Science.gov

Sample records for molecule icam-4 potential

  1. Novel secreted isoform of adhesion molecule ICAM-4: Potential regulator of membrane-associated ICAM-4 interactions

    SciTech Connect

    Lee, Gloria; Spring, Frances A.; Parons, Stephen F.; Mankelow, Tosti J.; Peters, Luanne L.; Koury, Mark J.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne

    2003-02-18

    ICAM-4, a newly characterized adhesion molecule, is expressed early in human erythropoiesis and functions as a ligand for binding a4b1 and aV integrin-expressing cells. Within the bone marrow, erythroblasts surround central macrophages forming erythroblastic islands. Evidence suggests that these islands are highly specialized subcompartments where cell adhesion events, in concert with cytokines, play critical roles in regulating erythropoiesis and apoptosis. Since erythroblasts express a4b1 and ICAM-4 and macrophages exhibit aV, ICAM-4 is an attractive candidate for mediating cellular interactions within erythroblastic islands. To determine whether ICAM-4 binding properties are conserved across species, we first cloned and sequenced the murine homologue. The translated amino acid sequence showed 68 percent overall identity with human ICAM-4. Using recombinant murine ICAM-4 extracellular domains, we discovered that hematopoietic a4b1-expressing HEL cells and non-hematopoietic aV-expressing FLY cells adhered to mouse ICAM-4. Cell adhesion studies showed that FLY and HEL cells bound to mouse and human proteins with similar avidity. These data strongly suggest conservation of integrin-binding properties across species. Importantly, we characterized a novel second splice cDNA that would be predicted to encode an ICAM-4 isoform, lacking the membrane-spanning domain. Erythroblasts express both isoforms of ICAM-4. COS-7 cells transfected with GFP constructs of prototypic or novel ICAM-4 cDNA showed different cellular localization patterns. Moreover, analysis of tissue culture medium revealed that the novel ICAM-4 cDNA encodes a secreted protein. We postulate that secretion of this newly described isoform, ICAM-4S, may modulate binding of membrane-associated ICAM-4 and could thus play a critical regulatory role in erythroblast molecular attachments.

  2. Targeted Gene Deletion Demonstrates that Cell Adhesion MoleculeICAM-4 is Critical for Erythroblastic Island Formation

    SciTech Connect

    Lee, Gloria; Lo, Annie; Short, Sarah A.; Mankelow, Tosti J.; Spring, Frances; Parsons, Stephen F.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne

    2006-02-15

    Erythroid progenitors differentiate in erythroblastic islands, bone marrow niches composed of erythroblasts surrounding a central macrophage. Evidence suggests that within islands adhesive interactions regulate erythropoiesis and apoptosis. We are exploring whether erythroid intercellular adhesion molecule-4 (ICAM-4), animmunoglobulin superfamily member, participates in island formation. Earlier, we identified alpha V integrins as ICAM-4 counter receptors. Since macrophages express alpha V, ICAM-4 potentially mediates island attachments. To test this, we generated ICAM-4 knockout mice and developed quantitative, live cell techniques for harvesting intact islands and for reforming islands in vitro. We observed a 47 percent decrease in islands reconstituted from ICAM-4 null marrow compared to wild type. We also found a striking decrease in islands formed in vivo in knockout mice. Further, peptides that block ICAM-4 alpha V adhesion produced a 53-57 percent decrease in reconstituted islands, strongly suggesting that ICAM-4 binding to macrophage alpha V functions in island integrity. Importantly, we documented that alpha V integrin is expressed in macrophages isolated from erythro blastic islands. Collectively, these data provide convincing evidence that ICAM-4 is critical in erythroblastic island formation via ICAM-4/alpha V adhesion and also demonstrate that the novel experimental strategies we developed will be valuable in exploring molecular mechanisms of erythroblastic island formation and their functional role in regulating erythropoiesis.

  3. Genetic variation of the whole ICAM4 gene in Caucasians and African Americans

    PubMed Central

    Srivastava, Kshitij; Almarry, Noorah Salman; Flegel, Willy A.

    2014-01-01

    Background Landsteiner-Wiener (LW) is the human blood group system no. 16, which comprises 2 antithetical antigens, LWa and LWb and the high prevalence antigen LWab. LW is encoded by the Intracellular Adhesion Molecule 4 (ICAM4) gene. The ICAM4 protein is part of the Rhesus complex in the red cell membrane and is involved in cell-cell adhesion. Methods We developed a method to sequence the whole 1.9 kb ICAM4 gene from genomic DNA in 1 amplicon. We determined the nucleotide sequence of exons 1 to 3, the 2 introns and 402 bp 5′-UTR and 347 bp 3′-UTR in 97 Caucasian and 91 African American individuals. Results Seven variant ICAM4 alleles were found, distinct from the wild type ICAM4 allele (GenBank KF712272), known as LW*05 and encoding LWa. An effect of the LWa/LWb amino acid substitution on the protein structure was predicted by 2 of the 3 computational modeling programs used. Conclusions We describe a practical approach for sequencing and determining the ICAM4 alleles using genomic DNA. LW*05 is the ancestral allele, which had also been observed in a Neandertal sample. All 7 variant alleles are immediate derivatives of the prevalent LW*05 and caused by 1 single nucleotide polymorphism (SNP) in each allele. Our data were consistent with the NHLBI GO Exome Sequencing Project (ESP) and the dbSNP databases, as all SNPs had been observed before. Our study has the advantage over the other databases in that it adds haplotype (allele) information for the ICAM4 gene, clinically relevant in the field of transfusion medicine. PMID:24673173

  4. Variation in the ICAM1–ICAM4–ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries

    PubMed Central

    Kim, Kwangwoo; Brown, Elizabeth E; Choi, Chan-Bum; Alarcón-Riquelme, Marta E; Kelly, Jennifer A; Glenn, Stuart B; Ojwang, Joshua O; Adler, Adam; Lee, Hye-Soon; Boackle, Susan A; Criswell, Lindsey A; Alarcón, Graciela S; Edberg, Jeffrey C; Stevens, Anne M; Jacob, Chaim O; Gilkeson, Gary S; Kamen, Diane L; Tsao, Betty P; Anaya, Juan-Manuel; Guthridge, Joel M; Nath, Swapan K; Richardson, Bruce; Sawalha, Amr H; Kang, Young Mo; Shim, Seung Cheol; Suh, Chang-Hee; Lee, Soo-Kon; Kim, Chang-sik; Merrill, Joan T; Petri, Michelle; Ramsey-Goldman, Rosalind; Vilá, Luis M; Niewold, Timothy B; Martin, Javier; Pons-Estel, Bernardo A; Vyse, Timothy J; Freedman, Barry I; Moser, Kathy L; Gaffney, Patrick M; Williams, Adrienne; Comeau, Mary; Reveille, John D; James, Judith A; Scofield, R Hal; Langefeld, Carl D; Kaufman, Kenneth M; Harley, John B; Kang, Changwon; Kimberly, Robert P; Bae, Sang-Cheol

    2012-01-01

    Objective Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin αΜ (complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM. Methods The authors examined several markers in the ICAM1–ICAM4–ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case–control study of 17 481 unrelated participants from four ancestry populations. The single marker association and gene–gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed. Results The A-allele of ICAM1–ICAM4–ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (ORmeta=1.16, 95% CI 1.11 to 1.22; p=4.88×10−10 and ORmeta=1.67, 95% CI 1.55 to 1.79; p=3.32×10−46, respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91×10−5). Conclusion These findings are the first to suggest that an ICAM–integrin-mediated pathway contributes to susceptibility to SLE. PMID:22523428

  5. Fixman compensating potential for general branched molecules

    PubMed Central

    Jain, Abhinandan; Kandel, Saugat; Wagner, Jeffrey; Larsen, Adrien; Vaidehi, Nagarajan

    2013-01-01

    The technique of constraining high frequency modes of molecular motion is an effective way to increase simulation time scale and improve conformational sampling in molecular dynamics simulations. However, it has been shown that constraints on higher frequency modes such as bond lengths and bond angles stiffen the molecular model, thereby introducing systematic biases in the statistical behavior of the simulations. Fixman proposed a compensating potential to remove such biases in the thermodynamic and kinetic properties calculated from dynamics simulations. Previous implementations of the Fixman potential have been limited to only short serial chain systems. In this paper, we present a spatial operator algebra based algorithm to calculate the Fixman potential and its gradient within constrained dynamics simulations for branched topology molecules of any size. Our numerical studies on molecules of increasing complexity validate our algorithm by demonstrating recovery of the dihedral angle probability distribution function for systems that range in complexity from serial chains to protein molecules. We observe that the Fixman compensating potential recovers the free energy surface of a serial chain polymer, thus annulling the biases caused by constraining the bond lengths and bond angles. The inclusion of Fixman potential entails only a modest increase in the computational cost in these simulations. We believe that this work represents the first instance where the Fixman potential has been used for general branched systems, and establishes the viability for its use in constrained dynamics simulations of proteins and other macromolecules. PMID:24387353

  6. Fixman compensating potential for general branched molecules

    SciTech Connect

    Jain, Abhinandan; Kandel, Saugat; Wagner, Jeffrey; Larsen, Adrien; Vaidehi, Nagarajan

    2013-12-28

    The technique of constraining high frequency modes of molecular motion is an effective way to increase simulation time scale and improve conformational sampling in molecular dynamics simulations. However, it has been shown that constraints on higher frequency modes such as bond lengths and bond angles stiffen the molecular model, thereby introducing systematic biases in the statistical behavior of the simulations. Fixman proposed a compensating potential to remove such biases in the thermodynamic and kinetic properties calculated from dynamics simulations. Previous implementations of the Fixman potential have been limited to only short serial chain systems. In this paper, we present a spatial operator algebra based algorithm to calculate the Fixman potential and its gradient within constrained dynamics simulations for branched topology molecules of any size. Our numerical studies on molecules of increasing complexity validate our algorithm by demonstrating recovery of the dihedral angle probability distribution function for systems that range in complexity from serial chains to protein molecules. We observe that the Fixman compensating potential recovers the free energy surface of a serial chain polymer, thus annulling the biases caused by constraining the bond lengths and bond angles. The inclusion of Fixman potential entails only a modest increase in the computational cost in these simulations. We believe that this work represents the first instance where the Fixman potential has been used for general branched systems, and establishes the viability for its use in constrained dynamics simulations of proteins and other macromolecules.

  7. Determination of interionic potentials in molecules

    SciTech Connect

    Conradson, S.D.; Leon, J.M.; Bridges, F.

    1996-04-01

    The rationale underlying materials by design is that properties are determined by structure so that if the relationships between structure and properties are understood, an appropriate material can be designed and fabricated to meet any set of criteria. Since ion-ion potentials determine state transformations and reactivity, they are essential to the entire concept of materials and molecules by design. Virtually all of the important state-to-state processes undergone by molecules (excitation, relaxation, ionization, dissociation, and combination) and the selection among these different pathways are determined by the ion-ion potentials and the resulting degree of overlap between molecular vibrational states for different electronic and atomic configurations. Although the depths of these potentials can be obtained from thermodynamic data and the separations between the vibronic states from spectroscopic measurements, the use of these potentials in the ab initio calculation of state-transformation outcomes is limited by the absence of any direct method for determining their extent and shape. The authors have recently developed a generalization of x-ray absorption fine structure (XAFS) and a related set of experimental and analysis procedures that, in principle, will allow them to obtain such potentials from XAFS data. They have undertaken the analysis of temperature-dependent XAFS data of Cu, Ag, and Au to test the accuracy of existing analytical forms (the Morse potential for metals) in predicting the details of pair distributions and to determine the range of validity of a temperature-independent effective pair-potential approximation. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  8. Neopterin as a potential cytoprotective brain molecule.

    PubMed

    Ghisoni, Karina; Martins, Roberta de Paula; Barbeito, Luis; Latini, Alexandra

    2015-12-01

    Neopterin, a byproduct of the tetrahydrobiopterin de novo pathway, is found in increased levels in cerebrospinal fluid and plasma and significantly increases upon damage, infection or during immune system activation. The production of this compound seems almost restricted to the monocyte/macrophage linage cells, in response to interferon-γ stimulation. However, it is unclear whether and which nervous cells are able to synthesize neopterin, respond to any stressor applied extracellularly, or even the role of the compound in the central nervous system. Here we propose a potential cytoprotective role of neopterin in the brain, and show evidence that cultured rat astrocytes are responsive to the molecule; the pterin elicited increased hemeoxygenase-1 cellular content and decreased oxidative stress induced by mitochondrial dysfunction. Further studies are needed to clarify neopterin's cytoprotective effects in the central nervous system, and its potential role in different neuroinflammatory diseases. PMID:26476490

  9. Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy

    PubMed Central

    Järveläinen, Hannu; Sainio, Annele; Koulu, Markku; Wight, Thomas N.; Penttinen, Risto

    2009-01-01

    The extracellular matrix (ECM) consists of numerous macromolecules classified traditionally into collagens, elastin, and microfibrillar proteins, proteoglycans including hyaluronan, and noncollagenous glycoproteins. In addition to being necessary structural components, ECM molecules exhibit important functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. Any structural inherited or acquired defect and/or metabolic disturbance in the ECM may cause cellular and tissue alterations that can lead to the development or progression of disease. Consequently, ECM molecules are important targets for pharmacotherapy. Specific agents that prevent theexcess accumulation of ECM molecules in the vascular system, liver, kidney, skin, and lung; alternatively, agents that inhibit the degradation of the ECM in degenerative diseases such as osteoarthritis would be clinically beneficial. Unfortunately, until recently, the ECM in drug discovery has been largely ignored. However, several of today's drugs that act on various primary targets affect the ECM as a byproduct of the drugs' actions, and this activity may in part be beneficial to the drugs' disease-modifying properties. In the future, agents and compounds targeting directly the ECM will significantly advance the treatment of various human diseases, even those for which efficient therapies are not yet available. PMID:19549927

  10. Adsorbed molecules in external fields: Effect of confining potential.

    PubMed

    Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod

    2016-12-01

    We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials. PMID:27387127

  11. Kohn-Sham potentials for fullerenes and spherical molecules

    SciTech Connect

    Pavlyukh, Y.; Berakdar, J.

    2010-04-15

    We present a procedure for the construction of accurate Kohn-Sham potentials of quasispherical molecules starting from the first-principles valence densities. The method is demonstrated for the case of icosahedral C{sub 20}{sup 2+} and C{sub 60} molecules. Provided the density is N representable the Hohenberg-Kohn theorem guarantees the uniqueness of the obtained potentials. The potential is iteratively built following the suggestion of R. van Leeuwen and E. J. Baerends [Phys. Rev. A 49, 2421 (1994)]. The high symmetry of the molecules allows a parametrization of the angular dependence of the densities and the potentials using a small number of symmetry-adapted spherical harmonics. The radial behavior of these quantities is represented on a grid and the density is reconstructed from the approximate potential by numerically solving the coupled-channel Kohn-Sham equations. Subsequently, the potential is updated and the procedure is continued until convergence is achieved.

  12. Coarse-grained interaction potentials for anisotropic molecules.

    PubMed

    Babadi, M; Everaers, R; Ejtehadi, M R

    2006-05-01

    We have proposed an efficient parametrization method for a recent variant of the Gay Berne potential for dissimilar and biaxial particles [Phys. Rev. E 67, 041710 (2003)] and demonstrated it for a set of small organic molecules. Compared with the previously proposed coarse-grained models, the new potential exhibits a superior performance in close contact and large distant interactions. The repercussions of thermal vibrations and elasticity have been studied through a statistical method. The study justifies that the potential of mean force is representable with the same functional form, extending the application of this coarse-grained description to a broader range of molecules. Moreover, the advantage of employing coarse-grained models over truncated atomistic summations with large distance cutoffs has been briefly studied. PMID:16689591

  13. Angle-resolved effective potentials for disk-shaped molecules

    SciTech Connect

    Heinemann, Thomas Klapp, Sabine H. L.; Palczynski, Karol Dzubiella, Joachim

    2014-12-07

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  14. Angle-resolved effective potentials for disk-shaped molecules

    NASA Astrophysics Data System (ADS)

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.

    2014-12-01

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  15. Angle-resolved effective potentials for disk-shaped molecules.

    PubMed

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H L

    2014-12-01

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations. PMID:25481132

  16. Contrastive studies of potential energy functions of some diatomic molecules

    NASA Astrophysics Data System (ADS)

    Abdallah, Hassan H.; Abdullah, Hewa Y.

    2016-03-01

    It was proposed that iron hydride, FeH, would be formed only on grains at the clouds through the reaction of the adsorbed H atoms or H2 molecules with the adsorbed Fe atoms on the grains. The importance of FeH in Astrophysics presents an additional motivation to study its energetic, spectroscopic constants and Potential Energy Curves. The structural optimization for ground state of FeH was calculated by different theoretical methods, namely, Hartree-Fock (HF), the density functional theory (DFT), B3LYP, MP2 method and QCISD(T) methods and compared with available data from the literature. The single ionized forms, cation and anion, were also obtained at the same level of calculations. Charges, dipole moment, geometrical parameters, molecular orbital energies and spectroscopic parameters were calculated and reported. In addition, the molecular ionization potential, electron affinity and dissociation energy were investigated.

  17. Chemical potential and dimensions of chain molecules in athermal environments

    NASA Astrophysics Data System (ADS)

    Escobedo, Fernando A.

    A recently developed method for the simulation of chemical potentials of chain molecules (EVALENCH) is applied here to obtain the chemical potential, the mean square end-to-end distance (R2n) and the mean square radius of gyration (R2g) of dilute chains in different athermal media. The environments considered in this work are a frozen network structure, a deformable network matrix and a monomeric solvent at various densities. The properties of all chain lengths smaller than a preset maximum are calculated in a single simulation. A novel method is also presented for locating and computing the fraction of sampling space available to append one segment of an existing chain. This method enhances the range of densities where simulations of chemical potential are feasible. Simulated chemical potentials are compared with the predictions of two theories; good agreement is found in both cases. We find that R2n and R2g are reduced as the density of the medium is increased (network or solvent), while they are increased when the network is frozen and as the monomeric solvent size is made larger than that of the chain sites. At the conditions studied here, no direct evidence of chain collapse is observed.

  18. First-in-class small molecule potentiators of cancer virotherapy

    PubMed Central

    Dornan, Mark H.; Krishnan, Ramya; Macklin, Andrew M.; Selman, Mohammed; El Sayes, Nader; Son, Hwan Hee; Davis, Colin; Chen, Andrew; Keillor, Kerkeslin; Le, Penny J.; Moi, Christina; Ou, Paula; Pardin, Christophe; Canez, Carlos R.; Le Boeuf, Fabrice; Bell, John C.; Smith, Jeffrey C.; Diallo, Jean-Simon; Boddy, Christopher N.

    2016-01-01

    The use of engineered viral strains such as gene therapy vectors and oncolytic viruses (OV) to selectively destroy cancer cells is poised to make a major impact in the clinic and revolutionize cancer therapy. In particular, several studies have shown that OV therapy is safe and well tolerated in humans and can infect a broad range of cancers. Yet in clinical studies OV therapy has highly variable response rates. The heterogeneous nature of tumors is widely accepted to be a major obstacle for OV therapeutics and highlights a need for strategies to improve viral replication efficacy. Here, we describe the development of a new class of small molecules for selectively enhancing OV replication in cancer tissue. Medicinal chemistry studies led to the identification of compounds that enhance multiple OVs and gene therapy vectors. Lead compounds increase OV growth up to 2000-fold in vitro and demonstrate remarkable selectivity for cancer cells over normal tissue ex vivo and in vivo. These small molecules also demonstrate enhanced stability with reduced electrophilicity and are highly tolerated in animals. This pharmacoviral approach expands the scope of OVs to include resistant tumors, further potentiating this transformative therapy. It is easily foreseeable that this approach can be applied to therapeutically enhance other attenuated viral vectors. PMID:27226390

  19. First-in-class small molecule potentiators of cancer virotherapy.

    PubMed

    Dornan, Mark H; Krishnan, Ramya; Macklin, Andrew M; Selman, Mohammed; El Sayes, Nader; Son, Hwan Hee; Davis, Colin; Chen, Andrew; Keillor, Kerkeslin; Le, Penny J; Moi, Christina; Ou, Paula; Pardin, Christophe; Canez, Carlos R; Le Boeuf, Fabrice; Bell, John C; Smith, Jeffrey C; Diallo, Jean-Simon; Boddy, Christopher N

    2016-01-01

    The use of engineered viral strains such as gene therapy vectors and oncolytic viruses (OV) to selectively destroy cancer cells is poised to make a major impact in the clinic and revolutionize cancer therapy. In particular, several studies have shown that OV therapy is safe and well tolerated in humans and can infect a broad range of cancers. Yet in clinical studies OV therapy has highly variable response rates. The heterogeneous nature of tumors is widely accepted to be a major obstacle for OV therapeutics and highlights a need for strategies to improve viral replication efficacy. Here, we describe the development of a new class of small molecules for selectively enhancing OV replication in cancer tissue. Medicinal chemistry studies led to the identification of compounds that enhance multiple OVs and gene therapy vectors. Lead compounds increase OV growth up to 2000-fold in vitro and demonstrate remarkable selectivity for cancer cells over normal tissue ex vivo and in vivo. These small molecules also demonstrate enhanced stability with reduced electrophilicity and are highly tolerated in animals. This pharmacoviral approach expands the scope of OVs to include resistant tumors, further potentiating this transformative therapy. It is easily foreseeable that this approach can be applied to therapeutically enhance other attenuated viral vectors. PMID:27226390

  20. Rovibrational states of Wigner molecules in spherically symmetric confining potentials.

    PubMed

    Cioslowski, Jerzy

    2016-08-01

    The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits. In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the "anomalous" weak-confinement behavior of the (1)S+ state of the four-electron species that is absent in its (1)D+ companion of the strong-confinement regime. PMID:27497548

  1. Rovibrational states of Wigner molecules in spherically symmetric confining potentials

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy

    2016-08-01

    The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits. In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the "anomalous" weak-confinement behavior of the 1S+ state of the four-electron species that is absent in its 1D+ companion of the strong-confinement regime.

  2. Integrated Computational Solution for Predicting Skin Sensitization Potential of Molecules

    PubMed Central

    Desai, Aarti; Singh, Vivek K.; Jere, Abhay

    2016-01-01

    Introduction Skin sensitization forms a major toxicological endpoint for dermatology and cosmetic products. Recent ban on animal testing for cosmetics demands for alternative methods. We developed an integrated computational solution (SkinSense) that offers a robust solution and addresses the limitations of existing computational tools i.e. high false positive rate and/or limited coverage. Results The key components of our solution include: QSAR models selected from a combinatorial set, similarity information and literature-derived sub-structure patterns of known skin protein reactive groups. Its prediction performance on a challenge set of molecules showed accuracy = 75.32%, CCR = 74.36%, sensitivity = 70.00% and specificity = 78.72%, which is better than several existing tools including VEGA (accuracy = 45.00% and CCR = 54.17% with ‘High’ reliability scoring), DEREK (accuracy = 72.73% and CCR = 71.44%) and TOPKAT (accuracy = 60.00% and CCR = 61.67%). Although, TIMES-SS showed higher predictive power (accuracy = 90.00% and CCR = 92.86%), the coverage was very low (only 10 out of 77 molecules were predicted reliably). Conclusions Owing to improved prediction performance and coverage, our solution can serve as a useful expert system towards Integrated Approaches to Testing and Assessment for skin sensitization. It would be invaluable to cosmetic/ dermatology industry for pre-screening their molecules, and reducing time, cost and animal testing. PMID:27271321

  3. Potential energy surfaces and reaction dynamics of polyatomic molecules

    SciTech Connect

    Chang, Yan-Tyng.

    1991-11-01

    A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogen atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.

  4. Canonical transient receptor potential 4 and its small molecule modulators

    PubMed Central

    FU, Jie; GAO, ZhaoBing; SHEN, Bing; ZHU, Michael X.

    2015-01-01

    Canonical transient receptor potential 4 (TRPC4) forms non-selective cation channels that contribute to phospholipase C-dependent Ca2+ entry into cells following stimulation of G protein coupled receptors and receptor tyrosine kinases. More-over, the channels are regulated by pertussis toxin-sensitive Gi/o proteins, lipids, and various other signaling mechanisms. TRPC4-containing channels participate in the regulation of a variety of physiological functions, including excitability of both gastrointestinal smooth muscles and brain neurons. This review is to present recent advances in the understanding of physiology and development of small molecular modulators of TRPC4 channels. PMID:25480324

  5. Non Coding RNA Molecules as Potential Biomarkers in Breast Cancer.

    PubMed

    De Leeneer, Kim; Claes, Kathleen

    2015-01-01

    The pursuit of minimally invasive biomarkers is a challenging but exciting area of research. Clearly, such markers would need to be sensitive and specific enough to aid in the detection of breast cancer at an early stage, would monitor progression of the disease, and could predict the individual patient's response to treatment. Unfortunately, to date, markers with such characteristics have not made it to the clinic for breast cancer. Past years, many studies indicated that the non-coding part of our genome (the so called 'junk' DNA), may be an ideal source for these biomarkers. In this chapter, the potential use of microRNAs and long non-coding RNAs as biomarkers will be discussed. PMID:26530371

  6. Biflavonoids as Potential Small Molecule Therapeutics for Alzheimer's Disease.

    PubMed

    Thapa, Arjun; Chi, Eva Y

    2015-01-01

    Flavonoids are naturally occurring phytochemicals found in a variety of fruits and vegetables and offer color, flavor, aroma, nutritional and health benefits. Flavonoids have been found to play a neuroprotective role by inhibiting and/or modifying the self-assembly of the amyloid-β (Aβ) peptide into oligomers and fibrils, which are linked to the pathogenesis of Alzheimer's disease. The neuroprotective efficacy of flavonoids has been found to strongly depend on their structure and functional groups. Flavonoids may exist in monomeric, as well as di-, tri-, tetra- or polymeric form through C-C or C-O-C linkages. It has been shown that flavonoids containing two or more units, e.g., biflavonoids, exert greater biological activity than their respective monoflavonoids. For instance, biflavonoids have the ability to distinctly alter Aβ aggregation and more effectively reduce the toxicity of Aβ oligomers compared to the monoflavonoid moieties. Although the molecular mechanisms remain to be elucidated, flavonoids have been shown to alter the Aβ aggregation pathway to yield non-toxic, unstructured Aβ aggregates, as well as directly exerting a neuroprotective effect to cells. In this chapter, we review biflavonoid-mediated Aβ aggregation and toxicity, and highlight the beneficial roles biflavonoids can potentially play in the prevention and treatment of Alzheimer's disease. PMID:26092626

  7. Novel small molecules potentiate premature termination codon readthrough by aminoglycosides.

    PubMed

    Baradaran-Heravi, Alireza; Balgi, Aruna D; Zimmerman, Carla; Choi, Kunho; Shidmoossavee, Fahimeh S; Tan, Jason S; Bergeaud, Célia; Krause, Alexandra; Flibotte, Stéphane; Shimizu, Yoko; Anderson, Hilary J; Mouly, Vincent; Jan, Eric; Pfeifer, Tom; Jaquith, James B; Roberge, Michel

    2016-08-19

    Nonsense mutations introduce premature termination codons and underlie 11% of genetic disease cases. High concentrations of aminoglycosides can restore gene function by eliciting premature termination codon readthrough but with low efficiency. Using a high-throughput screen, we identified compounds that potentiate readthrough by aminoglycosides at multiple nonsense alleles in yeast. Chemical optimization generated phthalimide derivative CDX5-1 with activity in human cells. Alone, CDX5-1 did not induce readthrough or increase TP53 mRNA levels in HDQ-P1 cancer cells with a homozygous TP53 nonsense mutation. However, in combination with aminoglycoside G418, it enhanced readthrough up to 180-fold over G418 alone. The combination also increased readthrough at all three nonsense codons in cancer cells with other TP53 nonsense mutations, as well as in cells from rare genetic disease patients with nonsense mutations in the CLN2, SMARCAL1 and DMD genes. These findings open up the possibility of treating patients across a spectrum of genetic diseases caused by nonsense mutations. PMID:27407112

  8. Resonant transmission of a weakly bound molecule incident upon a step potential

    NASA Astrophysics Data System (ADS)

    Shegelski, Mark R. A.; Jones, George

    2016-08-01

    The case of a molecule with a single weakly bound state is considered. The molecule is incident in the bound state upon a step potential with an energy increase of V 0. We calculate the probability of reflection p R and transmission p T in the bound state and its dependence on the energy of the molecule. Three energy ranges are examined. For the highest range, resonant transmission occurs for all energies, a behaviour drastically different than that of a single particle. Other unexpected results are obtained and the physical reasons underlying the results are discussed.

  9. Scattering of a two-soliton molecule by Gaussian potentials in dipolar Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Umarov, B. A.; Aklan, N. A. B.; Baizakov, B. B.; Abdullaev, F. Kh

    2016-06-01

    Two bright solitons in a dipolar Bose–Einstein condensate (BEC) can form stable bound states, known as soliton molecules. In this paper we study the scattering of a two-soliton molecule by external potential, using the simplest and analytically tractable Gaussian potential barriers and wells, in one spatial dimension. Collisions of soliton molecules with single solitons are investigated, the latter playing the role of a localized defect. Due to the long-range character of dipolar forces solitons interact with each other even though their waveforms do not appreciably overlap. This is an essentially different feature of dipolar solitons compared to their counterparts in BECs with contact atomic interactions. The result of scattering significantly depends on the potential’s strength and velocity of collision. For weak potentials and/or low velocity the molecule preserves its coherence, meantime the internal modes are excited. Scattering by strong potentials at moderately high velocity ends up with dissociation of the molecule. The theoretical model is based on the variational approximation for the nonlocal Gross–Pitaevskii equation (GPE). Predictions of the mathematical model are compared with numerical simulations of the nonlocal GPE, and good qualitative agreement between them is demonstrated.

  10. Structures, Bonding, and Energetics of Potential Triatomic Circumstellar Molecules Containing Group 15 and 16 Elements.

    PubMed

    Turner, Walter E; Agarwal, Jay; Schaefer, Henry F

    2015-12-01

    The recent discovery of PN in the oxygen-rich shell of the supergiant star VY Canis Majoris points to the formation of several triatomic molecules involving oxygen, nitrogen, and phosphorus; these are also intriguing targets for main-group synthetic inorganic chemistry. In this research, high-level ab initio electronic structure computations were conducted on the potential circumstellar molecule OPN and several of its heavier group 15 and 16 congeners (SPN, SePN, TePN, OPP, OPAs, and OPSb). For each congener, four isomers were examined. Optimized geometries were obtained with coupled cluster theory [CCSD(T)] using large Dunning basis sets [aug-cc-pVQZ, aug-cc-pV(Q+d)Z, and aug-cc-pVQZ-PP], and relative energies were determined at the complete basis set limit of CCSDT(Q) from focal point analyses. The linear phosphorus-centered molecules were consistently the lowest in energy of the group 15 congeners by at least 6 kcal mol(-1), resulting from double-triple and single-double bond resonances within the molecule. The linear nitrogen-centered molecules were consistently the lowest in energy of the group 16 congeners by at least 5 kcal mol(-1), due to the electronegative central nitrogen atom encouraging electron delocalization throughout the molecule. For OPN, OPP, and SPN, anharmonic vibrational frequencies and vibrationally corrected rotational constants are predicted; good agreement with available experimental data is observed. PMID:26566183

  11. Quantum dynamics of a hydrogen molecule confined in a cylindrical potential

    NASA Astrophysics Data System (ADS)

    Yildirim, Taner; Harris, A. B.

    2003-06-01

    We study the coupled rotation-vibration levels of a hydrogen molecule in a confining potential with cylindrical symmetry. We include the coupling between rotations and translations and show how this interaction is essential to obtain the correct degeneracies of the energy level scheme. We applied our formalism to study the dynamics of H2 molecules inside a “smooth” carbon nanotube as a function of tube radius. The results are obtained both by numerical solution of the (2J+1)-component radial Schrödinger equation and by developing an effective Hamiltonian to describe the splitting of a manifold of states of fixed angular momentum J and number of phonons N. For nanotube radius smaller than ≈3.5 Å, the confining potential has a parabolic shape and the results can be understood in terms of a simple toy model. For larger radius, the potential has the “Mexican hat” shape and therefore the H2 molecule is off centered, yielding radial and tangential translational dynamics in addition to rotational dynamics of H2 molecule which we also describe by a simple model. Finally, we make several predictions for the the neutron scattering observation of various transitions between these levels.

  12. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Guo, Hua

    2014-07-01

    The permutation invariant polynomial-neural network (PIP-NN) method for constructing highly accurate potential energy surfaces (PESs) for gas phase molecules is extended to molecule-surface interaction PESs. The symmetry adaptation in the NN fitting of a PES is achieved by employing as the input symmetry functions that fulfill both the translational symmetry of the surface and permutation symmetry of the molecule. These symmetry functions are low-order PIPs of the primitive symmetry functions containing the surface periodic symmetry. It is stressed that permutationally invariant cross terms are needed to avoid oversymmetrization. The accuracy and efficiency are demonstrated in fitting both a model PES for the H2 + Cu(111) system and density functional theory points for the H2 + Ag(111) system.

  13. Nanoelectrode-Gated Detection of Individual Molecules with Potential for Rapid DNA Sequencing

    SciTech Connect

    Lee, James Weifu

    2007-01-01

    A systematic nanoelectrode-gated electron-tunneling molecular-detection concept with potential for rapid DNA sequencing has recently been invented at Oak Ridge National Laboratory (ORNL). A DNA molecule is a polymer that typically contains four different types of nucleotide bases: adenine (A), thymine (T), guanine (G), and cytosine (C) on its phosphate-deoxyribose chain. According to the nanoelectrode-gated molecular-detection concept, it should be possible to obtain genetic sequence information by probing through a DNA molecule base by base at a nanometer scale, as if looking at a strip of movie film. The nanoscale reading of DNA sequences is envisioned to take place at a nanogap (gate) defined by a pair of nanoelectrode tips as a DNA molecule moves through the gate base by base. The rationale is that sample molecules, such as the four different nucleotide bases, each with a distinct chemical composition and structure, should produce a specific perturbation effect on the tunneling electron beam across the two nanoelectrode tips. A sample molecule could thus be detected when it enters the gate. This nanoscience-based approach could lead to a new DNA sequencing technology that could be thousands of times faster than the current technology (Sanger's 'dideoxy' protocol-based capillary electrophoresis systems). Both computational and experimental studies are underway at ORNL towards demonstrating this nanotechnology concept.

  14. Non-additivity of molecule-surface van der Waals potentials from force measurements

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G.; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F. Stefan

    2014-11-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  15. Non-additivity of molecule-surface van der Waals potentials from force measurements

    PubMed Central

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G.; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F. Stefan

    2014-01-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction. PMID:25424490

  16. Non-additivity of molecule-surface van der Waals potentials from force measurements

    NASA Astrophysics Data System (ADS)

    Tautz, Stefan

    2014-03-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Their description as an inherently quantum mechanical phenomenon was developed for single atoms and homogeneous macroscopic bodies by London, Casimir, and Lifshitz. For intermediate-sized objects like organic molecules an atomistic description is required, but explicit first principles calculations are very difficult since correlations between many interacting electrons have to be considered. Hence, semi-empirical correction schemes are often used that simplify the vdW interaction to a sum over atom-pair potentials. A similar gap exists between successful measurements of vdW and Casimir forces for single atoms on the one hand and macroscopic bodies on the other, as comparable experiments for molecules are absent. I will present experiments in which long-range vdW potentials between a series of related molecules and a metal surface have been determined experimentally. The experiments rely on the extremely sensitive force detection of an atomic force microscope in combination with its molecular manipulation capabilities. The results allow us to confirm the asymptotic force law and to quantify the non-additive part of the vdW interaction which is particularly challenging for theory. In the present case, cooperative effects account for 10% of the total interaction. This effect is of general validity in molecules and thus relevant at the intersection of chemistry, physics, biology, and materials science.

  17. Modeling of diatomic molecule using the Morse potential and the Verlet algorithm

    NASA Astrophysics Data System (ADS)

    Fidiani, Elok

    2016-03-01

    Performing molecular modeling usually uses special software for Molecular Dynamics (MD) such as: GROMACS, NAMD, JMOL etc. Molecular dynamics is a computational method to calculate the time dependent behavior of a molecular system. In this work, MATLAB was used as numerical method for a simple modeling of some diatomic molecules: HCl, H2 and O2. MATLAB is a matrix based numerical software, in order to do numerical analysis, all the functions and equations describing properties of atoms and molecules must be developed manually in MATLAB. In this work, a Morse potential was generated to describe the bond interaction between the two atoms. In order to analyze the simultaneous motion of molecules, the Verlet Algorithm derived from Newton's Equations of Motion (classical mechanics) was operated. Both the Morse potential and the Verlet algorithm were integrated using MATLAB to derive physical properties and the trajectory of the molecules. The data computed by MATLAB is always in the form of a matrix. To visualize it, Visualized Molecular Dynamics (VMD) was performed. Such method is useful for development and testing some types of interaction on a molecular scale. Besides, this can be very helpful for describing some basic principles of molecular interaction for educational purposes.

  18. Theoretical and experimental electrostatic potential around the m-nitrophenol molecule.

    PubMed

    Drissi, Mokhtaria; Benhalima, Nadia; Megrouss, Youcef; Rachida, Rahmani; Chouaih, Abdelkader; Hamzaoui, Fodil

    2015-01-01

    This work concerns a comparison of experimental and theoretical results of the electron charge density distribution and the electrostatic potential around the m-nitrophenol molecule (m-NPH) known for its interesting physical characteristics. The molecular experimental results have been obtained from a high-resolution X-ray diffraction study. Theoretical investigations were performed using the Density Functional Theory at B3LYP level of theory at 6-31G* in the Gaussian program. The multipolar model of Hansen and Coppens was used for the experimental electron charge density distribution around the molecule, while we used the DFT methods for the theoretical calculations. The electron charge density obtained in both methods allowed us to find out different molecular properties such us the electrostatic potential and the dipole moment, which were finally subject to a comparison leading to a good match obtained between both methods. The intramolecular charge transfer has also been confirmed by an HOMO-LUMO analysis. PMID:25741898

  19. Current and potential uses of bioactive molecules from marine processing waste.

    PubMed

    Suleria, Hafiz Ansar Rasul; Masci, Paul; Gobe, Glenda; Osborne, Simone

    2016-03-15

    Food industries produce huge amounts of processing waste that are often disposed of incurring expenses and impacting upon the environment. For these and other reasons, food processing waste streams, in particular marine processing waste streams, are gaining popularity amongst pharmaceutical, cosmetic and nutraceutical industries as sources of bioactive molecules. In the last 30 years, there has been a gradual increase in processed marine products with a concomitant increase in waste streams that include viscera, heads, skins, fins, bones, trimmings and shellfish waste. In 2010, these waste streams equated to approximately 24 million tonnes of mostly unused resources. Marine processing waste streams not only represent an abundant resource, they are also enriched with structurally diverse molecules that possess a broad panel of bioactivities including anti-oxidant, anti-coagulant, anti-thrombotic, anti-cancer and immune-stimulatory activities. Retrieval and characterisation of bioactive molecules from marine processing waste also contributes valuable information to the vast field of marine natural product discovery. This review summarises the current use of bioactive molecules from marine processing waste in different products and industries. Moreover, this review summarises new research into processing waste streams and the potential for adoption by industries in the creation of new products containing marine processing waste bioactives. PMID:26332893

  20. A Structure Based Model for the Prediction of Phospholipidosis Induction Potential of Small Molecules

    PubMed Central

    Sun, Hongmao; Shahane, Sampada; Xia, Menghang; Austin, Christopher P.; Huang, Ruili

    2012-01-01

    Drug-induced phospholipidosis (PLD), characterized by an intracellular accumulation of phospholipids and formation of concentric lamellar bodies, has raised concerns in the drug discovery community, due to its potential adverse effects. To evaluate the PLD induction potential, 4,161 non-redundant drug-like molecules from the National Institutes of Health Chemical Genomics Center (NCGC) Pharmaceutical Collection (NPC), the Library of Pharmacologically Active Compounds (LOPAC) and the Tocris Biosciences collection were screened in a quantitative high-throughput screening (qHTS) format. The potential of drug-lipid complex formation can be linked directly to the structures of drug molecules, and many PLD inducing drugs were found to share common structural features. Support vector machine (SVM) models were constructed by using customized atom types or Molecular Operating Environment (MOE) 2D descriptors as structural descriptors. Either the compounds from LOPAC or randomly selected from the entire dataset were used as the training set. The impact of training data with biased structural features and the impact of molecule descriptors emphasizing whole-molecule properties or detailed functional groups at the atom level on model performance were analyzed and discussed. Rebalancing strategies were applied to improve the predictive power of the SVM models. Using the under-sampling method, the consensus model using one third of the compounds randomly selected from the data set as the training set achieved high accuracy of 0.90 in predicting the remaining two thirds of the compounds constituting the test set, as measured by the area under the receiver operator characteristic curve (AUC-ROC). PMID:22725677

  1. Effective medium potentials for molecule-surface interactions: H2 on Cu and Ni surfaces

    NASA Astrophysics Data System (ADS)

    Nørskov, J. K.

    1989-06-01

    A new approximate method is developed for the calculation of the adiabatic potential energy surface for a molecule outside a metal surface. It is computationally fast enough to be useful in simulations of the dynamics of adsorbing and desorbing molecules. The method is characterized by the fact that the functional form of the total energy expression is derived from density functional theory, that each of the terms entering can be given a precise physical interpretation, and that most of the parameters entering can be calculated, within the local density approximation. The method is explicitly derived for H2 outside metal surfaces and the applicability is illustrated for H2 adsorbing on various Cu and Ni surfaces. Although very approximate, the calculated potentials seem to include a number of features observed experimentally: Ni is more active in dissociating H2 than Cu, and open surfaces are more active than close-packed ones. Moreover, the method is simple enough that one can contemplate studying variations in dissociation pathways over the surface unit cell. For the Cu surfaces these variations are substantial accounting for at least part of the variation of the sticking coefficient with the kinetic energy of the incoming molecule. Because of the transparent nature of the energy expression, all these trends can be given a simple physical interpretation.

  2. Proteasome activation is a mechanism for pyrazolone small molecules displaying therapeutic potential in amyotrophic lateral sclerosis.

    PubMed

    Trippier, Paul C; Zhao, Kevin Tianmeng; Fox, Susan G; Schiefer, Isaac T; Benmohamed, Radhia; Moran, Jason; Kirsch, Donald R; Morimoto, Richard I; Silverman, Richard B

    2014-09-17

    Amyotrophic lateral sclerosis (ALS) is a progressive and ultimately fatal neurodegenerative disease. Pyrazolone containing small molecules have shown significant disease attenuating efficacy in cellular and murine models of ALS. Pyrazolone based affinity probes were synthesized to identify high affinity binding partners and ascertain a potential biological mode of action. Probes were confirmed to be neuroprotective in PC12-SOD1(G93A) cells. PC12-SOD1(G93A) cell lysates were used for protein pull-down, affinity purification, and subsequent proteomic analysis using LC-MS/MS. Proteomics identified the 26S proteasome regulatory subunit 4 (PSMC1), 26S proteasome regulatory subunit 6B (PSMC4), and T-complex protein 1 (TCP-1) as putative protein targets. Coincubation with appropriate competitors confirmed the authenticity of the proteomics results. Activation of the proteasome by pyrazolones was demonstrated in the absence of exogenous proteasome inhibitor and by restoration of cellular protein degradation of a fluorogenic proteasome substrate in PC12-SOD1(G93A) cells. Importantly, supplementary studies indicated that these molecules do not induce a heat shock response. We propose that pyrazolones represent a rare class of molecules that enhance proteasomal activation in the absence of a heat shock response and may have therapeutic potential in ALS. PMID:25001311

  3. Quantum phase transitions of atom-molecule Bose mixtures in a double-well potential.

    PubMed

    Relaño, A; Dukelsky, J; Pérez-Fernández, P; Arias, J M

    2014-10-01

    The ground state and spectral properties of Bose gases in double-well potentials are studied in two different scenarios: (i) an interacting atomic Bose gas, and (ii) a mixture of an atomic gas interacting with diatomic molecules. A ground state second-order quantum phase transition is observed in both scenarios. For large attractive values of the atom-atom interaction, the ground state is degenerate. For repulsive and small attractive interaction, the ground state is not degenerate and is well approximated by a boson coherent state. Both systems depict an excited state quantum phase transition. In both cases, a critical energy separates a region in which all the energy levels are degenerate in pairs, from another region in which there are no degeneracies. For the atomic system, the critical point displays a singularity in the density of states, whereas this behavior is largely smoothed for the mixed atom-molecule system. PMID:25375470

  4. Early-Late Heterobimetallic Complexes Linked by Phosphinoamide Ligands. Tuning Redox Potentials and Small Molecule Activation

    SciTech Connect

    Thomas, Christine M.

    2015-08-01

    Recent attention in the chemical community has been focused on the energy efficient and environmentally benign conversion of abundant small molecules (CO2, H2O, etc.) to useful liquid fuels. This project addresses these goals by examining fundamental aspects of catalyst design to ultimately access small molecule activation processes under mild conditions. Specifically, Thomas and coworkers have targetted heterobimetallic complexes that feature metal centers with vastly different electronic properties, dictated both by their respective positions on the periodic table and their coordination environment. Unlike homobimetallic complexes featuring identical or similar metals, the bonds between metals in early/late heterobimetallics are more polarized, with the more electron-rich late metal center donating electron density to the more electron-deficient early metal center. While metal-metal bonds pose an interesting strategy for storing redox equivalents and stabilizing reactive metal fragments, the polar character of metal-metal bonds in heterobimetallic complexes renders these molecules ideally poised to react with small molecule substrates via cleavage of energy-rich single and double bonds. In addition, metal-metal interactions have been shown to dramatically affect redox potentials and promote multielectron redox activity, suggesting that metal-metal interactions may provide a mechanism to tune redox potentials and access substrate reduction/activation at mild overpotentials. This research project has provided a better fundamental understanding of how interactions between transition metals can be used as a strategy to promote and/or control chemical transformations related to the clean production of fuels. While this project focused on the study of homogeneous systems, it is anticipated that the broad conclusions drawn from these investigations will be applicable to heterogeneous catalysis as well, particularly on heterogeneous processes that occur at interfaces in

  5. Modeling intermolecular interactions of physisorbed organic molecules using pair potential calculations

    SciTech Connect

    Kroeger, Ingo; Stadtmueller, Benjamin; Wagner, Christian; Weiss, Christian; Temirov, Ruslan; Tautz, F. Stefan; Kumpf, Christian

    2011-12-21

    The understanding and control of epitaxial growth of organic thin films is of crucial importance in order to optimize the performance of future electronic devices. In particular, the start of the submonolayer growth plays an important role since it often determines the structure of the first layer and subsequently of the entire molecular film. We have investigated the structure formation of 3,4,9,10-perylene-tetracarboxylic dianhydride and copper-phthalocyanine molecules on Au(111) using pair-potential calculations based on van der Waals and electrostatic intermolecular interactions. The results are compared with the fundamental lateral structures known from experiment and an excellent agreement was found for these weakly interacting systems. Furthermore, the calculations are even suitable for chemisorptive adsorption as demonstrated for copper-phthalocyanine/Cu(111), if the influence of charge transfer between substrate and molecules is known and the corresponding charge redistribution in the molecules can be estimated. The calculations are of general applicability for molecular adsorbate systems which are dominated by electrostatic and van der Waals interaction.

  6. Design, synthesis, and characterization of TPA-thiophene-based amide or imine functionalized molecule for potential optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Sarswat, Prashant K.; Sathyapalan, Amarchand; Zhu, Yakun; Free, Michael L.

    2013-01-01

    New sets of molecules containing tri-phenyl-amine (TPA) core and thiophene unit with amide and imine functional groups are designed, synthesized, characterized, and compared. These are solution processable small molecules with high mobility. The newly designed molecules have better solubility due to the C=N (imine) and CONH2 (amide) moiety as compared to the established molecules with CH=CH (methine) for optoelectronic applications. They have an optimal energy band gap, which indicates their potential utility in a variety of optoelectronic applications. These molecules also show efficient intermolecular charge transfer mechanisms similar to conventional organic semiconducting molecules as evidenced by optical measurements. Density functional theory simulation results show that the localization of the frontier highest occupied molecular orbital is around the TPA core for molecules coupled with imine and amide, and is reasonably stable.

  7. The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1)

    PubMed Central

    Morales-Lázaro, Sara L; Simon, Sidney A; Rosenbaum, Tamara

    2013-01-01

    Pain is a physiological response to a noxious stimulus that decreases the quality of life of those sufferring from it. Research aimed at finding new therapeutic targets for the treatment of several maladies, including pain, has led to the discovery of numerous molecular regulators of ion channels in primary afferent nociceptive neurons. Among these receptors is TRPV1 (transient receptor potential vanilloid 1), a member of the TRP family of ion channels. TRPV1 is a calcium-permeable channel, which is activated or modulated by diverse exogenous noxious stimuli such as high temperatures, changes in pH, and irritant and pungent compounds, and by selected molecules released during tissue damage and inflammatory processes. During the last decade the number of endogenous regulators of TRPV1's activity has increased to include lipids that can negatively regulate TRPV1, as is the case for cholesterol and PIP2 (phosphatidylinositol 4,5-biphosphate) while, in contrast, other lipids produced in response to tissue injury and ischaemic processes are known to positively regulate TRPV1. Among the latter, lysophosphatidic acid activates TRPV1 while amines such as N-acyl-ethanolamines and N-acyl-dopamines can sensitize or directly activate TRPV1. It has also been found that nucleotides such as ATP act as mediators of chemically induced nociception and pain and gases, such as hydrogen sulphide and nitric oxide, lead to TRPV1 activation. Finally, the products of lipoxygenases and omega-3 fatty acids among other molecules, such as divalent cations, have also been shown to endogenously regulate TRPV1 activity. Here we provide a comprehensive review of endogenous small molecules that regulate the function of TRPV1. Acting through mechanisms that lead to sensitization and desensitization of TRPV1, these molecules regulate pathways involved in pain and nociception. Understanding how these compounds modify TRPV1 activity will allow us to comprehend how some pathologies are associated with

  8. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules IV: Electron-Propagator Methods.

    PubMed

    Dolgounitcheva, O; Díaz-Tinoco, Manuel; Zakrzewski, V G; Richard, Ryan M; Marom, Noa; Sherrill, C David; Ortiz, J V

    2016-02-01

    Comparison of ab initio electron-propagator predictions of vertical ionization potentials and electron affinities of organic, acceptor molecules with benchmark calculations based on the basis set-extrapolated, coupled cluster single, double, and perturbative triple substitution method has enabled identification of self-energy approximations with mean, unsigned errors between 0.1 and 0.2 eV. Among the self-energy approximations that neglect off-diagonal elements in the canonical, Hartree-Fock orbital basis, the P3 method for electron affinities, and the P3+ method for ionization potentials provide the best combination of accuracy and computational efficiency. For approximations that consider the full self-energy matrix, the NR2 methods offer the best performance. The P3+ and NR2 methods successfully identify the correct symmetry label of the lowest cationic state in two cases, naphthalenedione and benzoquinone, where some other methods fail. PMID:26730459

  9. CVRQD ab initio ground-state adiabatic potential energy surfaces for the water molecule.

    PubMed

    Barletta, Paolo; Shirin, Sergei V; Zobov, Nikolai F; Polyansky, Oleg L; Tennyson, Jonathan; Valeev, Edward F; Császár, Attila G

    2006-11-28

    The high accuracy ab initio adiabatic potential energy surfaces (PESs) of the ground electronic state of the water molecule, determined originally by Polyansky et al. [Science 299, 539 (2003)] and called CVRQD, are extended and carefully characterized and analyzed. The CVRQD potential energy surfaces are obtained from extrapolation to the complete basis set of nearly full configuration interaction valence-only electronic structure computations, augmented by core, relativistic, quantum electrodynamics, and diagonal Born-Oppenheimer corrections. We also report ab initio calculations of several quantities characterizing the CVRQD PESs, including equilibrium and vibrationally averaged (0 K) structures, harmonic and anharmonic force fields, harmonic vibrational frequencies, vibrational fundamentals, and zero-point energies. They can be considered as the best ab initio estimates of these quantities available today. Results of first-principles computations on the rovibrational energy levels of several isotopologues of the water molecule are also presented, based on the CVRQD PESs and the use of variational nuclear motion calculations employing an exact kinetic energy operator given in orthogonal internal coordinates. The variational nuclear motion calculations also include a simplified treatment of nonadiabatic effects. This sophisticated procedure to compute rovibrational energy levels reproduces all the known rovibrational levels of the water isotopologues considered, H(2) (16)O, H(2) (17)O, H(2) (18)O, and D(2) (16)O, to better than 1 cm(-1) on average. Finally, prospects for further improvement of the ground-state adiabatic ab initio PESs of water are discussed. PMID:17144700

  10. Towards a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets

    NASA Astrophysics Data System (ADS)

    Seager, Sara; Bains, William; Petkowski, Janusz

    2015-12-01

    Thousands of exoplanets are known to orbit nearby stars. Plans for the next generation of space-based and ground-based telescopes are fueling the anticipation that a precious few habitable planets can be identified in the coming decade. Even more highly anticipated is the chance to find signs of life on these habitable planets by way of biosignature gases. But which gases should we search for? We expand on the search of possible biosignature gases and go beyond those studied so far, which include O2, O3, N2O, and CH4, as well as secondary metabolites: methanethiol (CH3SH), dimethyl sulfide ((CH3)2S), methyl chloride (CH3Cl), and carbonyl sulfide (CSO).We present the results of a project to map the chemical space of life’s metabolic products. We have constructed a systematic survey of all possible stable volatile molecules (up to N=6 non-H atoms), and identified those made by life on Earth. Some (such as methyl chloride) are made by Earth life in sufficiently substantial quantities to be candidate biosignatures in an Earth-like exoplanet’s atmosphere; some, such as stibine (SbH3), are produced only in trace amounts. Some entire categories of molecules are not made by Earth life (such as the silanes); these and other absences from the list of biogenic volatiles point to functional patterns in biochemical space. Such patterns may be different for different biochemistry, and so we cannot rule out any small, stable molecule as a candidate biosignature gas. Our goal is for the community to use the list to study the chemicals that might be potential biosignature gases on exoplanets with atmospheres and surface environments different from Earth’s.

  11. Multi-Functional Diarylurea Small Molecule Inhibitors of TRPV1 with Therapeutic Potential for Neuroinflammation.

    PubMed

    Feng, Zhiwei; Pearce, Larry V; Zhang, Yu; Xing, Changrui; Herold, Brienna K A; Ma, Shifan; Hu, Ziheng; Turcios, Noe A; Yang, Peng; Tong, Qin; McCall, Anna K; Blumberg, Peter M; Xie, Xiang-Qun

    2016-07-01

    Transient receptor potential vanilloid type 1 (TRPV1), a heat-sensitive calcium channel protein, contributes to inflammation as well as to acute and persistent pain. Since TRPV1 occupies a central position in pathways of neuronal inflammatory signaling, it represents a highly attractive potential therapeutic target for neuroinflammation. In the present work, we have in silico identified a series of diarylurea analogues for hTRPV1, of which 11 compounds showed activity in the nanomolar to micromolar range as validated by in vitro biological assays. Then, we utilized molecular docking to explore the detailed interactions between TRPV1 and the compounds to understand the contributions of the different substituent groups. Tyr511, Leu518, Leu547, Thr550, Asn551, Arg557, and Leu670 were important for the recognition of the small molecules by TRPV1. A hydrophobic group in R2 or a polar/hydrophilic group in R1 contributed significantly to the activities of the antagonists at TRPV1. In addition, the subtle different binding pose of meta-chloro in place of para-fluoro in the R2 group converted antagonism into partial agonism, as was predicted by our short-term molecular dynamics (MD) simulation and validated by bioassay. Importantly, compound 15, one of our best TRPV1 inhibitors, also showed potential binding affinity (1.39 μM) at cannabinoid receptor 2 (CB2), which is another attractive target for immuno-inflammation diseases. Furthermore, compound 1 and its diarylurea analogues were predicted to target the C-X-C chemokine receptor 2 (CXCR2), although bioassay validation of CXCR2 with these compounds still needs to be performed. This prediction from the modeling is of interest, since CXCR2 is also a potential therapeutic target for chronic inflammatory diseases. Our findings provide novel strategies to develop a small molecule inhibitor to simultaneously target two or more inflammation-related proteins for the treatment of a wide range of inflammatory disorders including

  12. Proline-rich peptides: multifunctional bioactive molecules as new potential therapeutic drugs.

    PubMed

    Vitali, Alberto

    2015-01-01

    Proline-rich peptides (PRPs) include a large and heterogeneous group of small-medium sized peptides characterized by the presence of proline residues often constituting peculiar sequences. This feature confers them a typical structure that determines the various biological functions endowed by these molecules. In particular the left-handed-polyproline-II helix is essential for the expression of the antimicrobial, immunomodulatory, antioxidant properties and to finely modulate protein-protein interactions, thus playing crucial roles in many cell signal transduction pathways. These peptides are widely diffuse in the animal kingdom and in humans, where they are present in many tissues and biological fluids. This review highlights the most relevant biological properties of these peptides, focusing on the potential therapeutic role that the PRPs may play as a promising source of new peptidebased novel drugs. PMID:25692951

  13. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules

    PubMed Central

    Moseti, Dorothy; Regassa, Alemu; Kim, Woo-Kyun

    2016-01-01

    Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor γ (PPARγ), and the CCAAT/enhancer binding proteins (C/EBPs) such as C/EBPα, β and δ are considered the key early regulators of adipogenesis, while fatty acid binding protein 4 (FABP4), adiponectin, and fatty acid synthase (FAS) are responsible for the formation of mature adipocytes. Excess accumulation of lipids in the adipose tissue leads to obesity, which is associated with cardiovascular diseases, type II diabetes and other pathologies. Thus, investigating adipose tissue development and the underlying molecular mechanisms is vital to develop therapeutic agents capable of curbing the increasing incidence of obesity and related pathologies. In this review, we address the process of adipogenic differentiation, key transcription factors and proteins involved, adipogenic regulators and potential anti-adipogenic bioactive molecules. PMID:26797605

  14. Benzofuran Small Molecules as Potential Inhibitors of Human Protein Kinases. A Review.

    PubMed

    Kwiecień, Halina; Goszczyńska, Agata; Rokosz, Paulina

    2016-01-01

    Kinases are known to regulate the majority of human cellular processes such as communication, division, metabolism, survival and apoptosis therefore they can be promising targets in cancer diseases, viral infection and in other disorders. Small molecules acting as selective human protein kinase inhibitors are very attractive pharmacological targets. This review presents a number of examples of biologically active natural and synthetic benzo[b]furans and their derivatives, such as benzo[b]furan-2- and 3-ones, benzo[b]furan-2- and 3-carboxylic acids, as well as benzo[c]furans as potential inhibitors of various human protein kinases. The pathways of function and implication of the inhibitors in cancer and other diseases are discussed. PMID:26648467

  15. Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment

    SciTech Connect

    Guerout, R.; Aymar, M.; Dulieu, O.

    2010-10-15

    In this study, we investigate the structure of the polar alkali-metal-atom-strontium diatomic molecules as possible candidates for the realization of samples of ultracold polar molecular species not yet investigated experimentally. Using a quantum chemistry approach based on effective core potentials and core polarization potentials, we model these systems as effective three-valence-electron systems, allowing for calculation of electronic properties with full configuration interaction. The potential curve and the permanent dipole moment of the {sup 2}{Sigma}{sup +} ground state are determined as functions of the internuclear distance for LiSr, NaSr, KSr, RbSr, and CsSr molecules. These molecules are found to exhibit a significant permanent dipole moment, though smaller than those of the alkali-metal-atom-Rb molecules.

  16. Very accurate potential energy curve of the LiH molecule

    NASA Astrophysics Data System (ADS)

    Tung, Wei-Cheng; Pavanello, Michele; Adamowicz, Ludwik

    2011-02-01

    We present very accurate calculations of the ground-state potential energy curve (PEC) of the LiH molecule performed with all-electron explicitly correlated Gaussian functions with shifted centers. The PEC is generated with the variational method involving simultaneous optimization of all Gaussians with an approach employing the analytical first derivatives of the energy with respect to the Gaussian nonlinear parameters (i.e., the exponents and the coordinates of the shifts). The LiH internuclear distance is varied between 1.8 and 40 bohrs. The absolute accuracy of the generated PEC is estimated as not exceeding 0.3 cm-1. The adiabatic corrections for the four LiH isotopologues, i.e., 7LiH, 6LiH, 7LiD, and 6LiD, are also calculated and added to the LiH PEC. The aforementioned PECs are then used to calculate the vibrational energies for these systems. The maximum difference between the computed and the experimental vibrational transitions is smaller than 0.9 cm-1. The contribution of the adiabatic correction to the dissociation energy of 7LiH molecule is 10.7 cm-1. The magnitude of this correction shows its importance in calculating the LiH spectroscopic constants. As the estimated contribution of the nonadiabatic and relativistic effects to the ground state dissociation energy is around 0.3 cm-1, their inclusion in the LiH PEC calculation seems to be the next most important contribution to evaluate in order to improve the accuracy achieved in this work.

  17. Very accurate potential energy curve of the LiH molecule.

    PubMed

    Tung, Wei-Cheng; Pavanello, Michele; Adamowicz, Ludwik

    2011-02-14

    We present very accurate calculations of the ground-state potential energy curve (PEC) of the LiH molecule performed with all-electron explicitly correlated Gaussian functions with shifted centers. The PEC is generated with the variational method involving simultaneous optimization of all Gaussians with an approach employing the analytical first derivatives of the energy with respect to the Gaussian nonlinear parameters (i.e., the exponents and the coordinates of the shifts). The LiH internuclear distance is varied between 1.8 and 40 bohrs. The absolute accuracy of the generated PEC is estimated as not exceeding 0.3 cm(-1). The adiabatic corrections for the four LiH isotopologues, i.e., (7)LiH, (6)LiH, (7)LiD, and (6)LiD, are also calculated and added to the LiH PEC. The aforementioned PECs are then used to calculate the vibrational energies for these systems. The maximum difference between the computed and the experimental vibrational transitions is smaller than 0.9 cm(-1). The contribution of the adiabatic correction to the dissociation energy of (7)LiH molecule is 10.7 cm(-1). The magnitude of this correction shows its importance in calculating the LiH spectroscopic constants. As the estimated contribution of the nonadiabatic and relativistic effects to the ground state dissociation energy is around 0.3 cm(-1), their inclusion in the LiH PEC calculation seems to be the next most important contribution to evaluate in order to improve the accuracy achieved in this work. PMID:21322671

  18. Ab Initio Characterization of Triatomic Bromine Molecules of Potential Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee. Timothy J.

    1995-01-01

    The equilibrium structures, harmonic vibrational frequencies, quadratic force fields, dipole moments, and IR intensities of several triatomic bromine compounds of known or potential importance in stratospheric ozone depletion chemistry have been determined using the CCSD(T) electron correlation method in conjunction with a basis set of triple zeta double polarized (TZ2P) quality. Specifically, the molecules included in the present study are HOBr, HBrO, FOBr, FBrO, BrNO, BrON, Br2O, BrBrO, BrCN, BrNC, ClOBr, ClBrO, and BrClO. Very accurate isomeric energy differences have also been determined at the CCSD(T) level with atomic natural orbital basis sets that include through g-type functions. In most cases, the isomer with a normal neutral Lewis dot structure is the lowest energy form, with the single exception that FBRO is predicted to be 11.1 kcal/mol (0 K) lower in energy than FOBr. In all cases, however, the hypervalent isomer is more stable relative to the isomer with a normal Lewis dot structure as compared to the chlorine analogs. Consistent with this observation, the energy of the last three molecules given above increases in the order ClOBr less than ClBrO less than BrClO. The CCSD(T)/TZ2P geometries and vibrational frequencies are in good agreement with the available experimental data. Heats of formation are determined for all species using a combination of theoretical isomeric, homodesmic, and isodesmic reaction energies. The accuracy of these quantities is ultimately dependent on the reliability of the experimental heat of formation of HOBr.

  19. Ab Initio Characterization of Triatomic Bromine Molecules of Potential Interest in Stratospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.

    1995-01-01

    The equilibrium structures, harmonic vibrational frequencies, quadratic force fields, dipole moments, and IR intensities of several triatomic bromine compounds of known or potential importance in stratospheric ozone depletion chemistry have been determined using the CCSD(T) electron correlation method in conjunction with a basis set of triple zeta double polarized (TZ2P) quality. Specifically, the molecules included in the present study are HOBr, HBrO, FOBr, FBrO, BrNO, BrON, Br2O, BrBrO, BrCN, BrNC, ClOBr, ClBrO, and BrClO. Very accurate isomeric energy differences have also been determined at the CCSD(T) level with atomic natural orbital basis sets that include through g-type functions. In most cases, the isomer with a normal neutral Lewis dot structure is the lowest energy form, with the single exception that FBrO is predicted to be 11.1 kcal/mol (0 K) lower in energy than FOBr. In all cases, however, the hypervalent isomer is more stable relative to the isomer with a normal Lewis dot structure as compared to the chlorine analogs. Consistent with this observation, the energy of the last three molecules given above increases in the order ClOBr less than ClBrO less than BrClO. The CCSD(T)/TZ2P geometries and vibrational frequencies are in good agreement with the available experimental data. Heats of formation are determined for all species using a combination of theoretical isomeric, homodesmic, and isodesmic reaction energies. The accuracy of these quantities is ultimately dependent on the reliability of the experimental heat of formation of HOBr.

  20. Therapeutic potential of an orally effective small molecule inhibitor of plasminogen activator inhibitor for asthma.

    PubMed

    Liu, Rui-Ming; Eldridge, Stephanie; Watanabe, Nobuo; Deshane, Jessy; Kuo, Hui-Chien; Jiang, Chunsun; Wang, Yong; Liu, Gang; Schwiebert, Lisa; Miyata, Toshio; Thannickal, Victor J

    2016-02-15

    Asthma is one of the most common respiratory diseases. Although progress has been made in our understanding of airway pathology and many drugs are available to relieve asthma symptoms, there is no cure for chronic asthma. Plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue-type and urokinase-type plasminogen activators, has pleiotropic functions besides suppression of fibrinolysis. In this study, we show that administration of TM5275, an orally effective small-molecule PAI-1 inhibitor, 25 days after ovalbumin (OVA) sensitization-challenge, significantly ameliorated airway hyperresponsiveness in an OVA-induced chronic asthma model. Furthermore, we show that TM5275 administration significantly attenuated OVA-induced infiltration of inflammatory cells (neutrophils, eosinophils, and monocytes), the increase in the levels of OVA-specific IgE and Th2 cytokines (IL-4 and IL-5), the production of mucin in the airways, and airway subepithelial fibrosis. Together, the results suggest that the PAI-1 inhibitor TM5275 may have therapeutic potential for asthma through suppressing eosinophilic allergic response and ameliorating airway remodeling. PMID:26702150

  1. Prediction of physicochemical properties of organic molecules using van der Waals surface electrostatic potentials.

    PubMed

    Kim, Chan Kyung; Lee, Kyung A; Hyun, Kwan Hoon; Park, Heung Jin; Kwack, In Young; Kim, Chang Kon; Lee, Hai Whang; Lee, Bon-Su

    2004-12-01

    The generalized interaction properties function (GIPF) methodology developed by Politzer and coworkers, which calculated molecular surface electrostatic potential (MSESP) on a density envelope surface, was modified by calculating the MSESP on a much simpler van der Waals (vdW) surface of a molecule. In this work, vdW molecular surfaces were obtained from the fully optimized structures confirmed by frequency calculations at B3LYP/6-31G(d) level of theory. Multiple linear regressions for normal boiling point, heats of vaporization, heats of sublimation, heats of fusion, liquid density, and solid density were performed using GIPF variables from vdW model surface. Results from our model are compared with those from Politzer and coworkers. The surface-dependent beta (and gamma) values are dependent on the surface models but the surface-independent alpha and regression coefficients (r) are constant when vdW surface and density surface with 0.001 a.u. contour value are compared. This interesting phenomenon is explained by linear dependencies of GIPF variables. PMID:15484184

  2. Cardioprotective Potentials of Plant-Derived Small Molecules against Doxorubicin Associated Cardiotoxicity

    PubMed Central

    Ojha, Shreesh; Al Taee, Hasan; Goyal, Sameer; Mahajan, Umesh B.; Patil, Chandrgouda R.; Arya, D. S.; Rajesh, Mohanraj

    2016-01-01

    Doxorubicin (DOX) is a potent and widely used anthracycline antibiotic for the treatment of several malignancies. Unfortunately, the clinical utility of DOX is often restricted due to the elicitation of organ toxicity. Particularly, the increased risk for the development of dilated cardiomyopathy by DOX among the cancer survivors warrants major attention from the physicians as well as researchers to develop adjuvant agents to neutralize the noxious effects of DOX on the healthy myocardium. Despite these pitfalls, the use of traditional cytotoxic drugs continues to be the mainstay treatment for several types of cancer. Recently, phytochemicals have gained attention for their anticancer, chemopreventive, and cardioprotective activities. The ideal cardioprotective agents should not compromise the clinical efficacy of DOX and should be devoid of cumulative or irreversible toxicity on the naïve tissues. Furthermore, adjuvants possessing synergistic anticancer activity and quelling of chemoresistance would significantly enhance the clinical utility in combating DOX-induced cardiotoxicity. The present review renders an overview of cardioprotective effects of plant-derived small molecules and their purported mechanisms against DOX-induced cardiotoxicity. Phytochemicals serve as the reservoirs of pharmacophore which can be utilized as templates for developing safe and potential novel cardioprotective agents in combating DOX-induced cardiotoxicity. PMID:27313831

  3. Small Molecule Modulators of Keap1-Nrf2-ARE Pathway as Potential Preventive and Therapeutic Agents$

    PubMed Central

    Magesh, Sadagopan; Chen, Yu; Hu, Longqin

    2012-01-01

    Keap1-Nrf2-ARE pathway represents one of the most important cellular defense mechanisms against oxidative stress and xenobiotic damage. Activation of Nrf2 signaling induces the transcriptional regulation of ARE-dependent expression of various detoxifying and antioxidant defense enzymes and proteins. Keap1-Nrf2-ARE signaling has become an attractive target for the prevention and treatment of oxidative stress-related diseases and conditions including cancer, neurodegenerative, cardiovascular, metabolic and inflammatory diseases. Over the last few decades, numerous Nrf2 inducers have been developed and some of them are currently undergoing clinical trials. Recently, over-activation of Nrf2 has been implicated in cancer progression as well as in drug resistance to cancer chemotherapy. Thus, Nrf2 inhibitors could potentially be used to improve the effectiveness of cancer therapy. Herein, we review the signaling mechanism of Keap1-Nrf2-ARE pathway, its disease relevance, and currently known classes of small molecule modulators. We also discuss several aspects of Keap1-Nrf2 interaction, Nrf2-based peptide inhibitor design, and the screening assays currently used for the discovery of direct inhibitors of Keap1-Nrf2 interaction. PMID:22549716

  4. Jellium model potentials for the C60 molecule and the photoionization of endohedral atoms, A@C60

    NASA Astrophysics Data System (ADS)

    Baltenkov, A. S.; Manson, S. T.; Msezane, A. Z.

    2015-09-01

    Approximating the C60 shell as a collection of carbon atoms, the potential experienced by a confined atom has been calculated within the framework of the self-consistent spherical jellium model. It has been found that the potential well in this model has a cusp-shaped Lorentz-like profile. The parameters of the model Lorentz-bubble potential (depth and thickness) have been selected so that in the potential well there would be an electronic level corresponding to the experimental electron affinity of the C60 molecule. The spatial distribution of the positive charge of the C-atomic nuclei and the negative charge of the electron clouds forming the electrostatic potential of C60, as a whole, has been analyzed using the Poisson equation. It is demonstrated that the often used radial square-well potential to approximate the C60 corresponds to a non-physical charge density for the C60 molecule. This analysis demonstrates that the phenomenological potentials simulating the C60 shell potential should belong to a family of potentials with a non-flat bottom and non-parallel potential walls similar to the Lorentz-bubble potential. The photoionization cross-sections of a hydrogen atom localized at the center of the C60 shell have been calculated as well. It is found that confinement oscillations in the cross-sections are exhibited within the framework of the cusp-shaped potential model and these oscillations are essentially the same as those in the case of the potential wells with well-defined borders (parallel walls), thereby demonstrating that the inherent characteristic distances of the potential, e.g., radii of the potential walls, or the distances between potential walls, are not necessary to produce confinement resonances; this should be a general result for atoms or molecules confined in near-spherical fullerenes.

  5. Local Spectroscopy of Image-Potential-Derived States: From Single Molecules to Monolayers of Benzene on Cu(111)

    NASA Astrophysics Data System (ADS)

    Dougherty, D. B.; Maksymovych, P.; Lee, J.; Yates, J. T., Jr.

    2006-12-01

    Stark-shifted image-potential states were measured with an STM tip for benzene adsorbed on a Cu(111) surface. A single benzene molecule locally shifts the position of the first image state toward the Fermi level by 0.2 eV relative to its position on the clean surface. The energetic position of this molecule-modified state shifts to lower energy with increasing coverage of benzene on the surface. This is attributed to local surface potential changes that are correlated with the lowering of the crystal work function due to adsorption of benzene.

  6. Potential function of the internal rotation of a methacrolein molecule in the ground ( S 0) electronic state

    NASA Astrophysics Data System (ADS)

    Koroleva, L. A.; Krasnoshchekov, S. V.; Matveev, V. K.; Pentin, Yu. A.

    2016-08-01

    The structural parameters of s- trans- and s- cis-isomers of a methacrolein molecule in the ground ( S 0) electronic state are determined by means of MP2 method with the cc-pVTZ basis set. Kinematic factor F(φ) is expanded in a Fourier series. The potential function of internal rotation (PFIR) of methacrolein in this state is built using experimental frequencies of transitions of the torsional vibration of both isomers, obtained from an analysis of the vibrational structure of the high-resolution UV spectrum with allowance for the geometry and difference between the energy (Δ H) of the isomers. It is shown that the V n parameters of the potential function of internal rotation of the molecule, built using the frequencies of the transition of the torsional vibrations of s- trans- and s- cis-isomers of the methacrolein molecule, determined from vibrational structure of the high-resolution UV spectrum and the FTIR spectrum, are close.

  7. The movement of molecules and nanoparticles in potential field with the Casimir force in nano volumes with different optical boundaries

    NASA Astrophysics Data System (ADS)

    Uvarova, L. A.; Babarin, S. S.

    2014-09-01

    This work is devoted to the problem of dynamics of molecules and nanoparticles in fields in following potentials: the Casimir force, the van der Waals interactions, the Coulomb potential for charged particles, the potential energies for bonds, and the electric potential. In the general case, molecules or nanoparticles move in nano volumes with walls of different optical properties. In particular, the matter at boundary can be with zero refracted index (Vesseur E J R et al 2013 Phys. Rev. Lett. 110 013902; Uvarova L A 2005 AIP congress). Current model can be used to investigate dynamical and configuration properties of particle systems, and to determine influences of molecules interactions with the walls. It is accepted that the Casimir force affects the velocity distribution function, the total energy, and equilibrium properties that produce rise of temperature, pressure and energy deviations. In many-atom molecules or nanoparticles interactions with the Casimir force are more complex, but they give opportunity to control admixtures and modification of system under the influence of electromagnetic waves.

  8. Hybrid MP2/MP4 potential surfaces in VSCF calculations of IR spectra: applications for organic molecules.

    PubMed

    Knaanie, Roie; Šebek, Jiří; Kalinowski, Jaroslaw; Benny Gerber, R

    2014-02-01

    This study introduces an improved hybrid MP2/MP4 ab initio potential for vibrational spectroscopy calculations which is very accurate, yet without high computational demands. The method uses harmonic vibrational calculations with the MP4(SDQ) potential to construct an improved MP2 potential by coordinate scaling. This improved MP2 potential is used for the anharmonic VSCF calculation. The method was tested spectroscopically for four molecules: butane, acetone, ethylene and glycine. Very good agreement with experiment was found. For most of the systems, the more accurate harmonic treatment considerably improved the MP2 anharmonic results. PMID:23838574

  9. Theoretical study of the structure and analytic potential energy function for the ground state of the PO2 molecule

    NASA Astrophysics Data System (ADS)

    Zeng, Hui; Zhao, Jun

    2012-07-01

    In this paper, the energy, equilibrium geometry, and harmonic frequency of the ground electronic state of PO2 are computed using the B3LYP, B3P86, CCSD(T), and QCISD(T) methods in conjunction with the 6-311++G(3df, 3pd) and cc-pVTZ basis sets. A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df, 3pd) method can give better energy calculation results for the PO2 molecule. It is shown that the ground state of the PO2 molecule has C2ν symmetry and its ground electronic state is X2A1. The equilibrium parameters of the structure are RP-O = 0.1465 nm, ∠OPO = 134.96°, and the dissociation energy is Ed = 19.218 eV. The bent vibrational frequency ν1 = 386 cm-1, symmetric stretching frequency ν2 = 1095 cm-1, and asymmetric stretching frequency ν3 = 1333 cm-1 are obtained. On the basis of atomic and molecular reaction statics, a reasonable dissociation limit for the ground state of the PO2 molecule is determined. Then the analytic potential energy function of the PO2 molecule is derived using many-body expansion theory. The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.

  10. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.

    PubMed

    Imahori, Hiroshi; Umeyama, Tomokazu; Ito, Seigo

    2009-11-17

    Recently, dye-sensitized solar cells have attracted much attention relevant to global environmental issues. Thus far, ruthenium(II) bipyridyl complexes have proven to be the most efficient TiO(2) sensitizers in dye-sensitized solar cells. However, a gradual increment in the highest power conversion efficiency has been recognized in the past decade. More importantly, considering that ruthenium is a rare metal, novel dyes without metal or using inexpensive metal are desirable for highly efficient dye-sensitized solar cells. Large pi-aromatic molecules, such as porphyrins, phthalocyanines, and perylenes, are important classes of potential sensitizers for highly efficient dye-sensitized solar cells, owing to their photostability and high light-harvesting capabilities that can allow applications in thinner, low-cost dye-sensitized solar cells. Porphyrins possess an intense Soret band at 400 nm and moderate Q bands at 600 nm. Nevertheless, the poor light-harvesting properties relative to the ruthenium complexes have limited the cell performance of porphyrin-sensitized TiO(2) cells. Elongation of the pi conjugation and loss of symmetry in porphyrins cause broadening and a red shift of the absorption bands together with an increasing intensity of the Q bands relative to that of the Soret band. On the basis of the strategy, the cell performance of porphyrin-sensitized solar cells has been improved intensively by the enhanced light absorption. Actually, some push-pull-type porphyrins have disclosed a remarkably high power conversion efficiency (6-7%) that was close to that of the ruthenium complexes. Phthalocyanines exhibit strong absorption around 300 and 700 nm and redox features that are similar to porphyrins. Moreover, phthalocyanines are transparent over a large region of the visible spectrum, thereby enabling the possibility of using them as "photovoltaic windows". However, the cell performance was poor, owing to strong aggregation and lack of directionality in the

  11. Small Molecule Restores Itaconate Sensitivity in Salmonella enterica: A Potential New Approach to Treating Bacterial Infections.

    PubMed

    Hammerer, Fabien; Chang, Justin H; Duncan, Dustin; Castañeda Ruiz, Angel; Auclair, Karine

    2016-08-17

    In the context of increasing global antibiotic resistance, the need for alternative therapeutic targets is great. Although new antibiotics and resistance inhibitors provide temporary solutions, they are bound to become obsolete. In this work, we propose a new approach, coined "bacterio-modulation" that aims to restore macrophage potency towards bacterial strains that are able to survive in phagolysosomes. One key defense in the macrophage's arsenal is itaconate, an endogenous molecule with antimicrobial activity. Some intracellular pathogens have evolved to produce itaconate-degrading enzymes, which are required for intracellular proliferation and to promote pathogenicity. We herein present the first molecule able to resensitize Salmonella enterica to itaconate. PMID:27254798

  12. Theoretical demonstration of the potentiality of boron nitride nanotubes to encapsulate anticancer molecule.

    PubMed

    El Khalifi, Mohammed; Duverger, Eric; Gharbi, Tijani; Boulahdour, Hatem; Picaud, Fabien

    2015-11-28

    Anticancer drug transport is now becoming an important scientific challenge since it would allow localizing the drug release near the tumor cell, avoiding secondary medical effects. We present theoretical results, based on density functional theory and molecular dynamics simulations, which demonstrate the stability of functionalized single (10,10) boron nitride nanotubes (BNNTs) filled with anticancer molecule such as carboplatin (CPT). For this functionalized system we determine the dependence of the adsorption energy on the molecule displacement near the inner BNNTs surface, together with their local morphological and electrical changes and compare the values to the adsorption energy obtained on the outer surface. Quantum simulations show that the most stable physisorption state is located inside the nanotube, with no net charge transfer. This demonstrates that chemotherapeutic encapsulation is the most favorable way to transport drug molecules. The solvent effect and dispersion repulsion contributions are then taken into account using molecular dynamics simulations. Our results confirm that carboplatin therapeutic agents are not affected when they are adsorbed inside BNNTs by the surrounding water molecules. PMID:26498990

  13. Cellular reprogramming for pancreatic β-cell regeneration: clinical potential of small molecule control

    PubMed Central

    2014-01-01

    Recent scientific breakthroughs in stem cell biology suggest that a sustainable treatment approach to cure diabetes mellitus (DM) can be achieved in the near future. However, the transplantation complexities and the difficulty in obtaining the stem cells from adult cells of pancreas, liver, bone morrow and other cells is a major concern. The epoch-making strategy of transcription-factor based cellular reprogramming suggest that these barriers could be overcome, and it is possible to reprogram any cells into functional β cells. Contemporary biological and analytical techniques help us to predict the key transcription factors needed for β-cell regeneration. These β cell-specific transcription factors could be modulated with diverse reprogramming protocols. Among cellular reprogramming strategies, small molecule approach gets proclaimed to have better clinical prospects because it does not involve genetic manipulation. Several small molecules targeting certain epigenetic enzymes and/or signaling pathways have been successful in helping to induce pancreatic β-cell specification. Recently, a synthetic DNA-based small molecule triggered targeted transcriptional activation of pancreas-related genes to suggest the possibility of achieving desired cellular phenotype in a precise mode. Here, we give a brief overview of treating DM by regenerating pancreatic β-cells from various cell sources. Through a comprehensive overview of the available transcription factors, small molecules and reprogramming strategies available for pancreatic β-cell regeneration, this review compiles the current progress made towards the generation of clinically relevant insulin-producing β-cells. PMID:24679123

  14. Potential interstellar noble gas molecules: ArOH+ and NeOH+ rovibrational analysis from quantum chemical quartic force fields

    NASA Astrophysics Data System (ADS)

    Theis, Riley A.; Fortenberry, Ryan C.

    2016-03-01

    The discovery of ArH+ in the interstellar medium has shown that noble gas chemistry may be of more chemical significance than previously believed. The present work extends the known chemistry of small noble gas molecules to NeOH+ and ArOH+. Besides their respective neonium and argonium diatomic cation cousins, these hydroxyl cation molecules are the most stable small noble gas molecules analyzed of late. ArOH+ is once again more stable than the neon cation, but both are well-behaved enough for a complete quartic force field analysis of their rovibrational properties. The Ar-O bond in ArOH+ , for instance, is roughly three-quarters of the strength of the Ar-H bond in ArH+ highlighting the rigidity of this system. The rotational constants, geometries, and vibrational frequencies for both molecules and their various isotopologues are computed from ab initio quantum chemical theory at high-level, and it is shown that these cations may form in regions where peroxy or weakly-bound alcohols may be present. The resulting data should be of significant assistance for the laboratory or observational analysis of these potential interstellar molecules.

  15. Adiabatic potential-energy curves of long-range Rydberg molecules: Two-electron R -matrix approach

    NASA Astrophysics Data System (ADS)

    Tarana, Michal; Čurík, Roman

    2016-01-01

    We introduce a computational method developed for study of long-range molecular Rydberg states of such systems that can be approximated by two electrons in a model potential of the atomic cores. Only diatomic molecules are considered. The method is based on a two-electron R -matrix approach inside a sphere centered on one of the atoms. The wave function is then connected to a Coulomb region outside the sphere via a multichannel version of the Coulomb Green's function. This approach is put into a test by its application to a study of Rydberg states of the hydrogen molecule for internuclear distances R from 20 to 400 bohrs and energies corresponding to n from 3 to 22. The results are compared with previous quantum chemical calculations (lower quantum numbers n ) and computations based on contact-potential models (higher quantum numbers n ).

  16. Regulation of the Apelinergic System and Its Potential in Cardiovascular Disease: Peptides and Small Molecules as Tools for Discovery.

    PubMed

    Narayanan, Sanju; Harris, Danni L; Maitra, Rangan; Runyon, Scott P

    2015-10-22

    Apelin peptides and the apelin receptor represent a relatively new therapeutic axis for the potential treatment of cardiovascular disease. Several reports suggest apelin receptor activation with apelin peptides results in cardioprotection as noted through positive ionotropy, angiogenesis, reduction of mean arterial blood pressure, and apoptosis. Considering the potential therapeutic benefit attainable through modulation of the apelinergic system, research is expanding to develop novel therapies that limit the inherent rapid degradation of endogenous apelin peptides and produce metabolically stable small molecule agonists and antagonists to more rigorously interrogate the apelin receptor system. This review details the structure-activity relationships for chemically modified apelin peptides and recent disclosures of small molecule agonists and antagonists and summarizes the peer reviewed and patented literature. Development of metabolically stable ligands of apelin receptor and their effects in various models over the coming years will hopefully lead to establishment of this receptor as a validated target for cardiovascular indications. PMID:26102594

  17. A mixture of odorant molecules potentially indicating oestrus in mammals elicits penile erections in male rats.

    PubMed

    Nielsen, Birte L; Jerôme, Nathalie; Saint-Albin, Audrey; Thonat, Catherine; Briant, Christine; Boué, Franck; Rampin, Olivier; Maurin, Yves

    2011-12-01

    A common set of odorous molecules may indicate female receptiveness across species, as male rats display sexual arousal when exposed to the odour of oestrous faeces from rats, vixens and mares. More than 900 different compounds were identified by GC-MS analyses performed on faeces samples from di-oestrous and oestrous females and from males of the three species. Five carboxylic acids were found in lower concentrations in faeces from all oestrous females. We subjected 12 sexually trained male rats to a 30 min exposure to different dilutions of a mixture of these five molecules in the same proportions as found in female oestrous faeces. The behavioural responses of the rats were compared to those displayed when exposed to water (negative control) and faeces from oestrous female rats (positive control). Frequency of penile erections were found to be significantly dependent on mixture dilution, with two intermediate dilutions eliciting frequencies of penile erections that did not differ from those obtained during exposure to oestrous female rat faeces. Higher and lower dilutions did not elicit more penile erections than observed with water. These results support our hypothesis that a small set of odorous molecules may indicate sexual receptiveness in mammalian females. PMID:21884731

  18. On a Universal Potential Energy Function and the Importance of Ionic Structures for the Ground State of Molecules

    NASA Astrophysics Data System (ADS)

    Van Hooydonk, G.

    1982-09-01

    The Kratzer-Fues-Varshni-V-potential, applied to ionic dissociation energies, is shown to yield rather accurate potential energy curves in the bonding region for H2, HF, LiH, Li2 and LiF. Vibrational levels, calculated by this ionic approximation to the ground state of widely differing molecules, nearly coincide with RKR-data. At the repulsive side of the curve and up to 2re, the agreement with RKR-curves is even better than for Morse's curve, also for the "covalent" molecules H2 and Li2. Calculated spectroscopical constants αe and ωeχe are far better than those calculated with Morse's function. Even the existence of a maximum in the potential curve at larger r-values seems not in confict with an ionic approximation. From the universal character of the function used, it is concluded that a reasonable approximation for the ground state of all molecules considered is one in terms of ionic structures, even for H2 and especially for Li2. According to the present results, the term "covalent bonding" seems to be definitely superfluous, as the usually made distinction between ionic and covalent bonding is more appearant than real.

  19. Purely-long-range krypton molecules in singly and doubly excited binding potentials

    SciTech Connect

    Smith, Z. S.; Harmon, A.; Banister, J.; Norman, R.; Hoogeboom-Pot, K.; Walhout, M.

    2010-01-15

    Diatomic potentials for krypton are computed and also probed experimentally. For a probe-laser wavelength near 811 nm, several strong dipole-dipole interactions produce purely-long-range potential wells in the singly excited manifold of (s+p) potentials and in the doubly excited manifold of (p+p) and (s+d) potentials. Evidence of resonant photoassociation into bound states of these potential wells is observed in the emission of ions and ultraviolet photons from a magneto-optically trapped krypton cloud.

  20. Rydberg-London potential for diatomic molecules and unbonded atom pairs.

    PubMed

    Cahill, Kevin; Parsegian, V Adrian

    2004-12-01

    We propose and test a pair potential that is accurate at all relevant distances and simple enough for use in large-scale computer simulations. A combination of the Rydberg potential from spectroscopy and the London inverse-sixth-power energy, the proposed form fits spectroscopically determined potentials better than the Morse, Varnshi, and Hulburt-Hirschfelder potentials and much better than the Lennard-Jones and harmonic potentials. At long distances, it goes smoothly to the London force appropriate for gases and preserves van der Waals's "continuity of the gas and liquid states," which is routinely violated by coefficients assigned to the Lennard-Jones 6-12 form. PMID:15634034

  1. Identification of Small Molecule Inhibitors of Tau Aggregation by Targeting Monomeric Tau As a Potential Therapeutic Approach for Tauopathies

    PubMed Central

    Pickhardt, Marcus; Neumann, Thomas; Schwizer, Daniel; Callaway, Kari; Vendruscolo, Michele; Schenk, Dale; St. George-Hyslop, Peter; Mandelkow, Eva M.; Dobson, Christopher M.; McConlogue, Lisa; Mandelkow, Eckhard; Tóth, Gergely

    2015-01-01

    A potential strategy to alleviate the aggregation of intrinsically disordered proteins (IDPs) is to maintain the native functional state of the protein by small molecule binding. However, the targeting of the native state of IDPs by small molecules has been challenging due to their heterogeneous conformational ensembles. To tackle this challenge, we applied a high-throughput chemical microarray surface plasmon resonance imaging screen to detect the binding between small molecules and monomeric full-length Tau, a protein linked with the onset of a range of Tauopathies. The screen identified a novel set of drug-like fragment and lead-like compounds that bound to Tau. We verified that the majority of these hit compounds reduced the aggregation of different Tau constructs in vitro and in N2a cells. These results demonstrate that Tau is a viable receptor of drug-like small molecules. The drug discovery approach that we present can be applied to other IDPs linked to other misfolding diseases such as Alzheimer’s and Parkinson’s diseases.

  2. Identification of small molecule inhibitors of Tau aggregation by targeting monomeric Tau as a potential therapeutic approach for Tauopathies

    PubMed Central

    Pickhardt, Marcus; Neumann, Thomas; Schwizer, Daniel; Callaway, Kari; Vendruscolo, Michele; Schenk, Dale; George-Hyslop, Peter; Mandelkow, Eva M.; Dobson, Christopher M.; McConlogue, Lisa; Mandelkow, Eckhard; Tóth, Gergely

    2016-01-01

    A potential strategy to alleviate the aggregation of intrinsically disordered proteins (IDPs) is to maintain the native functional state of the protein by small molecule binding. However, the targeting of the native state of IDPs by small molecules has been challenging due to their heterogeneous conformational ensembles. To tackle this challenge, we applied a high-throughput chemical microarray surface plasmon resonance imaging screen to detect the binding between small molecules and monomeric full-length Tau, a protein linked with the onset of a range of Tauopathies. The screen identified a novel set of drug-like fragment and lead-like compounds that bound to Tau. We verified that the majority of these hit compounds reduced the aggregation of different Tau constructs in vitro and in N2a cells. These results demonstrate that Tau is a viable receptor of drug-like small molecules. The drug discovery approach that we present can be applied to other IDPs linked to other misfolding diseases such as Alzheimer’s and Parkinson’s diseases. PMID:26510979

  3. Scattering of a matter-wave single soliton and a two-soliton molecule by an attractive potential

    SciTech Connect

    Al-Marzoug, S. M.; Al-Amoudi, S. M.; Al Khawaja, U.; Bahlouli, H.; Baizakov, B. B.

    2011-02-15

    Scattering of a matter-wave single soliton and two-soliton molecule incident on the modified Poeschl-Teller potential well has been studied by means of a collective coordinate approach and numerical simulations of the Gross-Pitaevskii equation. Despite the attractive nature of the potential we observe total reflection of solitons in particular ranges of parameters, which is the signature of quantum behavior displayed by the matter-wave soliton. For other particular sets of parameters unscathed transmission of solitons and molecules through the potential well has been identified. A specific feature of this process is that the soliton passing through the potential well overtakes the freely propagating counterpart; i.e., its mean position appears to have been advanced in time. An array of such potentials makes the 'time advance' effect even more pronounced, so that scattered solitons move well ahead of nonscattered ones, fully preserving their initial shape and velocity. A possible application of the obtained results is pointed out.

  4. Investigation of pyridine carboxylic acids in CM2 carbonaceous chondrites: Potential precursor molecules for ancient coenzymes

    NASA Astrophysics Data System (ADS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-07-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  5. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We lso report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  6. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    NASA Technical Reports Server (NTRS)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  7. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development.

    PubMed

    Sharma, Charu; Sadek, Bassem; Goyal, Sameer N; Sinha, Satyesh; Kamal, Mohammad Amjad; Ojha, Shreesh

    2015-01-01

    The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ(9)-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics. PMID:26664449

  8. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    PubMed Central

    Sharma, Charu; Sadek, Bassem; Goyal, Sameer N.; Sinha, Satyesh; Ojha, Shreesh

    2015-01-01

    The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics. PMID:26664449

  9. One-body potential theory of molecules and solids modified semiempirically for electron correlation

    NASA Astrophysics Data System (ADS)

    March, N. H.

    2010-10-01

    The study of Cordero, March and Alonso (CMA) for four spherical atoms, Be, Ne, Mg and Ar, semiempirically fine-tunes the Hartree-Fock (HF) ground-state electron density by inserting the experimentally determined ionization potentials. The present Letter, first of all, relates this approach to the very recent work of Bartlett ‘towards an exact correlated orbital theory for electrons’. Both methods relax the requirement of standard DFT that a one-body potential shall generate the exact ground-state density, though both work with high quality approximations. Unlike DFT, the CMA theory uses a modified HF non-local potential. It is finally stressed that this potential generates also an idempotent Dirac density matrix. The CMA approach is thereby demonstrated to relate, albeit approximately, to the DFT exchange-correlation potential.

  10. Application of the reduced-potential curve method for the detection of errors or inaccuracies in the analysis of spectra and for the construction of internuclear potentials of diatomic molecules: Alkali diatomic molecules

    NASA Astrophysics Data System (ADS)

    Jen, F.; Brandt, B. A.

    1989-05-01

    Errors in the Rydberg-Klein-Rees potentials for the ground and B-excited states of LiNa and LiK and in the ground-state potential of RbCs are detected using the reduced-potential curve (RPC) method and shown to be due to errors or inaccuracies in the analysis of the spectrum. Using the rules of the RPC scheme, estimates for the left limbs of the ground- and B-state potentials of LiNa and LiK are given which are quite accurate for the ground states. With the use of the RPC method, we also give estimates of the ground-state potentials of Rb2 and RbCs up to the dissociation limit. The RPC method is further employed for a calculation of accurate internuclear potentials from inaccurate theoretical ab initio potential curves for a series of molecules. These procedures could be useful for a prediction of the spectrum. The examples should illustrate the predictive and constructive power of the RPC method.

  11. Umbrella motion of the methyl cation, radical, and anion molecules. I. Potentials, energy levels and partition functions

    NASA Astrophysics Data System (ADS)

    Ragni, Mirco; Bitencourt, Ana Carla P.; Prudente, Frederico V.; Barreto, Patricia R. P.; Posati, Tamara

    2016-03-01

    A study of the umbrella motion of the methyl cation, radical, and anion molecules is presented. This is the floppiest mode of vibration of all three species and its characterization is of fundamental importance for understanding their reactivity. Minimum Energy Paths of the umbrella motions according to the hyperspherical treatment were obtained, by single point calculations, at the CCSD(T)/aug-cc-pVQT level of theory in the Born-Oppenheimer approximation. These energy profiles permit us to calculate the vibrational levels through the Hyperquantization algorithm, which is shown appropriated for the description of the umbrella motion of these three molecules. The adiabatic electron affinity and ionization potentials were estimated to good accuracy. Partition functions are also calculated in order to obtain information on the reaction rates involving these groups.

  12. Fucoidan and cancer: a multifunctional molecule with anti-tumor potential.

    PubMed

    Atashrazm, Farzaneh; Lowenthal, Ray M; Woods, Gregory M; Holloway, Adele F; Dickinson, Joanne L

    2015-04-01

    There is a wide variety of cancer types yet, all share some common cellular and molecular behaviors. Most of the chemotherapeutic agents used in cancer treatment are designed to target common deregulated mechanisms within cancer cells. Many healthy tissues are also affected by the cytotoxic effects of these chemical agents. Fucoidan, a natural component of brown seaweed, has anti-cancer activity against various cancer types by targeting key apoptotic molecules. It also has beneficial effects as it can protect against toxicity associated with chemotherapeutic agents and radiation. Thus the synergistic effect of fucoidan with current anti-cancer agents is of considerable interest. This review discusses the mechanisms by which fucoidan retards tumor development, eradicates tumor cells and synergizes with anti-cancer chemotherapeutic agents. Challenges to the development of fucoidan as an anti-cancer agent will also be discussed. PMID:25874926

  13. Effective Potential Energies and Transport Cross Sections for Atom-Molecule Interactions of Nitrogen and Nitrogen

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Arnold, Jim (Technical Monitor)

    2001-01-01

    The potential energy surfaces for H2-N and N2-N interactions are calculated by accurate ab initio methods and applied to determine transport data. The results confirm that an effective potential energy for accurately determining transport properties can be calculated using a single orientation. A simple method is developed to determine the dispersion coefficients of effective potential energies Effective potential energies required for O2-O collisions are determ=ined. The H2-N, N2-N, O2-H, and O2-O collision integrals are calculated and tabulated for a large range of temperatures. The theoretical values of the N2-N and O2-O diffusion coefficients compare well with measured data available at room temperature.

  14. Potential and matrix elements of the hamiltonian of internal rotation in molecules in the basis set of Mathieu functions

    NASA Astrophysics Data System (ADS)

    Turovtsev, V. V.; Orlov, Yu. D.; Tsirulev, A. N.

    2015-08-01

    The advantages of the orthonormal basis set of 2π-periodic Mathieu functions compared to the trigonometric basis set in calculations of torsional states of molecules are substantiated. Explicit expressions are derived for calculating the Hamiltonian matrix elements of a one-dimensional torsional Schrödinger equation with a periodic potential of the general form in the basis set of Mathieu functions. It is shown that variation of a parameter of Mathieu functions allows the rotation potential and the structural function to be approximated with a good accuracy by a small number of series terms. The conditions for the best choice of this parameter are specified, and approximations are obtained for torsional potentials of n-butane upon rotation about the central C-C bond and of its univalent radical n-butyl C2H5C·H2 upon rotation of the C·H2 group. All algorithms are implemented in the Maple package.

  15. The inherent dynamics of a molecular liquid: Geodesic pathways through the potential energy landscape of a liquid of linear molecules

    NASA Astrophysics Data System (ADS)

    Jacobson, Daniel; Stratt, Richard M.

    2014-05-01

    Because the geodesic pathways that a liquid follows through its potential energy landscape govern its slow, diffusive motion, we suggest that these pathways are logical candidates for the title of a liquid's "inherent dynamics." Like their namesake "inherent structures," these objects are simply features of the system's potential energy surface and thus provide views of the system's structural evolution unobstructed by thermal kinetic energy. This paper shows how these geodesic pathways can be computed for a liquid of linear molecules, allowing us to see precisely how such molecular liquids mix rotational and translational degrees of freedom into their dynamics. The ratio of translational to rotational components of the geodesic path lengths, for example, is significantly larger than would be expected on equipartition grounds, with a value that scales with the molecular aspect ratio. These and other features of the geodesics are consistent with a picture in which molecular reorientation adiabatically follows translation—molecules largely thread their way through narrow channels available in the potential energy landscape.

  16. Analytical potential curves of some hydride molecules using algebraic and energy-consistent method

    NASA Astrophysics Data System (ADS)

    Fan, Qunchao; Sun, Weiguo; Feng, Hao; Zhang, Yi; Wang, Qi

    2014-01-01

    Based on the algebraic method (AM) and the energy consistent method (ECM), an AM-ECM protocol for analytical potential energy curves of stable diatomic electronic states is proposed as functions of the internuclear distance. Applications of the AM-ECM to the 6 hydride electronic states of HF-X1Σ+, DF-X1Σ+, D35Cl-X1Σ+, 6LiH-X1Σ+, 7LiH-X1Σ+, and 7LiD-X1Σ+ show that the AM-ECM potentials are in excellent agreement with the experimental RKR data and the full AM-RKR data, and that the AM-ECM can obtain reliable analytical potential energies in the molecular asymptotic and dissociation region for these molecular electronic states.

  17. Photoisomerization dynamics of a rhodopsin-based molecule (potential molecular switch) with high quantum yields

    NASA Astrophysics Data System (ADS)

    Allen, Roland; Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li

    2015-03-01

    It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-Methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al. We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C =C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Research Fund for the Doctoral Program of Higher Education of China; Fundamental Research Funds for the Central Universities; Robert A. Welch Foundation; National Natural Science Foundation of China.

  18. Photoisomerization dynamics of a rhodopsin-based molecule (potential molecular switch) with high quantum yields

    NASA Astrophysics Data System (ADS)

    Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li; Allen, Roland E.

    2015-02-01

    It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C=C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Perhaps remarkably, but apparently because of electrostatic repulsion, the direction of rotation is the same for both reactions.

  19. Electron structure of molecules with very heavy atoms using effective core potentials

    SciTech Connect

    Pitzer, K.S.

    1982-01-01

    Topics covered include effective potential, Hamiltonian for valence-electron motion, molecular calculations, spin-spin coupling, L-S coupling, numerical results of molecular calculations, and results of configuration-interaction Slater-orbital calculations in L-S coupling. (GHT)

  20. Investigation of potential molecular biomarkers and small molecule drugs for hepatocellular carcinoma transformed from cirrhosis

    PubMed Central

    XIE, FENG; ZHU, FANG; LU, ZAIMING; LIU, ZHENGRONG; WANG, HONGYAN

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in China and the third leading cause of cancer-associated morality. The aim of the present study was to investigate and analyze differentially-expressed genes (DEGs) between cirrhosis and HCC, in order to screen the key genes involved in the transformation from cirrhosis to HCC and provide novel targets for the diagnosis and treatment of HCC in patients with cirrhosis. The gene expression profile, GSE17548, was obtained from Gene Expression Omnibus database and the DEGs were identified by LIMMA package in R language. Kyoto Encyclopedia of Genes and Genomes and gene ontology biology process analysis were performed for the DEGs. Differential co-expression network (DEN) analysis was conducted and the network was visualized using Cytoscape. Small molecule drugs were also screened from the Comparative Toxicogenomics Database for higher degree DEGs. A total of 95 DEGs were obtained, including 46 upregulated and 49 downregulated genes. The upregulated DEGs were primarily involved in biological processes and pathways associated with the cell cycle, while the downregulated DEGs were primarily involved in immune-associated biological processes. A total of 22 key DEGs were identified by DEN analysis, which distinguished HCC from cirrhosis samples. Furthermore, estradiol, benzo(a)pyrene, acetaminophen, copper sulfate and bisphenol A were identified as the five most associated chemicals to these 22 DEGs. In conclusion, the hub genes and chemicals identified by the present study may provide a theoretical basis for additional research on diagnosis and treatment of HCC transformed from cirrhosis. PMID:27347171

  1. Theory and simulation of central force model potentials: Application to homonuclear diatomic molecules

    NASA Astrophysics Data System (ADS)

    Bresme, Fernando; Abascal, José L. F.; Lomba, Enrique

    1996-12-01

    Structure and thermodynamics of fluids made of particles that interact via a central force model potential are studied by means of Monte Carlo simulations and integral equation theories. The Hamiltonian has two terms, an intramolecular component represented by a harmonic oscillatorlike potential and an intermolecular interaction of the Lennard-Jones type. The potential does not fulfill the steric saturation condition so it leads to a polydisperse system. First, we investigate the association (clustering) and thermodynamic properties as a function of the potential parameters, such as the intramolecular potential depth, force constant, and bond length. It is shown that the atomic hypernetted chain (HNC) integral equation provides a correct description of the model as compared with simulation results. The calculation of the HNC pseudospinodal curve indicates that the stability boundaries between the vapor and liquid phases are strongly dependent on the bond length and suggests that there might be a direct gas-solid transition for certain elongations. On the other hand, we have assessed the ability of the model to describe the thermodynamics and structure of diatomic liquids such as N2 and halogens. To this end we have devised a procedure to model the intramolecular potential depth to reproduce the complete association limit (i.e., an average number of bonds per particle equal to one). This constraint is imposed on the Ornstein-Zernike integral equation in a straightforward numerical way. The structure of the resulting fluid is compared with results from molecular theories. An excellent agreement between the HNC results for the associating fluid and the reference interaction site model (RISM)-HNC computations for the atom-atom model of the same fluid is obtained. There is also a remarkable coincidence between the simulation results for the molecular and the associating liquids, despite the polydisperse character of the latter. The stability boundaries in the complete

  2. N-acetylation of three aromatic amine hair dye precursor molecules eliminates their genotoxic potential.

    PubMed

    Zeller, Andreas; Pfuhler, Stefan

    2014-01-01

    N-acetylation has been described as a detoxification reaction for aromatic amines; however, there is only limited data available showing that this metabolic conversion step changes their genotoxicity potential. To extend this database, three aromatic amines, all widely used as precursors in oxidative hair dye formulations, were chosen for this study: p-phenylenediamine (PPD), 2,5-diaminotoluene (DAT) and 4-amino-2-hydroxytoluene (AHT). Aiming at a deeper mechanistic understanding of the interplay between activation and detoxification for this chemical class, we compared the genotoxicity profiles of the parent compounds with those of their N-acetylated metabolites. While PPD, DAT and AHT all show genotoxic potential in vitro, their N-acetylated metabolites completely lack genotoxic potential as shown in the Salmonella typhimurium reversion assay, micronucleus test with cultured human lymphocytes (AHT), chromosome aberration assay with V79 cells (DAT) and Comet assay performed with V79 cells. For the bifunctional aromatic amines studied (PPD and DAT), monoacetylation was sufficient to completely abolish their genotoxic potential. Detoxification through N-acetylation was further confirmed by comparing PPD, DAT and AHT in the Comet assay using standard V79 cells (N-acetyltransferase (NAT) deficient) and two NAT-proficient cell lines,V79NAT1*4 and HaCaT (human keratinocytes). Here we observed a clear shift of dose-response curves towards decreased genotoxicity of the parent aromatic amines in the NAT-proficient cells. These findings suggest that genotoxic effects will only be found at concentrations where the N-acetylation (detoxifying) capacity of the cells is overwhelmed, indicating that a 'first-pass' effect in skin could be taken into account for risk assessment of these topically applied aromatic amines. The findings also indicate that the use of liver S-9 preparations, which generally underestimate Phase II reactions, contributes to the generation of irrelevant

  3. Cysteamine, the Molecule Used To Treat Cystinosis, Potentiates the Antimalarial Efficacy of Artemisinin▿

    PubMed Central

    Min-Oo, Gundula; Fortin, Anny; Poulin, Jean-François; Gros, Philippe

    2010-01-01

    Malaria continues to be a major threat to global health. Artemisinin combination therapy (ACT) is the recommended treatment for clinical malaria; however, recent reports of parasite resistance to artemisinin in certain areas where malaria is endemic have stressed the need for developing more efficacious ACT. We report that cysteamine (Cys), the aminothiol used to treat nephropathic cystinosis in humans, strongly potentiates the efficacy of artemisinin against the Plasmodium parasite in vivo. Using a mouse model of infection with Plasmodium chabaudi AS, we observe that Cys dosing used to treat cystinosis in humans can strongly potentiate (by 3- to 4-fold) the antimalarial properties of the artemisinin derivatives artesunate and dihydroartemisinin. Addition of Cys to suboptimal doses of artemisinin delays the appearance of blood parasitemia, strongly reduces the extent of parasite replication, and significantly improves survival in a model of lethal P. chabaudi infection. Cys, the natural product of the enzyme pantetheinase, has a history of safe use for the clinical management of cystinosis. Our findings suggest that Cys could be included in novel ACTs to improve efficacy against Plasmodium parasite replication, including artemisinin-resistant isolates. Future work will include clinical evaluation of novel Cys-containing ACTs and elucidation of the mechanism underlying the potentiation effect of Cys. PMID:20479197

  4. Angular distributions of electrons photoemitted from core levels of oriented diatomic molecules: Multiple scattering theory in non-spherical potentials

    SciTech Connect

    Diez Muino, R.; Rolles, D.; Garcia de Abajo, F.J.; Fadley, C.S.; Van Hove, M.A.

    2001-09-06

    We use multiple scattering in non-spherical potentials (MSNSP) to calculate the angular distributions of electrons photoemitted from the 1s-shells of CO and N2 gas-phase molecules with fixed-in-space orientations. For low photoelectron kinetic energies (E<50 eV), as appropriate to certain shape-resonances, the electron scattering must be represented by non-spherical scattering potentials, which are naturally included in our formalism. Our calculations accurately reproduce the experimental angular patterns recently measured by several groups, including those at the shape-resonance energies. The MSNSP theory thus enhances the sensitivity to spatial electronic distribution and dynamics, paving the way toward their determination from experiment.

  5. Molecules that Mimic Apolipoprotein A-I: Potential Agents for Treating Atherosclerosis

    PubMed Central

    Leman, Luke J.; Maryanoff, Bruce E.; Ghadiri, M. Reza

    2013-01-01

    Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL. PMID:24168751

  6. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    SciTech Connect

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.

  7. Accurate potential energy curve of the LiH+ molecule calculated with explicitly correlated Gaussian functions.

    PubMed

    Tung, Wei-Cheng; Adamowicz, Ludwik

    2014-03-28

    Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH(+) ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations. PMID:24697449

  8. Accurate potential energy curve of the LiH+ molecule calculated with explicitly correlated Gaussian functions

    NASA Astrophysics Data System (ADS)

    Tung, Wei-Cheng; Adamowicz, Ludwik

    2014-03-01

    Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH+ ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.

  9. Ab initio adiabatic and diabatic potential-energy curves of the LiH molecule

    NASA Astrophysics Data System (ADS)

    Boutalib, A.; Gadéa, F. X.

    1992-07-01

    For nearly all states below the ionic limit [i.e., Li(2s, 2p, 3s, 3p, 3d, 4s, and 4p)+H] we perform the first adiabatic and diabatic studies. This treatment involves a nonempirical pseudopotential for Li and a full configuration-interaction treatment of the valence-electron system. Core-valence correlation is taken into account according to a core-polarization-potential method. We present an analysis of the diabatic curves and introduce appropriate small corrections accounting for basis-set limitations. For the low-lying states, our vibrational level spacings and spectroscopic constants are in excellent agreement with the available experimental data and with the best all-electron results. Experimental suggestions are given for the higher states.

  10. Properties of a new hydrotrope hydrophobic molecule and its potential applications.

    PubMed

    Schnell, E; Touraud, D; Gick, R; Kunz, W

    2008-10-01

    In the present contribution, the properties of dipropylene glycol isobornyl ether (Pribelance) are discussed, especially in the context of microemulsion and emulsion formulations. Pribelance is a new low-toxic anti-foaming hydrotrope with excellent co-surfactant properties that has some similarities with long-chain alcohols, but in contrast to them, it is liquid at room temperature. In combination with another, more hydrophilic co-surfactant, it allows significant amounts of oil to be solubilized in water. Possible applications such as in cosmetics, as an anti-foaming agent or as additive to cooling lubricants are discussed. Further potential applications are plasticizers, fermentation systems, agrochemicals and waste-water treatments. PMID:18822040

  11. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods.

    PubMed

    Knight, Joseph W; Wang, Xiaopeng; Gallandi, Lukas; Dolgounitcheva, Olga; Ren, Xinguo; Ortiz, J Vincent; Rinke, Patrick; Körzdörfer, Thomas; Marom, Noa

    2016-02-01

    The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, and perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green's function (scGW0), non-self-consistent G0W0 based on several mean-field starting points, and a "beyond GW" second-order screened exchange (SOSEX) correction to G0W0. We also describe the implementation of the self-consistent Coulomb hole with screened exchange method (COHSEX), which serves as one of the mean-field starting points. The best performers overall are G0W0+SOSEX and G0W0 based on an IP-tuned long-range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments. PMID:26731609

  12. Staphylococcus epidermidis Biofilms: Functional Molecules, Relation to Virulence, and Vaccine Potential

    NASA Astrophysics Data System (ADS)

    Mack, Dietrich; Davies, Angharad P.; Harris, Llinos G.; Knobloch, Johannes K. M.; Rohde, Holger

    Medical device-associated infections, most frequently caused by Staphylococcus epidermidis and Staphylococcus aureus, are of increasing importance in modern medicine. The formation of adherent, multilayered bacterial biofilms is crucial in the pathogenesis of these infections. Polysaccharide intercellular adhesin (PIA), a homoglycan of β-1,6-linked 2-acetamido-2-deoxy-d-glucopyranosyl residues, of which about 15% are non-N-acetylated, is central to biofilm accumulation in staphylococci. It transpires that polysaccharides - structurally very similar to PIA - are also key to biofilm formation in a number of other organisms including the important human pathogens Escherichia coli, Aggregatibacter (Actinobacillus) actinomycetemcomitans, Yersinia pestis, and Bordetella spp. Apparently, synthesis of PIA and related polysaccharides is a general feature important for biofilm formation in diverse bacterial genera. Current knowledge about the structure and biosynthesis of PIA and related polysaccharides is reviewed. Additionally, information on their role in pathogenesis of biomaterial-related and other type of infections and the potential use of PIA and related compounds for prevention of infection is evaluated.

  13. Rhamnolipids as platform molecules for production of potential anti-zoospore agrochemicals.

    PubMed

    Miao, Shida; Dashtbozorg, Soroosh Soltani; Callow, Nicholas V; Ju, Lu-Kwang

    2015-04-01

    Rhamnolipid biosurfactants have potential applications in the control of zoosporic plant pathogens. However, rhamnolipids have not been closely investigated for the anti-zoospore mechanism or for developing new anti-zoospore chemicals. In this study, RhL-1 and RhL-3 groups of rhamnolipids were used to generate the corresponding RhL-2 and RhL-4 groups and the free diacids. Conversion of RhL-3 to RhL-1 was also accomplished in vitro with cellobiase as the catalyst. The anti-zoospore effects of RhL-1-RhL-4 and the diacids were investigated with zoospores of Phytophthora sojae. For RhL-1-RhL-4, approximately 20, 30, 40, and 40 mg/L, respectively, were found to be the lowest concentrations required to stop movement of all zoospores, which indicates that the anti-zoospore effect remains strong even after RhL-1 and RhL-3 are hydrolyzed into RhL-2 and RhL-4. The free diacids required a significantly higher critical concentration of about 125 mg/L. Rhamnose can be obtained as a co-product. PMID:25790115

  14. The optimized effective potential and the self-interaction correction in density functional theory: Application to molecules

    NASA Astrophysics Data System (ADS)

    Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.

    2000-05-01

    The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation, the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work.

  15. Potential siRNA Molecules for Nucleoprotein and M2/L Overlapping Region of Respiratory Syncytial Virus: In Silico Design

    PubMed Central

    Shatizadeh Malekshahi, Somayeh; Arefian, Ehsan; Salimi, Vahid; Mokhtari Azad, Talat; Yavarian, Jila

    2016-01-01

    Background Human respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease in the pediatric population, elderly and in immunosuppressed individuals. Respiratory syncytial virus is also responsible for bronchiolitis, pneumonia, and chronic obstructive pulmonary infections in all age groups. With this high disease burden and the lack of an effective RSV treatment and vaccine, there is a clear need for discovery and development of novel, effective and safe drugs to prevent and treat RSV disease. The most innovative approach is the use of small interfering RNAs (siRNAs) which represent a revolutionary new concept in human therapeutics. The nucleoprotein gene of RSV which is known as the most conserved gene and the M2/L mRNA, which encompass sixty-eight overlapping nucleotides, were selected as suitable targets for siRNA design. Objectives The present study is aimed to design potential siRNAs for silencing nucleoprotein and an overlapping region of M2-L coding mRNAs by computational analysis. Materials and Methods Various computational methods (target alignment, similarity search, secondary structure prediction, and RNA interaction calculation) have been used for siRNA designing against different strains of RSV. Results In this study, seven siRNA molecules were rationally designed against the nucleoprotein gene and validated using various computational methods for silencing different strains of RSV. Additionally, three effective siRNA molecules targeting the overlapping region of M2/L mRNA were designed. Conclusions This approach provides insight and a validated strategy for chemical synthesis of an antiviral RNA molecule which meets many sequence features for efficient silencing and treatment at the genomic level. PMID:27303618

  16. Idalopirdine - a small molecule antagonist of 5-HT6 with therapeutic potential against obesity.

    PubMed

    Dudek, Magdalena; Marcinkowska, Monika; Bucki, Adam; Olczyk, Adrian; Kołaczkowski, Marcin

    2015-12-01

    5HT6 receptor antagonists offer the potential for safe and effective drugs against obesity, because they can reduce weight without causing serious side effects in the cardiovascular system. Also, their anorexic effect is associated with reduced food intake via an enhancement of satiety. In the present study we investigated the anorexic effect of idalopirdine (LuAE58054) in a model of obesity induced by high-fat diet. To induce obesity in rats, the animals were treated with feed with a fat content of 40 %. Body weight was controlled and the amount of food and water consumed was determined. The influence of the test compound on the lipid profile and glucose level was measured, as well as locomotor activity in home cages on the 20th day of the treatment. LuAE58054, at 5 mg kg(-1)/day i.p., was significantly anorectic in this model of obesity. Animals treated with LuAE58054 weighed 8 and 9.2 % less than the control obese animals on the 12th and 21st days, respectively. It significantly reduced food intake and the amount of peritoneal fat in animals, and reduced the level of triglycerides in plasma. LuAE58054 did not have a statistically significant effect on the spontaneous activity of diet-induced obese rats. The present study clearly demonstrates the effectiveness of LuAE58054 in reducing body weight. This compound is in phase III of clinical trials for the treatment of cognitive deficits associated with Alzheimer's disease and schizophrenia. It is a 5HT6 receptor antagonist and is, therefore, free of those unacceptable side effects that preclude chronic use of anti-obesity drugs with other mechanisms of action. The search for an effective and safe anti-obesity drug is essential for an increasingly obese population; therefore, the anorectic action of LuAE58054 is important and there is a need for more research in this direction. PMID:26419385

  17. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules II: Non-Empirically Tuned Long-Range Corrected Hybrid Functionals.

    PubMed

    Gallandi, Lukas; Marom, Noa; Rinke, Patrick; Körzdörfer, Thomas

    2016-02-01

    The performance of non-empirically tuned long-range corrected hybrid functionals for the prediction of vertical ionization potentials (IPs) and electron affinities (EAs) is assessed for a set of 24 organic acceptor molecules. Basis set-extrapolated coupled cluster singles, doubles, and perturbative triples [CCSD(T)] calculations serve as a reference for this study. Compared to standard exchange-correlation functionals, tuned long-range corrected hybrid functionals produce highly reliable results for vertical IPs and EAs, yielding mean absolute errors on par with computationally more demanding GW calculations. In particular, it is demonstrated that long-range corrected hybrid functionals serve as ideal starting points for non-self-consistent GW calculations. PMID:26731340

  18. Nrf2 and HSF-1 Pathway Activation via Hydroquinone-Based Proelectrophilic Small Molecules is Regulated by Electrochemical Oxidation Potential.

    PubMed

    Satoh, Takumi; Stalder, Romain; McKercher, Scott R; Williamson, Robert E; Roth, Gregory P; Lipton, Stuart A

    2015-01-01

    Activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 and heat-shock protein 90/heat-shock factor-1 signal-transduction pathways plays a central role in combatting cellular oxidative damage and related endoplasmic reticulum stress. Electrophilic compounds have been shown to be activators of these transcription-mediated responses through S-alkylation of specific regulatory proteins. Previously, we reported that a prototype compound (D1, a small molecule representing a proelectrophilic, para-hydroquinone species) exhibited neuroprotective action by activating both of these pathways. We hypothesized that the para-hydroquinone moiety was critical for this activation because it enhanced transcription of these neuroprotective pathways to a greater degree than that of the corresponding ortho-hydroquinone isomer. This notion was based on the differential oxidation potentials of the isomers for the transformation of the hydroquinone to the active, electrophilic quinone species. Here, to further test this hypothesis, we synthesized a pair of para- and ortho-hydroquinone-based proelectrophilic compounds and measured their redox potentials using analytical cyclic voltammetry. The redox potential was then compared with functional biological activity, and the para-hydroquinones demonstrated a superior neuroprotective profile. PMID:26243592

  19. A novel small-molecule agonist of PPAR-γ potentiates an anti-inflammatory M2 glial phenotype.

    PubMed

    Song, Gyun Jee; Nam, Youngpyo; Jo, Myungjin; Jung, Myungsu; Koo, Ja Young; Cho, Wansang; Koh, Minseob; Park, Seung Bum; Suk, Kyoungho

    2016-10-01

    Neuroinflammation is a key process for many neurodegenerative diseases. Activated microglia and astrocytes play an essential role in neuroinflammation by producing nitric oxide (NO), inflammatory cytokines, chemokines, and neurotoxins. Therefore, targeting glia-mediated neuroinflammation using small-molecules is a potential therapeutic strategy. In this study, we performed a phenotypic screen using microglia cell-based assay to identify a hit compound containing N-carbamoylated urethane moiety (SNU-BP), which inhibits lipopolysaccharide (LPS)-induced NO production in microglia. SNU-BP inhibited pro-inflammatory cytokines and inducible nitric oxide synthase in LPS-stimulated microglia, and potentiated interleukin-4-induced arginase-1 expression. PPAR-γ was identified as a molecular target of SNU-BP. The PPAR response element reporter assay revealed that SNU-BP specifically activated PPAR-γ, but not PPAR-δ or -α, confirming that PPAR-γ is the target protein of SNU-BP. The anti-inflammatory effect of SNU-BP was attenuated by genetic and pharmacological inhibition of PPAR-γ. In addition, SNU-BP induced an anti-inflammatory phenotype in astrocytes as well, by inhibiting pro-inflammatory NO and TNF-α, while increasing anti-inflammatory genes, such as arginase-1 and Ym-1. Finally, SNU-BP exhibited an anti-inflammatory effect in the LPS-injected mouse brain, demonstrating a protective potential for neuroinflammatory diseases. PMID:27288982

  20. Nrf2 and HSF-1 Pathway Activation via Hydroquinone-Based Proelectrophilic Small Molecules Is Regulated by Electrochemical Oxidation Potential

    PubMed Central

    Stalder, Romain; McKercher, Scott R.; Williamson, Robert E.; Roth, Gregory P.; Lipton, Stuart A.

    2015-01-01

    Activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 and heat-shock protein 90/heat-shock factor-1 signal-transduction pathways plays a central role in combatting cellular oxidative damage and related endoplasmic reticulum stress. Electrophilic compounds have been shown to be activators of these transcription-mediated responses through S-alkylation of specific regulatory proteins. Previously, we reported that a prototype compound (D1, a small molecule representing a proelectrophilic, para-hydroquinone species) exhibited neuroprotective action by activating both of these pathways. We hypothesized that the para-hydroquinone moiety was critical for this activation because it enhanced transcription of these neuroprotective pathways to a greater degree than that of the corresponding ortho-hydroquinone isomer. This notion was based on the differential oxidation potentials of the isomers for the transformation of the hydroquinone to the active, electrophilic quinone species. Here, to further test this hypothesis, we synthesized a pair of para- and ortho-hydroquinone-based proelectrophilic compounds and measured their redox potentials using analytical cyclic voltammetry. The redox potential was then compared with functional biological activity, and the para-hydroquinones demonstrated a superior neuroprotective profile. PMID:26243592

  1. Informatics calibration of a molecular descriptors database to predict solid dispersion potential of small molecule organic solids.

    PubMed

    Moore, Michael D; Wildfong, Peter L D

    2011-10-14

    The use of a novel, in silico method for making an intelligent polymer selection to physically stabilize small molecule organic (SMO) solid compounds formulated as amorphous molecular solid dispersions is reported. 12 compounds (75%, w/w) were individually co-solidified with polyvinyl pyrrolidone:vinyl acetate (PVPva) copolymer by melt-quenching. Co-solidified products were analyzed intact using differential scanning calorimetry (DSC) and the pair distribution function (PDF) transform of powder X-ray diffraction (PXRD) data to assess miscibility. Molecular descriptor indices were calculated for all twelve compounds using their reported crystallographic structures. Logistic regression was used to assess correlation between molecular descriptors and amorphous molecular solid dispersion potential. The final model was challenged with three compounds. Of the 12 compounds, 6 were miscible with PVPva (i.e. successful formation) and 6 were phase separated (i.e. unsuccessful formation). 2 of the 6 unsuccessful compounds exhibited detectable phase-separation using the PDF method, where DSC indicated miscibility. Logistic regression identified 7 molecular descriptors correlated to solid dispersion potential (α=0.001). The atomic mass-weighted third-order R autocorrelation index (R3m) was the only significant descriptor to provide completely accurate predictions of dispersion potential. The three compounds used to challenge the R3m model were also successfully predicted. PMID:21756988

  2. microRNA-146a targets the L1 cell adhesion molecule and suppresses the metastatic potential of gastric cancer.

    PubMed

    Hou, Zhibo; Yin, Haitao; Chen, Cong; Dai, Xinzheng; Li, Xiaolin; Liu, Baorui; Fang, Xuefeng

    2012-09-01

    Recent studies have shown that microRNA-146a (miR-146a) is associated with cancer metastasis. However, the mechanisms underlying this process remain poorly understood. In this study, we aimed to investigate the potential role of miR-146a in gastric cancer metastasis. A wound-healing assay and a Transwell assay were used to investigate the impact of miR-146a on the migratory and invasive abilities of MKN-45 cells in vitro. MKN-45 cells stably expressing miR-146a or the negative control were transplanted into nude mice through the lateral tail vein to explore the effect of miR-146a on tumor metastasis in vivo. A luciferase reporter assay and western blot analysis were used to identify the potential target genes. Our results show that the overexpression of miR-146a inhibits the invasion and metastasis of MKN-45 cells in vitro and in vivo. Furthermore, the L1 cell adhesion molecule (L1CAM) was identified as a novel target of miR‑146a in gastric cancer. Taken together, our results provide evidence that miR-146a suppresses gastric cancer cell invasion and metastasis in vitro and in vivo, which may be in part due to the downregulation of L1CAM. miR-146a may have the therapeutic potential to suppress gastric cancer metastasis. PMID:22711166

  3. Small Molecule Docking Supports Broad and Narrow Spectrum Potential for the Inhibition of the Novel Antibiotic Target Bacterial Pth1

    PubMed Central

    Ferguson, Paul P.; Holloway, W. Blake; Setzer, William N.; McFeeters, Hana; McFeeters, Robert L.

    2016-01-01

    Peptidyl-tRNA hydrolases (Pths) play ancillary yet essential roles in protein biosynthesis by recycling peptidyl-tRNA. In E. coli, inhibition of bacterial Pth1 leads to accumulation of peptidyl-tRNA, depletion of aminoacyl-tRNA, and cell death. Eukaryotes have multiple Pths and Pth1 knock out was shown to have no effect on viability in yeast. Thereby, bacterial Pth1 is a promising target for novel antibiotic development. With the abundance of Pth1 structural data, molecular docking was used for virtual screening of existing, commercially available antibiotics to map potential interactions with Pth enzymes. Overall, 83 compounds were docked to eight different bacterial Pth1 and three different Pth2 structures. A variety of compounds demonstrated favorable docking with Pths. Whereas, some compounds interacted favorably with all Pths (potential broad spectrum inhibition), more selective interactions were observed for Pth1 or Pth2 and even specificity for individual Pth1s. While the correlation between computational docking and experimentation still remains unknown, these findings support broad spectrum inhibition, but also point to the possibility of narrow spectrum Pth1 inhibition. Also suggested is that Pth1 can be distinguished from Pth2 by small molecule inhibitors. The findings support continued development of Pth1 as an antibiotic target. PMID:27171117

  4. Antitumor potential of a synthetic interferon-alpha/PLGF-2 positive charge peptide hybrid molecule in pancreatic cancer cells

    PubMed Central

    Yin, Hongmei; Chen, Naifei; Guo, Rui; Wang, Hong; Li, Wei; Wang, Guanjun; Cui, Jiuwei; Jin, Haofan; Hu, Ji-Fan

    2015-01-01

    Pancreatic cancer is the most aggressive malignant disease, ranking as the fourth leading cause of cancer-related death among men and women in the United States. Interferon alpha (IFNα) has been used to treat pancreatic cancer, but its clinical application has been significantly hindered due to the low antitumor activity. We used a “cDNA in-frame fragment library” screening approach to identify short peptides that potentiate the antitumor activity of interferons. A short positively charged peptide derived from the C-terminus of placental growth factor-2 (PLGF-2) was selected to enhance the activity of IFNα. For this, we constructed a synthetic interferon hybrid molecule (SIFα) by fusing the positively charged PLGF-2 peptide to the C-terminus of the human IFNα. Using human pancreatic cell lines (ASPC and CFPAC1) as a model system, we found that SIFα exhibited a significantly higher activity than did the wild-type IFNα in inhibiting the tumor cell growth. The enhanced activity of the synthetic SIFα was associated with the activation of interferon pathway target genes and the increased binding of cell membrane receptor. This study demonstrates the potential of a synthetic SIFα as a novel antitumor agent. PMID:26584517

  5. Non-adiabatic effects within a single thermally averaged potential energy surface: thermal expansion and reaction rates of small molecules.

    PubMed

    Alonso, J L; Castro, A; Clemente-Gallardo, J; Echenique, P; Mazo, J J; Polo, V; Rubio, A; Zueco, D

    2012-12-14

    At non-zero temperature and when a system has low-lying excited electronic states, the ground-state Born-Oppenheimer approximation breaks down and the low-lying electronic states are involved in any chemical process. In this work, we use a temperature-dependent effective potential for the nuclei which can accommodate the influence of an arbitrary number of electronic states in a simple way, while at the same time producing the correct Boltzmann equilibrium distribution for the electronic part. With the help of this effective potential, we show that thermally activated low-lying electronic states can have a significant effect in molecular properties for which electronic excitations are oftentimes ignored. We study the thermal expansion of the Manganese dimer, Mn(2), where we find that the average bond length experiences a change larger than the present experimental accuracy upon the inclusion of the excited states into the picture. We also show that, when these states are taken into account, reaction-rate constants are modified. In particular, we study the opening of the ozone molecule, O(3), and show that in this case the rate is modified as much as a 20% with respect to the ground-state Born-Oppenheimer prediction. PMID:23249070

  6. A brief update on potential molecular mechanisms underlying antimicrobial and wound-healing potency of snake venom molecules.

    PubMed

    Samy, Ramar Perumal; Sethi, Gautam; Lim, Lina H K

    2016-09-01

    Infectious diseases remain a significant cause of morbidity and mortality worldwide. A wide range of diverse, novel classes of natural antibiotics have been isolated from different snake species in the recent past. Snake venoms contain diverse groups of proteins with potent antibacterial activity against a wide range of human pathogens. Some snake venom molecules are pharmacologically attractive, as they possess promising broad-spectrum antibacterial activities. Furthermore, snake venom proteins (SVPs)/peptides also bind to integrins with high affinity, thereby inhibiting cell adhesion and accelerating wound healing in animal models. Thus, SVPs are a potential alternative to chemical antibiotics. The mode of action for many antibacterial peptides involves pore formation and disruption of the plasma membrane. This activity often includes modulation of nuclear factor kappa B (NF-κB) activation during skin wound healing. The NF-κB pathway negatively regulates the transforming growth factor (TGF)-β1/Smad pathway by inducing the expression of Smad7 and eventually reducing in vivo collagen production at the wound sites. In this context, SVPs that regulate the NF-κB signaling pathway may serve as potential targets for drug development. PMID:26975619

  7. Small Molecule Docking Supports Broad and Narrow Spectrum Potential for the Inhibition of the Novel Antibiotic Target Bacterial Pth1.

    PubMed

    Ferguson, Paul P; Holloway, W Blake; Setzer, William N; McFeeters, Hana; McFeeters, Robert L

    2016-01-01

    Peptidyl-tRNA hydrolases (Pths) play ancillary yet essential roles in protein biosynthesis by recycling peptidyl-tRNA. In E. coli, inhibition of bacterial Pth1 leads to accumulation of peptidyl-tRNA, depletion of aminoacyl-tRNA, and cell death. Eukaryotes have multiple Pths and Pth1 knock out was shown to have no effect on viability in yeast. Thereby, bacterial Pth1 is a promising target for novel antibiotic development. With the abundance of Pth1 structural data, molecular docking was used for virtual screening of existing, commercially available antibiotics to map potential interactions with Pth enzymes. Overall, 83 compounds were docked to eight different bacterial Pth1 and three different Pth2 structures. A variety of compounds demonstrated favorable docking with Pths. Whereas, some compounds interacted favorably with all Pths (potential broad spectrum inhibition), more selective interactions were observed for Pth1 or Pth2 and even specificity for individual Pth1s. While the correlation between computational docking and experimentation still remains unknown, these findings support broad spectrum inhibition, but also point to the possibility of narrow spectrum Pth1 inhibition. Also suggested is that Pth1 can be distinguished from Pth2 by small molecule inhibitors. The findings support continued development of Pth1 as an antibiotic target. PMID:27171117

  8. Metronomic Small Molecule Inhibitor of Bcl-2 (TW-37) Is Antiangiogenic and Potentiates the Antitumor Effect of Ionizing Radiation

    SciTech Connect

    Zeitlin, Benjamin D.; Spalding, Aaron C.; Campos, Marcia S.; Ashimori, Naoki; Dong Zhihong; Wang Shaomeng; Lawrence, Theodore S.; Noer, Jacques E.

    2010-11-01

    Purpose: To investigate the effect of a metronomic (low-dose, high-frequency) small-molecule inhibitor of Bcl-2 (TW-37) in combination with radiotherapy on microvascular endothelial cells in vitro and in tumor angiogenesis in vivo. Methods and Materials: Primary human dermal microvascular endothelial cells were exposed to ionizing radiation and/or TW-37 and colony formation, as well as capillary sprouting in three-dimensional collagen matrices, was evaluated. Xenografts vascularized with human blood vessels were engineered by cotransplantation of human squamous cell carcinoma cells (OSCC3) and human dermal microvascular endothelial cells seeded in highly porous biodegradable scaffolds into the subcutaneous space of immunodeficient mice. Mice were treated with metronomic TW-37 and/or radiation, and tumor growth was evaluated. Results: Low-dose TW-37 sensitized primary endothelial cells to radiation-induced inhibition of colony formation. Low-dose TW-37 or radiation partially inhibited endothelial cell sprout formation, and in combination, these therapies abrogated new sprouting. Combination of metronomic TW-37 and low-dose radiation inhibited tumor growth and resulted in significant increase in time to failure compared with controls, whereas single agents did not. Notably, histopathologic analysis revealed that tumors treated with TW-37 (with or without radiation) are more differentiated and showed more cohesive invasive fronts, which is consistent with less aggressive phenotype. Conclusions: These results demonstrate that metronomic TW-37 potentiates the antitumor effects of radiotherapy and suggest that patients with head and neck cancer might benefit from the combination of small molecule inhibitor of Bcl-2 and radiation therapy.

  9. Undulations of the potential-energy curves for highly excited electronic states in diatomic molecules related to the atomic orbital undulations

    NASA Astrophysics Data System (ADS)

    Yiannopoulou, Alexandra; Jeung, Gwang-Hi; Park, Su Jin; Lee, Hyo Sug; Lee, Yoon Sup

    1999-02-01

    We present potential-energy curves for highly excited electronic states of diatomic molecules showing spectacular undulations including multiple barriers and wells. Those undulations unrelated to avoided crossings are closely correlated with the oscillations of atomic radial electron density in the Rydberg states. The LiHe, LiNe, and LiH cases are examined with an accurate quantum chemical calculation. For the Σ+ states originating from the ns, np, nd, or nf states of lithium atom, n-2 potential barriers and the same number of potential wells exist. The 4 1Σ+g(F) state of Li2 also shows the energy barrier of the same origin. This spectroscopic property is supposed to be more general in diatomic molecules and other small molecules.

  10. LB100, a small molecule inhibitor of PP2A with potent chemo- and radio-sensitizing potential.

    PubMed

    Hong, Christopher S; Ho, Winson; Zhang, Chao; Yang, Chunzhang; Elder, J Bradley; Zhuang, Zhengping

    2015-01-01

    Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that plays a significant role in mitotic progression and cellular responses to DNA damage. While traditionally viewed as a tumor suppressor, inhibition of PP2A has recently come to attention as a novel therapeutic means of driving senescent cancer cells into mitosis and promoting cell death via mitotic catastrophe. These findings have been corroborated in numerous studies utilizing naturally produced compounds that selectively inhibit PP2A. To overcome the known human toxicities associated with these compounds, a water-soluble small molecule inhibitor, LB100, was recently developed to competitively inhibit the PP2A protein. This review summarizes the pre-clinical studies to date that have demonstrated the anti-cancer activity of LB100 via its chemo- and radio-sensitizing properties. These studies demonstrate the tremendous therapeutic potential of LB100 in a variety of cancer types. The results of an ongoing phase 1 trial are eagerly anticipated. PMID:25897893

  11. LB100, a small molecule inhibitor of PP2A with potent chemo- and radio-sensitizing potential

    PubMed Central

    Hong, Christopher S; Ho, Winson; Zhang, Chao; Yang, Chunzhang; Elder, J Bradley; Zhuang, Zhengping

    2015-01-01

    Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that plays a significant role in mitotic progression and cellular responses to DNA damage. While traditionally viewed as a tumor suppressor, inhibition of PP2A has recently come to attention as a novel therapeutic means of driving senescent cancer cells into mitosis and promoting cell death via mitotic catastrophe. These findings have been corroborated in numerous studies utilizing naturally produced compounds that selectively inhibit PP2A. To overcome the known human toxicities associated with these compounds, a water-soluble small molecule inhibitor, LB100, was recently developed to competitively inhibit the PP2A protein. This review summarizes the pre-clinical studies to date that have demonstrated the anti-cancer activity of LB100 via its chemo- and radio-sensitizing properties. These studies demonstrate the tremendous therapeutic potential of LB100 in a variety of cancer types. The results of an ongoing phase 1 trial are eagerly anticipated. PMID:25897893

  12. Global Calculations Using Potential Functions and Effective Hamiltonian Models for Vibration-Rotation Spectroscopy and Dynamics of Small Polyatomic Molecules

    NASA Astrophysics Data System (ADS)

    Tuyterev, Vladimir

    2010-06-01

    It has become increasingly common to use accurate potential energy surfaces and dipole moment surfaces for predictions and assignment of high-resolution vibration-rotation molecular spectra. These surfaces are obtained either from high-level ab initio electronic structure calculations or from a direct fit to experimental spectroscopic data. The talk will continue a discussion of some recent advances in the domain of the "potentiology". The role of basis extrapolations, of the Born-Oppenheimer breakdown corrections , in particular for very highly excited vibration states will be considered. As effective polyad Hamiltonians and band transition moment operators are still widely used for data reductions in high-resolutions molecular spectroscopy, experimental spectra analyses invoke a need for accurate methods of building physically meaningful effective models from ab initio surfaces. This involves predictions for various spectroscopic constants, including vibration dependence of rotational and centrifugal distortion and resonance coupling parameters. Topics planned for discussion include: high-order Contact Transformations of rovibrational Hamiltonians and of the dipole moment for small polyatomic molecules; convergence issues; the role of the anharmonicity in a potential energy function and of resonance couplings on the normal mode mixing and on vib-rot assignments with application to high energy vibration levels of SO_2 and to ozone near the dissociation limit; intensity anomalies in H_2S / HDS / D_2S spectra, relation of the shape of ab initio dipole moment surfaces with a "mystery" of nearly vanishing symmetry allowed bands. A full account for symmetry properties requires efficient theoretical tools for transformations of molecular Hamiltonians such as irreducible tensor formalism, applications using phosphine and methane potentials will be discussed. Both potential functions and effective polyad Hamiltonians allow studying changes in quasi-classical vibration

  13. Reactions of oxygen-containing molecules on transition metal carbides: Surface science insight into potential applications in catalysis and electrocatalysis

    NASA Astrophysics Data System (ADS)

    Stottlemyer, Alan L.; Kelly, Thomas G.; Meng, Qinghe; Chen, Jingguang G.

    2012-09-01

    Historically the interest in the catalytic properties of transition metal carbides (TMC) has been inspired by their "Pt-like" properties in the transformation reactions of hydrocarbon molecules. Recent studies, however, have revealed that the reaction pathways of oxygen-containing molecules are significantly different between TMCs and Pt-group metals. Nonetheless, TMCs demonstrate intriguing catalytic properties toward oxygen-containing molecules, either as the catalyst or as the catalytically active substrate to support metal catalysts, in several important catalytic and electrocatalytic applications, including water electrolysis, alcohol electrooxidation, biomass conversion, and water gas shift reactions. In the current review we provide a summary of theoretical and experimental studies of the interaction of TMC surfaces with oxygen-containing molecules, including both inorganic (O2, H2O, CO and CO2) and organic (alcohols, aldehydes, acids and esters) molecules. We will discuss the general trends in the reaction pathways, as well as future research opportunities in surface science studies that would facilitate the utilization of TMCs as catalysts and electrocatalysts.

  14. Reactions of oxygen-containing molecules on transition metal carbides: Surface science insight into potential applications in catalysis and electrocatalysis

    NASA Astrophysics Data System (ADS)

    Stottlemyer, Alan L.; Kelly, Thomas G.; Meng, Qinghe; Chen, Jingguang G.

    2012-09-01

    Historically the interest in the catalytic properties of transition metal carbides (TMC) has been inspired by their “Pt-like” properties in the transformation reactions of hydrocarbon molecules. Recent studies, however, have revealed that the reaction pathways of oxygen-containing molecules are significantly different between TMCs and Pt-group metals. Nonetheless, TMCs demonstrate intriguing catalytic properties toward oxygen-containing molecules, either as the catalyst or as the catalytically active substrate to support metal catalysts, in several important catalytic and electrocatalytic applications, including water electrolysis, alcohol electrooxidation, biomass conversion, and water gas shift reactions. In the current review we provide a summary of theoretical and experimental studies of the interaction of TMC surfaces with oxygen-containing molecules, including both inorganic (O2, H2O, CO and CO2) and organic (alcohols, aldehydes, acids and esters) molecules. We will discuss the general trends in the reaction pathways, as well as future research opportunities in surface science studies that would facilitate the utilization of TMCs as catalysts and electrocatalysts.

  15. Molecular determinants mediating gating of Transient Receptor Potential Canonical (TRPC) channels by stromal interaction molecule 1 (STIM1).

    PubMed

    Lee, Kyu Pil; Choi, Seok; Hong, Jeong Hee; Ahuja, Malini; Graham, Sarabeth; Ma, Rong; So, Insuk; Shin, Dong Min; Muallem, Shmuel; Yuan, Joseph P

    2014-03-01

    Transient receptor potential canonical (TRPC) channels mediate a critical part of the receptor-evoked Ca(2+) influx. TRPCs are gated open by the endoplasmic reticulum Ca(2+) sensor STIM1. Here we asked which stromal interaction molecule 1 (STIM1) and TRPC domains mediate the interaction between them and how this interaction is used to open the channels. We report that the STIM1 Orai1-activating region domain of STIM1 interacts with the TRPC channel coiled coil domains (CCDs) and that this interaction is essential for opening the channels by STIM1. Thus, disruption of the N-terminal (NT) CCDs by triple mutations eliminated TRPC surface localization and reduced binding of STIM1 to TRPC1 and TRPC5 while increasing binding to TRPC3 and TRPC6. Single mutations in TRPC1 NT or C-terminal (CT) CCDs reduced interaction and activation of TRPC1 by STIM1. Remarkably, single mutations in the TRPC3 NT CCD enhanced interaction and regulation by STIM1. Disruption in the TRPC3 CT CCD eliminated regulation by STIM1 and the enhanced interaction caused by NT CCD mutations. The NT CCD mutations converted TRPC3 from a TRPC1-dependent to a TRPC1-independent, STIM1-regulated channel. TRPC1 reduced the FRET between BFP-TRPC3 and TRPC3-YFP and between CFP-TRPC3-YFP upon stimulation. Accordingly, knockdown of TRPC1 made TRPC3 STIM1-independent. STIM1 dependence of TRPC3 was reconstituted by the TRPC1 CT CCD alone. Knockout of Trpc1 and Trpc3 similarly inhibited Ca(2+) influx, and inhibition of Trpc3 had no further effect on Ca(2+) influx in Trpc1(-/-) cells. Cell stimulation enhanced the formation of Trpc1-Stim1-Trpc3 complexes. These findings support a model in which the TRPC3 NT and CT CCDs interact to shield the CT CCD from interaction with STIM1. The TRPC1 CT CCD dissociates this interaction to allow the STIM1 Orai1-activating region within STIM1 access to the TRPC3 CT CCD and regulation of TRPC3 by STIM1. These studies provide evidence that the TRPC channel CCDs participate in channel

  16. Molecular Determinants Mediating Gating of Transient Receptor Potential Canonical (TRPC) Channels by Stromal Interaction Molecule 1 (STIM1)*

    PubMed Central

    Lee, Kyu Pil; Choi, Seok; Hong, Jeong Hee; Ahuja, Malini; Graham, Sarabeth; Ma, Rong; So, Insuk; Shin, Dong Min; Muallem, Shmuel; Yuan, Joseph P.

    2014-01-01

    Transient receptor potential canonical (TRPC) channels mediate a critical part of the receptor-evoked Ca2+ influx. TRPCs are gated open by the endoplasmic reticulum Ca2+ sensor STIM1. Here we asked which stromal interaction molecule 1 (STIM1) and TRPC domains mediate the interaction between them and how this interaction is used to open the channels. We report that the STIM1 Orai1-activating region domain of STIM1 interacts with the TRPC channel coiled coil domains (CCDs) and that this interaction is essential for opening the channels by STIM1. Thus, disruption of the N-terminal (NT) CCDs by triple mutations eliminated TRPC surface localization and reduced binding of STIM1 to TRPC1 and TRPC5 while increasing binding to TRPC3 and TRPC6. Single mutations in TRPC1 NT or C-terminal (CT) CCDs reduced interaction and activation of TRPC1 by STIM1. Remarkably, single mutations in the TRPC3 NT CCD enhanced interaction and regulation by STIM1. Disruption in the TRPC3 CT CCD eliminated regulation by STIM1 and the enhanced interaction caused by NT CCD mutations. The NT CCD mutations converted TRPC3 from a TRPC1-dependent to a TRPC1-independent, STIM1-regulated channel. TRPC1 reduced the FRET between BFP-TRPC3 and TRPC3-YFP and between CFP-TRPC3-YFP upon stimulation. Accordingly, knockdown of TRPC1 made TRPC3 STIM1-independent. STIM1 dependence of TRPC3 was reconstituted by the TRPC1 CT CCD alone. Knockout of Trpc1 and Trpc3 similarly inhibited Ca2+ influx, and inhibition of Trpc3 had no further effect on Ca2+ influx in Trpc1−/− cells. Cell stimulation enhanced the formation of Trpc1-Stim1-Trpc3 complexes. These findings support a model in which the TRPC3 NT and CT CCDs interact to shield the CT CCD from interaction with STIM1. The TRPC1 CT CCD dissociates this interaction to allow the STIM1 Orai1-activating region within STIM1 access to the TRPC3 CT CCD and regulation of TRPC3 by STIM1. These studies provide evidence that the TRPC channel CCDs participate in channel gating

  17. Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory

    NASA Astrophysics Data System (ADS)

    Yang, Xue-Min; Li, Jin-Yan; Zhang, Meng; Chai, Guo-Min; Zhang, Jian

    2014-12-01

    A thermodynamic model for predicting sulfide capacity of CaO-FeO-Fe2O3-Al2O3-P2O5 slags in a large variation range of oxygen potential corresponding to mass percentage of FetO from 1.88 to 55.50 pct, i.e., IMCT- model, has been developed by coupling with the deduced desulfurization mechanism of the slags based on the ion and molecule coexistence theory (IMCT). The developed IMCT- model has been verified through comparing the determined sulfide capacity after Ban-ya et al.[20] with the calculated by the developed IMCT- model and the calculated by the reported sulfide capacity models such as the KTH model. Mass percentage of FetO as 6.75 pct corresponding to the mass action concentration of FetO as 0.0637 or oxygen partial as 2.27 × 10-6 Pa is the criterion for distinguishing reducing and oxidizing zones for the slags. Sulfide capacity of the slags in reducing zone is controlled by reaction ability of CaO regardless of slag oxidization ability. However, sulfide capacity of the slags in oxidizing zone shows an obvious increase tendency with the increasing of slag oxidization ability. Sulfide capacity of the slags in reducing zone keeps almost constant with variation of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)), or optical basicity, or the mass action concentration ratios of N FeO/ N CaO, , , and . Sulfide capacity of the slags in oxidizing zone shows an obvious increase with the increasing of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)) or optical basicity, or the aforementioned mass action concentration ratios. Thus, the aforementioned mass action concentration ratios and the corresponding mass percentage ratios of various iron oxides to basic oxide CaO are recommended to represent the comprehensive effect of various iron oxides and basic oxide CaO on sulfide capacity of the slags.

  18. ESTIMATION OF MUTAGENIC/CARCINOGENIC POTENTIAL OF ENVIRONMENTAL CONTAMINANTS BY ION-MOLECULE REACTIONS AND TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    The ability to produce and detect products of model DNA/carcinogen ion-molecule reactions is demonstrated in the ion source and the collision cell of a triple quadrupole tandem mass spectrometer. eaction between adenine and benzoyl chloride in the ion source is shown to produce t...

  19. New hydrogen-bond potentials for use in determining energetically favorable binding sites on molecules of known structure.

    PubMed

    Boobbyer, D N; Goodford, P J; McWhinnie, P M; Wade, R C

    1989-05-01

    An empirical energy function designed to calculate the interaction energy of a chemical probe group, such as a carbonyl oxygen or an amine nitrogen atom, with a target molecule has been developed. This function is used to determine the sites where ligands, such as drugs, may bind to a chosen target molecule which may be a protein, a nucleic acid, a polysaccharide, or a small organic molecule. The energy function is composed of a Lennard-Jones, an electrostatic and a hydrogen-bonding term. The latter is dependent on the length and orientation of the hydrogen bond and also on the chemical nature of the hydrogen-bonding atoms. These terms have been formulated by fitting to experimental observations of hydrogen bonds in crystal structures. In the calculations, thermal motion of the hydrogen-bonding hydrogen atoms and lone-pair electrons may be taken into account. For example, in a alcoholic hydroxyl group, the hydrogen may rotate around the C-O bond at the observed tetrahedral angle. In a histidine residue, a hydrogen atom may be bonded to either of the two imidazole nitrogens and movement of this hydrogen will cause a redistribution of charge which is dependent on the nature of the probe group and the surrounding environment. The shape of some of the energy functions is demonstrated on molecules of pharmacological interest. PMID:2709375

  20. Interactions of Hydrogen Molecules with Halogen-Containing Diatomics from Ab Initio Calculations: Spherical-Harmonics Representation and Characterization of the Intermolecular Potentials.

    PubMed

    Albernaz, Alessandra F; Aquilanti, Vincenzo; Barreto, Patricia R P; Caglioti, Concetta; Cruz, Ana Claudia P S; Grossi, Gaia; Lombardi, Andrea; Palazzetti, Federico

    2016-07-14

    For the prototypical diatomic-molecule-diatomic-molecule interactions H2-HX and H2-X2, where X = F, Cl, Br, quantum-chemical ab initio calculations are carried out on grids of the configuration space, which permit a spherical-harmonics representation of the potential energy surfaces (PESs). Dimer geometries are considered for sets of representative leading configurations, and the PESs are analyzed in terms of isotropic and anisotropic contributions. The leading configurations are individuated by selecting a minimal set of mutual orientations of molecules needed to build the spherical-harmonic expansion on geometrical and symmetry grounds. The terms of the PESs corresponding to repulsive and bonding dimer geometries and the averaged isotropic term, for each pair of interacting molecules, are compared with representations in terms of a potential function proposed by Pirani et al. (see Chem. Phys. Lett. 2004, 394, 37-44 and references therein). Connections of the involved parameters with molecular properties provide insight into the nature of the interactions. PMID:27043842

  1. The Yeast Three-Hybrid System as an Experimental Platform to Identify Proteins Interacting with Small Signaling Molecules in Plant Cells: Potential and Limitations

    PubMed Central

    Cottier, Stéphanie; Mönig, Timon; Wang, Zheming; Svoboda, Jiří; Boland, Wilhelm; Kaiser, Markus; Kombrink, Erich

    2011-01-01

    Chemical genetics is a powerful scientific strategy that utilizes small bioactive molecules as experimental tools to unravel biological processes. Bioactive compounds occurring in nature represent an enormous diversity of structures that can be used to dissect functions of biological systems. Once the bioactivity of a natural or synthetic compound has been critically evaluated the challenge remains to identify its molecular target and mode of action, which usually is a time-consuming and labor-intensive process. To facilitate this task, we decided to implement the yeast three-hybrid (Y3H) technology as a general experimental platform to scan the whole Arabidopsis proteome for targets of small signaling molecules. The Y3H technology is based on the yeast two-hybrid system and allows direct cloning of proteins that interact in vivo with a synthetic hybrid ligand, which comprises the biologically active molecule of interest covalently linked to methotrexate (Mtx). In yeast nucleus the hybrid ligand connects two fusion proteins: the Mtx part binding to dihydrofolate reductase fused to a DNA-binding domain (encoded in the yeast strain), and the bioactive molecule part binding to its potential protein target fused to a DNA-activating domain (encoded on a cDNA expression vector). During cDNA library screening, the formation of this ternary, transcriptional activator complex leads to reporter gene activation in yeast cells, and thereby allows selection of the putative targets of small bioactive molecules of interest. Here we present the strategy and experimental details for construction and application of a Y3H platform, including chemical synthesis of different hybrid ligands, construction of suitable cDNA libraries, the choice of yeast strains, and appropriate screening conditions. Based on the results obtained and the current literature we discuss the perspectives and limitations of the Y3H approach for identifying targets of small bioactive molecules. PMID:22639623

  2. The Role of Histone Deacetylases in Neurodegenerative Diseases and Small-Molecule Inhibitors as a Potential Therapeutic Approach

    NASA Astrophysics Data System (ADS)

    Bürli, Roland W.; Thomas, Elizabeth; Beaumont, Vahri

    Neurodegenerative disorders are devastating for patients and their social environment. Their etiology is poorly understood and complex. As a result, there is clearly an urgent need for therapeutic agents that slow down disease progress and alleviate symptoms. In this respect, interference with expression and function of multiple gene products at the epigenetic level has offered much promise, and histone deacetylases play a crucial role in these processes. This review presents an overview of the biological pathways in which these enzymes are involved and illustrates the complex network of proteins that governs their activity. An overview of small molecules that interfere with histone deacetylase function is provided.

  3. Can Femtosecond Transient Absorption Spectroscopy Predict the Potential of Small Molecules as Perspective Donors for Organic Photovoltaics?

    NASA Astrophysics Data System (ADS)

    DiScipio, Regina; Sauve, Genevieve; Crespo-Hernández, Carlos E.

    2015-06-01

    The utility of a perspective donor or acceptor molecule for photoelectric applications is difficult to predict a priori. This hinders productive synthetic exploration and necessitates lengthy device optimization procedures for reasonable estimation of said molecule's applicability. Using femtosecond broadband transient absorption spectroscopy, supported by time-dependent density functional theory computations and steady-state-absorption and emission spectroscopies, we have characterized a family of perspective optoelectronic compounds, in an effort to predict their relative performance in organic photovoltaic devices from information accrued from excited-state dynamics and photophysical properties. A series of tetraphenylazadipyrromethene (ADP) complexes chelated with three different metal centers was investigated. We have determined that the chelating metal has little effect on the ground state properties of this family. However their excited state dynamics are strongly modulated by the metal. Specifically, the zinc-chelated ADP complex remains in the excited state tenfold longer than the cobalt or nickel complexes. We assert that this is key photophysical property that should make the zinc complex outperform the other two complexes in photovoltaic applications. This hypothesis is supported by preliminary power conversion efficiency results in devices.

  4. Laboratory Anion Chemistry: Implications for the DIBs, and a Potential Formation Mechanism for a Known Interstellar Molecule

    NASA Technical Reports Server (NTRS)

    Eichelberger, B.; Barckholtz, C.; Stepanovic, M.; Bierbaum, V.; Snow, T.

    2002-01-01

    Due to recent interest in molecular anions as possible interstellar species, we have carried out several laboratory studies of anion chemistry. The reactions of the series C(sub n)(sup -); and C(sub n)H(sup -) with H and H2 were studied to address the viability of such species in the diffuse interstellar medium and to address their ability to be carriers of the diffuse interstellar bands (DIBs). These same molecules were also reacted with N and O to show possible heteroatomic products. C(sub m)N(sup - was a particularly stable product from the reaction of C(sub n)(sup -) + N. C3N(sup -) was further reacted with H to study chemistry that could produce HC3N, a known interstellar species. The reactions were done in a flowing afterglow selected ion flow tube apparatus (FA-SIFT). The anions were generated in an electron impact or cold cathode discharge source and the anion of interest was then selected by a quadrupole mass filter. The selected ion was then reacted with the atomic or molecular species in the flow tube and products were detected by another quadrupole. While the C(sub n)(sup -) species do not appear to be viable DIB carriers, their possible presence could provide a mechanism for the formation of known heteroatomic neutral molecules detected in the interstellar medium (ISM).

  5. The determination of potential energy curve and dipole moment of the (5)0(+) electronic state of (85)Rb(133)Cs molecule by high resolution photoassociation spectroscopy.

    PubMed

    Yuan, Jinpeng; Zhao, Yanting; Ji, Zhonghua; Li, Zhonghao; Kim, Jin-Tae; Xiao, Liantuan; Jia, Suotang

    2015-12-14

    We present the formation of ultracold (85)Rb(133)Cs molecules in the (5)0(+) electronic state by photoassociation and their detection via resonance-enhanced two-photon ionization. Up to v = 47 vibrational levels including the lowest v = 0 vibrational and lowest J = 0 levels are identified with rotationally resolved high resolution photoassociation spectra. Precise Dunham coefficients are determined for the (5)0(+) state with high accuracy, then the Rydberg-Klein-Rees potential energy curve is derived. The electric dipole moments with respect to the vibrational numbers of the (5)0(+) electronic state of (85)Rb(133)Cs molecule are also measured in the range between 1.9 and 4.8 D. These comprehensive studies on previously unobserved rovibrational levels of the (5)0(+) state are helpful to understand the molecular structure and discover suitable transition pathways for transferring ultracold atoms to deeply bound rovibrational levels of the electronic ground state. PMID:26671380

  6. The determination of potential energy curve and dipole moment of the (5)0+ electronic state of 85Rb133Cs molecule by high resolution photoassociation spectroscopy

    NASA Astrophysics Data System (ADS)

    Yuan, Jinpeng; Zhao, Yanting; Ji, Zhonghua; Li, Zhonghao; Kim, Jin-Tae; Xiao, Liantuan; Jia, Suotang

    2015-12-01

    We present the formation of ultracold 85Rb133Cs molecules in the (5)0+ electronic state by photoassociation and their detection via resonance-enhanced two-photon ionization. Up to v = 47 vibrational levels including the lowest v = 0 vibrational and lowest J = 0 levels are identified with rotationally resolved high resolution photoassociation spectra. Precise Dunham coefficients are determined for the (5)0+ state with high accuracy, then the Rydberg-Klein-Rees potential energy curve is derived. The electric dipole moments with respect to the vibrational numbers of the (5)0+ electronic state of 85Rb133Cs molecule are also measured in the range between 1.9 and 4.8 D. These comprehensive studies on previously unobserved rovibrational levels of the (5)0+ state are helpful to understand the molecular structure and discover suitable transition pathways for transferring ultracold atoms to deeply bound rovibrational levels of the electronic ground state.

  7. The pharmacology and therapeutic potential of small molecule inhibitors of acid-sensing ion channels in stroke intervention

    PubMed Central

    Leng, Tian-dong; Xiong, Zhi-gang

    2013-01-01

    In the nervous system, a decrease in extracellular pH is a common feature of various physiological and pathological processes, including synaptic transmission, cerebral ischemia, epilepsy, brain trauma, and tissue inflammation. Acid-sensing ion channels (ASICs) are proton-gated cation channels that are distributed throughout the central and peripheral nervous systems. Following the recent identification of ASICs as critical acid-sensing extracellular proton receptors, growing evidence has suggested that the activation of ASICs plays important roles in physiological processes such as nociception, mechanosensation, synaptic plasticity, learning and memory. However, the over-activation of ASICs is also linked to adverse outcomes for certain pathological processes, such as brain ischemia and multiple sclerosis. Based on the well-demonstrated role of ASIC1a activation in acidosis-mediated brain injury, small molecule inhibitors of ASIC1a may represent novel therapeutic agents for the treatment of neurological disorders, such as stroke. PMID:22820909

  8. Cell-based small-molecule compound screen identifies fenretinide as potential therapeutic for translocation-positive rhabdomyosarcoma.

    PubMed

    Herrero Martín, David; Boro, Aleksandar; Schäfer, Beat W

    2013-01-01

    A subset of paediatric sarcomas are characterized by chromosomal translocations encoding specific oncogenic transcription factors. Such fusion proteins represent tumor specific therapeutic targets although so far it has not been possible to directly inhibit their activity by small-molecule compounds. In this study, we hypothesized that screening a small-molecule library might identify already existing drugs that are able to modulate the transcriptional activity of PAX3/FOXO1, the fusion protein specifically found in the pediatric tumor alveolar rhabdomyosarcoma (aRMS). Towards this end, we established a reporter cell line based on the well characterized PAX3/FOXO1 target gene AP2ß. A library enriched in mostly FDA approved drugs was screened using specific luciferase activity as read-out and normalized for cell viability. The most effective inhibitor identified from this screen was Fenretinide. Treatment with this compound resulted in down-regulation of PAX3/FOXO1 mRNA and protein levels as well as in reduced expression of several of its direct target genes, but not of wild-type FOXO1, in a dose- and time-dependent manner. Moreover, fenretinide induced reactive oxygen species and apoptosis as shown by caspase 9 and PARP cleavage and upregulated miR-9. Importantly, it demonstrated a significant anti-tumor effect in vivo. These results are similar to earlier reports for two other pediatric tumors, namely neuroblastoma and Ewing sarcoma, where fenretinide is under clinical development. Our results suggest that fenretinide might represent a novel treatment option also for translocation-positive rhabdomyosarcoma. PMID:23372815

  9. Cell-Based Small-Molecule Compound Screen Identifies Fenretinide as Potential Therapeutic for Translocation-Positive Rhabdomyosarcoma

    PubMed Central

    Herrero Martín, David; Boro, Aleksandar; Schäfer, Beat W.

    2013-01-01

    A subset of paediatric sarcomas are characterized by chromosomal translocations encoding specific oncogenic transcription factors. Such fusion proteins represent tumor specific therapeutic targets although so far it has not been possible to directly inhibit their activity by small-molecule compounds. In this study, we hypothesized that screening a small-molecule library might identify already existing drugs that are able to modulate the transcriptional activity of PAX3/FOXO1, the fusion protein specifically found in the pediatric tumor alveolar rhabdomyosarcoma (aRMS). Towards this end, we established a reporter cell line based on the well characterized PAX3/FOXO1 target gene AP2ß. A library enriched in mostly FDA approved drugs was screened using specific luciferase activity as read-out and normalized for cell viability. The most effective inhibitor identified from this screen was Fenretinide. Treatment with this compound resulted in down-regulation of PAX3/FOXO1 mRNA and protein levels as well as in reduced expression of several of its direct target genes, but not of wild-type FOXO1, in a dose- and time-dependent manner. Moreover, fenretinide induced reactive oxygen species and apoptosis as shown by caspase 9 and PARP cleavage and upregulated miR-9. Importantly, it demonstrated a significant anti-tumor effect in vivo. These results are similar to earlier reports for two other pediatric tumors, namely neuroblastoma and Ewing sarcoma, where fenretinide is under clinical development. Our results suggest that fenretinide might represent a novel treatment option also for translocation-positive rhabdomyosarcoma. PMID:23372815

  10. Investigation of parameter-free model polarization potentials for electron-molecule scattering calculations including the nuclear motion

    SciTech Connect

    Morrison, M.A.; Saha, B.C.

    1986-10-01

    A correlation-polarization potential originally introduced by O'Connell and Lane (Phys. Rev. A 27, 1893 (1983)) is used in e-H/sub 2/ scattering calculations in which the vibrational motion of the target is taken into account. Eigenphase sums (as a function of internuclear separation) and cross sections for elastic scattering and for rovibrational excitations are compared to their counterparts calculated using the ab initio nonadiabatic model polarization potential of Gibson and Morrison (Phys. Rev. A 29, 2497 (1984)). At low energies, these scattering quantities are found to be quite sensitive to the treatment of polarization. To assess these model potentials, theoretical total, momentum transfer, and rotational- and vibrational-excitation cross sections are compared to experimental data.

  11. The determination of potential energy curve and dipole moment of the (5) 0+ electronic state of 85 Rb133 Cs molecule by high resolution photoassociation spectroscopy

    NASA Astrophysics Data System (ADS)

    Yuan, Jinpeng; Zhao, Yanting; Ji, Zhonghua; Li, Zhonghao; Kim, Jin-Tae; Xiao, Liantuan; Jia, Suotang

    2016-05-01

    The creation and manipulation of ultracold polar molecules have attracted intensive attentions due to their permanent electric dipole moments interacting strongly with an external electric field and with long-range dipole-dipole force, which facilitate applications such as precision measurement, quantum control of cold chemical reactions, and quantum computation. The (5) 0+ state is a good candidate to produce ultracold ground state RbCs molecule through a short-range photoassociation (PA). We present the formation of ultracold 85 Rb133 Cs molecules in the (5) 0+ electronic state by PA and their detection via resonance-enhanced two-photon ionization. Up to v = 47 vibrational levels including the lowest v = 0 and lowest J = 0 levels are identified with high resolution. Precise Dunham coefficients and the Rydberg-Klein-Rees potential energy curve of the (5) 0+ state are determined The electric dipole moments with respect to the vibrational numbers of the (5) 0+ electronic state are also measured in the range between 1.9 and 4.8 D. These comprehensive studies on previously unobserved rovibrational levels of the (5) 0+ state are helpful to understand the molecular structure and discover suitable transition pathways for transferring to the lowest rovibrational level of the ground state.

  12. The Chirped-Pulse Fourier Transform Microwave Cp-Ftmw Spectrum and Potential Energy Calculations for AN Aromatic Claisen Rearrangement Molecule, Allyl Phenyl Ether

    NASA Astrophysics Data System (ADS)

    Grubbs, G. S. Grubbs, Ii; Cooke, S. A.; Novick, Stewart E.

    2012-06-01

    Claisen rearrangement ethers are a fundamental organic, pericyclic rearrangement reaction reagent. In the mechanism of a Claisen rearrangement, a vinyl allyl ether is needed to provide the necessary Lewis acid/base sites on the molecule for the rearrangement and are simply heated. This rearrangement was first discovered by heating up the title molecule, allyl phenyl ether. However, much like the Diels-Alder, Cope, and other pericyclic reactions, conformation and coordination of chemical groups is key to the Claisen mechanism. In this study, the authors present some structural characteristics of allyl phenyl ether from an analysis of the microwave spectra in the 8-14 GHz region using a CP-FTMW spectrometer. This is, to the authors knowledge, the first known microwave region study of the title molecule. Three conformers have been observed and assigned to date and will be discussed. Along with the rotational spectra, geometry calculations and potential energy surfaces performed at the MP2/6-311G++(3d,2p) level will be discussed and compared to the experimental results. Modeling the Claisen aromatic rearrangement mechanism using CP-FTMW spectroscopy will also be discussed. L. Claisen Chemische Berichte 45, 3157, October 1912.

  13. Two-electron R-matrix approach to calculations of potential-energy curves of long-range Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Tarana, Michal; Čurík, Roman

    2016-05-01

    We introduce a computational method developed for study of long-range molecular Rydberg states of such systems that can be approximated by two electrons in a model potential of the atomic cores. The method is based on a two-electron R-matrix approach inside a sphere centered on one of the atoms. The wave function is then connected to a Coulomb region outside the sphere via a multichannel version of the Coulomb Green's function. This approach is applied to a study of Rydberg states of Rb2 for internuclear separations R from 40 to 320 bohrs and energies corresponding to n from 7 to 30. We report bound states associated with the low-lying 3Po resonance and with the virtual state of the rubidium atom that turn into ion-pair-like bound states in the Coulomb potential of the atomic Rydberg core. The results are compared with previous calculations based on single-electron models employing a zero-range contact-potential and short-range modele potential. Czech Science Foundation (Project No. P208/14-15989P).

  14. Ectopic expression of polysialylated neural cell adhesion molecule in adult macaque Schwann cells promotes their migration and remyelination potential in the central nervous system

    PubMed Central

    Bachelin, C.; Zujovic, V.; Buchet, D.; Mallet, J.

    2010-01-01

    Recent findings suggested that inducing neural cell adhesion molecule polysialylation in rodents is a promising strategy for promoting tissue repair in the injured central nervous system. Since autologous grafting of Schwann cells is one potential strategy to promote central nervous system remyelination, it is essential to show that such a strategy can be translated to adult primate Schwann cells and is of interest for myelin diseases. Adult macaque Schwann cells were transduced with a lentiviral vector encoding sialyltransferase, an enzyme responsible for neural cell adhesion molecule polysialylation. In vitro, we found that ectopic expression of polysialylate promoted adult macaque Schwann cell migration and improved their integration among astrocytes in vitro without modifying their antigenic properties as either non-myelinating or pro-myelinating. In addition, forced expression of polysialylate in adult macaque Schwann cells decreased their adhesion with sister cells. To investigate the ability of adult macaque Schwann cells to integrate and migrate in vivo, focally induced demyelination was targeted to the spinal cord dorsal funiculus of nude mice, and both control and sialyltransferase expressing Schwann cells overexpressing green fluorescein protein were grafted remotely from the lesion site. Analysis of the spatio-temporal distribution of the grafted Schwann cells performed in toto and in situ, showed that in both groups, Schwann cells migrated towards the lesion site. However, migration of sialyltransferase expressing Schwann cells was more efficient than that of control Schwann cells, leading to their accelerated recruitment by the lesion. Moreover, ectopic expression of polysialylated neural cell adhesion molecule promoted adult macaque Schwann cell interaction with reactive astrocytes when exiting the graft, and their ‘chain-like’ migration along the dorsal midline. The accelerated migration of sialyltransferase expressing Schwann cells to the

  15. Second-harmonic generation of biological interfaces: probing the membrane protein bacteriorhodopsin and imaging membrane potential around GFP molecules at specific sites in neuronal cells of C. elegans

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Khatchatouriants, Artium; Treinin, Millet; Chen, Zhongping; Peleg, Gadi; Friedman, Noga; Bouevitch, Oleg; Rothman, Zvi; Loew, Leslie; Sheres, Mordechai

    1999-07-01

    Second-harmonic generation (SHG) is applied to problems of probing membrane proteins and functionally imaging around selective sites and at single molecules in biological membranes. The membrane protein bacteriorhodopsin (bR) has been shown to have large second-harmonic (SH) intensities that are modulated by protein/retinylidene chromophore interactions. The nonlinear optical properties of model compounds, which simulate these protein chromophore interactions in retinal proteins, are studied in this work by surface SHG and by hyper-Rayleigh scattering. Our results indicate that non-conjugated charges and hydrogen bonding effects have a large effect on the molecular hyperpolarizability of the retinal chromophore. However, mbR, the model system studies suggest that polarizable amino acids strongly affect the vertically excited state of the retinylidene chromophore and appear to play the major role in the observed protein enhancement (>50%) of the retinylidene chromophore molecular hyperpolarizability and associated induced dipole. Furthermore, the data provide insights on emulating these interactions for the design of organic nonlinear optical materials. Our studies have also led to the development of dyes with large SH intensities that can be embedded in cell membranes and can functionally image membrane potential. Single molecules of such dyes in selected single molecular regions of a cell membrane have been detected. SHG from green fluorescent protein (GFP) selectively expressed in concert with a specific protein in neuronal cells in a transgenic form of the worm C. elegans is also reported. The membrane potential around the GFP molecules expressed in these cells has been imaged with SHG in live animals.

  16. Vasorelaxant activity of extracts obtained from Apium graveolens: Possible source for vasorelaxant molecules isolation with potential antihypertensive effect

    PubMed Central

    Jorge, Vergara-Galicia; Ángel, Jimenez-Ramirez Luis; Adrián, Tun-Suarez; Francisco, Aguirre-Crespo; Anuar, Salazar-Gómez; Samuel, Estrada-Soto; Ángel, Sierra-Ovando; Emmanuel, Hernandez-Nuñez

    2013-01-01

    Objective To investigate vasorelaxant effect of organic extracts from Apium graveolens (A. graveolens) which is a part of a group of plants subjected to pharmacological and phytochemical study with the purpose of offering it as an ideal source for obtaining lead compounds for designing new therapeutic agents with potential vasorelaxant and antihypertensive effects. Methods An ex vivo method was employed to assess the vasorelaxant activity. This consisted of using rat aortic rings with and without endothelium precontracted with norepinephrine. Results All extracts caused concentration-dependent relaxation in precontracted aortic rings with and without endothelium; the most active extracts were Dichloromethane and Ethyl Acetate extracts from A. graveolens. These results suggested that secondary metabolites responsible for the vasorelaxant activity belong to a group of compounds of medium polarity. Also, our evidence showed that effect induced by dichloromethane and ethyl acetate extracts from A. graveolens is mediated probably by calcium antagonism. Conclusions A. graveolens represents an ideal source for obtaining lead compounds for designing new therapeutic agents with potential vasorelaxant and antihypertensive effects. PMID:24075341

  17. Zinc Chelation by a Small-Molecule Adjuvant Potentiates Meropenem Activity in Vivo against NDM-1-Producing Klebsiella pneumoniae.

    PubMed

    Falconer, Shannon B; Reid-Yu, Sarah A; King, Andrew M; Gehrke, Sebastian S; Wang, Wenliang; Britten, James F; Coombes, Brian K; Wright, Gerard D; Brown, Eric D

    2015-11-13

    The widespread emergence of antibiotic drug resistance has resulted in a worldwide healthcare crisis. In particular, the extensive use of β-lactams, a highly effective class of antibiotics, has been a driver for pervasive β-lactam resistance. Among the most important resistance determinants are the metallo-β-lactamases (MBL), which are zinc-requiring enzymes that inactivate nearly all classes of β-lactams, including the last-resort carbapenem antibiotics. The urgent need for new compounds targeting MBL resistance mechanisms has been widely acknowledged; however, the development of certain types of compounds-namely metal chelators-is actively avoided due to host toxicity concerns. The work herein reports the identification of a series of zinc-selective spiro-indoline-thiadiazole analogues that, in vitro, potentiate β-lactam antibiotics against an MBL-carrying pathogen by withholding zinc availability. This study demonstrates the ability of one such analogue to inhibit NDM-1 in vitro and, using a mouse model of infection, shows that combination treatment of the respective analogue with meropenem results in a significant decrease in bacterial burden in contrast to animals that received antibiotic treatment alone. These results support the therapeutic potential of these chelators in overcoming antibiotic resistance. PMID:27623408

  18. Classical and Mexican hat-type potential energy curve for the hydrogen molecule from a confined Kratzer oscillator

    NASA Astrophysics Data System (ADS)

    van Hooydonk, G.

    2016-03-01

    We review harmonic oscillator theory for closed, stable quantum systems. The H2 potential energy curve (PEC) of Mexican hat-type, calculated with a confined Kratzer oscillator, is better than the Rydberg-Klein-Rees (RKR) H2 PEC. Compared with QM, the theory of chemical bonding is simplified, since a confined Kratzer oscillator can also lead to the long sought for universal function, once called the Holy Grail of Molecular Spectroscopy. This is validated by reducing PECs for different bonds H2, HF, I2, N2 and O2 to a single one. The equal probability for H2, originating either from HA + HB or HB + HA, is quantified with a Gauss probability density function. At the Bohr scale, a confined harmonic oscillator behaves properly at the extremes of bound two-nucleon quantum systems.

  19. Accurate potential energy curve of the LiH{sup +} molecule calculated with explicitly correlated Gaussian functions

    SciTech Connect

    Tung, Wei-Cheng; Adamowicz, Ludwik

    2014-03-28

    Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH{sup +} ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.

  20. Modeling of Human Prokineticin Receptors: Interactions with Novel Small-Molecule Binders and Potential Off-Target Drugs

    PubMed Central

    Levit, Anat; Yarnitzky, Talia; Wiener, Ayana; Meidan, Rina; Niv, Masha Y.

    2011-01-01

    Background and Motivation The Prokineticin receptor (PKR) 1 and 2 subtypes are novel members of family A GPCRs, which exhibit an unusually high degree of sequence similarity. Prokineticins (PKs), their cognate ligands, are small secreted proteins of ∼80 amino acids; however, non-peptidic low-molecular weight antagonists have also been identified. PKs and their receptors play important roles under various physiological conditions such as maintaining circadian rhythm and pain perception, as well as regulating angiogenesis and modulating immunity. Identifying binding sites for known antagonists and for additional potential binders will facilitate studying and regulating these novel receptors. Blocking PKRs may serve as a therapeutic tool for various diseases, including acute pain, inflammation and cancer. Methods and Results Ligand-based pharmacophore models were derived from known antagonists, and virtual screening performed on the DrugBank dataset identified potential human PKR (hPKR) ligands with novel scaffolds. Interestingly, these included several HIV protease inhibitors for which endothelial cell dysfunction is a documented side effect. Our results suggest that the side effects might be due to inhibition of the PKR signaling pathway. Docking of known binders to a 3D homology model of hPKR1 is in agreement with the well-established canonical TM-bundle binding site of family A GPCRs. Furthermore, the docking results highlight residues that may form specific contacts with the ligands. These contacts provide structural explanation for the importance of several chemical features that were obtained from the structure-activity analysis of known binders. With the exception of a single loop residue that might be perused in the future for obtaining subtype-specific regulation, the results suggest an identical TM-bundle binding site for hPKR1 and hPKR2. In addition, analysis of the intracellular regions highlights variable regions that may provide subtype specificity

  1. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule.

    PubMed

    Petters, Edyta; Sokolowska-Wedzina, Aleksandra; Otlewski, Jacek

    2015-01-01

    Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer. PMID:26307975

  2. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule

    PubMed Central

    Petters, Edyta; Sokolowska-Wedzina, Aleksandra; Otlewski, Jacek

    2015-01-01

    Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer. PMID:26307975

  3. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    SciTech Connect

    Gou, Dezhi; Kuang, Xiaoyu Gao, Yufeng; Huo, Dongming

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  4. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    NASA Astrophysics Data System (ADS)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-01

    In this paper, we systematically investigate the electronic structure for the 2Σ+ ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  5. Theoretical study on the ground state of the polar alkali-metal-barium molecules: potential energy curve and permanent dipole moment.

    PubMed

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the (2)Σ(+) ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained. PMID:25612710

  6. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  7. Thermodynamics properties study of diatomic molecules with q-deformed modified Poschl-Teller plus Manning Rosen non-central potential in D dimensions using SUSYQM approach

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Pratiwi, B. N.

    2016-04-01

    D-dimensional Dirac equation of q-deformed modified Poschl-Teller plus Manning Rosen non-central potential was solved using supersymmetric quantum mechanics (SUSY QM). The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial part of D dimensional Dirac equation and the angular quantum numbers were obtained from angular part of D dimensional Dirac equation. The SUSY operators was used to generate the D dimensional relativistic wave functions both for radial and angular parts. In the non-relativistic limit, the relativistic energy equation was reduced to the non-relativistic energy. In the classical limit, the partition function of vibrational, the specific heat of vibrational, and the mean energy of vibrational of some diatomic molecules were calculated from the equation of non-relativistic energy with the help of error function and Mat-lab 2011.

  8. AB initio MRD CI potential curves, dipole moments and zero-field splittings for the X 2Π ground states of the CF and CCl molecules

    NASA Astrophysics Data System (ADS)

    Hess, Bernd A.; Buenker, Robert J.

    1986-01-01

    A series of ab initio MRD CI calculations at various levels of theoretical treatment is carried out for the X 2Π ground states of the CF and CCl molecules. The resulting potential energy curves lead to quite good agreement with known spectroscopic constants for these systems and also allow for the accurate computation of the corresponding vibrational wavefunctions. Particular attention is given to the dependence of the electric dipole moments and spin-orbit splittings on the choice of the one-electron basis in the CI calculations. Best agreement with experimental values for these quantities is obtained by employing the natural orbitals of X 2Π states, in which case errors of only 0.1-0.2 D and 2.0-4.0 cm -1 respectively in the computed dipole moments and zero-field splittings result.

  9. Characterization of a Novel Small Molecule That Potentiates β-Lactam Activity against Gram-Positive and Gram-Negative Pathogens

    PubMed Central

    Nair, Dhanalakshmi R.; Monteiro, João M.; Memmi, Guido; Thanassi, Jane; Pucci, Michael; Schwartzman, Joseph; Pinho, Mariana G.

    2015-01-01

    In a loss-of-viability screen using small molecules against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300 with a sub-MIC of a β-lactam, we found a small molecule, designated DNAC-1, which potentiated the effect of oxacillin (i.e., the MIC of oxacillin decreased from 64 to 0.25 μg/ml). Fluorescence microscopy indicated a disruption in the membrane structures within 15 min of exposure to DNAC-1 at 2× MIC. This permeabilization was accompanied by a rapid loss of membrane potential, as monitored by use of the DiOC2 (3,3′-diethyloxacarbocyanine iodide) dye. Macromolecular analysis showed the inhibition of staphylococcal cell wall synthesis by DNAC-1. Transmission electron microscopy of treated MRSA USA300 cells revealed a slightly thicker cell wall, together with mesosome-like projections into the cytosol. The exposure of USA300 cells to DNAC-1 was associated with the mislocalization of FtsZ accompanied by the localization of penicillin-binding protein 2 (PBP2) and PBP4 away from the septum, as well as mild activation of the vraRS-mediated cell wall stress response. However, DNAC-1 does not have any generalized toxicity toward mammalian host cells. DNAC-1 in combination with ceftriaxone is also effective against an assortment of Gram-negative pathogens. Using a murine subcutaneous coinjection model with 108 CFU of USA300 as a challenge inoculum, DNAC-1 alone or DNAC-1 with a sub-MIC of oxacillin resulted in a 6-log reduction in bacterial load and decreased abscess formation compared to the untreated control. We propose that DNAC-1, by exerting a bimodal effect on the cell membrane and cell wall, is a viable candidate in the development of combination therapy against many common bacterial pathogens. PMID:25583731

  10. Ionization Energies and Aqueous Redox Potentials of Organic Molecules: Comparison of DFT, Correlated ab Initio Theory and Pair Natural Orbital Approaches.

    PubMed

    Isegawa, Miho; Neese, Frank; Pantazis, Dimitrios A

    2016-05-10

    The calculation of redox potentials involves large energetic terms arising from gas phase ionization energies, thermodynamic contributions, and solvation energies of the reduced and oxidized species. In this work we study the performance of a wide range of wave function and density functional theory methods for the prediction of ionization energies and aqueous one-electron oxidation potentials of a set of 19 organic molecules. Emphasis is placed on evaluating methods that employ the computationally efficient local pair natural orbital (LPNO) approach, as well as several implementations of coupled cluster theory and explicitly correlated F12 methods. The electronic energies are combined with implicit solvation models for the solvation energies. With the exception of MP2 and its variants, which suffer from enormous errors arising at least partially from the poor Hartree-Fock reference, ionization energies can be systematically predicted with average errors below 0.1 eV for most of the correlated wave function based methods studies here, provided basis set extrapolation is performed. LPNO methods are the most efficient way to achieve this type of accuracy. DFT methods show in general larger errors and suffer from inconsistent behavior. The only exception is the M06-2X functional which is found to be competitive with the best LPNO-based approaches for ionization energies. Importantly, the limiting factor for the calculation of accurate redox potentials is the solvation energy. The errors in the predicted solvation energies by all continuum solvation models tested in this work dominate the final computed reduction potential, resulting in average errors typically in excess of 0.3 V and hence obscuring the gains that arise from choosing a more accurate electronic structure method. PMID:27065224

  11. Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule F{sub 2} using selected configuration interaction trial wavefunctions

    SciTech Connect

    Giner, Emmanuel; Scemama, Anthony; Caffarel, Michel

    2015-01-28

    The potential energy curve of the F{sub 2} molecule is calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC) using Configuration Interaction (CI)-type trial wavefunctions. To keep the number of determinants reasonable and thus make FN-DMC calculations feasible in practice, the CI expansion is restricted to those determinants that contribute the most to the total energy. The selection of the determinants is made using the CIPSI approach (Configuration Interaction using a Perturbative Selection made Iteratively). The trial wavefunction used in FN-DMC is directly issued from the deterministic CI program; no Jastrow factor is used and no preliminary multi-parameter stochastic optimization of the trial wavefunction is performed. The nodes of CIPSI wavefunctions are found to reduce significantly the fixed-node error and to be systematically improved upon increasing the number of selected determinants. To reduce the non-parallelism error of the potential energy curve, a scheme based on the use of a R-dependent number of determinants is introduced. Using Dunning’s cc-pVDZ basis set, the FN-DMC energy curve of F{sub 2} is found to be of a quality similar to that obtained with full configuration interaction/cc-pVQZ.

  12. C-type lectin-like molecule-1 (CLL1)-targeted TRAIL augments the tumoricidal activity of granulocytes and potentiates therapeutic antibody-dependent cell-mediated cytotoxicity

    PubMed Central

    Wiersma, Valerie R; de Bruyn, Marco; Shi, Ce; Gooden, Marloes JM; Wouters, Maartje CA; Samplonius, Douwe F; Hendriks, Djoke; Nijman, Hans W; Wei, Yunwei; Zhou, Jin; Helfrich, Wijnand; Bremer, Edwin

    2015-01-01

    The therapeutic effect of anti-cancer monoclonal antibodies stems from their capacity to opsonize targeted cancer cells with subsequent phagocytic removal, induction of antibody-dependent cell-mediated cytotoxicity (ADCC) or induction of complement-mediated cytotoxicity (CDC). The major immune effector cells involved in these processes are natural killer (NK) cells and granulocytes. The latter and most prevalent blood cell population contributes to phagocytosis, but is not effective in inducing ADCC. Here, we report that targeted delivery of the tumoricidal protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to granulocyte marker C-type lectin-like molecule-1 (CLL1), using fusion protein CLL1:TRAIL, equips granulocytes with high levels of TRAIL. Upon CLL1-selective binding of this fusion protein, granulocytes acquire additional TRAIL-mediated cytotoxic activity that, importantly, potentiates antibody-mediated cytotoxicity of clinically used therapeutic antibodies (e.g., rituximab, cetuximab). Thus, CLL1:TRAIL could be used as an adjuvant to optimize the clinical potential of anticancer antibody therapy by augmenting tumoricidal activity of granulocytes. PMID:25760768

  13. Discovery of small-molecule inhibitors of HCV NS3-4A protease as potential therapeutic agents against HCV infection.

    PubMed

    Chen, Shu-Hui; Tan, Seng-Lai

    2005-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with liver cirrhosis that often leads to hepatic failure and hepatocellular carcinoma (HCC). HCV infection has become a global health threat and the main cause of adult liver transplants in developed nations. Current approved anti-HCV therapies (interferon and pegylated interferon alone or in combination with ribavirin) are not effective in eliminating the viral infection in a significant population of patients (e.g., those infected with HCV genotype 1). Furthermore, these therapies are plagued with many undesirable side effects. Therefore, the HCV epidemic represents a huge unmet medical need that has triggered intensive research efforts towards the development of more effective drugs. Given its essential role in the process of HCV replication, the viral NS3/4A serine protease is arguably the most thoroughly characterized HCV enzyme and the most intensively pursued anti-HCV target for drug development. This is further fueled by the successful use of small-molecule inhibitors of the human immunodeficiency virus (HIV) viral protease, which have had an impressive effect on HIV-related morbidity and mortality, offering hope that analogous drugs might also have a similar impact against HCV. Here, we review the recent progress and development of small-molecule inhibitors of the HCV NS3/4A protease. In particular, we focus on the discovery of VX-950, the latest HCV NS3-4A protease inhibitor to be advanced to clinical studies. While the challenges of designing potent inhibitors of the viral protease have been solved, as highlighted by BILN 2061 and VX-950, it is still too early to determine whether these efforts will eventually yield promising drug candidates. For the emerging small-molecule HCV inhibitors, viral resistance will likely be a big problem. Thus, combination therapy of different drugs with different targets/mechanisms will be necessary to effectively inhibit HCV replication. It is also hoped that a

  14. Characterization of Brain-Penetrant Pyrimidine-Containing Molecules with Differential Microtubule-Stabilizing Activities Developed as Potential Therapeutic Agents for Alzheimer's Disease and Related Tauopathies.

    PubMed

    Kovalevich, Jane; Cornec, Anne-Sophie; Yao, Yuemang; James, Michael; Crowe, Alexander; Lee, Virginia M-Y; Trojanowski, John Q; Smith, Amos B; Ballatore, Carlo; Brunden, Kurt R

    2016-05-01

    The microtubule (MT)-stabilizing protein tau disengages from MTs and forms intracellular inclusions known as neurofibrillary tangles in Alzheimer's disease and related tauopathies. Reduced tau binding to MTs in tauopathies may contribute to neuronal dysfunction through decreased MT stabilization and disrupted axonal transport. Thus, the introduction of brain-penetrant MT-stabilizing compounds might normalize MT dynamics and axonal deficits in these disorders. We previously described a number of phenylpyrimidines and triazolopyrimidines (TPDs) that induce tubulin post-translational modifications indicative of MT stabilization. We now further characterize the biologic properties of these small molecules, and our results reveal that these compounds can be divided into two general classes based on the cellular response they evoke. One group composed of the phenylpyrimidines and several TPD examples showed a bell-shaped concentration-response effect on markers of MT stabilization in cellular assays. Moreover, these compounds induced proteasome-dependent degradation of α- and β-tubulin and caused altered MT morphology in both dividing cells and neuron cultures. In contrast, a second group comprising a subset of TPD molecules (TPD+) increased markers of stable MTs in a concentration-dependent manner in dividing cells and in neurons without affecting total tubulin levels or disrupting MT architecture. Moreover, an example TPD+ compound was shown to increase MTs in a neuron culture model with induced tau hyperphosphorylation and associated MT deficits. Several TPD+ compounds were shown to be both brain penetrant and orally bioavailable, and a TPD+ example increased MT stabilization in the mouse brain, making these compounds potential candidate therapeutics for neurodegenerative tauopathies such as Alzheimer's disease. PMID:26980057

  15. Dysregulated co-stimulatory molecule expression in a Sjögren's syndrome mouse model with potential implications by microRNA-146a.

    PubMed

    Gauna, Adrienne E; Park, Yun-Jong; Nayar, Gautam; Onate, Marelys; Jin, Jun-o; Stewart, Carol M; Yu, Qing; Cha, Seunghee

    2015-12-01

    Sjögren's syndrome (SjS) is an autoimmune condition that primarily affects salivary and lacrimal glands, causing loss of secretion. We have previously shown that microRNA-146a (miR-146a) is over-expressed in the salivary glands and peripheral blood mononuclear cells (PBMC) of SjS-prone mice (C57BL/6.NOD-Aec1Aec2, B6DC) and in PBMC of SjS patients. The purpose of this research was to identify a target molecule of miR-146a and identify subpopulations of cells affected by altered miR-146a in the salivary glands of SjS-prone mice. In silico analyses identified costimulatory molecule CD80 as a potential target of miR-146a. Luciferase assay of the human CD80 3'untranslated region demonstrated miR-146a directly inhibited CD80 protein expression as indicated by reduced luciferase reporter expression and an examination of B6DC salivary glands revealed a reduction in CD80 protein. More interestingly, the specific reduction in CD80 protein was detected from the salivary gland epithelial cell population and in interstitial dendritic cells in the glands as well. The reduction in CD80 protein levels in salivary gland epithelial cells were negatively associated with elevated miR-146a expression. Therefore, this study provides the first indication that salivary gland epithelial cells may be critically involved in SjS progression by altering CD86:CD80 protein ratio in response to miR-146a upregulation. PMID:26505653

  16. Effects of pyrethroid molecules on rat nerves in vitro: potential to reverse temperature-sensitive conduction block of demyelinated peripheral axons

    PubMed Central

    Lees, George

    1998-01-01

    neurotoxic actions and severely limit the clinical potential of this and related molecules. PMID:9504390

  17. Mind Molecules

    PubMed Central

    Snyder, Solomon H.

    2011-01-01

    Scientific styles vary tremendously. For me, research is largely about the unfettered pursuit of novel ideas and experiments that can test multiple ideas in a day, not a year, an approach that I learned from my mentor Julius “Julie” Axelrod. This focus on creative conceptualizations has been my métier since working in the summers during medical school at the National Institutes of Health, during my two years in the Axelrod laboratory, and throughout my forty-five years at Johns Hopkins University School of Medicine. Equally important has been the “high” that emerges from brainstorming with my students. Nothing can compare with the eureka moments when, together, we sense new insights and, better yet, when high-risk, high-payoff experiments succeed. Although I have studied many different questions over the years, a common theme emerges: simple biochemical approaches to understanding molecular messengers, usually small molecules. Equally important has been identifying, purifying, and cloning the messengers' relevant biosynthetic, degradative, or target proteins, at all times seeking potential therapeutic relevance in the form of drugs. In the interests of brevity, this Reflections article is highly selective, and, with a few exceptions, literature citations are only of findings of our laboratory that illustrate notable themes. PMID:21543333

  18. Ab initio calculation of accurate dissociation energy, potential energy curve and dipole moment function for the A1Σ+ state 7LiH molecule

    NASA Astrophysics Data System (ADS)

    Shi, De-Heng; Liu, Yu-Fang; Sun, Jin-Feng; Yang, Xiang-Dong; Zhu, Zun-Lue

    2006-05-01

    The reasonable dissociation limit of the A1Σ+ state 7LiH molecule is obtained. The accurate dissociation energy and the equilibrium geometry of this state are calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space for the first time. The whole potential energy curve and the dipole moment function for the A1Σ+ state are calculated over a wide internuclear separation range from about 0.1 to 1.4 nm. The calculated equilibrium geometry and dissociation energy of this potential energy curve are of Re=0.2487 nm and De=1.064 eV, respectively. The unusual negative values of the anharmonicity constant and the vibration-rotational coupling constant are of ωeχe=-4.7158cm-1 and αe=-0.08649cm-1, respectively. The vertical excitation energy from the ground to the A1Σ+ state is calculated and the value is of 3.613 eV at 0.15875 nm (the equilibrium position of the ground state). The highly anomalous shape of this potential energy curve, which is exceptionally flat over a wide radial range around the equilibrium position, is discussed in detail. The harmonic frequency value of 502.47cm-1 about this state is approximately estimated. Careful comparison of the theoretical determinations with those obtained by previous theories about the A1Σ+ state dissociation energy clearly shows that the present calculations are much closer to the experiments than previous theories, thus represents an improvement.

  19. Expectation-maximization of the potential of mean force and diffusion coefficient in Langevin dynamics from single molecule FRET data photon by photon.

    PubMed

    Haas, Kevin R; Yang, Haw; Chu, Jhih-Wei

    2013-12-12

    The dynamics of a protein along a well-defined coordinate can be formally projected onto the form of an overdamped Lagevin equation. Here, we present a comprehensive statistical-learning framework for simultaneously quantifying the deterministic force (the potential of mean force, PMF) and the stochastic force (characterized by the diffusion coefficient, D) from single-molecule Förster-type resonance energy transfer (smFRET) experiments. The likelihood functional of the Langevin parameters, PMF and D, is expressed by a path integral of the latent smFRET distance that follows Langevin dynamics and realized by the donor and the acceptor photon emissions. The solution is made possible by an eigen decomposition of the time-symmetrized form of the corresponding Fokker-Planck equation coupled with photon statistics. To extract the Langevin parameters from photon arrival time data, we advance the expectation-maximization algorithm in statistical learning, originally developed for and mostly used in discrete-state systems, to a general form in the continuous space that allows for a variational calculus on the continuous PMF function. We also introduce the regularization of the solution space in this Bayesian inference based on a maximum trajectory-entropy principle. We use a highly nontrivial example with realistically simulated smFRET data to illustrate the application of this new method. PMID:23937300

  20. Dynamics of H2 Eley-Rideal abstraction from W(110): Sensitivity to the representation of the molecule-surface potential

    NASA Astrophysics Data System (ADS)

    Pétuya, R.; Larrégaray, P.; Crespos, C.; Busnengo, H. F.; Martínez, A. E.

    2014-07-01

    Dynamics of the Eley-Rideal (ER) abstraction of H2 from W(110) is analyzed by means of quasi-classical trajectory calculations. Simulations are based on two different molecule-surface potential energy surfaces (PES) constructed from Density Functional Theory results. One PES is obtained by fitting, using a Flexible Periodic London-Eyring-Polanyi-Sato (FPLEPS) functional form, and the other by interpolation through the corrugation reducing procedure (CRP). Then, the present study allows us to elucidate the ER dynamics sensitivity on the PES representation. Despite some sizable discrepancies between both H+H/W(110) PESs, the obtained projectile-energy dependence of the total ER cross sections are qualitatively very similar ensuring that the main physical ingredients are captured in both PES models. The obtained distributions of the final energy among the different molecular degrees of freedom barely depend on the PES model, being most likely determined by the reaction exothermicity. Therefore, a reasonably good agreement with the measured final vibrational state distribution is observed in spite of the pressure and material gaps between theoretical and experimental conditions.

  1. Interstellar molecules

    NASA Astrophysics Data System (ADS)

    Smith, D.

    1987-09-01

    Some 70 different molecular species have so far been detected variously in diffuse interstellar clouds, dense interstellar clouds, and circumstellar shells. Only simple (diatomic and triatomic) species exist in diffuse clouds because of the penetration of destructive UV radiations, whereas more complex (polyatomic) molecules survive in dense clouds as a result of the shielding against this UV radiation provided by dust grains. A current list of interstellar molecules is given together with a few other molecular species that have so far been detected only in circumstellar shells. Also listed are those interstellar species that contain rare isotopes of several elements. The gas phase ion chemistry is outlined via which the observed molecules are synthesized, and the process by which enrichment of the rare isotopes occurs in some interstellar molecules is described.

  2. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  3. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  4. The Jak2 Small Molecule Inhibitor, G6, Reduces the Tumorigenic Potential of T98G Glioblastoma Cells In Vitro and In Vivo

    PubMed Central

    Keserű, György M.; Bisht, Kirpal S.; Wamsley, Heather L.; Sayeski, Peter P.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and the most aggressive form of primary brain tumor. Jak2 is a non-receptor tyrosine kinase that is involved in proliferative signaling through its association with various cell surface receptors. Hyperactive Jak2 signaling has been implicated in numerous hematological disorders as well as in various solid tumors including GBM. Our lab has developed a Jak2 small molecule inhibitor known as G6. It exhibits potent efficacy in vitro and in several in vivo models of Jak2-mediated hematological disease. Here, we hypothesized that G6 would inhibit the pathogenic growth of GBM cells expressing hyperactive Jak2. To test this, we screened several GBM cell lines and found that T98G cells express readily detectable levels of active Jak2. We found that G6 treatment of these cells reduced the phosphorylation of Jak2 and STAT3, in a dose-dependent manner. In addition, G6 treatment reduced the migratory potential, invasive potential, clonogenic growth potential, and overall viability of these cells. The effect of G6 was due to its direct suppression of Jak2 function and not via off-target kinases, as these effects were recapitulated in T98G cells that received Jak2 specific shRNA. G6 also significantly increased the levels of caspase-dependent apoptosis in T98G cells, when compared to cells that were treated with vehicle control. Lastly, when T98G cells were injected into nude mice, G6 treatment significantly reduced tumor volume and this was concomitant with significantly decreased levels of phospho-Jak2 and phospho-STAT3 within the tumors themselves. Furthermore, tumors harvested from mice that received G6 had significantly less vimentin protein levels when compared to tumors from mice that received vehicle control solution. Overall, these combined in vitro and in vivo results indicate that G6 may be a viable therapeutic option against GBM exhibiting hyperactivation of Jak2. PMID:25162558

  5. Enumerating molecules.

    SciTech Connect

    Visco, Donald Patrick, Jr.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  6. Imaging-Based High-Throughput Screening Assay To Identify New Molecules with Transmission-Blocking Potential against Plasmodium falciparum Female Gamete Formation

    PubMed Central

    Miguel-Blanco, Celia; Lelièvre, Joël; Delves, Michael J.; Bardera, Ana I.; Presa, Jesús L.; López-Barragán, María José; Ruecker, Andrea; Marques, Sara; Sinden, Robert E.

    2015-01-01

    In response to a call for the global eradication of malaria, drug discovery has recently been extended to identify compounds that prevent the onward transmission of the parasite, which is mediated by Plasmodium falciparum stage V gametocytes. Lately, metabolic activity has been used in vitro as a surrogate for gametocyte viability; however, as gametocytes remain relatively quiescent at this stage, their ability to undergo onward development (gamete formation) may be a better measure of their functional viability. During gamete formation, female gametocytes undergo profound morphological changes and express translationally repressed mRNA. By assessing female gamete cell surface expression of one such repressed protein, Pfs25, as the readout for female gametocyte functional viability, we developed an imaging-based high-throughput screening (HTS) assay to identify transmission-blocking compounds. This assay, designated the P. falciparum female gametocyte activation assay (FGAA), was scaled up to a high-throughput format (Z′ factor, 0.7 ± 0.1) and subsequently validated using a selection of 50 known antimalarials from diverse chemical families. Only a few of these agents showed submicromolar 50% inhibitory concentrations in the assay: thiostrepton, methylene blue, and some endoperoxides. To determine the best conditions for HTS, a robustness test was performed with a selection of the GlaxoSmithKline Tres Cantos Antimalarial Set (TCAMS) and the final screening conditions for this library were determined to be a 2 μM concentration and 48 h of incubation with gametocytes. The P. falciparum FGAA has been proven to be a robust HTS assay faithful to Plasmodium transmission-stage cell biology, and it is an innovative useful tool for antimalarial drug discovery which aims to identify new molecules with transmission-blocking potential. PMID:25801574

  7. ZRBA1, a Mixed EGFR/DNA Targeting Molecule, Potentiates Radiation Response Through Delayed DNA Damage Repair Process in a Triple Negative Breast Cancer Model

    SciTech Connect

    Heravi, Mitra; Kumala, Slawomir; Rachid, Zakaria; Jean-Claude, Bertrand J.; Radzioch, Danuta; Muanza, Thierry M.

    2015-06-01

    Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. Methods and Materials: The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Western blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. Results: Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. Conclusions: Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings.

  8. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Lou, Zhichao; Zhang, Haiqian; Xu, Bingqian

    2016-03-01

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.

  9. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level.

    PubMed

    Wang, Bin; Lou, Zhichao; Zhang, Haiqian; Xu, Bingqian

    2016-03-21

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers. PMID:27004887

  10. Calculations of 21 Λ-S and 42 Ω states of BC molecule: Potential energy curves, spectroscopic parameters and spin-orbit coupling effect.

    PubMed

    Xing, Wei; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2016-01-15

    The potential energy curves (PECs) were calculated for the 42 Ω states generated from the 21 Λ-S states (X(4)Σ(-), A(4)Π, B(4)Σ(-), a(2)Π, b(2)Σ(-), c(2)Δ, d(2)Σ(+), e(2)Π, 3(2)Π, 4(2)Π, 5(2)Π, 2(2)Σ(-), 3(2)Σ(-), 2(2)Σ(+), 3(2)Σ(+), 2(2)Δ, 3(2)Δ, 1(4)Σ(+), 2(4)Π, 1(4)Δ and 1(2)Φ), which originated from the lowest two dissociation channels, B((2)Pu)+C((3)Pg) and B((2)Pu)+C((1)Dg), of the BC molecule. The PECs were calculated for internuclear separations from 0.08 to 1.10 nm using the CASSCF method, which was followed by the icMRCI approach with the aug-cc-pV6Z basis set. Of these 21 Λ-S states, the e(2)Π, 2(2)Δ, 2(2)Σ(-), 4(2)Π, 1(2)Φ and 3(2)Δ possess the double wells. The A(4)Π, a(2)Π, c(2)Δ, 2(4)Π, 4(2)Π, 5(2)Π, 1(4)Δ and 1(2)Φ states are inverted with the spin-orbit coupling (SOC) effect taken into account. The first well of e(2)Π state and the second well of 4(2)Π and 2(2)Δ states do not have any vibrational states whether with or without the SOC effect included. All the Λ-S and Ω states involved in this paper are bound states. Scalar relativistic correction was included by the third-order Douglas-Kroll Hamiltonian approximation at the level of an aug-cc-pV5Z basis set. Core-valence correlation correction was included at the level of an aug-cc-pCV5Z basis set. The SOC effect was accounted for by the state interaction method with the Breit-Pauli Hamiltonian and the all-electron cc-pCV5Z basis set. The PECs of all the states were extrapolated to the complete basis set limit. The spectroscopic parameters were obtained. The vibrational properties of several Λ-S and Ω states with the relatively shallow wells were evaluated. The SOC effect on the spectroscopic parameters is not obvious for almost all the states. The spectroscopic properties reported in this paper can be expected to be reliably predicted ones. PMID:26476070

  11. A Potential Hydrogen-Storage Media: C2H4 and C5H5 Molecules Doped with Rare Earth Atoms

    NASA Astrophysics Data System (ADS)

    Lei, Hong-Wen; Zhang, Hong; Gong, Min; Wu, Wei-Dong

    2012-12-01

    Using first-principles calculations, we predict that a single C2H4 or C5H5 molecule can form a stable complex with two rare earth metals such as La, Eu, and Ho. The La2C2H4 complex then absorbs up to sixteen hydrogen molecules, reaching a gravimetric storage capacity of 9.5wt% by adding a rare-earth metal atom, The results show that Eu-4f electrons have little impact on the hydrogen adsorption. The nature of bonding between Eu and H2 is due to the hybridization of Eu-5d with the H-1s orbital.

  12. Polyatomic molecule vibrations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Polyatomic molecule vibrations are analyzed as harmonic vibrations along normal coordinates. The energy eigenvalues are found for linear and nonlinear symmetric triatomic molecules for valence bond models of the potential function with arbitrary coupling coefficients; such models can usually be fitted to observed energy levels with reasonably good accuracy. Approximate normal coordinates for the H2O molecule are discussed. Degenerate vibrational modes such as occur in CO2 are analyzed and expressions for Fermi resonance between close-lying states of the same symmetry are developed. The bending modes of linear triatomic molecules are expressed in terms of Laguerre polynomials in cylindrical coordinates as well as in terms of Hermite polynomials in Cartesian coordinates. The effects of large-amplitude bending such as occur in the C3 molecule are analyzed, along with anharmonic effects, which split the usually degenerate bending mode energy levels. Finally, the vibrational frequencies, degeneracies, and symmetry properties of XY3, X2Y2, and XY4 type molecules are discussed.

  13. Understanding ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Julienne, Paul

    2009-05-01

    The successful production of a dense sample of ultracold ground state KRb polar molecules [1] opens the door to a new era of research with dipolar gases and lattices of such species. This feat was achieved by first associating a K and a Rb atom to make a weakly bound Feshbach molecule and then coherently transferring the population to the ground vibrational level of the molecule. This talk focuses on theoretical issues associated with making and using ultracold polar molecules, using KRb as an example [2]. Full understanding of this species and the processes by which it is made requires taking advantage of accurate molecular potentials [3], ab initio calculations [4], and the properties of the long-range potential. A highly accurate model is available for KRb for all bound states below the ground state separated atom limit and could be constructed for other species. The next step is to develop an understanding of the interactions between polar molecules, and their control in the ultracold domain. Understanding long-range interactions and threshold resonances will be crucial for future work. [1] K.-K. Ni, et al, Science 322, 231(2008). [2] P. S. Julienne, arXiv:0812:1233. [3] Pashov et al., Phys. Rev. A76, 022511 (2007). [4] S. Kotochigova, et al., arXiv:0901.1486.

  14. Accurate calculations on the 22 electronic states and 54 spin-orbit states of the O2 molecule: potential energy curves, spectroscopic parameters and spin-orbit coupling.

    PubMed

    Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue; Shulin, Zhang

    2014-04-24

    The potential energy curves (PECs) of 54 spin-orbit states generated from the 22 electronic states of O2 molecule are investigated for the first time for internuclear separations from about 0.1 to 1.0nm. Of the 22 electronic states, the X(3)Σg(-), A(')(3)Δu, A(3)Σu(+), B(3)Σu(-), C(3)Πg, a(1)Δg, b(1)Σg(+), c(1)Σu(-), d(1)Πg, f(1)Σu(+), 1(5)Πg, 1(3)Πu, 2(3)Σg(-), 1(5)Σu(-), 2(1)Σu(-) and 2(1)Δg are found to be bound, whereas the 1(5)Σg(+), 2(5)Σg(+), 1(1)Πu, 1(5)Δg, 1(5)Πu and 2(1)Πu are found to be repulsive ones. The B(3)Σu(-) and d(1)Πg states possess the double well. And the 1(3)Πu, C(3)Πg, A'(3)Δu, 1(5)Δg and 2(5)Σg(+) states are the inverted ones when the spin-orbit coupling is included. The PEC calculations are done by the complete active space self-consistent field (CASSCF) method, which is followed by the internally contracted multireference configuration interaction (icMRCI) approach with the Davidson correction. Core-valence correlation and scalar relativistic corrections are taken into account. The convergence of present calculations is evaluated with respect to the basis set and level of theory. The vibrational properties are discussed for the 1(5)Πg, 1(3)Πu, d(1)Πg and 1(5)Σu(-) states and for the second well of the B(3)Σu(-) state. The spin-orbit coupling effect is accounted for by the state interaction method with the Breit-Pauli Hamiltonian. The PECs of all the electronic states and spin-orbit states are extrapolated to the complete basis set limit. The spectroscopic parameters are obtained, and compared with available experimental and other theoretical results. Analyses demonstrate that the spectroscopic parameters reported here can be expected to be reliably predicted ones. The conclusion is obtained that the effect of spin-orbit coupling on the spectroscopic parameters are small almost for all the electronic states involved in this paper except for the 1(5)Σu(-), 1(5)Πg and 1(3)Πu. PMID:24486866

  15. Dependences of Q-branch integrated intensity of linear-molecule pendular spectra on electric-field strength and rotational temperature and its potential applications

    PubMed Central

    Deng, Min; Wang, Hailing; Wang, Qin; Yin, Jianping

    2016-01-01

    We calculate the pendular-state spectra of cold linear molecules, and investigated the dependences of “Q-branch” integrated intensity of pendular spectra on both electric-field strength and molecular rotation-temperature. A new multi-peak structure in the “Q-branch” spectrum is appearing when the Stark interaction strength ω = μE/B equal to or larger than the critical value. Our study shows that the above results can be used not only to measure the electric-field vector and its spatial distribution in some electrostatic devices, such as the Stark decelerator, Stark velocity filter and electrostatic trap and so on, but also to survey the orientation degree of cold linear molecules in a strong electrostatic field. PMID:27231057

  16. Dependences of Q-branch integrated intensity of linear-molecule pendular spectra on electric-field strength and rotational temperature and its potential applications.

    PubMed

    Deng, Min; Wang, Hailing; Wang, Qin; Yin, Jianping

    2016-01-01

    We calculate the pendular-state spectra of cold linear molecules, and investigated the dependences of "Q-branch" integrated intensity of pendular spectra on both electric-field strength and molecular rotation-temperature. A new multi-peak structure in the "Q-branch" spectrum is appearing when the Stark interaction strength ω = μE/B equal to or larger than the critical value. Our study shows that the above results can be used not only to measure the electric-field vector and its spatial distribution in some electrostatic devices, such as the Stark decelerator, Stark velocity filter and electrostatic trap and so on, but also to survey the orientation degree of cold linear molecules in a strong electrostatic field. PMID:27231057

  17. Dependences of Q-branch integrated intensity of linear-molecule pendular spectra on electric-field strength and rotational temperature and its potential applications

    NASA Astrophysics Data System (ADS)

    Deng, Min; Wang, Hailing; Wang, Qin; Yin, Jianping

    2016-05-01

    We calculate the pendular-state spectra of cold linear molecules, and investigated the dependences of “Q-branch” integrated intensity of pendular spectra on both electric-field strength and molecular rotation-temperature. A new multi-peak structure in the “Q-branch” spectrum is appearing when the Stark interaction strength ω = μE/B equal to or larger than the critical value. Our study shows that the above results can be used not only to measure the electric-field vector and its spatial distribution in some electrostatic devices, such as the Stark decelerator, Stark velocity filter and electrostatic trap and so on, but also to survey the orientation degree of cold linear molecules in a strong electrostatic field.

  18. Identification of EPAC (Exchange Protein Activated by cAMP) bioinformatically as a potential signalling biomarker in Cardiovascular Disease (CVD) and its molecular docking by a lead molecule.

    PubMed

    Bala, Saranya; Pathak, Ravi Kant; Mishra, Vachaspati

    2011-01-01

    The present work delineates the combinatorial approach of firstly, creation of a centralized data-set comprising signalling proteins identified on the basis of altered expression, such as over-expression or repression of a set of signalling protein(s) leading to the cause of the disease, which is based on published reports screened through Pubmed and secondly, in the in silico creation of novel lead (drug) molecules and docking of identified signalling biomarkers using such drugs to investigate possibility of their future application in the model systems eventually. EPAC (Exchange Protein Activated by cAMP) emerges as a signalling biomarker in cases studied presently. Brefeldin, the known inhibitor of EPAC, though the mechanism yet unexplored, has been the molecule used as the pharmacophore for creation of lead drug molecule. Various modifications have been incorporated into the pharmacophore to increase the hydrophobic interactions for increasing the binding efficiency of the generated lead molecule. Side-chain modifications of the pharmacophore and refinement of data through firedock upon docking of EPAC with the modified pharmacophore yielded best results on the bases of atomic contact energy, van der Waal and partial electrostatic interactions as well as additional estimations of the binding free energy. Modifications of CH3 at C15 with COOH and H at C2 with OH in brefeldin showed the best docking results on the basis of protein-drug interaction parameters. The present work provides a clue in rational design of EPAC inhibitors which could be developed as drug lead in combating CVD. PMID:21738308

  19. IL-2 or IL-4 mRNA as a potential flow cytometric marker molecule for selective collection of living T helper 1 or T helper 2 lymphocytes.

    PubMed

    Ishibashi, Kaname; Tsuji, Akihiko

    2003-06-01

    Flow cytometry has been widely used to analyze and sort out particular types of living cells that have specific marker molecules. In many cases, marker proteins are present on the cell surface and are detected by monoclonal antibodies against them. However, there are some cases in which cells do not have specific marker molecules on their surface. In this situation, it would be useful if mRNA that is expressed specifically in the particular cell could be used as a marker molecule. We previously reported that mRNA can be detected in living cells by hybridizing a pair of fluoreophore (donor or acceptor)-labeled oligonucleotides to adjacent locations on the target mRNA in the cytoplasm of cells (Tsuji, A.; Koshimoto, H.; Sato, Y.; Hirano, M.; Sei-Iida, Y.; Kondo, S.; Ishibashi, K. Biophys. J. 2000, 78, 3260-3274). On the formed hybrid of the two fluorescent oligonucleotides with the target mRNA, the distance between the two fluorophores becomes very close, which results in fluorescence resonance energy transfer (FRET). Combining this fluorescent labeling method for mRNA with flow cytometry, we have examined the isolation of living CD4+ T helper lymphocytes expressing IL-2 mRNA (Th1) or IL-4 mRNA (Th2). A pair of fluorescent oligonucleotides for hybridizing to IL-2 or IL-4 mRNA were introduced into activated CD4+ T lymphocytes by electroporation. The cells were applied to FACS and analyzed by FRET signals. Th1 or Th2 lymphocytes were exclusively sorted from their mixed populations in activated CD4+ T cells. Our results demonstrate that it is possible to use mRNA as marker molecules to analyze and isolate living cells in flow cytometry. PMID:12948141

  20. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease.

    PubMed

    Fujita, Kyota; Motoki, Kazumi; Tagawa, Kazuhiko; Chen, Xigui; Hama, Hiroshi; Nakajima, Kazuyuki; Homma, Hidenori; Tamura, Takuya; Watanabe, Hirohisa; Katsuno, Masahisa; Matsumi, Chiemi; Kajikawa, Masunori; Saito, Takashi; Saido, Takaomi; Sobue, Gen; Miyawaki, Atsushi; Okazawa, Hitoshi

    2016-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease, but it remains an intractable condition. Its pathogenesis is predominantly attributed to the aggregation and transmission of two molecules, Aβ and tau; however, other pathological mechanisms are possible. Here, we reveal that phosphorylation of MARCKS, a submembrane protein that regulates the stability of the actin network, occurs at Ser46 prior to aggregation of Aβ and is sustained throughout the course of AD in human and mouse brains. Furthermore, HMGB1 released from necrotic or hyperexcitatory neurons binds to TLR4, triggers the specific phosphorylation of MARCKS via MAP kinases, and induces neurite degeneration, the classical hallmark of AD pathology. Subcutaneous injection of a newly developed monoclonal antibody against HMGB1 strongly inhibits neurite degeneration even in the presence of Aβ plaques and completely recovers cognitive impairment in a mouse model. HMGB1 and Aβ mutually affect polymerization of the other molecule, and the therapeutic effects of the anti-HMGB1 monoclonal antibody are mediated by Aβ-dependent and Aβ-independent mechanisms. We propose that HMGB1 is a critical pathogenic molecule promoting AD pathology in parallel with Aβ and tau and a new key molecular target of preclinical antibody therapy to delay the onset of AD. PMID:27557632

  1. The Crystal Structure of OprG from Pseudomonas aeruginosa a Potential Channel for Transport of Hydrophobic Molecules across the Outer Membrane

    SciTech Connect

    D Touw; D Patel; b van den Berg

    2011-12-31

    The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The crystal structure, together with recent biochemical data, suggests that OprG and other OmpW family members form channels that mediate the diffusion of small hydrophobic molecules across the OM by a lateral diffusion mechanism similar to that of E. coli FadL.

  2. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease

    PubMed Central

    Fujita, Kyota; Motoki, Kazumi; Tagawa, Kazuhiko; Chen, Xigui; Hama, Hiroshi; Nakajima, Kazuyuki; Homma, Hidenori; Tamura, Takuya; Watanabe, Hirohisa; Katsuno, Masahisa; Matsumi, Chiemi; Kajikawa, Masunori; Saito, Takashi; Saido, Takaomi; Sobue, Gen; Miyawaki, Atsushi; Okazawa, Hitoshi

    2016-01-01

    Alzheimer’s disease (AD) is the most common neurodegenerative disease, but it remains an intractable condition. Its pathogenesis is predominantly attributed to the aggregation and transmission of two molecules, Aβ and tau; however, other pathological mechanisms are possible. Here, we reveal that phosphorylation of MARCKS, a submembrane protein that regulates the stability of the actin network, occurs at Ser46 prior to aggregation of Aβ and is sustained throughout the course of AD in human and mouse brains. Furthermore, HMGB1 released from necrotic or hyperexcitatory neurons binds to TLR4, triggers the specific phosphorylation of MARCKS via MAP kinases, and induces neurite degeneration, the classical hallmark of AD pathology. Subcutaneous injection of a newly developed monoclonal antibody against HMGB1 strongly inhibits neurite degeneration even in the presence of Aβ plaques and completely recovers cognitive impairment in a mouse model. HMGB1 and Aβ mutually affect polymerization of the other molecule, and the therapeutic effects of the anti-HMGB1 monoclonal antibody are mediated by Aβ-dependent and Aβ-independent mechanisms. We propose that HMGB1 is a critical pathogenic molecule promoting AD pathology in parallel with Aβ and tau and a new key molecular target of preclinical antibody therapy to delay the onset of AD. PMID:27557632

  3. Single-molecule bioelectronics.

    PubMed

    Rosenstein, Jacob K; Lemay, Serge G; Shepard, Kenneth L

    2015-01-01

    Experimental techniques that interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. In this study, we review several technologies that can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms. PMID:25529538

  4. Single-Molecule Bioelectronics

    PubMed Central

    Rosenstein, Jacob K.; Lemay, Serge G.; Shepard, Kenneth L.

    2014-01-01

    Experimental techniques which interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. Here we review several technologies which can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms. PMID:25529538

  5. Scanning the potential energy surface for synthesis of dendrimer-wrapped gold clusters: design rules for true single-molecule nanostructures.

    PubMed

    Thompson, Damien; Hermes, Jens P; Quinn, Aidan J; Mayor, Marcel

    2012-04-24

    The formation of true single-molecule complexes between organic ligands and nanoparticles is challenging and requires careful design of molecules with size, shape, and chemical properties tailored for the specific nanoparticle. Here we use computer simulations to describe the atomic-scale structure, dynamics, and energetics of ligand-mediated synthesis and interlinking of 1 nm gold clusters. The models help explain recent experimental results and provide insight into how multidentate thioether dendrimers can be employed for synthesis of true single-ligand-nanoparticle complexes and also nanoparticle-molecule-nanoparticle "dumbbell" nanostructures. Electronic structure calculations reveal the individually weak thioether-gold bonds (325 ± 36 meV), which act collectively through the multivalent (multisite) anchoring to stabilize the ligand-nanoparticle complex (∼7 eV total binding energy) and offset the conformational and solvation penalties involved in this "wrapping" process. Molecular dynamics simulations show that the dendrimer is sufficiently flexible to tolerate the strained conformations and desolvation penalties involved in fully wrapping the particle, quantifying the subtle balance between covalent anchoring and noncovalent wrapping in the assembly of ligand-nanoparticle complexes. The computed preference for binding of a single dendrimer to the cluster reveals the prohibitively high dendrimer desolvation barrier (1.5 ± 0.5 eV) to form the alternative double-dendrimer structure. Finally, the models show formation of an additional electron transfer channel between nitrogen and gold for ligands with a central pyridine unit, which gives a stiff binding orientation and explains the recently measured larger interparticle distances for particles synthesized and interlinked using linear ligands with a central pyridine rather than a benzene moiety. The findings stress the importance of organic-inorganic interactions, the control of which is central to the

  6. Comment on ``On the role of dissipation on the Casimir-Polder potential between molecules in dielectric media'' [J. Chem. Phys. 133, 164501 (2010)

    NASA Astrophysics Data System (ADS)

    Dalvit, D. A. R.; Milonni, P. W.

    2011-07-01

    J. J. Rodriguez and A. Salam [J. Chem. Phys. 133, 164501 (2010)], 10.1063/1.3495954 find discrepancies between their calculation and a previously published one [S. Spagnolo, D. A. R. Dalvit, and P. W. Milonni, Phys. Rev. A 75, 052117 (2007)], 10.1103/PhysRevA.75.052117 for the van der Waals interaction of two guest molecules in a host dielectric medium. We trace these discrepancies to what we regard as fundamental errors in the calculation by Rodriguez and Salam.

  7. Potential energy surfaces for atomic oxygen reactions: Formation of singlet and triplet biradicals as primary reaction products with unsaturated organic molecules

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    1987-01-01

    The experimental study of the interaction of atomic oxygen with organic polymer films under LEO conditions has been hampered by the inability to conduct detailed experiments in situ. As a result, studies of the mechanism of oxygen atom reactions have relied on laboratory O-atom sources that do not fully reproduce the orbital environment. For example, it is well established that only ground electronic state O atoms are present at LEO, yet most ground-based sources are known to produce singlet O atoms and molecules and ions in addition to O(3P). Engineers should not rely on such facilities unless it can be demonstrated either that these different O species are inert or that they react in the same fashion as ground state atoms. Ab initio quantum chemical calculations have been aimed at elucidating the biradical intermediates formed during the electrophilic addition of ground and excited-state O atoms to carbon-carbon double bonds in small olefins and aromatic molecules. These biradicals are critical intermediates in any possible insertion, addition and elimination reaction mechanisms. Through these calculations, we will be able to comment on the relative importance of these pathways for O(3P) and O(1D) reactions. The reactions of O atoms with ethylene and benzene are used to illustrate the important features of the mechanisms of atomic oxygen reaction with unsaturated organic compounds and polymeric materials.

  8. Enteral n-3 fatty acids and micronutrients enhance percentage of positive neutrophil and lymphocyte adhesion molecules: a potential mediator of pressure ulcer healing in critically ill patients.

    PubMed

    Theilla, Miriam; Schwartz, Betty; Zimra, Yael; Shapiro, Haim; Anbar, Ronit; Rabizadeh, Esther; Cohen, Jonathan; Singer, Pierre

    2012-04-01

    n-3 Fatty acids are recognised as influencing both wound healing and immunity. We assessed the impact of a fish oil- and micronutrient-enriched formula (study formula) on the healing of pressure ulcers and on immune function in critically ill patients in an intensive care unit. A total of forty patients with pressure ulcers and receiving nutritional support were enrolled (intervention group, n 20, received study formula; and a control group, n 20, received an isoenergetic formula). Total and differential leucocyte count and percentage of adhesion molecule positive granulocyte and lymphocyte cells (CD11a, CD11b, CD18 and CD49b) were measured on days 0, 7 and 14. Percentage of positive lymphocytes for CD54, CD49b, CD49d and CD8 were also measured on days 0, 7 and 14. The state of pressure ulcers was assessed by using the pressure ulcer scale for healing tool score on days 7, 14 and 28 of treatment. No between-group differences in patient demographics, anthropometry or diagnostic class were observed. Patients who received the study formula showed significant increases in the percentage of positive CD18 and CD11a lymphocytes and of CD49b granulocytes as compared to controls (P < 0·05). While the severity of pressure ulcers was not significantly different between the two groups on admission, severity increased significantly over time for the control group (P < 0·05), but not for the study group. The present study suggests that a fish oil- and micronutrient-enriched formula may prevent worsening of pressure ulcers and that this effect may be mediated by an effect on adhesion molecule expression. PMID:22040465

  9. Structure-Based Screen Identifies a Potent Small Molecule Inhibitor of Stat5a/b with Therapeutic Potential for Prostate Cancer and Chronic Myeloid Leukemia.

    PubMed

    Liao, Zhiyong; Gu, Lei; Vergalli, Jenny; Mariani, Samanta A; De Dominici, Marco; Lokareddy, Ravi K; Dagvadorj, Ayush; Purushottamachar, Puranik; McCue, Peter A; Trabulsi, Edouard; Lallas, Costas D; Gupta, Shilpa; Ellsworth, Elyse; Blackmon, Shauna; Ertel, Adam; Fortina, Paolo; Leiby, Benjamin; Xia, Guanjun; Rui, Hallgeir; Hoang, David T; Gomella, Leonard G; Cingolani, Gino; Njar, Vincent; Pattabiraman, Nagarajan; Calabretta, Bruno; Nevalainen, Marja T

    2015-08-01

    Bypassing tyrosine kinases responsible for Stat5a/b phosphorylation would be advantageous for therapy development for Stat5a/b-regulated cancers. Here, we sought to identify small molecule inhibitors of Stat5a/b for lead optimization and therapy development for prostate cancer and Bcr-Abl-driven leukemias. In silico screening of chemical structure databases combined with medicinal chemistry was used for identification of a panel of small molecule inhibitors to block SH2 domain-mediated docking of Stat5a/b to the receptor-kinase complex and subsequent phosphorylation and dimerization. We tested the efficacy of the lead compound IST5-002 in experimental models and patient samples of two known Stat5a/b-driven cancers, prostate cancer and chronic myeloid leukemia (CML). The lead compound inhibitor of Stat5-002 (IST5-002) prevented both Jak2 and Bcr-Abl-mediated phosphorylation and dimerization of Stat5a/b, and selectively inhibited transcriptional activity of Stat5a (IC50 = 1.5μmol/L) and Stat5b (IC50 = 3.5 μmol/L). IST5-002 suppressed nuclear translocation of Stat5a/b, binding to DNA and Stat5a/b target gene expression. IST5-002 induced extensive apoptosis of prostate cancer cells, impaired growth of prostate cancer xenograft tumors, and induced cell death in patient-derived prostate cancers when tested ex vivo in explant organ cultures. Importantly, IST5-002 induced robust apoptotic death not only of imatinib-sensitive but also of imatinib-resistant CML cell lines and primary CML cells from patients. IST5-002 provides a lead structure for further chemical modifications for clinical development for Stat5a/b-driven solid tumors and hematologic malignancies. PMID:26026053

  10. Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4'-methylpropiophenone.

    PubMed

    Karunakaran, V; Balachandran, V

    2014-07-15

    Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra) of 4'-methylpropiophenone (MPP). The FT-IR and FT-Raman spectra of 4'-methylpropiophenone (MPP) have been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra of MPP are also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The (1)H and (13)C NMR chemical shifts have been calculated by Gauge-Independent Atomic Orbital (GIAO) method with B3LYP/6-311++G(d,p). The natural bond orbital (NBO), natural hybrid orbital (NHO) analysis and electronic properties, such as HOMO and LUMO energies, were performed by DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0) of the novel molecular system and related properties (βtot, α0 and Δα) of MPP are calculated using DFT/6-311++G(d,p) method on the finite-field approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The thermodynamic functions of the title compound were also performed at the above method and basis set. PMID:24657464

  11. Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4‧-Methylpropiophenone

    NASA Astrophysics Data System (ADS)

    Karunakaran, V.; Balachandran, V.

    2014-07-01

    Combined experimental and theoretical studies have been performed on the structure and vibrational spectra (IR and Raman spectra) of 4‧-methylpropiophenone (MPP). The FT-IR and FT-Raman spectra of 4‧-methylpropiophenone (MPP) have been recorded in the region 4000-400 cm-1 and 3500-100 cm-1, respectively. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra of MPP are also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The 1H and 13C NMR chemical shifts have been calculated by Gauge-Independent Atomic Orbital (GIAO) method with B3LYP/6-311++G(d,p). The natural bond orbital (NBO), natural hybrid orbital (NHO) analysis and electronic properties, such as HOMO and LUMO energies, were performed by DFT approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0) of the novel molecular system and related properties (βtot, α0 and Δα) of MPP are calculated using DFT/6-311++G(d,p) method on the finite-field approach. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The thermodynamic functions of the title compound were also performed at the above method and basis set.

  12. Generalizing the Concept of Specific Compound Formulation Additives towards Non-Fluorescent Drugs: A Solubilization Study on Potential Anti-Alzheimer-Active Small-Molecule Compounds.

    PubMed

    Lawatscheck, Carmen; Pickhardt, Marcus; Wieczorek, Sebastian; Grafmüller, Andrea; Mandelkow, Eckhard; Börner, Hans G

    2016-07-18

    Tailor-made compound formulation additives enable the testing of potential drugs with undesirable pharmacological profiles. A combinatorial approach using Raman microscopy as the readout method is presented to select peptide sequences from large one-bead-one-compound libraries. The resulting peptide-PEG conjugates solubilize potential prophylactic and therapeutic anti-Alzheimer compounds and can be used as specific additives not only for fluorescent but also for non-fluorescent compounds. PMID:27282127

  13. Accurate determination of pair potentials for a C{sub w}H{sub x}N{sub y}O{sub z} system of molecules: A semiempirical method

    SciTech Connect

    Thiel, M. van; Ree, F.H.; Haselman, L.C.

    1995-03-01

    Statistical mechanical chemical equilibrium calculations of the properties of high-pressure high-temperature reactive C,H,N,O mixtures are made to derive an accurate self-consistent set of inter-molecular potentials for the product molecules. Previous theoretical efforts to predict such properties relied in part on Corresponding States theory and shock wave data of argon. More recent high-pressure Hugoniot measurements on a number of elements and molecules allow more accurate determination of the potentials of these materials, and explicit inclusion of additional dissociation products. The present discussion briefly reviews the previous analysis and the method used to produce a self-consistent set of potentials from shock data on N{sub 2}, O{sub 2}, H{sub 2}, NO, an N{sub 2} + O{sub 2} mixture, carbon, CO{sub 2}, and CO, as well as some simple explosive product mixtures from detonation of hexanitrobenzene, PETN, and a mixture of hydrazine nitrate, hydrazine and water. The results are tested using the data from an HMX explosive formulations. The effect of the non-equilibrium nature of carbon clusters is estimated using data for TNT as a standard to determine a nonequilibrium equation of state for carbon. The resulting parameter set is used in a survey of 27 explosives. For the subset that contains no fluorine or two-phase carbon effects the rms deviation from experimental detonation velocity is 1.2%.

  14. On the potential involvement of CD11d in co-stimulating the production of interferon-γ by natural killer cells upon interaction with neutrophils via intercellular adhesion molecule-3

    PubMed Central

    Costantini, Claudio; Micheletti, Alessandra; Calzetti, Federica; Perbellini, Omar; Tamassia, Nicola; Albanesi, Cristina; Vermi, William; Cassatella, Marco A.

    2011-01-01

    Interaction between neutrophils and other leukocytes plays a variety of important roles in regulating innate and adaptive immune responses. Recently, we have shown that neu-trophils amplify NK cell/6-sulfo LacNAc+ dendritic cells (slanDC)-mediated cytokine production, by potentiating IL-12p70 release by slanDC via CD18/ICAM-1 and directly co-stimulating IFNγ production by NK cells via ICAM-3. Herein, we have identified additional molecules involved in the interactions among neutrophils, NK cells and slanDC. More specifically, we provide evidence that: i) the cross-talk between neutrophils and NK cells is mediated by ICAM-3 and CD11d/CD18, respectively; ii) slanDC potentiate the production of IFNγ by NK cells via CD11a/CD18. Altogether, our studies shed more light on the role that adhesion molecules play within the neutrophil/NK cell/slanDC network. Our data also have potential implications in the pathogenesis of diseases driven by hyperactivated leukocytes, such as Sweet’s syndrome, in which a neutrophil/NK cell co-localization is frequently observed. PMID:21712539

  15. On the potential involvement of CD11d in co-stimulating the production of interferon-γ by natural killer cells upon interaction with neutrophils via intercellular adhesion molecule-3.

    PubMed

    Costantini, Claudio; Micheletti, Alessandra; Calzetti, Federica; Perbellini, Omar; Tamassia, Nicola; Albanesi, Cristina; Vermi, William; Cassatella, Marco A

    2011-10-01

    Interaction between neutrophils and other leukocytes plays a variety of important roles in regulating innate and adaptive immune responses. Recently, we have shown that neu-trophils amplify NK cell/6-sulfo LacNAc(+) dendritic cells (slanDC)-mediated cytokine production, by potentiating IL-12p70 release by slanDC via CD18/ICAM-1 and directly co-stimulating IFNγ production by NK cells via ICAM-3. Herein, we have identified additional molecules involved in the interactions among neutrophils, NK cells and slanDC. More specifically, we provide evidence that: i) the cross-talk between neutrophils and NK cells is mediated by ICAM-3 and CD11d/CD18, respectively; ii) slanDC potentiate the production of IFNγ by NK cells via CD11a/CD18. Altogether, our studies shed more light on the role that adhesion molecules play within the neutrophil/NK cell/slanDC network. Our data also have potential implications in the pathogenesis of diseases driven by hyperactivated leukocytes, such as Sweet's syndrome, in which a neutrophil/NK cell co-localization is frequently observed. PMID:21712539

  16. Rotational excitation of symmetric top molecules by collisions with atoms: Close coupling, coupled states, and effective potential calculations for NH3-He

    NASA Technical Reports Server (NTRS)

    Green, S.

    1976-01-01

    The formalism for describing rotational excitation in collisions between symmetric top rigid rotors and spherical atoms is presented both within the accurate quantum close coupling framework and also the coupled states approximation of McGuire and Kouri and the effective potential approximation of Rabitz. Calculations are reported for thermal energy NH3-He collisions, treating NH3 as a rigid rotor and employing a uniform electron gas (Gordon-Kim) approximation for the intermolecular potential. Coupled states are found to be in nearly quantitative agreement with close coupling results while the effective potential method is found to be at least qualitatively correct. Modifications necessary to treat the inversion motion in NH3 are discussed.

  17. Structural and Energetic Impact of Non-Natural 7-Deaza-8-Azaadenine and Its 7-Substituted Derivatives on H-Bonding Potential with Uracil in RNA Molecules.

    PubMed

    Chawla, Mohit; Credendino, Raffaele; Oliva, Romina; Cavallo, Luigi

    2015-10-15

    Non-natural (synthetic) nucleobases, including 7-ethynyl- and 7-triazolyl-8-aza-7-deazaadenine, have been introduced in RNA molecules for targeted applications, and have been characterized experimentally. However, no theoretical characterization of the impact of these modifications on the structure and energetics of the corresponding H-bonded base pair is available. To fill this gap, we performed quantum mechanics calculations, starting with the analysis of the impact of the 8-aza-7-deaza modification of the adenine skeleton, and we moved then to analyze the impact of the specific substituents on the modified 8-aza-7-deazaadenine. Our analysis indicates that, despite of these severe structural modifications, the H-bonding properties of the modified base pair gratifyingly replicate those of the unmodified base pair. Similar behavior is predicted when the same skeleton modifications are applied to guanine when paired to cytosine. To stress further the H-bonding pairing in the modified adenine-uracil base pair, we explored the impact of strong electron donor and electron withdrawing substituents on the C7 position. Also in this case we found minimal impact on the base pair geometry and energy, confirming the validity of this modification strategy to functionalize RNAs without perturbing its stability and biological functionality. PMID:26389789

  18. A Novel Small Molecule Inhibitor of Candida albicans Biofilm Formation, Filamentation and Virulence with Low Potential for the Development of Resistance

    PubMed Central

    Pierce, Christopher G.; Chaturvedi, Ashok K.; Lazzell, Anna L.; Powell, Alexander T.; Saville, Stephen. P.; McHardy, Stanton F.; Lopez-Ribot, Jose L.

    2015-01-01

    Background/Objectives Candida albicans is the principal causative agent of candidiasis, the most common fungal infection in humans. Candidiasis represents the third-to-fourth most frequent nosocomial infection worldwide, as this normal commensal of humans causes opportunistic infections in an expanding population of immune- and medically-compromised patients. These infections are frequently associated with biofilm formation, which complicates treatment and contributes to unacceptably high mortality rates. Methods To address the pressing need for new antifungals we have performed a high content screen of 20,000 small molecules in a chemical library (NOVACore™) to identify compounds that inhibit C. albicans biofilm formation, and conducted a series of follow-up studies to examine the in vitro and in vivo activity of the identified compounds. Results The screen identified a novel series of diazaspiro-decane structural analogs which were largely represented among the bioactive compounds. Characterization of the leading compound from this series indicated that it inhibits processes associated with C. albicans virulence, most notably biofilm formation and filamentation, without having an effect on overall growth or eliciting resistance. This compound demonstrated in vivo activity in clinically-relevant murine models of both invasive and oral candidiasis and as such represents a promising lead for antifungal drug development. Furthermore, these results provide proof of concept for the implementation of anti-virulence approaches against C. albicans and other fungal infections that would be less likely to foster the emergence of resistance. PMID:26691764

  19. Response to ``Comment on `On the role of dissipation on the Casimir-Polder potential between molecules in dielectric media''' [J. Chem. Phys. 135, 047101 (2011)

    NASA Astrophysics Data System (ADS)

    Rodriguez, Justo J.; Salam, A.

    2011-07-01

    In this Response to the Comment by Dalvit and Milonni, we go into further details as to why the dispersion interaction potential appearing in each of our works differs, and why the form given by Rodriguez and Salam correctly accounts for absorption in the dielectric medium. We also point out and address a number of fallacies raised in the Comment.

  20. A first-principle protocol for calculating ionization energies and redox potentials of solvated molecules and ions: Theory and application to aqueous phenol and phenolate

    PubMed Central

    Ghosh, Debashree; Roy, Anirban; Seidel, Robert; Winter, Bernd; Bradforth, Stephen; Krylov, Anna I.

    2012-01-01

    The effect of hydration on the lowest vertical ionization energy (VIE) of phenol and phenolate solvated in bulk water was characterized using the equation-of-motion ionization potential coupled-cluster (EOM-IP-CCSD) and effective fragment potential (EFP) methods (referred to as EOM/EFP), and determined experimentally by valence photo-emission measurements using microjets and synchrotron radiation. The computed solvent-induced shifts in VIEs (ΔVIE) are −0.66 eV and +5.72 eV for phenol and phenolate, respectively. Our best estimates of the absolute values of VIEs (7.9 and 7.7 eV for phenol and phenolate) agree reasonably well with the respective experimental values (7.8±0.1 eV and 7.1±0.1 eV). The EOM/EFP scheme was benchmarked against full EOM-IP-CCSD using micro-solvated phenol and phenolate clusters. A protocol for calculating redox potentials with EOM/EFP was developed based on linear response approximation (LRA) of free energy determination. The oxidation potentials of phenol and phenolate calculated using LRA and EOM/EFP are 1.32 V and 0.89 V, respectively; they agree well with experimental values. PMID:22497288

  1. The c.503T>C Polymorphism in the Human KLRB1 Gene Alters Ligand Binding and Inhibitory Potential of CD161 Molecules

    PubMed Central

    Rother, Sascha; Hundrieser, Joachim; Pokoyski, Claudia; Kollrich, Sonja; Borns, Katja; Blasczyk, Rainer; Poehnert, Daniel; Klempnauer, Jürgen; Schwinzer, Reinhard

    2015-01-01

    Studying genetic diversity of immunologically relevant molecules can improve our knowledge on their functional spectrum in normal immune responses and may also uncover a possible role of different variants in diseases. We characterized the c.503T>C polymorphism in the human KLRB1 gene (Killer cell lectin-like receptor, subfamily B, member 1) coding for the cell surface receptor CD161. CD161 is expressed by subsets of CD4+ and CD8+ T cells and the great majority of CD56+ natural killer (NK) cells, acting as inhibitory receptor in the latter population. Genotyping a cohort of 118 healthy individuals revealed 40% TT homozygotes, 46% TC heterozygotes, and 14% carriers of CC. There was no difference in the frequency of CD161 expressing CD4+ and CD8+ T cells between the different genotypes. However, the frequency of CD161+ NK cells was significantly decreased in CC carriers as compared to TT homozygotes. c.503T>C causes an amino acid exchange (p.Ile168Thr) in an extracellular loop of the CD161 receptor, which is regarded to be involved in binding of its ligand Lectin-like transcript 1 (LLT1). Binding studies using soluble LLT1-Fc on 293 transfectants over-expressing CD161 receptors from TT or CC carriers suggested diminished binding to the CC variant. Furthermore, triggering of CD161 either by LLT1 or anti-CD161 antibodies inhibited NK cell activation less effectively in cells from CC individuals than cells from TT carriers. These data suggest that the c.503T>C polymorphism is associated with structural alterations of the CD161 receptor. The regulation of NK cell homeostasis and activation apparently differs between carriers of the CC and TT variant of CD161. PMID:26309225

  2. Streptococcus pneumoniae Cell-Wall-Localized Phosphoenolpyruvate Protein Phosphotransferase Can Function as an Adhesin: Identification of Its Host Target Molecules and Evaluation of Its Potential as a Vaccine

    PubMed Central

    Mizrachi Nebenzahl, Yaffa; Blau, Karin; Kushnir, Tatyana; Shagan, Marilou; Portnoi, Maxim; Cohen, Aviad; Azriel, Shalhevet; Malka, Itai; Adawi, Asad; Kafka, Daniel; Dotan, Shahar; Guterman, Gali; Troib, Shany; Fishilevich, Tali; Gershoni, Jonathan M; Braiman, Alex; Mitchell, Andrea M; Mitchell, Timothy J; Porat, Nurith; Goliand, Inna; Chalifa Caspi, Vered; Swiatlo, Edwin; Tal, Michael; Ellis, Ronald; Elia, Natalie; Dagan, Ron

    2016-01-01

    In Streptococcus pneumonia, phosphoenolpyruvate protein phosphotransferase (PtsA) is an intracellular protein of the monosaccharide phosphotransferase systems. Biochemical and immunostaining methods were applied to show that PtsA also localizes to the bacterial cell-wall. Thus, it was suspected that PtsA has functions other than its main cytoplasmic enzymatic role. Indeed, recombinant PtsA and anti-rPtsA antiserum were shown to inhibit adhesion of S. pneumoniae to cultured human lung adenocarcinoma A549 cells. Screening of a combinatorial peptide library expressed in a filamentous phage with rPtsA identified epitopes that were capable of inhibiting S. pneumoniae adhesion to A549 cells. The insert peptides in the phages were sequenced, and homologous sequences were found in human BMPER, multimerin1, protocadherin19, integrinβ4, epsin1 and collagen type VIIα1 proteins, all of which can be found in A549 cells except the latter. Six peptides, synthesized according to the homologous sequences in the human proteins, specifically bound rPtsA in the micromolar range and significantly inhibited pneumococcal adhesion in vitro to lung- and tracheal-derived cell lines. In addition, the tested peptides inhibited lung colonization after intranasal inoculation of mice with S. pneumoniae. Immunization with rPtsA protected the mice against a sublethal intranasal and a lethal intravenous pneumococcal challenge. In addition, mouse anti rPtsA antiserum reduced bacterial virulence in the intravenous inoculation mouse model. These findings showed that the surface-localized PtsA functions as an adhesin, PtsA binding peptides derived from its putative target molecules can be considered for future development of therapeutics, and rPtsA should be regarded as a candidate for vaccine development. PMID:26990554

  3. Highlight on the indigenous organic molecules detected on Mars by SAM and potential sources of artifacts and backgrounds generated by the sample preparation

    NASA Astrophysics Data System (ADS)

    Buch, A.; Belmahdi, I.; Szopa, C.; Freissinet, C.; Glavin, D. P.; Coll, P. J.; Cabane, M.; Millan, M.; Eigenbrode, J. L.; Navarro-Gonzalez, R.; Stern, J. C.; Pinnick, V. T.; Coscia, D.; Teinturier, S.; Stambouli, M.; Dequaire, T.; Mahaffy, P. R.

    2015-12-01

    and molecules that may constitute organic material precursors sources. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Williams, A.J., Eigenbrode, J.L.,m Floyd, M.M., Wilhelm, M.B., and Mahaffy, P.R., (2015), GSA. [5] Eigenbrode, J.L. et al. (2010), LPSC, abst.1460.

  4. Water molecules orientation in surface layer

    NASA Astrophysics Data System (ADS)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  5. Nonsequential double ionization of molecules

    SciTech Connect

    Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub; Eckhardt, Bruno

    2005-03-01

    Double ionization of diatomic molecules by short linearly polarized laser pulses is analyzed. We consider the final stage of the ionization process, that is the decay of a highly excited two electron molecule, which is formed after rescattering. The saddles of the effective adiabatic potential energy close to which simultaneous escape of electrons takes place are identified. Numerical simulations of the ionization of molecules show that the process can be dominated by either sequential or nonsequential events. In order to increase the ratio of nonsequential to sequential ionizations very short laser pulses should be applied.

  6. Structure-Based Development of Small Molecule PFKFB3 Inhibitors: A Framework for Potential Cancer Therapeutic Agents Targeting the Warburg Effect

    SciTech Connect

    Seo, Minsuh; Kim, Jeong-Do; Neau, David; Sehgal, Inder; Lee, Yong-Hwan

    2012-02-10

    Cancer cells adopt glycolysis as the major source of metabolic energy production for fast cell growth. The HIF-1-induced PFKFB3 plays a key role in this adaptation by elevating the concentration of Fru-2,6-BP, the most potent glycolysis stimulator. As this metabolic conversion has been suggested to be a hallmark of cancer, PFKFB3 has emerged as a novel target for cancer chemotherapy. Here, we report that a small molecular inhibitor, N4A, was identified as an initial lead compound for PFKFB3 inhibitor with therapeutic potential. In an attempt to improve its potency, we determined the crystal structure of the PFKFB3 {sm_bullet} N4A complex to 2.4 {angstrom} resolution and, exploiting the resulting molecular information, attained the more potent YN1. When tested on cultured cancer cells, both N4A and YN1 inhibited PFKFB3, suppressing the Fru-2,6-BP level, which in turn suppressed glycolysis and, ultimately, led to cell death. This study validates PFKFB3 as a target for new cancer therapies and provides a framework for future development efforts.

  7. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules I. Reference Data at the CCSD(T) Complete Basis Set Limit.

    PubMed

    Richard, Ryan M; Marshall, Michael S; Dolgounitcheva, O; Ortiz, J V; Brédas, Jean-Luc; Marom, Noa; Sherrill, C David

    2016-02-01

    In designing organic materials for electronics applications, particularly for organic photovoltaics (OPV), the ionization potential (IP) of the donor and the electron affinity (EA) of the acceptor play key roles. This makes OPV design an appealing application for computational chemistry since IPs and EAs are readily calculable from most electronic structure methods. Unfortunately reliable, high-accuracy wave function methods, such as coupled cluster theory with single, double, and perturbative triples [CCSD(T)] in the complete basis set (CBS) limit are too expensive for routine applications to this problem for any but the smallest of systems. One solution is to calibrate approximate, less computationally expensive methods against a database of high-accuracy IP/EA values; however, to our knowledge, no such database exists for systems related to OPV design. The present work is the first of a multipart study whose overarching goal is to determine which computational methods can be used to reliably compute IPs and EAs of electron acceptors. This part introduces a database of 24 known organic electron acceptors and provides high-accuracy vertical IP and EA values expected to be within ±0.03 eV of the true non-relativistic, vertical CCSD(T)/CBS limit. Convergence of IP and EA values toward the CBS limit is studied systematically for the Hartree-Fock, MP2 correlation, and beyond-MP2 coupled cluster contributions to the focal point estimates. PMID:26731487

  8. A selected ion flow tube study of the reactions of NO + and O + 2 ions with some organic molecules: The potential for trace gas analysis of air

    NASA Astrophysics Data System (ADS)

    Španěl, Patrik; Smith, David

    1996-02-01

    A study has been carried out using our selected ion flow tube apparatus of the reactions of NO+ and O+2 ions in their vibronic ground states with ten organic species: the hydrocarbons, benzene, toluene, isoprene, cyclopropane, and n-pentane; the oxygen-containing organics, methanol, ethanol, acetaldehyde, acetone, and diethyl ether. The major objectives of this work are, on the one hand, to fully understand the processes involved in these reactions and, on the other hand, to explore the potential of NO+ and O+2 as chemical ionization agents for the analysis of trace gases in air and on human breath. Amongst the NO+ reactions, charge transfer, hydride-ion transfer, and termolecular association occur, and the measured rate coefficients, k, for the reactions vary from immeasurably small to the maximum value, collisional rate coefficient, kc. The O+2 reactions are all fast, in each case the k being equal to or an appreciable fraction of kc, and charge transfer producing the parent organic ion or dissociative charge transfer resulting in two or three fragments of the parent ion are the reaction processes that occur. We conclude from these studies, and from previous studies, that NO+ ions and O+2 ions can be used to great effect as chemical ionization agents for trace gas analysis, especially in combination with H3O+ ions which we now routinely use for this purpose.

  9. The roles of BTG3 expression in gastric cancer: a potential marker for carcinogenesis and a target molecule for gene therapy.

    PubMed

    Gou, Wen-feng; Yang, Xue-feng; Shen, Dao-fu; Zhao, Shuang; Liu, Yun-peng; Sun, Hong-zhi; Takano, Yasuo; Su, Rong-jian; Luo, Jun-sheng; Zheng, Hua-chuan

    2015-08-14

    BTG (B-cell translocation gene) can inhibit cell proliferation, metastasis and angiogenesis, cell cycle progression, and induce differentiation in various cells. Here, we found that BTG3 overexpression inhibited proliferation, induced S/G2 arrest, differentiation, autophagy, apoptosis, suppressed migration and invasion in MKN28 and MGC803 cells (p < 0.05). BTG3 transfectants showed a higher mRNA expression of p27, Bax, 14-3-3, Caspase-3, Caspase-9, Beclin 1, NF-κB, IL-1, -2, -4, -10 and -17, but a lower mRNA expression of p21, MMP-9 and VEGF than the control and mock (p < 0.05). At protein level, BTG3 overexpression increased the expression of CDK4, AIF, LC-3B, Beclin 1 and p38 (p < 0.05), but decreased the expression of p21 and β-catenin in both transfectants (p < 0.05). After treated with cisplatin, MG132, paclitaxel and SAHA, both BTG3 transfectants showed lower viability and higher apoptosis than the control in both time- and dose-dependent manners (p < 0.05). BTG3 expression was restored after 5-aza-2'-deoxycytidine or MG132 treatment in gastric cancer cells. BTG3 expression was decreased in gastric cancer in comparison to the adjacent mucosa (p < 0.05), and positively correlated with venous invasion and dedifferentiation of cancer (p < 0.05). It was suggested that BTG3 expression might contribute to gastric carcinogenesis. BTG3 overexpression might reverse the aggressive phenotypes and be employed as a potential target for gene therapy of gastric cancer. PMID:25904053

  10. Spectroscopic constants of diatomic molecules computed correcting Hartree-Fock or general-valence-bond potential-energy curves with correlation-energy functionals

    NASA Astrophysics Data System (ADS)

    Pérez-Jordá, José M.; San-Fabián, Emilio; Moscardó, Federico

    1992-04-01

    The Kohn-Sham energy with exact exchange [using the exact Hartree-Fock (HF) exchange but an approximate correlation-energy functional] may be computed very accurately by adding the correlation obtained from the HF density to the total HF energy. Three density functionals are used: local spin density (LSD), LSD with self-interaction correction, and LSD with generalized gradient correction. This scheme has been extended (Lie-Clementi, Colle-Salvetti, and Moscardo-San-Fabian) to be used with general-valence-bond (GVB) energies and wave functions, so that the extra correlation included in the GVB energy is not counted again. The effect of all these approximate correlations on HF or GVB spectroscopic constants (Re,ωe, and De) is studied. Approximate relations showing how correlation affects them are derived, and may be summarized as follows: (1) the effect on Re and ωe depends only on the correlation derivative at Re, and (2) the effect on De depends mainly on the correlation difference between quasidissociated and equilibrium geometries. A consequence is that all the correlation corrections tested here give larger ωe and De and shorter Re than the uncorrected HF or GVB values. This trend is correct for De for both HF and GVB. For Re and ωe, it is correct in most cases for GVB, but it often fails for the HF cases. A comparison is made with Kohn-Sham calculations with both exchange and correlation approximated. As a final conclusion, it is found that, within the present scheme, a qualitatively correct HF or GVB potential-energy curve, together with a correlation-energy approximation with correct dissociation behavior, is crucial for obtaining good estimates of spectroscopic constants.

  11. Amino acid-derived 1,2-benzisothiazolinone derivatives as novel small-molecule antifungal inhibitors: identification of potential genetic targets.

    PubMed

    Alex, Deepu; Gay-Andrieu, Francoise; May, Jared; Thampi, Linta; Dou, Dengfeng; Mooney, Aileen; Groutas, William; Calderone, Richard

    2012-09-01

    We have identified four synthetic compounds (DFD-VI-15, BD-I-186, DFD-V-49, and DFD-V-66) from an amino acid-derived 1,2-benzisothiazolinone (BZT) scaffold that have reasonable MIC(50) values against a panel of fungal pathogens. These compounds have no structural similarity to existing antifungal drugs. Three of the four compounds have fungicidal activity against Candida spp., Cryptococcus neoformans, and several dermatophytes, while one is fungicidal to Aspergillus fumigatus. The kill rates of our compounds are equal to those in clinical usage. The BZT compounds remain active against azole-, polyene-, and micafungin-resistant strains of Candida spp. A genetics-based approach, along with phenotype analysis, was used to begin mode of action (MOA) studies of one of these compounds, DFD-VI-15. The genetics-based screen utilized a homozygous deletion collection of approximately 4,700 Saccharomyces cerevisiae mutants. We identified mutants that are both hypersensitive and resistant. Using FunSpec, the hypersensitive mutants and a resistant ace2 mutant clustered within a category of genes related directly or indirectly to mitochondrial functions. In Candida albicans, the functions of the Ace2p transcription factor include the regulation of glycolysis. Our model is that DFD-VI-15 targets a respiratory pathway that limits energy production. Supporting this hypothesis are phenotypic data indicating that DFD-VI-15 causes increased cell-reactive oxidants (ROS) and a decrease in mitochondrial membrane potential. Also, the same compound has activity when cells are grown in a medium containing glycerol (mitochondrial substrate) but is much less active when cells are grown anaerobically. PMID:22687516

  12. The determination of potential energy curve and dipole moment of the (5)0{sup +} electronic state of {sup 85}Rb{sup 133}Cs molecule by high resolution photoassociation spectroscopy

    SciTech Connect

    Yuan, Jinpeng; Zhao, Yanting Ji, Zhonghua; Li, Zhonghao; Xiao, Liantuan; Jia, Suotang; Kim, Jin-Tae

    2015-12-14

    We present the formation of ultracold {sup 85}Rb{sup 133}Cs molecules in the (5)0{sup +} electronic state by photoassociation and their detection via resonance-enhanced two-photon ionization. Up to v = 47 vibrational levels including the lowest v = 0 vibrational and lowest J = 0 levels are identified with rotationally resolved high resolution photoassociation spectra. Precise Dunham coefficients are determined for the (5)0{sup +} state with high accuracy, then the Rydberg-Klein-Rees potential energy curve is derived. The electric dipole moments with respect to the vibrational numbers of the (5)0{sup +} electronic state of {sup 85}Rb{sup 133}Cs molecule are also measured in the range between 1.9 and 4.8 D. These comprehensive studies on previously unobserved rovibrational levels of the (5)0{sup +} state are helpful to understand the molecular structure and discover suitable transition pathways for transferring ultracold atoms to deeply bound rovibrational levels of the electronic ground state.

  13. Physics of Molecules

    NASA Astrophysics Data System (ADS)

    Williams, D.; Murdin, P.

    2000-11-01

    Many varieties of molecule have been detected in the Milky Way and in other galaxies. The processes by which these molecules are formed and destroyed are now broadly understood (see INTERSTELLAR CHEMISTRY). These molecules are important components of galaxies in two ways. Firstly, radiation emitted by molecules enables us to trace the presence of diffuse gas, to infer its physical properties and ...

  14. Nanochannel Based Single Molecule Recycling

    PubMed Central

    Lesoine, John F.; Venkataraman, Prahnesh A.; Maloney, Peter C.; Dumont, Mark

    2012-01-01

    We present a method for measuring the fluorescence from a single molecule hundreds of times without surface immobilization. The approach is based on the use of electroosmosis to repeatedly drive a single target molecule in a fused silica nanochannel through a stationary laser focus. Single molecule fluorescence detected during the transit time through the laser focus is used to repeatedly reverse the electrical potential controlling the flow direction. Our method does not rely on continuous observation and therefore is less susceptible to fluorescence blinking than existing fluorescence-based trapping schemes. The variation in the turnaround times can be used to measure the diffusion coefficient on a single molecule level. We demonstrate the ability to recycle both proteins and DNA in nanochannels and show that the procedure can be combined with single-pair Förster energy transfer. Nanochannel-based single molecule recycling holds promise for studying conformational dynamics on the same single molecule in solution and without surface tethering. PMID:22662745

  15. Electrochromic graphene molecules.

    PubMed

    Ji, Zhiqiang; Doorn, Stephen K; Sykora, Milan

    2015-04-28

    Polyclic aromatic hydrocarbons also called Graphene Molecules (GMs), with chemical composition C132H36(COOH)2 were synthesized in situ on the surface of transparent nanocrystalline indium tin oxide (nc-ITO) electrodes and their electronic structure was studied electrochemically and spectro-electrochemically. Variations in the potential applied onto the nc-ITO/GM electrodes induce only small changes in the observed current, but they produce dramatic changes in the absorption of the GMs, which are associated with their oxidation and reduction. Analysis of the absorption changes using a modified Nernst equation is used to determine standard potentials associated with the individual charge transfer processes. For the GMs prepared here, these were found to be E1,ox(0) = 0.77 ± 0.01 V and E2,ox(0) = 1.24 ± 0.02 V vs NHE for the first and second oxidation and E1,red(0) = -1.50 ± 0.04 V for the first reduction. The charge transfer processes are found to be nonideal. The nonideality factors associated with the oxidation and reduction processes are attributed to strong interactions between the GM redox centers. Under the conditions of potential cycling, GMs show rapid (seconds) color change with high contrast and stability. An electrochromic application is demonstrated wherein the GMs are used as the optically active component. PMID:25768313

  16. Electrochromic Graphene Molecules

    DOE PAGESBeta

    Ji, Zhiqiang; Doorn, Stephen K.; Sykora, Milan

    2015-03-13

    Polyclic aromatic hydrocarbons, also called Graphene Molecules (GMs), with chemical composition C132H36(COOH)2 were synthesized in-situ on the surface of transparent nanocrystaline indium tin oxide (nc-ITO) electrodes. Their electronic structure was studied electrochemically and spectro-electrochemically. Variations in the potential applied onto the nc-ITO/GM electrodes induce only small changes in the observed current but they produce dramatic changes in the absorption of the GMs, which are associated with their oxidation and reduction. Analysis of the absorption changes using modified Nernst equation is used to determine standard potentials associated with the individual charge transfer processes. For the GMs prepared here these were foundmore » to be E1,ox 0 = 0.77± 0.01 V and E2,ox 0 = 1.24 ± 0.02 V vs. NHE for the first and second oxidation and E1,red 0 = -1.50 ± 0.04 V for the first reduction. The charge transfer processes are found to be non-ideal. The non-ideality factors associated with the oxidation and reduction processes suggest presence of strong interactions between the GM redox centers. Under the conditions of potential cycling GMs show rapid (seconds) color change with high contrast and stability. An electrochromic application is demonstrated wherein the GMs are used as the optically active component.« less

  17. Phase structure of soliton molecules

    SciTech Connect

    Hause, A.; Hartwig, H.; Seifert, B.; Stolz, H.; Boehm, M.; Mitschke, F.

    2007-06-15

    Temporal optical soliton molecules were recently demonstrated; they potentially allow further increase of data rates in optical telecommunication. Their binding mechanism relies on the internal phases, but these have not been experimentally accessible so far. Conventional frequency-resolved optical gating techniques are not suited for measurement of their phase profile: Their algorithms fail to converge due to zeros both in their temporal and their spectral profile. We show that the VAMPIRE (very advanced method of phase and intensity retrieval of E-fields) method performs reliably. With VAMPIRE the phase profile of soliton molecules has been measured, and further insight into the mechanism is obtained.

  18. Phase structure of soliton molecules

    NASA Astrophysics Data System (ADS)

    Hause, A.; Hartwig, H.; Seifert, B.; Stolz, H.; Böhm, M.; Mitschke, F.

    2007-06-01

    Temporal optical soliton molecules were recently demonstrated; they potentially allow further increase of data rates in optical telecommunication. Their binding mechanism relies on the internal phases, but these have not been experimentally accessible so far. Conventional frequency-resolved optical gating techniques are not suited for measurement of their phase profile: Their algorithms fail to converge due to zeros both in their temporal and their spectral profile. We show that the VAMPIRE (very advanced method of phase and intensity retrieval of E -fields) method performs reliably. With VAMPIRE the phase profile of soliton molecules has been measured, and further insight into the mechanism is obtained.

  19. Circularly Polarized Luminescence from Simple Organic Molecules.

    PubMed

    Sánchez-Carnerero, Esther M; Agarrabeitia, Antonia R; Moreno, Florencio; Maroto, Beatriz L; Muller, Gilles; Ortiz, María J; de la Moya, Santiago

    2015-09-21

    This article aims to show the identity of "circularly polarized luminescent active simple organic molecules" as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non-aggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented. PMID:26136234

  20. Small Molecule based Musculoskeletal Regenerative Engineering

    PubMed Central

    Lo, Kevin W.-H.; Jiang, Tao; Gagnon, Keith A.; Nelson, Clarke; Laurencin, Cato T.

    2014-01-01

    Clinicians and scientists working in the field of regenerative engineering are actively investigating a wide range of methods to promote musculoskeletal tissue regeneration. Small molecule-mediated tissue regeneration is emerging as a promising strategy for regenerating various musculoskeletal tissues and a large number of small molecule compounds have been recently discovered as potential bioactive molecules for musculoskeletal tissue repair and regeneration. In this review, we summarize the recent literature encompassing the past four years in the area of small bioactive molecule for promoting repair and regeneration of various musculoskeletal tissues including bone, muscle, cartilage, tendon, and nerve. PMID:24405851

  1. Electrochromic Graphene Molecules

    SciTech Connect

    Ji, Zhiqiang; Doorn, Stephen K.; Sykora, Milan

    2015-03-13

    Polyclic aromatic hydrocarbons, also called Graphene Molecules (GMs), with chemical composition C132H36(COOH)2 were synthesized in-situ on the surface of transparent nanocrystaline indium tin oxide (nc-ITO) electrodes. Their electronic structure was studied electrochemically and spectro-electrochemically. Variations in the potential applied onto the nc-ITO/GM electrodes induce only small changes in the observed current but they produce dramatic changes in the absorption of the GMs, which are associated with their oxidation and reduction. Analysis of the absorption changes using modified Nernst equation is used to determine standard potentials associated with the individual charge transfer processes. For the GMs prepared here these were found to be E1,ox 0 = 0.77± 0.01 V and E2,ox 0 = 1.24 ± 0.02 V vs. NHE for the first and second oxidation and E1,red 0 = -1.50 ± 0.04 V for the first reduction. The charge transfer processes are found to be non-ideal. The non-ideality factors associated with the oxidation and reduction processes suggest presence of strong interactions between the GM redox centers. Under the conditions of potential cycling GMs show rapid (seconds) color change with high contrast and stability. An electrochromic application is demonstrated wherein the GMs are used as the optically active component.

  2. Quantifying molecule-surface interactions using AFM-based single-molecule manipulation

    NASA Astrophysics Data System (ADS)

    Tautz, F. S.; Wagner, C.; Temirov, R.; Fournier, N.; Green, M.; Esat, T.; Leinen, P.; Groetsch, A.; Ruiz, V. G.; Tkatchenko, A.; Li, C.; Muellen, K.; Rohlfing, M.

    2015-03-01

    Scanning probe microscopy plays an important role in the investigation of molecular adsorption. Promising, is the possibility to probe the molecule-surface interaction while tuning its strength through AFM tip-induced single-molecule manipulation. Here, we outline a strategy to achieve quantitative understanding of such manipulation experiments. The example of qPlus sensor based PTCDA molecule lifting experiments is used to demonstrate how different aspects of the molecule-surface interaction, namely the short-range adsorption potential, the asymptotic van der Waals potential, local chemical bonds which are the source of the surface corrugation, and molecule-molecule interactions can be measured with SPM and interpreted by the help of force-field simulations.

  3. Nonadiabatic reaction of energetic molecules.

    PubMed

    Bhattacharya, Atanu; Guo, Yuanqing; Bernstein, Elliot R

    2010-12-21

    Energetic materials store a large amount of chemical energy that can be readily converted into mechanical energy via decomposition. A number of different ignition processes such as sparks, shocks, heat, or arcs can initiate the excited electronic state decomposition of energetic materials. Experiments have demonstrated the essential role of excited electronic state decomposition in the energy conversion process. A full understanding of the mechanisms for the decomposition of energetic materials from excited electronic states will require the investigation and analysis of the specific topography of the excited electronic potential energy surfaces (PESs) of these molecules. The crossing of multidimensional electronic PESs creates a funnel-like topography, known as conical intersections (CIs). CIs are well established as a controlling factor in the excited electronic state decomposition of polyatomic molecules. This Account summarizes our current understanding of the nonadiabatic unimolecular chemistry of energetic materials through CIs and presents the essential role of CIs in the determination of decomposition pathways of these energetic systems. Because of the involvement of more than one PES, a decomposition process involving CIs is an electronically nonadiabatic mechanism. Based on our experimental observations and theoretical calculations, we find that a nonadiabatic reaction through CIs dominates the initial decomposition process of energetic materials from excited electronic states. Although the nonadiabatic behavior of some polyatomic molecules has been well studied, the role of nonadiabatic reactions in the excited electronic state decomposition of energetic molecules has not been well investigated. We use both nanosecond energy-resolved and femtosecond time-resolved spectroscopic techniques to determine the decomposition mechanism and dynamics of energetic species experimentally. Subsequently, we employ multiconfigurational methodologies (such as, CASSCF

  4. Adhesion molecules and receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  5. Molecules between the Stars.

    ERIC Educational Resources Information Center

    Verschuur, Gerrit L.

    1987-01-01

    Provides a listing of molecules discovered to date in the vast interstellar clouds of dust and gas. Emphasizes the recent discoveries of organic molecules. Discusses molecular spectral lines, MASERs (microwave amplification by stimulated emission of radiation), molecular clouds, and star birth. (TW)

  6. Enzymatic DNA molecules

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor); Breaker, Ronald R. (Inventor)

    1998-01-01

    The present invention discloses deoxyribonucleic acid enzymes--catalytic or enzymatic DNA molecules--capable of cleaving nucleic acid sequences or molecules, particularly RNA, in a site-specific manner, as well as compositions including same. Methods of making and using the disclosed enzymes and compositions are also disclosed.

  7. Functional molecules in electronic circuits.

    PubMed

    Weibel, Nicolas; Grunder, Sergio; Mayor, Marcel

    2007-08-01

    Molecular electronics is a fascinating field of research contributing to both fundamental science and future technological achievements. A promising starting point for molecular devices is to mimic existing electronic functions to investigate the potential of molecules to enrich and complement existing electronic strategies. Molecules designed and synthesized to be integrated into electronic circuits and to perform an electronic function are presented in this article. The focus is set in particular on rectification and switching based on molecular devices, since the control over these two parameters enables the assembly of memory units, likely the most interesting and economic application of molecular based electronics. Both historical and contemporary solutions to molecular rectification are discussed, although not exhaustively. Several examples of integrated molecular switches that respond to light are presented. Molecular switches responding to an electrochemical signal are also discussed. Finally, supramolecular and molecular systems with intuitive application potential as memory units due to their hysteretic switching are highlighted. Although a particularly attractive feature of molecular electronics is its close cooperation with neighbouring disciplines, this article is written from the point of view of a chemist. Although the focus here is largely on molecular considerations, innovative contributions from physics, electro engineering, nanotechnology and other scientific disciplines are equally important. However, the ability of the chemist to correlate function with structure, to design and to provide tailor-made functional molecules is central to molecular electronics. PMID:17637951

  8. Poisson's spot with molecules

    SciTech Connect

    Reisinger, Thomas; Holst, Bodil; Patel, Amil A.; Smith, Henry I.; Reingruber, Herbert; Fladischer, Katrin; Ernst, Wolfgang E.; Bracco, Gianangelo

    2009-05-15

    In the Poisson-spot experiment, waves emanating from a source are blocked by a circular obstacle. Due to their positive on-axis interference an image of the source (the Poisson spot) is observed within the geometrical shadow of the obstacle. In this paper we report the observation of Poisson's spot using a beam of neutral deuterium molecules. The wavelength independence and the weak constraints on angular alignment and position of the circular obstacle make Poisson's spot a promising candidate for applications ranging from the study of large molecule diffraction to patterning with molecules.

  9. Poisson's spot with molecules

    NASA Astrophysics Data System (ADS)

    Reisinger, Thomas; Patel, Amil A.; Reingruber, Herbert; Fladischer, Katrin; Ernst, Wolfgang E.; Bracco, Gianangelo; Smith, Henry I.; Holst, Bodil

    2009-05-01

    In the Poisson-spot experiment, waves emanating from a source are blocked by a circular obstacle. Due to their positive on-axis interference an image of the source (the Poisson spot) is observed within the geometrical shadow of the obstacle. In this paper we report the observation of Poisson’s spot using a beam of neutral deuterium molecules. The wavelength independence and the weak constraints on angular alignment and position of the circular obstacle make Poisson’s spot a promising candidate for applications ranging from the study of large molecule diffraction to patterning with molecules.

  10. Ultracold polar KRb molecules

    NASA Astrophysics Data System (ADS)

    Neyenhuis, Brian; Chotia, Amodsen; Moses, Steven; Ye, Jun; Jin, Deborah

    2011-05-01

    Ultracold polar molecules in the quantum degenerate regime open the possibility of realizing quantum gases with long-range, and spatially anisotropic, interparticle interactions. Currently, we can create a gas of ultracold fermionic ground-state KRb molecules in with a peak density of 1012 cm-3 and a temperature just 1.4 times the Fermi temperature. We will report on efforts to further cool this gas of molecules. One possibility is to evaporatively cool a spin-polarized molecular Fermi gas confined in quasi-2D, where we would rely on dipole-dipole interactions for rethermalization. We acknowledge funding from NIST, NSF, and AFOSR-MURI.