Science.gov

Sample records for molybdenum 99

  1. Method of producing molybdenum-99

    DOEpatents

    Pitcher, Eric John

    2013-05-28

    Method of producing molybdenum-99, comprising accelerating ions by means of an accelerator; directing the ions onto a metal target so as to generate neutrons having an energy of greater than 10 MeV; directing the neutrons through a converter material comprising techentium-99 to produce a mixture comprising molybdenum-99; and, chemically extracting the molybdenum-99 from the mixture.

  2. HEU and LEU comparison in the production of Molybdenum-99

    SciTech Connect

    Cestau, Daniel; Novello, Ariel; Cristini, Pablo; Bronca, Marcelo; Centurion, Roberto; Bavaro, Ricardo; Cestau, Julian; Carranza, Eduardo

    2008-07-15

    Fission Molybdenum-99 from LEU targets is being produced in Argentina, at the Ezeiza Atomic Centre, since 2002. Before 2002, Argentina produced for more than 15 years fission molybdenum-99 from HEU targets. Both production procedures involve the irradiation of the targets composed by an Uranium-Aluminium compound 'meat' cladded with aluminum and a chemical processing of the targets. A statistic relative efficiency analysis of the production results, a brief description of the LEU method and quality control data of both procedures will be presented. (author)

  3. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    SciTech Connect

    Soderquist, Chuck Z.; Weaver, Jamie L.

    2015-11-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99mTc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)3. The precipitate of Gd(OH)3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99Mo and 99mTc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  4. Future of low specific activity molybdenum-99/technetium-99m generator.

    PubMed

    Mushtaq, A

    2012-10-01

    In last few years, the shortage of molybdenum-99 (99Mo) was felt in the developed and developing countries hospitals, where diagnostic nuclear medicine is practiced. To overcome the shortage of 99Mo various routes of its production by accelerators and reactors generating low and high specific activity products have been planned. High specific activity 99Mo obtained by fission of uranium-235 (235U) has completely dominated in the manufacturing of technetium-99m (99mTc) generators in last 3-4 decades, but due to proliferation and dirty bomb, issues non fission routes of 99Mo production are emphasized. Future of low specific activity 99Mo is discussed. PMID:22642420

  5. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    NASA Astrophysics Data System (ADS)

    Tsechanski, A.; Bielajew, A. F.; Archambault, J. P.; Mainegra-Hing, E.

    2016-01-01

    A new "one-stage" approach for production of 99Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of 99Mo via the photoneutron reaction 100Mo(γ,n)99Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r0) W target, for target thickness z > 1.84r0, where r0 is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r0) for target thickness case: z ⩾ 2.0r0. It is shown for the one-stage approach with thicknesses of (1.84-2.0)r0, that the 99Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r0) in the traditional two-stage approach (W converter and separate 99Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the 99Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity for the one-stage approach of three enriched 100Mo-targets of a 2 cm diameter and

  6. Feasibility study of accelerator based production of molybdenum-99/technetium-99m

    NASA Astrophysics Data System (ADS)

    Tchelidze, Lali

    Stability of supply in the medical radioisotope market is now of overriding importance. One of the most commonly used radioisotopes is 99mTc, which is produced from 99Mo decay. 99Mo has been produced in nuclear reactors before, however these reactors are aging and have been not reliable lately and there is a great need to find an alternative for the production. In the current project, photo-neutron production of 99Mo/ 99mTc was investigated. An electron linear accelerator at the Idaho Accelerator Center was used to study the feasibility of 99mTc production using bremsstrahlung photon beams from the accelerator. The kinematic recoil process that occurs with every photo nuclear reaction was exploited. With the emission of a neutron in a photo nuclear reaction, the parent nucleus recoils in order to conserve momentum. This recoil can be used to separate 99Mo from 100Mo, at which point one has a very pure and very high specific activity source of 99Mo. We verified the photo-neutron production rates for 99Mo. Also, the kinematic recoil process was modeled and separation efficiencies were measured experimentally. We concluded that it is feasible to produce high 99Mo activities, however nano-particles of molybdenum have to be used and a clean nano-particle separation method has to be achieved.

  7. Production of {sup 99}Mo using LEU and molybdenum targets in a 1 MW Triga reactor

    SciTech Connect

    Mo, S.C.

    1993-12-31

    The production of {sup 99}Mo using Low Enriched Uranium (LEU) and natural molybdenum targets in a 1 MW Triga reactor is investigated. The successive linear programming technique is applied to minimize the target loadings for different yield constraints. The irradiation time is related to the kinetics of the growth and decay of {sup 99}Mo. The feasibility of a neutron generated based {sup 99}Mo production system is discussed.

  8. Production of Molybdenum-99 by (n, ) activation and direct separation of Technetium-99m without column generator fabrication: A viable strategy for enhanced availability of technetium-99m

    SciTech Connect

    Knapp Jr, Russ F; Pillai, M R A

    2012-01-01

    Fission-produced 99Mo (F 99Mo) is traditionally used for fabrication of 99Mo/99mTc adsorption-type column generators. In this paper, several emerging strategies that are being pursued or have been suggested to overcome the continuing shortages of F 99Mo are discussed. To provide an alternative source of 99Mo, the principal focus of this analysis is a detailed discussion of the advantages and strategies for enhanced production of low-specific-activity 99Mo (LSA 99Mo) by direct activation of molybdenum targets in nuclear reactors. In order to enhance the availability of 99Mo, development of an increased network of reactors for production of LSA 99Mo is described, as well as utilization of currently unused reactors. The time spent in manufacturing of 99Mo/99mTc column generators is responsible for the loss of more than 50% of F99Mo produced. Hence, the authors propose a paradigm shift in the use of 99Mo by recovering clinical-grade 99mTc from 99Mo solution as an alternative to use of 99Mo/99mTc column generators, thereby avoiding substantial decreased availability of 99Mo from radioactive decay. Implementation of the suggested strategies would be expected to increase availability of 99mTc to the clinical user community by several folds. Additional important advantages of the use of LSA 99Mo include precluding the need for fission product waste management and phasing out the need for high- and low-enriched uranium as target materials for medical radioisotope production.

  9. Assessment of potential ORNL contributions to supply of molybdenum-99

    SciTech Connect

    Ottinger, C.L.; Collins, E.D.

    1996-04-01

    The most widely used, and probably the most important, single radioisotope in commerce is {sup 99}Mo. Although the present supply is adequate, there are many vulnerabilities in the supply picture. Resources available at ORNL could be applied to help ensure the continued availability of this critically needed radioisotope. This assessment considers the ways in which ORNL might participate in DOE efforts to develop and maintain a domestic source of {sup 99}Mo for medical needs. The primary recommendation presented here is that ORNL obtain DOE support for development of an improved method for providing {sup 99}Mo to the user community. Specifically, development and demonstration of a system based on irradiation of enriched stable {sup 98}Mo, as opposed to fission of {sup 235}U, is recommended. Such a system would (1) alleviate the need for using highly enriched uranium as target material (nonproliferation and criticality safety concerns); (2) alleviate the need to produce a large volume of unwanted fission product wastes (safety and cost concerns); (3) promote the need for enriched {sup 98}Mo, which can be produced in the ORNL calutrons or plasma separation equipment; and (4) promote the need for a high-flux reactor, such as the High Flux Isotope Reactor (HFIR).

  10. Molybdenum-99 Isotope Production Preparation at Sandia National Laboratories

    SciTech Connect

    Carson, S.D.; Longley, S.W.; McDonald, M.J.; Parma, E.J.; Vernon, M.E.

    1998-10-07

    `Q&c M. J. McDonald, S. D. Carson, S. W. Longley, E. J. Parma, M. E. Vern `~ I@ .,., Sandia National Laboratories*, P. .0. Box 5800, Albuquerque, NM, 8 W? 1$ tl?;:q `f. (3 . 8 /'~ Abstract This report was prepared as an account of work sponsored byanagency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. loading on the Cintichem targets. These tests were designed to gain process knowledge prior to processing an irradiated target. The chemical separation tests were performed in a fime hood During cold testing, several tests were performed on individual components of the process to complete, a series of `hot' tests was designed to process irradiated targets. These were designed to optimize the process, identify problems prior to processing higher inventory targets, and to the shielded containment box (SCB). Table 1 is a summary of the tests performed prior to the Test Target Power Post irradiation Total inventory 99M0 inventory (kW)/ Irradiation decay (hrs) (TBq*) /decay (TBq)/decay Time (hrs) inventory (TBq) inventory(TBq) in the processing boxes as color comparisons. Product quality control testing was conducted for all the tests and the results were compared to The production process generates a high activity acidic liquid

  11. Low enriched uranium foil plate target for the production of fission Molybdenum-99 in Pakistan Research Reactor-1

    NASA Astrophysics Data System (ADS)

    Mushtaq, A.; Iqbal, Masood; Bokhari, Ishtiaq Hussain; Mahmood, Tayyab

    2009-04-01

    Low enriched uranium foil (19.99% 235U) will be used as target material for the production of fission Molybdenum-99 in Pakistan Research Reactor-1 (PARR-1). LEU foil plate target proposed by University of Missouri Research Reactor (MURR) will be irradiated in PARR-1 for the production of 100Ci of Molybdenum-99 at the end of irradiation, which will be sufficient to prepare required 99Mo/ 99mTc generators at Pakistan Institute of Nuclear Science and Technology, Islamabad (PINSTECH) and its supply in the country. Neutronic and thermal hydraulic analysis for the fission Molybdenum-99 production at PARR-1 has been performed. Power levels in target foil plates and their corresponding irradiation time durations were initially determined by neutronic analysis to have the required neutron fluence. Finally, the thermal hydraulic analysis has been carried out for the proposed design of the target holder using LEU foil plates for fission Molybdenum-99 production at PARR-1. Data shows that LEU foil plate targets can be safely irradiated in PARR-1 for production of desired amount of fission Molybdenum-99.

  12. A 3D Computational fluid dynamics model validation for candidate molybdenum-99 target geometry

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Dale, Greg; Vorobieff, Peter

    2014-11-01

    Molybdenum-99 (99Mo) is the parent product of technetium-99m (99mTc), a radioisotope used in approximately 50,000 medical diagnostic tests per day in the U.S. The primary uses of this product include detection of heart disease, cancer, study of organ structure and function, and other applications. The US Department of Energy seeks new methods for generating 99Mo without the use of highly enriched uranium, to eliminate proliferation issues and provide a domestic supply of 99mTc for medical imaging. For this project, electron accelerating technology is used by sending an electron beam through a series of 100Mo targets. During this process a large amount of heat is created, which directly affects the operating temperature dictated by the tensile stress limit of the wall material. To maintain the required temperature range, helium gas is used as a cooling agent that flows through narrow channels between the target disks. In our numerical study, we investigate the cooling performance on a series of new geometry designs of the cooling channel. This research is supported by Los Alamos National Laboratory.

  13. Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates

    NASA Astrophysics Data System (ADS)

    Hou, X.; Tanguay, J.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.

    2016-01-01

    In response to the recognized fragility of reactor-produced 99Mo supply, direct production of 99mTc via 100Mo(p,2n)99mTc reaction using medical cyclotrons has been investigated. However, due to the existence of other Molybdenum (Mo) isotopes in the target, in parallel with 99mTc, other technetium (Tc) radioactive isotopes (impurities) will be produced. They will be incorporated into the labeled radiopharmaceuticals and result in increased patient dose. The isotopic composition of the target and beam energy are main factors that determine production of impurities, thus also dose increases. Therefore, they both must be considered when selecting targets for clinical 99mTc production. Although for any given Mo target, the patient dose can be predicted based on complicated calculations of production yields for each Tc radioisotope, it would be very difficult to reverse these calculations to specify target composition based on dosimetry considerations. In this article, a relationship between patient dosimetry and Mo target composition is studied. A simple and easy algorithm for dose estimation, based solely on the knowledge of target composition and beam energy, is described. Using this algorithm, the patient dose increase due to every Mo isotope that could be present in the target is estimated. Most importantly, a technique to determine Mo target composition thresholds that would meet any given dosimetry requirement is proposed.

  14. Molybdenum

    Integrated Risk Information System (IRIS)

    Molybdenum ; CASRN 7439 - 98 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  15. The thermal-mechanical analysis of targets for the high volume production of molybdenum-99 using a low-enriched uranium metal foil

    NASA Astrophysics Data System (ADS)

    Turner, Kyler Kriens

    Molybdenum-99 diagnostic imaging is the most commonly practiced procedure in nuclear medicine today with the majority molybdenum-99 produced with proliferation sensitive HEU. International and domestic efforts to develop non-HEU production techniques have taking the first steps toward establishing a new non-HEU molybdenum-99 based supply chain. The focus of the research presented in this work is on the analysis of a new high U-235 density LEU based molybdenum-99 production target. Converting directly to LEU using current manufacturing techniques greatly reduces the molybdenum-99 yield per target making high volume production uneconomical. The LEU based foil target analyzed in this research increases the yield per target making economic high volume production with LEU possible. The research analyzed the thermal-mechanical response of an LEU foil target during irradiation. Thermal-mechanical studies focused on deflections and stresses to assess the probability of target failure. Simpler analytical models were used to determine the proper shape of the target and to benchmark the numerical modeling software. Numerical studies using Abaqus focused on analyzing various heating and cooling conditions and assessing the effects of curvature on the target. Finally, experiments were performed to simulate low power heating and further benchmark the models. The results from all of these analyses indicate a LEU foil target could survive irradiation depending on the conditions seen during irradiation.

  16. Production of radionuclide molybdenum 99 in a distributed and in situ fashion

    DOEpatents

    Gentile, Charles A.; Cohen, Adam B.; Ascione, George

    2016-04-19

    A method and apparatus for producing Mo-99 from Mo-100 for the use of the produced Mo-99 in a Tc-99m generator without the use of uranium is presented. Both the method and apparatus employ high energy gamma rays for the transformation of Mo-100 to Mo-99. The high energy gamma rays are produced by exposing a metal target to a moderated neutron output of between 6 MeV and 14 MeV. The resulting Mo-99 spontaneously decays into Tc-99m and can therefore be used in a Tc-99m generator.

  17. Cyclotron production of molybdenum-99 via proton-induced uranium-238 fission

    SciTech Connect

    Lagunas-Solar, M.C.; Zeng, N.X.; Mirshad, I.; Castaneda, C.M.

    1996-12-31

    Technetium-99m ({sup 99m}Tc; 6.02 h) is the most widely used radioisotope in nuclear medicine worldwide. It is currently supplied from elutions of a {sup 99}Mo {r_arrow} {sup 99m}Tc generator and used for regional distribution or locally for institutional use. The parent {sup 99}Mo (66.02 h) radioactivities are being produced commercially in reactors using the {sup 235}U(n, fission){sup 99}Mo (preferred method) or the {sup 98}Mo(n,{gamma}){sup 99}Mo (less desirable) methods. The production of {sup 99}Mo is based on the operation of a small number of nuclear reactors, most of which have reached decommissioning age. Two new reactors to be dedicated to radioisotope production are now being planned in Canada. Accelerator-based methods for producing {sup 99}Mo and/or {sup 99m}Tc would then provide new alternatives to the current reliance on reactor-based technologies.

  18. Level 1 transient model for a molybdenum-99 producing aqueous homogeneous reactor and its applicability to the tracy reactor

    SciTech Connect

    Nygaard, E. T.; Williams, M. M. R.; Angelo, P. L.

    2012-07-01

    Babcock and Wilcox Technical Services Group (B and W) has identified aqueous homogeneous reactors (AHRs) as a technology well suited to produce the medical isotope molybdenum 99 (Mo-99). AHRs have never been specifically designed or built for this specialized purpose. However, AHRs have a proven history of being safe research reactors. In fact, in 1958, AHRs had 'a longer history of operation than any other type of research reactor using enriched fuel' and had 'experimentally demonstrated to be among the safest of all various type of research reactor now in use [1].' A 'Level 1' model representing B and W's proposed Medical Isotope Production System (MIPS) reactor has been developed. The Level 1 model couples a series of differential equations representing neutronics, temperature, and voiding. Neutronics are represented by point reactor kinetics while temperature and voiding terms are axially varying (one-dimensional). While this model was developed specifically for the MIPS reactor, its applicability to the Japanese TRACY reactor was assessed. The results from the Level 1 model were in good agreement with TRACY experimental data and found to be conservative over most of the time domains considered. The Level 1 model was used to study the MIPS reactor. An analysis showed the Level 1 model agreed well with a more complex computational model of the MIPS reactor (a FETCH model). Finally, a significant reactivity insertion was simulated with the Level 1 model to study the MIPS reactor's time-dependent response. (authors)

  19. Target and method for the production of fission product molybdenum-99

    DOEpatents

    Vandegrift, G.F.; Vissers, D.R.; Marshall, S.L.; Varma, R.

    1987-10-26

    A target for the reduction of fission product Mo-99 is prepared from uranium of low U-235 enrichment by coating a structural support member with a preparatory coating of a substantially oxide-free substrate metal. Uranium metal is electrodeposited from a molten halide electrolytic bath onto a substrate metal. The electrodeposition is performed at a predetermined direct current rate or by using pulsed plating techniques which permit relaxation of accumulated uranium ion concentrations within the melt. Layers of as much as to 600 mg/cm/sup 2/ of uranium can be prepared to provide a sufficient density to produce acceptable concentrations of fission product Mo-99. 2 figs.

  20. Target and method for the production of fission product molybdenum-99

    DOEpatents

    Vandegrift, George F.; Vissers, Donald R.; Marshall, Simon L.; Varma, Ravi

    1989-01-01

    A target for the reduction of fission product Mo-99 is prepared from uranium of low U-235 enrichment by coating a structural support member with a preparatory coating of a substantially oxide-free substrate metal. Uranium metal is electrodeposited from a molten halide electrolytic bath onto a substrate metal. The electrodeposition is performed at a predetermined direct current rate or by using pulsed plating techniques which permit relaxation of accumulated uranium ion concentrations within the melt. Layers of as much as to 600 mg/cm.sup.2 of uranium can be prepared to provide a sufficient density to produce acceptable concentrations of fission product Mo-99.

  1. Conversion of Molybdenum-99 production process to low enriched uranium: Neutronic and thermal hydraulic analyses of HEU and LEU target plates for irradiation in Pakistan Research Reactor-1

    NASA Astrophysics Data System (ADS)

    Mushtaq, Ahmad; Iqbal, Masood; Bokhari, Ishtiaq Hussain; Mahmood, Tayyab; Muhammad, Atta

    2012-09-01

    Technetium-99m, the daughter product of Molybdenum-99 is the most widely needed radionuclide for diagnostic studies in Pakistan. Molybdenum-99 Production Facility has been established at PINSTECH. Highly enriched uranium (93% 235U) U/Al alloy targets have been irradiated in Pakistan Research Reactor-1 (PARR-1) for the generation of fission Mo-99, while basic dissolution technique is used for separation of Mo-99 from target matrix activity. In line with the international objective of minimizing and eventually eliminating the use of HEU in civil commerce, national and international efforts have been underway to shift the production of medical isotopes from HEU to LEU (LEU; <20% 235U enrichment) targets. To achieve the equivalent amount of 99Mo with LEU targets, approximately 5 times uranium is needed. LEU aluminum uranium dispersion target has been developed, which may replace existing HEU aluminum/uranium alloy targets for production of 99Mo using basic dissolution technique. Neutronic and thermal hydraulic calculations were performed for safe irradiation of targets in the core of PARR-1.

  2. Application of computational models to estimate organ radiation dose in rainbow trout from uptake of molybdenum-99 with comparison to iodine-131.

    PubMed

    Martinez, N E; Johnson, T E; Pinder, J E

    2016-01-01

    This study compares three anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ radiation dose and dose rates from molybdenum-99 ((99)Mo) uptake in the liver and GI tract. Model comparison and refinement is important to the process of determining accurate doses and dose rates to the whole body and the various organs. Accurate and consistent dosimetry is crucial to the determination of appropriate dose-effect relationships for use in environmental risk assessment. The computational phantoms considered are (1) a geometrically defined model employing anatomically relevant organ size and location, (2) voxel reconstruction of internal anatomy obtained from CT imaging, and (3) a new model utilizing NURBS surfaces to refine the model in (2). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling and combined with empirical models for predicting activity concentration to estimate dose rates and ultimately determine cumulative radiation dose (μGy) to selected organs after several half-lives of (99)Mo. The computational models provided similar results, especially for organs that were both the source and target of radiation (less than 30% difference between all models). Values in the empirical model as well as the 14 day cumulative organ doses determined from (99)Mo uptake are compared to similar models developed previously for (131)I. Finally, consideration is given to treating the GI tract as a solid organ compared to partitioning it into gut contents and GI wall, which resulted in an order of magnitude difference in estimated dose for most organs. PMID:26048012

  3. Potential impact of releases from a new Molybdenum-99 production facility on regional measurements of airborne xenon isotopes

    SciTech Connect

    Bowyer, Ted W.; Eslinger, Paul W.; Cameron, Ian M.; Friese, Judah I.; Hayes, James C.; Metz, Lori A.; Miley, Harry S.

    2014-03-01

    The monitoring of the radioactive xenon isotopes 131mXe, 133Xe, 133mXe, and 135Xe is important for the detection of nuclear explosions. While backgrounds of the xenon isotopes are short-lived, they are constantly replenished from activities dominated by the fission-based production of 99Mo used for medical procedures. One of the most critical locations on earth for the monitoring of nuclear explosions is the Korean peninsula, where the Democratic Republic of North Korea (DPRK) has announced that it had conducted three nuclear tests between 2009 and 2013. This paper explores the backgrounds that would be caused by the medium to large scale production of 99Mo in the region of the Korean peninsula.

  4. Separation of molybdenum and technetium

    NASA Astrophysics Data System (ADS)

    Andersson, J. D.; Gagnon, K.; Wilson, J. S.; Romaniuk, J.; Abrams, D. N.; McQuarrie, S. A.

    2012-12-01

    After the production of 99mTc via the 100Mo(p,2n)99mTc reaction, there is a requirement for separating 99mTc from bulk 100Mo. Although a number of separation methods have been demonstrated, the possibility of using a cartridge-based system is particularly attractive for routine use in a good manufacturing practice (GMP) regulatory environment. This study confirmed that hydrophobic interaction chromatography (HIC) solid phase extraction (SPE) with PEG as stationary phase is an efficient and easily automated method for separating molybdate and pertechnetate, and that PEG degradation in the conditions used does not affect the performance of the resin. In addition, reversed phase SPE using Waters Oasis® HLB shows promise for successful separation of molybdenum and technetium and work continues to extend this technology to readily available commercial SPE cartridges.

  5. Breaking America’s Dependence on Foreign…Molybdenum

    PubMed Central

    Einstein, Andrew J.

    2009-01-01

    Brief Unstructured Abstract Approximately 9 million nuclear cardiology studies performed each year in the United States employ technetium-99m, which is produced from the decay of molybdenum-99. The fragility of the worldwide technetium-99m supply chain has been underscored by current shortages caused by an unplanned shutdown of Europe’s largest reactor. The majority of the United States’ supply derives from a reactor in Canada nearing the end of its lifespan, whose planned replacements have been recently cancelled. In this article, the clinical importance of technetium-99m and our tenuous dependence on foreign supply of Molybdenum is addressed. PMID:19356583

  6. Mixture of a molybdenum carboxylate and a molybdenum dithiophosphate or a molybdenum dithiocarbamate for use in a hydrovisbreaking process

    SciTech Connect

    Howell, J.A.; Kukes, S.G.

    1987-11-10

    A molybdenum is described containing mixture selected from the group consisting of a mixture comprising a molybdenum dithiophosphate and a molybdenum carboxylate and a mixture comprising a molybdenum dithiocarbamate and a molybdenum carboxylate.

  7. Molybdenum disilicide composites

    DOEpatents

    Rodriguez, Robert P.; Petrovic, John J.

    2001-01-01

    Molybdenum disilicide/.beta.'-Si.sub.6-z Al.sub.z O.sub.z N.sub.8-z, wherein z=a number from greater than 0 to about 5, composites are made by use of in situ reactions among .alpha.-silicon nitride, molybdenum disilicide, and aluminum. Molybdenum disilicide within a molybdenum disilicide/.beta.'-Si.sub.6-z Al.sub.z O.sub.z N.sub.8-z eutectoid matrix is the resulting microstructure when the invention method is employed.

  8. Molybdenum disilicide matrix composite

    DOEpatents

    Petrovic, John J.; Carter, David H.; Gac, Frank D.

    1991-01-01

    A composition consisting of an intermetallic compound, molybdenum disilicide, which is reinforced with VS silicon carbide whiskers dispersed throughout it and a method of making the reinforced composition. Use of the reinforcing material increases fracture toughness at low temperatures and strength at high temperatures, as compared to pure molybdenum disilicide.

  9. Molybdenum disilicide matrix composite

    DOEpatents

    Petrovic, John J.; Carter, David H.; Gac, Frank D.

    1990-01-01

    A composition consisting of an intermetallic compound, molybdenum disilicide, which is reinforced with VS silicon carbide whiskers dispersed throughout it and a method of making the reinforced composition. Use of the reinforcing material increases fracture toughness at low temperatures and strength at high temperatures, as compared to pure molybdenum disilicide.

  10. Molybdenum nutriture in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molybdenum is a trace element that functions as a cofactor for at least four enzymes: sulfite oxidase, xanthine oxidase, aldehyde oxidase, and mitochondrial amidoxime reducing component. In each case, molybdenum is bound to a complex, multi-ring organic component called molybdopterin, forming the e...

  11. Organometallic Chemistry of Molybdenum.

    ERIC Educational Resources Information Center

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  12. Preparation of thick molybdenum targets

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1974-01-01

    Thick natural molybdenum deposits on nickel plated copper substrates were prepared by thermal decomposition of molybdenum hexacarbonyl vapors on a heated surface in an inert gas atmosphere. The molybdenum metal atoms are firmly bonded to the substrate atoms, thus providing an excellent thermal contact across the junction. Molybdenum targets thus prepared should be useful for internal bombardment in a cyclotron where thermal energy inputs can exceed 10 kW.

  13. GEANT 4 simulation of (99)Mo photonuclear production in nanoparticles.

    PubMed

    Dikiy, N P; Dovbnya, A N; Fedorchenko, D V; Khazhmuradov, M A

    2016-08-01

    GEANT 4 Monte-Carlo simulation toolkit is used to study the kinematic recoil method of (99)Mo photonuclear production. Simulation for bremsstrahlung photon spectrum with maximum photon energy 30MeV showed that for MoO3 nanoparticle escape fraction decreases from 0.24 to 0.08 when nanoparticle size increases from 20nm to 80nm. For the natural molybdenum and pure (100)Mo we obtained the lower values: from 0.17 to 0.05. The generation of accompanying molybdenum nuclei is significantly lower for pure (100)Mo and is about 3.6 nuclei per single (99)Mo nucleus, while natural molybdenum nanoparticle produce about 48 accompanying nuclei. Also, we have shown that for high-energy photons escape fraction of (99)Mo decreases, while production of unwanted molybdenum isotopes is significantly higher. PMID:27156050

  14. Molybdenum cofactor deficiency.

    PubMed

    Atwal, Paldeep S; Scaglia, Fernando

    2016-01-01

    Molybdenum cofactor deficiency (MoCD) is a severe autosomal recessive inborn error of metabolism first described in 1978. It is characterized by a neonatal presentation of intractable seizures, feeding difficulties, severe developmental delay, microcephaly with brain atrophy and coarse facial features. MoCD results in deficiency of the molybdenum cofactor dependent enzymes sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase and mitochondrial amidoxime reducing component. The resultant accumulation of sulfite, taurine, S-sulfocysteine and thiosulfate contributes to the severe neurological impairment. Recently, initial evidence has demonstrated early treatment with cyclic PMP can turn MoCD type A from a previously neonatal lethal condition with only palliative options, to near normal neurological outcomes in affected patients. We review MoCD and focus on describing the currently published evidence of this exciting new therapeutic option for MoCD type A caused by pathogenic variants in MOCD1. PMID:26653176

  15. Radiation Chemistry of Simulated (99)Mo Product

    SciTech Connect

    Carson, S.D.; Garcia, M.J.; McDonald, M.J.; Simpson, R.L.; Tallant, D.R.

    1998-11-06

    PharrnaceuticaI houses that produce {sup 99}Tc/{sup 99}Tc generators have on occasion received {sup 99}Mo that contained a black precipitate. Addition of sodium hypochlorite to product bottles prior to shipment prevents precipitate formation, indicating the precipitate is a reduced form of Mo. The radiation effects of the dose from {sup 99}Mo on the product and product bottle have been determined by irradiating simulated {sup 99}Mo product solutions with the {sup 60}Co source at Sandia National Laboratories' Gamma Irradiation Facility (GE). The GIF experiment successfully generated a black precipitate in amounts sufficient for isolation and analysis by infrared and Rrunan spectroscopy. Changes in the pH of the basic {sup 99}Mo product solution during irradiation were monitored by titration. ResuIts of these analyses and the nature of the process that generates the precipitate, a mixture of molybdenum oxides that forms in plastic bottles, but not in glass containers, are discussed.

  16. Mineral resource of the month: molybdenum

    USGS Publications Warehouse

    Polyak, Désire E.

    2011-01-01

    The article offers information about the mineral molybdenum. Sources includes byproduct or coproduct copper-molybdenum deposits in the Western Cordillera of North and South America. Among the uses of molybdenum are stainless steel applications, as an alloy material for manufacturing vessels and as lubricants, pigments or chemicals. Also noted is the role played by molybdenum in renewable energy technology.

  17. Oxygen Plasma Interactions with Molybdenum: Formation of Volatile Molybdenum Oxides

    NASA Astrophysics Data System (ADS)

    Saburi, Tei; Murata, Hirotoshi; Suzuki, Tatsuya; Fujii, Yasuhiko; Kiuchi, Kiyoshi

    The oxidation of molybdenum by oxygen plasma was studied. The oxygen plasma was discharged by helicon wave at the frequency of 18.1 MHz and at the power of 200W. The weight change of molybdenum in oxygen plasma was measured at 400 °C and at oxygen pressure of 5 Pa. The specimen was found to be oxidized and to lose it's weight drastically with the oxygen plasma, while the weight change of the specimen in the oxidation without plasma was not observed under the same conditions. The energetic species of oxygen atoms generated by rf plasma is regarded to accelerate the oxidation of molybdenum and the oxidation leads to the formation of volatile molybdenum trioxide at the surface.

  18. Molybdenum enzymes in higher organisms

    PubMed Central

    Hille, Russ; Nishino, Takeshi; Bittner, Florian

    2010-01-01

    Recent progress in our understanding of the structural and catalytic properties of molybdenum-containing enzymes in eukaryotes is reviewed, along with aspects of the biosynthesis of the cofactor and its insertion into apoprotein. PMID:21516203

  19. Oxide strengthened molybdenum-rhenium alloy

    SciTech Connect

    Bianco, Robert; Buckman, Jr., R. William

    2000-01-01

    Provided is a method of making an ODS molybdenum-rhenium alloy which includes the steps of: (a) forming a slurry containing molybdenum oxide and a metal salt dispersed in an aqueous medium, the metal salt being selected from nitrates or acetates of lanthanum, cerium or thorium; (b) heating the slurry in the presence of hydrogen to form a molybdenum powder comprising molybdenum and an oxide of the metal salt; (c) mixing rhenium powder with the molybdenum powder to form a molybdenum-rhenium powder; (d) pressing the molybdenum-rhenium powder to form a molybdenum-rhenium compact; (e) sintering the molybdenum-rhenium compact in hydrogen or under a vacuum to form a molybdenum-rhenium ingot; and (f) compacting the molybdenum-rhenium ingot to reduce the cross-sectional area of the molybdenum-rhenium ingot and form a molybdenum-rhenium alloy containing said metal oxide. The present invention also provides an ODS molybdenum-rhenium alloy made by the method. A preferred Mo--Re-ODS alloy contains 7-14 weight % rhenium and 2-4 volume % lanthanum oxide.

  20. Oxide strengthened molybdenum-rhenium alloy

    SciTech Connect

    Bianco, Robert; Buckman, William R. Jr.

    1998-12-01

    Provided is a method of making an ODS molybdenum-rhenium alloy which includes the steps of: (1) forming a slurry containing molybdenum oxide and a metal salt dispersed in an aqueous medium, the metal salt being selected from nitrates or acetates of lanthanum, cerium or thorium; (2) heating the slurry in the presence of hydrogen to form a molybdenum powder comprising molybdenum and an oxide of the metal salt; (3) mixing rhenium powder with the molybdenum powder to form a molybdenum-rhenium powder; (4) pressing the molybdenum-rhenium powder to form a molybdenum-rhenium compact; (5) sintering the molybdenum-rhenium compact in hydrogen or under a vacuum to form a molybdenum-rhenium ingot; and (6) compacting the molybdenum-rhenium ingot to reduce the cross-sectional area of the molybdenum-rhenium ingot and form a molybdenum-rhenium alloy containing said metal oxide. The present invention also provides an ODS molybdenum-rhenium alloy made by the method.

  1. Mo-99/Tc-99m Separation: An Assessment of Technical Options

    SciTech Connect

    Dash, A; Pillai, M R A; Knapp Jr, Russ F

    2013-01-01

    Several strategies for the effective separation of 99mTc from 99Mo have been developed and validated. Due to the success of column chromatographic separation using acidic alumina coupled with high specific activity fission 99Mo (F 99Mo) for production of 99Mo/99mTc generators, however, most technologies until recently have generated little interest. The reduced availability of F 99Mo and consequently the shortage of 99Mo/99mTc column generators in the recent past have resurrected interest in the production of 99Mo as well as 99mTc by alternate routes. Most of these alternative production processes require separation techniques capable of providing clinical grade 99mTc from low specific activity 99Mo or irradiated Mo targets. For this reason there has been renewed interest in alternate separation routes. This paper reviews the reported separation technologies which include column chromatography, solvent extraction, sublimation and gel systems that have been traditionally used for the fabrication of 99Mo/99mTc generator systems. The comparative advantage, disadvantage, and technical challenges toward adapting the emerging requirements are discussed. New developments such as solid-phase column extraction, electrochemical separation, extraction chromatography, supported liquid membrane (SLM) and thermochromatographic techniques are also being evaluated for their potential application in the changed scenario of providing 99mTc from alternate routes. Based on the analysis provided in this review, it appears that some proven separation technologies can be quickly resurrected for the separation of clinical grade 99mTc from macroscopic levels of reactor or cyclotron irradiated molybdenum targets. Furthermore, emerging technologies can be developed further to respond to the expected changing modes of 99mTc production.

  2. Silicon nitride reinforced with molybdenum disilicide

    SciTech Connect

    Petrovic, J.J.; Honnell, R.E.

    1990-12-31

    Compositions of matter comprised of silicon nitride and molybdenum disilicide and methods of making the compositions, where the molybdenum disilicide is present in amounts ranging from about 5 to about 50 vol%.

  3. Silicon nitride reinforced with molybdenum disilicide

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.

    1991-01-01

    Compositions of matter comprised of silicon nitride and molybdenum disilicide and methods of making the compositions, where the molybdenum disilicide is present in amounts ranging from about 5 to about 50 vol. %.

  4. Genetics Home Reference: molybdenum cofactor deficiency

    MedlinePlus

    ... molybdenum, is essential to the function of several enzymes. These enzymes help break down (metabolize) different substances in the ... molybdenum cofactor biosynthesis. Without the cofactor, the metabolic enzymes that rely on it cannot function. The resulting ...

  5. Nitrogen reduction: Molybdenum does it again

    NASA Astrophysics Data System (ADS)

    Schrock, Richard R.

    2011-02-01

    Nature reduces dinitrogen under mild conditions using nitrogenases, the most active of which contains molybdenum and iron. The only abiological dinitrogen reduction catalyst that avoids the harsh conditions of the Haber-Bosch process contains just molybdenum.

  6. Weldable ductile molybdenum alloy development

    SciTech Connect

    Cockeram, B. V.; Ohriner, Evan Keith; Byun, Thak Sang; Schneibel, Joachim H; Miller, Michael K; Snead, Lance Lewis

    2008-01-01

    Molybdenum and its alloys are attractive structural materials for high-temperature applications. However, various practical issues have limited its use. One concern relates to the loss of ductility occurring in the heat-affected weld zone caused by segregation of oxygen to grain boundaries. In this study, a series of arc melted molybdenum alloys have been produced containing controlled additions of B, C, Zr, and Al. These alloys were characterized with respect to their tensile properties, smooth bend properties, and impact energy for both the base metal and welds. These alloys were compared with a very high purity low carbon arc cast molybdenum reference. For discussion purposes the alloys produced are separated into two categories: Mo Al B alloys, and Mo Zr B alloys. The properties of Mo Zr B alloy welds containing higher carbon levels exhibited slight improvement over unalloyed molybdenum, though the base-metal properties for all Mo Zr B alloys were somewhat inconsistent with properties better, or worse, than unalloyed molybdenum. A Mo Al B alloy exhibited the best DBTT values for welds, and the base metal properties were comparable to or slightly better than unalloyed molybdenum. The Mo Al B alloy contained a low volume fraction of second-phase particles, with segregation of boron and carbon to grain boundaries believed to displace oxygen resulting in improved weld properties. The volume fractions of second-phase particles are higher for the Mo Zr B alloys, and these alloys were prone to brittle fracture. It is also noted that these Mo Zr B alloys exhibited segregation of zirconium, boron and carbon to the grain boundaries.

  7. Determination of small amounts of molybdenum in tungsten and molybdenum ores

    USGS Publications Warehouse

    Grimaldi, F.S.; Wells, R.C.

    1943-01-01

    A rapid method has been developed for the determination of small amounts of molybdenum in tungsten and molybdenum ores. After removing iron and other major constituents the molybdenum thiocyanate color is developed in water-acetone solutions, using ammonium citrate to eliminate the interference of tungsten. Comparison is made by titrating a blank with a standard molybdenum solution. Aliquots are adjusted to deal with amounts of molybdenum ranging from 0.01 to 1.30 mg.

  8. Molybdenum sulfide/carbide catalysts

    DOEpatents

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  9. Sustained Availability of Technetium-99m - Possible Paths Forward

    SciTech Connect

    Pillai, M R A; Dash, A; Knapp Jr, Russ F

    2013-01-01

    The availability of technetium-99m (99mTc) for single-photon imaging in diagnostic nuclear medicine is crucial, and current availability is based on the molybdenum-99 (99Mo)/99mTc generator fabricated from fission-based molybdenum (F 99Mo) produced by use of highly enriched uranium (HEU) targets. The use of HEU targets is being phased out because of risks related to nuclear material proliferation, so alternative strategies for production of both 99Mo and 99mTc are being evaluated intensely. There are evidently no plans for replacement of the limited number of reactors that have primarily provided most of the 99Mo. The uninterrupted, dependable availability of 99mTc is a crucial issue. For these reasons, new options being pursued include both reactor- and accelerator-based strategies to sustain the continued availability of 99mTc without the use of HEU. In this paper the scientific and economic issues for transitioning from HEU to non-HEU are also discussed. In addition, the comparative advantages, disadvantages, technical challenges, present status, future prospects, security concerns, economic viability, and regulatory obstacles are reviewed. In addition, the international actions in progress towards evolving possible alternative strategies to produce 99Mo and/or 99mTc are analyzed. The breadth of technologies and new strategies under development to provide 99Mo and 99mTc reflects both the broad interest in and the importance of the pivotal role of 99mTc in diagnostic nuclear medicine.

  10. Enhanced molybdenum uptake in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molybdenum (Mo) is a cofactor for nitrate reductase. When nitrate reductase activity is limited by Mo deficiency, crop yields are also potentially limited. Plant deficiencies in Mo often occur in acidic soil due to mineral fixation. The long-term goal is to identify genes that can be used to develop...

  11. SURFACE TREATMENT OF MOLYBDENUM METAL

    DOEpatents

    Coffer, C.O.

    1961-12-01

    A process of descaling molybdenum articles comprises first immersing them in an aqueous sodium hydroxide-potassium permanganate solution of between 60 and 85 deg C, rinsing, and then immersing them in an aqueous solution containing a mixture of sulfuric, hydrochloric, and chromic acids.

  12. Molybdenum recycling in the United States in 1998

    USGS Publications Warehouse

    Blossom, John W.

    2002-01-01

    This report describes the flow of molybdenum in the United States in 1998 with emphasis on the extent to which molybdenum was recycled. Molybdenum was mostly recycled from products of molybdenum-bearing steels and superalloys, with some molybdenum products recovered specifically for their high molybdenum content. In 1998, 8,000 metric tons (t) of molybdenum was estimated to have been recycled, and the recycling rate was calculated to be 33 percent, with recycling efficiency at about 30 percent.

  13. Production of Medical isotope Technecium-99 from DT Fusion neutrons

    NASA Astrophysics Data System (ADS)

    Boguski, John; Gentile, Charles; Ascione, George

    2011-10-01

    High energy neutrons produced in DT fusion reactors have a secondary application for use in the synthesis of valuable man-made isotopes utilized in industry today. One such isotope is metastable Technecium-99 (Tc99m), a low energy gamma emitter used in ~ 85% of all medical imaging diagnostics. Tc99m is created through beta decay of Molybdenum-99 (Mo99), which itself has only a 66 hour half-life and must be created from a neutron capture by the widely available and stable isotope Molydenum-98. Current worldwide production of Tc99m occurs in just five locations and relies on obtaining the fission byproduct Mo99 from highly enriched Uranium reactors. A Tc99m generator using DT fusion neutrons, however, could potentially be operated at individual hospitals and medical facilities without the use of any fissile material. The neutron interaction of the DT neutrons with Molybdenum in a potential device geometry was modeled using Monte Carlo neutron transport code MCNP. Trial experiments were also performed to test the viability of using DT neutrons to create ample quantities of Tc99m. Modeling and test results will follow.

  14. Molybdenum cofactor and human disease.

    PubMed

    Schwarz, Guenter

    2016-04-01

    Four molybdenum-dependent enzymes are known in humans, each harboring a pterin-based molybdenum cofactor (Moco) in the active site. They catalyze redox reactions using water as oxygen acceptor or donator. Moco is synthesized by a conserved biosynthetic pathway. Moco deficiency results in a severe inborn error of metabolism causing often early childhood death. Disease-causing symptoms mainly go back to the lack of sulfite oxidase (SO) activity, an enzyme in cysteine catabolism. Besides their name-giving functions, Mo-enzymes have been recognized to catalyze novel reactions, including the reduction of nitrite to nitric oxide. In this review we cover the biosynthesis of Moco, key features of Moco-enzymes and focus on their deficiency. Underlying disease mechanisms as well as treatment options will be discussed. PMID:27055119

  15. Mechanical properties of electron-beam-melted molybdenum and dilute molybdenum-rhenium alloys

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Witzke, W. R.

    1972-01-01

    A study of molybdenum and three dilute molybdenum-rhenium alloys was undertaken to determine the effects of rhenium on the low temperature ductility and other mechanical properties of molybdenum. Alloys containing 3.9, 5.9, and 7.7 atomic percent rhenium exhibited lower ductile-brittle transition temperatures than did the unalloyed molybdenum. The maximum improvement in the annealed condition was observed for molybdenum - 7.7 rhenium, which had a ductile-brittle transition temperature approximately 200 C (360 F) lower than that for unalloyed molybdenum. Rhenium additions also increased the low and high temperature tensile strengths and the high temperature creep strength of molybdenum. The mechanical behavior of dilute molybdenum-rhenium alloys is similar to that observed for dilute tungsten-rhenium alloys.

  16. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1990-01-01

    Compositions of matter consisting of matrix matrials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  17. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.; Gibbs, W. Scott

    1991-01-01

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms.

  18. Molybdenum disilicide alloy matrix composite

    DOEpatents

    Petrovic, J.J.; Honnell, R.E.; Gibbs, W.S.

    1991-12-03

    Compositions of matter consisting of matrix materials having silicon carbide dispersed throughout them and methods of making the compositions are disclosed. A matrix material is an alloy of an intermetallic compound, molybdenum disilicide, and at least one secondary component which is a refractory silicide. The silicon carbide dispersant may be in the form of VLS whiskers, VS whiskers, or submicron powder or a mixture of these forms. 3 figures.

  19. Zirconia-molybdenum disilicide composites

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.

    1991-01-01

    Compositions of matter comprised of molybdenum disilicide and zirconium oxide in one of three forms: pure, partially stabilized, or fully stabilized and methods of making the compositions. The stabilized zirconia is crystallographically stabilized by mixing it with yttrium oxide, calcium oxide, cerium oxide, or magnesium oxide and it may be partially stabilized or fully stabilized depending on the amount of stabilizing agent in the mixture.

  20. Mineral resource of the month: molybdenum

    USGS Publications Warehouse

    Magyar, Michael J.

    2004-01-01

    Molybdenum is a metallic element that is most frequently used in alloy and stainless steels, which together represent the single largest market for molybdenum. Molybdenum has also proven invaluable in carbon steel, cast iron and superalloys. Its alloying versatility is unmatched because its addition enhances material performance under high-stress conditions in expanded temperature ranges and in highly corrosive environments. The metal is also used in catalysts, other chemicals, lubricants and many other applications.

  1. Annealed CVD molybdenum thin film surface

    DOEpatents

    Carver, Gary E.; Seraphin, Bernhard O.

    1984-01-01

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  2. Authigenic Molybdenum Isotopes Record Lake Baikal in the Past

    NASA Astrophysics Data System (ADS)

    Yu, E.; Liu, H.; Lee, D.

    2013-12-01

    Authigenic molybdenum isotope signatures in marine sediments reflect the mechanisms of deposits under both oxic and reducing conditions. The studies are mainly focusing on marine environment, and the application on lake record is rare. A three-meters long gravity core (GC-99; 52°05'23'N, 105°50'24'E; water depth 201m) from Lake Baikal is studied for Mo isotopes and concentration. The result is using to examine the sources of material or/and the changes in conditions of Lake Baikal with climate changes. To approach on extracting Mo isotope signal directly related to lake water, a sequential leaching technique to extract the Mo isotopes coating on the Fe-Mn oxides and a robust chromatography technique to purify molybdenum isotopes is modified and used for all lake sediment samples. Then, Mo isotope composition is measured by applying double spike method with Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). According to the Mo concentration and its isotope composition δ98/95Mo relative to NIST-SRM-3134, the results imply Lake Baikal stayed oxic condition over the last 24 ka. Moreover, the sediment core GC-99 from Lake Baikal imply two stages fluctuations of the lake environment separated at core depth of 100cm (around 12ka); and the shifting of δ98/95Mo isotope composition shows that the lake during interglacial period was more oxic than the last glacial period due to absence of ice cover.

  3. Cyclotron Production of Technetium-99m

    NASA Astrophysics Data System (ADS)

    Gagnon, Katherine M.

    Technetium-99m (99mTc) has emerged as the most widely used radionuclide in medicine and is currently obtained from a 99Mo/ 99mTc generator system. At present, there are only a handful of ageing reactors worldwide capable of producing large quantities of the parent isotope, 99Mo, and owing to the ever growing shutdown periods for maintenance and repair of these ageing reactors, the reliable supply 99mTc has been compromised in recent years. With an interest in alternative strategies for producing this key medical isotope, this thesis focuses on several technical challenges related to the direct cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction. In addition to evaluating the 100Mo(p,2n)99mTc and 100Mo(p,x)99Mo reactions, this work presented the first experimental evaluation of the 100Mo(p,2n) 99gTc excitation function in the range of 8-18 MeV. Thick target calculations suggested that large quantities of cyclotron-produced 99mTc may be possible. For example, a 6 hr irradiation at 500 μA with an energy window of 18→10 MeV is expected to yield 1.15 TBq of 99mTc. The level of coproduced 99gTc contaminant was found to be on par with the current 99Mo/99mTc generator standard eluted with a 24 hr frequency. Highly enriched 100Mo was required as the target material for 99mTc production and a process for recycling of this expensive material is presented. An 87% recovery yield is reported, including metallic target preparation, irradiation, 99mTc extraction, molybdate isolation, and finally hydrogen reduction to the metal. Further improvements are expected with additional optimization experiments. A method for forming structurally stable metallic molybdenum targets has also been developed. These targets are capable of withstanding more than a kilowatt of beam power and the reliable production and extraction of Curie quantities of 99mTc has been demonstrated. With the end-goal of using the cyclotron-produced 99mTc clinically, the quality of the cyclotron

  4. Dynamic Modeling of Molybdenum Metabolism in Humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molybdenum is an essential nutrient in the human diet and is a cofactor for several enzymes. While intakes can vary widely with geographical region, both deficiency and toxicity in humans are rare. To determine if humans have adaptive mechanisms for maintaining molybdenum status under varying inta...

  5. Molybdenum Enzymes, Cofactors, and Model Systems.

    ERIC Educational Resources Information Center

    Burgmayer, S. J. N; Stiefel, E. I.

    1985-01-01

    Discusses: (l) molybdoenzymes (examining their distribution and metabolic role, composition and redox strategy, cofactors, substrate reactions, and mechanistic possibilities); (2) structural information on molybdenum (Mo) centers; (3) modeling studies (Mo-co models, nitrogenase models, and the MO-S duo); and (4) the copper-molybdenum antagonism.…

  6. Formation of alumina-nickel-molybdenum catalysts

    SciTech Connect

    Erofeev, V.I.; Basov, V.G.; Vagin, A.I.; Kalechits, I.V.

    1982-06-01

    On the basis of the results obtained in physical and chemical studies of alumina-nickel-molybdenum oxide catalysts as well as binary system and the individual oxides, the conclusions show that the commercial catalyst consists mainly of nickel and aluminium molybdates, aluminium molybdates, molybdenum oxide, and the alumina support. 4 figures.

  7. Molybdenum sealing glass-ceramic composition

    DOEpatents

    Eagan, Robert J.

    1976-01-01

    The invention relates to a glass-ceramic composition having low hydrogen and helium permeability properties, along with high fracture strength, a thermal coefficient of expansion similar to that of molybdenum, and adaptable for hermetically sealing to molybdenum at temperatures of between about 900.degree. and about 950.degree.C. to form a hermatically sealed insulator body.

  8. Characterization of low dimensional molybdenum sulfide nanostructures

    SciTech Connect

    Camacho-Bragado, G. Alejandra; Elechiguerra, Jose Luis; Yacaman, Miguel Jose

    2008-03-15

    It is presented a detailed structural characterization of a nanostructured form of molybdenum disulfide. The material consists of a layer of highly textured molybdenum sulfide growing off a molybdenum dioxide core. The structure and chemical composition of the synthesized nanostructured sulfide was compared to two well-known forms of molybdenum disulfide, i.e. a commercial molybdenite sample and a poorly crystalline sulfide. X-ray diffraction, high-resolution electron microscopy and electron diffraction showed that the material reported here presents crystalline nanodomains with a crystal structure corresponding to the 2H polytype of molybdenum disulfide. X-ray photoelectron spectroscopy was used to demonstrate the differences between our sulfide and other materials such as amorphous MoS{sub 3}, oxysulfides and poorly crystalline MoS{sub 2}, corroborating the molybdenite-2H stacking in this form of sulfide. The material under study showed a high proportion of crystalline planes different from the basal plane.

  9. Effect of Prestraining of Recrystallization Temperature and Mechanical Properties of Commercial, Sintered, Wrought Molybdenum

    NASA Technical Reports Server (NTRS)

    Dike, Kenneth C; Long, Roger A

    1953-01-01

    Given three presumably identical lots of commercial, sintered, wrought molybdenum, the 1-hour recrystallization temperature of one lot remained above 2900 F by limiting the amount of effective restraining to 35 percent or less. Different recrystallization temperatures were obtained in various atmospheres, the highest in argon and the lowest in hydrogen. Metal thus fabricated and then stress-relieved possessed an ultimate tensile strength at room temperature within 10 percent of metal swaged 99 percent and also possessed equivalent ductility. At 1800 F, equivalent strength and ductility was obtained irrespective of the amount of swaging over the range of 10 to 99 percent. The amount of swaging greatly influenced the recrystallized grain size but the difference in grain size is not the major controlling factor which determines whether recrystallized molybdenum is ductile or brittle at room temperature.

  10. A comparison of rat SPECT images obtained using 99mTc derived from 99Mo produced by an electron accelerator with that from a reactor

    NASA Astrophysics Data System (ADS)

    Galea, R.; Wells, R. G.; Ross, C. K.; Lockwood, J.; Moore, K.; Harvey, J. T.; Isensee, G. H.

    2013-05-01

    Recent shortages of molybdenum-99 (99Mo) have led to an examination of alternate production methods that could contribute to a more robust supply. An electron accelerator and the photoneutron reaction were used to produce 99Mo from which technetium-99m (99mTc) is extracted. SPECT images of rat anatomy obtained using the accelerator-produced 99mTc with those obtained using 99mTc from a commercial generator were compared. Disks of 100Mo were irradiated with x-rays produced by a 35 MeV electron beam to generate about 1110 MBq (30 mCi) of 99Mo per disk. After target dissolution, a NorthStar ARSII unit was used to separate the 99mTc, which was subsequently used to tag pharmaceuticals suitable for cardiac and bone imaging. SPECT images were acquired for three rats and compared to images for the same three rats obtained using 99mTc from a standard reactor 99Mo generator. The efficiency of 99Mo-99mTc separation was typically greater than 90%. This study demonstrated the delivery of 99mTc from the end of beam to the end user of approximately 30 h. Images obtained using the heart and bone scanning agents using reactor and linac-produced 99mTc were comparable. High-power electron accelerators are an attractive option for producing 99Mo on a national scale.

  11. Transfer of molybdenum disulfide to various metals

    NASA Technical Reports Server (NTRS)

    Barton, G. C.; Pepper, S. V.

    1977-01-01

    Sliding friction experiments were conducted with molybdenum disulfide single crystals in contact with sputter cleaned surfaces of copper, nickel, gold, and 304 stainless steel. Transfer of the molybdenum disulfide to the metals was monitored with Auger electron spectroscopy. Results of the investigation indicate molybdenum disulfide transfers to all clean metal surfaces after a single pass over the metal surface with film thickness observed to increase with repeated passes over the same surfaces. Large particle transfer occurs when the orientation of the crystallites is other than basal. This is frequently accompanied by abrasion of the metal. Adhesion of molybdenum disulfide films occurred readily to copper and nickel, less readily to 304 stainless steel, and even less effectively to the gold, which indicates a chemical effect.

  12. Upper critical field of copper molybdenum sulfide

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Woollam, J. A.

    1978-01-01

    The upper critical field of sintered and sputtered copper molybdenum sulfide Cu(x)Mo6S8 was measured and found to exceed the Werthamer, Helfand, and Hohenberg (1966) value for a type II superconductor characterized by dirty limit, weak isotropic electron phonon coupling, and no paramagnetic limiting. It is suggested that the enhancement results from anisotropy or clean limit or both. Other ternary molybdenum sulfides appear to show similar anomalies.

  13. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    SciTech Connect

    Lowden, Richard Andrew; Kiggans Jr., James O.; Nunn, Stephen D.; Parten, Randy J.

    2015-12-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage, and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.

  14. Enhanced electrochromism in cerium doped molybdenum oxide thin films

    SciTech Connect

    Dhanasankar, M.; Purushothaman, K.K.; Muralidharan, G.

    2010-12-15

    Cerium (5-15% by weight) doped molybdenum oxide thin films have been prepared on FTO coated glass substrate at 250 {sup o}C using sol-gel dip coating method. The structural and morphological changes were observed with the help of XRD, SEM and EDS analysis. The amorphous structure of the Ce doped samples, favours easy intercalation and deintercalation processes. Mo oxide films with 10 wt.% of Ce exhibit maximum anodic diffusion coefficient of 24.99 x 10{sup -11} cm{sup 2}/s and the change in optical transmittance of ({Delta}T at 550 nm) of 79.28% between coloured and bleached state with the optical density of ({Delta}OD) 1.15.

  15. A simple spectrophotometric method for the determination of trace levels of molybdenum using N,N‧-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane

    NASA Astrophysics Data System (ADS)

    Kara, Derya; Karadaş, Cennet

    2015-08-01

    The present work describes a selective, rapid and economical spectrophotometric method for the determination of molybdenum using N,N‧-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane. Molybdenum(VI) reacts with N,N‧-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane to form a stable 1:1 yellow complex with an absorption maximum at 342 nm. The reaction is completed within 10 min and the absorbance of the molybdenum complex remains stable for at least 1 week at room temperature. The effective molar absorption coefficient at 342 nm was 9.6 × 103 L mol-1 cm-1. Under optimal conditions, the complex obeys Beer's law from 0 to 9.9 μg mL-1. The relative standard deviation was 0.08% (for 11 samples, each containing 6 μg mL-1 molybdenum). Under the optimum conditions, the detection limit (3σ) was 17.7 μg L-1 for molybdenum without any preconcentration. The precision was determined from 30 results obtained for 4.80 μg mL-1 Mo(VI); the mean value of a molybdenum(VI) was 4.83 μg ml-1 with a standard derivation of 0.002 μg ml-1 molybdenum(VI).

  16. Effects of copper sulfate supplement on growth, tissue concentration, and ruminal solubilities of molybdenum and copper in sheep fed low and high molybdenum diets

    SciTech Connect

    Ivan, M.; Veira, D.M.

    1985-01-01

    Each of four groups of six wethers were fed one of a low molybdenum, high molybdenum, high molybdenum plus copper sulfate, or high molybdenum plus copper sulfate corn silage-based diet for ad libitum intake for 221 days. Average daily gains and ratios of feed/gain were depressed for the high molybdenum diet as compared with the low molybdenum diet suggesting molybdenum toxicity in sheep fed the high molybdenum diet. This was alleviated partly by the copper sulfate supplement. The supplement also decreased solubility of both copper and molybdenum in the rumen but had no effect on copper concentration in blood plasma. Concentration of molybdenum was higher in both liver and kidney in sheep fed high-molybdenum diets as compared with low-molybdenum diets. Copper concentration was higher in kidneys of sheep fed high-molybdenum diets, but no difference was significant in liver copper between sheep fed diets high or low in molybdenum.

  17. Molybdenum Reduction to Molybdenum Blue in Serratia sp. Strain DRY5 Is Catalyzed by a Novel Molybdenum-Reducing Enzyme

    PubMed Central

    Shukor, M. Y.; Halmi, M. I. E.; Rahman, M. F. A.; Shamaan, N. A.; Syed, M. A.

    2014-01-01

    The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a Vmax for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent Km for NADH was 0.79 mM. At 5 mM NADH, the apparent Vmax and apparent Km values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (kcat/Km) of the Mo-reducing enzyme was 5.47 M−1 s−1. The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction. PMID:24724104

  18. Molybdenum reduction to molybdenum blue in Serratia sp. Strain DRY5 is catalyzed by a novel molybdenum-reducing enzyme.

    PubMed

    Shukor, M Y; Halmi, M I E; Rahman, M F A; Shamaan, N A; Syed, M A

    2014-01-01

    The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a V max for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent K m for NADH was 0.79 mM. At 5 mM NADH, the apparent V max and apparent K m values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (k cat/K m ) of the Mo-reducing enzyme was 5.47 M(-1) s(-1). The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction. PMID:24724104

  19. Zinc deficiency in molybdenum poisoned cattle

    SciTech Connect

    Parada, R.

    1981-02-01

    Clinical signs ascribable to zinc deficiency were noted in a group of Friesian cows industrially poisoned with molybdenum. Zinc, copper, and molybdenum were determined in blood serum and black hair, and in the contaminated alfalfa pasture the group grazed on. Hematological parameters, and serum calcium and alkaline phosphatase activity, were also determined. Pooled samples of alfalfa from 2 uncontaminated pastures, and of blood, serum and black hair of clinically normal Friesian cattle grazing on these were used as controls. A mixed contamination of the polluted pasture with molybdenum and copper was found, both metals being inversely correlated with he distance to the polluting chimney. Zinc concentrations were normal and not significantly correlated with the distance to the chimney very high molybdenum was found in serum and hair of the poisoned animals; copper was normal in serum and hair. Low calcium and Alkaline phosphatase activity were found in serum, both variables being significantly correlated with serum zinc. Reduced red blood cell number, packed cell volumes and hemoglobin concentrations were also found, but no significant correlation of these parameters with any of the trace metals in serum or hair was found. Signs ascribed to zinc deficiency were consistent with the reduction of zinc in serum and hair and decreased alkaline phosphatase activity in serum. A zinc deficiency conditioned by a simultaneous increased intake of molybdenum and copper is proposed.

  20. Western Molybdenum Company mine, Chewelah District, Stevens County, Washington

    USGS Publications Warehouse

    Cooper, John R.

    1954-01-01

    The Western Molybdenum Co. mine was opened many years ago to obtain copper. The only production was several carloads of crude copper ore shipped during World War I. An unsuccessful attempt to produce molybdenum was made in 1939-1941.

  1. Densification of molybdenum and molybdenum alloy powders using hot isostatic pressing. Final technical report

    SciTech Connect

    Barranco, J.; Ahmad, I.; Isserow, S.; Warenchak, R.

    1985-08-01

    This study was conducted to determine a superior erosion-resistant gun-barrel liner material with improved properties at higher temperatures. Four categories of powders were examined: 1. TZM spherical containing 0.5 titanium, 0.08 zirconium, and 0.02 carbon (wt. % nominally), balance molybdenum (Mo), produced by REP (Rotating Electrode Process), PREP (Plasma Rotating Electrode Process), and PMRS (Plasma Melted and Rapidly Solidified); 2. Mo reduced 2 and 5 microns; 3. Mo-0.1% cobalt, co-reduced; 4. Mo-5 wt. % alumina (A12O3), dispersion strengthened. Hot Isostatic Pressing (HIP) densification occurred at 15-30 Ksi, 1300-1600 C, for 1.5 to 3.0 hours. The TZM REP/PREP powders (220/74 microns) were not fully densified even at 1600 C, 30 Ksi, 3 hours. Point-particle contact prevented complete void elimination. TZM PMRS powder (24.7 microns) achieved 99% of theoretical density while maintaining a small grain size (10.4 ASTM eq.) Bend deflection and fracture energies were approximately three times those for PREP powder at a bend rupture strength of about 120 Ksi. Mo reduced and Mo-0.1% Co powders showed less (or the same) ductility with increasing HIP temperatures. Fractures were intergranular with decreased bend rupture and compression strength. The Mo-5A1/sub 2/O/sub 3/ powder maintained a fine grain size (13 ASTM eq.), but with fracture energies usually less than 0.6 in.-lbs. Included are results from bending and compression testing with metallographic and fracture mode interpretation.

  2. Molybdenum scavenging by iron monosulfide.

    PubMed

    Helz, George R; Vorlicek, Trent P; Kahn, Mani D

    2004-08-15

    Molybdenum profiles in dated sediment cores provide useful historical information about anoxia in anthropogenically impacted natural waters but would be of greater service if Mo fixation mechanisms were better understood. Here, we explore Mo scavenging by precipitated FeS in a model system consisting of an FeIII-bearing kaolinite (KGa-1B) dispersed in NaHS solutions. Test solutions contain 18 microM thiomolybdates (mainly MoOS3(2-)). Optically measuring dissolved polysulfides monitors the rate of FeS production from FeIII minerals. Even though the exposed clay surface area is large (450 m2/L), the clay itself sorbs little Mo at pH 8.6. As FeS forms, Mo is taken up in initial Mo/Fe mole ratios of 0.04-0.06, irrespective of HS- concentration (4-40 mM range). After about a day, Mo expulsion from the solids begins, accompanied by net polysulfide consumption. These changes reflect recrystallization of amorphous FeS to more ordered products such as greigite. FeS captures some MoO4(2-) but captures thiomolybdates more effectively. Kaolinite accelerates conversion of MoOS3(2-) to MoS4(2-), as predicted previously, and thiomolybdates facilitate reduction of FeIII minerals in the clay compared to Mo-free solutions. FeS is a potentially effective, transient scavenging agent for Mo in sulfidic environments, although FeS2 and organic matter appear to be the ultimate sedimentary hosts. PMID:15382851

  3. Separation of Molybdenum from Tungstate Solution—Scavenging Thiomolybdate by Copper Compound

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongwei; Gao, Lili; Cao, Caifang; Li, Jiangtao; Chen, Xingyu; Chen, Ailiang; Liu, Xuheng; Sun, Peimei; Huo, Guangsheng; Li, Yunjiao; Li, Honggui

    2012-12-01

    Molybdenum is frequently associated with tungsten in mineral deposits, and their chemical properties are quite similar. Therefore, for many years, removal of impurity molybdenum from tungsten has been a worldwide technical problem. In this work, a separation process was investigated with the use of copper-bearing materials as the scavenging agents. Various conditions involved in the effects of different copper-bearing materials, dosage of scavenging agents, reaction time, and temperature were studied in detail. It was found that thiomolybdate can be selectively precipitated from tungstate solution by all the scavenging agents, especially when using nascent copper sulfide. Removal of thiomlybdate can reach 99.45 pct under optimum condition. Nascent CuS is an economic and efficient reagent for removing Mo from tungstate solution.

  4. Feasibility of Production of Moly-99 via 1-neutron Exchange Reaction 98 Mo +100 Mo -->299Mo in Strong-Focusing Auto Collider (``EXYDER'') of natural Molybdenum nuclei based on T and He-3 production data from d +d weak focusing Auto-Collider MIGMA IV

    NASA Astrophysics Data System (ADS)

    Hester, Tim; Maglich, Bogdan; Calsec Collaboration

    2015-10-01

    Copious T and 3He production from D(d, p) T and D(d, n) 3He reactions in 725 KeV colliding beams was observed in weak-focusing Self-Collider1-4 radius 15 cm, in B = 3.12 T, stabilized5 non-linearly by electron cloud oscillations with confinement time ~ 23 s. BARC's simulations7 predict that by switching to Strong Focusing Self Collider proposed by Blewett6, 10 deuterons 0.75 MeV each, will generate 1 3He + 1T +1p + 1n at a total input energy cost of 10.72 MeV. Economic value of T and 3He is 65 and 120 MeV/atom respectively. While energy balance is negative, we project economic gain 205 MeV/10.72 MeV ~ 20 i.e. 3He production/sale will fund cost of T. Assuming the luminosity achieved in MIGMA IV, we replace D beam injection with a high energy beam of 14 times ionized natural Mo ions and look for the 1-neutron reactions of the type 98Mo+100Mo -->299Mo, where 99Mo14+ will be EM channeled into a mass spectrometer and collected at one loci/ radius, while all other masses/radii rejected. Physics and engineering parameters required to produce at least 1 g of 99Mo per day, at an electricity cost of 100K, will be presented. 2- and 3-neutron exchange reactions will be considered, too.

  5. Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings.

    PubMed

    Kovács, Béla; Puskás-Preszner, Anita; Huzsvai, László; Lévai, László; Bódi, Éva

    2015-11-01

    Since 1940 molybdenum has been known as an essential trace element in plant nutrition and physiology. It has a central role in nitrogen metabolism, and its deficiency leads to nitrate accumulation in plants. In this study, we cultivated maize seedlings (Zea mays L. cv. Norma SC) in nutrient solution and soil (rhizoboxes) to investigate the effect of molybdenum treatment on the absorption of molybdenum, sulfur and iron. These elements have been previously shown to play important roles in nitrate reduction, because they are necessary for the function of the nitrate reductase enzyme. We also investigated the relationship between molybdenum treatments and different nitrogen forms in maize. Molybdenum treatments were 0, 0.96, 9.6 and 96 μg kg(-1) in the nutrition solution experiments, and 0, 30, 90, 270 mg kg(-1) in the rhizobox experiments. On the basis of our results, the increased Mo level produced higher plant available Mo concentration in nutrient solution and in soil, which resulted increased concentration of Mo in shoots and roots of maize seedlings. In addition it was observed that maize seedlings accumulated more molybdenum in their roots than in their shoots at all treatments. In contrast, molybdenum treatments did not affect significantly either iron or sulfur concentrations in the plant, even if these elements (Mo, S and Fe) play alike important roles in nitrogen metabolism. Furthermore, the physiological molybdenum level (1× Mo = 0.01 μM) reduced NO3-N and enhanced the NH4-N concentrations in seedlings, suggesting that nitrate reduction was more intense under a well-balanced molybdenum supply. PMID:26226599

  6. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  7. Pre-treatment for molybdenum or molybdenum-rich alloy articles to be plated

    DOEpatents

    Wright, Ralph R.

    1980-01-01

    This invention is a method for etching a molybdenum or molybdenum-rich alloy surface to promote the formation of an adherent bond with a subsequently deposited metallic plating. In a typical application, the method is used as a pre-treatment for surfaces to be electrolessly plated with nickel. The pre-treatment comprises exposing the crystal boundaries of the surface by (a) anodizing the surface in acidic solution to form a continuous film of gray molybdenum oxide thereon and (b) removing the film.

  8. Evaluation of molybdenum and its alloys. [Reactor core heat pipes

    SciTech Connect

    Lundberg, L.B.

    1981-01-01

    The choice of pure molybdenum as the prime candidate material for space reactor core heat pipes is critically examined. Pure molybdenum's high ductile-brittle transition temperature appears to be its major disadvantage. The candidate materials examined in detail for this application include low carbon arc-cast molybdenum, TZM-molybdenum alloy, and molybdenum-rhenium alloys. Published engineering properties are collected and compared, and it appears that Mo-Re alloys with 10 to 15% rhenium offer the best combination. Hardware is presently being made from electron beam melted Mo-13Re to test this conclusion.

  9. Molybdenum oxide electrodes for thermoelectric generators

    DOEpatents

    Schmatz, Duane J.

    1989-01-01

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film comprising molybdenum oxide as an electrode deposited by physical deposition techniques onto solid electrolyte. The invention is also directed to the method of making same.

  10. Molybdenum silicide based materials and their properties

    SciTech Connect

    Yao, Z.; Stiglich, J.; Sudarshan, T.S.

    1999-06-01

    Molybdenum disilicide (MoSi{sub 2}) is a promising candidate material for high temperature structural applications. It is a high melting point (2030 C) material with excellent oxidation resistance and a moderate density (6.24 g/cm{sup 3}). However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Much effort has been invested in MoSi{sub 2} composites as alternatives to pure molybdenum disilicide for oxidizing and aggressive environments. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electron-migration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi{sub 2}-based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing. On this paper, synthesis, fabrication, and properties of the monolithic and composite molybdenum silicides are reviewed.

  11. Exploring atomic defects in molybdenum disulphide monolayers

    PubMed Central

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 1013 cm−2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices. PMID:25695374

  12. Method for welding chromium molybdenum steels

    DOEpatents

    Sikka, Vinod K.

    1986-01-01

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  13. Exploring atomic defects in molybdenum disulphide monolayers.

    PubMed

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10(13) cm(-2) is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices. PMID:25695374

  14. Post-Irradiation Fracture Toughness of Unalloyed Molybdenum, ODS molybdenum, and TZM molybdenum following irradiation at 244C to 507C

    SciTech Connect

    Cockeram, Brian V; Byun, Thak Sang; Leonard, Keith J; Snead, Lance Lewis

    2013-01-01

    Commercially available unalloyed molybdenum (Low Carbon Arc Cast (LCAC)), Oxide Dispersion Strengthened (ODS) molybdenum, and TZM molybdenum were neutron irradiated at temperatures of nominally 244 C, 407 C, and 509 C to neutron fluences between 1.0 to 4.6x1025 n/m2 (E>0.1 MeV). Post-irradiation fracture toughness testing was performed. All alloys exhibited a Ductile to Brittle Transition Temperature that was defined to occur at 30 4 MPa-m1/2. The highest post-irradiated fracture toughness values (26-107 MPa-m1/2) and lowest DBTT (100-150 C) was observed for ODS molybdenum in the L-T orientation. The finer grain size for ODS molybdenum results in fine laminates that improve the ductile laminate toughening. The results for ODS molybdenum are anisotropic with lower post-irradiated toughness values (20-30 MPa-m1/2) and higher DBTT (450-600 C) in the T-L orientation. The results for T-L ODS molybdenum are consistent or slightly better than those for LCAC molybdenum (21-71 MPa-m1/2 and 450-800 C DBTT). The fracture toughness values measured for LCAC and T-L ODS molybdenum at temperatures below the DBTT were determined to be 8-18 MPa-m1/2. Lower non-irradiated fracture toughness values were measured for TZM molybdenum that are attributed to the large carbide precipitates serving as preferential fracture initiation sites. The role of microstructure and grain size on post-irradiated fracture toughness was evaluated by comparing the results for LCAC molybdenum and ODS molybdenum.

  15. A novel route for processing cobalt–chromium–molybdenum orthopaedic alloys

    PubMed Central

    Patel, Bhairav; Inam, Fawad; Reece, Mike; Edirisinghe, Mohan; Bonfield, William; Huang, Jie; Angadji, Arash

    2010-01-01

    Spark plasma sintering has been used for the first time to prepare the ASTM F75 cobalt–chromium–molybdenum (Co–Cr–Mo) orthopaedic alloy composition using nanopowders. In the preliminary work presented in this report, the effect of processing variables on the structural features of the alloy (phases present, grain size and microstructure) has been investigated. Specimens of greater than 99.5 per cent theoretical density were obtained. Carbide phases were not detected in the microstructure but oxides were present. However, harder materials with finer grains were produced, compared with the commonly used cast/wrought processing methods, probably because of the presence of oxides in the microstructure. PMID:20200035

  16. Factors affecting eluation characteristics of sorption generators of technetium-99m

    NASA Astrophysics Data System (ADS)

    Skuridin, V. S.; Chernov, V. I.; Sadkin, V. L.; Stasyuk, E. S.; Varlamova, N. V.; Rogov, A. S.; Nesterov, E. A.; Ilina, E. A.; Larionova, L. A.; Medvedeva, A. A.

    2016-08-01

    The influence of the adsorbed mass of molybdenum on the width of eluation profiles of generators and the patterns of molybdenum distribution in the amount of chromatographic columns by scanning them on the germanium-gallium detector using collimating device are studied. The boundary conditions under which the maximum value of 99mTc yield from generators Ye = 1 are defined. After scanning the columns, it was found out that the degree of filling the columns with molybdenum Q and the value of its maximum adsorption depend naturally on the total weight of the adsorbed mass. In order to achieve the condition Ye = 1 the value of Q should be at least 85%.

  17. Dietary pesticides (99. 99% all natural)

    SciTech Connect

    Ames, B.N.; Profet, M.; Gold, L.S. )

    1990-10-01

    The toxicological significance of exposures to synthetic chemicals is examined in the context of exposures to naturally occurring chemicals. The authors calculate that 99.99{percent} (by weight) of the pesticides in the American diet are chemicals that plants produce to defend themselves. Only 52 natural pesticides have been tested in high-dose animal cancer tests, and about half (27) are rodent carcinogens; these 27 are shown to be present in many common foods. They conclude that natural and synthetic chemicals are equally likely to be positive in animal cancer tests. They also conclude that at the low doses of most human exposures the comparative hazards of synthetic pesticide residues are insignificant.

  18. Dietary pesticides (99.99% all natural).

    PubMed Central

    Ames, B N; Profet, M; Gold, L S

    1990-01-01

    The toxicological significance of exposures to synthetic chemicals is examined in the context of exposures to naturally occurring chemicals. We calculate that 99.99% (by weight) of the pesticides in the American diet are chemicals that plants produce to defend themselves. Only 52 natural pesticides have been tested in high-dose animal cancer tests, and about half (27) are rodent carcinogens; these 27 are shown to be present in many common foods. We conclude that natural and synthetic chemicals are equally likely to be positive in animal cancer tests. We also conclude that at the low doses of most human exposures the comparative hazards of synthetic pesticide residues are insignificant. PMID:2217210

  19. Extraction, spectrophotometric and atomic absorption spectrophotometric determination of molybdenum with caffeic acid and application in high purity grade steel and environmental samples

    SciTech Connect

    Shah, N.; Desai, M.N. ); Menon, S.K.; Agrawal, Y.K. )

    1989-06-01

    A new selective and sensitive method for extraction of yellow Mo(VI)-caffeic acid complex with a liquid ion exchanger, Aliquat 336 from 4.0 pH, and spectrophotometric determination of molybdenum in trace amounts is described. The molar absorptivity of the complex is 1.1 {times} 10{sup 5} 1 mol{sup {minus}1} cm{sup {minus}1} at 340 nm and the color system obeys Beers law in the range 0.04-0.99 ppm of Mo(VI). The molybdenum is also determined with AAS and the method is applied for its determination in steel and environmental samples.

  20. Kinetics of Molybdenum Reduction to Molybdenum Blue by Bacillus sp. Strain A.rzi

    PubMed Central

    Othman, A. R.; Bakar, N. A.; Halmi, M. I. E.; Johari, W. L. W.; Ahmad, S. A.; Jirangon, H.; Syed, M. A.; Shukor, M. Y.

    2013-01-01

    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30°C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants pmax, Ks, Sm, and n was 5.88 μmole Mo-blue hr−1, 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution. PMID:24369531

  1. Biosynthesis of the iron-molybdenum cofactor and the molybdenum cofactor in Klebsiella pneumoniae: effect of sulfur source.

    PubMed Central

    Ugalde, R A; Imperial, J; Shah, V K; Brill, W J

    1985-01-01

    NifQ- and Mol- mutants of Klebsiella pneumoniae show an elevated molybdenum requirement for nitrogen fixation. Substitution of cystine for sulfate as the sulfur source in the medium reduced the molybdenum requirement of these mutants to levels required by the wild type. Cystine also increased the intracellular molybdenum accumulation of NifQ- and Mol- mutants. Cystine did not affect the molybdenum requirement or accumulation in wild-type K. pneumoniae. Sulfate transport and metabolism in K. pneumoniae were repressed by cystine. However, the effect of cystine on the molybdenum requirement could not be explained by an interaction between sulfate and molybdate at the transport level. Cystine increased the molybdenum requirement of Mol- mutants for nitrate reductase activity by at least 100-fold. Cystine had the same effect on the molybdenum requirement for nitrate reductase activity in Escherichia coli ChlD- mutants. This shows that cystine does not have a generalized effect on molybdenum metabolism. Millimolar concentrations of molybdate inhibited nitrogenase and nitrate reductase derepression with sulfate as the sulfur source, but not with cystine. The inhibition was the result of a specific antagonism of sulfate metabolism by molybdate. The effects of nifQ and mol mutations on nitrogenase could be suppressed either by the addition of cystine or by high concentrations of molybdate. This suggests that a sulfur donor and molybdenum interact at an early step in the biosynthesis of the iron-molybdenum cofactor. This interaction might occur nonenzymatically when the levels of the reactants are high. PMID:3905765

  2. Reactively evaporated films of copper molybdenum sulfide

    NASA Technical Reports Server (NTRS)

    Chi, K. C.; Dillon, R. O.; Bunshah, R. F.; Alterovitz, S.; Woollam, J. A.

    1978-01-01

    Films of superconducting Chevrel-phase copper molybdenum sulfide CuxMo6S8 were deposited on sapphire substrates by reactive evaporation using H2S as the reacting gas. Two superconducting temperatures (10.0 K and 5.0 K) of the films were found, corresponding to two different phases with different copper concentrations. All films were superconducting above 4.2 K and contained Chevrel-phase compound as well as free molybdenum. The critical current was measured as a function of applied field. One sample was found to deviate from the scaling law found for co-evaporated or sputtered samples, which possibly indicates a different pinning mechanism or inhomogeneity of the sample.

  3. Critical currents in sputtered copper molybdenum sulphide

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Woollam, J. A.; Kammerdiner, L.; Luo, H.-L.

    1977-01-01

    Critical currents in a sputtered Chevrel-phase copper molybdenum sulfide have been measured at 4.2 K as a function of applied magnetic field. Self-field critical-current values up to 10 to the 9th A/sq m were found, decreasing to 10 to the 8th A/sq m at 3 T. Graphs of pinning forces versus field were found to be independent of field direction, and the pinning mechanism is sample independent. Critical-current densities for sputtered lead molybdenum sulphide are estimated to be about 10 to the 8th A/sq m at 26 T based on a scaling law for pinning.

  4. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  5. Alkali metal intercalates of molybdenum disulfide.

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1973-01-01

    Study of some of the physicochemical properties of compounds obtained by subjecting natural molybdenite and single crystals of molybdenum disulfide grown by chemical vapor transport to intercalation with the alkali group of metals (Li, Na, K, Rb, and Cs) by means of the liquid ammonia technique. Reported data and results include: (1) the intercalation of the entire alkali metal group, (2) stoichiometries and X-ray data on all of the compounds, and (3) superconductivity data for all the intercalation compounds.

  6. New slow-releasing molybdenum fertilizer.

    PubMed

    Bandyopadhyay, Siladitya; Bhattacharya, Ishita; Ghosh, Kunal; Varadachari, Chandrika

    2008-02-27

    This paper describes a new water-insoluble molybdenum compound that has been developed as a slow-release fertilizer. The compound is an inorganic polymer formed by inclusion of molybdenum within a long-chain polyphosphate structure. It was designed by a process of "reverse engineering" of the molecule. Synthesis involved reaction of phosphoric acid with magnesium oxide, molybdenum trioxide, and sodium carbonate at 275 degrees C. Kinetics of reaction revealed complex multistage processes. X-ray diffraction patterns showed a crystalline nature with short-range as well as long-range ordering. The magnesium sodium polymolybdophosphate had ideal slow-release characteristics; it had low water solubility and high citrate solubility and was powdery, free flowing, and nonhygroscopic. Field testing showed an 80% increase in yield of green gram at a low dose of 0.04 kg/ha Mo. Nodulation increased by over 161%, and N content of gram increased by 20%. The slow-release fertilizer would provide an effective, low-cost, and environmentaly friendly alternative to Mo fertilization. PMID:18247562

  7. Dynamic Abnormal Grain Growth in Molybdenum

    NASA Astrophysics Data System (ADS)

    Worthington, Daniel L.; Pedrazas, Nicholas A.; Noell, Philip J.; Taleff, Eric M.

    2013-11-01

    A new abnormal grain growth phenomenon that occurs only during continuous plastic straining, termed dynamic abnormal grain growth (DAGG), was observed in molybdenum (Mo) at elevated temperature. DAGG was produced in two commercial-purity molybdenum sheets and in a commercial-purity molybdenum wire. Single crystals, centimeters in length, were created in these materials through the DAGG process. DAGG was observed only at temperatures of 1713 K (1440 °C) and above and occurred across the range of strain rates investigated, ~10-5 to 10-4 s-1. DAGG initiates only after a critical plastic strain, which decreases with increasing temperature but is insensitive to strain rate. Following initiation of an abnormal grain, the rate of boundary migration during DAGG is on the order of 10 mm/min. This rapid growth provides a convenient means of producing large single crystals in the solid state. When significant normal grain growth occurs prior to DAGG, island grains result. DAGG was observed in sheet materials with two very different primary recrystallization textures. DAGG grains in Mo favor boundary growth along the tensile axis in a <110> direction, preferentially producing single crystals with orientations from an approximately <110> fiber family of orientations. A mechanism of boundary unpinning is proposed to explain the dependence of boundary migration on plastic straining during DAGG.

  8. Sequential biological process for molybdenum extraction from hydrodesulphurization spent catalyst.

    PubMed

    Vyas, Shruti; Ting, Yen-Peng

    2016-10-01

    Spent catalyst bioleaching with Acidithiobacillus ferrooxidans has been widely studied and low Mo leaching has often been reported. This work describes an enhanced extraction of Mo via a two stage sequential process for the bioleaching of hydrodesulphurization spent catalyst containing Molybdenum, Nickel and, Aluminium. In the first stage, two-step bioleaching was performed using Acidithiobacillus ferrooxidans, and achieved 89.4% Ni, 20.9% Mo and 12.7% Al extraction in 15 days. To increase Mo extraction, the bioleached catalyst was subjected to a second stage bioleaching using Escherichia coli, during which 99% of the remaining Mo was extracted in 25 days. This sequential bioleaching strategy selectively extracted Ni in the first stage and Mo in the second stage, and is a more environmentally friendly alternative to sequential chemical leaching with alkaline reagents for improved Mo extraction. Kinetic modelling to establish the rate determining step in both stages of bioleaching showed that in the first stage, Mo extraction was chemical reaction controlled whereas in the subsequent stage, product layer diffusion model provided the best fit. PMID:27351900

  9. A solvent extraction study of molybdenum chloride and molybdenum thiocyanate complexes

    USGS Publications Warehouse

    Greenland, L.P.; Lillie, E.G.

    1974-01-01

    The effect of reducing agents on molybdenum(VI) solutions in hydrochloric acid was studied by a solvent extraction technique to elucidate the composition of the colored molybdenum thiocyanate complex. Neither copper(I) chloride nor ascorbic acid have any effect on the extraction of MoO2Cl2; it is inferred that tin(II) chloride reduces Mo(VI) stepwise to a polynuclear Mo(V)??Mo(VI) complex and then to Mo(V). The colored thiocyanate complex produced by copper(I) and by ascorbic acid differs only slightly in extraction characteristics from the uncolored Mo(VI) complex. It is suggested that the color may be produced by an isomerization reaction of MoO2(SCN)2, and thus that the colored species may be a hexavalent rather than pentavalent molybdenum complex. ?? 1974.

  10. Selective cleavage of pepsin by molybdenum metallopeptidase

    SciTech Connect

    Yenjai, Sudarat; Malaikaew, Pinpinat; Liwporncharoenvong, Teerayuth; Buranaprapuk, Apinya

    2012-03-02

    Graphical abstract: Molybdenum metallopeptidase: the Mo(VI) cluster with six molybdenum cations has the ability to cleave protein under mild conditions (37 Degree-Sign C, pH 7) without reducing agents. The reaction required only low concentration of ammonium heptamolybdatetetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) (0.125 mM). The reaction undergoes possibly via a hydrolytic mechanism. This is the first demonstration of protein cleavage by a molybdenum cluster. Highlights: Black-Right-Pointing-Pointer This is the first demonstration of protein cleavage by a Mo(VI) cluster with six molybdenum cations. Black-Right-Pointing-Pointer The cleavage reaction undergoes at mild conditions. Black-Right-Pointing-Pointer No need of reducing agents. Black-Right-Pointing-Pointer Only low concentration of Mo(VI) cluster and short time of incubation are needed. -- Abstract: In this study, the cleavage of protein by molybdenum cluster is reported for the first time. The protein target used is porcine pepsin. The data presented in this study show that pepsin is cleaved to at least three fragments with molecular weights of {approx}23, {approx}19 and {approx}16 kDa when the mixture of the protein and ammonium heptamolybdate tetrahydrate ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) was incubated at 37 Degree-Sign C for 24 h. No self cleavage of pepsin occurs at 37 Degree-Sign C, 24 h indicating that the reaction is mediated by the metal ions. N-terminal sequencing of the peptide fragments indicated three cleavage sites of pepsin between Leu 112-Tyr 113, Leu 166-Leu 167 and Leu 178-Asn 179. The cleavage reaction occurs after incubation of the mixture of pepsin and (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}{center_dot}4H{sub 2}O) only for 2 h. However, the specificity of the cleavage decreases when incubation time is longer than 48 h. The mechanism for cleavage of pepsin is expected to be hydrolytic chemistry of the amide bonds in the protein

  11. Modification of base-side {sup 99}MO production processes for LEU metal-foil targets.

    SciTech Connect

    Vandegrift, G. F.; Leonard, R. A.; Aase, S.; Sedlet, J.; Koma, Y.; Conner, C.; Clark, C. R.; Meyer, M. K.

    1999-09-30

    Argonne National Laboratory is cooperating with the National Atomic Energy Commission of the Argentine Republic (CNEA) to convert their {sup 99}Mo production process, which uses high enriched uranium (HEU), to low-enriched uranium (LEU), The program is multifaceted; however, discussed in this paper are (1) results of laboratory experiments to develop means for substituting LEU metal-foil targets into the current process and (2) preparation of uranium-alloy or uranium-metal/aluminum-dispersion targets. Although {sup 99}Mo production is a multi-step process, the first two steps (target dissolution and primary molybdenum recovery) are by far the most important in the conversion. Commonly, once molybdenum is separated from the bulk of the uranium, the remainder of the process need not be modified. Our results show that up to this point in our study, conversion of the CNEA process to LEU appears viable.

  12. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method.

    PubMed

    Park, Kyung Ho; Mohapatra, D; Reddy, B Ramachandra

    2006-11-16

    The petroleum refining industry makes extensive use of hydroprocessing catalysts. These catalysts contain environmentally critical and economically valuable metals such as Mo, V, Ni and Co. In the present study, a simple hydrometallurgical processing of spent hydrodesulphurization (HDS) catalyst for the recovery of molybdenum using sodium carbonate and hydrogen peroxide mixture was investigated. Recovery of molybdenum was largely dependent on the concentrations of Na2CO3 and H2O2 in the reaction medium, which in turn controls the pH of leach liquor and the presence of Al and Ni as impurities. Under the optimum leaching conditions (40 g L(-1) Na2CO3, 6 vol.% H2O2, room temperature, 1h) about 85% recovery of Mo was achieved. The leach liquor was processed by the carbon adsorption method, which selectively adsorbs Mo at pH around 0.75. Desorption of Mo was selective at 15 vol.% NH4OH. With a single stage contact, it was found possible to achieve >99%, adsorption and desorption efficiency. Using this method, recovery of molybdenum as MoO3 product of 99.4% purity was achieved. PMID:16860466

  13. 10 CFR 35.2204 - Records of molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... elution of rubidium-82, the ratio of the measures expressed as kilobecquerel of strontium-82 per megabecquerel of rubidium-82 (or microcuries of strontium-82 per millicurie of rubidium), kilobecquerel of strontium-85 per megabecquerel of rubidium-82 (or microcuries of strontium-85 per millicurie of...

  14. 10 CFR 35.204 - Permissible molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of strontium-82 per megabecquerel of rubidium-82 chloride injection (0.02 microcurie of strontium-82 per millicurie of rubidium-82 chloride); or more than 0.2 kilobecquerel of strontium-85 per megabecquerel of rubidium-82 chloride injection (0.2 microcurie of strontium-85 per millicurie of...

  15. 10 CFR 35.2204 - Records of molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... elution of rubidium-82, the ratio of the measures expressed as kilobecquerel of strontium-82 per megabecquerel of rubidium-82 (or microcuries of strontium-82 per millicurie of rubidium), kilobecquerel of strontium-85 per megabecquerel of rubidium-82 (or microcuries of strontium-85 per millicurie of...

  16. 10 CFR 35.204 - Permissible molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of strontium-82 per megabecquerel of rubidium-82 chloride injection (0.02 microcurie of strontium-82 per millicurie of rubidium-82 chloride); or more than 0.2 kilobecquerel of strontium-85 per megabecquerel of rubidium-82 chloride injection (0.2 microcurie of strontium-85 per millicurie of...

  17. 10 CFR 35.2204 - Records of molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... elution of rubidium-82, the ratio of the measures expressed as kilobecquerel of strontium-82 per megabecquerel of rubidium-82 (or microcuries of strontium-82 per millicurie of rubidium), kilobecquerel of strontium-85 per megabecquerel of rubidium-82 (or microcuries of strontium-85 per millicurie of...

  18. 10 CFR 35.2204 - Records of molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... elution of rubidium-82, the ratio of the measures expressed as kilobecquerel of strontium-82 per megabecquerel of rubidium-82 (or microcuries of strontium-82 per millicurie of rubidium), kilobecquerel of strontium-85 per megabecquerel of rubidium-82 (or microcuries of strontium-85 per millicurie of...

  19. 10 CFR 35.204 - Permissible molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of strontium-82 per megabecquerel of rubidium-82 chloride injection (0.02 microcurie of strontium-82 per millicurie of rubidium-82 chloride); or more than 0.2 kilobecquerel of strontium-85 per megabecquerel of rubidium-82 chloride injection (0.2 microcurie of strontium-85 per millicurie of...

  20. 10 CFR 35.204 - Permissible molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of strontium-82 per megabecquerel of rubidium-82 chloride injection (0.02 microcurie of strontium-82 per millicurie of rubidium-82 chloride); or more than 0.2 kilobecquerel of strontium-85 per megabecquerel of rubidium-82 chloride injection (0.2 microcurie of strontium-85 per millicurie of...

  1. 10 CFR 35.204 - Permissible molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of strontium-82 per megabecquerel of rubidium-82 chloride injection (0.02 microcurie of strontium-82 per millicurie of rubidium-82 chloride); or more than 0.2 kilobecquerel of strontium-85 per megabecquerel of rubidium-82 chloride injection (0.2 microcurie of strontium-85 per millicurie of...

  2. 10 CFR 35.2204 - Records of molybdenum-99, strontium-82, and strontium-85 concentrations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... elution of rubidium-82, the ratio of the measures expressed as kilobecquerel of strontium-82 per megabecquerel of rubidium-82 (or microcuries of strontium-82 per millicurie of rubidium), kilobecquerel of strontium-85 per megabecquerel of rubidium-82 (or microcuries of strontium-85 per millicurie of...

  3. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    DOE PAGESBeta

    Youker, Amanda J.; Chemerisov, Sergey D.; Kalensky, Michael; Tkac, Peter; Bowers, Delbert L.; Vandegrift, George F.

    2013-01-01

    Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal) reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration onmore » Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.« less

  4. Normal state properties of the ternary molybdenum sulfides

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Alterovitz, S. A.

    1978-01-01

    By making a large number of normal state and superconducting properties measurements, all on the same ternary molybdenum sulfide samples, we obtain values for Fermi surface and superconducting parameters. From these we conclude that sputtered ternary molybdenum sulfides are not completely in the dirty superconductor limit, and that they are d-band metals with a high electron carrier density.

  5. Predicting Boron, Molybdenum, Selenium, and Arsenic Adsorption in Soil Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A chemical surface complexation model was applied to boron, molybdenum, selenium, and arsenic adsorption on up to 49 soils selected for variation in soil properties. The surface complexation model was able to fit boron, molybdenum, selenite, and arsenate adsorption on the soils. General regression...

  6. Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...

  7. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    SciTech Connect

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-04-29

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities.

  8. Molybdenum In Cathodes Of Sodium/Metal Chloride Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of molybdenum wire in NaAlCl4 melt indicate molybdenum chloride useful as cathode material in rechargeable sodium/metal chloride electrochemical cells. Batteries used in electric vehicles, for electric-power load leveling, and other applications involving high energy and power densities.

  9. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    SciTech Connect

    Lowden, Richard A.

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  10. Molybdenum oxide nanocubes: Synthesis and characterizations

    SciTech Connect

    Muthamizh, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Kumar, S. Praveen; Munusamy, S.; Narayanan, V.; Stephen, A.

    2015-06-24

    Molybdenum oxide nanoparticles were prepared by Solid state synthesis. The MoO{sub 3} nanoparticles were synthesized by using commercially available ammonium heptamolybdate. The XRD pattern reveals that the synthesized MoO{sub 3} has orthorhombic structure. In addition, lattice parameter values were also calculated using XRD data. The Raman analysis confirm the presence of Mo-O in MoO{sub 3} nanoparticles. DRS-UV analysis shows that MoO{sub 3} has a band gap of 2.89 eV. FE-SEM analysis confirms the material morphology in cubes with nano scale.

  11. Hot rolling of thick uranium molybdenum alloys

    DOEpatents

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  12. 99 Films on Drugs.

    ERIC Educational Resources Information Center

    Weber, David O., Ed.

    This catalog describes and evaluates 16-millimeter films about various aspects of drug use. Among the subjects covered by the 99 films are the composition and effects of different drugs, reasons why people use drugs, life in the drug culture, the problem of law enforcement, and various means of dealing with drug users. Each film is synopsized. Two…

  13. JENDL Dosimetry File 99.

    Energy Science and Technology Software Center (ESTSC)

    2001-01-22

    Version 00 JENDL/D-99 contains information for 47 nuclides and 67 reactions in the SAND-II group structure (although it was observed by RSICC that not all of the processed files are in the SAND-II group structure) and as 0K preprocessed pointwise files.

  14. Benchmark experiment for the cross section of the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions

    NASA Astrophysics Data System (ADS)

    Takács, S.; Ditrói, F.; Aikawa, M.; Haba, H.; Otuka, N.

    2016-05-01

    As nuclear medicine community has shown an increasing interest in accelerator produced 99mTc radionuclide, the possible alternative direct production routes for producing 99mTc were investigated intensively. One of these accelerator production routes is based on the 100Mo(p,2n)99mTc reaction. The cross section of this nuclear reaction was studied by several laboratories earlier but the available data-sets are not in good agreement. For large scale accelerator production of 99mTc based on the 100Mo(p,2n)99mTc reaction, a well-defined excitation function is required to optimise the production process effectively. One of our recent publications pointed out that most of the available experimental excitation functions for the 100Mo(p,2n)99mTc reaction have the same general shape while their amplitudes are different. To confirm the proper amplitude of the excitation function, results of three independent experiments were presented (Takács et al., 2015). In this work we present results of a thick target count rate measurement of the Eγ = 140.5 keV gamma-line from molybdenum irradiated by Ep = 17.9 MeV proton beam, as an integral benchmark experiment, to prove the cross section data reported for the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions in Takács et al. (2015).

  15. Biosynthesis of the iron-molybdenum cofactor and the molybdenum cofactor in Klebsiella pneumoniae: effect of sulfur source

    SciTech Connect

    Ugalde, R.A.; Imperial, J.; Shah, V.K.; Brill, W.J.

    1985-12-01

    NifQ/sup -/ and Mol/sup -/ mutants of Klebsiella pneumoniae show an elevated molybdenum requirement for nitrogen fixation. Substitution of cystine for sulfate as the sulfur source in the medium reduced the molybdenum requirement of these mutants to levels required by the wild type. Cystine also increased the intracellular molybdenum accumulation of NifQ/sup -/ and Mol/sup -/ mutants. Cystine did not affect the molybdenum requirement or accumulation in wild-type K. pneumoniae. Sulfate transport and metabolism in K. pneumoniae were repressed by cystine. However, the effect of cystine on the molybdenum requirement could not be explained by an interaction between sulfate and molybdate at the transport level. The data show that cystine does not have a generalized effect on molybdenum metabolism. Millimolar concentrations of molybdate inhibited nitrogenase and nitrate reductase derepression with sulfate as the sulfur source, but not with cystine. The inhibition was the result of a specific antagonism of sulfate metabolism by molybdate. This study suggests that a sulfur donor and molybdenum interact at an early step in the biosynthesis of the iron-molybdenum cofactor. This interaction might occur nonenzymatically when the levels of the reactants are high.

  16. Boron modified molybdenum silicide and products

    DOEpatents

    Meyer, M.K.; Akinc, M.

    1999-02-02

    A boron-modified molybdenum silicide material is disclosed having the composition comprising about 80 to about 90 weight % Mo, about 10 to about 20 weight % Si, and about 0.1 to about 2 weight % B and a multiphase microstructure including Mo{sub 5}Si{sub 3} phase as at least one microstructural component effective to impart good high temperature creep resistance. The boron-modified molybdenum silicide material is fabricated into such products as electrical components, such as resistors and interconnects, that exhibit oxidation resistance to withstand high temperatures in service in air as a result of electrical power dissipation, electrical resistance heating elements that can withstand high temperatures in service in air and other oxygen-bearing atmospheres and can span greater distances than MoSi{sub 2} heating elements due to improved creep resistance, and high temperature structural members and other fabricated components that can withstand high temperatures in service in air or other oxygen-bearing atmospheres while retaining creep resistance associated with Mo{sub 5}Si{sub 3} for structural integrity. 7 figs.

  17. Boron modified molybdenum silicide and products

    DOEpatents

    Meyer, Mitchell K.; Akinc, Mufit

    1999-02-02

    A boron-modified molybdenum silicide material having the composition comprising about 80 to about 90 weight % Mo, about 10 to about 20 weight % Si, and about 0.1 to about 2 weight % B and a multiphase microstructure including Mo.sub.5 Si.sub.3 phase as at least one microstructural component effective to impart good high temperature creep resistance. The boron-modified molybdenum silicide material is fabricated into such products as electrical components, such as resistors and interconnects, that exhibit oxidation resistance to withstand high temperatures in service in air as a result of electrical power dissipation, electrical resistance heating elements that can withstand high temperatures in service in air and other oxygen-bearing atmospheres and can span greater distances than MoSi.sub.2 heating elements due to improved creep resistance, and high temperature structural members and other fabricated components that can withstand high temperatures in service in air or other oxygen-bearing atmospheres while retaining creep resistance associated with Mo.sub.5 Si.sub.3 for structural integrity.

  18. Climax-Type Porphyry Molybdenum Deposits

    USGS Publications Warehouse

    Ludington, Steve; Plumlee, Geoffrey S.

    2009-01-01

    Climax-type porphyry molybdenum deposits, as defined here, are extremely rare; thirteen deposits are known, all in western North America and ranging in age from Late Cretaceous to mainly Tertiary. They are consistently found in a postsubduction, extensional tectonic setting and are invariably associated with A-type granites that formed after peak activity of a magmatic cycle. The deposits consist of ore shells of quartz-molybdenite stockwork veins that lie above and surrounding the apices of cupola-like, highly evolved, calc-alkaline granite and subvolcanic rhyolite-porphyry bodies. These plutons are invariably enriched in fluorine (commonly >1 percent), rubidium (commonly >500 parts per million), and niobium-tantalum (Nb commonly >50 parts per million). The deposits are relatively high grade (typically 0.1-0.3 percent Mo) and may be very large (typically 100-1,000 million tons). Molybdenum, as MoS2, is the primary commodity in all known deposits. The effect on surface-water quality owing to natural influx of water or sediment from a Climax-type mineralized area can extend many kilometers downstream from the mineralized area. Waste piles composed of quartz-silica-pyrite altered rocks will likely produce acidic drainage waters. The potential exists for concentrations of fluorine or rare metals in surface water and groundwater to exceed recommended limits for human consumption near both mined and unmined Climax-type deposits.

  19. Technetium-99m generator system

    DOEpatents

    Mirzadeh, S.; Knapp, F.F. Jr.; Collins, E.D.

    1998-06-30

    A {sup 99}Mo/{sup 99m}Tc generator system includes a sorbent column loaded with a composition containing {sup 99}Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating {sup 99m}Tc eluted from the sorbent column. A method of preparing a concentrated solution of {sup 99m}Tc includes the general steps of: (a) providing a sorbent column loaded with a composition containing {sup 99}Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; (b) eluting the sorbent column with a salt solution to elute {sup 99m}Tc from the sorbent and to trap and concentrate the eluted {sup 99m}Tc on the ion-exchange column; and (c) eluting the concentrated {sup 99m}Tc from the ion-exchange column with a solution comprising a reductive complexing agent. 1 fig.

  20. Technetium-99m generator system

    DOEpatents

    Mirzadeh, Saed; Knapp, Jr., Furn F.; Collins, Emory D.

    1998-01-01

    A .sup.99 Mo/.sup.99m Tc generator system includes a sorbent column loaded with a composition containing .sup.99 Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating .sup.99m Tc eluted from the sorbent column. A method of preparing a concentrated solution of .sup.99m Tc includes the general steps of: a. providing a sorbent column loaded with a composition containing .sup.99 Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; b. eluting the sorbent column with a salt solution to elute .sup.99m Tc from the sorbent and to trap and concentrate the eluted .sup.99m Tc on the ion-exchange column; and c. eluting the concentrated .sup.99m Tc from the ion-exchange column with a solution comprising a reductive complexing agent.

  1. Chill block melt spinning of nickel-molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Hemker, Kevin J.; Glasgow, Thomas K.

    1987-01-01

    Samples of Ni-Mo alloys ranging in composition from pure nickel to Ni-40 at. pct molybdenum were cast by the chill block melt-spinning rapid solidification technique and examined by optical metallography, X-ray diffraction, and microhardness testing. Casting difficulties were encountered with lean alloys, but richer alloys spread more readily on the casting wheel. Alloy microstructures for 5 to 37.5 at. pct molybdenum ribbons were primarily cellular/dendritic; microstructure feature size decreased with increasing molybdenum content. Extended solubility of molybdenum in gamma-nickel, with fcc lattice parameter increasing with composition to the 1.05 power, was observed up to 37/5 at. pct molybdenum. Substoichiometric Ni-Mo (delta) nucleated on the wheel side of the ribbons of compositions 35, 37.5, and 40 at. pct molybdenum. The amount of partitionless delta-phase thus formed increased with increasing molybdenum content and quench rate. This substoichiometric delta transformed readily to a fine structure gamma-delta mixture.

  2. Spreading of liquid Silver and Silver-Molybdenum alloys on molybdenum substrates

    SciTech Connect

    Rauch, Nicole; Saiz, Eduardo; Tomsia, Antoni P.

    2002-08-01

    The spreading of liquid Ag and Ag-Mo alloys on molybdenum substrates has been studied using a drop-transfer setup. Even though initial spreading velocities as fast as {approx}1 m/s have been recorded in some experiments, a large variation in the spreading dynamics has been observed, and there is no unique relationship between the contact angle and the spreading velocity. This can be attributed to the formation of ridges at the triple junction, the movement of which controls spreading. The fastest spreading rates are consistent with results reported for low temperature liquids; these can be described using a molecular-kinetic model. Spreading kinetics and final contact angles were similar for pure silver and silver-molybdenum liquids.

  3. Atomic layer deposition of molybdenum oxide using bis(tert-butylimido)bis(dimethylamido) molybdenum

    SciTech Connect

    Bertuch, Adam Sundaram, Ganesh

    2014-01-15

    Molybdenum trioxide films have been deposited using thermal atomic layer deposition techniques with bis(tert-butylimido)bis(dimethylamido)molybdenum. Films were deposited at temperatures from 100 to 300 °C using ozone as the oxidant for the process. The Mo precursor was evaluated for thermal stability and volatility using thermogravimetric analysis and static vapor pressure measurements. Film properties were evaluated with ellipsometry, x-ray photoelectron spectroscopy, secondary ion mass spectroscopy, and secondary electron microscopy. The growth rate per cycle was determined to extend from 0.3 to 2.4 Å/cycle with <4% nonuniformity (1-sigma) with-in-wafer across a 150 mm wafer for the investigated temperature range.

  4. The extended family of hexagonal molybdenum oxide

    SciTech Connect

    Hartl, Monika; Daemen, Luke; Lunk, J H; Hartl, H; Frisk, A T; Shendervich, I; Mauder, D; Feist, M; Eckelt, R

    2009-01-01

    Over the last 40 years, a large number of isostructural compounds in the system MoO{sub 3}-NH{sub 3}-H{sub 2}O have been published. The reported molecular formulae of 'hexagonal molybdenum oxide' (HEMO) varied from MoO{sub 3}, MoO{sub 3} {center_dot} 0.33NH{sub 3}, MoO{sub 3} {center_dot} nH{sub 2}O (0.09 {le} n {le} 0.69) to MoO{sub 3} {center_dot} mNH{sub 3} {center_dot} nH{sub 2}O (0.09 {le} m {le} 0.20; 0.18 {le} n {le} 0.60). Samples, prepared by the acidification route, were investigated using thermal analysis coupled on-line to a mass spectrometer for evolved gas analysis; X-ray powder diffraction; Fourier Transform Infrared, Raman and Magic-Angle-Spinning {sup 1}H-NMR spectroscopy; Incoherent Inelastic Neutron Scattering. The X-ray study of a selected monocrystal confirmed the presence of the well-known framework of edge-sharing MoO{sub 6} octahedra: Space group P6{sub 3}/m, a = 10.527(1), c =3.7245(7) {angstrom}, {gamma} = 120{sup o}. The structure of the synthesized samples can best be described by the structural formula (NH{sub 4})[Mo{sub x}{open_square}{sub 1/2+p/2}(O{sub 3x + 1/2-p/2})(OH){sub p}] {center_dot} yH{sub 2}O (x 5.9-7.1; p {approx} 0.1; y = 1.2-2.6), which is consistent with the existence of one vacancy for 12-15 molybdenum sites. The 'chimie douce' reaction of MoO{sub 3} {center_dot} 0.155NH{sub 3} {center_dot} 0.440H{sub 2}O with a 1:1 mixture of NO/NO{sub 2} at 100 C resulted in the synthesis of MoO{sub 3} {center_dot} 0.539H{sub 2}O. Tailored nano-sized molybdenum powders can be produced using HEMO as precursor.

  5. Amorphous molybdenum sulfides as hydrogen evolution catalysts.

    PubMed

    Morales-Guio, Carlos G; Hu, Xile

    2014-08-19

    Providing energy for a population projected to reach 9 billion people within the middle of this century is one of the most pressing societal issues. Burning fossil fuels at a rate and scale that satisfy our near-term demand will irreversibly damage the living environment. Among the various sources of alternative and CO2-emission-free energies, the sun is the only source that is capable of providing enough energy for the whole world. Sunlight energy, however, is intermittent and requires an efficient storage mechanism. Sunlight-driven water splitting to make hydrogen is widely considered as one of the most attractive methods for solar energy storage. Water splitting needs a hydrogen evolution catalyst to accelerate the rate of hydrogen production and to lower the energy loss in this process. Precious metals such as Pt are superior catalysts, but they are too expensive and scarce for large-scale applications. In this Account, we summarize our recent research on the preparation, characterization, and application of amorphous molybdenum sulfide catalysts for the hydrogen evolution reaction. The catalysts can be synthesized by electrochemical deposition under ambient conditions from readily available and inexpensive precursors. The catalytic activity is among the highest for nonprecious catalysts. For example, at a loading of 0.2 mg/cm(2), the optimal catalyst delivers a current density of 10 mA/cm(2) at an overpotential of 160 mV. The growth mechanism of the electrochemically deposited film catalysts was revealed by an electrochemical quartz microcrystal balance study. While different electrochemical deposition methods produce films with different initial compositions, the active catalysts are the same and are identified as a "MoS(2+x)" species. The activity of the film catalysts can be further promoted by divalent Fe, Co, and Ni ions, and the origins of the promotional effects have been probed. Highly active amorphous molybdenum sulfide particles can also be prepared

  6. Development of silicide coating over molybdenum based refractory alloy and its characterization

    NASA Astrophysics Data System (ADS)

    Chakraborty, S. P.; Banerjee, S.; Sharma, I. G.; Suri, A. K.

    2010-08-01

    Molybdenum based refractory alloys are potential candidate materials for structural applications in high temperature compact nuclear reactors and fusion reactors. However, these alloys being highly susceptible to oxidation in air or oxygen at elevated temperature, undergoes severe losses from highly volatile molybdenum trioxide species. Present investigation, therefore, examines the feasibility of development of silicide type of coating over molybdenum base TZM alloy shape (Mo > 99 wt.%) using pack cementation coating technique. TZM alloy was synthesized in this laboratory from oxide intermediates of MoO 2, TiO 2 and ZrO 2 in presence of requisite amount of carbon, by alumino-thermic reduction smelting technique. The arc melted and homogenized samples of TZM alloy substrate was then embedded in the chosen and intimately mixed pack composition consisting of inert matrix (Al 2O 3), coating powder (Si) and activator (NH 4Cl) taken in the judicious proportion. The sealed charge packs contained in an alumina crucible were heated at temperatures of 1000 °C for 8-16 h heating cycle to develop the coating. The coating phase was confirmed to be of made of MoSi 2 by XRD analysis. The morphology of the coating was studied by SEM characterization. It had revealed that the coating was diffusion bonded where Si from coating diffused inward and Mo from TZM substrate diffused outward to form the coating. The coating was found to be resistant to oxidation when tested in air up to 1200 °C. A maximum 100 μm of coating thickness was achieved on each side of the substrate.

  7. Superconducting properties of evaporated copper molybdenum sulfide films

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Chi, K. C.; Dillon, R. O.; Bunshah, R. F.; Alterovitz, S. A.

    1978-01-01

    Films of copper molybdenum sulfide were produced by coevaporation. Those that were superconducting contained only the ternary compound and free molybdenum. The range of copper content in the ternary compound was as large as that in polycrystalline material, that is, it includes either phase alone, or a mixture of the two phases of this material. This is in contrast with sputtered materials where copper concentration has been limited to a narrower range. The upper critical field and the critical current were measured as functions of external magnetic field, and found to be similar to those of sputtered copper molybdenum sulfide, when the comparison was made for samples having the same amount of copper.

  8. Pterin chemistry and its relationship to the molybdenum cofactor

    PubMed Central

    Basu, Partha; Burgmayer, Sharon J.N.

    2011-01-01

    The molybdenum cofactor is composed of a molybdenum coordinated by one or two rather complicated ligands known as either molybdopterin or pyranopterin. Pterin is one of a large family of bicyclic N-heterocycles called pteridines. Such molecules are widely found in Nature, having various forms to perform a variety of biological functions. This article describes the basic nomenclature of pterin, their biological roles, structure, chemical synthesis and redox reactivity. In addition, the biosynthesis of pterins and current models of the molybdenum cofactor are discussed. PMID:21607119

  9. PURIFICATION OF URANIUM FROM URANIUM/MOLYBDENUM ALLOY

    SciTech Connect

    Pierce, R; Ann Visser, A; James Laurinat, J

    2007-10-15

    The Savannah River Site will recycle a nuclear fuel comprised of 90% uranium-10% molybdenum by weight. The process flowsheet calls for dissolution of the material in nitric acid to a uranium concentration of 15-20 g/L without the formation of precipitates. The dissolution will be followed by separation of uranium from molybdenum using solvent extraction with 7.5% tributylphosphate in n-paraffin. Testing with the fuel validated dissolution and solubility data reported in the literature. Batch distribution coefficient measurements were performed for the extraction, strip and wash stages with particular focus on the distribution of molybdenum.

  10. Mechanical properties of oxide dispersion strengthened (ODS) molybdenum alloys

    SciTech Connect

    Bianco, R.; Buckman, R.W. Jr.

    1998-03-01

    Oxide dispersion strengthened molybdenum, Mo-ODS, developed by a proprietary powder metallurgy process, exhibits a creep rupture life at 0.65T{sub m} (1,600 C) of three to five orders of magnitude greater than unalloyed molybdenum, while maintaining ductile fracture behavior at temperatures significantly below room temperature. In comparison, the creep rupture life of the Mo-50Re solid solution strengthened alloy at 1,600 C is only an order of magnitude greater than unalloyed molybdenum. The results of microstructural characterization and thermal stability and mechanical property testing are discussed.

  11. Carbonization behavior of pitches containing fine molybdenum particles

    SciTech Connect

    Ishihara, Atsushi; Wang, Xiangsheng; Kabe, Toshiaki . Dept. of Chemical Engineering); Shono, Hiroaki . Mineral Fiber Research Lab.)

    1993-08-01

    In the carbonization of coal tar pitch and naphthalene pitch containing fine molybdenum particles, it was found by using a tritium tracer method that the fine molybdenum particles added into pitch in advance can selectively catalyze the dehydrogenation and polycondensation of saturated hydrocarbons below 700 C, and thereby the carbonization yield of coal tar pitch containing partially saturated structures or aliphatic side chains in its component molecules increased. Further, it could be inferred that the fine molybdenum particles mainly accelerate the release of the hydrogen which is difficult to isotopically exchange with water in the preparation of tritiated pitch in the presence of Pt/Al[sub 2]O[sub 3].

  12. Advances in rechargeable lithium molybdenum disulfide batteries

    NASA Technical Reports Server (NTRS)

    Brandt, K.; Stiles, J. A. R.

    1985-01-01

    The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.

  13. Environmental behavior of two molybdenum porphyry systems

    USGS Publications Warehouse

    Tuttle, M.L.W.; Wanty, R.B.; Berger, B.R.

    2004-01-01

    Our study focuses on the geology, hydrology, and geochemistry of a variety of molybdenum (Mo) porphyry systems. The systems are either high fluorine, granite, Climax-type, systems (e.g. Mount Emmons/ Redwell Mo deposit, Colorado and Questa Mo deposit, New Mexico) or low fluorine granodiorite systems (e.g. Buckingham Stockwork Mo deposit, Battle Mountain, Nevada and Cannivan Gulch Mo deposit, Montana). The water quality of streams, natural springs, mine discharge, and ground water from drill holes were assessed in the region of these deposits. The ultimate goal of our study is to understand the environmental behavior of these Mo porphyry systems in the context of geologic setting, hydrologic regime, and climate.

  14. Molybdenum Abundances in Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.

    2012-08-01

    Peterson (2011) has analyzed HST spectra near 2000Å of five metal-poor turnoff stars with mild enhancements of heavy r-process elements. Two stars, HD 94028 and HD 160617, are unique in showing an extreme overabundance of the light trans-ironic element molybdenum (Z = 42), but less extreme enhancements of Zr (Z = 40) and Ru (Z = 44). Of several nucleosynthesis scenarios that can produce nuclei in this mass range in the oldest stars, a high-entropy wind (HEW) acting in a core-collapse supernova seems uniquely capable of a high overproduction confined to a narrow mass range. That this unusual elemental distribution is achieved only under very limited physical conditions suggests that very few individual nucleosynthesis events were responsible for the synthesis of the light trans-ironic elements in these stars, even though both are only moderately metal-poor.

  15. Pressure-induced metallization of molybdenum disulfide.

    PubMed

    Chi, Zhen-Hua; Zhao, Xiao-Miao; Zhang, Haidong; Goncharov, Alexander F; Lobanov, Sergey S; Kagayama, Tomoko; Sakata, Masafumi; Chen, Xiao-Jia

    2014-07-18

    X-ray diffraction, Raman spectroscopy, and electrical conductivity measurements of molybdenum disulfide MoS(2) are performed at pressures up to 81 GPa in diamond anvil cells. Above 20 GPa, we find discontinuous changes in Raman spectra and x-ray diffraction patterns which provide evidence for isostructural phase transition from 2H(c) to 2H(a) modification through layer sliding previously predicted theoretically. This first-order transition, which is completed around 40 GPa, is characterized by a collapse in the c-lattice parameter and volume and also by changes in interlayer bonding. After the phase transition completion, MoS(2) becomes metallic. The reversibility of the phase transition is identified from all these techniques. PMID:25083660

  16. Ultrafast response of monolayer molybdenum disulfide photodetectors

    PubMed Central

    Wang, Haining; Zhang, Changjian; Chan, Weimin; Tiwari, Sandip; Rana, Farhan

    2015-01-01

    The strong light emission and absorption exhibited by single atomic layer transitional metal dichalcogenides in the visible to near-infrared wavelength range make them attractive for optoelectronic applications. In this work, using two-pulse photovoltage correlation technique, we show that monolayer molybdenum disulfide photodetector can have intrinsic response times as short as 3 ps implying photodetection bandwidths as wide as 300 GHz. The fast photodetector response is a result of the short electron–hole and exciton lifetimes in this material. Recombination of photoexcited carriers in most two-dimensional metal dichalcogenides is dominated by nonradiative processes, most notable among which is Auger scattering. The fast response time, and the ease of fabrication of these devices, make them interesting for low-cost ultrafast optical communication links. PMID:26572726

  17. Hole injection in tri-arylamine containing polyfluorene co-polymer devices with molybdenum oxide contacts

    NASA Astrophysics Data System (ADS)

    Buckley, Alastair; Pickup, David; Yates, Chris; Zhao, Yi; Lidzey, David

    2011-04-01

    We report spectroscopic and electrical measurements to explore hole injection and conduction in devices comprising a molybdenum sub-oxide (MoOx) hole injection layers and poly[(9,9-dioctylfluorenyl-2, 7-diyl)-co-(4,4'(N-(4-sec-butylphenyl))) diphenylamine](TFB) hole transporting polymer. We report improvements in device conductivity over benchmark structures incorporating an ITO electrode and polyethylenedioxythiophene polystyrene sulfonate (PEDOT:PSS) hole injection layers and furthermore achieve injection from MoOx to TFB that is efficient even with an underlying low workfunction Al electrode. XPS spectroscopy has been used to investigate the electronic structure of the interfaces and we find discrete energy alignment regimes consistent with recent surface science studies by Tengstedt et al. [Appl. Phys. Lett. 88, 053502 (2006)], corresponding to Fermi level pinning for MoOx/TFB and vacuum level pinning in the case of Al/TFB. While the energetic alignment regime is measured to be independent of MoOx thickness, the device conductivity continuously varies with MoOx thickness; an observation that can be qualitatively explained by considering two independent charge injection mechanisms from molybdenum oxide sites having different stoicheometry.

  18. Electroplating and stripping copper on molybdenum and niobium

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1978-01-01

    Molybdenum and niobium are often electroplated and subsequently stripped of copper. Since general standard plating techniques produce poor quality coatings, general procedures have been optimized and specified to give good results.

  19. High Molybdenum availability for evolution in a Mesoproterozoic lacustrine environment

    NASA Astrophysics Data System (ADS)

    Parnell, John; Spinks, Samuel; Andrews, Steven; Thayalan, Wanethon; Bowden, Stephen

    2015-05-01

    Trace metal data for Proterozoic marine euxinic sediments imply that the expansion of nitrogen-fixing cyanobacteria and diversification of eukaryotes were delayed while the availability of bioessential metals such as molybdenum in the ocean was limited. However, there is increasing recognition that the Mesoproterozoic evolution of nitrogen fixation and eukaryotic life may have been promoted in marginal marine and terrestrial environments, including lakes, rather than in the deep ocean. Molybdenum availability is critical to life in lakes, just as it is in the oceans. It is, therefore, important to assess molybdenum availability to the lacustrine environment in the Mesoproterozoic. Here we show that the flux of molybdenum to a Mesoproterozoic lake was 1 to 2 orders of magnitude greater than typical fluxes in the modern and ancient marine environment. Thus, there was no barrier to availability to prevent evolution in the terrestrial environment, in contrast to the nutrient-limited Mesoproterozoic oceans.

  20. Molybdenum-UO2 cermet irradiation at 1145 K.

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-uranium dioxide cermet fuel pins with molybdenum clad were fission-heated in a forced-convection helium coolant for sufficient time to achieve 5.3% burnup. The cermet core contained 20 wt % of 93.2% enriched uranium dioxide. The results were as follows: there was no visible change in the appearance of the molybdenum clad during irradiation; the maximum increase in diameter of the fuel pins was 0.8%; there was no migration of uranium dioxide along grain boundaries and no evident interaction between molybdenum and uranium dioxide; and, finally, approximately 12% of the fission gas formed was released from the cermet core into the gas plenum.

  1. Synthesis of Dinitrogen and Dihydrogen Complexes of Molybdenum.

    ERIC Educational Resources Information Center

    Archer, Leonard J.; And Others

    1981-01-01

    Presents background information, safety notes, and laboratory procedures for synthesizing dinitrogen and dihydrogen complexes of molybdenum. The one-step method described is suitable for advanced inorganic chemistry classes. (SK)

  2. A terminal molybdenum arsenide complex synthesized from yellow arsenic.

    PubMed

    Curley, John J; Piro, Nicholas A; Cummins, Christopher C

    2009-10-19

    A terminal molybdenum arsenide complex is synthesized in one step from the reactive As(4) molecule. The properties of this complex with its arsenic atom ligand are discussed in relation to the analogous nitride and phosphide complexes. PMID:19764796

  3. Improved molybdenum disulfide-silver motor brushes have extended life

    NASA Technical Reports Server (NTRS)

    Horton, J. C.; King, H. M.

    1964-01-01

    Motor brushes of proper quantities of molybdenum disulfide and copper or silver are manufactured by sintering techniques. Graphite molds are used. These brushes operate satisfactorily for long periods in normal atmosphere or in a high-vacuum environment.

  4. Modeling of Oxidation of Molybdenum Particles during Plasma Spray Deposition

    SciTech Connect

    Fincke, James Russell; Wan, Y. P.; Jiang, X. Y.; Sampath, S.; Prasad, V.; Herman, H.

    2001-06-01

    An oxidation model for molybdenum particles during the plasma spray deposition process is presented. Based on a well-verified model for plasma chemistry and the heating and phase change of particles in a plasma plume, this model accounts for the oxidant diffusion around the surface of particles or splats, oxidation on the surface, as well as oxygen diffusion in molten molybdenum. Calculations are performed for a single molybdenum particle sprayed under Metco-9MB spraying conditions. The oxidation features of particles during the flight are compared with those during the deposition. The result shows the dominance of oxidation of a molybdenum particle during the flight, as well as during deposition when the substrate temperature is high (above 400 °C).

  5. Molybdenum-A Key Component of Metal Alloys

    USGS Publications Warehouse

    Kropschot, S.J.

    2010-01-01

    Molybdenum, whose chemical symbol is Mo, was first recognized as an element in 1778. Until that time, the mineral molybdenite-the most important source of molybdenum-was believed to be a lead mineral because of its metallic gray color, greasy feel, and softness. In the late 19th century, French metallurgists discovered that molybdenum, when alloyed (mixed) with steel in small quantities, creates a substance that is remarkably tougher than steel alone and is highly resistant to heat. The alloy was found to be ideal for making tools and armor plate. Today, the most common use of molybdenum is as an alloying agent in stainless steel, alloy steels, and superalloys to enhance hardness, strength, and resistance to corrosion.

  6. High Molybdenum availability for evolution in a Mesoproterozoic lacustrine environment.

    PubMed

    Parnell, John; Spinks, Samuel; Andrews, Steven; Thayalan, Wanethon; Bowden, Stephen

    2015-01-01

    Trace metal data for Proterozoic marine euxinic sediments imply that the expansion of nitrogen-fixing cyanobacteria and diversification of eukaryotes were delayed while the availability of bioessential metals such as molybdenum in the ocean was limited. However, there is increasing recognition that the Mesoproterozoic evolution of nitrogen fixation and eukaryotic life may have been promoted in marginal marine and terrestrial environments, including lakes, rather than in the deep ocean. Molybdenum availability is critical to life in lakes, just as it is in the oceans. It is, therefore, important to assess molybdenum availability to the lacustrine environment in the Mesoproterozoic. Here we show that the flux of molybdenum to a Mesoproterozoic lake was 1 to 2 orders of magnitude greater than typical fluxes in the modern and ancient marine environment. Thus, there was no barrier to availability to prevent evolution in the terrestrial environment, in contrast to the nutrient-limited Mesoproterozoic oceans. PMID:25988499

  7. Thermodynamic considerations and prediction of the primary coolant activity of 99Tc

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Thompson, W. T.; Akbari, F.; Morrison, C.; Husain, A.

    2005-04-01

    A physical model has been developed to describe the coolant activity behaviour of 99Tc, during constant and reactor shutdown operations. This analysis accounts for the fission production of technetium and molybdenum, in which their chemical form and volatility is determined by a thermodynamic treatment using Gibbs-energy minimization. The release kinetics are calculated according to the rate-controlling step of diffusional transport in the fuel matrix and vaporization from the fuel-grain surface. Based on several in-reactor tests with defective fuel elements, and as supported by the thermodynamic analysis, the model accounts for the washout of molybdenum from the defective fuel on reactor shutdown. The model also considers the recoil release of both 99Mo and 99Tc from uranium contamination, as well as a corrosion source due to activation of 98Mo. The model has provided an estimate of the activity ratio 99Tc/ 137Cs in the ion-exchange columns of the Darlington Nuclear Generating Station, i.e., 6 × 10 -6 (following ˜200 days of steady reactor operation) and 4 × 10 -6 (with reactor shutdown). These results are consistent with that measured by the Battelle Pacific Northwest Laboratories with a mixed-bed resin-sampling device installed in a number of Pressurized Water Reactor and Boiling Water Reactor plants.

  8. Isotopically Modified Molybdenum: Production for Application in Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Smirnov, A. Yu.; Bonarev, A. K.; Sulaberidze, G. A.; Borisevich, V. D.; Kulikov, G. G.; Shmelev, A. N.

    The possibility to use the isotopically modified molybdenum as a constructive material for the fuel rods of light water and fast reactors is discussed. The calculations demonstrate that the isotopically modified molybdenum with an average neutron absorption cross-section comparable to that of zirconium can be obtained with the reasonable for practice cost by a cascade of gas centrifuges, specially designed for separation of non-uranium isotopes.

  9. Oxidation characteristics of molybdenum-zirconium oxide cermets

    NASA Technical Reports Server (NTRS)

    Heitzinger, B.

    1984-01-01

    The oxidation of molybdenum is affected by the factors of temperature, the oxygen pressure in the oxidizing atmosphere, and the time of exposure. Studies of the oxidation characteristics of Mo show that the oxidation rate increases strongly when the temperature exceeds 600 C. Investigations of the behavior of cermets with various percentages of zirconium oxide are discussed, taking into account oxidation conditions at temperatures under and above the melting point of molybdenum trioxide.

  10. A study of the mechanisms of hydrogen embrittlement in molybdenum

    NASA Technical Reports Server (NTRS)

    Taheri, M.

    1978-01-01

    The mechanical properties of polycrystalline molybdenum samples in both the 'as annealed' and hydrogenized conditions were studied. The results indicate that hydrogen does not alter the yield stress of samples significantly although it reduces both the ultimate tensile strength and the ductility considerably. Fractographic study of samples shows a tendency to intercrystalline cracking of the hydrogenised molybdenum at low temperatures. In the light of the results, a mechanism involving grain boundary weakening is suggested.

  11. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOEpatents

    Lowden, R.A.

    1994-04-05

    A process for chemical vapor deposition of crystalline silicon nitride is described which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide. 5 figures.

  12. A secular technetium-molybdenum generator

    NASA Astrophysics Data System (ADS)

    Araujo, Wagner L.; Campos, Tarcisio P. R.

    2015-05-01

    A compact secular molybdenium generator is subject of this paper. This generator represents a nuclear system that comprises a hydrogen-isotopes fusor, moderator, reflector and shield. Deuterium fusion reactions in a tritiated or deuterated target provide the neutron source. A moderation fluid slowdown the neutron energy which increases 98Mo(n,γ)99Mo capture reaction rates. Neutron reflection minimizes the neutron escape and the radiation shield encloses the device. The neutron yield calculation along with electromagnetic and nuclear simulations were addressed. Results revealed the accelerator equipotential surfaces ranging from -30 to 150 kV, the ion trajectories and the energy beam profile define a deuteron current of 1 A with energy of 180 keV at the target, the spatial distribution of the neutron flux, and the 99Mo and 99mTc activities in function of transmuter operation time. The kinetics of the 99mTc correlated to its precursor activity demonstrates a secular equilibrium providing 2 Ci in a operational time of 150 h. As conclusion, the investigated nuclear and electromagnetic features have demonstrated that such generator shall have a notable potential for feeding the 99mTc clinical application.

  13. Carminic acid as a reagent for the spectrofluorimetric determination of molybdenum and tungsten-II Determination of molybdenum in mild steel.

    PubMed

    Kirkbright, G F; West, T S; Woodward, C

    1966-12-01

    A method is described for the spectrofluorimetric determination of molybdenum in mild steel down to 0.01 %. After dissolution of the sample, molybdenum is separated from the bulk of iron by extraction of molybdenum(V) thiocyanate with isoamyl acetate. It is then determined with carminic acid as described in Part I. PMID:18960052

  14. Dilithiation of Bis(benzene)molybdenum and subsequent isolation of a molybdenum-containing paracyclophane.

    PubMed

    Braunschweig, Holger; Buggisch, Nele; Englert, Ulli; Homberger, Melanie; Kupfer, Thomas; Leusser, Dirk; Lutz, Matthias; Radacki, Krzysztof

    2007-04-18

    The homoleptic sandwich complex bis(benzene)molybdenum, [Mo(eta6-C6H6)2], was successfully dilithiated by employing an excess of BuLi in the presence of N,N,N',N'-tetramethylethylenediamine (up to 6 equiv each) at slightly elevated temperatures furnishing the highly reactive, ring metalated species [Mo(eta6-C6H5Li)2].tmeda in high yields. Alternatively, this compound was synthesized upon prolonged sonication with 5 equiv of tBuLi/tmeda without heating. An X-ray crystal structure determination revealed a symmetrical, dimeric composition in the solid state, i.e., a formula of [Mo(eta6-C6H5Li)2]2.(thf)6, where the six-membered rings are connected by two pairs of bridging lithium atoms. The synthesis of an elusive ansa-bridged complex failed in the case of a [1]bora and a [1]sila bridge due to the thermal lability of the resulting compounds. Instead, reverse addition of the dilithio precursor to an excess of the appropriate element dihalide facilitated the isolation of several unstrained, 1,1'-disubstituted derivatives, namely, [Mo{eta6-C6H5(BN(SiMe3)2X)}2] (X = Cl, Br) and [Mo{eta6-C6H5(SiiPr2Cl)}2], respectively. However, the incorporation of a less congesting [2]sila bridge was accomplished. In addition to the formation of [Mo{(eta6-C6H5)2Si2Me4}], a molybdenum-containing paracylophane complex was isolated and characterized by means of crystal structure analysis. The ancillary formation of 1 equiv of bis(benzene)molybdenum strongly suggests that this species is generated by deprotonation of the ansa-bridged complex by the dilithiated precursor and subsequent reaction with a second equivalent of the disilane. PMID:17375929

  15. Molybdenum oxide and molybdenum oxide-nitride back contacts for CdTe solar cells

    SciTech Connect

    Drayton, Jennifer A. Geisthardt, Russell M. Sites, James R.; Williams, Desiree D. Cramer, Corson L. Williams, John D.

    2015-07-15

    Molybdenum oxide (MoO{sub x}) and molybdenum oxynitride (MoON) thin film back contacts were formed by a unique ion-beam sputtering and ion-beam-assisted deposition process onto CdTe solar cells and compared to back contacts made using carbon–nickel (C/Ni) paint. Glancing-incidence x-ray diffraction and x-ray photoelectron spectroscopy measurements show that partially crystalline MoO{sub x} films are created with a mixture of Mo, MoO{sub 2}, and MoO{sub 3} components. Lower crystallinity content is observed in the MoON films, with an additional component of molybdenum nitride present. Three different film thicknesses of MoO{sub x} and MoON were investigated that were capped in situ in Ni. Small area devices were delineated and characterized using current–voltage (J-V), capacitance–frequency, capacitance–voltage, electroluminescence, and light beam-induced current techniques. In addition, J-V data measured as a function of temperature (JVT) were used to estimate back barrier heights for each thickness of MoO{sub x} and MoON and for the C/Ni paint. Characterization prior to stressing indicated the devices were similar in performance. Characterization after stress testing indicated little change to cells with 120 and 180-nm thick MoO{sub x} and MoON films. However, moderate-to-large cell degradation was observed for 60-nm thick MoO{sub x} and MoON films and for C/Ni painted back contacts.

  16. Molybdenum disilicide composites produced by plasma spraying

    SciTech Connect

    Castro, R.G.; Hollis, K.J.; Kung, H.H.; Bartlett, A.H.

    1998-05-25

    The intermetallic compound, molybdenum disilicide (MoSi{sub 2}) is being considered for high temperature structural applications because of its high melting point and superior oxidation resistance at elevated temperatures. The lack of high temperature strength, creep resistance and low temperature ductility has hindered its progress for structural applications. Plasma spraying of coatings and structural components of MoSi{sub 2}-based composites offers an exciting processing alternative to conventional powder processing methods due to superior flexibility and the ability to tailor properties. Laminate, discontinuous and in situ reinforced composites have been produced with secondary reinforcements of Ta, Al{sub 2}O{sub 3}, SiC, Si{sub 3}N{sub 4} and Mo{sub 5}Si{sub 3}. Laminate composites, in particular, have been shown to improve the damage tolerance of MoSi{sub 2} during high temperature melting operations. A review of research which as been performed at Los Alamos National Laboratory on plasma spraying of MoSi{sub 2}-based composites to improve low temperature fracture toughness, thermal shock resistance, high temperature strength and creep resistance will be discussed.

  17. Structural phase transitions in monolayer molybdenum dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha June; Chang, Kee Joo

    2015-03-01

    The recent discovery of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) has provided opportunities to develop ultimate thin channel devices. In contrast to graphene, the existence of moderate band gap and strong spin-orbit coupling gives rise to exotic electronic properties which vary with layer thickness, lattice structure, and symmetry. TMDs commonly appear in two structures with distinct symmetries, trigonal prismatic 2H and octahedral 1T phases which are semiconducting and metallic, respectively. In this work, we investigate the structural and electronic properties of monolayer molybdenum dichalcogenides (MoX2, where X = S, Se, Te) through first-principles density functional calculations. We find a tendency that the semiconducting 2H phase is more stable than the metallic 1T phase. We show that a spontaneous symmetry breaking of 1T phase leads to various distorted octahedral (1T') phases, thus inducing a metal-to-semiconductor transition. We discuss the effects of carrier doping on the structural stability and the modification of the electronic structure. This work was supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.

  18. Intrinsic structural defects in monolayer molybdenum disulfide

    SciTech Connect

    Zhou, Wu; Idrobo Tapia, Juan C

    2013-01-01

    Monolayer molybdenum disulfide (MoS2) is a two-dimensional direct band gap semiconductor with distinctive mechanical, electronic, optical and chemical properties that can be utilized for novel nanoelectronics and optoelectronics devices. The performance of these electronic devices strongly depends on the quality and defect morphology of the MoS2 layers. Yet, little is known about the atomic structure of defects present in monolayer MoS2 and their influences on the material properties. Here we provide a systematic study of various intrinsic structural defects, including point defects, grain boundaries, and edges, in chemical vapor phase grown monolayer MoS2 via direct atomic resolution imaging, and explore their energy landscape and electronic properties using first-principles calculations. We discover that one-dimensional metallic wires can be created via two different types of 60 grain boundaries consisting of distinct 4-fold ring chains. A new type of edge reconstruction, representing a transition state during growth, was also identified, providing insights into the material growth mechanism. The atomic scale study of structural defects presented here brings new opportunities to tailor the properties of MoS2 via controlled synthesis and defect engineering.

  19. Vertically aligned biaxially textured molybdenum thin films

    SciTech Connect

    Krishnan, Rahul; Riley, Michael; Lee, Sabrina; Lu, Toh-Ming

    2011-09-15

    Vertically aligned, biaxially textured molybdenum nanorods were deposited using dc magnetron sputtering with glancing flux incidence (alpha = 85 degrees with respect to the substrate normal) and a two-step substrate-rotation mode. These nanorods were identified with a body-centered cubic crystal structure. The formation of a vertically aligned biaxial texture with a [110] out-of-plane orientation was combined with a [-110] in-plane orientation. The kinetics of the growth process was found to be highly sensitive to an optimum rest time of 35 seconds for the two-step substrate rotation mode. At all other rest times, the nanorods possessed two separate biaxial textures each tilted toward one flux direction. While the in-plane texture for the vertical nanorods maintains maximum flux capture area, inclined Mo nanorods deposited at alpha = 85 degrees without substrate rotation display a [-1-1-4] in-plane texture that does not comply with the maximum flux capture area argument. Finally, an in situ capping film was deposited with normal flux incidence over the biaxially textured vertical nanorods resulting in a thin film over the porous nanorods. This capping film possessed the same biaxial texture as the nanorods and could serve as an effective substrate for the epitaxial growth of other functional materials.

  20. Molybdenum-base cermet fuel development

    NASA Astrophysics Data System (ADS)

    Pilger, James P.; Gurwell, William E.; Moss, Ronald W.; White, George D.; Seifert, David A.

    Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. The MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermte. This cermet is to have a high matrix density (greater than or equal to 95 percent) for high strength and high thermal conductance coupled with a high particle (UN) porosity (approximately 25 percent) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous Un microspheres become available. Process development was conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and the vacuum hot press consolidation techniques. This paper summarizes the status of these activities.

  1. Scalable Production of Molybdenum Disulfide Based Biosensors.

    PubMed

    Naylor, Carl H; Kybert, Nicholas J; Schneier, Camilla; Xi, Jin; Romero, Gabriela; Saven, Jeffery G; Liu, Renyu; Johnson, A T Charlie

    2016-06-28

    We demonstrate arrays of opioid biosensors based on chemical vapor deposition grown molybdenum disulfide (MoS2) field effect transistors (FETs) coupled to a computationally redesigned, water-soluble variant of the μ-opioid receptor (MOR). By transferring dense films of monolayer MoS2 crystals onto prefabricated electrode arrays, we obtain high-quality FETs with clean surfaces that allow for reproducible protein attachment. The fabrication yield of MoS2 FETs and biosensors exceeds 95%, with an average mobility of 2.0 cm(2) V(-1) s(-1) (36 cm(2) V(-1) s(-1)) at room temperature under ambient (in vacuo). An atomic length nickel-mediated linker chemistry enables target binding events that occur very close to the MoS2 surface to maximize sensitivity. The biosensor response calibration curve for a synthetic opioid peptide known to bind to the wild-type MOR indicates binding affinity that matches values determined using traditional techniques and a limit of detection ∼3 nM (1.5 ng/mL). The combination of scalable array fabrication and rapid, precise binding readout enabled by the MoS2 transistor offers the prospect of a solid-state drug testing platform for rapid readout of the interactions between novel drugs and their intended protein targets. PMID:27227361

  2. Amorphous molybdenum silicon superconducting thin films

    SciTech Connect

    Bosworth, D. Sahonta, S.-L.; Barber, Z. H.; Hadfield, R. H.

    2015-08-15

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using W{sub x}Si{sub 1−x}, though other amorphous superconductors such as molybdenum silicide (Mo{sub x}Si{sub 1−x}) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo{sub 83}Si{sub 17}. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  3. The biological and toxicological importance of molybdenum in the environment and in the nutrition of plants, animals and man. Part 1: Molybdenum in plants.

    PubMed

    Anke, M; Seifert, M

    2007-09-01

    In 1930, Bortels showed that molybdenum is necessary for nitrogen fixation in Acetobacter, and in 1939 Arnon and Stout reported that molybdenum is essential for life in higher plants. Nitrogenase is the nitrogen-fixing enzyme complex, while nitrate reductase requires molybdenum for its activity. Molybdenum occurs in the earth crust with an abundance of 1.0-1.4 mg/kg. The molybdenum content of the vegetation is determined by the amount of this element in the soil and its pH-value. The weathering soils of granite, porphyry, gneiss and Rotliegendes produce a molybdenum-rich vegetation. Significantly poorer in Mo is the vegetation on loess, diluvial sands, alluvial riverside soils and especially on Keuper and Muschelkalk weathering soils, which produce legumes and, e.g. cauliflower with molybdenum deficiency symptoms. The molybdenum content of the flora decreases with increasing age. Legumes store the highest molybdenum levels in the bulbs of their roots; on average, they accumulate more molybdenum than herbs and grasses do. The danger of molybdenum toxicity in plants is small. PMID:17899788

  4. Electrothermal atomic absorption spectrometry determination of molybdenum in whole blood

    NASA Astrophysics Data System (ADS)

    Burguera, J. L.; Rondón, C.; Burguera, M.; Roa, M. E.; Petit de Peña, Y.

    2002-03-01

    A method for the determination of molybdenum in whole blood by atomic absorption spectrometry with electrothermal atomization was developed and evaluated. Erbium (25 μg) was chosen from several potential chemical modifiers (Sm, Lu, Ho, Eu and Pd+Mg) as the most appropriate for the sensitive and reliable determination of molybdenum in such sample. The process used was direct dilution of the sample in a ratio 1:2 with a 0.1% (v/v) Triton X-100 solution. The injection of 20 μl of a solution of 15% (w/v) hydrogen peroxide and running the temperature program after 5 firings greatly reduced the effect of build-up of carbonaceous residues within the atomizer. The limit of detection and working ranges, respectively, were 0.6 and 2.0-100.0 μg l -1, and the characteristic mass was 7.2 pg. The relative standard deviation varied from 0.8 to 1.5% for within and between batch determinations, respectively. The determination of molybdenum in Seronorm™ Trace Elements in Whole Blood with known added amounts of the analyte was performed to asses the accuracy. The optimized procedure has been applied to the determination of molybdenum in whole blood specimens of 20 subjects taken before and 10-12 h after receiving an over-supply of 1 mg of molybdenum. The molybdenum concentrations (±S.D.) were 10.9±0.4 μg Mo l -1 (range 9.9-11.6 μg Mo l -1) and 15.4±0.4 μg Mo l -1 (range 13.1-16.9 μg Mo l -1) for the individuals before and after the administration of molybdenum.

  5. STS-99 Crew Insignia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-99 crew members designed the flight insignia for the Shuttle Radar Topography Mission (SRTM), the most ambitious Earth mapping mission to date. Two radar anternas, one located in the Shuttle bay and the other located on the end of a 60-meter deployable mast, was used during the mission to map Earth's features. The goal was to provide a 3-dimensional topographic map of the world's surface up to the Arctic and Antarctic Circles. In the patch, the clear portion of Earth illustrates the radar beams penetrating its cloudy atmosphere and the unique understanding of the home planet that is provided by space travel. The grid on Earth reflects the mapping character of the SRTM mission. The patch depicts the Space Shuttle Endeavour orbiting Earth in a star spangled universe. The rainbow along Earth's horizon resembles an orbital sunrise. The crew deems the bright colors of the rainbow as symbolic of the bright future ahead because of human beings' venturing into space. The crew of six launched aboard the Space Shuttle Endeavor on February 11, 2000 and completed 222 hours of around the clock radar mapping gathering enough information to fill more than 20,000 CDs.

  6. 99. 99% Al/ 6063 Alloy Co-extruded beam chamber

    SciTech Connect

    Ishimaru, H.; Narushima, K.; Kanazawa, K.

    1988-09-30

    In an electron storage ring, synchrotron radiation causes stimulated gas desorption from the vacuum chamber wall. It raises the operating pressure far above the ultrahigh vacuum range needed for long beam lifetimes. In order to determine an ideal material for low dynamic gas desorption we have studied the properties of co-extruded 99.99%Al/ 6063 alloy. (AIP)

  7. Activity and selectivity of molybdenum catalysts in coal liquefaction reactions

    SciTech Connect

    Curtis, C.W.; Pellegrino, J.L. )

    1988-01-01

    The purpose of this work is to evaluate how effectively three different molybdenum catalysts promote reactions involving heteroatom removal and cleavage of alkyl bridge hydrodeoxygenation (HDO), hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrocracking (HYC). Both model and coal liquefaction reactions were performed to test the activity and selectivity of three different molybdenum catalysts. The three catalysts used were molybdenum naphthenate, molybdenum supported on gamma alumina (Mo/Al{sub 2}O{sub 3}) and precipitated, poorly crystalline molybdenum disulfide (MoS{sub 2}). The model compounds, chosen to mimic coal structure, on which the effectiveness of the catalysts for the model reactions was tested were: 1-methylnaphthalene, representing aromatic hydrocarbons, for hydrogenation; 1-naphthol, representing oxygen containing compounds, for deoxygenation; benzothiophene, representing sulfur containing compounds, for desulfurization; indole, representing nitrogen containing compounds, for denitrogenation; and bibenzyl, representing alkyl bridging structures, for hydrocracking. Catalytic reactions of combinations of reactants were performed to simulate a complex coal matrix. Thermal and catalytic coal liquefaction reactions were performed using Illinois No. 6 coal with anthracene as a solvent. The efficacy of the catalysts was determined by comparing the product and compound class fractions obtained from the liquefaction reactions.

  8. Activity and selectivity of molybdenum catalysts in coal liquefaction reactions

    SciTech Connect

    Curtis, C.W.; Pellegrino, J.L. )

    1988-06-01

    During coal liquefaction, coal fragments forming a liquid product with reduced heteroatom content. Coal can be considered to be a large network of polynuclear aromatic species connected by heteroatoms and alkyl bridging structures. Predominant heteroatoms contained in coal are sulfur, oxygen, and nitrogen. Predominant alkyl bridges are methylene and ethylene structures. The purpose of this work is to evaluate how effectively three different molybdenum catalysts promote reactions involving heteroatom removal and cleavage of alkyl bridge structures. The reactions studied include: hydrogenation (HYD), hydrodeoxygenation (HDO), hydrosulfurization (HDS), hydrodenitrogenation (HDN) and hydrocracking (HYC). Both model and coal liquefaction reactions were performed to test the activity and selectivity of three different molybdenum catalysts. The three catalysts used were molybdenum napththenate, molybdenum supported on gamma alumina (Mo/Al/sub 2/O/sub 3/) and precipitated, poorly crystalline molybdenum disulfide (MoS/sub 2/). The model compounds, chosen to mimic coal structure, on which the effectiveness of the catalysts for the model reactions was tested were: 1-methylnaphthalene, representing aromatic hydrocarbons, for hydrogenation; 1-naphthol, representing oxygen containing compounds, for deoxygenation; benzothiophene, representing sulfur containing compounds, for desulfurization; indole, representing nitrogen containing compounds, for denitrogenation; and bibenzyl, representing alkyl bridging structures, for hydrocracking. Catalytic reactions of combinations of reactants were performed to simulate a complex coal matrix. Thermal and catalytic coal liquefaction reactions were performed using Illinois No. 6 coal with anthracene as a solvent. The efficacy of the catalysts was determined by comparing the product and compound class fractions obtained from the liquefaction reactions.

  9. Yield strength of molybdenum at high pressures.

    PubMed

    Jing, Qiumin; Bi, Yan; Wu, Qiang; Jing, Fuqian; Wang, Zhigang; Xu, Jian; Jiang, Sheng

    2007-07-01

    In the diamond anvil cell technology, the pressure gradient approach is one of the three major methods in determining the yield strength for various materials at high pressures. In the present work, by in situ measuring the thickness of the sample foil, we have improved the traditional technique in this method. Based on this modification, the yield strength of molybdenum at pressures has been measured. Our main experimental conclusions are as follows: (1) The measured yield strength data for three samples with different initial thickness (100, 250, and 500 microm) are in good agreement above a peak pressure of 10 GPa. (2) The measured yield strength can be fitted into a linear formula Y=0.48(+/-0.19)+0.14(+/-0.01)P (Y and P denote the yield strength and local pressure, respectively, both of them are in gigapascals) in the local pressure range of 8-21 GPa. This result is in good agreement with both Y=0.46+0.13P determined in the pressure range of 5-24 GPa measured by the radial x-ray diffraction technique and the previous shock wave data below 10 GPa. (3) The zero-pressure yield strength of Mo is 0.5 GPa when we extrapolate our experimental data into the ambient pressure. It is close to the tensile strength of 0.7 GPa determined by Bridgman [Phys. Rev. 48, 825 (1934)] previously. The modified method described in this article therefore provides the confidence in determination of the yield strength at high pressures. PMID:17672772

  10. Butene oxidation by molybdenum crystallographic shear compounds

    SciTech Connect

    McCormick, R.L.

    1984-06-01

    The reduced molybdenum oxides Mo/sub 4/O/sub 11/-orh, Mo/sub 4/O/sub 11/-mon, Mo/sub 8/O/sub 23/, and Mo/sub 18/O/sub 52/ were synthesized. These compounds, as well as MoO/sub 3/, were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, Raman and FT-IR spectroscopies, and BET surface area measurements. The oxides were then studied in a pulsed reactor at 500/sup 0/C in the selective oxidation of butene and butadiene. The data suggested a process in which the surface site must become more oxidized in parallel with the oxidation of the adsorbed hydrocarbon. Evidence supporting this idea included the high selectivity to maleic anhydride observed over a completely oxidized surface and differences in the reactivity of butene and butadiende. In particular, oxygen insertion into butadiene to form furan occurred in the absence of gas phase O/sub 2/ over the reduced phases, while oxygen insertion into butene required the presence of molecular oxygen. Maleic anhydride formation required the presence of molecular oxygen except in the case of butadiene oxidation over MoO/sub 3/. The long range ordering of defects, known as crystallographic shear, was not shown to have any influence on the initial interaction of reactant and solid. However, the unusual coordination geometries and surface structures that are thought to be caused by the presence of shear planes may be related to the differences in catalytic selectivity observed for these oxides.

  11. METHOD FOR FORMING A COATING OF MOLYBDENUM CARBIDE ON A CARBON BODY

    DOEpatents

    Simnad, M.T.

    1962-04-01

    A method is described for coating a carbon bodywith molybdenum carbide in such a manner that the carbon body is rendered less permeable to the flow of gases and has increased resistance to corrosion and erosion. The method includes coating a carbon body with molybdenum trioxide by contacting it at a temperature below the condensation temperature with molybdenum trioxide vapors and thereafter carburizing the molybdenum trioxide in situ in an inert atmosphere on the carhon body. (AEC)

  12. Molecular Epoxidation Reactions Catalyzed by Rhenium, Molybdenum, and Iron Complexes.

    PubMed

    Kück, Jens W; Reich, Robert M; Kühn, Fritz E

    2016-02-01

    Epoxidations are of high relevance in many organic syntheses, both in industry and academia. In this personal account, the development of rhenium, molybdenum, and iron complexes in molecular epoxidation catalysis is presented. Methyltrioxorhenium (MTO) is the benchmark catalyst for these reactions, with a thoroughly investigated mechanism and reactivity profile. More recently, highly active molecular molybdenum and iron catalysts have emerged, challenging the extraordinary role of MTO in epoxidation catalysis with high turnover frequencies (TOFs). This development is highlighted in its use of cheaper, more readily available metals, and the challenges of using base metals in catalysis are discussed. These results show the promise that relatively cheap and abundant metals, such as molybdenum and iron, hold for the future of epoxidation catalysis. PMID:26776087

  13. HVOF and plasma sprayed molybdenum coatings -- microstructure and properties

    SciTech Connect

    Zimmermann, S.; Kreye, H.

    1995-12-31

    High velocity oxy-fuel (HVOF) and plasma spray experiments were carried out to investigate the oxidation mechanism of molybdenum in the spray process and to determine how the various process parameters affect the microstructure and properties of the coatings. HVOF coatings exhibit their highest hardness and wear resistance at an oxygen content of 6 to 8% by weight. Such an oxygen level can be achieved with Mo and Mo-MoO{sub 2} composite powders as well. In the plasma spray process oxidation of molybdenum is less pronounced and Mo-MoO{sub 2} composite powders containing 6 to 8% oxygen have to be used to obtain similar properties as compared to HVOF-coatings. When Mo-Mo{sub 2}C composite powders are used oxidation of molybdenum becomes greatly reduced and highly wear resistant coatings are obtained at a low hardness level in both spray processes.

  14. Recent Developments in Homogeneous Dinitrogen Reduction by Molybdenum and Iron

    PubMed Central

    MacLeod, K. Cory; Holland, Patrick L.

    2013-01-01

    The reduction of gaseous nitrogen (N2) is a challenge for industrial, biological and synthetic chemists, who want to understand the formation of ammonia (NH3) for agriculture and also want to form N-C and N-Si bonds for fine chemical synthesis. The iron-molybdenum active site of nitrogenase has inspired chemists to explore the ability of iron and molybdenum complexes to bring about transformations related to N2 reduction. This area of research has gained significant momentum, and the last two years have witnessed a number of significant advances in synthetic Fe-N2 and Mo-N2 chemistry. In addition, the identities of all atoms in the iron-molybdenum cofactor of nitrogenase have finally been elucidated, and the discovery of a carbide has generated new questions and targets for coordination chemists. This Perspective summarizes the recent work on iron and molydenum complexes, and highlights the opportunities for continued research. PMID:23787744

  15. 40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of Environment... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable...

  16. 40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of Environment... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable...

  17. 40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of Environment... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable...

  18. 40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable to... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of...

  19. 40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable to... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of...

  20. 40 CFR 421.220 - Applicability: Description of the secondary molybdenum and vanadium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... secondary molybdenum and vanadium subcategory. 421.220 Section 421.220 Protection of Environment... POINT SOURCE CATEGORY Secondary Molybdenum and Vanadium Subcategory § 421.220 Applicability: Description of the secondary molybdenum and vanadium subcategory. The provisions of this subpart are...

  1. 40 CFR 421.220 - Applicability: Description of the secondary molybdenum and vanadium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... secondary molybdenum and vanadium subcategory. 421.220 Section 421.220 Protection of Environment... POINT SOURCE CATEGORY Secondary Molybdenum and Vanadium Subcategory § 421.220 Applicability: Description of the secondary molybdenum and vanadium subcategory. The provisions of this subpart are...

  2. 40 CFR 421.220 - Applicability: Description of the secondary molybdenum and vanadium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary molybdenum and vanadium subcategory. 421.220 Section 421.220 Protection of Environment... POINT SOURCE CATEGORY Secondary Molybdenum and Vanadium Subcategory § 421.220 Applicability: Description of the secondary molybdenum and vanadium subcategory. The provisions of this subpart are...

  3. 40 CFR 421.220 - Applicability: Description of the secondary molybdenum and vanadium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... secondary molybdenum and vanadium subcategory. 421.220 Section 421.220 Protection of Environment... POINT SOURCE CATEGORY Secondary Molybdenum and Vanadium Subcategory § 421.220 Applicability: Description of the secondary molybdenum and vanadium subcategory. The provisions of this subpart are...

  4. 40 CFR 421.220 - Applicability: Description of the secondary molybdenum and vanadium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary molybdenum and vanadium subcategory. 421.220 Section 421.220 Protection of Environment... POINT SOURCE CATEGORY Secondary Molybdenum and Vanadium Subcategory § 421.220 Applicability: Description of the secondary molybdenum and vanadium subcategory. The provisions of this subpart are...

  5. Investigation of the α-particle induced nuclear reactions on natural molybdenum

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Hermanne, A.; Tárkányi, F.; Takács, S.; Ignatyuk, A. V.

    2012-08-01

    Cross-sections of alpha particle induced nuclear reactions on natural molybdenum have been studied in the frame of a systematic investigation of charged particle induced nuclear reactions on metals for different applications. The excitation functions of 93mTc, 93gTc(m+), 94mTc, 94gTc, 95mTc, 95gTc, 96gTc(m+), 99mTc, 93mMo, 99Mo(cum), 90Nb(m+), 94Ru, 95Ru,97Ru, 103Ru and 88Zr were measured up to 40 MeV alpha energy by using a stacked foil technique and activation method. The main goals of this work were to get experimental data for accelerator technology, for monitoring of alpha beam, for thin layer activation technique and for testing nuclear reaction theories. The experimental data were compared with critically analyzed published data and with the results of model calculations, obtained by using the ALICE-IPPE, EMPIRE and TALYS codes (TENDL-2011).

  6. A review of chromium, molybdenum, and tungsten alloys

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.

    1975-01-01

    The mechanical properties of chromium, molybdenum, and tungsten alloys are reviewed with particular emphasis on high-temperature strength and low-temperature ductility. Precipitate strengthening is highly effective at 0.4 to 0.8 times the melting temperature in these metals, with HfC being most effective in tungsten and molybdenum, and Ta(B,C) most effective in chromium. Low-temperature ductility can be improved by alloying to promote rhenium ductilizing or solution softening. The low-temperature mechanical properties of these alloys appear related to electronic interactions rather than to the usual metallurgical considerations.

  7. Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator

    DOEpatents

    Cockeram, Brian Vern

    2004-01-27

    Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.

  8. Magnetoresistance measurements of superconducting molybdenum nitride thin films

    NASA Astrophysics Data System (ADS)

    Baskaran, R.; Arasu, A. V. Thanikai; Amaladass, E. P.

    2016-05-01

    Molybdenum nitride thin films have been deposited on aluminum nitride buffered glass substrates by reactive DC sputtering. GIXRD measurements indicate formation of nano-crystalline molybdenum nitride thin films. The transition temperature of MoN thin film is 7.52 K. The transition width is less than 0.1 K. The upper critical field Bc2(0), calculated using GLAG theory is 12.52 T. The transition width for 400 µA current increased initially upto 3 T and then decreased, while that for 100 µA current transition width did not decrease.

  9. Tungsten-molybdenum fractionation in estuarine environments

    NASA Astrophysics Data System (ADS)

    Mohajerin, T. Jade; Helz, George R.; Johannesson, Karen H.

    2016-03-01

    Dissolved tungsten (W) and molybdenum (Mo) concentrations were measured in surface waters and sediment pore waters of Terrebonne Bay, a shallow estuary in the Mississippi River delta, to investigate the biogeochemical processes that fractionate these Group 6 elements relative to one another during transit from weathering to sedimentary environments. Although many of the chemical properties of W and Mo are similar, the two elements behave autonomously, and the fractionation mechanisms are only partly understood. In sulfidic pore waters, dissolved Mo is depleted relative to river water-seawater mixtures, whereas dissolved W is >10-fold enriched. Reductive dissolution of poorly crystalline phases like ferrihydrite, which is a preferential host of W relative to Mo in grain coatings on river-borne particles, can explain the dissolved W enrichment. Dissolved W becomes increasingly enriched as H2S(aq) rises above about 60 μM due to transformation of WO42- to thiotungstates as well as to additional reductive dissolution of phases that host W. In contrast, as rising sulfide transforms MoO42- to thiomolybdates in pore waters, dissolved Mo is suppressed, probably owing to equilibration with an Fe-Mo-S phase. This putative phase appears to control the aqueous ion product, Q = [Fe2+][MoS42-]0.6 [H2S0]0.4/[H+]0.8, at a value of 10-7.78. Concentrations of dissolved W and Mo in pore waters bear no relation to concentrations in surface waters of the same salinity. In surface waters, dissolved Mo is nearly conserved in the estuarine mixing zone. Dissolved W appears also to be conserved except for several cases where W may have been enhanced by exchange with underlying, W-rich pore waters. With increasing salinity, the molar Mo/W ratio rises from about 10 to about 1000 in surface waters whereas it is mostly <10 in underlying pore waters and in highly sulfidic pore waters is mostly near 1. Differences in two chemical properties may account for this fractionation of Mo with respect to

  10. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    SciTech Connect

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to

  11. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    PubMed

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. PMID:25214300

  12. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.

  13. HUMAN HEALTH EFFECTS OF MOLYBDENUM IN DRINKING WATER

    EPA Science Inventory

    Molybdenum plays an important biological role as a micronutrient for plants and animals. At high levels it can be toxic to animals. While concentrations in surface waters are generally less than 5 micrograms Mo/L, concentrations as high as 500 micrograms Mo/L have been reported i...

  14. Discovery of rubidium, strontium, molybdenum, and rhodium isotopes

    SciTech Connect

    Parker, A.M.; Thoennessen, M.

    2012-07-15

    Currently, 31 rubidium, 35 strontium, 35 molybdenum, and 38 rhodium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  15. Molybdenum Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review

    USGS Publications Warehouse

    Eisler, R.

    1989-01-01

    Ecological and toxicological aspects of molybdenum (Mo) in the environment are briefly reviewed, with emphasis on fish and wildlife. Subtopics include sources and uses, chemical properties, mode of action, background concentrations in biological and nonbiological samples, and lethal and sublethal effects on terrestrial plants and invertebrates, aquatic organisms, birds, and mammals. Current recommendations for Mo and the protection of sensitive living resources are presented.

  16. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    SciTech Connect

    Petrovic, J.J.

    1992-12-31

    This patent pertains to compositions consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia. Fabrication, fracture toughness, and bend strength are covered.

  17. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    PubMed

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-01-01

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863

  18. Application of the solid lubricant molybdenum disulfide by sputtering

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J.; Spalvins, T.

    1968-01-01

    Molybdenum disulfide lubricant film is deposited on two substrates, niobium and nickel-chromium alloys, by means of physical direct-current sputtering. The sputtering system uses a three-electrode /triode/ geometry - a thermionic cathode, an anode, and the target, all enclosed in a vacuum chamber.

  19. Molybdenum-platinum-oxide electrodes for thermoelectric generators

    DOEpatents

    Schmatz, Duane J.

    1990-01-01

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a solid electrolyte carrying a thin film comprising molybdenum-platinum-oxide as an electrode deposited by physical deposition techniques. The invention is also directed to the method of making same.

  20. Dissolution kinetics of a sintered molybdenum coating applied on ceramics

    SciTech Connect

    Kuz`ko, V.S.

    1994-11-01

    Using weighing and corrosion diagrams, the etching parameters are determined for a sintered M-21 molybdenum coating applied to VK 94-1 vacuum-tight ceramics. Dissolution of M-21 in an alkaline solution of potassium hexacyanoferrate(III) can be treated as a corrosion process proceeding with kinetic control.

  1. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, J.J.

    1995-01-17

    Compositions are disclosed consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  2. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, John J.

    1995-01-01

    Compositions consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  3. Process for producing molybdenum foil and collapsible tubing

    NASA Technical Reports Server (NTRS)

    Bretts, G. R.; Gavert, R. B.; Groschke, G. F.

    1971-01-01

    Manufacturing process produces molybdenum foil 0.002 cm thick and 305 m long, and forms foil into high-strength, thin-walled tubing which can be flattened for storage on a spool. Desirable metal properties include high thermal conductivity stiffness, yield and tensile stress, and low thermal expansion coeffecient.

  4. Storage and bioavailability of molybdenum in soils increased by organic matter complexation

    NASA Astrophysics Data System (ADS)

    Wichard, Thomas; Mishra, Bhoopesh; Myneni, Satish C. B.; Bellenger, Jean-Philippe; Kraepiel, Anne M. L.

    2009-09-01

    The micronutrient molybdenum is a necessary component of the nitrogen-fixing enzyme nitrogenase. Molybdenum is very rare in soils, and is usually present in a highly soluble form, making it susceptible to leaching. However, it is generally thought that molybdenum attaches to mineral surfaces in acidic soils; this would prevent its escape into the groundwater, but would also impede uptake by microbes. Here we use X-ray spectroscopy to examine the chemical speciation of molybdenum in soil samples from forests in Arizona and New Jersey. We show that in the leaf litter layer, most of the molybdenum forms strong complexes with plant-derived tannins and tannin-like compounds; molybdenum binds to these organic ligands across a wide pH range. In deeper soils, molybdenum binds to both iron oxides and natural organic matter. We suggest that the molybdenum bound to organic matter can be captured by small complexing agents that are released by nitrogen-fixing bacteria; the molybdenum can then be incorporated into nitrogenase. We conclude that the binding of molybdenum to natural organic matter helps prevent leaching of molybdenum, and is thus a critical step in securing new nitrogen in terrestrial ecosystems.

  5. Storage and Bioavailability of Molybdenum in Soils Increased by Organic Matter Complexation

    SciTech Connect

    Wichard, T.; Mishra, B; Myneni, S; Bellenger, J; Kraepiel, A

    2009-01-01

    The micronutrient molybdenum is a necessary component of the nitrogen-fixing enzyme nitrogenase1, 2. Molybdenum is very rare in soils, and is usually present in a highly soluble form, making it susceptible to leaching3, 4. However, it is generally thought that molybdenum attaches to mineral surfaces in acidic soils; this would prevent its escape into the groundwater, but would also impede uptake by microbes3. Here we use X-ray spectroscopy to examine the chemical speciation of molybdenum in soil samples from forests in Arizona and New Jersey. We show that in the leaf litter layer, most of the molybdenum forms strong complexes with plant-derived tannins and tannin-like compounds; molybdenum binds to these organic ligands across a wide pH range. In deeper soils, molybdenum binds to both iron oxides and natural organic matter. We suggest that the molybdenum bound to organic matter can be captured by small complexing agents that are released by nitrogen-fixing bacteria; the molybdenum can then be incorporated into nitrogenase. We conclude that the binding of molybdenum to natural organic matter helps prevent leaching of molybdenum, and is thus a critical step in securing new nitrogen in terrestrial ecosystems.

  6. Electrodeposition of low contraction chromium/molybdenum alloys using pulse-reverse plating. Final report

    SciTech Connect

    Miller, M.D.; Langston, S.

    1994-12-01

    The use of modulated pulse periodic reverse (pulse-reverse) current to electrodeposit a low contraction (LC) chromium/molybdenum alloy has been evaluated. When using one full pulse-reverse plating cycle, the percent molybdenum in the deposit increased almost 400 percent (from 1 to 4 percent) as the current in the reverse cycle was increased from 0 to 10 amps. However, when the pulse reverse current was carried to six full plating cycles, the percent molybdenum in the deposit was not dependent upon the current and remained constant at about 1 percent. This is about the same percent molybdenum that could be expected in direct current-plated LC chromium/molybdenum alloy and about half the percent molybdenum that could be expected in an on/off pulse-plated LC chromium/molybdenum alloy.

  7. Molybdenum Isotopes in Some Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Qi, L.; Masuda, A.

    1992-07-01

    Measurement of all seven stable Mo isotopes in iron meteorites has been continued for study of possible direct evidences for processes of nucleosynthesis in the pre-solar stage and information on extinct radioactive nuclides. Mo in iron meteorite was extracted by using recently developed chemical separation method [1], then loaded on 5 pass zone refined Re ribbon. Molybdenum isotope analysis was performed [2] in a VG SECTOR 54-30 thermal ionization mass spectrometer using a Faraday collector in peak jumping mode. The measured ratios of Mo were normalized provisionally to ^94Mo/^98Mo = 0.3802. Particular caution was drawn on the isobaric interferences of Zr, Ru, etc., which were negligible as a result. A small but distinct anomaly of Mo isotopes was found in Acuna iron meteorite. The normalized data show a growth trend from ^92Mo to ^97Mo, and this increment decreased suddenly at ^98Mo, then slightly increased at ^100Mo. The isotope variations might be explained as a result of excess s-process component (^95Mo to ^98Mo) contained in the sample. Gibeon suggested that isotopic anomalies at ^92Mo, ^95Mo, and ^97Mo are about -3-epsilon, -1.2-epsilon, and -0.5-epsilon respectively. It is difficult to give a perfect explanation to the observed data at present. However, it is interesting to note that ^92Mo (N=50) has a closed shell and only ^95Mo and ^97Mo are even-odd nuclides in all seven stable Mo isotopes and the 30-keV Maxwellian-averaged neutron capture cross sections for ^95Mo and ^97Mo are about 3 times bigger than others [3]. The depletions at ^95Mo and ^97Mo might be attributed to the higher cross section for their destruction by (n, gamma) reaction. The apparent opposite aberrations are found for Odessa iron. We reported anomalies of Mo isotopes in a specimen of Sikhote-Alin iron meteorite [4,5]. Further investigations have shown that the isotopic compositions of Mo in this iron are heterogeneous and that the "general anomaly" of Mo isotopes is related with the

  8. Uranium-Molybdenum Dissolution Flowsheet Studies

    SciTech Connect

    Pierce, R. A.

    2007-03-01

    The Super Kukla (SK) Prompt Burst Reactor operated at the Nevada Test Site from 1964 to 1978. The SK material is a uranium-molybdenum (U-Mo) alloy material of 90% U/10% Mo by weight at approximately 20% 235U enrichment. H-Canyon Engineering (HCE) requested that the Savannah River National Lab (SRNL) define a flowsheet for safely and efficiently dissolving the SK material. The objective is to dissolve the material in nitric acid (HNO3) in the H-Canyon dissolvers to a U concentration of 15-20 g/L (3-4 g/L 235U) without the formation of precipitates or the generation of a flammable gas mixture. Testing with SK material validated the applicability of dissolution and solubility data reported in the literature for various U and U-Mo metals. Based on the data, the SK material can be dissolved in boiling 3.0-6.0 M HNO3 to a U concentration of 15-20 g/L and a corresponding Mo concentration of 1.7-2.2 g/L. The optimum flowsheet will use 4.0-5.0 M HNO3 for the starting acid. Any nickel (Ni) cladding associated with the material will dissolve readily. After dissolution is complete, traditional solvent extraction flowsheets can be used to recover and purify the U. Dissolution rates for the SK material are consistent with those reported in the literature and are adequate for H-Canyon processing. When the SK material dissolved at 70-100 o C in 1-6 M HNO3, the reaction bubbled vigorously and released nitrogen oxide (NO) and nitrogen dioxide (NO2) gas. Gas generation tests in 1 M and 2 M HNO3 at 100 o C generated less than 0.1 volume percent hydrogen (H2) gas. It is known that higher HNO3 concentrations are less favorable for H2 production. All tests at 70-100 o C produced sufficient gas to mix the solutions without external agitation. At room temperature in 5 M HNO3, the U-Mo dissolved slowly and the U-laden solution sank to the bottom of the dissolution vessel because of its greater density. The effect of the density difference insures that the SK material cannot dissolve and

  9. Reflectance, Optical Properties, and Stability of Molybdenum/Strontium and Molybdenum/Yttrium Multilayer Mirrors

    SciTech Connect

    Kjornrattanawanich, B

    2002-09-01

    The motivation of this work is to develop high reflectance normal-incidence multilayer mirrors in the 8-12 nm wavelength region for applications in astronomy and extreme ultraviolet lithography. To achieve this goal, Mo/Sr and Mo/Y multilayers were studied. These multilayers were deposited with a UHV magnetron sputtering system and their reflectances were measured with synchrotron radiation. High normal-incidence reflectances of 23% at 8.8 nm, 40.8% at 9.4 nm, and 48.3% at 10.5 nm were achieved. However, the reflectance of Mo/Sr multilayers decreased rapidly after exposure to air. Attempts to use thin layers of carbon to passivate the surface of Mo/Sr multilayers were unsuccessful. Experimental results on the refractive index {tilde n} = 1-{delta} + i{beta} of yttrium and molybdenum in the 50-1300 eV energy region are reported in this work. This is the first time ever that values on the refractive index of yttrium are measured in this energy range. The absorption part {beta} was determined through transmittance measurements. The dispersive part {delta} was calculated by means of the Kramers-Kronig formalism. The newly determined values of the refractive index of molybdenum are in excellent agreement with the published data. Those of yttrium are more accurate and contain fine structures around the yttrium M-absorption edges where Mo/Y multilayers operate. These improved sets of optical data lead to better design and modeling of the optical properties of Mo/Y multilayers. The reflectance quality of Mo/Y multilayers is dependent on their optical and structural properties. To correlate these properties with the multilayer reflectance, x-ray diffraction, Rutherford backscattering spectrometry, and transmission electron microscopy were used to analyze samples. Normal-incidence reflectances of 32.6% at 9.27 nm, 38.4% at 9.48 nm, and 29.6% at 9.46 nm were obtained from three representative Mo/Y multilayers which had about 0%, 25%, and 39% atomic oxygen assimilated in their

  10. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    SciTech Connect

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  11. Measurement of low levels of molybdenum in the environment by using aquatic insects

    SciTech Connect

    Colburn, T.

    1982-10-01

    Starting at high altitudes and extending down the valley, near and below a molybdenum mine, aquatic insects and water samples were collected for atomic absorption spectrophotometric analysis of molybdenum. Eight stations were sampled in the East River - Upper Gunnison Rive drainage, Gunnison County, Colorado. Five water samples were collected at each station by using resin column extraction of ions. No molybdenum was found above the detectable level of 1 ..mu..g/L in any of the water samples, even after concentrating the ions in the water 40 times. The geographical profile of insect-molybdenum in this area starts very low at Gothic, increases at all stations around the molybdenum lode, peaks at SR-2, and then decreases as the riverine system flows farther away from the main ore body. The plotting of the insect molybdenum concentrations on a continuum graph correlated with a known lode of molybdenum. Molybdenum-insect data sets should be collected above, near, and below other suspected molybdenum lodes to prove the feasibility of using aquatic insects to prospect for molybdenum. (JMT)

  12. Preparation of molybdenum carbides with multiple morphologies using surfactants as carbon sources

    SciTech Connect

    Wang, Hongfen; Wang, Zhiqi; Chen, Shougang

    2012-10-15

    Molybdenum carbides with surfactants as carbon sources were prepared using the carbothermal reduction of the appropriate precursors (molybdenum oxides deposited on surfactant micelles) at 1023 K under hydrogen gas. The carburized products were characterized using scanning electron microscopy (SEM), X-ray diffraction and BET surface area measurements. From the SEM images, hollow microspherical and rod-like molybdenum carbides were observed. X-ray diffraction patterns showed that the annealing time of carburization had a large effect on the conversion of molybdenum oxides to molybdenum carbides. And BET surface area measurements indicated that the difference of carbon sources brought a big difference in specific surface areas of molybdenum carbides. - Graphical abstract: Molybdenum carbides having hollow microspherical and hollow rod-like morphologies that are different from the conventional monodipersed platelet-like morphologies. Highlights: Black-Right-Pointing-Pointer Molybdenum carbides were prepared using surfactants as carbon sources. Black-Right-Pointing-Pointer The kinds of surfactants affected the morphologies of molybdenum carbides. Black-Right-Pointing-Pointer The time of heat preservation at 1023 K affected the carburization process. Black-Right-Pointing-Pointer Molybdenum carbides with hollow structures had larger specific surface areas.

  13. Contrast and dose with molybdenum, molybdenum-rhodium, and rhodium-rhodium target-filter combinations in mammography

    SciTech Connect

    Gingold, E.L.; Wu, Xizeng; Barnes, G.T.

    1997-03-01

    Molybdenum target-molybdenum filter (Mo-Mo) source assemblies are commonly used for screen-film mammography and produce spectra rich in bremsstrahlung between 15 and 20 keV, and molybdenum characteristic x-rays (K{sub {alpha}} = 17.5 keV and K{sub {beta}} = 19.6 keV) that are, optimal for imaging a large segment of patients. With the normal variability of breast size and tissue composition that occurs in the population, Mo-Mo spectra are not always optimal, however. Particularly for thick, fibroglandular breast tissue, higher energy spectra are required, and are achieved to a limited degree by operating Mo-Mo tubes at higher tube potentials. At these higher tube potentials (28-31 kVp), the spectrum exiting the breast has a large contribution from bremsstrahlung of more than 23 keV. Most of the lower energy photons, including the molybdenum characteristic x-rays, are absorbed and result in a higher average tissue dose than is necessary. Incident spectra with x-ray energies in the 20-23 keV range are preferable. Such spectra have been realized with higher atomic number materials, such as rhodium (Rh), used for the anode or k-edge filter. The higher K-absorption edge of rhodium allows transmission of bremsstrahlung in the 20-23.2 keV range, and at a given kilovoltage the Rh-Rh combination results in a more penetrating beam than either Mo-Mo or Mo-Rh (molybdenum x-ray tube anode with rhodium K-edge filter) because of the difference in energy between the rhodium and molybdenum characteristic x-rays. The greater penetrating power of these spectra results in decreased entrance skin exposure and average glandular dose to the breast than with the conventional Mo-Mo spectra. However, associated with this can be a reduction in subject contrast in the mammogram. The objective of this study was to compare the contrast and dose produced with the three source assemblies as a function of x-ray tube potential, breast thickness, and breast parenchymal composition.

  14. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers

    NASA Astrophysics Data System (ADS)

    Liu, Kaihui; Zhang, Liming; Cao, Ting; Jin, Chenhao; Qiu, Diana; Zhou, Qin; Zettl, Alex; Yang, Peidong; Louie, Steve G.; Wang, Feng

    2014-09-01

    Van der Waals coupling is emerging as a powerful method to engineer physical properties of atomically thin two-dimensional materials. In coupled graphene-graphene and graphene-boron nitride layers, interesting physical phenomena ranging from Fermi velocity renormalization to Hofstadter’s butterfly pattern have been demonstrated. Atomically thin transition metal dichalcogenides, another family of two-dimensional-layered semiconductors, can show distinct coupling phenomena. Here we demonstrate the evolution of interlayer coupling with twist angles in as-grown molybdenum disulfide bilayers. We find that the indirect bandgap size varies appreciably with the stacking configuration: it shows the largest redshift for AA- and AB-stacked bilayers, and a significantly smaller but constant redshift for all other twist angles. Our observations, together with ab initio calculations, reveal that this evolution of interlayer coupling originates from the repulsive steric effects that leads to different interlayer separations between the two molybdenum disulfide layers in different stacking configurations.

  15. Molybdenum-UO2 cerment irradiation at 1145 K

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-UO2 cermet fuel pins were fission heated in a helium-cooled loop at a temperature of 1145 K and to a total burnup of 5.3 % of the U-235. After irradiation the fuel pins were measured to check dimensional stability, punctured at the plenums to determine fission gas release, and examined metallographically to determine the effect of irradiation. Burnup was determined in several sections of the fuel pin. The results of the postirradiation examination indicated: (1) There was no visible change in the fuel pins on irradiation under the above conditions. (2) The maximum swelling of the fuel pins was less than 1%. (3) There was no migration of UO2 and no visible interaction between the molybdenum and the UO2. (4) Approximately 12% of the fission gas formed was released from the cermet cone into the gas plenum.

  16. Thermoelectric transport properties of molybdenum from abinitio simulations

    NASA Astrophysics Data System (ADS)

    French, Martin; Mattsson, Thomas R.

    2014-10-01

    We employ abinitio simulations based on density functional theory (DFT) to calculate the electronic transport coefficients (electrical conductivity, thermal conductivity, and thermopower) of molybdenum over a broad range of thermodynamic states. By comparing to available experimental data, we show that DFT is able to describe the desired transport properties of this refractory metal with high accuracy. Most noteworthy, both the positive sign and the quantitative values of the thermopower of solid molybdenum are reproduced very well. We calculate the electrical and thermal conductivity in the solid and the fluid phase between 1000 and 20 000 K and a wide span in density and develop empirical fit formulas for direct use in practical applications, such as magneto-hydrodynamics simulations. The influence of thermal expansion in conductivity measurements at constant pressure is also discussed in some detail.

  17. Layered Vanadium and Molybdenum Oxides: Batteries and Electrochromics

    SciTech Connect

    Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S.

    2009-01-01

    The layered oxides of vanadium and molybdenum have been studied for close to 40 years as possible cathode materials for lithium batteries or electrochromic systems. The highly distorted metal octahedra naturally lead to the formation of a wide range of layer structures, which can intercalate lithium levels exceeding 300 Ah/kg. They have found continuing success in medical devices, such as pacemakers, but many challenges remain in their application in long-lived rechargeable devices. Their high-energy storage capability remains an encouragement to researchers to resolve the stability concerns of vanadium dissolution and the tendency of lithium and vanadium to mix changing the crystal structure on cycling the lithium in and out. Nanomorphologies have enabled higher reactivities to be obtained for both vanadium and molybdenum oxides, and with the latter show promise for electrochromic displays.

  18. Microemulsion-mediated synthesis of nanosize molybdenum sulfide particles

    SciTech Connect

    Boakye, E.; Radovic, L.R.; Osseo-Asare, K. . Dept. of Materials Science and Engineering)

    1994-03-01

    A microemulsion-based method for the synthesis of molybdenum sulfide nanoparticles is reported. Molybdenum sulfide particles in the size range 10--80 nm have been precipitated in water-in-oil microemulsions (water-containing inverse micelles) formulated with polyoxyethylene(5)nonylphenyl ether (NP-5). The particles were synthesized in the NP-5/cyclohexane/water microemulsion system by acidifying ammonium tetrathiomolybdate solubilized in the water cores of the inverse micelles. Particle characterization was accomplished by chemical analysis, transmission electron microscopy, and ultraviolet/visible spectroscopy. The small size and the cage-like nature of the microemulsion water cores limit particle growth and aggregation. The particle size was found to be a function of the water-to-surfactant molar ratio and the average number of ammonium tetrathiomolybdate ions solubilized per water core. These trends are rationalized in terms of classical nucleation theory and aggregative growth concepts.

  19. High pressure polyhydrides of molybdenum: A first-principles study

    NASA Astrophysics Data System (ADS)

    Feng, Xiaolei; Zhang, Jurong; Liu, Hanyu; Iitaka, Toshiaki; Yin, Ketao; Wang, Hui

    2016-07-01

    We present results from first-principles calculations on molybdenum polyhydrides under pressure. In addition to the experimental ε-phase of MoH, we find several novel structures of MoH2 and MoH3 at pressures below 100 GPa. A hexagonal structure of MoH2 becomes stable with respect to decomposition into MoH and H2 above 9 GPa, and transforms into an orthorhombic structure at 24 GPa, which remains stable up to 100 GPa. MoH3 is unstable relative to decomposition into MoH and H2 over the whole pressure range studied. Electronic structure calculations reveal that molybdenum polyhydrides are metallic under pressure.

  20. Structural Framework for Metal Incorporation during Molybdenum Cofactor Biosynthesis.

    PubMed

    Kasaragod, Vikram Babu; Schindelin, Hermann

    2016-05-01

    The molybdenum cofactor (Moco) is essential for the catalytic activity of all molybdenum-containing enzymes with the exception of nitrogenase. Moco biosynthesis follows an evolutionarily highly conserved pathway and genetic deficiencies in the corresponding human enzymes result in Moco deficiency, which manifests itself in severe neurological symptoms and death in childhood. In humans the final steps of Moco biosynthesis are catalyzed by gephyrin, specifically the penultimate adenylation of molybdopterin (MPT) by its N-terminal G domain (GephG) and the final metal incorporation by its C-terminal E domain (GephE). To better understand the poorly defined molecular framework of this final step, we determined high-resolution crystal structures of GephE in the apo state and in complex with ADP, AMP, and molybdate. Our data provide novel insights into the catalytic steps leading to final Moco maturation, namely deadenylation as well as molybdate binding and insertion. PMID:27112598

  1. Sintering, Microstructure, and Electrical Conductivity of Zirconia-Molybdenum Cermet

    NASA Astrophysics Data System (ADS)

    Guo, Yanling; Tang, Lei; Zhang, Jieyu

    2015-08-01

    Monolithic zirconia-molybdenum ( m-ZrO2/Mo) cermets of different compositions (5-40 vol.% Mo) and different initial Mo particles sizes (0.08-13 μm) were prepared by traditional powder metallurgy process. The influences of metal content and initial particle sizes on the densification behavior, microstructure, and electrical conductivity of the cermets were studied. A percolation threshold value was obtained about 17.1 vol.% molybdenum fraction, above which a sharp increase in the electrical conductivity was observed. The temperature dependence of the electrical conductivity of cermets was studied. The cermet containing 5 vol.% Mo showed the ionic nature of the conductivity, while the metallic nature was observed in the samples of Mo fraction up to 16 vol.%. The activation of conductivity for ionic type of conductivity and the temperature coefficient of resistivity as well as the effect of porosity on electronic type conductivity are discussed.

  2. Mechanical Properties of Iron Alumininides Intermetallic Alloy with Molybdenum Addition

    SciTech Connect

    Zuhailawati, H.; Fauzi, M. N. A.

    2010-03-11

    In this work, FeAl-based alloys with and without molybdenum addition were fabricated by sintering of mechanically alloyed powders in order to investigate the effect of molybdenum on iron aluminide mechanical properties. Bulk samples were prepared by mechanical alloying for 4 hours, pressing at 360 MPa and sintering at 1000 deg. C for 2 hours. The specimens were tested in compression at room temperature using Instron machine. The phase identification and microstructure of the consolidated material was examined by x-ray diffraction and scanning electron microscope correspondingly. Results show that 2.5 wt%Mo addition significantly increased the ultimate stress and ultimate strain in compressive mode due to solid solution hardening. However, the addition of Mo more than 2.5 wt% was accompanied by a reduction in both properties caused by the presence of Mo-rich precipitate particles.

  3. Dichroic spin–valley photocurrent in monolayer molybdenum disulphide

    PubMed Central

    Eginligil, Mustafa; Cao, Bingchen; Wang, Zilong; Shen, Xiaonan; Cong, Chunxiao; Shang, Jingzhi; Soci, Cesare; Yu, Ting

    2015-01-01

    The aim of valleytronics is to exploit confinement of charge carriers in local valleys of the energy bands of semiconductors as an additional degree of freedom in optoelectronic devices. Thanks to strong direct excitonic transitions in spin-coupled K valleys, monolayer molybdenum disulphide is a rapidly emerging valleytronic material, with high valley polarization in photoluminescence. Here we elucidate the excitonic physics of this material by light helicity-dependent photocurrent studies of phototransistors. We demonstrate that large photocurrent dichroism (up to 60%) can also be achieved in high-quality molybdenum disulphide monolayers grown by chemical vapour deposition, due to the circular photogalvanic effect on resonant excitations. This opens up new opportunities for valleytonic applications in which selective control of spin–valley-coupled photocurrents can be used to implement polarization-sensitive light-detection schemes or integrated spintronic devices, as well as biochemical sensors operating at visible frequencies. PMID:26134143

  4. Modified chemical route for deposition of molybdenum disulphide thin films

    SciTech Connect

    Vyas, Akshay N. Sartale, S. D.

    2014-04-24

    Molybdenum disulphide (MoS{sub 2}) thin films were deposited on quartz substrates using a modified chemical route. Sodium molybdate and sodium sulphide were used as precursors for molybdenum and sulphur respectively. The route involves formation of tetrathiomolybdate ions (MoS{sub 4}{sup 2−}) and further reduction by sodium borohydride to form MoS{sub 2}. The deposition was performed at room temperature. The deposited films were annealed in argon atmosphere at 1073 K for 1 hour to improve its crystallinity. The deposited films were characterized using scanning electron microscopy (SEM) for morphology, UV-Vis absorption spectroscopy for optical studies and X-ray diffraction (XRD) for structure determination.

  5. 99 Tips for Safe Schools.

    ERIC Educational Resources Information Center

    Kaufer, Steve

    This pamphlet highlights 99 tips for maintaining safe schools. Areas of interest include: alarm systems and control of access, vandalism, parent education, transportation, school design, personnel training, and graffiti. The majority of the pointers deal with maintaining and implementing various forms of electronic surveillance and strategies for…

  6. Museums and the Web '99.

    ERIC Educational Resources Information Center

    Bearman, David; Trant, Jennifer

    1999-01-01

    Discusses issues addressed at the Museums and the Web '99 conference (New Orleans, Louisiana, March 11-14, 1999). Highlights include how interaction with the virtual conditions views of the world; shared experiences of being online; virtual objects; new metaphors for seeking, finding and using information; evaluating creations; reconstructing; and…

  7. The nuclear response of molybdenum to supernova neutrinos

    SciTech Connect

    Ydrefors, E.; Suhonen, J.

    2011-12-16

    Neutrino-nucleus interactions play a prominent role in many astrophysical applications. Knowledge about nuclear responses to neutrinos is therefore of paramount importance. We present cross sections for neutral-current neutrino-nucleus scattering off the stable (A = 92,94,95,96,97,98,100) molybdenum isotopes. The nuclear responses for these nuclei are additionally computed by folding the computed cross sections with a Fermi-Dirac distribution.

  8. Performance and Safety Characteristics of Lithium-molybdenum Disulfide Cells

    NASA Technical Reports Server (NTRS)

    Stiles, J. A.

    1984-01-01

    The lithium-molybdenum disulfide system offers attractive characteristics including high rate capability, successful operation up to 75 C, a very low self-discharge rate, a good cycle life and safety characteristics which compare favorably to those of other lithium cells. Moreover, the materials and manufacturing costs for the system is effectively controlled, so the cells should ultimately be competitive with currently marketed rechargeable cells.

  9. Retention of Sputtered Molybdenum on Ion Engine Discharge Chamber Surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Dever, Joyce A.; Power, John L.

    2001-01-01

    Grit-blasted anode surfaces are commonly used in ion engines to ensure adherence of sputtered coatings. Next generation ion engines will require higher power levels, longer operating times, and thus there will likely be thicker sputtered coatings on their anode surfaces than observed to date on 2.3 kW-class xenon ion engines. The thickness of coatings on the anode of a 10 kW, 40-centimeter diameter thruster, for example, may be 22 micrometers or more after extended operation. Grit-blasted wire mesh, titanium, and aluminum coupons were coated with molybdenum at accelerated rates to establish coating stability after the deposition process and after thermal cycling tests. These accelerated deposition rates are roughly three orders of magnitude more rapid than the rates at which the screen grid is sputtered in a 2.3 kW-class, 30-centimeter diameter ion engine. Using both RF and DC sputtering processes, the molybdenum coating thicknesses ranged from 8 to 130 micrometers, and deposition rates from 1.8 micrometers per hour to 5.1 micrometers per hour. In all cases, the molybdenum coatings were stable after the deposition process, and there was no evidence of spalling of the coatings after 20 cycles from about -60 to +320 C. The stable, 130 micrometer molybdenum coating on wire mesh is 26 times thicker than the thickest coating found on the anode of a 2.3 kW, xenon ion engine that was tested for 8200 hr. Additionally, this coating on wire mesh coupon is estimated to be a factor of greater than 4 thicker than one would expect to obtain on the anode of the next generation ion engine which may have xenon throughputs as high as 550 kg.

  10. Molybdenum work function determined by electron emission microscopy.

    NASA Technical Reports Server (NTRS)

    Jacobson, D. L.; Campbell, A. E.

    1971-01-01

    A polycrystalline molybdenum sample was recrystallized and thermally stabilized. Quantitative measurements of the emission from each individual grain were obtained with an electron emission microscope. The effective work function for each grain was then calculated. The crystallographic orientation of each grain was determined by Laue back-reflection techniques. A polar plot of effective work function vs crystallographic orientation for the sample was constructed to provide a correlation between effective work function and crystallographic orientation.