-D1, etc. and increased the level of p21(Waf/Cip1) in vitro and in vivo. A significant reduction of Gli- promoter activity was noted in combinational drug treated cells in comparison to individual drug treatment. Un-alteration of the expressions of the above proteins and Gli1 promoter activity in p21(Waf/Cip1) knockout cells suggests this combination caused apoptosis through p21(Waf/Cip1). Thus, our findings revealed resveratrol and curcumin synergistically caused apoptosis in cigarette smoke induced breast cancer cells through p2(Waf/Cip1) mediated inhibition of Hedgehog-Gli cascade. PMID:26212257

  17. Liposome encapsulated curcumin-difluorinated (CDF) inhibits the growth of cisplatin resistant head and neck cancer stem cells.

    PubMed

    Basak, Saroj K; Zinabadi, Alborz; Wu, Arthur W; Venkatesan, Natarajan; Duarte, Victor M; Kang, James J; Dalgard, Clifton L; Srivastava, Meera; Sarkar, Fazlul H; Wang, Marilene B; Srivatsan, Eri S

    2015-07-30

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer, with 600,000 new cases every year worldwide. Although chemotherapeutics exist, five-year survival is only 50%. New strategies to overcome drug resistance are required to improve HNSCC treatment. Curcumin-difluorinated (CDF), a synthetic analog of curcumin, was packaged in liposomes and used to evaluate growth inhibition of cisplatin resistant HNSCC cell lines CCL-23R and UM-SCC-1R generated from the parental cell lines CCL-23 and UM-SCC-1 respectively. Growth inhibition in vitro and expression levels of the CD44 (cancer stem cell marker), cytokines, and growth factors were investigated after liposomal CDF treatment. The in vivo growth inhibitory effect of liposomal CDF was evaluated in the nude mice xenograft tumor model of UM-SCC-1R and the inhibition of CD44 was measured. Treatment of the resistant cell lines in vitro with liposomal CDF resulted in a statistically significant growth inhibition (p < 0.05). The nude mice xenograft study showed a statistically significant tumor growth inhibition of UM-SCC-1R cells and a reduction in the expression of CD44 (p < 0.05), indicating an inhibitory effect of liposomal CDF on CSCs. Our results demonstrate that delivery of CDF through liposomes may be an effective method for the treatment of cisplatin resistant HNSCC. PMID:26098778

  18. Stimulating the proliferation, migration and lamellipodia of Schwann cells using low-dose curcumin.

    PubMed

    Tello Velasquez, J; Nazareth, L; Quinn, R J; Ekberg, J A K; St John, J A

    2016-06-01

    Transplantation of peripheral glia is being trialled for neural repair therapies, and identification of compounds that enhance the activity of glia is therefore of therapeutic interest. We have previously shown that curcumin potently stimulates the activity of olfactory glia. We have now examined the effect of curcumin on Schwann cell (SC) activities including proliferation, migration and the expression of protein markers. SCs were treated with control media and with different concentrations of curcumin (0.02-20μM). Cell proliferation was determined by MTS assay and migration changes were determined by single live cell migration tracking. We found that small doses of curcumin (40nM) dramatically increased the proliferation and migration in SCs within just one day. When compared with olfactory glia, curcumin stimulated SC proliferation more rapidly and at lower concentrations. Curcumin significantly increased the migration of SCs, and also increased the dynamic activity of lamellipodial waves which are essential for SC migration. Expression of the activated form of the MAP kinase p38 (p-p38) was significantly decreased in curcumin-treated SCs. These results show that curcumin's effects on SCs differ remarkably to its effects on olfactory glia, suggesting that subtypes of closely related glia can be differentially stimulated by curcumin. Overall these results demonstrate that the therapeutically beneficial activities of glia can be differentially enhanced by curcumin which could be used to improve outcomes of neural repair therapies. PMID:26955781

  19. Piperine potentiates the hypocholesterolemic effect of curcumin in rats fed on a high fat diet.

    PubMed

    Tu, Yaosheng; Sun, Dongmei; Zeng, Xiaohui; Yao, Nan; Huang, Xuejun; Huang, Dane; Chen, Yuxing

    2014-07-01

    It has previously been demonstrated that curcumin possesses a hypocholesterolemic effect and potentiates numerous pharmacological effects of curcumin, however, the mechanisms underlying this hypocholesterolemic effect and the interaction between curcumin and piperine remain to be elucidated. In the present study, male Sprague-Dawley rats were fed on a high-fat diet (HFD) to establish a hyperlipidemia (HLP) model. Co-administration of curcumin plus piperine was found to decrease the levels of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol in the serum and liver, as well as increase the levels of fecal TC, TG and total bile acid, compared with administration of curcumin alone. Curcumin plus piperine also markedly increased the levels of high-density lipoprotein cholesterol. Furthermore, compared with administration of curcumin alone, administration of curcumin plus piperine resulted in a significant upregulation of the activity and gene expression of apolipoprotein AI (ApoAI), lecithin cholesterol acyltransferase (LCAT), cholesterol 7α-hydroxylase (CYP7A1) and low-density lipoprotein receptor (LDLR). In conclusion, these results indicated that co-administration of curcumin plus piperine potentiates the hypocholesterolemic effects of curcumin by increasing the activity and gene expression of ApoAI, CYP7A1, LCAT and LDLR, providing a promising combination for the treatment of HLP. PMID:24944632

  20. Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells.

    PubMed

    Yoon, Mi Jin; Kim, Eun Hee; Lim, Jun Hee; Kwon, Taeg Kyu; Choi, Kyeong Sook

    2010-03-01

    Curcumin is considered a pharmacologically safe agent that may be useful in cancer chemoprevention and therapy. Here, we show for the first time that curcumin effectively induces paraptosis in malignant breast cancer cell lines, including MDA-MB-435S, MDA-MB-231, and Hs578T cells, by promoting vacuolation that results from swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). Inhibition of protein synthesis by cycloheximide blocked curcumin-induced vacuolation and subsequent cell death, indicating that protein synthesis is required for this process. The levels of AIP-1/Alix protein, a known inhibitor protein of paraptosis, were progressively downregulated in curcumin-treated malignant breast cancer cells, and AIP-1/Alix overexpression attenuated curcumin-induced death in these cells. ERK2 and JNK activation were positively associated with curcumin-induced cell death. Mitochondrial superoxide was shown to act as a critical early signal in curcumin-induced paraptosis, whereas proteasomal dysfunction was mainly responsible for the paraptotic changes associated with ER dilation. Notably, curcumin-induced paraptotic events were not observed in normal breast cells, including mammary epithelial cells and MCF-10A cells. Taken together, our findings on curcumin-induced paraptosis may provide novel insights into the mechanisms underlying the selective anti-cancer effects of curcumin against malignant cancer cells. PMID:20036734

  1. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice.

    PubMed

    De, Ronita; Kundu, Parag; Swarnakar, Snehasikta; Ramamurthy, T; Chowdhury, Abhijit; Nair, G Balakrish; Mukhopadhyay, Asish K

    2009-04-01

    Treatment failure is a major cause of concern for the Helicobacter pylori-related gastroduodenal diseases like gastritis, peptic ulcer, and gastric cancer. Curcumin, diferuloylmethane from turmeric, has recently been shown to arrest H. pylori growth. The antibacterial activity of curcumin against 65 clinical isolates of H. pylori in vitro and during protection against H. pylori infection in vivo was examined. The MIC of curcumin ranges from 5 microg/ml to 50 microg/ml, showing its effectiveness in inhibiting H. pylori growth in vitro irrespective of the genetic makeup of the strains. The nucleotide sequences of the aroE genes, encoding shikimate dehydrogenase, against which curcumin seems to act as a noncompetitive inhibitor, from H. pylori strains presenting differential curcumin MICs showed that curcumin-mediated growth inhibition of Indian H. pylori strains may not be always dependent on the shikimate pathway. The antimicrobial effect of curcumin in H. pylori-infected C57BL/6 mice and its efficacy in reducing the gastric damage due to infection were examined histologically. Curcumin showed immense therapeutic potential against H. pylori infection as it was highly effective in eradication of H. pylori from infected mice as well as in restoration of H. pylori-induced gastric damage. This study provides novel insights into the therapeutic effect of curcumin against H. pylori infection, suggesting its potential as an alternative therapy, and opens the way for further studies on identification of novel antimicrobial targets of curcumin. PMID:19204190

  2. Reasoning through Instructional Analogies

    ERIC Educational Resources Information Center

    Kapon, Shulamit; diSessa, Andrea A.

    2012-01-01

    This article aims to account for students' assessments of the plausibility and applicability of analogical explanations, and individual differences in these assessments, by analyzing properties of students' underlying knowledge systems. We developed a model of explanation and change in explanation focusing on knowledge elements that provide a…

  3. Quantum Analog Computing

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1998-01-01

    Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.

  4. Learning by Analogical Bootstrapping.

    ERIC Educational Resources Information Center

    Miao, Chun-Hui; Kurtz, Kenneth J.; Gentner, Dedre

    2001-01-01

    Reports on research into whether mutual alignment of partially known situations can be an effective strategy when compared to the common procedure of drawing analogies from a well understood situation to one that is poorly understood. Results suggest that such mutual alignment is an effective means of promoting insight. (MM)

  5. Analogy, explanation, and proof

    PubMed Central

    Hummel, John E.; Licato, John; Bringsjord, Selmer

    2014-01-01

    People are habitual explanation generators. At its most mundane, our propensity to explain allows us to infer that we should not drink milk that smells sour; at the other extreme, it allows us to establish facts (e.g., theorems in mathematical logic) whose truth was not even known prior to the existence of the explanation (proof). What do the cognitive operations underlying the inference that the milk is sour have in common with the proof that, say, the square root of two is irrational? Our ability to generate explanations bears striking similarities to our ability to make analogies. Both reflect a capacity to generate inferences and generalizations that go beyond the featural similarities between a novel problem and familiar problems in terms of which the novel problem may be understood. However, a notable difference between analogy-making and explanation-generation is that the former is a process in which a single source situation is used to reason about a single target, whereas the latter often requires the reasoner to integrate multiple sources of knowledge. This seemingly small difference poses a challenge to the task of marshaling our understanding of analogical reasoning to understanding explanation. We describe a model of explanation, derived from a model of analogy, adapted to permit systematic violations of this one-to-one mapping constraint. Simulation results demonstrate that the resulting model can generate explanations for novel explananda and that, like the explanations generated by human reasoners, these explanations vary in their coherence. PMID:25414655

  6. An Interesting Analogy

    ERIC Educational Resources Information Center

    Pacheco, Jose M.; Fernandez, Isabel

    2002-01-01

    The aim of this note is to give some insight into the formal unity of a very applicable area of mathematics by showing an interesting analogy between the weak part of the Rouche-Frobenius theorem and the existence result for the initial value problem for the general first-order linear two-dimensional PDE.

  7. How Analogy Drives Physics

    SciTech Connect

    Hofstadter, Doug

    2004-05-05

    Many new ideas in theoretical physics come from analogies to older ideas in physics. For instance, the abstract notion of 'isospin' (or isotopic spin) originated in the prior concept of 'spin' (quantized angular momentum); likewise, the concept of 'phonon' (quantum of sound, or quantized collective excitation of a crystal) was based on the prior concept of 'photon' (quantum of light, or quantized element of the electromagnetic field). But these two examples, far from being exceptions, in fact represent the bread and butter of inventive thinking in physics. In a nutshell, intraphysics analogy-making -- borrowing by analogy with something already known in another area of physics -- is central to the progress of physics. The aim of this talk is to reveal the pervasiveness -- indeed, the indispensability -- of this kind of semi-irrational, wholly intuitive type of thinking (as opposed to more deductive mathematical inference) in the mental activity known as 'doing physics'. Speculations as to why wild analogical leaps are so crucial to the act of discovery in physics (as opposed to other disciplines) will be offered.

  8. Arterial Pressure Analog.

    ERIC Educational Resources Information Center

    Heusner, A. A.; Tracy, M. L.

    1980-01-01

    Describes a simple hydraulic analog which allows students to explore some physical aspects of the cardiovascular system and provides them with a means to visualize and conceptualize these basic principles. Simulates the behavior of arterial pressure in response to changes in heart rate, stroke volume, arterial compliance, and peripheral…

  9. Curcumin Blocks Interleukin-1 Signaling in Chondrosarcoma Cells

    PubMed Central

    Kalinski, Thomas; Sel, Saadettin; Hütten, Heiko; Röpke, Martin; Roessner, Albert; Nass, Norbert

    2014-01-01

    Interleukin (IL)-1 signaling plays an important role in inflammatory processes, but also in malignant processes. The essential downstream event in IL-1 signaling is the activation of nuclear factor (NF)-κB, which leads to the expression of several genes that are involved in cell proliferation, invasion, angiogenesis and metastasis, among them VEGF-A. As microenvironment-derived IL-1β is required for invasion and angiogenesis in malignant tumors, also in chondrosarcomas, we investigated IL-1β-induced signal transduction and VEGF-A expression in C3842 and SW1353 chondrosarcoma cells. We additionally performed in vitro angiogenesis assays and NF-κB-related gene expression analyses. Curcumin is a substance which inhibits IL-1 signaling very early by preventing the recruitment of IL-1 receptor associated kinase (IRAK) to the IL-1 receptor. We demonstrate that IL-1 signaling and VEGF-A expression are blocked by Curcumin in chondrosarcoma cells. We further show that Curcumin blocks IL-1β-induced angiogenesis and NF-κB-related gene expression. We suppose that IL-1 blockade is an additional treatment option in chondrosarcoma, either by Curcumin, its derivatives or other IL-1 blocking agents. PMID:24901233

  10. The Healing Effect of Curcumin on Burn Wounds in Rat

    PubMed Central

    Mehrabani, Davood; Farjam, Mojtaba; Geramizadeh, Bita; Tanideh, Nader; Amini, Masood; Panjehshahin, Mohammad Reza

    2015-01-01

    BACKGROUND Burns are still considered one of the most devastating conditions in emergency medicine affecting both genders and all age groups in developed and developing countries, resulting into physical and psychological scars and cause chronic disabilities. This study was performed to determine the healing effect of curcumin on burn wounds in rat. METHODS Seventy female Sprague-Dawley 180-220 g rats were randomly divided into 5 equal groups. Groups of A-C received 0.1, 0.5 and 2% curcumin respectively and Group D, silver sulfadiazine ointment. Group E was considered as control group and received eucerin. After 7, 14 and 21 days of therapy, the animals were sacrificed and burn areas were macroscopically examined and histologically were scored. RESULTS Administration of curcumin resulted into a decrease in size of the burn wounds and a reduction in inflammation after 14th days. Reepithelialization was prominent in groups A-C while more distinguishable in group C. In group C, epidermis exhibited well structured layers without any crusting. There were spindle shaped fibroblasts in fascicular pattern, oriented parallel to the epithelial surface with eosinophilic collagen matrix. CONCLUSION Curcumin as an available and inexpensive herbal was shown be a suitable substitute in healing of burn wounds especially when 2% concentration was applied. PMID:25606474

  11. Novel Therapeutic Approach for the Treatment of Periodontitis by Curcumin

    PubMed Central

    Bhatia, Madhu; Pentyala, Kishore Babu; Urolagin, Sarvesh Basavaraj; K B, Menaka; Bhoi, Shreedevi

    2014-01-01

    Aims and objectives: The aim of the present study was to evaluate the clinical and microbiological efficacy of locally delivered 1% curcumin gel as an adjunct to scaling and root planing in the treatment of chronic periodontitis. Materials and Methods: The study group consisted of 25 patients, belonging to both sex, aged between 21-45 years. All patients diagnosed as chronic periodontitis with periodontal pockets of depth >5mm bilaterally were randomly selected. A split mouth design was followed and the patients received a complete prophylaxis including scaling and root planing. Examination of plaque index, bleeding index, probing pocket depth and clinical attachment level were measured for each patient. The test group received 1% curcumin gel along with scaling and root planing whereas the control group received scaling and root planing alone followed by microbiological samples taken at baseline, 1, 3 and 6 months interval. Results: The 1% curcumin gel appeared to provide significant improvements in clinical parameters. Microbiological counts of Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and capnocytophaga showed significant reduction in periopathogens at the test sites after six months when compared with that of control sites. Conclusion: Locally delivered 1% curcumin gel was more effective in inhibiting the growth of oral bacteria when used as an adjunct to SRP in the treatment of chronic periodontitis. PMID:25654035

  12. Curcumin improves tau-induced neuronal dysfunction of nematodes.

    PubMed

    Miyasaka, Tomohiro; Xie, Ce; Yoshimura, Satomi; Shinzaki, Yuki; Yoshina, Sawako; Kage-Nakadai, Eriko; Mitani, Shohei; Ihara, Yasuo

    2016-03-01

    Tau is a key protein in the pathogenesis of various neurodegenerative diseases, which are categorized as tauopathies. Because the extent of tau pathologies is closely linked to that of neuronal loss and the clinical symptoms in Alzheimer's disease, anti-tau therapeutics, if any, could be beneficial to a broad spectrum of tauopathies. To learn more about tauopathy, we developed a novel transgenic nematode (Caenorhabditis elegans) model that expresses either wild-type or R406W tau in all the neurons. The wild-type tau-expressing worms exhibited uncoordinated movement (Unc) and neuritic abnormalities. Tau accumulated in abnormal neurites that lost microtubules. Similar abnormalities were found in the worms that expressed low levels of R406W-tau but were not in those expressing comparative levels of wild-type tau. Biochemical studies revealed that tau is aberrantly phosphorylated but forms no detergent-insoluble aggregates. Drug screening performed in these worms identified curcumin, a major phytochemical compound in turmeric, as a compound that reduces not only Unc but also the neuritic abnormalities in both wild-type and R406W tau-expressing worms. Our observations suggest that microtubule stabilization mediates the antitoxicity effect of curcumin. Curcumin is also effective in the worms expressing tau fragment, although it does not prevent the formation of tau-fragment dimers. These data indicate that curcumin improves the tau-induced neuronal dysfunction that is independent of insoluble aggregates of tau. PMID:26923403

  13. Relationship and interactions of curcumin with radiation therapy.

    PubMed

    Verma, Vivek

    2016-06-10

    Curcumin is widely reported to have remarkable medicinal - and antineoplastic - properties. This review details curcumin's relationship with radiotherapy (RT), principally as a radiosensitizer for various malignancies and a radioprotector for normal tissues. First, examples of radiosensitization are provided for various cancers: Pediatric, lymphoma, sarcoma, prostate, gynecologic, pancreas, liver, colorectal, breast, lung, head/neck, and glioma. It is not the purpose of this article to comprehensively review all radiosensitization data; however, high-quality studies are discussed in relationship to currently-controversial RT questions for many cancers, and thus the importance of developing a natural radiosensitizer. Attention is then shifted to radioprotection, for which supporting research is discussed for the following RT toxicities: Dermatitis, pneumonitis, cataractogenesis, neurocognition, myelosuppression, secondary malignancies, and mucositis/enteritis. Though there is fewer data for radioprotection, the overall quality of clinical evidence is higher, and small clinical trials implicating the efficacy of curcumin for RT toxicities (vs placebo/current therapies) are also detailed. Though the overall level of evidence for curcumin as a radiosensitizer and radioprotector is low, it must be recognized that risks of adverse effects are exceedingly low, and clinicians may need to judge the yet-unproven rewards with low toxicity risks. PMID:27298767

  14. Synthesis, characterization and biological activities of curcumin nanospheres.

    PubMed

    Arunraj, T R; Sanoj Rejinold, N; Mangalathillam, Sabitha; Saroj, Soumya; Biswas, Raja; Jayakumar, R

    2014-02-01

    Curcumin is one of the most versatile compounds obtained from Curcuma longa. The major obstacle in the therapeutic use of curcumin is its aqueous solubility. To enhance its aqueous solubility and biological activities, we prepared curcumin nanospheres (CNSs) by wet milling-solvent evaporation technique without any surfactants. In this study, we have focused on the synthesis, characterization and biological effects of CNSs. DLS and SEM analyses showed 50-80 nm spherical shaped CNSs with a zeta potential of -31.65 mV. FTIR revealed that there were no structural changes to CNSs. Antibacterial and antifungal studies proved that CNSs were much more effective than curcumin against Escherichia coil, Staphylococcus aureus and Candida albicans. Antioxidant activity of CNSs showed promising result for therapeutic applications. The in vitro anti-inflammatory studies proved that CNSs possessed enhanced anti-inflammatory effect against protein denaturation. Cytotoxicity and uptake of CNSs showed more toxicity on cancer cells (T47D, MG63, A375) sparing normal HDF and IEC cell lines. Skin permeation studies showed CNSs retained at different layers of pig skin. These results give clear evidence for their use against microbial and fungal skin infections as well as cancer treatment. PMID:24738332

  15. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels. PMID:26571019

  16. The Chemistry of Curcumin, the Health Promoting Ingredient in Turmeric

    ERIC Educational Resources Information Center

    Dewprashad, Brahmadeo

    2010-01-01

    Case studies pertaining to the health benefits of foods can be particularly effective in engaging students and in teaching core concepts in science (Heidemann and Urquart 2005). This case study focuses on the chemistry of curcumin, the health-promoting ingredient in turmeric. The case was developed to review core concepts in organic chemistry and…

  17. Analysis of anti-depressant potential of curcumin against depression induced male albino wistar rats.

    PubMed

    Chang, Xue-Run; Wang, Li; Li, Jing; Wu, Dian-Shui

    2016-07-01

    The present study investigated the antidepressant potential of curcumin in olfactory bulbectomy and forced swimming test models of depression in male albino rats under chronic treatment. The experimental animals were divided into four groups, and curcumin was administered for 45 days. Our results showed that the curcumin significantly reduced olfactory bulbectomy-induced behavioral abnormalities including deficits in step-down passive avoidance, increased activity in the open area and immobility time. Chronic administration of curcumin significantly reversed levels of 3, 4-dihydroxyphenylacetic acid, noradrenaline, serotonin and 5-hydroxyindoleacetic acid in the hippocampus region of male albino rats. Also, curcumin normalizes the levels of dopamine, noradrenaline, and 5-hydroxyindoleacetic acid in the frontal cortex of rats. Taking all these results together, it may suggest that curcumin is potent compound acting against the depression in the male albino rats. PMID:26972530

  18. Curcumin Mitigates Accelerated Aging after Irradiation in Drosophila by Reducing Oxidative Stress

    PubMed Central

    Yu, Mira; Park, Sunhoo; Jin, Young Woo; Min, Kyung-Jin

    2015-01-01

    Curcumin, belonging to a class of natural phenol compounds, has been extensively studied due to its antioxidative, anticancer, anti-inflammatory, and antineurodegenerative effects. Recently, it has been shown to exert dual activities after irradiation, radioprotection, and radiosensitization. Here, we investigated the protective effect of curcumin against radiation damage using D. melanogaster. Pretreatment with curcumin (100 μM) recovered the shortened lifespan caused by irradiation and increased eclosion rate. Flies subjected to high-dose irradiation showed a mutant phenotype of outstretched wings, whereas curcumin pretreatment reduced incidence of the mutant phenotype. Protein carbonylation and formation of γH2Ax foci both increased following high-dose irradiation most likely due to generation of reactive oxygen species. Curcumin pretreatment reduced the amount of protein carbonylation as well as formation of γH2Ax foci. Therefore, we suggest that curcumin acts as an oxidative stress reducer as well as an effective protective agent against radiation damage. PMID:25815315

  19. Mechanism of curcumin-induced trypsin inhibition: Computational and experimental studies

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Qing; Zhang, Hong-Mei; Kang, Yi-Jun; Gu, Yun-Lan; Cao, Jian

    2016-03-01

    In the present study, the experimental and theoretical methods were used to analyze the binding interaction of food dye, curcumin with trypsin. The results of fluorescence spectroscopic measurements indicated that curcumin binding resulted in the obviously intrinsic fluorescence quenching with the increase concentration of curcumin. This binding interaction is a spontaneous process with the estimated enthalpy and entropy changes being -15.70 kJ mol-1 and 40.25 J mol-1 K-1, respectively. Hydrogen bonds and hydrophobic forces played an important role in the complex formation between curcumin and trypsin. Moreover, curcumin could enter into the primary substrate-binding pocket and makes the activity of trypsin decrease remarkably with the increasing concentration of curcumin.

  20. Cathepsin L knockdown enhances curcumin-mediated inhibition of growth, migration, and invasion of glioma cells.

    PubMed

    Fei, Yao; Xiong, Yajie; Zhao, Yifan; Wang, Wenjuan; Han, Meilin; Wang, Long; Tan, Caihong; Liang, Zhongqin

    2016-09-01

    Curcumin can be used to prevent and treat cancer. However, its exact underlying molecular mechanisms remain poorly understood. Cathepsin L, a lysosomal cysteine protease, is overexpressed in several cancer types. This study aimed to determine the role of cathepsin L in curcumin-mediated inhibition of growth, migration, and invasion of glioma cells. Results revealed that the activity of cathepsin L was enhanced in curcumin-treated glioma cells. Cathepsin L knockdown induced by RNA interference significantly promoted curcumin-induced cytotoxicity, apoptosis, and cell cycle arrest. The knockdown also inhibited the migration and invasion of glioma cells. Our results suggested that the inhibition of cathepsin L can enhance the sensitivity of glioma cells to curcumin. Therefore, cathepsin L may be a new target to enhance the efficacy of curcumin against cancers. PMID:27373979

  1. Curcumin mitigates accelerated aging after irradiation in Drosophila by reducing oxidative stress.

    PubMed

    Seong, Ki Moon; Yu, Mira; Lee, Kyu-Sun; Park, Sunhoo; Jin, Young Woo; Min, Kyung-Jin

    2015-01-01

    Curcumin, belonging to a class of natural phenol compounds, has been extensively studied due to its antioxidative, anticancer, anti-inflammatory, and antineurodegenerative effects. Recently, it has been shown to exert dual activities after irradiation, radioprotection, and radiosensitization. Here, we investigated the protective effect of curcumin against radiation damage using D. melanogaster. Pretreatment with curcumin (100 μM) recovered the shortened lifespan caused by irradiation and increased eclosion rate. Flies subjected to high-dose irradiation showed a mutant phenotype of outstretched wings, whereas curcumin pretreatment reduced incidence of the mutant phenotype. Protein carbonylation and formation of γH2Ax foci both increased following high-dose irradiation most likely due to generation of reactive oxygen species. Curcumin pretreatment reduced the amount of protein carbonylation as well as formation of γH2Ax foci. Therefore, we suggest that curcumin acts as an oxidative stress reducer as well as an effective protective agent against radiation damage. PMID:25815315

  2. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    PubMed

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine. PMID:27098211

  3. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    PubMed Central

    Kheradpezhouh, E.; Barritt, G.J.; Rychkov, G.Y.

    2015-01-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels. PMID:26609559

  4. Attenuation of arsenic neurotoxicity by curcumin in rats

    SciTech Connect

    Yadav, Rajesh S.; Sankhwar, Madhu Lata; Shukla, Rajendra K.; Chandra, Ramesh; Pant, Aditya B.; Islam, Fakhrul; Khanna, Vinay K.

    2009-11-01

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associated with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.

  5. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes.

    PubMed

    Kheradpezhouh, E; Barritt, G J; Rychkov, G Y

    2016-04-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca(2+) homeostasis, resulting in a sustained elevation of the free cytosolic Ca(2+) concentration ([Ca(2+)]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca(2+) entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca(2+)]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels. PMID:26609559

  6. Curcumin Inhibits Rift Valley Fever Virus Replication in Human Cells*

    PubMed Central

    Narayanan, Aarthi; Kehn-Hall, Kylene; Senina, Svetlana; Lundberg, Lindsay; Van Duyne, Rachel; Guendel, Irene; Das, Ravi; Baer, Alan; Bethel, Laura; Turell, Michael; Hartman, Amy Lynn; Das, Bhaskar; Bailey, Charles; Kashanchi, Fatah

    2012-01-01

    Rift Valley fever virus (RVFV) is an arbovirus that is classified as a select agent, an emerging infectious virus, and an agricultural pathogen. Understanding RVFV-host interactions is imperative to the design of novel therapeutics. Here, we report that an infection by the MP-12 strain of RVFV induces phosphorylation of the p65 component of the NFκB cascade. We demonstrate that phosphorylation of p65 (serine 536) involves phosphorylation of IκBα and occurs through the classical NFκB cascade. A unique, low molecular weight complex of the IKK-β subunit can be observed in MP-12-infected cells, which we have labeled IKK-β2. The IKK-β2 complex retains kinase activity and phosphorylates an IκBα substrate. Inhibition of the IKK complex using inhibitors impairs viral replication, thus alluding to the requirement of an active IKK complex to the viral life cycle. Curcumin strongly down-regulates levels of extracellular infectious virus. Our data demonstrated that curcumin binds to and inhibits kinase activity of the IKK-β2 complex in infected cells. Curcumin partially exerts its inhibitory influence on RVFV replication by interfering with IKK-β2-mediated phosphorylation of the viral protein NSs and by altering the cell cycle of treated cells. Curcumin also demonstrated efficacy against ZH501, the fully virulent version of RVFV. Curcumin treatment down-regulated viral replication in the liver of infected animals. Our data point to the possibility that RVFV infection may result in the generation of novel versions of host components (such as IKK-β2) that, by virtue of altered protein interaction and function, qualify as unique therapeutic targets. PMID:22847000

  7. Comparative study of curcumin and curcumin formulated in a solid dispersion: Evaluation of their antigenotoxic effects

    PubMed Central

    Mendonça, Leonardo Meneghin; Machado, Carla da Silva; Teixeira, Cristiane Cardoso Correia; de Freitas, Luis Alexandre Pedro; Bianchi, Maria Lourdes Pires; Antunes, Lusânia Maria Greggi

    2015-01-01

    Abstract Curcumin (CMN) is the principal active component derived from the rhizome of Curcuma longa (Curcuma longa L.). It is a liposoluble polyphenolic compound that possesses great therapeutic potential. Its clinical application is, however, limited by the low concentrations detected following oral administration. One key strategy for improving the solubility and bioavailability of poorly water-soluble drugs is solid dispersion, though it is not known whether this technique might influence the pharmacological effects of CMN. Thus, in this study, we aimed to evaluate the antioxidant and antigenotoxic effects of CMN formulated in a solid dispersion (CMN SD) compared to unmodified CMN delivered to Wistar rats. Cisplatin (cDDP) was used as the damage-inducing agent in these evaluations. The comet assay results showed that CMN SD was not able to reduce the formation of cDDP-DNA crosslinks, but it decreased the formation of micronuclei induced by cDDP and attenuated cDDP-induced oxidative stress. Furthermore, at a dose of 50 mg/kg b.w. both CMN SD and unmodified CMN increased the expression of Tp53 mRNA. Our results showed that CMN SD did not alter the antigenotoxic effects observed for unmodified CMN and showed effects similar to those of unmodified CMN for all of the parameters evaluated. In conclusion, CMN SD maintained the protective effects of unmodified CMN with the advantage of being chemically water soluble, with maximization of absorption in the gastrointestinal tract. Thus, the optimization of the physical and chemical properties of CMN SD may increase the potential for the therapeutic use of curcumin. PMID:26537603

  8. Curcumin as fluorescent probe for directly monitoring in vitro uptake of curcumin combined paclitaxel loaded PLA-TPGS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai Nam; Thu Ha, Phuong; Sao Nguyen, Anh; Nguyen, Dac Tu; Doan Do, Hai; Nguyen Thi, Quy; Nhung Hoang Thi, My

    2016-06-01

    Theranostics, which is the combination of both therapeutic and diagnostic capacities in one dose, is a promising tool for both clinical application and research. Although there are many chromophores available for optical imaging, their applications are limited due to the photobleaching property or intrinsic toxicity. Curcumin, a natural compound extracted from the rhizome of curcuma longa, is well known thanks to its bio-pharmaceutical activities and strong fluorescence as biocompatible probe for bio-imaging. In this study, we aimed to fabricate a system with dual functions: diagnostic and therapeutic, based on poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) micelles co-loaded curcumin (Cur) and paclitaxel (PTX). Two kinds of curcumin nanoparticle (NP) were fabricated and characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy and dynamic light scattering methods. The cellular uptake and fluorescent activities of curcumin in these systems were also tested by bioassay studies, and were compared with paclitaxe-oregon. The results showed that (Cur + PTX)-PLA-TPGS NPs is a potential system for cancer theranostics.

  9. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Gou, Maling; Men, Ke; Shi, Huashan; Xiang, Mingli; Zhang, Juan; Song, Jia; Long, Jianlin; Wan, Yang; Luo, Feng; Zhao, Xia; Qian, Zhiyong

    2011-04-01

    Curcumin is an effective and safe anticancer agent, but its hydrophobicity inhibits its clinical application. Nanotechnology provides an effective method to improve the water solubility of hydrophobic drug. In this work, curcumin was encapsulated into monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles through a single-step nano-precipitation method, creating curcumin-loaded MPEG-PCL (Cur/MPEG-PCL) micelles. These Cur/MPEG-PCL micelles were monodisperse (PDI = 0.097 +/- 0.011) with a mean particle size of 27.3 +/- 1.3 nm, good re-solubility after freeze-drying, an encapsulation efficiency of 99.16 +/- 1.02%, and drug loading of 12.95 +/- 0.15%. Moreover, these micelles were prepared by a simple and reproducible procedure, making them potentially suitable for scale-up. Curcumin was molecularly dispersed in the PCL core of MPEG-PCL micelles, and could be slow-released in vitro. Encapsulation of curcumin in MPEG-PCL micelles improved the t1/2 and AUC of curcuminin vivo. As well as free curcumin, Cur/MPEG-PCL micelles efficiently inhibited the angiogenesis on transgenic zebrafish model. In an alginate-encapsulated cancer cell assay, intravenous application of Cur/MPEG-PCL micelles more efficiently inhibited the tumor cell-induced angiogenesisin vivo than that of free curcumin. MPEG-PCL micelle-encapsulated curcumin maintained the cytotoxicity of curcumin on C-26 colon carcinoma cellsin vitro. Intravenous application of Cur/MPEG-PCL micelle (25 mg kg-1curcumin) inhibited the growth of subcutaneous C-26 colon carcinoma in vivo (p < 0.01), and induced a stronger anticancer effect than that of free curcumin (p < 0.05). In conclusion, Cur/MPEG-PCL micelles are an excellent intravenously injectable aqueous formulation of curcumin; this formulation can inhibit the growth of colon carcinoma through inhibiting angiogenesis and directly killing cancer cells.

  10. Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species

    PubMed Central

    Papież, Monika A; Krzyściak, Wirginia; Szade, Krzysztof; Bukowska-Straková, Karolina; Kozakowska, Magdalena; Hajduk, Karolina; Bystrowska, Beata; Dulak, Jozef; Jozkowicz, Alicja

    2016-01-01

    Curcumin may exert a more selective cytotoxic effect in tumor cells with elevated levels of free radicals. Here, we investigated whether curcumin can modulate etoposide action in myeloid leukemia cells and in normal cells of hematopoietic origin. HL-60 cell line, normal myeloid progenitor cluster of differentiation (CD)-34+ cells, and granulocytes were incubated for 4 or 24 hours at different concentrations of curcumin and/or etoposide. Brown Norway rats with acute myeloid leukemia (BNML) were used to prove the influence of curcumin on etoposide action in vivo. Rats were treated with curcumin for 23 days and etoposide was administered for the final 3 days of the experiment. Curcumin synergistically potentiated the cytotoxic effect of etoposide, and it intensified apoptosis and phosphorylation of the histone H2AX induced by this cytostatic drug in leukemic HL-60 cells. In contrast, curcumin did not significantly modify etoposide-induced cytotoxicity and H2AX phosphorylation in normal CD34+ cells and granulocytes. Curcumin modified the cytotoxic action of etoposide in HL-60 cells through intensification of free radical production because preincubation with N-acetyl-l-cysteine (NAC) significantly reduced the cytotoxic effect of curcumin itself and a combination of two compounds. In contrast, NAC did not decrease the cytotoxic effect of etoposide. Thus, oxidative stress plays a greater role in the cytotoxic effect of curcumin than that of etoposide in HL-60 cells. In vitro results were confirmed in a BNML model. Pretreatment with curcumin enhanced the antileukemic activity of etoposide in BNML rats (1.57-fold tumor reduction versus etoposide alone; P<0.05) and induced apoptosis of BNML cells more efficiently than etoposide alone (1.54-fold change versus etoposide alone; P<0.05), but this treatment protected nonleukemic B-cells from apoptosis. Thus, curcumin can increase the antileukemic effect of etoposide through reactive oxygen species in sensitive myeloid leukemia

  11. Terrestrial Spaceflight Analogs: Antarctica

    NASA Technical Reports Server (NTRS)

    Crucian, Brian

    2013-01-01

    Alterations in immune cell distribution and function, circadian misalignment, stress and latent viral reactivation appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Others are unique to the Concordia analog. Based on some initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune system changes and mission stress effects. An ongoing smaller control study at Neumayer III will address the influence of the hypoxic variable. Changes were observed in the peripheral blood leukocyte distribution consistent with immune mobilization, and similar to those observed during spaceflight. Alterations in cytokine production profiles were observed during winterover that are distinct from those observed during spaceflight, but potentially consistent with those observed during persistent hypobaric hypoxia. The reactivation of latent herpesviruses was observed during overwinter/isolation, that is consistently associated with dysregulation in immune function.

  12. Analogy Construction versus Analogy Solution, and Their Influence on Transfer

    ERIC Educational Resources Information Center

    Harpaz-Itay, Yifat; Kaniel, Shlomo; Ben-Amram, Einat

    2006-01-01

    This study compares transfer performed by subjects trained to solve verbal analogies, with transfer by subjects trained to construct them. The first group (n = 57) received instruction in a strategy to solve verbal analogies and the second group (n = 66) was trained in strategies for constructing such analogies. Before and after intervention, all…

  13. Analog storage integrated circuit

    DOEpatents

    Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

    1989-03-07

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

  14. Antarctic analogs for Enceladus

    NASA Astrophysics Data System (ADS)

    Murray, A. E.; Andersen, D. T.; McKay, C. P.

    2014-12-01

    Enceladus is a new world for Astrobiology. The Cassini discovery of the icy plume emanating from the South Polar region indicates an active world, where detection of water, organics, sodium, and nano-particle silica in the plume strongly suggests that the source is a subsurface salty ocean reservoir. Recent gravity data from Cassini confirms the presence of a regional sea extending north to 50°S. An ocean habitat under a thick ice cover is perhaps a recurring theme in the Outer Solar System, but what makes Enceladus unique is that the plume jetting out into space is carrying samples of this ocean. Therefore, through the study of Enceladus' plumes we can gain new insights not only of a possible habitable world in the Solar Systems, but also about the formation and evolution of other icy-satellites. Cassini has been able to fly through this plume - effectively sampling the ocean. It is time to plan for future missions that do more detailed analyses, possibly return samples back to Earth and search for evidence of life. To help prepare for such missions, the need for earth-based analog environments is essential for logistical, methodological (life detection) and theoretical development. We have undertaken studies of two terrestrial environments that are close analogs to Enceladus' ocean: Lake Vida and Lake Untersee - two ice-sealed Antarctic lakes that represent physical, chemical and possibly biological analogs for Enceladus. By studying the diverse biology and physical and chemical constraints to life in these two unique lakes we will begin to understand the potential habitability of Enceladus and other icy moons, including possible sources of nutrients and energy, which together with liquid water are the key ingredients for life. Analog research such as this will also enable us to develop and test new strategies to search for evidence of life on Enceladus.

  15. Analog storage integrated circuit

    DOEpatents

    Walker, J. T.; Larsen, R. S.; Shapiro, S. L.

    1989-01-01

    A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

  16. A Transiting Jupiter Analog

    NASA Astrophysics Data System (ADS)

    Kipping, D. M.; Torres, G.; Henze, C.; Teachey, A.; Isaacson, H.; Petigura, E.; Marcy, G. W.; Buchhave, L. A.; Chen, J.; Bryson, S. T.; Sandford, E.

    2016-04-01

    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of (0.91+/- 0.02) {R}{{J}}, a low orbital eccentricity ({0.06}-0.04+0.10), and an equilibrium temperature of (131+/- 3) K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric coverage, we are able to uniquely and precisely measure the orbital period of this post snow-line planet (1071.2323 ± 0.0006d), paving the way for follow-up of this K = 11.8 mag target.

  17. Nanoparticles Containing Curcumin Useful for Suppressing Macrophages In Vivo in Mice.

    PubMed

    Amano, Chie; Minematsu, Hideki; Fujita, Kazuyo; Iwashita, Shinki; Adachi, Masaki; Igarashi, Koichi; Hinuma, Shuji

    2015-01-01

    To explore a novel method using liposomes to suppress macrophages, we screened food constituents through cell culture assays. Curcumin was one of the strongest compounds exhibiting suppressive effects on macrophages. We subsequently tried various methods to prepare liposomal curcumin, and eventually succeeded in preparing liposomes with sufficient amounts of curcumin to suppress macrophages by incorporating a complex of curcumin and bovine serum albumin. The diameter of the resultant nanoparticles, the liposomes containing curcumin, ranged from 60 to 100 nm. Flow cytometric analyses revealed that after intraperitoneal administration of the liposomes containing curcumin into mice, these were incorporated mainly by macrophages positive for F4/80, CD36, and CD11b antigens. Peritoneal cells prepared from mice injected in vivo with the liposomes containing curcumin apparently decreased interleukin-6-producing activities. Major changes in body weight and survival rates in the mice were not observed after administrating the liposomes containing curcumin. These results indicate that the liposomes containing curcumin are safe and useful for the selective suppression of macrophages in vivo in mice. PMID:26361331

  18. Protective Effects of Curcumin, Vitamin C, or their Combination on Cadmium-Induced Hepatotoxicity

    PubMed Central

    Tarasub, Naovarat; Junseecha, Thongbai; Tarasub, Chinnawat; Na Ayutthaya, Watcharaporn Devakul

    2012-01-01

    Curcumin, a biologically active compound from turmeric, and vitamin C act as a natural antioxidant and potent chemopreventive agent. The objective of the study was to investigate whether the combined pretreatment with curcumin and vitamin C offers more beneficial effects than that provided by either of them alone in reversing cadmium (Cd)- induced hepatotoxicity. For this purpose, 64 adult male Wistar rats, equally divided into control and seven treated groups, received either Cd (as CdCl2 5 mg/kg), curcumin 400 mg/kg, curcumin 200 or 400 mg/kg + CdCl2, vitamin C 100 mg/kg + CdCl2, curcumin 200 or 400 mg/kg + vitamin C + CdCl2. All groups were treated by gavage for 27 days. The results showed that Cd treatment increased significantly lipid peroxidation levels,decreased significantly the glutathione levels, increased significantly on metallothionein (MT) expressions including the degenerative changes of liver histological tissues were observed. The treatment of Cd-exposed rats with curcumin or vitamin C alone could not reverse Cd-induced the above changes. The combined treatment with curcumin along with vitamin C before Cd intoxication was more effective than that with either of them alone in reducing such changes and reverse the changes almost similar to that of control. In conclusion, the results demonstrated that the combined pretreatment with curcumin along with vitamin C could recover the alterations and offer more protection than curcumin or vitamin C alone against Cd hepatotoxicity. PMID:24826037

  19. Investigation on the interaction behavior between curcumin and PAMAM dendrimer by spectral and docking studies

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Zhang, Hongmei; Wang, Yanqing; Yang, Jinming; Jiang, Fuguang

    2013-05-01

    The interactions between PAMAM-C12 25% and curcumin were studied by UV/vis, fluorescence spectroscopy, and molecular modeling methods. The experimental results showed that the formation of PAMAM-C12 25%@curcumin non-covalent adduct induced the fluorescence quenching of PAMAM-C12 25%; Curcumin entered the interface of PAMAM-C12 25% with mainly five classes of binding sites by hydrophobic, hydrogen bonds, and van der Waals forces interactions. The bigger values of binding constants indicated that PAMAM-C12 25% hold the curcumin tightly.

  20. Nanoparticles Containing Curcumin Useful for Suppressing Macrophages In Vivo in Mice

    PubMed Central

    Amano, Chie; Minematsu, Hideki; Fujita, Kazuyo; Iwashita, Shinki; Adachi, Masaki; Igarashi, Koichi; Hinuma, Shuji

    2015-01-01

    To explore a novel method using liposomes to suppress macrophages, we screened food constituents through cell culture assays. Curcumin was one of the strongest compounds exhibiting suppressive effects on macrophages. We subsequently tried various methods to prepare liposomal curcumin, and eventually succeeded in preparing liposomes with sufficient amounts of curcumin to suppress macrophages by incorporating a complex of curcumin and bovine serum albumin. The diameter of the resultant nanoparticles, the liposomes containing curcumin, ranged from 60 to 100 nm. Flow cytometric analyses revealed that after intraperitoneal administration of the liposomes containing curcumin into mice, these were incorporated mainly by macrophages positive for F4/80, CD36, and CD11b antigens. Peritoneal cells prepared from mice injected in vivo with the liposomes containing curcumin apparently decreased interleukin-6-producing activities. Major changes in body weight and survival rates in the mice were not observed after administrating the liposomes containing curcumin. These results indicate that the liposomes containing curcumin are safe and useful for the selective suppression of macrophages in vivo in mice. PMID:26361331

  1. Structure activity relationship study of curcumin analogues toward the amyloid-beta aggregation inhibitor.

    PubMed

    Endo, Hitoshi; Nikaido, Yuri; Nakadate, Mamiko; Ise, Satomi; Konno, Hiroyuki

    2014-12-15

    Inhibition of the amyloid β aggregation process could possibly prevent the onset of Alzheimer's disease. In this article, we report a structure-activity relationship study of curcumin analogues for anti amyloid β aggregation activity. Compound 7, the ideal amyloid β aggregation inhibitor in vitro among synthesized curcumin analogues, has not only potent anti amyloid β aggregation effects, but also water solubility more than 160 times that of curcumin. In addition, new approaches to improve water solubility of curcumin-type compounds are proposed. PMID:25467149

  2. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin.

    PubMed

    Chuah, Ai Mey; Jacob, Bindya; Jie, Zhang; Ramesh, Subbarayan; Mandal, Shibajee; Puthan, Jithesh K; Deshpande, Parag; Vaidyanathan, Vadakkanchery V; Gelling, Richard W; Patel, Gaurav; Das, Tapas; Shreeram, Sathyavageeswaran

    2014-08-01

    Curcumin has been shown to have a wide variety of biological activities for various human diseases including inflammation, diabetes and cancer. However, the poor oral bioavailability of curcumin poses a significant pharmacological barrier to its use therapeutically and/or as a functional food. Here we report the evaluation of the bioavailability and bio-efficacy of curcumin as an amorphous solid dispersion (ASD) in a matrix consisting of hydroxypropyl methyl cellulose (HPMC), lecithin and isomalt using hot melt extrusion for application in food products. Oral pharmacokinetic studies in rats showed that ASD curcumin was ∼13-fold more bioavailable compared to unformulated curcumin. Evaluation of the anti-inflammatory activity of ASD curcumin in vivo demonstrated enhanced bio-efficacy compared to unformulated curcumin at 10-fold lower dose. Thus ASD curcumin provides a more potent and efficacious formulation of curcumin which may also help in masking the colour, taste and smell which currently limit its application as a functional food ingredient. PMID:24629962

  3. Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer

    PubMed Central

    Chen, Chun-Chieh; Sureshbabul, Munisamy; Chen, Huei-Wen; Lin, Yu-Shuang; Lee, Jen-Yi; Hong, Qi-Sheng; Yang, Ya-Chien

    2013-01-01

    Colorectal cancer (CRC) is a serious public health problem that results due to changes of diet and various environmental stress factors in the world. Curcumin is a traditional medicine used for treatment of a wide variety of tumors. However, antimetastasis mechanism of curcumin on CRC has not yet been completely investigated. Here, we explored the underlying molecular mechanisms of curcumin on metastasis of CRC cells in vitro and in vivo. Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo. We found that curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells. Curcumin inhibits focal adhesion kinase (FAK) phosphorylation and enhances the expressions of several extracellular matrix components which play a critical role in invasion and metastasis. Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells. Moreover, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT. These results suggest that curcumin executes its antimetastasis function through downregulation of Sp-1, FAK, and CD24 and by promoting E-cadherin expression in CRC cells. PMID:23970932

  4. Curcumin exerts antitumor effects in retinoblastoma cells by regulating the JNK and p38 MAPK pathways.

    PubMed

    Yu, Xiaoming; Zhong, Jingtao; Yan, Li; Li, Jie; Wang, Hui; Wen, Yan; Zhao, Yu

    2016-09-01

    Curcumin, a naturally occurring polyphenolic compound present in turmeric (Curcuma longa), exerts antitumor effects in various types of malignancy. However, the precise mechanisms responsible for the effects of curcumin on retinoblastoma (RB) cells have not been fully explored. In the present study, the molecular mechanisms by which curcumin exerts its anticancer effects in RB Y79 cells were investigated. The results showed that curcumin reduced cell viability in Y79 cells. Curcumin induced G1 phase arrest through downregulating the expression of cyclin D3 and cyclin-dependent kinase (CDK)2/6 and upregulating the expression of CDK inhibitor proteins p21 and p27. Curcumin-induced apoptosis of Y79 cells occurred through the activation of caspases-9/-3. Moreover, flow cytometric analysis showed that curcumin induced mitochondrial membrane potential (∆Ψm) collapse in Y79 cells. We also found that curcumin induced the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). JNK and p38 MAPK inhibitors significantly suppressed curcumin‑induced activation of caspases-9/-3 and inhibited the apoptosis of Y79 cells. Taken together, our results suggest that curcumin induced the apoptosis of Y79 cells through the activation of JNK and p38 MAPK pathways. These findings provide a novel treatment strategy for human RB. PMID:27432244

  5. Curcumin Sensitizes Silymarin to Exert Synergistic Anticancer Activity in Colon Cancer Cells

    PubMed Central

    Montgomery, Amanda; Adeyeni, Temitope; San, KayKay; Heuertz, Rita M.; Ezekiel, Uthayashanker R.

    2016-01-01

    We studied combinatorial interactions of two phytochemicals, curcumin and silymarin, in their action against cancer cell proliferation. Curcumin is the major component of the spice turmeric. Silymarin is a bioactive component of milk thistle used as a protective supplement against liver disease. We studied antiproliferative effects of curcumin alone, silymarin alone and combinations of curcumin and silymarin using colon cancer cell lines (DLD-1, HCT116, LoVo). Curcumin inhibited colon cancer cell proliferation in a concentration-dependent manner, whereas silymarin showed significant inhibition only at the highest concentrations assessed. We found synergistic effects when colon cancer cells were treated with curcumin and silymarin together. The combination treatment led to inhibition of colon cancer cell proliferation and increased apoptosis compared to single compound treated cells. Combination treated cells exhibited marked cell rounding and membrane blebbing of apoptotic cells. Curcumin treated cells showed 3-fold more caspase3/7 activity whereas combination treated cells showed 5-fold more activity compared to control and silymarin treated cells. When DLD-1 cells were pre-exposed to curcumin, followed by treatment with silymarin, the cells underwent a high amount of cell death. The pre-exposure studies indicated curcumin sensitization of silymarin effect. Our results indicate that combinatorial treatments using phytochemicals are effective against colorectal cancer. PMID:27390600

  6. Comparison of pharmaceutical nanoformulations for curcumin: Enhancement of aqueous solubility and carrier retention.

    PubMed

    Allijn, Iris E; Schiffelers, Raymond M; Storm, Gert

    2016-06-15

    Curcumin, originally used in traditional medicine and as a spice, is one of the most studied and most popular natural products of the past decade. It has been described to be an effective anti-inflammatory and anti-cancer drug and protects against chronic diseases such as rheumatoid arthritis and atherosclerosis. Despite these promising pharmacological properties, curcumin is also very lipophilic, which makes its formulation challenging. Ideally the nanocarrier should additionally also retain the encapsulated curcumin to provide target tissue accumulation. In this study we aimed to tackle this aqueous solubility and carrier retention challenge of curcumin by encapsulating curcumin in different nanoparticles. We successfully loaded LDL (30nm), polymeric micelles (80nm), liposomes (180nm) and Intralipid (280nm) with curcumin. The relative loading capacity was inversely related to the size of the particle. The stability for all formulations was determined in fetal bovine serum over a course of 24h. Although all curcumin-nanoparticles were stable in buffer solution, all leaked more than 70% of curcumin under physiological conditions. Altogether, tested nanoparticles do solve the aqueous insolubility problem of curcumin, however, because of their leaky nature, the challenge of carrier retention remains. PMID:27139142

  7. Development and performance evaluation of novel nanoparticles of a grafted copolymer loaded with curcumin.

    PubMed

    Mutalik, Srinivas; Suthar, Neelam A; Managuli, Renuka S; Shetty, Pallavi K; Avadhani, Kiran; Kalthur, Guruprasad; Kulkarni, Raghavendra V; Thomas, Ranjeny

    2016-05-01

    Inflammatory bowel disease (IBD) is an inflammatory condition with mucosal ulceration, edema and hemorrhage of gastrointestinal tract. Curcumin has been shown to mitigate colitis in animal models. However, its usefulness is reduced due to poor pharmacokinetic behavior and low oral bioavailability. To address this, novel pH-sensitive hydrolyzed polyacrylamide-grafted-xanthan gum (PAAm-g-XG) nanoparticles (NPs) loaded with curcumin were prepared for colonic delivery. Optimized nanoparticles (CN20) were spherical, with an average size of 425 nm. A negligible amount of curcumin (≈8%) was released from CN20 NPs in pH 1.2 and 4.5 solutions. When the pH was increased to 7.2, curcumin release was comparatively faster than that observed with pH 1.2 and 4.5 collectively. In pH 6.8 solution, excellent release of curcumin was observed. Highest curcumin release was observed when rat caecal contents were incorporated in pH 6.8 solution, indicating microflora-dependent drug release property of NPs. In acetic acid-induced IBD in rats, curcumin NPs reduced myeloperoxidase and nitrite levels, prevented weight loss and attenuated colonic inflammation. Curcumin was better absorbed systemically in nanoparticulate form with increased Cmax (∼3 fold) and AUC (∼2.5 fold) than when delivered as free curcumin. We demonstrate successful development of grafted co-polymeric NPs containing drug suitable for colon targeting. PMID:26851203

  8. Curcumin loaded mesoporous silica: an effective drug delivery system for cancer treatment.

    PubMed

    Kotcherlakota, Rajesh; Barui, Ayan Kumar; Prashar, Sanjiv; Fajardo, Mariano; Briones, David; Rodríguez-Diéguez, Antonio; Patra, Chitta Ranjan; Gómez-Ruiz, Santiago

    2016-03-01

    In the present study, we report the delivery of anti-cancer drug curcumin to cancer cells using mesoporous silica materials. A series of mesoporous silica material based drug delivery systems (S2, S4 and S6) were first designed and developed through the amine functionalization of KIT-6, MSU-2 and MCM-41 followed by the loading of curcumin. The curcumin loaded materials were characterized with several physico-chemical techniques and thoroughly screened on cancer cells to evaluate their in vitro drug delivery efficacy. All the curcumin loaded silica materials exhibited higher cellular uptake and inhibition of cancer cell viability compared to pristine curcumin. The effective internalization of curcumin in cancer cells through the mesoporous silica materials initiated the generation of intracellular reactive oxygen species and the down regulation of poly ADP ribose polymerase (PARP) enzyme levels compared to free curcumin leading to the activation of apoptosis. This study shows that the anti-cancer activity of curcumin can be potentiated by loading onto mesoporous silica materials. Therefore, we strongly believe that mesoporous silica based curcumin loaded drug delivery systems may have future potential applications for the treatment of cancers. PMID:26674254

  9. Curcumin Sensitizes Silymarin to Exert Synergistic Anticancer Activity in Colon Cancer Cells.

    PubMed

    Montgomery, Amanda; Adeyeni, Temitope; San, KayKay; Heuertz, Rita M; Ezekiel, Uthayashanker R

    2016-01-01

    We studied combinatorial interactions of two phytochemicals, curcumin and silymarin, in their action against cancer cell proliferation. Curcumin is the major component of the spice turmeric. Silymarin is a bioactive component of milk thistle used as a protective supplement against liver disease. We studied antiproliferative effects of curcumin alone, silymarin alone and combinations of curcumin and silymarin using colon cancer cell lines (DLD-1, HCT116, LoVo). Curcumin inhibited colon cancer cell proliferation in a concentration-dependent manner, whereas silymarin showed significant inhibition only at the highest concentrations assessed. We found synergistic effects when colon cancer cells were treated with curcumin and silymarin together. The combination treatment led to inhibition of colon cancer cell proliferation and increased apoptosis compared to single compound treated cells. Combination treated cells exhibited marked cell rounding and membrane blebbing of apoptotic cells. Curcumin treated cells showed 3-fold more caspase3/7 activity whereas combination treated cells showed 5-fold more activity compared to control and silymarin treated cells. When DLD-1 cells were pre-exposed to curcumin, followed by treatment with silymarin, the cells underwent a high amount of cell death. The pre-exposure studies indicated curcumin sensitization of silymarin effect. Our results indicate that combinatorial treatments using phytochemicals are effective against colorectal cancer. PMID:27390600

  10. Investigation on the interaction behavior between curcumin and PAMAM dendrimer by spectral and docking studies.

    PubMed

    Cao, Jian; Zhang, Hongmei; Wang, Yanqing; Yang, Jinming; Jiang, Fuguang

    2013-05-01

    The interactions between PAMAM-C12 25% and curcumin were studied by UV/vis, fluorescence spectroscopy, and molecular modeling methods. The experimental results showed that the formation of PAMAM-C12 25%@curcumin non-covalent adduct induced the fluorescence quenching of PAMAM-C12 25%; Curcumin entered the interface of PAMAM-C12 25% with mainly five classes of binding sites by hydrophobic, hydrogen bonds, and van der Waals forces interactions. The bigger values of binding constants indicated that PAMAM-C12 25% hold the curcumin tightly. PMID:23501936

  11. Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer.

    PubMed

    Chen, Chun-Chieh; Sureshbabul, Munisamy; Chen, Huei-Wen; Lin, Yu-Shuang; Lee, Jen-Yi; Hong, Qi-Sheng; Yang, Ya-Chien; Yu, Sung-Liang

    2013-01-01

    Colorectal cancer (CRC) is a serious public health problem that results due to changes of diet and various environmental stress factors in the world. Curcumin is a traditional medicine used for treatment of a wide variety of tumors. However, antimetastasis mechanism of curcumin on CRC has not yet been completely investigated. Here, we explored the underlying molecular mechanisms of curcumin on metastasis of CRC cells in vitro and in vivo. Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo. We found that curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells. Curcumin inhibits focal adhesion kinase (FAK) phosphorylation and enhances the expressions of several extracellular matrix components which play a critical role in invasion and metastasis. Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells. Moreover, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT. These results suggest that curcumin executes its antimetastasis function through downregulation of Sp-1, FAK, and CD24 and by promoting E-cadherin expression in CRC cells. PMID:23970932

  12. Cationic triblock copolymer micelles enhance antioxidant activity, intracellular uptake and cytotoxicity of curcumin.

    PubMed

    Yoncheva, Krassimira; Kamenova, Katya; Perperieva, Teodora; Hadjimitova, Vera; Donchev, Petar; Kaloyanov, Kaloyan; Konstantinov, Spiro; Kondeva-Burdina, Magdalena; Tzankova, Virginia; Petrov, Petar

    2015-07-25

    The aim of the present study was to develop curcumin loaded cationic polymeric micelles and to evaluate their loading, preservation of curcumin antioxidant activity and intracellular uptake ability. The micelles were prepared from a triblock copolymer consisting of poly(ϵ-caprolactone) and very short poly(2-(dimethylamino) ethyl methacrylate) segments (PDMAEMA9-PCL70-PDMAEMA9). The micelles showed monomodal size distribution, mean diameter of 145 nm, positive charge (+72 mV), critical micellar concentration around 0.05 g/l and encapsulation efficiency of 87%. The ability of the micellar curcumin to scavenge the ABTS radical and hypochlorite ions was higher than that of the free curcumin. Confocal microscopy revealed that the uptake of curcumin by chronic myeloid leukemia derived K-562 cells and human multiple myeloma cells U-266 was more intensive when curcumin was loaded into the micelles. These results correlated with the higher cytotoxicity of the micellar curcumin compared to free curcumin. Intraperitoneal treatment of Wistar rats indicated that PDMAEMA-PCL-PDMAEMA copolymer, comprising very short cationic chains, did not change the levels of malondialdehyde and glutathione in livers indicating an absence of oxidative stress. Thus, PDMAEMA-PCL-PDMAEMA triblock micelles could be considered efficient and safe platform for curcumin delivery. PMID:26026253

  13. Comparison of the Effects of Glutamine, Curcumin, and Nesfatin-1 on the Gastric Serosal Surface Neomucosa Formation: An Experimental Rodent Model.

    PubMed

    Gulcicek, Osman Bilgin; Solmaz, Ali; Yiğitbaş, Hakan; Ercetin, Candas; Yavuz, Erkan; Ozdogan, Kamil; Arici, Sinan; Akkalp, Asli Kahraman; Sarac, Tulin; Çelebi, Fatih; Celik, Atilla

    2016-01-01

    Introduction. Short bowel syndrome can crop up if more than 50% of small intestine is resected or when less than 100 cm of small bowel is left. Glutamine is the main food source of enterocytes. Curcumin has protective effects on intestinal ischemia-reperfusion damage. Nesfatin-1 is a satiety molecule. It has protective effects on gastric mucosa. The primary purpose of this study is to compare effects of glutamine, curcumin, and nesfatin-1 on the gastric serosal surface neomucosa formation on rats. Materials and Methods. 24 Wistar-Hannover rats were randomly divided into 4 groups and treated with saline, glutamine, curcumin, and nesfatin-1 after ileogastric anastomosis. After 14 days all rats were euthanized, and blood was collected. En bloc resection of anastomotic part was performed for histopathological examination. Results. PDGF, TGF-β, and VEGF levels and neomucosa formation were higher in glutamine group (p = 0.003, p = 0.003, and p = 0.025). Glutamine promotes the intestinal neomucosa formation on the gastric serosal surface and augments growth factors essential for neomucosa formation on rats. Conclusion. Glutamine may be used in short bowel syndrome for increasing the absorption surface area. But that needs to be determined by adequately powered clinical trials. PMID:27525002

  14. A new class of hybrid anticancer agents inspired by the synergistic effects of curcumin and genistein: Design, synthesis, and anti-proliferative evaluation.

    PubMed

    Chen, Qiao-Hong; Yu, Kevin; Zhang, Xiaojie; Chen, Guanglin; Hoover, Andrew; Leon, Francisco; Wang, Rubing; Subrahmanyam, Nithya; Addo Mekuria, Ermias; Harinantenaina Rakotondraibe, Liva

    2015-10-15

    Inspired by the synergistic effects of dietary natural products with different scaffolds on the inhibition of cancer cell proliferation, incorporation of central (1E,4E)-1,4-penta-dien-3-one linker (an optimal substitute for the central metabolically unstable diketone linker of curcumin), 1-alkyl-1H-imidazol-2-yl (a promising bioisostere of terminal aryl group in curcumin), and chromone (the common pharmacophore in genistein and quercetin) into one chemical entity resulted in ten new hybrid molecules, 3-((1E,4E)-5-(1-alkyl-1H-imidazol-2-yl)-3-oxopenta-1,4-dien-1-yl)-4H-chromen-4-ones. They were synthesized through a three-step transformation using acid-catalyzed aldol condensation as key step. The WST-1 cell proliferation assay showed that they have greater anti-proliferative potency than curcumin, quercetin, and genistein on both androgen-dependent and androgen-independent human prostate cancer cells. PMID:26341135

  15. Comparison of the Effects of Glutamine, Curcumin, and Nesfatin-1 on the Gastric Serosal Surface Neomucosa Formation: An Experimental Rodent Model

    PubMed Central

    Solmaz, Ali; Yiğitbaş, Hakan; Yavuz, Erkan; Ozdogan, Kamil; Arici, Sinan; Sarac, Tulin; Çelebi, Fatih; Celik, Atilla

    2016-01-01

    Introduction. Short bowel syndrome can crop up if more than 50% of small intestine is resected or when less than 100 cm of small bowel is left. Glutamine is the main food source of enterocytes. Curcumin has protective effects on intestinal ischemia-reperfusion damage. Nesfatin-1 is a satiety molecule. It has protective effects on gastric mucosa. The primary purpose of this study is to compare effects of glutamine, curcumin, and nesfatin-1 on the gastric serosal surface neomucosa formation on rats. Materials and Methods. 24 Wistar-Hannover rats were randomly divided into 4 groups and treated with saline, glutamine, curcumin, and nesfatin-1 after ileogastric anastomosis. After 14 days all rats were euthanized, and blood was collected. En bloc resection of anastomotic part was performed for histopathological examination. Results. PDGF, TGF-β, and VEGF levels and neomucosa formation were higher in glutamine group (p = 0.003, p = 0.003, and p = 0.025). Glutamine promotes the intestinal neomucosa formation on the gastric serosal surface and augments growth factors essential for neomucosa formation on rats. Conclusion. Glutamine may be used in short bowel syndrome for increasing the absorption surface area. But that needs to be determined by adequately powered clinical trials. PMID:27525002

  16. Curcumin Nanoparticles Ameliorate ICAM-1 Expression in TNF-α-Treated Lung Epithelial Cells through p47 phox and MAPKs/AP-1 Pathways

    PubMed Central

    Yang, Chuen-Mao; Liang, Chan-Jung; Lin, Chun-Ching; Chiang, Yao-Chang; Lee, Hui-Chun; Ko, Horng-Huey; Lee, Chiang-Wen

    2013-01-01

    Upregulation of intercellular adhesion molecule-1 (ICAM-1) involves adhesions between both circulating and resident leukocytes and the human lung epithelial cells during lung inflammatory reactions. We have previously demonstrated that curcumin-loaded polyvinylpyrrolidone nanoparticles (CURN) improve the anti-inflammatory and anti-oxidative properties of curcumin in hepatocytes. In this study, we focused on the effects of CURN on the expression of ICAM-1 in TNF-α-treated lung epithelial cells and compared these to the effects of curcumin water preparation (CURH). TNF-αinduced ICAM-1 expression, ROS production, and cell-cell adhesion were significantly attenuated by the pretreatment with antioxidants (DPI, APO, or NAC) and CURN, but not by CURH, as revealed by western blot analysis, RT-PCR, promoter assay, and ROS detection and adhesion assay. In addition, treatment of TNF-α-treated cells with CURN and antioxidants also resulted in an inhibition of activation of p47 phox and phosphorylation of MAPKs, as compared to that using CURH. Our findings also suggest that phosphorylation of MAPKs may eventually lead to the activation of transcription factors. We also observed that the effects of TNF-α treatment for 30 min, which includes a significant increase in the binding activity of AP-1 and phosphorylation of c-jun and c-fos genes, were reduced by CURN treatment. In vivo studies have revealed that CURN improved the anti-inflammation activities of CURH in the lung epithelial cells of TNF-α-treated mice. Our results indicate that curcumin-loaded polyvinylpyrrolidone nanoparticles may potentially serve as an anti-inflammatory drug for the treatment of respiratory diseases. PMID:23671702

  17. Affinity of (nat/68)Ga-Labelled Curcumin and Curcuminoid Complexes for β-Amyloid Plaques: Towards the Development of New Metal-Curcumin Based Radiotracers.

    PubMed

    Rubagotti, Sara; Croci, Stefania; Ferrari, Erika; Iori, Michele; Capponi, Pier C; Lorenzini, Luca; Calzà, Laura; Versari, Annibale; Asti, Mattia

    2016-01-01

    Curcumin derivatives labelled with fluorine-18 or technetium-99m have recently shown their potential as diagnostic tools for Alzheimer's disease. Nevertheless, no study by exploiting the labelling with gallium-68 has been performed so far, in spite of its suitable properties (positron emitter, generator produced radionuclide). Herein, an evaluation of the affinity for synthetic β-amyloid fibrils and for amyloid plaques of three (nat/68)Ga-labelled curcumin analogues, namely curcumin curcumin (CUR), bis-dehydroxy-curcumin (bDHC) and diacetyl-curcumin (DAC), was performed. Affinity and specificity were tested in vitro on amyloid synthetic fibrils by using gallium-68 labelled compounds. Post-mortem brain cryosections from Tg2576 mice were used for the ex vivo visualization of amyloid plaques. The affinity of (68)Ga(CUR)₂⁺, (68)Ga(DAC)₂⁺, and (68)Ga(bDHC)₂⁺ for synthetic β-amyloid fibrils was moderate and their uptake could be observed in vitro. On the other hand, amyloid plaques could not be visualized on brain sections of Tg2576 mice after injection, probably due to the low stability of the complexes in vivo and of a hampered passage through the blood-brain barrier. Like curcumin, all (nat/68)Ga-curcuminoid complexes maintain a high affinity for β-amyloid plaques. However, structural modifications are still needed to improve their applicability as radiotracers in vivo. PMID:27608011

  18. Efficacy and safety of Meriva®, a curcumin-phosphatidylcholine complex, during extended administration in osteoarthritis patients.

    PubMed

    Belcaro, Gianni; Cesarone, Maria Rosaria; Dugall, Mark; Pellegrini, Luciano; Ledda, Andrea; Grossi, Maria Giovanna; Togni, Stefano; Appendino, Giovanni

    2010-12-01

    In a previous three-month study of Meriva, a proprietary curcumin-phosphatidylcholine phytosome complex, decreased joint pain and improvement in joint function were observed in 50 osteoarthritis (OA) patients. Since OA is a chronic condition requiring prolonged treatment, the long-term efficacy and safety of Meriva were investigated in a longer (eight months) study involving 100 OA patients. The clinical end points (Western Ontario and McMaster Universities [WOMAC] score, Karnofsky Performance Scale Index, and treadmill walking performance) were complemented by the evaluation of a series of inflammatory markers (interleukin [IL]-1beta, IL-6, soluble CD40 ligand [sCD40L], soluble vascular cell adhesion molecule (sVCAM)-1, and erythrocyte sedimentation rate [ESR]). This represents the most ambitious attempt, to date, to evaluate the clinical efficacy and safety of curcumin as an anti-inflammatory agent. Significant improvements of both the clinical and biochemical end points were observed for Meriva compared to the control group. This, coupled with an excellent tolerability, suggests that Meriva is worth considering for the long-term complementary management of osteoarthritis. PMID:21194249

  19. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity.

    PubMed

    Banerjee, Samya; Chakravarty, Akhil R

    2015-07-21

    Curcumin is a polyphenolic species. As an active ingredient of turmeric, it is well-known for its traditional medicinal properties. The therapeutic values include antioxidant, anti-inflammatory, antiseptic, and anticancer activity with the last being primarily due to inhibition of the transcription factor NF-κB besides affecting several biological pathways to arrest tumor growth and its progression. Curcumin with all these positive qualities has only remained a potential candidate for cancer treatment over the years without seeing any proper usage because of its hydrolytic instability involving the diketo moiety in a cellular medium and its poor bioavailability. The situation has changed considerably in recent years with the observation that curcumin in monoanionic form could be stabilized on binding to a metal ion. The reports from our group and other groups have shown that curcumin in the metal-bound form retains its therapeutic potential. This has opened up new avenues to develop curcumin-based metal complexes as anticancer agents. Zinc(II) complexes of curcumin are shown to be stable in a cellular medium. They display moderate cytotoxicity against prostate cancer and neuroblastoma cell lines. A similar stabilization and cytotoxic effect is reported for (arene)ruthenium(II) complexes of curcumin against a variety of cell lines. The half-sandwich 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane (RAPTA)-type ruthenium(II) complexes of curcumin are shown to be promising cytotoxic agents with low micromolar concentrations for a series of cancer cell lines. In a different approach, cobalt(III) complexes of curcumin are used for its cellular delivery in hypoxic tumor cells using intracellular agents that reduce the metal and release curcumin as a cytotoxin. Utilizing the photophysical and photochemical properties of the curcumin dye, we have designed and synthesized photoactive curcumin metal complexes that are used for cellular imaging by fluorescence microscopy and

  20. Neural Analog Information Processing

    NASA Astrophysics Data System (ADS)

    Hecht-Nielsen, Robert

    1982-07-01

    Neural Analog Information Processing (NAIP) is an effort to develop general purpose pattern classification architectures based upon biological information processing principles. This paper gives an overview of NAIP and its relationship to the previous work in neural modeling from which its fundamental principles are derived. It also presents a theorem concerning the stability of response of a slab (a two dimensional array of identical simple processing units) to time-invariant (spatial) patterns. An experiment (via computer emulation) demonstrating classification of a spatial pattern by a simple, but complete NAIP architecture is described. A concept for hardware implementation of NAIP architectures is briefly discussed.

  1. Characterization and antimicrobial phototoxicity of curcumin dissolved in natural deep eutectic solvents.

    PubMed

    Wikene, Kristine Opsvik; Bruzell, Ellen; Tønnesen, Hanne Hjorth

    2015-12-01

    Natural deep eutectic solvents (NADES) are a novel class of eutectics which show a unique potential as solubilizer of water insoluble compounds. The purpose of the current study was to evaluate the potential of NADES as a solvent for the hydrophobic photosensitizer curcumin for use in antimicrobial photodynamic therapy (aPDT). Two of the seventeen NADES initially prepared (i.e., NADES GS and MC3) solubilized >0.05mg/ml curcumin and were further characterized. The hydrolytic stability (i.e., t1/2) of curcumin in NADES was comparable to or up to 2-10 times higher than previously reported results in cyclodextrins and up to >1300 times higher than results reported in buffer at pH8. The photolytic stability increased by a factor 5.6-10 in GS compared to the most photostable cyclodextrin and surfactant preparations reported previously. This NADES seemed to lock curcumin in its colorless diketo conformer, resulting in higher photostability than in ethanol and in the NADES MC3. The curcumin-NADES preparations dissolved rapidly in aqueous media and formed supersaturated solutions of curcumin. Precipitation of curcumin was observed after ≤1h depending on the dilution factor (pH<8). The NADES MC3 containing curcumin photoinactivated Escherichia coli at a lower curcumin concentration (1.25μM) than in any previously investigated preparations of curcumin. The ability of NADES to lock curcumin within one specific molecular conformation and also to potentiate the phototoxic effect of this photosensitizer emphasizes the unique properties of the NADES as a solvent. PMID:26410725

  2. Synergistic anticancer effects of curcumin and resveratrol in Hepa1-6 hepatocellular carcinoma cells.

    PubMed

    Du, Qin; Hu, Bing; An, Hong-Mei; Shen, Ke-Ping; Xu, Ling; Deng, Shan; Wei, Meng-Meng

    2013-05-01

    Hepatocellular carcinoma remains one of the most prevalent malignancies worldwide. Curcuma aromatica and Polygonum cuspidatum are one of the commonly used paired-herbs for liver cancer treatment. Curcumin and resveratrol are the major anticancer constituents of Curcuma aromatica and Polygonum cuspidatum, respectively. Curcumin and resveratrol have been found to exhibit a synergistic anticancer effect in colon cancer. However, the combined effect of curcumin and resveratrol against hepatocellular carcinoma remains unknown. In the present study, we evaluated the combined effects of curcumin and resveratrol in hepatocellular carcinoma Hepa1-6 cells. The results showed that curcumin and resveratrol significantly inhibited the proliferation of Hepa1-6 cells in a dose- and time-dependent manner. The combination treatment of curcumin and resveratrol elicited a synergistic antiproliferative effect in Hepa1-6 cells. The apoptosis of Hepa1-6 cells induced by the combination treatment with curcumin and resveratrol was accompanied by caspase-3, -8 and -9 activation, which was completely abrogated by a pan caspase inhibitor, Z-VAD-FMK. Combination of curcumin and resveratrol upregulated intracellular reactive oxygen species (ROS) levels in Hepa1-6 cells. The ROS scavenger, NAC, partially attenuated the apoptosis and caspase activation induced by the combination treatment of curcumin and resveratrol. In addition, the combination of curcumin and resveratrol downregulated XIAP and survivin expression. These data suggest that the combination treatment of curcumin and resveratrol is a promising novel anticancer strategy for liver cancer. The present study also provides new insights into the effective mechanism of paired-herbs in traditional Chinese medicine. PMID:23446753

  3. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses.

    PubMed

    Aggarwal, Bharat B; Deb, Lokesh; Prasad, Sahdeo

    2015-01-01

    Curcumin (diferuloylmethane), a golden pigment from turmeric, has been linked with antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antidiabetic properties. Most of the these activities have been assigned to methoxy, hydroxyl, α,β-unsaturated carbonyl moiety or to diketone groups present in curcumin. One of the major metabolites of curcumin is tetrahydrocurcumin (THC), which lacks α,β-unsaturated carbonyl moiety and is white in color. Whether THC is superior to curcumin on a molecular level is unclear and thus is the focus of this review. Various studies suggest that curcumin is a more potent antioxidant than THC; curcumin (but not THC) can bind and inhibit numerous targets including DNA (cytosine-5)-methyltransferase-1, heme oxygenase-1, Nrf2, β-catenin, cyclooxygenase-2, NF-kappaB, inducible nitric oxide synthase, nitric oxide, amyloid plaques, reactive oxygen species, vascular endothelial growth factor, cyclin D1, glutathione, P300/CBP, 5-lipoxygenase, cytosolic phospholipase A2, prostaglandin E2, inhibitor of NF-kappaB kinase-1, -2, P38MAPK, p-Tau, tumor necrosis factor-α, forkhead box O3a, CRAC; curcumin can inhibit tumor cell growth and suppress cellular entry of viruses such as influenza A virus and hepatitis C virus much more effectively than THC; curcumin affects membrane mobility; and curcumin is also more effective than THC in suppressing phorbol-ester-induced tumor promotion. Other studies, however, suggest that THC is superior to curcumin for induction of GSH peroxidase, glutathione-S-transferase, NADPH: quinone reductase, and quenching of free radicals. Most studies have indicated that THC exhibits higher antioxidant activity, but curcumin exhibits both pro-oxidant and antioxidant properties. PMID:25547723

  4. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels.

    PubMed

    Chen, Qijing; Tao, Jie; Hei, Hongya; Li, Fangping; Wang, Yunman; Peng, Wen; Zhang, Xuemei

    2015-01-01

    Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. PMID:26672753

  5. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels

    PubMed Central

    Hei, Hongya; Li, Fangping; Wang, Yunman; Peng, Wen; Zhang, Xuemei

    2015-01-01

    Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. PMID:26672753

  6. Cytoprotective responses in HaCaT keratinocytes exposed to high doses of curcumin.

    PubMed

    Lundvig, Ditte M S; Pennings, Sebastiaan W C; Brouwer, Katrien M; Mtaya-Mlangwa, Matilda; Mugonzibwa, Emeria; Kuijpers-Jagtman, Anne Marie; Wagener, Frank A D T G; Von den Hoff, Johannes W

    2015-08-15

    Wound healing is a complex process that involves the well-coordinated interactions of different cell types. Topical application of high doses of curcumin, a plant-derived polyphenol, enhances both normal and diabetic cutaneous wound healing in rodents. For optimal tissue repair interactions between epidermal keratinocytes and dermal fibroblasts are essential. We previously demonstrated that curcumin increased reactive oxygen species (ROS) formation and apoptosis in dermal fibroblasts, which could be prevented by pre-induction of the cytoprotective enzyme heme oxygenase (HO)-1. To better understand the effects of curcumin on wound repair, we now assessed the effects of high doses of curcumin on the survival of HaCaT keratinocytes and the role of the HO system. We exposed HaCaT keratinocytes to curcumin in the presence or absence of the HO-1 inducers heme (FePP) and cobalt protoporphyrin (CoPP). We then assessed cell survival, ROS formation, and caspase activation. Curcumin induced caspase-dependent apoptosis in HaCaT keratinocytes via a ROS-dependent mechanism. Both FePP and CoPP induced HO-1 expression, but only FePP protected against curcumin-induced ROS formation and caspase-mediated apoptosis. In the presence of curcumin, FePP but not CoPP induced the expression of the iron scavenger ferritin. Together, our data show that the induction of ferritin, but not HO, protects HaCaT keratinocytes against cytotoxic doses of curcumin. The differential response of fibroblasts and keratinocytes to high curcumin doses may provide the basis for improving curcumin-based wound healing therapies. PMID:26071936

  7. Interstellar molecules

    NASA Astrophysics Data System (ADS)

    Smith, D.

    1987-09-01

    Some 70 different molecular species have so far been detected variously in diffuse interstellar clouds, dense interstellar clouds, and circumstellar shells. Only simple (diatomic and triatomic) species exist in diffuse clouds because of the penetration of destructive UV radiations, whereas more complex (polyatomic) molecules survive in dense clouds as a result of the shielding against this UV radiation provided by dust grains. A current list of interstellar molecules is given together with a few other molecular species that have so far been detected only in circumstellar shells. Also listed are those interstellar species that contain rare isotopes of several elements. The gas phase ion chemistry is outlined via which the observed molecules are synthesized, and the process by which enrichment of the rare isotopes occurs in some interstellar molecules is described.

  8. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  9. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  10. Enumerating molecules.

    SciTech Connect

    Visco, Donald Patrick, Jr.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  11. Fe3O4-citrate-curcumin: Promising conjugates for superoxide scavenging, tumor suppression and cancer hyperthermia

    NASA Astrophysics Data System (ADS)

    Kitture, Rohini; Ghosh, Sougata; Kulkarni, Parag; Liu, X. L.; Maity, Dipak; Patil, S. I.; Jun, Ding; Dushing, Yogesh; Laware, S. L.; Chopade, B. A.; Kale, S. N.

    2012-03-01

    Fe3O4 nanoparticles have been conjugated to curcumin (CU) molecules via a citrate (CA) linker (Fe-CA-CU) and have been explored for superoxide scavenging, tumor suppression, and cancer hyperthermia. The conjugation chemistry reveals that Fe3+ ions on the nanoparticle surface readily conjugates to the available carboxyl sites on the CA molecule, which further conjugates to CU at its central enol -OH group. As seen from the UV-vis spectroscopy, the therapeutically active chromophore group of CU, which is seen at 423 nm, was intact, ensuring the activity the molecule. Magnetization measurements showed good hysteresis curves of Fe3O4 and Fe-CA-CU, indicating the presence of magnetism after conjugation. The loading percentage of citrate-curcumin was seen to be ˜10% from the thermo-gravimetric analysis. The systems when subjected to radio-frequency fields of 240 KHz, were seen to get heated up. The Fe3O4 heating exhibited better slope (1 °C/s) as compared to the Fe-CA-CU system (˜0.7 °C/s) for a sample of concentration 10 mg/ml in average time of ˜20 s to reach the required hyperthermia threshold temperature of ˜45 °C. Tumor suppression studies were done using potato assay, which showed that while only CU showed 100% suppression in 7 days, it was about 89% by the Fe-CA-CU. Upon subjecting these systems to the superoxide anion scavenging assay and superoxide radical scavenging assay (riboflavin), it was observed that the activity was enhanced in the Fe-CA-CU to 40% (from 38% in only CU) and 100% (from 5.75% in only CU). These studies promise Fe-CA-CU as a good cancer hyperthermia-cum-tumor suppressant and antioxidant agent.

  12. Antarctic Space Analog Program

    NASA Technical Reports Server (NTRS)

    Palinkas, Lawrence A; Gunderson, E. K. Eric; Johnson, Jeffrey C.; Holland, Albert W.

    1998-01-01

    The primary aim of this project was to examine group dynamics and individual performance in extreme, isolated environments and identify human factors requirements for long-duration space missions using data collected in an analog environment. Specifically, we wished to determine: 1) the characteristics of social relations in small groups of individuals living and working together in extreme, isolated environments, and 2) the environmental, social and psychological determinants of performance effectiveness in such groups. These two issues were examined in six interrelated studies using data collected in small, isolated research stations in Antarctica from 1963 to the present. Results from these six studies indicated that behavior and performance on long-duration space flights is likely to be seasonal or cyclical, situational, social, and salutogenic in nature. The project responded to two NASA program emphases for FY 1997 as described in the NRA: 1) the primary emphasis of the Behavior and Performance Program on determining long-term individual and group performance responses to space, identifying critical factors affecting those responses and understanding underlying mechanisms involved in behavior and performance, and developing and using ground-based models and analogs for studying space-related behavior and performance; and 2) the emphasis of the Data Analysis Program on extended data analysis. Results from the study were used to develop recommendations for the design and development of pre-flight crew training and in-flight psychological countermeasures for long-duration manned space missions.

  13. Curcumin: a novel non-steroidal contraceptive with antimicrobial properties.

    PubMed

    Naz, Rajesh K; Lough, Morgan L; Barthelmess, Erin K

    2016-01-01

    Women face unique pathologies and challenges related to the female genital tract (FGT), including vaginal infections and gynecologic cancers. Vaginal infections faced by women include bacterial vaginosis (BV), vulvovaginal candidiasis (VC), and sexually transmitted infections (STIs). Curcumin, a component of the dietary spice turmeric, has immense biological properties, including antioxidant, anti-inflammatory/immunomodulatory, and anticancer effects. It has no side effects and is well-tolerated, making it an ideal treatment modality highly desired by women. Recently, our laboratory showed, for the first time ever, that curcumin exhibits a spermicidal and broad-spectrum microbicidal activity against several species of bacteria and yeast involved in vaginal infections. Thus, it could provide a novel, non-steroidal contraceptive having both spermicidal and microbicidal properties and can be panacea in women for treatment of several FGT pathologies, including gynecologic cancers. PMID:26709650

  14. Nonlinear optical studies of curcumin metal derivatives with cw laser

    NASA Astrophysics Data System (ADS)

    Henari, F. Z.; Cassidy, S.

    2015-03-01

    We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10-7 cm2/W and negative nonlinear absorption of the order of 10-6 cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated.

  15. Tamoxifen and curcumin binding to serum albumin. Spectroscopic study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Maliszewska, M.; Pożycka, J.; Równicka-Zubik, J.; Góra, A.; Sułkowska, A.

    2013-07-01

    Tamoxifen (TMX) is widely used for the breast cancer treatment and is known as chemopreventive agent. Curcumin (CUR) is natural phenolic compound with broad spectrum of biological activity e.g. anti-inflammatory, antimicrobial, antiviral, antifungal and chemopreventive. Combination of tamoxifen and curcumin could be more effective with lower toxicity than each agent alone in use for the treatment or chemoprevention of breast cancer. Binding of drugs to serum albumin is an important factor, which determines toxicity and therapeutic dosage of the drugs. When two drugs are administered together the competition between them for the binding site on albumin can result in a decrease in bound fraction and an increase in the concentration of free biologically active fraction of drug.

  16. Nonlinear optical studies of curcumin metal derivatives with cw laser

    SciTech Connect

    Henari, F. Z. Cassidy, S.

    2015-03-30

    We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10{sup −7} cm{sup 2}/W and negative nonlinear absorption of the order of 10{sup −6} cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated.

  17. Radio-protective effect of some new curcumin analogues.

    PubMed

    El-Gazzar, Marwa G; Zaher, Nashwa H; El-Hossary, Ebaa M; Ismail, Amel F M

    2016-09-01

    In the present study, novel symmetrical curcumin analogues (2-7) have been synthesized by substituting the phenolic OH of curcumin with different linkers providing additional keto-enol tautomerism, very essential for radioprotective activity. The structures of the synthesized compounds (2-7) were elucidated by elemental analysis, IR, (1)H-NMR, (13)C-NMR and mass spectral data and were found consistent with the assigned structures. The curative effect of these new compounds, against the oxidative stress due to exposure of rats to the whole body γ-irradiation (7Gy) was investigated. Gamma-irradiated rats exhibited elevations of ALT, AST activities, urea, creatinine, triglycerides, total cholesterol, malondialdehyde (MDA), nitric oxide (NO), Interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α) and Nuclear Factor-kappa B (NF-κB) levels. Contrariwise, the total protein, albumin, total calcium level, SOD, CAT, GSH-Px, GST activities and GSH content were decreased. Treatment of gamma-irradiated rats with the new curcumin analogues (2-7) showed significant amelioration in the in-vivo antioxidant status, liver and kidney functions, as well as the anti-inflammatory markers (IL-6, TNF-α and NF-κB). Inhibition of NF-κB could be responsible for the improvement of the antioxidant and anti-inflammatory status in gamma-irradiated animals, by down-regulation of IL-1β and TNF-α level. In conclusion, the new curcumin analogues (2-7) exhibited post-protective effect on gamma-irradiation, by NF-κB inhibition. PMID:27505300

  18. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-05-30

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  19. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-06-06

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  20. Curcumin deteriorates trabecular and cortical bone in mice bearing metastatic Lewis lung carcinoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone is a major target of metastasis for many malignancies; curcumin has been studied for its role in cancer prevention including early phase clinical trials for its efficacy and safe use with cancer patients. The present study investigated the effects of dietary supplementation with curcumin (2% a...

  1. Liposome-Encapsulated Curcumin Suppresses Neuroblastoma Growth Through Nuclear Factor-κB Inhibition

    PubMed Central

    Orr, W. Shannon; Denbo, Jason W.; Saab, Karim R.; Myers, Adrianne L.; Ng, Catherine Y.; Zhou, Junfang; Morton, Christopher L.; Pfeffer, Lawrence M.; Davidoff, Andrew M.

    2012-01-01

    Background Nuclear factor-κB (NF-κB) has been implicated in tumor cell proliferation and survival, and tumor angiogenesis. We sought to evaluate the effects of curcumin, an inhibitor of NF-κB, on a xenograft model on disseminated neuroblastoma. Methods For in vitro studies, neuroblastoma cell lines, NB1691, CHLA-20, and SK-N-AS, were treated with varying doses of liposomal curcumin. Disseminated neuroblastoma was established in vivo by tail vein injection of NB1691-luc cells into SCID mice which were then treated with 50mg/kg/day of liposomal curcumin 5 days/week intraperitoneal. Results Curcumin suppressed NF-κB activation and proliferation of all neuroblastoma cell lines in vitro. In vivo, curcumin treatment resulted in a significant decrease in disseminated tumor burden. Curcumin treated tumors had decreased NF-κB activity and an associated significant decrease in tumor cell proliferation and an increase in tumor cell apoptosis, as well as a decrease in tumor VEGF levels and microvessel density. Conclusions Liposomal curcumin suppressed neuroblastoma growth, with treated tumors showing a decrease in NF-kB activity. Our results suggest that liposomal curcumin maybe a viable option for the treatment of neuroblastoma that works via inhibiting the NF-κB pathway. PMID:22284765

  2. Synergistic radical scavenging potency of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes.

    PubMed

    Aadinath, W; Bhushani, Anu; Anandharamakrishnan, C

    2016-07-01

    Curcumin is a highly potent nutraceutical associated with various health benefits. However, its hydrophobic nature affects its bioavailability and bioactivity, and limits nutraceutical applications. Drug-in-cyclodextrin-in-liposome has the ability to mask the hydrophobic nature of drug and achieve better encapsulation. Also, encapsulating iron oxide nanoparticles (IONPs) within liposomes endow additional beneficial functionalities of IONPs. In the present study, curcumin-β-cyclodextrin inclusion complex (IC) and IONPs were co-encapsulated within liposomes (curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes) to achieve the synergistic antioxidant potential of curcumin and IONPs. IC of curcumin-β-cyclodextrin was prepared by a simple rapid method and successful inclusion was confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Mean diameter of IONPs was found to be 180nm and X-ray diffraction pattern confirmed the formation of hematite nanoparticles. Band gap energy calculated using absorption spectra was 2.25eV, which falls in close proximity with the theoretically calculated values of hematite. Mean diameter of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes was 67nm and encapsulation efficiency of curcumin was found to be 71%. Further, the co-encapsulated particles possessed significantly low IC50 value (64.7791μg/ml, p<0.01) compared to conventional curcumin liposome and IONPs, indicating its synergistically enhanced radical scavenging property. PMID:27127056

  3. Curcumin Treatment Improves Motor Behavior in α-Synuclein Transgenic Mice

    PubMed Central

    Spinelli, Kateri J.; Osterberg, Valerie R.; Meshul, Charles K.; Soumyanath, Amala; Unni, Vivek K.

    2015-01-01

    The curry spice curcumin plays a protective role in mouse models of neurodegenerative diseases, and can also directly modulate aggregation of α-synuclein protein in vitro, yet no studies have described the interaction of curcumin and α-synuclein in genetic synucleinopathy mouse models. Here we examined the effect of chronic and acute curcumin treatment in the Syn-GFP mouse line, which overexpresses wild-type human α-synuclein protein. We discovered that curcumin diet intervention significantly improved gait impairments and resulted in an increase in phosphorylated forms of α-synuclein at cortical presynaptic terminals. Acute curcumin treatment also caused an increase in phosphorylated α-synuclein in terminals, but had no direct effect on α-synuclein aggregation, as measured by in vivo multiphoton imaging and Proteinase-K digestion. Using LC-MS/MS, we detected ~5 ng/mL and ~12 ng/mL free curcumin in the plasma of chronic or acutely treated mice, with a glucuronidation rate of 94% and 97%, respectively. Despite the low plasma levels and extensive metabolism of curcumin, these results show that dietary curcumin intervention correlates with significant behavioral and molecular changes in a genetic synucleinopathy mouse model that mimics human disease. PMID:26035833

  4. Curcumin inhibits bTREK-1 K+ channels and stimulates cortisol secretion from adrenocortical cells

    PubMed Central

    Enyeart, Judith A.; Liu, Haiyan; Enyeart, John J.

    2008-01-01

    Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 K+ channels that set the resting membrane potential. Inhibition of these channels by adrenocorticotropic hormone (ACTH) is coupled to membrane depolarization and cortisol secretion. Curcumin, a phytochemical with medicinal properties extracted from the spice turmeric, was found to modulate both bTREK-1 K+ currents and cortisol secretion from AZF cells. In whole-cell patch clamp experiments, curcumin inhibited bTREK-1 with an IC50 of 0.93μM by a mechanism that was voltage-independent. bTREK-1 inhibition by curcumin occurred through interaction with an external binding site and was independent of ATP hydrolysis. Curcumin produced a concentration-dependent increase in cortisol secretion that persisted for up to 24 h. At a maximally effective concentration of 50 μM, curcumin increased secretion as much as10-fold. These results demonstrate that curcumin potently inhibits bTREK-1 K+ channels and stimulates cortisol secretion from bovine AZF cells. The inhibition of bTREK-1 by curcumin may be linked to cortisol secretion through membrane depolarization. Since TREK-1 is widely expressed in a variety of cells, it is likely that some of the biological actions of curcumin, including its therapeutic effects, may be mediated through inhibition of these K+ channels. PMID:18406348

  5. Curcumin inhibits cellular condensation and alters microfilament organization during chondrogenic differentiation of limb bud mesenchymal cells.

    PubMed

    Kim, Dong Kyun; Kim, Song Ja; Kang, Shin Sung; Jin, Eun Jung

    2009-09-30

    Curcumin is a well known natural polyphenol product isolated from the rhizome of the plant Curcuma longa, anti-inflammatory agent for arthritis by inhibiting synthesis of inflammatory prostaglandins. However, the mechanisms by which curcumin regulates the functions of chondroprogenitor, such as proliferation, precartilage condensation, cytoskeletal organization or overall chondrogenic behavior, are largely unknown. In the present report, we investigated the effects and signaling mechanism of curcumin on the regulation of chondrogenesis. Treating chick limb bud mesenchymal cells with curcumin suppressed chondrogenesis by stimulating apoptotic cell death. It also inhibited reorganization of the actin cytoskeleton into a cortical pattern concomitant with rounding of chondrogenic competent cells and down-regulation of integrin beta1 and focal adhesion kinase (FAK) phosphorylation. Curcumin suppressed the phosphorylation of Akt leading to Akt inactivation. Activation of Akt by introducing a myristoylated, constitutively active form of Akt reversed the inhibitory actions of curcumin during chondrogenesis. In summary, for the first time, we describe biological properties of curcumin during chondrogenic differentiation of chick limb bud mesenchymal cells. Curcumin suppressed chondrogenesis by stimulating apoptotic cell death and down-regulating integrin-mediated reorganization of actin cytoskeleton via modulation of Akt signaling. PMID:19478554

  6. Intrathecal curcumin attenuates pain hypersensitivity and decreases spinal neuroinflammation in rat model of monoarthritis.

    PubMed

    Chen, Jun-Jie; Dai, Lin; Zhao, Lin-Xia; Zhu, Xiang; Cao, Su; Gao, Yong-Jing

    2015-01-01

    Curcumin is a major component of turmeric and reportedly has anti-inflammatory and anti-oxidant effects. Neuroinflammation has been recognized to play an important role in the pathogenesis of various diseases in the central nervous system. Here we investigated the anti-nociceptive and anti-neuroinflammatory effect of curcumin on arthritic pain in rats. We found that repeated oral treatment with curcumin, either before or after complete Freund's adjuvant (CFA) injection, dose-dependently attenuated CFA-induced mechanical allodynia and thermal hyperalgesia, but had no effect on joint edema. Repeated intrathecal injection of curcumin reversed CFA-induced pain hypersensitivity. Furthermore, such a curcumin treatment reduced CFA-induced activation of glial cells and production of inflammatory mediators [interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1), and monocyte inflammatory protein-1 (MIP-1α)] in the spinal cord. Curcumin also decreased lipopolysaccharide-induced production of IL-1β, tumor necrosis factor-α, MCP-1, and MIP-1α in cultured astrocytes and microglia. Our results suggest that intrathecal curcumin attenuates arthritic pain by inhibiting glial activation and the production of inflammatory mediators in the spinal cord, suggesting a new application of curcumin for the treatment of arthritic pain. PMID:25988362

  7. Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde-gelatin nanogels.

    PubMed

    P R, Sarika; James, Nirmala Rachel; P R, Anil Kumar; Raj, Deepa K

    2016-11-01

    Curcumin, a natural polyphenol exhibits chemopreventive and chemotherapeutic activities towards cancer. In order to improve the bioavailability and therapeutic efficacy, curcumin is encapsulated in alginate aldehyde-gelatin (Alg Ald-Gel) nanogels. Alginate aldehyde-gelatin nanogels are prepared by inverse miniemulsion technique. Physicochemical properties of the curcumin loaded nanogels are evaluated by, Dynamic light scattering (DLS), NMR spectroscopy and Scanning electron microscopy (SEM). Curcumin loaded nanogels show hydrodynamic diameter of 431±8nm and a zeta potential of -36±4mV. The prepared nanogels exhibit an encapsulation efficiency of 72±2%. In vitro drug release studies show a controlled release of curcumin from nanogels over a period of 48h. Hemocompatibility and cytocompatibility of the nanogels are evaluated. Bare nanogels are cytocompatible and curcumin loaded nanogels induce anticancer activity towards MCF-7 cells. In vitro cellular uptake of the curcumin loaded nanogels using confocal laser scanning microscopy (CLSM) confirms the uptake of nanogels in MCF-7 cells. Hence, the developed nanogel system can be a suitable candidate for curcumin delivery to cancer cells. PMID:27524019

  8. Dietary supplementation with curcumin enhances metastatic growth of Lewis lung carcinoma in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Curcumin is a phenolic compound derived from the Curcuma longa plant, commonly known as turmeric. Curcumin has been used traditionally in Ayurvedic medicine as it has therapeutic properties including being anti-inflammatory, anti-oxidant and anti-microbial. The present study investigated the effects...

  9. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    NASA Astrophysics Data System (ADS)

    Thu Ha, Phuong; Huong Le, Mai; Nhung Hoang, Thi My; Thu Huong Le, Thi; Quang Duong, Tuan; Tran, Thi Hong Ha; Tran, Dai Lam; Phuc Nguyen, Xuan

    2012-09-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50–100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa).

  10. Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species.

    PubMed

    Panchatcharam, Manikandan; Miriyala, Sumitra; Gayathri, Vinaya Subramani; Suguna, Lonchin

    2006-10-01

    Wound healing consists of an orderly progression of events that re-establish the integrity of the damaged tissue. Several natural products have been shown to accelerate the healing process. The present investigation was undertaken to determine the role of curcumin on changes in collagen characteristics and antioxidant property during cutaneous wound healing in rats. Full-thickness excision wounds were made on the back of rat and curcumin was administered topically. The wound tissues removed on 4th, 8th and 12th day (post-wound) were used to analyse biochemical and pathological changes. Curcumin increased cellular proliferation and collagen synthesis at the wound site, as evidenced by increase in DNA, total protein and type III collagen content of wound tissues. Curcumin treated wounds were found to heal much faster as indicated by improved rates of epithelialisation, wound contraction and increased tensile strength which were also confirmed by histopathological examinations. Curcumin treatment was shown to decrease the levels of lipid peroxides (LPs), while the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), activities were significantly increased exhibiting the antioxidant properties of curcumin in accelerating wound healing. Better maturation and cross linking of collagen were observed in the curcumin treated rats, by increased stability of acid-soluble collagen, aldehyde content, shrinkage temperature and tensile strength. The results clearly substantiate the beneficial effects of the topical application of curcumin in the acceleration of wound healing and its antioxidant effect. PMID:16770527

  11. Piperine Enhances the Protective Effect of Curcumin Against 3-NP Induced Neurotoxicity: Possible Neurotransmitters Modulation Mechanism.

    PubMed

    Singh, Shamsher; Jamwal, Sumit; Kumar, Puneet

    2015-08-01

    3-Nitropropionic acid (3-NP) is a fungal toxin well established model used for inducing symptoms of Huntington's disease. Curcumin a natural polyphenol has been reported to possess neuroprotective activity by decreasing oxidative stress. The aim of present study was to investigate neuroprotective effect of curcumin with piperine (bioavailability enhancer) against 3-NP induced neurotoxicity in rats. Administration of 3-NP (10 mg/kg for 21 days) showed loss in body weight, declined motor function and changes in biochemical (LPO, nitrite and glutathione level), neuroinflammatory (TNF-α and IL-1β level) and neurochemical (DA, NE, 5-HT, DOPAC, 5-HIAA and HVA). Chronic treatment with curcumin (25 and 50 mg/kg) and curcumin (25 mg/kg) with piperine (2.5 mg/kg) once daily for 21 days prior to 3-NP administration. All the behavioral parameters were studied at 1st, 7th, 14th, and 21st day. On 22nd day all the animals was scarified and striatum was separated. Curcumin alone and combination (25 mg/kg) with piperine (2.5 mg/kg) showed beneficial effect against 3-NP induced motor deficit, biochemical and neurochemical abnormalities in rats. Piperine (2.5 mg/kg) with curcumin (25 mg/kg) significantly enhances its protective effect as compared with curcumin alone treated group. The results of the present study indicate that protective effect of curcumin potentiated in the presence of piperine (bioavailability enhancer) against 3-NP-induced behavioral and molecular alteration. PMID:26160706

  12. Recent Advances of Curcumin and its Analogues in Breast Cancer Prevention and Treatment

    PubMed Central

    Mock, Charlotta D; Jordan, Brian C; Selvam, Chelliah

    2016-01-01

    More than 230,000 diagnosed cases of invasive breast cancer in women was estimated in 2014 and an expected 40,000 deaths attributed to the aggressive carcinoma. An effective approach to diminish the morbidity and mortality of breast cancer is the development of chemopreventive and chemotherapeutic agents. Nutraceuticals have demonstrated their ability to proficiently halt carcinogenesis. The administration of natural compounds able to effectively serve as chemoprevention and chemotherapeutics without causing harm or adverse effects is imperative. Curcumin derived from the rhizome of Curcuma longa L., is a common spice of India, used for centuries because of its medicinal properties. The main component of curcumin possesses a wide range of biological activities; anti-proliferative, anti-inflammatory, and apoptotic characteristics modulated through the inactivation of pathways such as EGK and Akt/mTOR. In addition, curcumin alters the expression of cytokines, transcription factors, and enzymes involved in cell vitality. The in vivo application of curcumin in breast cancer is hindered by its limited bioavailabiity. The synthesis of curcumin analogues and delivery via nanoparticles has demonstrated enhanced bioavailability of curcumin in the malignancy. This review focuses on recent developments in the use of curcumin, curcumin analogues, and novel delivery systems as a preventive and therapeutic method for breast cancer. PMID:27103993

  13. Development and characterization of eucalyptol microemulsions for topic delivery of curcumin.

    PubMed

    Liu, Chi-Hsien; Chang, Fu-Yen

    2011-01-01

    Microemulsions have received great attention for applications in transdermal drug delivery. The use of curcumin for treating various skin diseases like scleroderma, psoriasis, and skin cancer was extensively reported. The solubility of curcumin in various oils, surfactants, and cosurfactants was studied herein in order to find the optimal components for a transdermal delivery vehicle. Microemulsion systems composed of eucalyptol, polysorbate 80, ethanol, and water were developed as transdermal delivery vehicles for curcumin. Effects of the microemulsion composition on transdermal curcumin delivery were studied using Franz diffusion cells. The transdermal curcumin flux, permeability coefficient, and enhancement ratio were analyzed to evaluate the effects of eucalyptol/water ratios in the microemulsions. Pseudo-ternary phase diagrams of the eucalyptol microemulsions with various surfactant/cosurfactant ratios (1:1-1:3) were constructed to investigate their phase behaviors. Conductivity, interfacial tension, size, and viscosity data of the microemulsions were used to characterize the physicochemical properties of transdermal vehicles. The influence of the microemulsions on skin histology and on the delivery route was analyzed using hematoxylin/eosin staining and confocal laser scanning microscopy. In conclusion, microemulsions were successfully developed for transdermal curcumin delivery after screening various components and adjusting the oil/water ratios. The curcumin permeation rate of the microemulsion developed was 15.7-fold higher than that of the control (eucalyptol only). These results indicate that an eucalyptol microemulsion system is a promising tool for the percutaneous delivery of curcumin. PMID:21297295

  14. Curcumin reduces trabecular and cortical bone in naive and Lewis lung carcinoma-bearing mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the effects of dietary supplementation with curcumin on bone microstructural changes in female C57BL/6 mice in the presence or absence of Lewis lung carcinoma. Morphometric analysis showed that in tumor-bearing mice curcumin at 2% and 4% dietary levels (w/w) significa...

  15. Drastic nickel ion removal from aqueous solution by curcumin-capped Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Bettini, S.; Pagano, R.; Valli, L.; Giancane, G.

    2014-08-01

    A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%.A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02583k

  16. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance.

    PubMed

    Wang, Lulu; Zhang, Bangling; Huang, Fang; Liu, Baolin; Xie, Yuan

    2016-07-01

    Curcumin is natural polyphenol with beneficial effects on lipid and glucose metabolism and this study aimed to investigate the effects of curcumin on lipolysis and hepatic insulin resistance. Endoplasmic reticulum (ER) stress and lipolysis signaling in adipose and FFA influx, lipid deposits, and glucose production in liver were examined. Palmitate challenge and high-fat diet feeding evoked ER stress-associated lipolysis with cAMP accumulation in adipose tissue. Curcumin treatment inhibited adipose tissue ER stress by dephosphorylation of inositol-requiring enzyme 1α and eukaryotic initiation factor 2α and reduced cAMP accumulation by preserving phosphodiesterase 3B induction. Knockdown of mitogen-activated protein kinase α1/2α with siRNAs diminished such effects of curcumin. As a result from downregulation of cAMP, curcumin blocked protein kinase (PK)A/hormone-sensitive lipase lipolysis signaling, and thereby reduced glycerol and FFA release from adipose tissue. Curcumin reduced FFA influx into the liver by blocking FFA trafficking, and then prevented diacylglycerol deposits and PKCε translocation in the liver, resultantly improving insulin action in the suppression of hepatic gluconeogenesis. Curcumin decreased adipose lipolysis by attenuating ER stress through the cAMP/PKA pathway, reduced FFA influx into the liver by blocking FFA trafficking, and thereby improved insulin sensitivity to inhibit hepatic glucose production. These findings suggested a novel pathway of curcumin to prevent lipid deposits and insulin resistance in liver by beneficial regulation of adipose function. PMID:27220352

  17. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma

    PubMed Central

    Dhule, Santosh S.; Penfornis, Patrice; Frazier, Trivia; Walker, Ryan; Feldman, Joshua; Tan, Grace; He, Jibao; Alb, Alina; John, Vijay; Pochampally, Radhika

    2016-01-01

    The delivery of curcumin, a broad-spectrum anticancer drug, has been explored in the form of liposomal nanoparticles to treat osteosarcoma (OS). Curcumin is water insoluble and an effective delivery route is through encapsulation in cyclodextrins followed by a second encapsulation in liposomes. Liposomal curcumin’s potential was evaluated against cancer models of mesenchymal (OS) and epithelial origin (breast cancer). The resulting 2-Hydroxypropyl-γ-cyclodextrin/curcumin - liposome complex shows promising anticancer potential both in vitro and in vivo against KHOS OS cell line and MCF-7 breast cancer cell line. An interesting aspect is that liposomal curcumin initiates the caspase cascade that leads to apoptotic cell death in vitro in comparison with DMSO-curcumin induced autophagic cell death. In addition, the efficiency of the liposomal curcumin formulation was confirmed in vivo using a xenograft OS model. Curcumin-loaded γ-cyclodextrin liposomes indicate significant potential as delivery vehicles for the treatment of cancers of different tissue origin. From the Clinical Editor Curcumin-loaded γ-cyclodextrin liposomes were demonstrated in vitro to have significant potential as delivery vehicles for the treatment of cancers of mesenchymal and epithelial origin. Differences between mechanisms of cell death were also evaluated. PMID:21839055

  18. Expression profile of genes regulated by curcumin in Y79 retinoblastoma cells.

    PubMed

    Sreenivasan, Seethalakshmi; Thirumalai, Karthiyaini; Krishnakumar, Subramanian

    2012-01-01

    Curcumin, a well-known chemopreventive agent from turmeric, inhibits the expression of several oncogenes and cell proliferation genes in tumor cells. This study aims to understand the precise molecular mechanism by which curcumin exerts its effects on retinoblastoma cells, by performing whole genome microarray analysis to determine the gene expression profiles altered by curcumin treatment. Curcumin suppressed cell viability and altered the cell cycle of retinoblastoma cells. We identified 903 downregulated genes and 1,319 upregulated genes when compared with the control cells after treatment with 20 μM curcumin concentration for 48 h. These genes were grouped into respective functional categories according to their biological function. We found that curcumin regulated the expression of genes that are involved in the regulation of apoptosis, tumor suppressor, cell-cycle arrest, transcription factor, and angiogenesis. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to validate the results of genome array, and the results were consistent with the obtained data. In conclusion, treatment of curcumin affects the expression of genes involved in various cellular functions and plays an important role in tumor metastasis and apoptosis. Thus, curcumin might be an effective chemopreventive agent for retinoblastoma cancer. PMID:22489823

  19. Reversal of Oxidative Stress in Neural Cells by an Injectable Curcumin/Thermosensitive Hydrogel.

    PubMed

    Lu, Chuan

    2016-01-01

    Curcumin as an antioxidative agent which has been widely used medicinally in India and China. However, rapid metabolism coupled with the instability of curcumin under physiological conditions has greatly limited its applications in vivo. In the present study, a thermosensitive hydrogel with high payload of curcumin was developed by using a co-precipitation method, and its reversion of oxidative stress in Neuro-2a cells was investigated. With an increase in drug loading capacity, the solgel transition temperature of the thermosensitive hydrogel decreased accordingly. The stability of curcumin in phosphate-buffered saline (PBS; pH=7.4) was greatly improved by encapsulation in the thermosensitive hydrogel, as indicated by an in vitro degradation test. An in vitro release study showed that the encapsulated curcumin was rapidly released from the hydrogel within 6 h. A curcumin/F-127 aqueous solution under the threshold concentration of 4μg/mL was non-toxic against Neuro-2a cells after 24-h incubation. A MitoSOX assay indicated that the developed curcumin formulation could attenuate the oxidative damage induced by H2O2 as compared to that of the H2O2 group. All these results suggested that the developed curcumin/thermosensitive hydrogel might have great potential application in the reversion of oxidative stress after traumatic brain injury. PMID:26549040

  20. Increase of a group of PTC(+) transcripts by curcumin through inhibition of the NMD pathway.

    PubMed

    Feng, Dairong; Su, Ruey-Chyi; Zou, Liping; Triggs-Raine, Barbara; Huang, Shangzhi; Xie, Jiuyong

    2015-08-01

    Nonsense-mediated mRNA decay (NMD), an mRNA surveillance mechanism, eliminates premature termination codon-containing (PTC⁺) transcripts. For instance, it maintains the homeostasis of splicing factors and degrades aberrant transcripts of human genetic disease genes. Here we examine the inhibitory effect on the NMD pathway and consequent increase of PTC+ transcripts by the dietary compound curcumin. We have found that several PTC⁺ transcripts including that of serine/arginine-rich splicing factor 1 (SRSF1) were specifically increased in cells by curcumin. We also observed a similar curcumin effect on the PTC⁺ mutant transcript from a Tay-Sachs-causing HEXA allele or from a beta-globin reporter gene. The curcumin effect was accompanied by significantly reduced expression of the NMD factors UPF1, 2, 3A and 3B. Consistently, in chromatin immunoprecipitation assays, curcumin specifically reduced the occupancy of acetyl-histone H3 and RNA polymerase II at the promoter region (-376 to -247nt) of human UPF1, in a time- and dosage-dependent way. Importantly, knocking down UPF1 abolished or substantially reduced the difference of PTC(+) transcript levels between control and curcumin-treated cells. The disrupted curcumin effect was efficiently rescued by expression of exogenous Myc-UPF1 in the knockdown cells. Together, our data demonstrate that a group of PTC⁺ transcripts are stabilized by a dietary compound curcumin through the inhibition of UPF factor expression and the NMD pathway. PMID:25934542

  1. Relationship and interactions of curcumin with radiation therapy

    PubMed Central

    Verma, Vivek

    2016-01-01

    Curcumin is widely reported to have remarkable medicinal - and antineoplastic - properties. This review details curcumin’s relationship with radiotherapy (RT), principally as a radiosensitizer for various malignancies and a radioprotector for normal tissues. First, examples of radiosensitization are provided for various cancers: Pediatric, lymphoma, sarcoma, prostate, gynecologic, pancreas, liver, colorectal, breast, lung, head/neck, and glioma. It is not the purpose of this article to comprehensively review all radiosensitization data; however, high-quality studies are discussed in relationship to currently-controversial RT questions for many cancers, and thus the importance of developing a natural radiosensitizer. Attention is then shifted to radioprotection, for which supporting research is discussed for the following RT toxicities: Dermatitis, pneumonitis, cataractogenesis, neurocognition, myelosuppression, secondary malignancies, and mucositis/enteritis. Though there is fewer data for radioprotection, the overall quality of clinical evidence is higher, and small clinical trials implicating the efficacy of curcumin for RT toxicities (vs placebo/current therapies) are also detailed. Though the overall level of evidence for curcumin as a radiosensitizer and radioprotector is low, it must be recognized that risks of adverse effects are exceedingly low, and clinicians may need to judge the yet-unproven rewards with low toxicity risks. PMID:27298767

  2. Formulation and evaluation of curcumin gel for topical application.

    PubMed

    Patel, Nikunjana A; Patel, Natvar J; Patel, Rakesh P

    2009-01-01

    The aim of the present investigation was to develop and study topical gel delivery of curcumin for its anti-inflammatory effects. Carbopol 934P (CRB) and hydroxypropylcellulose (HPC) were used for the preparation of gels. The penetration enhancing effect of menthol (0-12.5% w/w) on the percutaneous flux of curcumin through the excised rat epidermis from 2% w/w CRB and HPC gel system was investigated. All the prepared gel formulations were evaluated for various properties such as compatibility, drug content, viscosity, in vitro skin permeation, and anti-inflammatory effect. The drug and polymers compatibility was confirmed by Differential scanning calorimetry and infrared spectroscopy. The percutaneous flux and enhancement ratio of curcumin across rat epidermis was enhanced markedly by the addition of menthol to both types of gel formulations. Both types of developed topical gel formulations were free of skin irritation. In anti-inflammatory studies done by carrageenan induced rat paw oedema method in wistar albino rats, anti-inflammatory effect of CRB, HPC and standard gel formulations were significantly different from control group (P < 0.05) whereas this effect was not significantly different for CRB and HPC gels formulations to that of standard (diclofenac gel) formulation (P > 0.05). CRB gel showed better % inhibition of inflammation as compared to HPC gel. PMID:18821270

  3. Active curcumin nanoparticles formed from a volatile microemulsion template.

    PubMed

    Margulis, K; Srinivasan, S; Ware, M J; Summers, H D; Godin, B; Magdassi, S

    2014-01-01

    We report on biological performance of organic nanoparticles formed by a simple method based on rapid solvent removal from a volatile microemulsion. The particular focus of the study was on testing the suitability of the method for substances soluble in partially water-miscible organic solvents as well as on evaluating the therapeutic activity of the resultant nanoparticles. Curcumin was employed as a model for hydrophobic drug, and, as it is soluble in water-miscible organic solvents, it was successfully incorporated into a new cyclopentanone-water microemulsion system. During rapid solvent removal by spray-drying, the nanometric droplets of the microemulsion were converted into nanoparticles containing amorphous curcumin with the average size of 20.2±3.4 nm, having ζ potential of -36.2 ±1.8 mV. These nanoparticles were dispersible in water and retained the high loading of the active substance. The therapeutic activity of the resulting nanoparticles was demonstrated in a pancreatic cancer cell line Panc-1. The effective concentration for reducing the metabolic activity was found to be 11.5 μM for nanoparticles compared with 19.5 μM for free curcumin. PMID:25485110

  4. Lung-targeted delivery system of curcumin loaded gelatin microspheres.

    PubMed

    Cao, Fengliang; Ding, Buyun; Sun, Min; Guo, Chenyu; Zhang, Lin; Zhai, Guangxi

    2011-11-01

    The purpose of the study is to design and evaluate curcumin loaded gelatin microspheres (C-GMS) for effective drug delivery to the lung. C-GMS was prepared by the emulsification-linkage technique and the formulation was optimized by orthogonal design. The mean encapsulation efficiency and drug loading of the optimal C-GMS were 75.5 ± 3.82 % and 6.15 ± 0.44%, respectively. The C-GMS presented a spherical shape and smooth surface with a mean particle diameter of 18.9 μm. The in vitro drug release behavior of C-GMS followed the first-order kinetics. The tissue distribution showed that the drug concentrations at lung tissue for the C-GMS suspension were significantly higher than those for the curcumin solution, and the Ce for lung was 36.19. Histopathological studies proved C-GMS was efficient and safe to be used as a passive targeted drug delivery system to the lung. Hence, C-GMS has a great potential for the targeted delivery of curcumin to the lung. PMID:21812751

  5. Mechanism of antiinflammatory actions of curcumine and boswellic acids.

    PubMed

    Ammon, H P; Safayhi, H; Mack, T; Sabieraj, J

    1993-03-01

    Curcumine from Curcuma longa and the gum resin of Boswellia serrata, which were demonstrated to act as anti-inflammatories in in vivo animal models, were studied in a set of in vitro experiments in order to elucidate the mechanism of their beneficial effects. Curcumine inhibited the 5-lipoxygenase activity in rat peritoneal neutrophils as well as the 12-lipoxygenase and the cyclooxygenase activities in human platelets. In a cell free peroxidation system curcumine exerted strong antioxidative activity. Thus, its effects on the dioxygenases are probably due to its reducing capacity. Boswellic acids were isolated from the gum resin of Boswellia serrata and identified as the active principles. Boswellic acids inhibited the leukotriene synthesis via 5-lipoxygenase, but did not affect the 12-lipoxygenase and the cyclooxygenase activities. Additionally, boswellic acids did not impair the peroxidation of arachidonic acid by iron and ascorbate. The data suggest that boswellic acids are specific, non-redox inhibitors of leukotriene synthesis either interacting directly with 5-lipoxygenase or blocking its translocation. PMID:8510458

  6. In Vitro Study on Antihypertensive and Antihypercholesterolemic Effects of a Curcumin Nanoemulsion

    PubMed Central

    Rachmawati, Heni; Soraya, Irene Surya; Kurniati, Neng Fisheri; Rahma, Annisa

    2016-01-01

    Atherosclerosis and hypertension can potentially progess into dangerous cardiovascular diseases such as myocardial infarction and stroke. Statins are widely used to lower cholesterol levels while antihypertensive agents such as captopril are widely prescribed to treat high blood pressure. Curcumin, a phenolic compound isolated from Curcuma domestica, has been proven effective for a broad spectrum of diseases, including hypertension and hypercholesterolemia. Therefore, curcumin is quite promising as an alternative therapeutic compound. Our previous studies have proven a significant increase in physical properties, bioavailability, and stability of curcumin when encapsulated in a nanoemulsion. The purpose of this study was to assess the ability of the nanoemulsion in enhancing curcumin activity as a antihypertensive and antihypercholesterolemic agent. The formulation and preparation method of the curcumin nanoemulsion have been developed in our previous study. Physical characterization was performed, including measurement of droplet size, polidispersity index, zeta potential, entrapment efficiency, and loading capacity. Antihypertensive activity of curcumin was evaluated by determining Angiotensin Converting Enzyme (ACE) inhibition in vitro. A substrate for ACE, hippuryl-L-histidyl-L-leucine was allowed to react with ACE, resulting in hippuric acid formation as the product. The degree of ACE inhibition by curcumin was represented by the amount of hippuric acid formed. Antihypercholesterolemic activity of curcumin was studied using the HMG-CoA reductase assay equipped with a 96-well UV plate. This assay was based on the spectrophotometric measurement of the decrease in absorbance which represents the oxidation of NADPH by the catalytic subunit of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in the presence of the substrate HMG-CoA. Curcumin is known to have no significant difference in inhibiting ACE compared to Captopril, but when it was incorporated in the self

  7. In Vitro Study on Antihypertensive and Antihypercholesterolemic Effects of a Curcumin Nanoemulsion.

    PubMed

    Rachmawati, Heni; Soraya, Irene Surya; Kurniati, Neng Fisheri; Rahma, Annisa

    2016-01-01

    Atherosclerosis and hypertension can potentially progess into dangerous cardiovascular diseases such as myocardial infarction and stroke. Statins are widely used to lower cholesterol levels while antihypertensive agents such as captopril are widely prescribed to treat high blood pressure. Curcumin, a phenolic compound isolated from Curcuma domestica, has been proven effective for a broad spectrum of diseases, including hypertension and hypercholesterolemia. Therefore, curcumin is quite promising as an alternative therapeutic compound. Our previous studies have proven a significant increase in physical properties, bioavailability, and stability of curcumin when encapsulated in a nanoemulsion. The purpose of this study was to assess the ability of the nanoemulsion in enhancing curcumin activity as a antihypertensive and antihypercholesterolemic agent. The formulation and preparation method of the curcumin nanoemulsion have been developed in our previous study. Physical characterization was performed, including measurement of droplet size, polidispersity index, zeta potential, entrapment efficiency, and loading capacity. Antihypertensive activity of curcumin was evaluated by determining Angiotensin Converting Enzyme (ACE) inhibition in vitro. A substrate for ACE, hippuryl-L-histidyl-L-leucine was allowed to react with ACE, resulting in hippuric acid formation as the product. The degree of ACE inhibition by curcumin was represented by the amount of hippuric acid formed. Antihypercholesterolemic activity of curcumin was studied using the HMG-CoA reductase assay equipped with a 96-well UV plate. This assay was based on the spectrophotometric measurement of the decrease in absorbance which represents the oxidation of NADPH by the catalytic subunit of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in the presence of the substrate HMG-CoA. Curcumin is known to have no significant difference in inhibiting ACE compared to Captopril, but when it was incorporated in the self

  8. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions.

    PubMed

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-01-01

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO3(2-) and DCCM/SeO3(2-) complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation. PMID:26635113

  9. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions

    NASA Astrophysics Data System (ADS)

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-12-01

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO32- and DCCM/SeO32- complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation.

  10. The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions

    PubMed Central

    Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung

    2015-01-01

    In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO32− and DCCM/SeO32− comp