Science.gov

Sample records for momentum transport due

  1. Turbulent momentum transport due to neoclassical flows

    NASA Astrophysics Data System (ADS)

    Lee, Jungpyo; Barnes, Michael; Parra, Felix I.; Belli, Emily; Candy, Jeff

    2015-12-01

    Intrinsic toroidal rotation in a tokamak can be driven by turbulent momentum transport due to neoclassical flow effects breaking a symmetry of turbulence. In this paper we categorize the contributions due to neoclassical effects to the turbulent momentum transport, and evaluate each contribution using gyrokinetic simulations. We find that the relative importance of each contribution changes with collisionality. For low collisionality, the dominant contributions come from neoclassical particle and parallel flows. For moderate collisionality, there are non-negligible contributions due to neoclassical poloidal electric field and poloidal gradients of density and temperature, which are not important for low collisionality.

  2. Toroidal momentum transport in a tokamak due to profile shearing

    SciTech Connect

    Buchholz, R.; Grosshauser, S. R.; Hornsby, W. A.; Migliano, P.; Peeters, A. G.; Camenen, Y.; Casson, F. J.

    2014-06-15

    The effect of profile shearing on toroidal momentum transport is studied in linear and non-linear gyro-kinetic simulations. Retaining the radial dependence of both plasma and geometry parameters leads to a momentum flux that has contributions both linear in the logarithmic gradients of density and temperature, as well as contributions linear in the derivatives of the logarithmic gradients. The effect of the turbulence intensity gradient on momentum transport is found to be small for the studied parameters. Linear simulations at fixed normalized toroidal wave number predict a weak dependence of the momentum flux on the normalized Larmor radius ρ{sub *}=ρ/R. Non-linear simulations, however, at sufficiently small ρ{sub *} show a linear scaling of the momentum flux with ρ{sub *}. The obtained stationary rotation gradients are in the range of, although perhaps smaller than, current experiments. For a reactor plasma, however, a rather small rotation gradient should result from profile shearing.

  3. Momentum transport in the vicinity of q{sub min} in reverse shear tokamaks due to ion temperature gradient turbulence

    SciTech Connect

    Singh, Rameswar; Singh, R; Jhang, Hogun; Diamond, P. H.

    2014-01-15

    We present an analytic study of momentum transport of tokamak plasmas in the vicinity of minimum safety factor (q) position in reversed magnetic shear configuration. Slab ion temperature gradient modes with an equilibrium flow profile are considered in this study. Quasi-linear calculations of momentum flux clearly show the novel effects of q-curvature on the generation of intrinsic rotation and mean poloidal flow without invoking reflectional symmetry breaking of parallel wavenumber (k{sub ∥}). This q-curvature effect originates from the inherent asymmetry in k{sub ∥} populations with respect to a rational surface due to the quadratic proportionality of k{sub ∥} when q-curvature is taken into account. Discussions are made of possible implications of q-curvature induced plasma flows on internal transport barrier formation in reversed shear tokamaks.

  4. Electromagnetic angular momentum transport in Saturn's rings

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Morfill, G. E.; Ip, W.; Gruen, E.; Havnes, O.

    1986-01-01

    It is shown here that submicrometer dust particles sporadically elevated above Saturn's ring are subject to electromagnetic forces which will reduce their angular momentum inside synchronous orbit and increase it outside. When the dust is reabsorbed by the ring the angular momentum of the ring is decreased (increased) inside (outside) of synchronous orbit. For the case of the spokes in Saturn's B-ring it is estimated that the timescale for transporting ring material due to this angular momentum coupling effect is comparable to the viscous transport time or even smaller. It is suggested that the minimum in the optical depth of the B-ring at synchronous orbit is due to this effect.

  5. Influence of the centrifugal force and parallel dynamics on the toroidal momentum transport due to small scale turbulence in a tokamak

    SciTech Connect

    Peeters, A. G.; Camenen, Y.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Strintzi, D.; Angioni, C.

    2009-04-15

    The paper derives the gyro-kinetic equation in the comoving frame of a toroidally rotating plasma, including both the Coriolis drift effect [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)] as well as the centrifugal force. The relation with the laboratory frame is discussed. A low field side gyro-fluid model is derived from the gyro-kinetic equation and applied to the description of parallel momentum transport. The model includes the effects of the Coriolis and centrifugal force as well as the parallel dynamics. The latter physics effect allows for a consistent description of both the Coriolis drift effect as well as the ExB shear effect [R. R. Dominguez and G. M. Staebler, Phys. Fluids B 5, 3876 (1993)] on the momentum transport. Strong plasma rotation as well as parallel dynamics reduce the Coriolis (inward) pinch of momentum and can lead to a sign reversal generating an outward pinch velocity. Also, the ExB shear effect is, in a similar manner, reduced by the parallel dynamics and stronger rotation.

  6. Electromagnetic effects on toroidal momentum transport

    SciTech Connect

    Mahmood, M. Ansar; Eriksson, A.; Weiland, J.

    2010-12-15

    A parametric study of electromagnetic effects on toroidal momentum transport has been performed. The work is based on a new version of the Weiland model where symmetry breaking toroidicity effects derived from the stress tensor have been taken into account. The model includes a self-consistent calculation of the toroidal momentum diffusivity, which contains both diagonal and off-diagonal contributions to the momentum flux. It is found that electromagnetic effects considerably increase the toroidal momentum pinch. They are sometimes strong enough to make the total toroidal momentum flux inward.

  7. Neoclassical momentum transport in an impure rotating tokamak plasma

    SciTech Connect

    Newton, S.; Helander, P.

    2006-01-15

    It is widely believed that transport barriers in tokamak plasmas are caused by radial electric-field shear, which is governed by angular momentum transport. Turbulence is suppressed in the barrier, and ion thermal transport is comparable to the neoclassical prediction, but experimentally angular momentum transport has remained anomalous. With this motivation, the collisional transport matrix is calculated for a low collisionality plasma with collisional impurity ions. The bulk plasma toroidal rotation velocity is taken to be subsonic, but heavy impurities undergo poloidal redistribution due to the centrifugal force. The impurities give rise to off-diagonal terms in the transport matrix, which cause the plasma to rotate spontaneously. At conventional aspect ratio, poloidal impurity redistribution increases the angular momentum flux by a factor up to {epsilon}{sup -3/2} over previous predictions, making it comparable to the 'banana' regime heat flux. The flux is primarily driven by radial pressure and temperature gradients.

  8. Transport of momentum in full f gyrokinetics

    SciTech Connect

    Parra, Felix I.; Catto, Peter J.

    2010-05-15

    Full f electrostatic gyrokinetic formulations employ two gyrokinetic equations, one for ions and the other for electrons, and quasineutrality to obtain the ion and electron distribution functions and the electrostatic potential. We demonstrate with several examples that the long wavelength radial electric field obtained with full f approaches is extremely sensitive to errors in the ion and electron density since small deviations in density give rise to large, nonphysical deviations in the conservation of toroidal angular momentum. For typical tokamak values, a relative error of 10{sup -7} in the ion or electron densities is enough to obtain the incorrect toroidal rotation. Based on the insights gained with the examples considered, three simple tests to check transport of toroidal angular momentum in full f simulations are proposed.

  9. Discoveries from the exploration of gyrokinetic momentum transport

    SciTech Connect

    Staebler, G.M.; Waltz, R. E.; Kinsey, J. E.

    2011-05-15

    The momentum transport due to gyroradius scale turbulence in tokamak plasmas is very complex. In general, some type of breaking of the parity of the gyrokinetic equation under simultaneous reflection of the poloidal angle and the sign of the parallel velocity phase space coordinate (poloidal parity) is always involved. There are three distinct types of poloidal parity breaking effects. In this paper, all three types of poloidal parity breaking are explored using the quasi-linear trapped gyro-Landau fluid [G. M. Staebler et al., Phys. Plasmas 12, 102508 (2005)] transport code. Selected results are verified with full nonlinear turbulence simulations using the gyro [J. Candy et al., J. Comput. Phys. 186, 545 (2003)] gyrokinetic code. The observable properties like an energy pinch driven by a parallel velocity shear and a dependence of momentum transport on the direction of the ion grad-B drift relative to the X-point location in single null divertor geometry have been discovered.

  10. Spontaneous toroidal flow generation due to negative effective momentum diffusivity

    SciTech Connect

    McMillan, Ben F.

    2015-02-15

    Spontaneous structure formation, and in particular, zonal flows, is observed in a broad range of natural and engineered systems, often arising dynamically as the saturated state of a linear instability. Flows in tokamaks are known to self-organise on small scales, but large scale toroidal flows also arise even when externally applied torques are zero. This has previously been interpreted as the result of small externally imposed breaking of a symmetry. However, we show that for large enough field line pitch, a robust spontaneous symmetry breaking occurs, leading to the generation of strong toroidal flow structures; parameters are typical of Spherical Tokamak discharges with reversed shear profiles. The short wavelength dynamics are qualitatively similar to the growth of poloidal flow structures, and toroidal flow gradients nonlinearly saturate at levels where the shearing rate is comparable to linear growth rate. On long wavelengths, we measure Prandtl numbers of around zero for these systems, in conjunction with the formation of structured toroidal flows, and we show that this is consistent with a model of momentum transport where fluxes act to reinforce small flow gradients: the effective momentum diffusivity is negative. Toroidal flow structures are largely unaffected by collisional damping, so this may allow toroidal bulk flows of order the ion thermal velocity to be maintained with zero momentum input. This phenomenon also provides a mechanism for the generation of localised meso-scale structures like transport barriers.

  11. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    NASA Astrophysics Data System (ADS)

    Zhao, N.; Yan, N.; Xu, G. S.; Wang, Z. X.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Chen, R.; Chen, L.; Zhang, W.; Hu, G. H.; Shao, L. M.

    2016-06-01

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentum transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.

  12. Momentum Injection in Tokamak Plasmas and Transitions to Reduced Transport

    SciTech Connect

    Parra, F. I.; Highcock, E. G.; Schekochihin, A. A.; Barnes, M.

    2011-03-18

    The effect of momentum injection on the temperature gradient in tokamak plasmas is studied. A plausible scenario for transitions to reduced transport regimes is proposed. The transition happens when there is sufficient momentum input so that the velocity shear can suppress or reduce the turbulence. However, it is possible to drive too much velocity shear and rekindle the turbulent transport. The optimal level of momentum injection is determined. The reduction in transport is maximized in the regions of low or zero magnetic shear.

  13. Design of Large Momentum Acceptance Transport Systems

    SciTech Connect

    D.R. Douglas

    2005-05-01

    The use of energy recovery to enable high power linac operation often gives rise to an attendant challenge--the transport of high power beams subtending large phase space volumes. In particular applications--such as FEL driver accelerators--this manifests itself as a requirement for beam transport systems with large momentum acceptance. We will discuss the design, implementation, and operation of such systems. Though at times counterintuitive in behavior (perturbative descriptions may, for example, be misleading), large acceptance systems have been successfully utilized for generations as spectrometers and accelerator recirculators [1]. Such systems are in fact often readily designed using appropriate geometric descriptions of beam behavior; insight provided using such a perspective may in addition reveal inherent symmetries that simplify construction and improve operability. Our discussion will focus on two examples: the Bates-clone recirculator used in the Jefferson Lab 10 kW IR U pgrade FEL (which has an observed acceptance of 10% or more) and a compaction-managed mirror-bend achromat concept with an acceptance ranging from 50 to 150 MeV.

  14. Microstructure and momentum transport in concentrated suspensions

    SciTech Connect

    Mondy, L.A.; Graham, A.L.; Brenner, H.

    1996-06-01

    This paper reviews several coupled theoretical and experimental investigations of the effect of microstructure on momentum transport in concentrated suspensions. An expression to predict the apparent suspension viscosity of mixtures of rods and spheres is developed and verified with falling-ball viscometry experiments. The effects of suspension-scale slip (relative to the bulk continuum) are studied with a sensitive spinning-ball rheometer, and the results are explained with a novel theoretical method. The first noninvasive, nuclear magnetic resonance imaging measurements of the evolution of velocity and concentration profiles in pressure-driven entrance flows of initially well mixed suspensions in a circular conduit are described, as well as more complex two-dimensional flows with recirculation, e.g. flow in a journal bearing. These data in nonhomogeneous flows and complementary three-dimensional video imaging of individual tracer particles in homogeneous flows are providing much needed information on the effects of flow on particle interactions and effective theological properties at the macroscale.

  15. Angular momentum transport within evolved low-mass stars

    SciTech Connect

    Cantiello, Matteo; Bildsten, Lars; Paxton, Bill; Mankovich, Christopher; Christensen-Dalsgaard, Jørgen

    2014-06-10

    Asteroseismology of 1.0-2.0 M {sub ☉} red giants by the Kepler satellite has enabled the first definitive measurements of interior rotation in both first ascent red giant branch (RGB) stars and those on the helium burning clump. The inferred rotation rates are 10-30 days for the ≈0.2 M {sub ☉} He degenerate cores on the RGB and 30-100 days for the He burning core in a clump star. Using the Modules for Experiments in Stellar Evolution code, we calculate state-of-the-art stellar evolution models of low mass rotating stars from the zero-age main sequence to the cooling white dwarf (WD) stage. We include transport of angular momentum due to rotationally induced instabilities and circulations, as well as magnetic fields in radiative zones (generated by the Tayler-Spruit dynamo). We find that all models fail to predict core rotation as slow as observed on the RGB and during core He burning, implying that an unmodeled angular momentum transport process must be operating on the early RGB of low mass stars. Later evolution of the star from the He burning clump to the cooling WD phase appears to be at nearly constant core angular momentum. We also incorporate the adiabatic pulsation code, ADIPLS, to explicitly highlight this shortfall when applied to a specific Kepler asteroseismic target, KIC8366239.

  16. Transport of parallel momentum by drift-Alfven turbulence

    SciTech Connect

    McDevitt, C. J.; Diamond, P. H.

    2009-01-15

    An electromagnetic gyrokinetic formulation is utilized to calculate the turbulent radial flux of parallel momentum for a strongly magnetized plasma in the large aspect ratio limit. For low-{beta} plasmas, excluding regions of steep density gradients, the level of momentum transport induced by microturbulence is found to be well described within the electrostatic approximation. However, near regions of steep equilibrium profile gradients, strong electromagnetic contributions to the momentum flux are predicted. In particular, for sufficiently steep density gradient, the magnitude of transport induced by the off-diagonal residual stress component of the momentum flux induced by drift wave turbulence can be quenched. This quenching mechanism, which results from shielding of the parallel electric field by the inductive term, is distinct from ExB shear decorrelation, since it allows for the level of off-diagonal turbulent transport to be strongly reduced without extinguishing the underlying microturbulence. In contrast, the level of transport induced by a given Alfvenic branch of the drift-Alfven dispersion relationship typically increases as the density gradient steepens, allowing an alternate channel for momentum transport. A calculation of the momentum transport induced by Alfvenic turbulence in a homogeneous medium suggests that an imbalance in Elsasser populations is required in order to introduce a finite level of off-diagonal momentum transport for the case of the simplified geometry considered.

  17. Toroidal angular momentum transport with non-axisymmetric magnetic fields

    NASA Astrophysics Data System (ADS)

    Seol, J.; Park, B. H.

    2016-05-01

    In this study, we calculate the radial transport of the toroidal angular momentum in the presence of non-axisymmetric magnetic fields. It is shown that the radial transport of the toroidal angular momentum, R 2 ∇ ζ . V , is proportional to the first order of gyro-radius. This implies that the neoclassical toroidal viscosity caused by asymmetric magnetic fields can change the toroidal rotation significantly.

  18. Angular Momentum Transport in Convectively Unstable Shear Flows

    NASA Astrophysics Data System (ADS)

    Käpylä, Petri J.; Brandenburg, Axel; Korpi, Maarit J.; Snellman, Jan E.; Narayan, Ramesh

    2010-08-01

    Angular momentum transport due to hydrodynamic turbulent convection is studied using local three-dimensional numerical simulations employing the shearing box approximation. We determine the turbulent viscosity from non-rotating runs over a range of values of the shear parameter and use a simple analytical model in order to extract the non-diffusive contribution (Λ-effect) to the stress in runs where rotation is included. Our results suggest that the turbulent viscosity is on the order of the mixing length estimate and weakly affected by rotation. The Λ-effect is non-zero and a factor of 2-4 smaller than the turbulent viscosity in the slow rotation regime. We demonstrate that for Keplerian shear, the angular momentum transport can change sign and be outward when the rotation period is greater than the turnover time, i.e., when the Coriolis number is below unity. This result seems to be relatively independent of the value of the Rayleigh number.

  19. ANGULAR MOMENTUM TRANSPORT IN CONVECTIVELY UNSTABLE SHEAR FLOWS

    SciTech Connect

    Kaepylae, Petri J.; Korpi, Maarit J.; Snellman, Jan E.; Brandenburg, Axel; Narayan, Ramesh

    2010-08-10

    Angular momentum transport due to hydrodynamic turbulent convection is studied using local three-dimensional numerical simulations employing the shearing box approximation. We determine the turbulent viscosity from non-rotating runs over a range of values of the shear parameter and use a simple analytical model in order to extract the non-diffusive contribution ({Lambda}-effect) to the stress in runs where rotation is included. Our results suggest that the turbulent viscosity is on the order of the mixing length estimate and weakly affected by rotation. The {Lambda}-effect is non-zero and a factor of 2-4 smaller than the turbulent viscosity in the slow rotation regime. We demonstrate that for Keplerian shear, the angular momentum transport can change sign and be outward when the rotation period is greater than the turnover time, i.e., when the Coriolis number is below unity. This result seems to be relatively independent of the value of the Rayleigh number.

  20. INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT

    SciTech Connect

    Rogers, T. M.; Lin, D. N. C.; McElwaine, J. N.; Lau, H. H. B. E-mail: lin@ucolick.org E-mail: hblau@astro.uni-bonn.de

    2013-07-20

    We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation, and consequent angular momentum transport by such waves. We find that these waves are generated efficiently and transport angular momentum on short timescales over large distances. We show that, as in Earth's atmosphere, IGW drive equatorial flows which change magnitude and direction on short timescales. These results have profound consequences for the observational inferences of massive stars, as well as their long term angular momentum evolution. We suggest IGW angular momentum transport may explain many observational mysteries, such as: the misalignment of hot Jupiters around hot stars, the Be class of stars, Ni enrichment anomalies in massive stars, and the non-synchronous orbits of interacting binaries.

  1. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. II. MAGNETOHYDRODYNAMIC SIMULATIONS

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.

    2013-06-10

    We perform global unstratified three-dimensional magnetohydrodynamic simulations of an astrophysical boundary layer (BL)-an interface region between an accretion disk and a weakly magnetized accreting object such as a white dwarf-with the goal of understanding the effects of magnetic field on the BL. We use cylindrical coordinates with an isothermal equation of state and investigate a number of initial field geometries including toroidal, vertical, and vertical with zero net flux. Our initial setup consists of a Keplerian disk attached to a non-rotating star. In a previous work, we found that in hydrodynamical simulations, sound waves excited by shear in the BL were able to efficiently transport angular momentum and drive mass accretion onto the star. Here we confirm that in MHD simulations, waves serve as an efficient means of angular momentum transport in the vicinity of the BL, despite the magnetorotational instability (MRI) operating in the disk. In particular, the angular momentum current due to waves is at times larger than the angular momentum current due to MRI. Our results suggest that angular momentum transport in the BL and its vicinity is a global phenomenon occurring through dissipation of waves and shocks. This point of view is quite different from the standard picture of transport by a local anomalous turbulent viscosity. In addition to angular momentum transport, we also study magnetic field amplification within the BL. We find that the field is indeed amplified in the BL, but only by a factor of a few, and remains subthermal.

  2. Momentum Transport in Electron-Dominated Spherical Torus Plasmas

    SciTech Connect

    Kaye, S. M.; Solomon, W.; Bell, R. E.; LeBlanc, B. P.; Levinton, F.; Menard, J.; Rewoldt, G.; Sabbagh, S.; Wang, W.; Yuh, H.

    2009-02-24

    The National Spherical Torus Experiment (NSTX) operates between 0.35 and 0.55 T, which, when coupled to up to 7 MW of neutral beam injection, leads to central rotation velocities in excess of 300 km/s and ExB shearing rates up to 1 MHz. This level of ExB shear can be up to a factor of five greater than typical linear growth rates of long-wavelength ion (e.g., ITG) modes, at least partially suppressing these instabilities. Evidence for this turbulence suppression is that the inferred diffusive ion thermal flux in NSTX H-modes is often at the neoclassical level, and thus these plasmas operate in an electron-dominated transport regime. Analysis of experiments using n=3 magnetic fields to change plasma rotation indicate that local rotation shear influences local transport coefficients, most notably the ion thermal diffusivity, in a manner consistent with suppression of the low-k turbulence by this rotation shear. The value of the effective momentum diffusivity, as inferred from steady-state momentum balance, is found to be larger than the neoclassical value. Results of perturbative experiments indicate inward pinch velocities up to 40 m/s and perturbative momentum diffusivities of up to 4 m2/s, which are larger by a factor of several than those values inferred from steady-state analysis. The inferred pinch velocity values are consistent with values based on theories in which low-k turbulence drives the inward momentum pinch. Thus, in Spherical Tori (STs), while the neoclassical ion energy transport effects can be relatively high and dominate the ion energy transport, the neoclassical momentum transport effects are near zero, meaning that transport of momentum is dominated by any low-k turbulence that exists.

  3. Competing mechanisms of momentum transport in large wind farms

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Meneveau, Charles

    2011-11-01

    In very large wind farms in the atmospheric boundary layer, energy, and momentum are on average transported from layers above the farm downward towards the turbines (Calaf, Meneveau, Meyers, Phys. Fluids 2010). In the current work, we investigate in more detail the three-dimensional flows of mass, momentum and energy towards individual turbines, based on a suite of large-eddy simulations. We find that there are two competing mechanisms which bring momentum to the turbines, i.e. a sideways flux, and a top-down flux of momentum (sideways fluxes themselves are fed by a top-down flux in regions outside the turbine wake area). For large spanwise turbine spacings, sideways momentum fluxes are dominating; for small spanwise spacings, the top-down mechanism is dominant. Inspired by these observations, we propose a new integral model for wind-farm performance, in which competing fluxes of momentum are represented by closed analytical expressions obtained by integrating momentum equations over different regions in the ABL. The research of CM is supported by NSF AGS 1045189.

  4. Nonlinear parallel momentum transport in strong electrostatic turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wen, Tiliang; Diamond, P. H.

    2015-05-01

    Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux- ⟨ v ˜ r n ˜ u ˜ ∥ ⟩ . However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller than the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.

  5. Turbulent Transport of Momentum and Scalars Above an Urban Canopy

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Li, Dan; Gao, Zhiqiu; Sun, Ting; Guo, Xiaofeng; Bou-Zeid, Elie

    2014-03-01

    Turbulent transport of momentum and scalars over an urban canopy is investigated using the quadrant analysis technique. High-frequency measurements are available at three levels above the urban canopy (47, 140 and 280 m). The characteristics of coherent ejection-sweep motions (flux contributions and time fractions) at the three levels are analyzed, particularly focusing on the difference between ejections and sweeps, the dissimilarity between momentum and scalars, and the dissimilarity between the different scalars (i.e., temperature, water vapour and . It is found that ejections dominate momentum and scalar transfer at all three levels under unstable conditions, while sweeps are the dominant eddy motions for transporting momentum and scalars in the urban roughness sublayer under neutral and stable conditions. The flux contributions and time fractions of ejections and sweeps can be adequately captured by assuming a Gaussian joint probability density function for flow variables. However, the inequality of flux contributions from ejections and sweeps is more accurately reproduced by the third-order cumulant expansion method (CEM). The incomplete cumulant expansion method (ICEM) also works well except for at 47 m where the skewness of fluctuations is significantly larger than that for vertical velocity. The dissimilarity between momentum and scalar transfers is linked to the dissimilarity in the characteristics of ejection-sweep motions and is further quantified by measures of transport efficiencies. Atmospheric stability is the controlling factor for the transport efficiencies of momentum and heat, and fitted functions from the literature describe their behaviour fairly accurately. However, transport efficiencies of water vapour and are less affected by the atmospheric stability. The dissimilarity among the three scalars examined in this study is linked to the active role of temperature and to the surface heterogeneity effect.

  6. Gyrokinetic theory and simulation of angular momentum transport

    SciTech Connect

    Waltz, R. E.; Staebler, G. M.; Candy, J.; Hinton, F. L.

    2007-12-15

    A gyrokinetic theory of turbulent toroidal angular momentum transport as well as modifications to neoclassical poloidal rotation from turbulence is formulated starting from the fundamental six-dimensional kinetic equation. The gyro-Bohm scaled transport is evaluated from toroidal delta-f gyrokinetic simulations using the GYRO code [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. The simulations recover two pinch mechanisms in the radial transport of toroidal angular momentum: The slab geometry ExB shear pinch [Dominguez and Staebler, Phys. Fluids B 5, 387 (1993)] and the toroidal geometry 'Coriolis' pinch [Peeters, Angioni, and Strintzi, Phys. Rev. Lett. 98, 265003 (2007)]. The pinches allow the steady state null stress (or angular momentum transport flow) condition required to understand intrinsic (or spontaneous) toroidal rotation in heated tokamak without an internal source of torque [Staebler, Kinsey, and Waltz, Bull. Am. Phys. Soc. 46, 221 (2001)]. A predicted turbulent shift in the neoclassical poloidal rotation [Staebler, Phys. Plasmas 11, 1064 (2004)] appears to be small at the finite relative gyroradius (rho-star) of current experiments.

  7. Zombie Vortices: Angular Momentum Transport and Planetesimal Formation

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph; Marcus, Philip; Pei, Suyang; Jiang, Chung-Hsiang; Hassanzadeh, Pedram; Lecoanet, Daniel

    2014-11-01

    Zombie vortices may fill the dead zones of protoplanetary disks, where they may play important roles in star and planet formation. We will investigate this new, purely hydrodynamic instability and explore the conditions necessary to resurrect the dead zone and fill it with large amplitude vortices that may transport angular momentum and allow mass to accrete onto the protostar. One unresolved issue is whether angular momentum transport is mediated via asymmetries in the vortices, vortex-vortex interactions, or acoustic waves launched by the vortices. Vortices may also play a crucial role in the formation of planetesimals, the building blocks of planets. It is still an open question how grains grow to kilometer-size. We will investigate the interactions of dust with vortices generated via our new hydrodynamic instability, and bridge the gap between micron-sized grains and kilometer-sized planetesimals. Supported by NSF AST-1010052.

  8. Momentum Transport by Cumulus Clouds and its Parameterization.

    NASA Astrophysics Data System (ADS)

    Zhang, Guang Jun

    The effect of cumulus convection on the large -scale momentum field is examined in this thesis. A parameterization scheme is developed to calculate the vertical transport of momentum by cumulus clouds. The effect of the perturbation pressure field induced by cumulus convection on the cloud momentum and its vertical transport is taken into account for the first time. It is shown that a perturbation pressure field is required to balance the irrotational component of the local Coriolis force produced by the interaction of the large-scale flow field with the cumulus-scale circulation. To facilitate quantitative evaluation of the horizontal pressure gradient force across the cloud, a simple cloud model which specifies the dynamic and the thermodynamic structures in cloud is developed. The parameterization scheme is applied to several convective events in the tropics and the midlatitudes. The first case is the average of six convective periods observed in Phase III of GATE. The second one is the numerical simulation of a convective band observed in Phase II of GATE by Soong and Tao (1984). It is shown that the cloud mean wind obtained from the parameterization scheme changes significantly with height if the environmental wind has strong vertical shear. The perturbation pressure gradient force across the cloud plays an important role in changing the cloud mean momentum. The vertical transport of the horizontal momentum by cumulus clouds is parameterized and compared to observations and numerical simulations. Good agreement is found between the computed and the observed/simulated cumulus effects on the momentum field in both cases. The third case is a mesoscale convective complex observed in PRE-STORM. The evolution of the storm is analyzed; and the dynamic and the thermodynamic budgets are computed. Comparison between the residuals of the momentum budgets and the cumulus effects from the parameterization again shows good agreement. Sensitivity tests are performed to

  9. Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Bennett, J. C.

    1981-01-01

    Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid.

  10. Intrinsic momentum transport in tokamaks with tilted elliptical flux surfaces

    NASA Astrophysics Data System (ADS)

    Ball, Justin; Parra, Felix; Barnes, Michael; Dorland, William; Hammett, Gregory; Rodrigues, Paulo; Loureiro, Nuno

    2014-10-01

    Recent work demonstrated that breaking the up-down symmetry of tokamaks removes a constraint limiting intrinsic momentum transport, and hence toroidal rotation, to be small. We show, through MHD analysis, that ellipticity is most effective at introducing up-down asymmetry throughout the plasma. Using GS2, a local δf gyrokinetic code that self-consistently calculates momentum transport, we simulate tokamaks with tilted elliptical poloidal cross-sections and a Shafranov shift. These simulations show both the magnitude and poloidal dependence of nonlinear momentum transport. The results are consistent with TCV experimental measurements and suggest that this mechanism can generate rotation with an Alfven Mach number of several percent in a tilted elliptical ITER-like machine. It appears that rotation generated with up-down asymmetry may be sufficient to stabilize the resistive wall mode in reactor-sized devices. J.R.B. and F.I.P. were partially supported by the RCUK Energy Programme (grant number EP/I501045) and the European Unions Horizon 2020 research and innovation programme.

  11. Nonlinear parallel momentum transport in strong electrostatic turbulence

    SciTech Connect

    Wang, Lu Wen, Tiliang; Diamond, P. H.

    2015-05-15

    Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the nonlinear momentum flux-〈v{sup ~}{sub r}n{sup ~}u{sup ~}{sub ∥}〉. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas 18, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong electrostatic turbulence is calculated by using a three dimensional Hasegawa-Mima equation, which is relevant for tokamak edge turbulence. It is shown that the nonlinear diffusivity is smaller than the quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so may be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.

  12. Angular momentum transport via internal gravity waves in evolving stars

    SciTech Connect

    Fuller, Jim; Lecoanet, Daniel; Cantiello, Matteo; Brown, Ben

    2014-11-20

    Recent asteroseismic advances have allowed for direct measurements of the internal rotation rates of many subgiant and red giant stars. Unlike the nearly rigidly rotating Sun, these evolved stars contain radiative cores that spin faster than their overlying convective envelopes, but slower than they would in the absence of internal angular momentum transport. We investigate the role of internal gravity waves in angular momentum transport in evolving low-mass stars. In agreement with previous results, we find that convectively excited gravity waves can prevent the development of strong differential rotation in the radiative cores of Sun-like stars. As stars evolve into subgiants, however, low-frequency gravity waves become strongly attenuated and cannot propagate below the hydrogen-burning shell, allowing the spin of the core to decouple from the convective envelope. This decoupling occurs at the base of the subgiant branch when stars have surface temperatures of T ≈ 5500 K. However, gravity waves can still spin down the upper radiative region, implying that the observed differential rotation is likely confined to the deep core near the hydrogen-burning shell. The torque on the upper radiative region may also prevent the core from accreting high angular momentum material and slow the rate of core spin-up. The observed spin-down of cores on the red giant branch cannot be totally attributed to gravity waves, but the waves may enhance shear within the radiative region and thus increase the efficacy of viscous/magnetic torques.

  13. Methods for measuring and transporting angular momentum in general relativity

    NASA Astrophysics Data System (ADS)

    Nichols, David; Flanagan, Eanna; Stein, Leo; Vines, Justin

    2016-03-01

    For an observer in a curved spacetime, elements of the dual space of the set of linearized Poincare transformations from the observer's tangent space to itself can naturally be interpreted as local linear and angular momenta. We give an operational procedure by which the observer can measure such local linear and angular momenta from the local spacetime geometry. These momenta can be interpreted as approximate versions of the linear and angular momenta of the spacetime about the observer's location. The measurement algorithm allows for a more accurate determination of the linear and angular momentum of stationary, asymptotically flat systems than previous proposals do. We also describe a prescription by which observers at different locations can compare values of their measured linear and angular momentum by using a specific transport equation, which refines previous proposals. These operational definitions may also prove useful for clarifying the physical interpretation of Bondi-Metzner-Sachs asymptotic charges in asymptotically flat spacetimes.

  14. Temperature dependence of angular momentum transport across interfaces

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Lin, Weiwei; Chien, C. L.; Zhang, Shufeng

    2016-08-01

    Angular momentum transport in magnetic multilayered structures plays a central role in spintronic physics and devices. The angular momentum currents or spin currents are carried by either quasiparticles such as electrons and magnons, or by macroscopic order parameters such as local magnetization of ferromagnets. Based on the generic interface exchange interaction, we develop a microscopic theory that describes interfacial spin conductance for various interfaces among nonmagnetic metals, ferromagnetic insulators, and antiferromagnetic insulators. Spin conductance and its temperature dependence are obtained for different spin batteries including spin pumping, temperature gradient, and spin Hall effect. As an application of our theory, we calculate the spin current in a trilayer made of a ferromagnetic insulator, an antiferromagnetic insulator, and a nonmagnetic heavy metal. The calculated results on the temperature dependence of spin conductance quantitatively agree with the existing experiments.

  15. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk.

    PubMed

    Hoshino, Masahiro

    2015-02-13

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes. PMID:25723200

  16. Wave mediated angular momentum transport in astrophysical boundary layers

    NASA Astrophysics Data System (ADS)

    Hertfelder, Marius; Kley, Wilhelm

    2015-07-01

    Context. Disk accretion onto weakly magnetized stars leads to the formation of a boundary layer (BL) where the gas loses its excess kinetic energy and settles onto the star. There are still many open questions concerning the BL, for instance the transport of angular momentum (AM) or the vertical structure. Aims: It is the aim of this work to investigate the AM transport in the BL where the magneto-rotational instability (MRI) is not operating owing to the increasing angular velocity Ω(r) with radius. We will therefore search for an appropriate mechanism and examine its efficiency and implications. Methods: We perform 2D numerical hydrodynamical simulations in a cylindrical coordinate system (r,ϕ) for a thin, vertically integrated accretion disk around a young star. We employ a realistic equation of state and include both cooling from the disk surfaces and radiation transport in radial and azimuthal direction. The viscosity in the disk is treated by the α-model; in the BL there is no viscosity term included. Results: We find that our setup is unstable to the sonic instability which sets in shortly after the simulations have been started. Acoustic waves are generated and traverse the domain, developing weak shocks in the vicinity of the BL. Furthermore, the system undergoes recurrent outbursts where the activity in the disk increases strongly. The instability and the waves do not die out for over 2000 orbits. Conclusions: There is indeed a purely hydrodynamical mechanism that enables AM transport in the BL. It is efficient and wave mediated; however, this renders it a non-local transport method, which means that models of a effective local viscosity like the α-viscosity are probably not applicable in the BL. A variety of further implications of the non-local AM transport are discussed.

  17. Gyrokinetic study of electromagnetic effects on toroidal momentum transport in tokamak plasmas

    SciTech Connect

    Hein, T.; Angioni, C.; Fable, E.; Candy, J.; Peeters, A. G.

    2011-07-15

    The effect of a finite {beta}{sub e} = 8{pi}n{sub e}T{sub e}/B{sup 2} on the turbulent transport of toroidal momentum in tokamak plasmas is discussed. From an analytical gyrokinetic model as well as local linear gyrokinetic simulations, it is shown that the modification of the parallel mode structure due to the nonadiabatic response of passing electrons, which changes the parallel wave vector k{sub ||} with increasing {beta}{sub e}, leads to a decrease in size of both the diagonal momentum transport as well as the Coriolis pinch under ion temperature gradient turbulence conditions, while for trapped electron modes, practically no modification is found. The decrease is particularly strong close to the onset of the kinetic ballooning modes. There, the Coriolis pinch even reverses its direction.

  18. Influence of centrifugal effects on particle and momentum transport in National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Buchholz, R.; Grosshauser, S.; Guttenfelder, W.; Hornsby, W. A.; Migliano, P.; Peeters, A. G.; Strintzi, D.

    2015-08-01

    This paper studies the effect of rotation on microinstabilities under experimentally relevant conditions in the spherical tokamak National Spherical Torus Experiment (NSTX). The focus is specifically on the centrifugal force effects on the impurity and momentum transport in the core ( r /a =0.7 ) of an H-mode plasma. Due to relatively high beta, the linear simulations predict the presence of both microtearing mode (MTM) and hybrid ion temperature gradient-kinetic ballooning mode (ITG-KBM) electromagnetic instabilities. Rotation effects on both MTM and ITG-KBM growth rates and mode frequencies are found to be small for the experimental values. However, they do influence the quasi-linear particle and momentum fluxes predicted by ITG-KBM (MTM contributes only to electron heat flux). The gradient of the intrinsic carbon impurity in the source-free core region is predicted to be locally hollow, strengthened by centrifugal effects. This result is consistent with experimental measurements and contradicts neoclassical theory that typically provides a reasonable explanation of the impurity profiles in NSTX. The diffusive and Coriolis pinch contributions to momentum transport are found to be relatively weak. Surprisingly, the strongest contribution derives from a centrifugal effect proportional to the product of rotation and rotation shear, which predicts an inward momentum flux roughly three times bigger than the Coriolis pinch, suggesting it should be considered when interpreting previous experimental pinch measurements.

  19. Angular Momentum Transport in Quasi-Keplerian Accretion Disks

    NASA Astrophysics Data System (ADS)

    Subramanian, Prasad; Pujari, B. S.; Becker, Peter A.

    2004-03-01

    We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk yield results that are inconsistent with the generally accepted model. If correct, the ideas proposed by Hayashi & Matsudawould radically alter our understanding of the nature of the angular momentum transport in the disk, which is a central feature of accretion disk theory. However, in this paper we point out several fallacies in their arguments and show that there indeed exists a simple derivation based on mean free path theory that yields an expression for the viscous torque that is proportional to the radial derivative of the angular velocity in the accretion disk, as expected. The derivation is based on the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disk.

  20. Gyrokinetic Turbulence Driven Toroidal Momentum Transport and Comparison to Experimental Observations

    NASA Astrophysics Data System (ADS)

    Wang, Weixing

    2008-11-01

    Global gyrokinetic simulations using the GTS code [1] have found that a large inward flux of toroidal momentum is driven robustly in the post saturation phase of ion temperature gradient (ITG) turbulence. As a consequence, core plasma rotation spins up resulting in δu a few percent of vth in the case with no momentum source at the edge. The underlying physics for the inward flux is identified to be the generation of residual stress due to the k symmetry breaking [2] induced by self-generated zonal flow shear which is quasi-stationary in global simulations. The elatively low level momentum flux in the long- time steady state appears to be approximately diffusive, with effective χφ/χi on the order of unity, in broad agreement with experimental observations and theory predictions for ITG turbulence [3]. Neoclassical simulations using the GTC- NEO code [4] also show that the ion temperature gradient can drive a significant inward nondiffusive momentum flux. However, the overall neoclassical contribution to the momentum transport is negligibly small compared to experimental levels for NSTX and DIII-D plasmas. It is also found that finite residual turbulence can survive strong mean ExB shear flow induced damping. This residual turbulence in the presence of strong ExB shear may drive an insignificant ion heat flux reasonably close to the neoclassical value, and a finite momentum flux significantly higher than the neoclassical level. Moreover, the equilibrium ExB flow shear is found to reduce the turbulence driven transport for energy more efficiently than for momentum. These findings may offer an explanation for rather peculiar observations of near neoclassical ion heat and anomalous momentum transport in experiments, which has been often observed in various machines, but with little theoretical understanding. [1] W.X. Wang et al., Phys. Plasmas 14, 072306 (2007). [2] O.D. Gurcan et al., Phys. Plasmas 14, 042306 (2007). [3] N. Mattor and P.H. Diamond, Phys. Fluids 31

  1. Momentum accumulation due to solar radiation torque, and reaction wheel sizing, with configuration optimization

    NASA Technical Reports Server (NTRS)

    Hablani, Hari B.

    1993-01-01

    This paper has a two-fold objective: determination of yearly momentum accumulation due to solar radiation pressure, and optimum reaction wheel sizing. The first objective is confronted while determining propellant consumption by the attitude control system over a spacecraft's lifetime. This, however, cannot be obtained from the daily momentum accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other off-normal to different extent at different times to the sun rays. The paper first develops commands for the arrays for tracking the sun, the arrays articulated to earth-pointing spacecraft with two rotational degrees of freedom, and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus, momentum accumulation over an orbit and then over a year are determined. The remainder of the paper is concerned with designing reaction wheel configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally, their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are compared and contrasted.

  2. Towards a More Realistic Description of Swing Pumping Due to the Exchange of Angular Momentum

    ERIC Educational Resources Information Center

    Roura, P.; Gonzalez, J. A.

    2010-01-01

    The pumping mechanism of a swing in a playground is due to the exchange of angular momentum from the rocking movement of the swinger to the swing oscillation around the point from which the swing is suspended. We describe the rocking events as square pulses of short duration. This choice, together with a simplified mechanical model for the…

  3. Momentum and mass transport over a superhydrophobic bubble mattress: the influence of interface geometry

    NASA Astrophysics Data System (ADS)

    Tsai, Peichun Amy; Haase, A. Sander; Karatay, Elif; Lammertink, Rob; Soft Matter, Fluidics; Interfaces Group Team

    2013-11-01

    We numerically investigate the influence of interface geometry on momentum and mass transport on a partially slippery bubble mattress. The bubble mattress, forming a superhydrophobic substrate, consists of an array of slippery (shear-free) gas bubbles with (no-slip) solids walls in between. We consider steady pressure-driven laminar flow over the bubble mattress, with a solute being supplied from the gas bubbles. The results show that solute transport can be enhanced significantly due to effective slippage, compared to a fully saturated no-slip wall. The enhancement depends on the interface geometry of the bubble mattress, i.e. on the bubble size, protrusion angle, and surface porosity. In addition, we demonstrate that the mass transfer enhancement disappears below a critical bubble size. The effective slip vanishes for very small bubbles, whereby interfacial transport becomes diffusion dominated. For large bubbles, solute transport near the interface is greatly enhanced by convection. The results provide insight into the optimal design of ultra-hydrophobic bubble mattresses to enhance both momentum and mass transport.

  4. The angular momentum transport by unstable toroidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Rüdiger, G.; Gellert, M.; Spada, F.; Tereshin, I.

    2015-01-01

    We demonstrate with a nonlinear magnetohydrodynamic (MHD) code that angular momentum can be transported because of the magnetic instability of toroidal fields under the influence of differential rotation, and that the resulting effective viscosity may be high enough to explain the almost rigid-body rotation observed in radiative stellar cores. We only consider stationary, current-free fields, and only those combinations of rotation rates and magnetic field amplitudes which provide maximal numerical values of the viscosity. We find that the dimensionless ratio of the effective over molecular viscosity, νT/ν, linearly grows with the Reynolds number of the rotating fluid multiplied by the square-root of the magnetic Prandtl number, which is approximately unity for the considered red subgiant star KIC 7341231. For the interval of magnetic Reynolds numbers considered - which is restricted by numerical constraints of the nonlinear MHD code - the magnetic Prandtl number has a remarkable influence on the relative importance of the contributions of the Reynolds stress and the Maxwell stress to the total viscosity, which is magnetically dominated only for Pm ≳ 0.5. We also find that the magnetized plasma behaves as a non-Newtonian fluid, i.e., the resulting effective viscosity depends on the shear in the rotation law. The decay time of the differential rotation thus depends on its shear and becomes longer and longer during the spin-down of a stellar core.

  5. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  6. The momentum transfer of incompressible turbulent separated flow due to cavities with steps

    NASA Technical Reports Server (NTRS)

    White, R. E.; Norton, D. J.

    1977-01-01

    An experimental study was conducted using a plate test bed having a turbulent boundary layer to determine the momentum transfer to the faces of step/cavity combinations on the plate. Experimental data were obtained from configurations including an isolated configuration and an array of blocks in tile patterns. A momentum transfer correlation model of pressure forces on an isolated step/cavity was developed with experimental results to relate flow and geometry parameters. Results of the experiments reveal that isolated step/cavity excrecences do not have a unique and unifying parameter group due in part to cavity depth effects and in part to width parameter scale effects. Drag predictions for tile patterns by a kinetic pressure empirical method predict experimental results well. Trends were not, however, predicted by a method of variable roughness density phenomenology.

  7. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.

    2013-06-10

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification of three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.

  8. Particle transport due to magnetic fluctuations

    SciTech Connect

    Stoneking, M.R.; Hokin, S.A.; Prager, S.C.; Fiksel, G.; Ji, H.; Den Hartog, D.J.

    1994-01-01

    Electron current fluctuations are measured with an electrostatic energy analyzer at the edge of the MST reversed-field pinch plasma. The radial flux of fast electrons (E>T{sub e}) due to parallel streaming along a fluctuating magnetic field is determined locally by measuring the correlated product <{tilde J}{sub e}{tilde B}{sub r}>. Particle transport is small just inside the last closed flux surface ({Gamma}{sub e,mag} < 0.1 {Gamma}{sub e,total}), but can account for all observed particle losses inside r/a=0.8. Electron diffusion is found to increase with parallel velocity, as expected for diffusion in a region of field stochasticity.

  9. Differentially Rotating Structures and Angular Momentum Transport in the Prevalent Gravity of a Central Object*

    NASA Astrophysics Data System (ADS)

    Rousseau, F.; Coppi, B.

    2006-10-01

    The presence of angular momentum transport associated with an accretion process in an axisymmetric differentially rotating structure affects the equilibrium configuration that this can take and can introduce a toroidal Lorentz force with the associated poloidal current densities. All three components (vertical, radial and toroidal) of the total momentum conservation equation are considered. A sequence of ring solutions can be found by making use of the inequalities vNJtransport velocity of angular momentum transport and the inward accretion velocity. The outward angular momentum transport is considered as resulting from processes involving smaller scale lengths than those characterizing the described equilibrium configurations. *Sponsored in part by the U.S. DOE. B. Coppi and F. Rousseau Ap. J. 641 (1), 458 (2006)

  10. Comments on ``Angular Momentum Transport in Quasi-Keplerian Accretion Disks''

    NASA Astrophysics Data System (ADS)

    Hayashi, E.; Isaka, H.; Matsuda, T.

    2005-06-01

    Subramanian, Pujari and Becker (2004) claim that the correct expression for the angular momentum transport in an accretion disc, which is proportional to d Ω/d R, can be derived on the basis of the analysis of the epicyclic motion of gas parcels in adjacent eddies in the disc. We study their argument and show that their derivation contains several fundamental errors: 1) the biased choice of the desired formula from an infinite number of formulae; 2) the biased choice of parcel trajectories; and 3) confusion regarding the reference frames. Following 1) we could derive, for example, a (invalid) formula in which the angular momentum transport is proportional to d vφ/d R, and from 2) we could even prove that the angular momentum transport is either inward or null. We present the correct approach to the problem of angular momentum transport in an accretion disc in terms of mean free path theory.

  11. Role of Reynolds stress and toroidal momentum transport in the dynamics of internal transport barriers

    SciTech Connect

    Kim, S. S.; Jhang, Hogun; Diamond, P. H.

    2012-08-15

    We study the interplay between intrinsic rotation and internal transport barrier (ITB) dynamics through the dynamic change of the parallel Reynolds stress. Global flux-driven gyrofluid simulations are used for this study. In particular, we investigate the role of parallel velocity gradient instability (PVGI) in the ITB formation and the back transition. It is found that the excitation of PVGI is followed by a change in the Reynolds stress which drives a momentum redistribution. This significantly influences E Multiplication-Sign B shear evolution and subsequent ITB dynamics. Nonlocal interactions among fluctuations are also observed during the PVGI excitation, resulting in turbulence suppression at the ITB.

  12. Upscaling momentum and mass transport under Knudsen and binary diffusion gas slip conditions

    NASA Astrophysics Data System (ADS)

    Valdes-Parada, F. J.; Lasseux, D.

    2015-12-01

    Modeling of gas phase flow in porous media is relevant as it is present in a wide variety of applications ranging from nanofluidic systems to subsurface contaminant transport. In this work, we derive a macroscopic model to study slightly compressible gas flow in porous media for conditions in which the tangential fluid velocity undergoes a slip at the solid interface due to Knudsen effects and to mass diffusion in binary conditions. To this end, we use the method of volume averaging to derive the governing equations at the Darcy scale for both mass and momentum transport. The momentum transport model consists on a modification to Darcy's law due to mass dispersion and to total density gradients. For mass transport, the resulting model is the conventional convection-dispersion equation with two correction terms, one affecting convective transport and the second one affecting mass dispersion due to gas compressibility. The macroscopic model reduces to the one reported by Altevogt et al. (2003) for the case in which gas slip is only due to a concentration gradient and to the one by Lasseux et al. (2014) under Knudsen slip conditions. The model is written in terms of effective-medium coefficients that can be predicted from solving the associated closure problems in representative unit cells. For conditions in which the Péclet number is much greater than one and when the Knudsen number is not exceedingly small compared to the unity, our computations show that the predictions of the longitudinal dispersion may reach an error as high as 60% compared to the predictions obtained by ignoring gas slip. Altevogt A.S., Rolston D.E., Whitaker S. New equations for binary gas transport in porous media, Part 1: equation development. Advances in Water Resources, Vol. 26, 695-715, 2003. Lasseux D., Valdés-Parada F.J., Ochoa-Tapia J.A., Goyeau B. A macroscopic model for slightly compressible gas slip-flow in homogeneous porous media. Physics of Fluids, Vol. 26, 053102, 2014.

  13. Spin Transport in the XXZ Chain at Finite Temperature and Momentum

    NASA Astrophysics Data System (ADS)

    Brenig, Wolfram; Steinigeweg, Robin

    2012-02-01

    We investigate the role of momentum for the transport of magnetization in the spin-1/2 Heisenberg chain above the isotropic point at finite temperature and momentum [1]. Using numerical and analytical approaches, we analyze the autocorrelations of density and current and observe a finite region of the Brillouin zone with diffusive dynamics below a cut-off momentum, and a diffusion constant independent of momentum and time, which scales inversely with anisotropy. Lowering the temperature over a wide range, starting from infinity, the diffusion constant is found to increase strongly while the cut-off momentum for diffusion decreases. Above the cut-off momentum diffusion breaks down completely.[4pt] [1] Robin Steinigeweg and Wolfram Brenig, arXiv:1107.3103

  14. Latitudinal Transport of Angular Momentum by Cellular Flows Observed with MDI

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Gilman, Peter A.; Beck, John G.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We have analyzed Doppler velocity images from the MDI instrument on SOHO to determine the latitudinal transport of angular momentum by the cellular photospheric flows. Doppler velocity images from 60-days in May to July of 1996 were processed to remove the p-mode oscillations, the convective blue shift, the axisymmetric flows, and any instrumental artifacts. The remaining cellular flows were examined for evidence of latitudinal angular momentum transport. Small cells show no evidence of any such transport. Cells the size of supergranules (30,000 km in diameter) show strong evidence for a poleward transport of angular momentum. This would be expected if supergranules are influenced by the Coriolis force, and if the cells are elongated in an east-west direction. We find good evidence for just such an east-west elongation of the supergranules. This elongation may be the result of differential rotation shearing the cellular structures. Data simulations of this effect support the conclusion that elongated supergranules transport angular momentum from the equator toward the poles, Cells somewhat larger than supergranules do not show evidence for this poleward transport. Further analysis of the data is planned to determine if the direction of angular momentum transport reverses for even larger cellular structures. The Sun's rapidly rotating equator must be maintained by such transport somewhere within the convection zone.

  15. Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders

    SciTech Connect

    Paoletti, M. S.; Lathrop, D. P.

    2011-01-14

    We present measurements of the angular momentum flux (torque) in Taylor-Couette flow of water between independently rotating cylinders for all regions of the ({Omega}{sub 1}, {Omega}{sub 2}) parameter space at high Reynolds numbers, where {Omega}{sub 1} ({Omega}{sub 2}) is the inner (outer) cylinder angular velocity. We find that the Rossby number Ro=({Omega}{sub 1}-{Omega}{sub 2})/{Omega}{sub 2} fully determines the state and torque G as compared to G(Ro={infinity}){identical_to}G{sub {infinity}.} The ratio G/G{sub {infinity}} is a linear function of Ro{sup -1} in four sections of the parameter space. For flows with radially increasing angular momentum, our measured torques greatly exceed those of previous experiments [Ji et al., Nature (London), 444, 343 (2006)], but agree with the analysis of Richard and Zahn [Astron. Astrophys. 347, 734 (1999)].

  16. Angular Momentum Transport in Double White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Tohline, J. E.; Frank, J.

    2006-12-01

    We present numerical simulations of dynamically unstable mass transfer in a double white dwarf binary with initial mass ratio, q = 0.4. The binary components are approximated as polytropes of index n = 3/2 and the synchronously rotating, semi-detached equilibrium binary is evolved hydrodynamically with the gravitational potential being computed through the solution of Poisson's equation. Upon initiating deep contact, the mass transfer rate grows by more than an order of magnitude over approximately ten orbits, as would be expected for dynamically unstable mass transfer. However, the mass transfer rate then reaches a peak value, the binary expands and the mass transfer event subsides. The binary must therefore have crossed the critical mass ratio for stability against dynamical mass transfer. Despite the initial loss of orbital angular momentum into the spin of the accreting star, we find that the accretor's spin saturates and angular momentum is returned to the orbit more efficiently than has been previously suspected for binaries in the direct impact accretion mode. To explore this surprising result, we directly measure the critical mass ratio for stability by imposing artificial angular momentum loss at various rates to drive the binary to an equilibrium mass transfer rate. For one of these driven evolutions, we attain equilibrium mass transfer and deduce that the mass ratio for stability is approximately 2/3. This is consistent with the result for mass transferring binaries that effectively return angular momentum to the orbit through an accretion disk. This work has been supported in part by NSF grants AST 04-07070 and PHY 03-26311 and in part through NASA's ATP program grant NAG5-13430. The computations were performed primarily at NCSA through grant MCA98N043 and at LSU's Center for Computation & Technology.

  17. A numerical study of the vertical transport of momentum in a tropical rainband

    NASA Technical Reports Server (NTRS)

    Soong, S.-T.; Tao, W.-K.

    1984-01-01

    The vertical transport of horizontal momentum in a convective tropical rainband is studied using a two-dimensional cloud ensemble model. Twelve simulations are made under the same large-scale conditions. The vertical transports of v momentum (parallel to the rainband) are essentially the same in all of the simulations, even though the structure of the clouds is different in each of the runs. The magnitude of the v-momentum transport by clouds is fairly large. It takes only half of a day to smooth out the tropical low-level easterly jet parallel to the rainband if no other processes are operating. The vertical transports of u momentum (perpendicular to the rainband) are quite different in all of the simulations. This difference can be explained by the dissimilarities in the distributions of horizontal momentum associated with various cloud configurations. The simulated vertical transports of horizontal momentum are compared with those computed with the Schneider and Lindzen scheme. The results suggest that their scheme is basically correct and usable if some improvements are made.

  18. Transport of absolute angular momentum in quasi-axisymmetric equatorial jet streams

    NASA Technical Reports Server (NTRS)

    Read, P. L.

    1986-01-01

    It is well known that prograde equatorial jet stresses cannot occur in an axisymmetric inviscid fluid, owing to the constraints of local angular momentum conservation. For a viscous fluid, the constraints of mass conservation prevent the formation of any local maximum of absolute angular momentum (m) without a means of transferring m against its gradient (delta m) in the meridional plane. The circumstances under which m can be diffused up-gradient by normal molecular viscosity are derived, and illustrated with reference to numerical simulations of axisymmetric flows in a cylindrical annulus. Viscosity is shown to act so as to tend to expel m from the interior outwards from the rotation axis. Such an effect can produce local super-rotation even in a mechanically isolated fluid. The tendency of viscosity to result in the expulsion of m is shown to be analogous in certain respects to a vorticity-mixing hypothesis for the effects of non-axisymmetric eddies of the zonally-averaged flow. It is shown how the advective and diffusive transport of m by non-axisymmetric eddies can be represented by the Transformed Eulerian Mean meridional circulation and the Eliassen-Palm (EP) flux of Andrews and McIntyre respectively, in the zonal mean. Constraints on the form and direction of the EP flux in an advective/diffusive flow for such eddies are derived, by analogy with similar constraints on the diffusive flux of m due to viscosity.

  19. Momentum Transport Studies in High E x B Shear Plasmas in NSTX

    SciTech Connect

    Solomon, W M; Bell, R E; LeBlanc, B P; Menard, J E; Rewoldt, G; Wang, W; Levinton, F M; Yuh, H

    2008-06-26

    Experiments have been conducted on NSTX to study both steady state and perturbative mo mentum transport. These studies are unique in their parameter space under investigation, where the low aspect ratio of NSTX results in rapid plasma rotation with E x B shearing rates high enough to suppress low-k turbulence. In some cases, the ratio of momentum to energy confinement time is found to exceed five. Momentum pinch velocities of order 10-40 m/s are inferred from the measured angular momentum flux evolution after non-resonant magnetic perturbations are applied to brake the plasma.

  20. GYRO Simulations of Core Momentum Transport in DIII-D and JET Plasmas

    SciTech Connect

    R.V. Budny; J. Candy; R.E. Waltz; and contributors to the DIII-D and JET-EFDA work programs

    2005-06-27

    Momentum, energy, and particle transport in DIII-D and JET ELMy H-mode plasmas is simulated with GYRO and compared with measurements analyzed using TRANSP. The simulated transport depends sensitively on the nabla(T(sub)i) turbulence drive and the nabla(E(sub)r) turbulence suppression inputs. With their nominal values indicated by measurements, the simulations over-predict the momentum and energy transport in the DIII-D plasmas, and under-predict in the JET plasmas. Reducing |nabla(T(sub)i)| and increasing |nabla(E(sub)r)| by up to 15% leads to approximate agreement (within a factor of two) for the DIII-D cases. For the JET cases, increasing |nabla(T(sub)i)| or reducing |nabla(E(sub)r)| results in approximate agreement for the energy flow, but the ratio of the simulated energy and momentum flows remains higher than measurements by a factor of 2-4.

  1. Increased heat transfer to elliptical leading edges due to spanwise variations in the freestream momentum - Numerical and experimental results

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Van Fossen, G. J.

    1992-01-01

    A study of the effect of spanwise variation on leading edge heat transfer is presented. Experimental and numerical results are given for a circular leading edge and for a 3:1 elliptical leading edge. It is demonstrated that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.

  2. Angular Momentum Transport in Double White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Tohline, Joel E.; Frank, Juhan

    2006-11-01

    We present simulations of dynamical mass transfer in a double white dwarf binary with an initial mass ratio of 0.4. The binary components are approximated as polytropes of index n = 3/2 and the synchronously rotating, semi-detached equilibrium binary is evolved hydrodynamically with the gravitational potential being computed through the solution of Poisson's equation. Upon initiating deep contact, the mass transfer rate grows by more than an order of magnitude over approximately ten orbits, as would be expected for dynamically unstable mass transfer. However, the mass transfer rate then reaches a peak value, the binary expands and the mass transfer event subsides over approximately 30 orbits. Despite the loss of orbital angular momentum into the spin of the accreting star, we find that the accretor's spin saturates and the binary responds as one would expect for a system with an accretion disk filling a substantial fraction of the accretor's Roche lobe. It appears that double white dwarf binaries may be more resilient against merger than previously anticipated though our simulations do not include radiation forces which may ultimately fill a common envelope which dooms the binary.

  3. Angular momentum transport efficiency in post-main sequence low-mass stars

    NASA Astrophysics Data System (ADS)

    Spada, F.; Gellert, M.; Arlt, R.; Deheuvels, S.

    2016-05-01

    Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (≈1.1-1.5 M⊙) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims: We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods: We model the rotational evolution of a 1.25M⊙ star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotation. Results: We find that models including a dependence of the angular momentum transport efficiency on the radial rotational shear reproduce very well the observations. The best fit of the data is obtained with an angular momentum transport coefficient scaling with the ratio of the rotation rate of the radiative interior over that of the convective envelope of the star as a power law of exponent ≈3. This scaling is consistent with the predictions of recent numerical simulations of the Azimuthal Magneto-Rotational Instability. Conclusions: We show that an angular momentum transport process whose efficiency varies during the stellar evolution through a dependence on the level of internal differential rotation is required to explain the observed post-main sequence rotational evolution of low-mass stars.

  4. Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks

    SciTech Connect

    Parra, Felix I.; Barnes, Michael

    2011-06-15

    Two symmetries of the local nonlinear {delta}f gyrokinetic system of equations in tokamaks in the high flow regime are presented. The turbulent transport of toroidal angular momentum changes sign under an up-down reflection of the tokamak and a sign change of both the rotation and the rotation shear. Thus, the turbulent transport of toroidal angular momentum must vanish for up-down symmetric tokamaks in the absence of both rotation and rotation shear. This has important implications for the modeling of spontaneous rotation.

  5. Long range correlations in stochastic transport with energy and momentum conservation

    NASA Astrophysics Data System (ADS)

    Kundu, Anupam; Hirschberg, Ori; Mukamel, David

    2016-03-01

    We consider a simple one-dimensional stochastic model of heat transport which locally conserves both energy and momentum and which is coupled to heat reservoirs with different temperatures at its two ends. The steady state is analyzed and the model is found to obey the Fourier law with finite heat conductivity. In the infinite length limit, the steady state is described locally by an equilibrium Gibbs state. However finite size corrections to this local equilibrium state are present. We analyze these finite size corrections by calculating the on-site fluctuations of the momentum and the two point correlation of the momentum and energy. These correlations are long ranged and have scaling forms which are computed explicitly. We also introduce a multi-lane variant of the model in which correlations vanish in the steady state. The deviation from local equilibrium in this model as expressed in terms of the on-site momentum fluctuations is calculated in the large length limit.

  6. Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A Review

    PubMed Central

    Cao, Bing-Yang; Sun, Jun; Chen, Min; Guo, Zeng-Yuan

    2009-01-01

    This review is focused on molecular momentum transport at fluid-solid interfaces mainly related to microfluidics and nanofluidics in micro-/nano-electro-mechanical systems (MEMS/NEMS). This broad subject covers molecular dynamics behaviors, boundary conditions, molecular momentum accommodations, theoretical and phenomenological models in terms of gas-solid and liquid-solid interfaces affected by various physical factors, such as fluid and solid species, surface roughness, surface patterns, wettability, temperature, pressure, fluid viscosity and polarity. This review offers an overview of the major achievements, including experiments, theories and molecular dynamics simulations, in the field with particular emphasis on the effects on microfluidics and nanofluidics in nanoscience and nanotechnology. In Section 1 we present a brief introduction on the backgrounds, history and concepts. Sections 2 and 3 are focused on molecular momentum transport at gas-solid and liquid-solid interfaces, respectively. Summary and conclusions are finally presented in Section 4. PMID:20087458

  7. Internal electron transport barrier due to neoclassical ambipolarity in the Helically Symmetric Experiment

    SciTech Connect

    Lore, J.; Guttenfelder, Walter; Briesemeister, Alexis; Anderson, David; Anderson, F. S.B.; Deng, C. B.; Likin, K.; Spong, Donald A; Talmadge, Joseph; Zhai, Kan

    2010-01-01

    Electron cyclotron heated plasmas in the Helically Symmetric Experiment (HSX) feature strongly peaked electron temperature profiles; central temperatures are 2.5 keV with 100 kW injected power. These measurements, coupled with neoclassical predictions of large 'electron root' radial electric fields with strong radial shear, are evidence of a neoclassically driven thermal transport barrier. Neoclassical transport quantities are calculated using the PENTA code [D. A. Spong, Phys. Plasmas 12, 056114 (2005)], in which momentum is conserved and parallel flow is included. Unlike a conventional stellarator, which exhibits strong flow damping in all directions on a flux surface, quasisymmetric stellarators are free to rotate in the direction of symmetry, and the effect of momentum conservation in neoclassical calculations may therefore be significant. Momentum conservation is shown to modify the neoclassical ion flux and ambipolar ion root radial electric fields in the quasisymmetric configuration. The effect is much smaller in a HSX configuration where the symmetry is spoiled. In addition to neoclassical transport, a model of trapped electron mode turbulence is used to calculate the turbulent-driven electron thermal diffusivity. Turbulent transport quenching due to the neoclassically predicted radial electric field profile is needed in predictive transport simulations to reproduce the peaking of the measured electron temperature profile [Guttenfelder et al., Phys. Rev. Lett. 101, 215002 (2008)].

  8. The role of solar wind fluctuations on the transport of energy and momentum across the magnetopause

    NASA Astrophysics Data System (ADS)

    Lopez, Ramon

    2016-07-01

    Solar wind fluctuations can have a significant effect on the transport of energy and momentum across the magnetopause by causing variations in magnetosheath parameters. In this paper we will examine what effects such fluctuations can have on merging between the interplanetary magnetic field (IMF) and the geomagnetic field, as well as the effect of the fluctuations on the generation of waves on the magnetopause that transfer momentum to magnetospheric plasma. We find that increasing the amplitude of IMF fluctuations increases the total energy transport to geospace, but that the efficiency of energy transport is reduced. We will present a conceptual model based on the effect of the fluctuations on magnetosheath flow and plasma transport from the magnetosheath to the magnetosphere to explain this result.

  9. Angular Momentum Transport in Accretion Disk Boundary Layers Around Weakly Magnetized Stars

    NASA Astrophysics Data System (ADS)

    Pessah, Martin E.; Chan, Chi-kwan

    2013-04-01

    The standard model for turbulent shear viscosity in accretion disks is based on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. This implies that the turbulent stress must be negative and thus transport angular momentum inwards, in the boundary layer where the accretion disk meets the surface of a weakly magnetized star. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves in configurations that are stable to the standard MRI. Employing the shearing-sheet framework, we show that transient amplification of shearing MHD waves can generate magnetic energy without leading to a substantial generation of hydromagnetic stresses. While these results are in agreement with numerical simulations, they emphasize the need to better understand the mechanism for angular momentum transport in the inner disk regions on more solid grounds.

  10. A method for calculating neoclassical transport coefficients with momentum conserving collision operator

    SciTech Connect

    Taguchi, M. )

    1992-11-01

    A method for calculating the neoclassical transport coefficients in a nonaxisymmetric multispecies plasma is developed by employing a momentum conserving collision operator. In this method, the parallel current, and the radial particle and heat fluxes are expressed in terms of the transport coefficients which can be obtained by solving the drift kinetic equations with the pitch-angle scattering collision operator. These expressions can be easily incorporated into the existing numerical codes including the pitch-angle scattering collisions only.

  11. An analytic model of angular momentum transport by gravitational torques: from galaxies to massive black holes

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Quataert, Eliot

    2011-08-01

    We present analytic calculations of angular momentum transport and gas inflow in galaxies, from scales of ˜ kpc to deep inside the potential of a central massive black hole (BH). We compare these analytic calculations to numerical simulations and use them to develop a sub-grid model of BH growth that can be incorporated into semi-analytic calculations or cosmological simulations. Motivated by both analytic calculations and simulations of gas inflow in galactic nuclei, we argue that the strongest torque on gas arises when non-axisymmetric perturbations to the stellar gravitational potential produce orbit crossings and shocks in the gas. This is true both at large radii ˜0.01-1 kpc, where bar-like stellar modes dominate the non-axisymmetric potential, and at smaller radii ≲10 pc, where a lopsided/eccentric stellar disc dominates. The traditional orbit-crossing criterion is not always adequate to predict the locations of, and inflow due to, shocks in gas+stellar discs with finite sound speeds. We derive a modified criterion that predicts the presence of shocks in stellar-dominated systems even absent formal orbit crossing. We then derive analytic expressions for the loss of angular momentum and the resulting gas inflow rates in the presence of such shocks. We test our analytic predictions using hydrodynamic simulations at a range of galactic scales, and show that they successfully predict the mass inflow rates and quasi-steady gas surface densities with a small scatter ≃0.3 dex. We use our analytic results to construct a new estimate of the BH accretion rate given galaxy properties at larger radii, for use in galaxy and cosmological simulations and semi-analytic models. While highly simplified, this accretion rate predictor captures the key scalings in the numerical simulations. By contrast, alternate estimates such as the local viscous accretion rate or the spherical Bondi rate fail systematically to reproduce the simulations and have significantly larger

  12. Mass and momentum turbulent transport experiments with confined swirling coaxial jets

    NASA Technical Reports Server (NTRS)

    Roback, R.; Johnson, B. V.

    1983-01-01

    Swirling coaxial jets mixing downstream, discharging into an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the combustion community. A combination of laser velocimeter (LV) and laser induced fluorescence (LIF) techniques was employed to obtain mean and fluctuating velocity and concentration distributions which were used to derive mass and momentum turbulent transport parameters currently incorporated into various combustor flow models. Flow visualization techniques were also employed to determine qualitatively the time dependent characteristics of the flow and the scale of turbulence. The results of these measurements indicated that the largest momentum turbulent transport was in the r-z plane. Peak momentum turbulent transport rates were approximately the same as those for the nonswirling flow condition. The mass turbulent transport process for swirling flow was complicated. Mixing occurred in several steps of axial and radial mass transport and was coupled with a large radial mean convective flux. Mixing for swirling flow was completed in one-third the length required for nonswirling flow.

  13. Momentum and energy transport by waves in the solar atmosphere and solar wind

    NASA Technical Reports Server (NTRS)

    Jacques, S. A.

    1977-01-01

    The fluid equations for the solar wind are presented in a form which includes the momentum and energy flux of waves in a general and consistent way. The concept of conservation of wave action is introduced and is used to derive expressions for the wave energy density as a function of heliocentric distance. The explicit form of the terms due to waves in both the momentum and energy equations are given for radially propagating acoustic, Alfven, and fast mode waves. The effect of waves as a source of momentum is explored by examining the critical points of the momentum equation for isothermal spherically symmetric flow. We find that the principal effect of waves on the solutions is to bring the critical point closer to the sun's surface and to increase the Mach number at the critical point. When a simple model of dissipation is included for acoustic waves, in some cases there are multiple critical points.

  14. Momentum Transport: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2001-01-01

    The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.

  15. Rotation drive and momentum transport with electron cyclotron heating in tokamak plasmas.

    PubMed

    Yoshida, M; Sakamoto, Y; Takenaga, H; Ide, S; Oyama, N; Kobayashi, T; Kamada, Y

    2009-08-01

    The role of electron cyclotron resonance heating (ECRH) on the toroidal rotation velocity profile has been investigated in the JT-60U tokamak device by separating the effects of the change in momentum transport, the intrinsic rotation by pressure gradient, and the intrinsic rotation by ECRH. It is found that ECRH increases the toroidal momentum diffusivity and the convection velocity. It is also found that ECRH drives the codirection (co) intrinsic rotation inside the EC deposition radius and the counterdirection (ctr) intrinsic rotation outside the EC deposition radius. This ctr rotation starts from the EC deposition radius and propagates to the edge region. PMID:19792576

  16. A second-order theory for transverse ion heating and momentum coupling due to electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Miller, Ronald H.; Winske, Dan; Gary, S. P.

    1992-01-01

    A second-order theory for electrostatic instabilities driven by counterstreaming ion beams is developed which describes momentum coupling and heating of the plasma via wave-particle interactions. Exchange rates between the waves and particles are derived, which are suitable for the fluid equations simulating microscopic effects on macroscopic scales. Using a fully kinetic simulation, the electrostatic ion cyclotron instability due to counterstreaming H(+) beams has been simulated. A power spectrum from the kinetic simulation is used to evaluate second-order exchange rates. The calculated heating and momentum loss from second-order theory is compared to the numerical simulation.

  17. Turbulent transport of momentum and scalars in urban-like geometries

    NASA Astrophysics Data System (ADS)

    Li, Qi; Bou-Zeid, Elie; Anderson, William; Grimmond, Sue

    2014-11-01

    A numerical study is carried out using large-eddy simulations to investigate the mechanisms of turbulent transport of momentum and passive scalars over urban-like geometries. The immersed boundary method is used to represent buildings; this induces ``ringing,'' i.e. the Gibbs phenomenon associated with the use of spectral discretization in domains with sharp discontinuities. We present a new approach to reduce this ringing and improve the numerical accuracy of the method. Topological parameters, such as the frontal area index and the plan area index, were varied to examine their impact on turbulence and transport characteristics. The heterogeneity of the surface is shown to increase both the heteorogeneity and anisotropy of the flow, and to significantly modulate the efficiencies of momentum and passive scalar transport.

  18. Inertial stability, cumulus momentum transport, and the genesis of tropical plumes

    NASA Astrophysics Data System (ADS)

    Mecikalski, John Robert

    Tropical plumes are identified in satellite data as elongated cloud bands originating from convective activity along the Intertropical Convergence Zone (ITCZ), often extending far into middle latitudes. Many previous studies consider tropical plumes as a product of quasigeostrophic forcing. We consider the view that tropical plumes are the upper branch of an enhanced thermally direct circulation, driven by latent heat release in deep cumulus convection, and by processes tied to low inertial stability. As low potential vorticity ( PV) ridges over and straddles the ITCZ, in the amplifying flow in advance of an intruding large-scale Rossby wave, plume genesis occurs. As low PV advects across the ITCZ, the meridional inertial stability gradient equilibrates or reverses. Under these conditions, the work requirements of deep ITCZ convection to spread its outflow and force compensating subsidence ease. The diagnostic parameter ``inertial available kinetic energy'' (IAKE), developed as part of this study, reveals much reduced upper tropospheric inertial stability in conjunction with tropical plume genesis. With a vertical transport of easterly momentum by convection, IAKE becomes positive as convectively-generated (negative) PV lowers inertial stability poleward of the ITCZ as a convection-relative inertial instability forms. Westerly momentum transported vertically to cloud top, in contrast, results in the equatorward-direction the more favored direction for cumulonimbus outflow aloft. The combination of cumulus momentum transport within an environment characterized by low inertial stability causes ITCZ convective outflow to locally and abruptly switch to intensified poleward flows as tropical plumes. Working from these diagnostic conclusions, a numerical experiment to determine whether ambient inertial stability causes deep convection across the plume genesis region to physically align their internal flow structure is undertaken. This structural alignment results in

  19. Toroidal momentum transport in a tokamak caused by symmetry breaking parallel derivatives

    SciTech Connect

    Sung, T.; Buchholz, R.; Grosshauser, S. R.; Hornsby, W. A.; Migliano, P.; Peeters, A. G.; Casson, F. J.; Fable, E.

    2013-04-15

    A new mechanism for toroidal momentum transport in a tokamak is investigated using the gyro-kinetic model. First, an analytic model is developed through the use of the ballooning transform. The terms that generate the momentum transport are then connected with the poloidal derivative of the ballooning envelope, which are one order smaller in the normalised Larmor radius, compared with the derivative of the eikonal. The mechanism, therefore, does not introduce an inhomogeneity in the radial direction, in contrast with the effect of profile shearing. Numerical simulations of the linear ion temperature gradient mode with adiabatic electrons, retaining the finite {rho}{sub *} effects in the E Multiplication-Sign B velocity, the drift, and the gyro-average, are presented. The momentum flux is found to be linear in the normalised Larmor radius ({rho}{sub *}) but is, nevertheless, generating a sizeable counter-current rotation. The total momentum flux scales linear with the aspect ratio of the considered magnetic surface, and increases with increasing magnetic shear, safety factor, and density and temperature gradients.

  20. Characterization of fluid transport due to multiciliary beating

    NASA Astrophysics Data System (ADS)

    Lukens, Sarah; Yang, Xingzhou; Fauci, Lisa

    2008-11-01

    Understanding fluid transport caused by beating cilia can give insight on biological systems such as transport of respiratory mucus, ovum transport in the oviduct, and feeding currents around unicellular organisms. Here we investigate fluid transport due to coordinated beating of motile cilia based upon a computational model that couples their internal force generating mechanisms with external fluid dynamics. Velocity field data is used to identify Lagrangian Coherent Structures (LCS) within the domain. These coherent structures give spatial information on fluid mixing and nutrient transport within this dynamic environment.

  1. Enhanced momentum delivery by electric force to ions due to collisions of ions with neutrals

    SciTech Connect

    Makrinich, G.; Fruchtman, A.

    2013-04-15

    Ions in partially ionized argon, nitrogen, and helium gas discharges are accelerated across a magnetic field by an applied electric field, colliding with neutrals during the acceleration. The momentum delivered by the electric force to the ions, which is equal to the momentum carried by the mixed ion-neutral flow, is found by measuring the force exerted on a balance force meter by that flow exiting the discharge. The power deposited in the ions is calculated by measuring the ion flux and the accelerating voltage. The ratio of force over power is found for the three gases, while the gas flow rates and magnetic field intensities are varied over a wide range of values, resulting in a wide range of gas pressures and applied voltages. The measurements for the three different gases confirm our previous suggestion [G. Makrinich and A. Fruchtman, Appl. Phys. Lett. 95, 181504 (2009)] that the momentum delivered to the ions for a given power is enhanced by ion-neutral collisions during the acceleration and that this enhancement is proportional to the square root of the number of ion-neutral collisions.

  2. An integral perturbation model of flow and momentum transport in rotating microchannels with smooth or microstructured wall surfaces

    NASA Astrophysics Data System (ADS)

    Romanin, Vince D.; Carey, Van P.

    2011-08-01

    This paper summarizes the development of an integral perturbation solution of the equations governing flow momentum transport and energy conversion in microchannels between disks of multiple-disk drag turbines such as Tesla turbines. Analysis of this type of flow problem is a key element in optimal design of Tesla drag-type turbines for geothermal or solar alternative energy technologies. In multiple-disk turbines, high speed flow enters tangentially at the outer radius of cylindrical microchannels formed by closely spaced parallel disks, spiraling through the channel to an exhaust at a small radius, or at the center of the disk. Previous investigations have generally developed models based on simplifying idealizations of the flow in these circumstances. Here, beginning with the momentum and continuity equations for incompressible and steady flow in cylindrical coordinates, an integral solution scheme is developed that leads to a dimensionless perturbation series solution that retains the full complement of momentum and viscous effects to consistent levels of approximation in the series solution. This more rigorous approach indicates all dimensionless parameters that affect flow and transport and allows a direct assessment of the relative importance of viscous, pressure, and momentum effects in different directions in the flow. The resulting lowest-order equations are solved explicitly and higher order terms in the series solutions are determined numerically. Enhancement of rotor drag in this type of turbine enhances energy conversion efficiency. We also developed a modified version of the integral perturbation analysis that incorporates the effects of enhanced drag due to surface microstructuring. Results of the model analysis for smooth disk walls are shown to agree well with experimental performance data for a prototype Tesla turbine and predictions of performance models developed in earlier investigations. Model predictions indicate that enhancement of disk

  3. Simulations of Turbulent Momentum and Scalar Transport in Confined Swirling Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey; Moder, Jeffrey P.

    2015-01-01

    This paper presents the numerical simulations of confined three-dimensional coaxial water jets. The objectives are to validate the newly proposed nonlinear turbulence models of momentum and scalar transport, and to evaluate the newly introduced scalar APDF and DWFDF equation along with its Eulerian implementation in the National Combustion Code(NCC). Simulations conducted include the steady RANS, the unsteady RANS (URANS), and the time-filtered Navier-Stokes (TFNS); both without and with invoking the APDF or DWFDF equation.

  4. Gyrokinetic simulations of momentum transport and fluctuation spectra for ICRF-heated L-Mode plasmas

    NASA Astrophysics Data System (ADS)

    Sierchio, J. M.; White, A. E.; Howard, N. T.; Sung, C.; Ennever, P.; Porkolab, M.; Candy, J.

    2014-10-01

    We examine ICRF-heated L-mode plasmas in Alcator C-Mod, with differing momentum transport (hollow vs. peaked radial profiles of intrinsic toroidal rotation) but similar heat and particle transport. Nonlinear gyrokinetic simulations of heat and particle transport with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] have previously been compared with these experiments [White et al., Phys. Plasmas 20, 056106 (2013); Howard et al. PPCF submitted (2014)] as part of an effort to validate the gyrokinetic model for core turbulent transport in C-Mod plasmas. To further test the model for these plasmas, predicted core turbulence characteristics such as fluctuation spectra will be compared with experiment. Using synthetic diagnostics for the CECE, reflectometry, and PCI systems at C-Mod, synthetic spectra and, when applicable, fluctuation amplitudes, are generated. We compare these generated results with fluctuation measurements from the experiment. We also report the momentum transport results from simulations of these plasmas and compare them to experiment. Supported by USDoE award DE-FC02-99ER54512.

  5. Implications of Rapid Core Rotation in Red Giants for Internal Angular Momentum Transport in Stars

    NASA Astrophysics Data System (ADS)

    Tayar, Jamie; Pinsonneault, Marc H.

    2013-09-01

    Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ("Otto") and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In the case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.

  6. IMPLICATIONS OF RAPID CORE ROTATION IN RED GIANTS FOR INTERNAL ANGULAR MOMENTUM TRANSPORT IN STARS

    SciTech Connect

    Tayar, Jamie; Pinsonneault, Marc H.

    2013-09-20

    Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ({sup O}tto{sup )} and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In the case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.

  7. Angular momentum transport by stochastically excited oscillations in rapidly rotating massive stars

    NASA Astrophysics Data System (ADS)

    Lee, Umin; Neiner, Coralie; Mathis, Stéphane

    2014-09-01

    We estimate the amount of angular momentum transferred by the low-frequency oscillations detected in the rapidly rotating hot Be star HD 51452. Here, we assume that the oscillations detected are stochastically excited by convective motions in the convective core of the star, that is, we treat the oscillations as forced oscillations excited by the periodic convective motions of the core fluids having the frequencies observationally determined. With the observational amplitudes of the photometric variations, we determine the oscillation amplitudes, which makes it possible to estimate the net amount of angular momentum transferred by the oscillations using the wave-meanflow interaction theory. Since we do not have any information concerning the azimuthal wavenumber m and spherical harmonic degree l for each of the oscillations, we assume that all the frequencies detected are prograde or retrograde in the observer's frame and they are all associated with a single value of m both for even modes (l = |m|) and for odd modes (l = |m| + 1). We estimate the amount of angular momentum transferred by the oscillations for |m| = 1 and 2, which are typical |m| values for Be stars, and find that the amount is large enough for a decretion disc to form around the star. Therefore, transport of angular momentum by waves stochastically excited in the core of Be stars might be responsible for the Be phenomenon.

  8. Increased heat transfer to elliptical leading edges due to spanwise variations in the freestream momentum: Numerical and experimental results

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Vanfossen, G. J.

    1992-01-01

    A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.

  9. Ballistic transport in planetary ring systems due to particle erosion mechanisms. I - Theory, numerical methods, and illustrative examples

    NASA Technical Reports Server (NTRS)

    Durisen, Richard H.; Murphy, Brian W.; Cramer, Nichael Lynn; Cuzzi, Jeffrey N.; Mullikin, Thomas L.

    1989-01-01

    Ballistic transport, defined as the net radial transport of mass and angular momentum due to exchanges of meteoroid hypersonic-impact ejecta by neighboring planetary ring regions on time-scales orders-of-magnitude shorter than the age of the solar system, is presently considered as a problem in mathematical physics. The preliminary results of a numerical scheme for following the combined effects of ballistic transport and viscous diffusion demonstrate that ballistic transport generates structure near sharp edges already present in the ring-mass distribution; the entire ring system ultimately develops an undulatory structure whose length scale is typically of the order of the radial excursion of the impact ejecta.

  10. Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states.

    PubMed

    Jiang, Zilong; Chang, Cui-Zu; Masir, Massoud Ramezani; Tang, Chi; Xu, Yadong; Moodera, Jagadeesh S; MacDonald, Allan H; Shi, Jing

    2016-01-01

    Spin-momentum locking in protected surface states enables efficient electrical detection of magnon decay at a magnetic-insulator/topological-insulator heterojunction. Here we demonstrate this property using the spin Seebeck effect (SSE), that is, measuring the transverse thermoelectric response to a temperature gradient across a thin film of yttrium iron garnet, an insulating ferrimagnet, and forming a heterojunction with (BixSb1-x)2Te3, a topological insulator. The non-equilibrium magnon population established at the interface can decay in part by interactions of magnons with electrons near the Fermi energy of the topological insulator. When this decay channel is made active by tuning (BixSb1-x)2Te3 into a bulk insulator, a large electromotive force emerges in the direction perpendicular to the in-plane magnetization of yttrium iron garnet. The enhanced, tunable SSE which occurs when the Fermi level lies in the bulk gap offers unique advantages over the usual SSE in metals and therefore opens up exciting possibilities in spintronics. PMID:27142594

  11. Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states

    NASA Astrophysics Data System (ADS)

    Jiang, Zilong; Chang, Cui-Zu; Masir, Massoud Ramezani; Tang, Chi; Xu, Yadong; Moodera, Jagadeesh S.; MacDonald, Allan H.; Shi, Jing

    2016-05-01

    Spin-momentum locking in protected surface states enables efficient electrical detection of magnon decay at a magnetic-insulator/topological-insulator heterojunction. Here we demonstrate this property using the spin Seebeck effect (SSE), that is, measuring the transverse thermoelectric response to a temperature gradient across a thin film of yttrium iron garnet, an insulating ferrimagnet, and forming a heterojunction with (BixSb1-x)2Te3, a topological insulator. The non-equilibrium magnon population established at the interface can decay in part by interactions of magnons with electrons near the Fermi energy of the topological insulator. When this decay channel is made active by tuning (BixSb1-x)2Te3 into a bulk insulator, a large electromotive force emerges in the direction perpendicular to the in-plane magnetization of yttrium iron garnet. The enhanced, tunable SSE which occurs when the Fermi level lies in the bulk gap offers unique advantages over the usual SSE in metals and therefore opens up exciting possibilities in spintronics.

  12. Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states

    PubMed Central

    Jiang, Zilong; Chang, Cui-Zu; Masir, Massoud Ramezani; Tang, Chi; Xu, Yadong; Moodera, Jagadeesh S.; MacDonald, Allan H.; Shi, Jing

    2016-01-01

    Spin-momentum locking in protected surface states enables efficient electrical detection of magnon decay at a magnetic-insulator/topological-insulator heterojunction. Here we demonstrate this property using the spin Seebeck effect (SSE), that is, measuring the transverse thermoelectric response to a temperature gradient across a thin film of yttrium iron garnet, an insulating ferrimagnet, and forming a heterojunction with (BixSb1−x)2Te3, a topological insulator. The non-equilibrium magnon population established at the interface can decay in part by interactions of magnons with electrons near the Fermi energy of the topological insulator. When this decay channel is made active by tuning (BixSb1−x)2Te3 into a bulk insulator, a large electromotive force emerges in the direction perpendicular to the in-plane magnetization of yttrium iron garnet. The enhanced, tunable SSE which occurs when the Fermi level lies in the bulk gap offers unique advantages over the usual SSE in metals and therefore opens up exciting possibilities in spintronics. PMID:27142594

  13. Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states

    DOE PAGESBeta

    Jiang, Zilong; Chang, Cui -Zu; Masir, Massoud Ramezani; Tang, Chi; Xu, Yadong; Moodera, Jagadeesh S.; MacDonald, Allan H.; Shi, Jing

    2016-05-04

    Spin-momentum locking in protected surface states enables efficient electrical detection of magnon decay at a magnetic-insulator/topological-insulator heterojunction. Here we demonstrate this property using the spin Seebeck effect (SSE), that is, measuring the transverse thermoelectric response to a temperature gradient across a thin film of yttrium iron garnet, an insulating ferrimagnet, and forming a heterojunction with (BixSb1–x)2Te3, a topological insulator. The non-equilibrium magnon population established at the interface can decay in part by interactions of magnons with electrons near the Fermi energy of the topological insulator. When this decay channel is made active by tuning (BixSb1–x)2Te3 into a bulk insulator, amore » large electromotive force emerges in the direction perpendicular to the in-plane magnetization of yttrium iron garnet. Lastly, the enhanced, tunable SSE which occurs when the Fermi level lies in the bulk gap offers unique advantages over the usual SSE in metals and therefore opens up exciting possibilities in spintronics.« less

  14. Enhanced momentum delivery by electric force to an ion flux due to collisions of ions with neutrals

    NASA Astrophysics Data System (ADS)

    Fruchtman, Amnon

    2014-10-01

    A major figure of merit in propulsion in general and in electric propulsion in particular is the thrust per unit of deposited power, the ratio of thrust over power. We have recently demonstrated experimentally and theoretically [1--4] that for a fixed deposited power in the ions, the momentum delivered by the electric force is larger if the accelerated ions collide with neutrals during the acceleration. The higher thrust for given power is achieved for a collisional plasma at the expense of a lower thrust per unit mass flow rate, reflecting what is true in general, that the lower the flow velocity is, the higher the thrust for a given power. This is the usual trade-off between having a large specific impulse and a large thrust. Broadening the range of jet velocities and thrust levels is desirable since there are different propulsion requirements for different space missions. The mechanism of thrust enhancement by ion-neutral collisions has been investigated in the past in the case of electric pressure, what is called ionic wind. I will describe in the talk experimental results for an enhanced thrust due to ion-neutral collisions in a configuration where the thrust is a result of magnetic pressure [1,3]. The plasma is accelerated by J × B force, in a configuration similar to that of Hall thrusters. Our measurements for three different gases and for various gas flow rates and magnetic field intensities, confirmed that the thrust increase is proportional to the square-root of the number of ion-neutral collisions. Additional measurements of local discharge parameters will be shown to be consistent with the force measurements. Issues that are crucial for the use of this mechanism in an electric thruster will also be discussed. These are the possible increase of the electron transport across magnetic field lines by electron-neutral collisions, and the possible effect on various sources of inefficiency. Supported by Grant No. 765/11 from the Israel Science Foundation.

  15. Rotating models of young solar-type stars. Exploring braking laws and angular momentum transport processes

    NASA Astrophysics Data System (ADS)

    Amard, L.; Palacios, A.; Charbonnel, C.; Gallet, F.; Bouvier, J.

    2016-03-01

    Context. Understanding the angular momentum evolution of stars is one of the greatest challenges of modern stellar physics. Aims: We study the predicted rotational evolution of solar-type stars from the pre-main sequence to the solar age with 1D rotating evolutionary models including physical ingredients. Methods: We computed rotating evolution models of solar-type stars including an external stellar wind torque and internal transport of angular momentum following the method of Maeder and Zahn with the code STAREVOL. We explored different formalisms and prescriptions available from the literature. We tested the predictions of the models against recent rotational period data from extensive photometric surveys, lithium abundances of solar-mass stars in young clusters, and the helioseismic rotation profile of the Sun. Results: We find a best-matching combination of prescriptions for both internal transport and surface extraction of angular momentum. This combination provides a very good fit to the observed evolution of rotational periods for solar-type stars from early evolution to the age of the Sun. Additionally, we show that fast rotators experience a stronger coupling between their radiative region and the convective envelope. Regardless of the set of prescriptions, however, we cannot simultaneously reproduce surface angular velocity and the internal profile of the Sun or the evolution of lithium abundance. Conclusions: We confirm the idea that additional transport mechanisms must occur in solar-type stars until they reach the age of the Sun. Whether these processes are the same as those needed to explain recent asteroseismic data in more advanced evolutionary phases is still an open question.

  16. Center for Momentum Transport and Flow Organization in Plasmas and Magnetofluids (CMTFO)

    SciTech Connect

    Lin, Zhihong

    2014-02-28

    The CMTFO funding partially supports a junior researcher and a graduate student at UCI. During this project, we have further developed the global gyrokinetic particle code GTC to study the momentum transport in tokamak driven by electrostatic ion temperature gradient (ITG) turbulence [1] with kinetic electrons and by collisionless trapped electron mode (CTEM) turbulence [2]. We have also upgraded GTC for fully electromagnetic simulation and for linear plasma configuration with verification and validation of the electron temperature gradient (ETG) turbulence in Columbia Linear Machine. The followings are the highlights on the physics results reported in the key publications of this project.

  17. Development of a Novel Method for Determination of Momentum Transport Parameters

    NASA Astrophysics Data System (ADS)

    Peters, Michael J.; Guttenfelder, Walter; Scotti, Filippo; Kaye, Stanley M.; Solomon, Wayne M.

    2015-11-01

    The toroidal momentum pinch velocity Vφ and diffusivity χφ in NSTX were previously determined from the transient response of the toroidal rotation Ω following applied n =3 magnetic perturbations that brake the plasma. Assuming Π = nmR2(-χϕ ∇Ω + Vϕ Ω), where the momentum flux Π is determined using TRANSP, these local analyses used fits to Ω and ∇Ω to obtain χϕ and Vϕ one flux surface at a time. This work attempts to improve the accuracy of the inferred χϕ(r) and Vϕ(r) profiles by utilizing many flux surfaces simultaneously. We employ nonlinear least-squares minimization that compares the entire perturbed rotation profile evolution Ω(r,t) against the profile evolution generated by solving the momentum transport equation. We compare the local and integrated approaches and discuss their limitations. We also apply the integrated approach to determine whether an additional residual stress contribution (independent of Ω or ∇Ω) can be inferred given experimental uncertainties. This work supported by the U.S. Department of Energy SULI program and contract DE-AC02-09/CH11466, as well as the LLNL contract DE-AC52-07NA27344.

  18. Simulations of Turbulent Momentum and Scalar Transport in Non-Reacting Confined Swirling Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey; Moder, Jeffrey P.

    2015-01-01

    This paper presents the numerical simulations of confined three-dimensional coaxial water jets. The objectives are to validate the newly proposed nonlinear turbulence models of momentum and scalar transport, and to evaluate the newly introduced scalar APDF and DWFDF equation along with its Eulerian implementation in the National Combustion Code (NCC). Simulations conducted include the steady RANS, the unsteady RANS (URANS), and the time-filtered Navier-Stokes (TFNS); both without and with invoking the APDF or DWFDF equation. When the APDF (ensemble averaged probability density function) or DWFDF (density weighted filtered density function) equation is invoked, the simulations are of a hybrid nature, i.e., the transport equations of energy and species are replaced by the APDF or DWFDF equation. Results of simulations are compared with the available experimental data. Some positive impacts of the nonlinear turbulence models and the Eulerian scalar APDF and DWFDF approach are observed.

  19. Simulations of Turbulent Momentum and Scalar Transport in Confined Swirling Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2014-01-01

    This paper presents the numerical simulations of confined three dimensional coaxial water jets. The objectives are to validate the newly proposed nonlinear turbulence models of momentum and scalar transport, and to evaluate the newly introduced scalar APDF and DWFDF equation along with its Eulerian implementation in the National Combustion Code (NCC). Simulations conducted include the steady RANS, the unsteady RANS (URANS), and the time-filtered Navier-Stokes (TFNS) with and without invoking the APDF or DWFDF equation. When the APDF or DWFDF equation is invoked, the simulations are of a hybrid nature, i.e., the transport equations of energy and species are replaced by the APDF or DWFDF equation. Results of simulations are compared with the available experimental data. Some positive impacts of the nonlinear turbulence models and the Eulerian scalar APDF and DWFDF approach are observed.

  20. Angular momentum transport and flow super-rotation in Rayleigh stable Taylor-Couette

    NASA Astrophysics Data System (ADS)

    Nordsiek, Freja; Huisman, Sander; van der Veen, Roeland; Sun, Chao; Lohse, Detlef; Lathrop, Daniel

    2013-11-01

    We present experimental velocimetry and torque measurements for Taylor-Couette flow in the Rayleigh stable regime. Measurements are taken on two geometrically similar experiments, both of which had axial boundaries attatched to the outer cylinder, which is known to cause Ekman pumping. The Twente experiment has a radius ratio of 0.716, an aspect ratio of 11.68, and measures azimuthal velocities by Laser Doppler Anenometry. The Maryland experiment has a radius ratio of 0.725, an aspect ratio of 11.47, and measures the torque required to rotate the inner cylinder. The torque on the inner cylinder is observed to be greater than that of the analytical Couette profile and has a complex dependence on the Reynolds number and Ωi /Ωo . The azimuthal velocity profiles also deviate from the laminar Couette profile. Signficantly, super-rotation in the angular velocity has been observed for 1 >Ωi /Ωo > 0 . In the quasi-Keplerian regime, the angular momentum profiles consist of an approximately constant inner region connected to an outer region approximately in solid-body rotation at Ωo, which suggests that angular momentum is being actively transported from the inner region to the axial boundaries.

  1. Secondary Flows and Sediment Transport due to Wave - Current Interaction

    NASA Astrophysics Data System (ADS)

    Ismail, Nabil; Wiegel, Robert

    2015-04-01

    Objectives: The main purpose of this study is to determine the modifications of coastal processes driven by wave-current interaction and thus to confirm hydrodynamic mechanisms associated with the interaction at river mouths and tidal inlets where anthropogenic impacts were introduced. Further, the aim of the work has been to characterize the effect of the relative strength of momentum action of waves to the opposing current on the nearshore circulation where river flow was previously effective to entrain sediments along the shoreline. Such analytical information are useful to provide guidelines for sustainable design of coastal defense structures. Methodology and Analysis: Use is made of an earlier study reported by the authors (1983) on the interaction of horizontal momentum jets and opposing shallow water waves at shorelines, and of an unpublished laboratory study (1980). The turbulent horizontal discharge was shore-normal, directed offshore, and the incident wave direction was shore-normal, travelling toward shore. Flow visualization at the smooth bottom and the water surface, velocity and water surface elevation measurements were made. Results were obtained for wave , current modifications as well as the flow pattern in the jet and the induced circulation on both sides of the jet, for a range of wave and jet characteristics. The experimental data, obtained from measurement in the 3-D laboratory basin, showed several distinct flow pattern regimes on the bottom and the water surface. The observed flow circulation regimes were found to depend on the ratio of the wave momentum action on the jet to the jet initial momentum. Based on the time and length scales of wave and current parameters and using the time average of the depth integrated conservation equations, it is found that the relative strength of the wave action on the jet could be represented by a dimensionless expression; Rsm ( ) 12ρSa20g-L0h-Cg- 2 Rsm ≈ (C0 - U) /ρ0U w (1) In the above dimensionless

  2. Mini-conference on Angular Momentum Transport in Laboratory and Nature

    SciTech Connect

    Ji, Hantao; Kronberg, Philipp; Prager, Stewart C.; Uzdensky, Dmitri A.

    2008-05-06

    This paper provides a concise summary of the current status of the research and future perspectives discussed in the Mini-Conference on Angular Momentum Transport in Laboratory and Nature. This Mini-conference, sponsored by the Topical Group on Plasma Astrophysics, was held as part of the American Physical Society's Division of Plasma Physics 2007 Annual Meeting (November 12{16, 2007). This Mini-conference covers a wide range of phenomena happening in fluids and plasmas, either in laboratory or in nature. The purpose of this paper is not to comprehensively review these phenomena, but to provide a starting point for interested readers to refer to related research in areas other than their own.

  3. The influence of horizontal boundaries on Ekman circulation and angular momentum transport in a cylindrical annulus

    NASA Astrophysics Data System (ADS)

    Obabko, Aleksandr V.; Cattaneo, Fausto; F Fischer, Paul

    2008-12-01

    We present numerical simulations of circular Couette flow in axisymmetric and fully three-dimensional geometry of a cylindrical annulus inspired by Princeton magnetorotational instability (MRI) liquid gallium experiment. The incompressible Navier-Stokes equations are solved with the spectral element code Nek5000 incorporating realistic horizontal boundary conditions of differentially rotating rings. We investigate the effect of changing rotation rates (Reynolds number) and of the horizontal boundary conditions on flow structure, Ekman circulation and associated transport of angular momentum through the onset of unsteadiness and three-dimensionality. A mechanism for the explanation of the dependence of the Ekman flows and circulation on horizontal boundary conditions is proposed. First International Conference 'Turbulent Mixing and Beyond' held on 18-26 August 2007 at the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

  4. The Hilsch Tube, Rossby Vortices, and a Carnot Engine: Angular Momentum Transport in Astrophysics

    NASA Astrophysics Data System (ADS)

    Beckley, Howard F.; Klein, B.; Milburn, M.; Schindel, P.; Westpfahl, D. J.; Teare, S.; Li, H.; Colgate, S. A.

    2008-05-01

    We are attempting to demonstrate that the common laboratory vortex or Hilsch tube is a paradigm for the angular momentum transport by Rossby vortices in Keplerian accretion disks, either in super massive black hole formation or in star formation. Near supersonic rotating flow is induced in a cylinder by gas pressure injected through a tangential nozzle in a typical Ranque vortex or Hilsch tube. The gas exits through both an on-axis hole and a peripheral radially-aligned hole. The surprising result, demonstrated in hundreds of class rooms, is that one of the exit gas streams is hot and the other is cold. Depressing is that the typical explanation is given in terms of a "Maxwell daemon” that separates hot molecules from cold molecules, just as is the basis of any perpetual motion machine that violates the second law of thermodynamics. Instead we believe that the rotational flow is unstable to the formation of Rossby vortices that co-rotate with the azimuthal flow and act like semi-ridged turbine vanes. These quasi-vanes act like a Carnot turbine engine to the flow that escapes on axis and is therefore cooled by doing work. With the resulting free-energy, the vortices accelerate the peripheral flow which in turn becomes hot by friction with the cylinder wall. As a first step we expect to demonstrate that a free-running turbine, where metal vanes form the Carnot engine, will demonstrate the temperature effect. Such a suggestive result may lead to funding of time-dependent Schlerian photography of a vortex tube that can demonstrate the formation and pressure distribution of the Rossby vortices and coherent transport of angular momentum. This work is supported by a cooperative agreement between the New Mexico Institute of Mining and Technology, the University of California, Los Alamos National Laboratory, and the U.S. Dept. of Energy.

  5. Flow structure, momentum and heat transport in a two-tandem-cylinder wake

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Yiu, M. W.

    2006-02-01

    Flow structure, momentum and heat transport in the wake of two tandem circular cylinders have been experimentally investigated. Measurements were conducted at x/d = 10, 20 and 30 (d is the cylinder diameter) at a Reynolds number of 7000 using a three-wire (one cross-wire plus a cold wire) probe, in conjunction with a cross-wire. The upstream cylinder was slightly heated. The flow behind two tandem cylinders is conventionally divided into three regimes based on whether the shear layers separated from the upstream cylinder overshoot or reattach on the downstream cylinder before forming a vortex street, or form vortices between the cylinders. The present investigation uncovers two remarkably different flow structures in the reattachment regime, depending on whether the shear layers from the upstream cylinder reattach on the downstream or upstream side of the downstream cylinder. As such, four cylinder centre-to-centre spacing ratios, i.e. L/d = 1.3, 2.5, 4.0 and 6.0, were examined, each representing one distinct flow structure. The phase-averaged sectional streamlines and vorticity contours display a single vortex street, irrespective of different regimes. However, the detailed flow structure, in particular, the vortex strength, and its downstream development depend upon L/d. The cross-stream distributions of the Reynolds stresses and heat fluxes at a given x/d vary from one to another. Such variation is also evident in the coherent contributions to the Reynolds stresses and heat fluxes. The results are connected to different initial conditions for the four flow structures. The momentum and heat transport characteristics are summarized for each flow structure.

  6. Type I Planet Migration in a Magnetized Disk. II. Effect of Vertical Angular Momentum Transport

    NASA Astrophysics Data System (ADS)

    Bans, Alissa; Königl, Arieh; Uribe, Ana

    2015-03-01

    We study the effects of a large-scale, ordered magnetic field in protoplanetary disks on Type I planet migration using a linear perturbation analysis in the ideal-magnetohydrodynamic limit. We focus on wind-driving disks, in which a magnetic torque \\propto {{B}0z}\\partial {{B}0\\varphi }/\\partial z (where B0z and {{B}0\\varphi } are the equilibrium vertical and azimuthal field components) induces vertical angular momentum transport. We derive the governing differential equation for the disk response and identify its resonances and turning points. For a disk containing a slightly subthermal, pure-B0z field, the total three-dimensional torque is close to its value in the two-dimensional (2D) limit, but remains lower than the hydrodynamic torque. In contrast with the 2D pure-{{B}0\\varphi } field model considered by Terquem, inward migration is not reduced when the field amplitude decreases with radius. The presence of a subdominant {{B}0\\varphi } component whose amplitude increases from zero at z = 0 has little effect on the torque when acting alone, but in conjunction with a B0z component it gives rise to a strong torque that speeds up the inward migration by a factor ≳ 200. This factor could, however, be reduced in a real disk by dissipation and magnetic diffusivity effects. Unlike all previously studied disk migration models, in the {{B}0z}+\\partial {{B}0\\varphi }/\\partial z case the dominant contributions to the torque add with the same sign from the two sides of the planet. We attribute this behavior to a new mode of interaction wherein a planet moves inward by plugging into the disk’s underlying angular momentum transport mechanism.

  7. Impurity transport due to electromagnetic drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Pusztai, Istvan; Mollén, Albert; Fülöp, Tünde

    2012-10-01

    In the view of an increasing interest in high β operation scenarios, such as hybrid scenarios for ITER the question of finite β effects on the impurity transport is a critical issue due to possible fuel dilution and radiative cooling in the core. Here, electromagnetic effects at finite β on impurity transport are studied through local linear gyro-kinetic simulations with gyro [J. Candy and E. Belli, General Atomics Report GA-A26818 (2011)]; in particular we investigate the parametric dependences of the impurity peaking factor (zero-flux density gradient) and the onset of the kinetic ballooning modes (KBM) and micro-tearing modes (MTM) in spherical (NSTX) and standard tokamaks (AUG and JET).

  8. Upper bound for heat transport due to ion temperature gradients

    SciTech Connect

    Kim, C.; Choi, K.

    1996-12-01

    Turbulent transport due to an ion temperature gradient is studied in the context of a fluid description in slab geometry. An upper bound on the heat transport is obtained through the use of a variational principle. The physical constraint of energy conservation that is included in the principle keeps the bound finite. Additional constraint is needed and employed for the magnetic shear effect to be accounted for. The bounding curve of the heat flux versus the ion temperature gradient, {eta}{sub {ital i}}, is presented along with the profiles of the fluctuations. The bound, after an extrapolation, is argued to be in the neighborhood of what numerical simulation predicts. {copyright} {ital 1996 American Institute of Physics.}

  9. Secondary Flows and Sediment Transport due to Wave - Current Interaction

    NASA Astrophysics Data System (ADS)

    Ismail, Nabil; Wiegel, Robert

    2015-04-01

    Objectives: The main purpose of this study is to determine the modifications of coastal processes driven by wave-current interaction and thus to confirm hydrodynamic mechanisms associated with the interaction at river mouths and tidal inlets where anthropogenic impacts were introduced. Further, the aim of the work has been to characterize the effect of the relative strength of momentum action of waves to the opposing current on the nearshore circulation where river flow was previously effective to entrain sediments along the shoreline. Such analytical information are useful to provide guidelines for sustainable design of coastal defense structures. Methodology and Analysis: Use is made of an earlier study reported by the authors (1983) on the interaction of horizontal momentum jets and opposing shallow water waves at shorelines, and of an unpublished laboratory study (1980). The turbulent horizontal discharge was shore-normal, directed offshore, and the incident wave direction was shore-normal, travelling toward shore. Flow visualization at the smooth bottom and the water surface, velocity and water surface elevation measurements were made. Results were obtained for wave , current modifications as well as the flow pattern in the jet and the induced circulation on both sides of the jet, for a range of wave and jet characteristics. The experimental data, obtained from measurement in the 3-D laboratory basin, showed several distinct flow pattern regimes on the bottom and the water surface. The observed flow circulation regimes were found to depend on the ratio of the wave momentum action on the jet to the jet initial momentum. Based on the time and length scales of wave and current parameters and using the time average of the depth integrated conservation equations, it is found that the relative strength of the wave action on the jet could be represented by a dimensionless expression; Rsm ( ) 12ρSa20g-L0h-Cg- 2 Rsm ≈ (C0 - U) /ρ0U w (1) In the above dimensionless

  10. Tokamak-edge toroidal rotation due to inhomogeneous transport and geodesic curvature

    SciTech Connect

    Stoltzfus-Dueck, T.

    2012-05-15

    In a model kinetic ion transport equation for the pedestal and scrape-off layer, passing-ion drift orbit excursions interact with spatially inhomogeneous but purely diffusive transport to cause the orbit-averaged diffusivities to depend on the sign of {nu}{sub Parallel-To }, preferentially transporting counter-current ions for realistic parameter values. The resulting pedestal-top intrinsic rotation is typically co-current, reaches experimentally relevant values, and is proportional to pedestal-top ion temperature T{sub i} Double-Vertical-Line {sub pt} over plasma current I{sub p}, as observed in experiment. The rotation drive is independent of the toroidal velocity and its radial gradient, representing a residual stress. Co-current spin-up at the L-H transition is expected due to increasing T{sub i} Double-Vertical-Line {sub pt} and a steepening of the turbulence intensity gradient. A more inboard (outboard) X-point leads to additional co- (counter-) current rotation drive. Beyond intrinsic rotation, comparison of heat and momentum transport reveals that neutral beam injection must be significantly unbalanced in the counter-current direction to cause zero toroidal rotation at the pedestal top.

  11. Cross-shelf transport and dispersion due to baroclinic instabilities

    NASA Astrophysics Data System (ADS)

    Thyng, Kristen; Hetland, Robert

    2014-05-01

    The dominant forcing mechanisms for the circulation in the northwestern Gulf of Mexico are largely determined by location relative to the shelf break. On the inner shelf, the flow is mostly controlled by the wind and on the outer shelf is affected by the mesoscale loop-current eddies. However, in the summer, baroclinic instabilities can develop along the boundary of the mid-shelf river plume front, leading to large eddies (~50 km length scale) that can reach across the entire shelf and strongly affect the local flow field. These instabilities advect fresher water toward the shelf edge and pull denser water back toward the coast. The details of how the flow crosses between these two regimes is of interest because it controls the flux of river-borne biogeochemical properties to the deep ocean, as well as for the potential onshore transport of oil from offshore spills. We approach this problem using a high resolution numerical model of the Texas-Louisiana shelf run using the Regional Ocean Modeling System (ROMS) and a Lagrangian particle tracking model (TRACMASS). By initializing drifters at the sources of fresh water (the Atchafalaya and Mississippi rivers) in the numerical model, we are able to explicitly track its trajectory through the numerical domain in time. These trajectories can then be used to characterize the cross-shelf transport and lateral dispersion due to the instabilities caused by the presence of the fresher water. We expect the transport and dispersion to be enhanced when compared with these quantities at other times of the year when the instabilities are not present, as well as with other regions of the shelf break that are farther from the plume edge area. Additionally, an idealized numerical model of a shelf break with both horizontal and vertical density gradients has been run through relevant parameter spaces to examine the range of baroclinic instabilities. Drifters are run in these simulations for comparison of transport and dispersion with

  12. An Experimental Study of Momentum and Thermal Transport in Flow through Smooth- and Rough-Wall Microchannels

    ERIC Educational Resources Information Center

    Natrajan, Vinay Kumar

    2009-01-01

    The impact of surface roughness on momentum and thermal transport in microscale flow passages of hydraulic diameter D[subscript h] = 600 micrometer is investigated in the laminar, transitional and turbulent flow regimes using microscopic PIV, two-color LIF thermometry and pressure-drop measurements. In addition to smooth-wall flow, two different…

  13. Gyrokinetic simulation of momentum transport with residual stress from diamagnetic level velocity shears

    SciTech Connect

    Waltz, R. E.; Staebler, G. M.; Solomon, W. M.

    2011-04-15

    Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium ExB velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or ''profile shear'' in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) ExB and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a ''null'' toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the ExB shear and parallel velocity (Coriolis force) pinching components from the larger ''diffusive'' parallel velocity shear driven component and

  14. Spreading Layers in Accreting Objects: Role of Acoustic Waves for Angular Momentum Transport, Mixing, and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Philippov, Alexander A.; Rafikov, Roman R.; Stone, James M.

    2016-01-01

    Disk accretion at a high rate onto a white dwarf (WD) or a neutron star has been suggested to result in the formation of a spreading layer (SL)—a belt-like structure on the object's surface, in which the accreted matter steadily spreads in the poleward (meridional) direction while spinning down. To assess its basic characteristics, we perform two-dimensional hydrodynamic simulations of supersonic SLs in the relevant morphology with a simple prescription for cooling. We demonstrate that supersonic shear naturally present at the base of the SL inevitably drives sonic instability that gives rise to large-scale acoustic modes governing the evolution of the SL. These modes dominate the transport of momentum and energy, which is intrinsically global and cannot be characterized via some form of local effective viscosity (e.g., α-viscosity). The global nature of the wave-driven transport should have important implications for triggering Type I X-ray bursts in low-mass X-ray binaries. The nonlinear evolution of waves into a system of shocks drives effective rearrangement (sensitively depending on thermodynamical properties of the flow) and deceleration of the SL, which ultimately becomes transonic and susceptible to regular Kelvin–Helmholtz instability. We interpret this evolution in terms of the global structure of the SL and suggest that mixing of the SL material with the underlying stellar fluid should become effective only at intermediate latitudes on the accreting object's surface, where the flow has decelerated appreciably. In the near-equatorial regions the transport is dominated by acoustic waves and mixing is less efficient. We speculate that this latitudinal nonuniformity of mixing in accreting WDs may be linked to the observed bipolar morphology of classical nova ejecta.

  15. Final Technical Report for the Center for Momentum Transport and Flow Organization (CMTFO)

    SciTech Connect

    Forest, Cary B.; Tynan, George R.

    2013-07-29

    The Center for Momentum Transport and Flow Organization (CMTFO) is a DOE Plasma Science Center formed in late 2009 to focus on the general principles underlying momentum transport in magnetic fusion and astrophysical systems. It is composed of funded researchers from UCSD, UW Madison, U. Colorado, PPPL. As of 2011, UCSD supported postdocs are collaborating at MIT/Columbia and UC Santa Cruz and beginning in 2012, will also be based at PPPL. In the initial startup period, the Center supported the construction of two basic experiments at PPPL and UW Madison to focus on accretion disk hydrodynamic instabilities and solar physics issues. We now have computational efforts underway focused on understanding recent experimental tests of dynamos, solar tacholine physics, intrinsic rotation in tokamak plasmas and L-H transition physics in tokamak devices. In addition, we have the basic experiments discussed above complemented by work on a basic linear plasma device at UCSD and a collaboration at the LAPD located at UCLA. We are also performing experiments on intrinsic rotation and L-H transition physics in the DIII-D, NSTX, C-Mod, HBT EP, HL-2A, and EAST tokamaks in the US and China, and expect to begin collaborations on K-STAR in the coming year. Center funds provide support to over 10 postdocs and graduate students each year, who work with 8 senior faculty and researchers at their respective institutions. The Center has sponsored a mini-conference at the APS DPP 2010 meeting, and co-sponsored the recent Festival de Theorie (2011) with the CEA in Cadarache, and will co-sponsor a Winter School in January 2012 in collaboration with the CMSO-UW Madison. Center researchers have published over 50 papers in the peer reviewed literature, and given over 10 talks at major international meetings. In addition, the Center co-PI, Professor Patrick Diamond, shared the 2011 Alfven Prize at the EPS meeting. Key scientific results from this startup period include initial simulations of the

  16. Center for Momentum Transport and Flow Organization (CMTFO). Final technical report

    SciTech Connect

    Tynan, George R.; Diamond, P. H.; Ji, H.; Forest, C. B.; Terry, P. W.; Munsat, T.; Brummell, N.

    2013-07-29

    The Center for Momentum Transport and Flow Organization (CMTFO) is a DOE Plasma Science Center formed in late 2009 to focus on the general principles underlying momentum transport in magnetic fusion and astrophysical systems. It is composed of funded researchers from UCSD, UW Madison, U. Colorado, PPPL. As of 2011, UCSD supported postdocs are collaborating at MIT/Columbia and UC Santa Cruz and beginning in 2012, will also be based at PPPL. In the initial startup period, the Center supported the construction of two basic experiments at PPPL and UW Madison to focus on accretion disk hydrodynamic instabilities and solar physics issues. We now have computational efforts underway focused on understanding recent experimental tests of dynamos, solar tachocline physics, intrinsic rotation in tokamak plasmas and L-H transition physics in tokamak devices. In addition, we have the basic experiments discussed above complemented by work on a basic linear plasma device at UCSD and a collaboration at the LAPD located at UCLA. We are also performing experiments on intrinsic rotation and L-H transition physics in the DIII-D, NSTX, C-Mod, HBT EP, HL-2A, and EAST tokamaks in the US and China, and expect to begin collaborations on K-STAR in the coming year. Center funds provide support to over 10 postdocs and graduate students each year, who work with 8 senior faculty and researchers at their respective institutions. The Center has sponsored a mini-conference at the APS DPP 2010 meeting, and co-sponsored the recent Festival de Theorie (2011) with the CEA in Cadarache, and will co-sponsor a Winter School in January 2012 in collaboration with the CMSO-UW Madison. Center researchers have published over 50 papers in the peer reviewed literature, and given over 10 talks at major international meetings. In addition, the Center co-PI, Professor Patrick Diamond, shared the 2011 Alfven Prize at the EPS meeting. Key scientific results from this startup period include initial simulations of the

  17. Measurements of the momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pinch

    SciTech Connect

    Kuritsyn, A.; Fiksel, G.; Almagri, A. F.; Miller, M. C.; Mirnov, V. V.; Prager, S. C.; Sarff, J. S.; Brower, D. L.; Ding, W. X.

    2009-05-15

    In this paper measurements of momentum and current transport caused by current driven tearing instability are reported. The measurements are done in the Madison Symmetric Torus reversed-field pinch [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] in a regime with repetitive bursts of tearing instability causing magnetic field reconnection. It is established that the plasma parallel momentum profile flattens during these reconnection events: The flow decreases in the core and increases at the edge. The momentum relaxation phenomenon is similar in nature to the well established relaxation of the parallel electrical current and could be a general feature of self-organized systems. The measured fluctuation-induced Maxwell and Reynolds stresses, which govern the dynamics of plasma flow, are large and almost balance each other such that their difference is approximately equal to the rate of change of plasma momentum. The Hall dynamo, which is directly related to the Maxwell stress, drives the parallel current profile relaxation at resonant surfaces at the reconnection events. These results qualitatively agree with analytical calculations and numerical simulations. It is plausible that current-driven instabilities can be responsible for momentum transport in other laboratory and astrophysical plasmas.

  18. Measurements of the momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pincha)

    NASA Astrophysics Data System (ADS)

    Kuritsyn, A.; Fiksel, G.; Almagri, A. F.; Brower, D. L.; Ding, W. X.; Miller, M. C.; Mirnov, V. V.; Prager, S. C.; Sarff, J. S.

    2009-05-01

    In this paper measurements of momentum and current transport caused by current driven tearing instability are reported. The measurements are done in the Madison Symmetric Torus reversed-field pinch [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] in a regime with repetitive bursts of tearing instability causing magnetic field reconnection. It is established that the plasma parallel momentum profile flattens during these reconnection events: The flow decreases in the core and increases at the edge. The momentum relaxation phenomenon is similar in nature to the well established relaxation of the parallel electrical current and could be a general feature of self-organized systems. The measured fluctuation-induced Maxwell and Reynolds stresses, which govern the dynamics of plasma flow, are large and almost balance each other such that their difference is approximately equal to the rate of change of plasma momentum. The Hall dynamo, which is directly related to the Maxwell stress, drives the parallel current profile relaxation at resonant surfaces at the reconnection events. These results qualitatively agree with analytical calculations and numerical simulations. It is plausible that current-driven instabilities can be responsible for momentum transport in other laboratory and astrophysical plasmas.

  19. 1. Transport of Mass, Momentum and Energy in Planetary Magnetodisc Regions

    NASA Astrophysics Data System (ADS)

    Achilleos, Nicholas; André, Nicolas; Blanco-Cano, Xochitl; Brandt, Pontus C.; Delamere, Peter A.; Winglee, Robert

    2015-04-01

    the rate at which plasma mass and momentum are added to the magnetodisc. Following this, we describe the observational properties of plasma injections, and the consequent implications for the nature of global plasma transport and magnetodisc stability. The theory of the flux tube interchange instability is reviewed, and the influences of gravity and magnetic curvature on the instability are described. The interaction between simulated interchange plasma structures and Saturn's moon Titan is discussed, and its relationship to observed periodic phenomena at Saturn is described. Finally, the observation, generation and evolution of plasma waves associated with mass loading in the magnetodisc regions is reviewed.

  20. Transport of Parallel Momentum by Toroidal Ion Temperature Gradient Instability near Marginality

    SciTech Connect

    E.S. Yoon and T.S. Hahm

    2009-10-20

    The turbulent angular momentum flux carried by ions resonant with toroidal ion temperature gradient(ITG) instability is calculated via quasilinear calculation using the phase-space conserving gyrokinetic equation in the laboratory frame. The results near ITG marginality indicate that the inward turbulent equipartition (TEP) momentum pinch [Hahm T.S. et al 2007 Phys. Plasmas 14 072302] remains as the most robust part of pinch. In addition, ion temperature gradient driven momentum flux is inward for typical parameters, while density gradient driven momentum flux is outward as in the previous kinetic result in slab geometry [Diamond P.H. et al 2008 Phys. Plasmas 15 012303].

  1. Characterizing 3D Structure of Convective Momentum Transport Associated with the MJO Based on Contemporary Reanalyses

    NASA Astrophysics Data System (ADS)

    Oh, J.; Jiang, X.; Waliser, D. E.; Moncrieff, M. W.; Johnson, R. H.

    2013-12-01

    As one of the most prominent tropical atmospheric variability modes, the Madden-Julian Oscillation (MJO) exerts profound influences on global weather and climate, and serves as a critical predictability source for extend-range forecast. While credible representation of the MJO still represents a great challenge for current general circulation models (GCMs), previous studies on the vertical structure of the MJO have largely focused on collective impacts from multi-scale convective systems on thermodynamic properties of the MJO. Most recently, limited observational studies and idealized modeling work suggested that convective momentum transport (CMT) could also play an important role in interpreting the observed MJO features. In this study, the 3D CMT structure associated with the MJO is examined by analyzing model output from three recent high-quality reanalysis systems, including NOAA's Climate Forecast System Reanalysis (CFSR), NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA), and ECMWF-the Year of Tropical Convection (YOTC) reanalysis. Consistent with previous cloud-resolving model study, a well-organized three-layer vertical structure in the CMT associated with the MJO is also discerned based on reanalyses. The result suggests that CMT tends to intensify the MJO circulation, particularly in the lower troposphere. Relative roles of meso-scale systems (MCS) and synoptic waves in contributing the total CMT profiles of the MJO will also be explored. Differences in CMT profiles in these several reanalysis models will be discussed.

  2. ANGULAR MOMENTUM TRANSPORT AND VARIABILITY IN BOUNDARY LAYERS OF ACCRETION DISKS DRIVEN BY GLOBAL ACOUSTIC MODES

    SciTech Connect

    Belyaev, Mikhail A.; Stone, James M.; Rafikov, Roman R.

    2012-11-20

    Disk accretion onto a weakly magnetized central object, e.g., a star, is inevitably accompanied by the formation of a boundary layer near the surface, in which matter slows down from the highly supersonic orbital velocity of the disk to the rotational velocity of the star. We perform high-resolution two-dimensional hydrodynamical simulations in the equatorial plane of an astrophysical boundary layer with the goal of exploring the dynamics of non-axisymmetric structures that form there. We generically find that the supersonic shear in the boundary layer excites non-axisymmetric quasi-stationary acoustic modes that are trapped between the surface of the star and a Lindblad resonance in the disk. These modes rotate in a prograde fashion, are stable for hundreds of orbital periods, and have a pattern speed that is less than and of the order of the rotational velocity at the inner edge of the disk. The origin of these intrinsically global modes is intimately related to the operation of a corotation amplifier in the system. Dissipation of acoustic modes in weak shocks provides a universal mechanism for angular momentum and mass transport even in purely hydrodynamic (i.e., non-magnetized) boundary layers. We discuss the possible implications of these trapped modes for explaining the variability seen in accreting compact objects.

  3. Factorization of event-plane correlations over transverse momentum in relativistic heavy ion collisions in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Xiao, Kai; Yi, Li; Liu, Feng; Wang, Fuqiang

    2016-08-01

    Momentum-space azimuthal harmonic event planes (EP) are constructed from final-state midrapidity particles binned in transverse momentum (pT) in √{sN N}=200 GeV Au+Au collisions in a multiphase transport (AMPT) model. The EP correlations between pT bins, corrected by EP resolutions, are smaller than unity. This indicates that the EP's decorrelate over pT in AMPT, qualitatively consistent with data and hydrodynamic calculations. It is further found that the EP correlations approximately factorize into single pT-bin EP correlations to a common plane. This common plane appears to be the momentum-space EP integrated over all pT, not the configuration-space participant plane (PP).

  4. The transport of angular momentum by gravitational instabilities and Rossby vortices in accretion disks

    NASA Astrophysics Data System (ADS)

    Currier, Nathaniel W.

    We propose a model for the birth of spiral galaxies and the supermassive black holes (SMBHs) at their centers. It all starts when a galaxy-mass gas condensation collapses to ~ 200 × the background density. It experiences weak tidal torques from similar condensations, which establish its spin parameter l. It forms a Lyman-a (Lya) cloud, then undergoes an inviscid, angular-momentum- preserving collapse to a Mestel disk with a flat rotation curve (FRCD). A FRCD has v ~ const, M transport angular momentum coherently, so they easily dominate turbulent mechanisms wherever the disk is thin. The popular magneto-rotational instability (MRI) is semi-coherent, but it's not required for our model, so we leave it for further study. We use a 2-D Eulerian hydro code to simulate the SGI and RVI in both FRCDs and Keplerian disks. We explore the triggers of these instabilities, namely, the Toomre parameter Q in SGI-unstable FRCDs and pressure jumps in RVI-unstable Keplerian disks. We confirm that Q [Special characters omitted.] 1 triggers the SGI in FRCDs and that D P/P [Special characters omitted.] 5 generates robust Rossby vortices in Keplerian disks. We also find that these instabilities interact in the transition region between these two types of disks. We relate all this to our self-consistent model

  5. Gyrokinetic simulation of momentum transport with residual stress from diamagnetic level velocity shears

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Staebler, G. M.; Solomon, W. M.

    2011-04-01

    Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium E ×B velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or "profile shear" in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) E ×B and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a "null" toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the E ×B shear and parallel velocity (Coriolis force) pinching components from the larger "diffusive" parallel velocity shear driven component and

  6. Linear gyrokinetic calculations of toroidal momentum transport in the presence of trapped electron modes in tokamak plasmas

    SciTech Connect

    Kluy, N.; Angioni, C.; Camenen, Y.; Peeters, A. G.

    2009-12-15

    The toroidal momentum transport in the presence of trapped electron mode microinstabilities in tokamak plasmas is studied by means of quasilinear gyrokinetic calculations. In particular, the role of the Coriolis drift in producing an inward convection of toroidal momentum is investigated. The Coriolis drift term has been implemented in the gyrokinetic code GS2 [W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)] specifically for the completion of this work. A benchmark between the GS2 implementation of the Coriolis drift and the implementations included in two other gyrokinetic codes is presented. The numerical calculations show that in the presence of trapped electron modes, despite of a weaker symmetry breaking of the eigenfunctions with respect to the case of ion temperature gradient modes, a pinch of toroidal momentum is produced in most conditions. The toroidal momentum viscosity is also computed, and found to be small as compared with the electron heat conductivity, but significantly larger than the ion heat conductivity. In addition, interesting differences are found in the dependence of the toroidal momentum pinch as a function of collisionality between trapped electron modes and ion temperature gradient modes. The results identify also parameter domains in which the pinch is predicted to be small, which are also of interest for comparisons with the experiments.

  7. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment

    NASA Astrophysics Data System (ADS)

    Dupont, S.; Patton, E. G.

    2012-07-01

    Momentum and scalar (heat and water vapor) transfer between a walnut canopy and the overlying atmosphere are investigated for two seasonal periods (before and after leaf-out), and for five thermal stability regimes (free and forced convection, near-neutral condition, transition to stable, and stable). Quadrant and octant analyses of momentum and scalar fluxes followed by space-time autocorrelations of observations from the Canopy Horizontal Array Turbulence Study's (CHATS) thirty meter tower help characterize the motions exchanging momentum, heat, and moisture between the canopy layers and aloft. During sufficiently windy conditions, i.e. in forced convection, near-neutral and transition to stable regimes, momentum and scalars are generally transported by sweep and ejection motions associated with the well-known canopy-top "shear-driven" coherent eddy structures. During extreme stability conditions (both unstable and stable), the role of these "shear-driven" structures in transporting scalars decreases, inducing notable dissimilarity between momentum and scalar transport. In unstable conditions, "shear-driven" coherent structures are progressively replaced by "buo-yantly-driven" structures, known as thermal plumes; which appear very efficient at transporting scalars, especially upward thermal plumes above the canopy. Within the canopy, downward thermal plumes become more efficient at transporting scalars than upward thermal plumes if scalar sources are located in the upper canopy. We explain these features by suggesting that: (i) downward plumes within the canopy correspond to large downward plumes coming from above, and (ii) upward plumes within the canopy are local small plumes induced by canopy heat sources where passive scalars are first injected if there sources are at the same location as heat sources. Above the canopy, these small upward thermal plumes aggregate to form larger scale upward thermal plumes. Furthermore, scalar quantities carried by downward

  8. Expression of a momentum-transfer scattering at an inelastic collision on electron transport in a collisional plasma

    NASA Astrophysics Data System (ADS)

    Makabe, Toshiaki

    2015-09-01

    An expression for the inelastic momentum-transfer scattering on the collision integral of the Boltzmann equation is derived in order to reflect the effect of the inelastic collision of an electron with a molecule on the electron kinetics in gases and collisional plasmas. To our knowledge, this is the first attempt to formulate the effect of the momentum-transfer scattering of an inelastic collision. The present procedure is a traditional one in which the Boltzmann equation of electrons is expanded by the Spherical-harmonics in velocity space. It is shown that the effect of the inelastic momentum-transfer on the electron transport is expressed only when we consider the first anisotropic part of the velocity distribution in the expanded Boltzmann equation. In addition, case studies are performed by considering the dependence of the scattering angle and the magnitude distribution. The influence of the inelastic momentum-transfer scattering on the electron transport should be further investigated, particularly in the case of a Ramsauer gas having the relation Qvib (v) >Qm (v) in the vicinity of the Ramsauer-minimum in SiH4, CH4, and CF4 etc.

  9. Estimation of the ion toroidal rotation source due to momentum transfer from Lower Hybrid waves in Alcator C-Mod

    SciTech Connect

    Lee, J. P.; Wright, J. C.; Bonoli, P. T.; Parker, R. R.; Catto, P. J.; Podpaly, Y. A.; Rice, J. E.; Reinke, M. L.

    2011-12-23

    Significant ion toroidal rotation (50km/s) has been measured by X-Ray spectroscopy for impurities in Alcator C-Mod during lower hybrid (LH) RF power injection. We investigate the relation between the computed toroidal momentum input from LH waves and the measured INITIAL change of ion toroidal rotation when the LH power is turned on. The relation may depend on the plasma current and magnetic configuration. Because of the fast build up time of the electron quasilinear plateau (<1 millisecond), the electron distribution function rapidly reaches steady state in which the electrons transfer momentum to the ions. The LH wave momentum input is computed from the self consistent steady state electron distribution function and a bounce-averaged quasilinear diffusion coefficient that are obtained by iterating a full wave code (TORLH) with a Fokker Plank code (CQL3D)

  10. Magnetic Field Configurations Associated With Angular Momentum Transport in Astrophysics and the Accretion Theory of Spontaneous Rotation in the Laboratory^*

    NASA Astrophysics Data System (ADS)

    Coppi, B.

    2007-11-01

    Differentially rotating structures in the prevalent field of a central object have been shown to develop a ``crystal'' magnetic structure resulting from toroidal internal currents and leading to the formation of density ring sequencesootnotetextB. Coppi and F. Rousseau, Ap. J. 641, 458 (2006) rather than disks. Poloidal current densities with appropriate symmetries are found to be connected with angular momentum transport processes represented by an effective viscosity. Jets are suggested to consist of a series of stable ``smoke- rings'' ejected vertically in opposite directions from the central region of the considered ring sequence. A small inward flow velocity is shown to induce a spiral pattern in the magnetic field lines on a selected family of magnetic surfaces. The accretion theoryootnotetextB. Coppi, Nuc. Fus. 42, 1 (2002) of the spontaneous rotation phenomenon in toroidal laboratory plasmas relies on the ejection of angular momentum toward the surrounding material wall, by collisional ballooning modes excited at the edge, whose phase velocity depends on collisionality. The resulting recoil gives rise to the rotation of the main body of the plasma column as other plasma modes (called VTG) provide the needed inward transport of angular momentum. *Sponsored in part by the US D.O.E.

  11. Low-frequency internal waves in magnetized rotating stellar radiation zones. II. Angular momentum transport with a toroidal field

    NASA Astrophysics Data System (ADS)

    Mathis, S.; de Brye, N.

    2012-04-01

    Context. With the progress of observational constraints on dynamical processes in stars, it becomes necessary to understand the angular momentum and the rotation profile history. In this context, internal waves constitute an efficient transport mechanism over long distances in stellar radiation zones. Indeed, they could be one of the mechanisms responsible for the quasi-flat rotation profile of the solar radiative region up to 0.2 R⊙. Aims: Angular momentum transport induced by internal waves depends on the properties of their excitation regions and of their dissipation during propagation. Then, the bottom of convective envelopes (the top of convective cores, respectively) are differentially rotating magnetic layers while radiation zones may host fossil magnetic fields. It is therefore necessary to understand the modification of internal wave mechanisms by both rotation and magnetic fields. Methods: We continue our previous work by proceeding step by step. We analytically built a complete formalism that treats the angular momentum transport by internal waves while taking into account both the Coriolis acceleration and the Lorentz force in a non-perturbative way for an axisymmetric toroidal field. We assumed a uniform Alfvén frequency and a weak differential rotation to isolate the transport properties as a function of the Rossby and Elsasser numbers. Results: We examined the different possible approximations to describe low-frequency internal waves modified by the Coriolis acceleration and the Lorentz force in a deep spherical shell. The complete structure of these waves, which become magneto-gravito-inertial waves, is given assuming the quasi-linear approximation first in the adiabatic case and then in the dissipative one. Vertical and equatorial trapping phenomena appear that favor retrograde waves. The efficiency of the induced transport as a function of the Rossby and Elsasser numbers is then obtained. Conclusions: A complete study of the transport of

  12. General circulation driven by baroclinic forcing due to cloud layer heating: Significance of planetary rotation and polar eddy heat transport

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masaru; Takahashi, Masaaki

    2016-04-01

    A high significance of planetary rotation and poleward eddy heat fluxes is determined for general circulation driven by baroclinic forcing due to cloud layer heating. In a high-resolution simplified Venus general circulation model, a planetary-scale mixed Rossby-gravity wave with meridional winds across the poles produces strong poleward heat flux and indirect circulation. This strong poleward heat transport induces downward momentum transport of indirect cells in the regions of weak high-latitude jets. It also reduces the meridional temperature gradient and vertical shear of the high-latitude jets in accordance with the thermal wind relation below the cloud layer. In contrast, strong equatorial superrotation and midlatitude jets form in the cloud layer in the absence of polar indirect cells in an experiment involving Titan's rotation. Both the strong midlatitude jet and meridional temperature gradient are maintained in the situation that eddy horizontal heat fluxes are weak. The presence or absence of strong poleward eddy heat flux is one of the important factors determining the slow or fast superrotation state in the cloud layer through the downward angular momentum transport and the thermal wind relation. For fast Earth rotation, a weak global-scale Hadley circulation of the low-density upper atmosphere maintains equatorial superrotation and midlatitude jets above the cloud layer, whereas multiple meridional circulations suppress the zonal wind speed below the cloud layer.

  13. Azimuthal velocity profiles in Rayleigh-stable Taylor-Couette flow and implied axial angular momentum transport

    NASA Astrophysics Data System (ADS)

    Nordsiek, Freja; Huisman, Sander G.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef; Lathrop, Daniel P.

    2015-07-01

    We present azimuthal velocity profiles measured in a Taylor-Couette apparatus, which has been used as a model of stellar and planetary accretion disks. The apparatus has a cylinder radius ratio of $\\eta = 0.716$, an aspect-ratio of $\\Gamma = 11.74$, and the plates closing the cylinders in the axial direction are attached to the outer cylinder. We investigate angular momentum transport and Ekman pumping in the Rayleigh-stable regime. The regime is linearly stable and is characterized by radially increasing specific angular momentum. We present several Rayleigh-stable profiles for shear Reynolds numbers $Re_S \\sim O(10^5) \\,$, both for $\\Omega_i > \\Omega_o > 0$ (quasi-Keplerian regime) and $\\Omega_o > \\Omega_i > 0$ (sub-rotating regime) where $\\Omega_{i,o}$ is the inner/outer cylinder rotation rate. None of the velocity profiles matches the non-vortical laminar Taylor-Couette profile. The deviation from that profile increased as solid-body rotation is approached at fixed $Re_S$. Flow super-rotation, an angular velocity greater than that of both cylinders, is observed in the sub-rotating regime. The velocity profiles give lower bounds for the torques required to rotate the inner cylinder that were larger than the torques for the case of laminar Taylor-Couette flow. The quasi-Keplerian profiles are composed of a well mixed inner region, having approximately constant angular momentum, connected to an outer region in solid-body rotation with the outer cylinder and attached axial boundaries. These regions suggest that the angular momentum is transported axially to the axial boundaries. Therefore, Taylor-Couette flow with closing plates attached to the outer cylinder is an imperfect model for accretion disk flows, especially with regard to their stability.

  14. Ballistic transport in planetary ring systems due to particle erosion mechanisms. II - Theoretical models for Saturn's A- and B-ring inner edges

    NASA Technical Reports Server (NTRS)

    Durisen, Richard H.; Bode, Paul W.; Cuzzi, Jeffrey N.; Cederbloom, Steven E.; Murphy, Brian W.

    1992-01-01

    The present numerical simulations and analytic arguments show that many of the common morphological features of the Saturn A- and B-ring inner-edge regions are due to 'ballistic transport', or the net radial transport of mass and angular momentum generated by exchanges of meteoroid impact ejecta. It is suggested that the observed 100-km undulatory structure of the inner B-ring arises from ballistic transport echoing of the inner edge. A strongly prograde ejecta-distribution function is used to fit the edge-region features.

  15. Impurity transport due to electromagnetic drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Moradi, S.; Pusztai, I.; Mollén, A.; Fülöp, T.

    2012-03-01

    Finite β effects on impurity transport are studied through local linear gyrokinetic simulations with GYRO [J. Candy and E. Belli, General Atomics Report No. GA-A26818, 2011]; in particular, we investigate the parametric dependences of the impurity peaking factor (zero-flux density gradient) and the onset of the kinetic ballooning modes (KBMs). We find that electromagnetic effects even at low β can have significant impact on the impurity transport. The KBM instability threshold depends on the plasma parameters, particularly strongly on plasma shape. We have shown that magnetic geometry significantly influences the results, and the commonly used s-α model overestimates the KBM growth rates and ITG stabilization at high β. In the β range, where the KBM is the dominant instability the impurity peaking factor is strongly reduced, with very little dependence on β and the impurity charge.

  16. Scale Dependency of Convective Momentum Transport as Diagnosed from Cloud-Resolving Model Simulation with Spectral-bin Microphysics

    NASA Astrophysics Data System (ADS)

    Liu, Y. C.; Fan, J.; Zhang, G. J.; Xu, K. M.; Ghan, S. J.

    2014-12-01

    Convective momentum transport (CMT) has been demonstrated to have a large impact on global atmospheric circulation in both observational and numerical studies. In General Circulation Models (GCMs) CMT is often parameterized in a simple way by assuming that in-cloud horizontal momentum depends only on lateral entrainment and detrainment rates [Schneider and Lindzen, 1976]. In addition to lateral entrainment and detrainment rates the effect of perturbation pressure gradient force induced by convection (Pc) on momentum transport is significant. Because it is the most complicated term to be parameterized, a very simple form of products among a constant coefficient, mass flux, and environment vertical wind shear was employed to parameterize it [Gregory et al., 1997]. In addition, none of these CMT parameterizations deal with the scale problems. Thus, the goal of this study is to evaluate the past CMT parameterizations and explore the scale dependencies of Pc and CMT using Cloud Resolving Model (CRM) simulations from the Weather Research and Forecasting (WRF) coupled with the most sophisticated spectral-bin microphysics. Our preliminary results show that the parameterized CMT from the top-hat approach is underestimated especially at the gray zone scale (~4-50 km); using the simplified 3-updraft and 1-downdraft formulation proposed in our previous study for eddy transport of moisture, the CMT can be represented well. The formulation also produced a more accurate mass flux compared to the top-hat approach, which can potentially improve the parameterization of Pc. We investigate the relative contributions from linear and nonlinear forcing to Pc at different model grid spacing (dx). Our results show that the assumption that non-linear forcing is much smaller than linear force is valid only at dx > 128 km and dx < 8 km. At the dx = 32~16 km, linear and nonlinear forcings become compatible, suggesting a more sophisticated formula for Pc might be needed.

  17. Transport of Parallel Momentum Induced by Current-Symmetry Breaking in Toroidal Plasmas

    SciTech Connect

    Camenen, Y.; Peeters, A. G.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Angioni, C.; Strintzi, D.

    2009-03-27

    The symmetry of a physical system strongly impacts on its properties. In toroidal plasmas, the symmetry along a magnetic field line usually constrains the radial flux of parallel momentum to zero in the absence of background flows. By breaking the up-down symmetry of the toroidal currents, this constraint can be relaxed. The parallel asymmetry in the magnetic configuration then leads to an incomplete cancellation of the turbulent momentum flux across a flux surface. The magnitude of the subsequent toroidal rotation increases with the up-down asymmetry and its sign depends on the direction of the toroidal magnetic field and plasma current. Such a mechanism offers new insights in the interpretation and control of the intrinsic toroidal rotation in present day experiments.

  18. Toroidal Momentum Pinch Velocity due to the Coriolis Drift Effect on Small Scale Instabilities in a Toroidal Plasma

    SciTech Connect

    Peeters, A. G.; Angioni, C.; Strintzi, D.

    2007-06-29

    In this Letter, the influence of the ''Coriolis drift'' on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiment000.

  19. Familial orthostatic tachycardia due to norepinephrine transporter deficiency

    NASA Technical Reports Server (NTRS)

    Robertson, D.; Flattem, N.; Tellioglu, T.; Carson, R.; Garland, E.; Shannon, J. R.; Jordan, J.; Jacob, G.; Blakely, R. D.; Biaggioni, I.

    2001-01-01

    Orthostatic intolerance (OI) or postural tachycardia syndrome (POTS) is a syndrome primarily affecting young females, and is characterized by lightheadedness, palpitations, fatigue, altered mentation, and syncope primarily occurring with upright posture and being relieved by lying down. There is typically tachycardia and raised plasma norepinephrine levels on upright posture, but little or no orthostatic hypotension. The pathophysiology of OI is believed to be very heterogeneous. Most studies of the syndrome have focused on abnormalities in norepinephrine release. Here the hypothesis that abnormal norepinephrine transporter (NET) function might contribute to the pathophysiology in some patients with OI was tested. In a proband with significant orthostatic symptoms and tachycardia, disproportionately elevated plasma norepinephrine with standing, impaired systemic, and local clearance of infused tritiated norepinephrine, impaired tyramine responsiveness, and a dissociation between stimulated plasma norepinephrine and DHPG elevation were found. Studies of NET gene structure in the proband revealed a coding mutation that converts a highly conserved transmembrane domain Ala residue to Pro. Analysis of the protein produced by the mutant cDNA in transfected cells demonstrated greater than 98% reduction in activity relative to normal. NE, DHPG/NE, and heart rate correlated with the mutant allele in this family. CONCLUSION: These results represent the first identification of a specific genetic defect in OI and the first disease linked to a coding alteration in a Na+/Cl(-)-dependent neurotransmitter transporter. Identification of this mechanism may facilitate our understanding of genetic causes of OI and lead to the development of more effective therapeutic modalities.

  20. Transport of heat and momentum in oscillatory wall-bounded flow

    NASA Astrophysics Data System (ADS)

    Ebadi, Alireza; Biles, Drummond; White, Christopher; Pond, Ian; Dubief, Yves; UNH Team; UVM Team

    2015-11-01

    The balance of the leading order terms in the mean momentum and energy equations and their thrice integrated forms are investigated in oscillatory wall-bounded flow using both DNS and experimental data. The integrated forms of the equations are used to investigate the dynamical contributions to the phase-averaged wall shear stress and wall heat flux. Preliminary results indicate that phases corresponding to flow acceleration are dynamically similar to oscillatory laminar flow and phases corresponding to flow deceleration are dynamically similar to fully developed turbulent flow. Moreover, the flow becomes more turbulent-like with increasing period of oscillation.

  1. Thermo-electric transport in gauge/gravity models with momentum dissipation

    NASA Astrophysics Data System (ADS)

    Amoretti, Andrea; Braggio, Alessandro; Maggiore, Nicola; Magnoli, Nicodemo; Musso, Daniele

    2014-09-01

    We present a systematic definition and analysis of the thermo-electric linear response in gauge/gravity systems focusing especially on models with massive gravity in the bulk and therefore momentum dissipation in the dual field theory. A precise treatment of finite counter-terms proves to be essential to yield a consistent physical picture whose hydrodynamic and beyond-hydrodynamics behaviors noticeably match with field theoretical expectations. The model furnishes a possible gauge/gravity description of the crossover from the quantum-critical to the disorder-dominated Fermi-liquid behaviors, as expected in graphene.

  2. The Center for Momentum Transport and Flow Organization in Plasmas - Final Scientific Report

    SciTech Connect

    Munsat, Tobin

    2015-12-14

    Overview of University of Colorado Efforts: The University of Colorado group has focused on two primary fronts during the grant period: development of a variety of multi-point diagnostic and/or imaging analysis techniques, and momentum-transport related experiments on a variety of devices (NSTX at PPPL, CSDX at UCSD, LAPD at UCLA, DIII-D at GA). Experimental work has taken advantage of several diagnostic instruments, including fast-framing cameras for imaging of electron density fluctuations (either directly or using injected gas puffs), ECEI for imaging of electron temperature fluctuations, and multi-tipped Langmuir and magnetic probes for corroborating measurements of Reynolds and Maxwell stresses. Mode Characterization in CSDX: We have performed a series of experiments at the CSDX linear device at UCSD, in collaboration with Center PI G. Tynan's group. The experiments included a detailed study of velocity estimation techniques, including direct comparisons between Langmuir probes and image-based velocimetry from fast-framing camera data. We used the camera data in a second set of studies to identify the spatial and spectral structure of coherent modes, which illuminates wave behavior to a level of detail previously unavailable, and enables direct comparison of dispersion curves to theoretical estimates. In another CSDX study, similar techniques were used to demonstrate a controlled transition from nonlinearly coupled discrete eigenmodes to fully developed broadband turbulence. The axial magnetic field was varied from 40-240 mT, which drove the transition. At low magnetic fields, the plasma is dominated by drift waves. As the magnetic field is increased, a strong potential gradient at the edge introduces an ExB shear-driven instability. At the transition, another mode with signatures of a rotation-induced Rayleigh–Taylor instability appears at the central plasma region. Concurrently, large axial velocities were found in the plasma core. For larger magnetic

  3. Investigation of heat and momentum transport in turbulent flows via numerical simulations

    NASA Technical Reports Server (NTRS)

    Kim, John

    1988-01-01

    Turbulent transport of heat is studied by examining the flow fields obtained from a direct simulation of a turbulent channel flow. The turbulence structures associated with the velocity and scalar fields are presented using air (Pr = 0.71) as the medium. A comparison is made between the wall-layer structures identified by the temperature field and the structures found in the velocity field. Consideration is also given to the role of the organized turbulence structures in scalar transport.

  4. Hall viscosity and momentum transport in lattice and continuum models of the integer quantum Hall effect in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Tuegel, Thomas I.; Hughes, Taylor L.

    2015-10-01

    The Hall viscosity describes a nondissipative response to strain in systems with broken time-reversal symmetry. We develop a method for computing the Hall viscosity of lattice systems in strong magnetic fields based on momentum transport, which we compare to the method of momentum polarization used by Tu et al. [Phys. Rev. B 88, 195412 (2013), 10.1103/PhysRevB.88.195412] and Zaletel et al. [Phys. Rev. Lett. 110, 236801 (2013), 10.1103/PhysRevLett.110.236801] for noninteracting systems. We compare the Hall viscosity of square-lattice tight-binding models in magnetic field to the continuum integer quantum Hall effect (IQHE) showing agreement when the magnetic length is much larger than the lattice constant, but deviation as the magnetic field strength increases. We also relate the Hall viscosity of relativistic electrons in magnetic field (the Dirac IQHE) to the conventional IQHE. The Hall viscosity of the lattice Dirac model in magnetic field agrees with the continuum Dirac Hall viscosity when the magnetic length is much larger than the lattice constant. We also show that the Hall viscosity of the lattice model deviates further from the continuum model if the C4 symmetry of the square lattice is broken to C2, but the deviation is again minimized as the magnetic length increases.

  5. Deviations of the energy-momentum tensor from equilibrium in the initial state for hydrodynamics from transport approaches

    NASA Astrophysics Data System (ADS)

    Oliinychenko, D.; Petersen, H.

    2016-03-01

    Many hybrid models of heavy ion collisions construct the initial state for hydrodynamics from transport models. Hydrodynamics requires that the energy-momentum tensor Tμ ν and four-currents jμ do not deviate considerably from the equilibrium ideal-fluid form, but the ones constructed from transport do not necessarily possess this property. In this work we investigate the space-time picture of Tμ ν deviations from equilibrium in Au+Au collisions using a coarse-grained transport approach. The collision energy is varied in the range Elab=5 -160 A GeV . The sensitivity of Tμ ν deviations from equilibrium to collision centrality, and other parameters such as the switching criterion, the amount of statistics used to construct the initial state, and the smearing parameter σ are investigated. For low statistics, deviations of Tμ ν from equilibrium are large and dominated by the effect of finite sampling. For large statistics, the pressure anisotropy plays the most significant role, while the off-diagonal components of Tμ ν are small in a large volume during the whole evolution. For all considered energies and centralities the pressure anisotropy exhibits a similar feature: there is a narrow interval of time when it rapidly drops in a considerable volume. This allows us to introduce an "isotropization time," which is found to decrease with energy and slightly increase with centrality. The isotropization times are larger than times typically used for initializing hydrodynamics.

  6. Angular Momentum Transport in Magnetized Stellar Radiative Zones. II. The Solar Spin-down

    NASA Astrophysics Data System (ADS)

    Charbonneau, P.; MacGregor, K. B.

    1993-11-01

    We present a large set of numerical calculations describing the rotational evolution of a solar-type star, in response to the torque exerted on it by a magnetically coupled wind emanating from its surface. We consider a situation where the internal redistribution of angular momentum in the radiative part of the envelope is dominated by magnetic stresses arising from the shearing of a preexisting, large-scale, poloidal magnetic field. By assuming a time-independent poloidal magnetic field, neglecting fluid motions in meridional planes, and restricting our attention to axisymmetric systems, we reduce the spin-down problem to solving the (coupled) ψ-components of the momentum and induction equations. Nevertheless, our computations remain dynamical, in that they take into account both the generation of a toroidal magnetic field by shearing of the preexisting poloidal field, and the back-reaction of the resulting Lorentz force on the differential rotation. It becomes possible to draw, for the first time, a reasonably realistic and quantitative picture of the effects of large-scale internal magnetic fields on the main-sequence rotational evolution of solar-type stars. We perform spin-down calculations for a standard solar model, starting from the ZAMS and extending all the way to the solar age. The wind-induced surface torque is computed using the axisymmetric formulation of Weber & Davis (1967). We consider a number of poloidal magnetic field configurations which differ both in the degree of magnetic coupling between the convective envelope and radiative core and in average strength. The rotational evolution can be divided into three more or less distinct phases: an initial phase of toroidal field buildup in the radiative zone, lasting from a few times 104 to a few times 106 yr; a second period in which oscillations set up in the radiative zone during the first phase are damped; and a third period, lasting from an age of about 107 yr onward, characterized by a state of

  7. Mass and Momentum Transport in Microcavities for Diffusion-Dominant Cell Culture Applications

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Pinero, Daniel; Hsieh, Adam H.; Atencia, Javier

    2012-01-01

    For the informed design of microfluidic devices, it is important to understand transport phenomena at the microscale. This letter outlines an analytically-driven approach to the design of rectangular microcavities extending perpendicular to a perfusion microchannel for microfluidic cell culture devices. We present equations to estimate the spatial transition from advection- to diffusion-dominant transport inside cavities as a function of the geometry and flow conditions. We also estimate the time required for molecules, such as nutrients or drugs to travel from the microchannel to a given depth into the cavity. These analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain long-term, physiologically-based culture conditions with low fluid shear stress.

  8. Momentum Confinement at Low Torque

    SciTech Connect

    Solomon, W M; Burrell, K H; deGrassie, J S; Budny, R; Groebner, R J; Heidbrink, W W; Kinsey, J E; Kramer, G J; Makowski, M A; Mikkelsen, D; Nazikian, R; Petty, C C; Politzer, P A; Scott, S D; Van Zeeland, M A; Zarnstorff, M C

    2007-06-26

    Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized {beta}{sub N}, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co-neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities. Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated q{sub min} show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. The relative importance of E x B shearing between the two is modeled using GLF23 and may suggest a possible explanation.

  9. Turbulent rotating plane Couette flow: Reynolds and rotation number dependency of flow structure and momentum transport

    NASA Astrophysics Data System (ADS)

    Kawata, Takuya; Alfredsson, P. Henrik

    2016-07-01

    Plane Couette flow under spanwise, anticyclonic system rotation [rotating plane Couette flow (RPCF)] is studied experimentally using stereoscopic particle image velocimetry for different Reynolds and rotation numbers in the fully turbulent regime. Similar to the laminar regime, the turbulent flow in RPCF is characterized by roll cells, however both instantaneous snapshots of the velocity field and space correlations show that the roll cell structure varies with the rotation number. All three velocity components are measured and both the mean flow and all four nonzero Reynolds stresses are obtained across the central parts of the channel. This also allows us to determine the wall shear stress from the viscous stress and the Reynolds stress in the center of the channel, and for low rotation rates the wall shear stress increases with increasing rotation rate as expected. The results show that zero absolute vorticity is established in the central parts of the channel of turbulent RPCF for high enough rotation rates, but also that the mean velocity profile for certain parameter ranges shows an S shape giving rise to a negative velocity gradient in the center of the channel. We find that from an analysis of the Reynolds stress transport equation using the present data there is a transport of the Reynolds shear stress towards the center of the channel, which may then result in a negative mean velocity gradient there.

  10. Anomalous perturbative transport in tokamaks due to drift-Alfven-wave turbulence

    SciTech Connect

    Thoul, A.A. ); Similon, P.L. ); Sudan, R.N. )

    1994-03-01

    The method developed in Thoul, Similon, and Sudan [Phys. Plasmas [bold 1], 579 (1994)] is used to calculate the transport due to drift-Alfven-wave turbulence, in which electromagnetic effects such as the fluttering of the magnetic field lines are important. Explicit expressions are obtained for all coefficients of the anomalous transport matrix relating particle and heat fluxes to density and temperature gradients in the plasma. Although the magnetic terms leave the transport by trapped electrons unaffected, they are important for the transport by circulating electrons.

  11. Perturbative studies of toroidal momentum transport using neutral beam injection modulation in the Joint European Torus: Experimental results, analysis methodology, and first principles modeling

    SciTech Connect

    Mantica, P.; Ferreira, J. S.; Salmi, A.; Strintzi, D.; Weiland, J.; Brix, M.; Giroud, C.; Corrigan, G.; Zastrow, K.-D.; Tardini, G.

    2010-09-15

    Perturbative experiments have been carried out in the Joint European Torus [Fusion Sci. Technol. 53(4) (2008)] in order to identify the diffusive and convective components of toroidal momentum transport. The torque source was modulated either by modulating tangential neutral beam power or by modulating in antiphase tangential and normal beams to produce a torque perturbation in the absence of a power perturbation. The resulting periodic perturbation in the toroidal rotation velocity was modeled using time-dependent transport simulations in order to extract empirical profiles of momentum diffusivity and pinch. Details of the experimental technique, data analysis, and modeling are provided. The momentum diffusivity in the core region (0.2<{rho}<0.8) was found to be close to the ion heat diffusivity ({chi}{sub {phi}/{chi}i{approx}}0.7-1.7) and a significant inward momentum convection term, up to 20 m/s, was found, leading to an effective momentum diffusivity significantly lower than the ion heat diffusivity ({chi}{sub {phi}}{sup eff}/{chi}{sub i}{sup eff{approx}}0.4). These results have significant implications on the prediction of toroidal rotation velocities in future tokamaks and are qualitatively consistent with recent developments in momentum transport theory. Detailed quantitative comparisons with the theoretical predictions of the linear gyrokinetic code GKW [A. G. Peeters et al., Comput. Phys. Commun. 180, 2650 (2009)] and of the quasilinear fluid Weiland model [J. Weiland, Collective Modes in Inhomogeneous Plasmas (IOP, Bristol, 2000)] are presented for two analyzed discharges.

  12. Anomalous perturbative transport in tokamaks due to drift-wave turbulence

    SciTech Connect

    Thoul, A.A. ); Similon, P.L. ); Sudan, R.N. )

    1994-03-01

    A new method for calculating the anomalous transport in tokamak plasmas is presented. The renormalized nonlinear plasma response function is derived using the direct-interaction approximation (DIA). A complete calculation for the case of electrostatic drift-wave turbulence is presented. Explicit expressions for all coefficients of the anomalous transport matrix relating particle and heat fluxes to density and temperature gradients in the plasma are obtained. The anomalous transport matrix calculated using the DIA does not have the Onsager symmetry. As an example of application, the parameters of the Texas Experimental Tokamak (TEXT) [Nucl. Technol. Fusion [bold 1], 479 (1981)] are used to evaluate all transport coefficients numerically, as well as the spectrum modulation. The relation between the theoretical results and the experimental data is discussed. Although this paper focuses on electron transport for simplicity, the method can also be used to calculate anomalous transport due to ion instabilities, such as the ion-temperature-gradient instability.

  13. Solar Nebula Magnetohydrodynamic Dynamos: Kinematic Theory, Dynamical Constraints, and Magnetic Transport of Angular Momentum

    NASA Technical Reports Server (NTRS)

    Stepinski, Tomasz F.; Reyes-Ruiz, Mauricio; Vanhala, Harri A. T.

    1993-01-01

    A hydromagnetic dynamo provides the best mechanism for contemporaneously producing magnetic fields in a turbulent solar nebula. We investigate the solar nebula in the framework of a steady-state accretion disk model and establish the criteria for a viable nebular dynamo. We have found that typically a magnetic gap exists in the nebula, the region where the degree of ionization is too small for the magnetic field to couple to the gas. The location and width of this gap depend on the particular model; the supposition is that gaps cover different parts of the nebula at different evolutionary stages. We have found, from several dynamical constraints, that the generated magnetic field is likely to saturate at a strength equal to equipartition with the kinetic energy of turbulence. Maxwell stress arising from a large-scale magnetic field may significantly influence nebular structure, and Maxwell stress due to small-scale fields can actually dominate other stresses in the inner parts of the nebula. We also argue that the bulk of nebular gas, within the scale height from the midplane, is stable against Balbus-Hawley instability.

  14. Momentum transport in the wake of a finite-length thin flat plate

    NASA Astrophysics Data System (ADS)

    Hemmati, Arman; Wood, David H.; Martinuzzi, Robert J.

    2015-11-01

    A comparison of the wakes of thin flat plates with aspect ratios (AR) 1.0, 1.6, 2.0 and 3.2, normal to a uniform stream, are conducted based on Direct Numerical Simulations (DNS) at Re=1200. Typical anti-symmetric Karman shedding of high AR plates, AR>2.0, is initiated by detachments at the plate corners. Shear layer detachment on the longer edges triggers shedding from the shorter edges. Thus, there is only a single shedding frequency detected in the wake. At lower AR, however, an interaction between adjacent shear layers occurs prior to detachment, which elongates the base vortex, i.e. from 1.56H for AR=3.2 to 2.69H for AR=1.6. This change of shedding mechanism has significant impact on wake structures and instantaneous pressure loads. The dominant shear layers on the longer sides appear to maintain the Karman shedding at higher AR. Karman shedding is intermittently interrupted for lower AR plates due to shear layer interactions, which increases the turbulence kinetic energy, production and dissipation rates and Reynolds stresses. To better understand dependence of the wake topology on AR, mean and fluctuating flow variables are evaluated at various locations along the chord. Moreover, comparisons to wakes of finite-height cylinders and circular plates are considered. This work is supported by AITF and NSERC fellowship grants.

  15. Influence of Local Angular Momentum Transport and Ring Configurations in the Strong Gravity of a Central Object*

    NASA Astrophysics Data System (ADS)

    Rousseau, F.; Coppi, B.

    2007-04-01

    Differentially rotating plasma structures in the prevalent gravity of a central object (e.g. black hole) can acquire a configuration characterized by a radial sequence of ringsootnotetextB. Coppi and F. Rousseau, Ap. J. 641 (1), 458 (2006) in the presence of a ``seed'' vertical magnetic field, rather than one typical of a gaseous disk. A sequence of pairs of counter-streaming toroidal current channels is associated with these rings and no poloidal currents are produced if a torque is absent. When a local transport process of angular momentum is present, loops of poloidal currents associated with the resulting torque are formed.ootnotetextB. Coppi, MIT-LNS Report 06/05 (Cambridge, MA, 2006) In particular, the vertical current densities are up- down antisymmetric. A jet that could emerge from the innermost ring would, in fact, have antisymmetric vertical current densities relative to the equatorial plane. When a small radial velocity, resulting for instance from accretion, is present we argue that matter will flow along the X-lines and the O-lines of a weakly spiraling ring configuration that is envisioned instead of the strictly axisymmetric^1 configuration found when only a toroidal velocity is present. *Sponsored in part by the U.S. Department of Energy.

  16. Turbulent transport of heat and momentum in a boundary layer subject to deceleration, suction and variable wall temperature

    NASA Technical Reports Server (NTRS)

    Orlando, A. F.; Moffat, R. J.; Kays, W. M.

    1974-01-01

    The relationship between the turbulent transport of heat and momentum in an adverse pressure gradient boundary layer was studied. An experimental study was conducted of turbulent boundary layers subject to strong adverse pressure gradients with suction. Near-equilibrium flows were attained, evidenced by outer-region similarity in terms of defect temperature and defect velocity profiles. The relationship between Stanton number and enthalpy thickness was shown to be the same as for a flat plate flow both for constant wall temperature boundary conditions and for steps in wall temperature. The superposition principle used with the step-wall-temperature experimental result was shown to accurately predict the Stanton number variation for two cases of arbitrarily varying wall temperature. The Reynolds stress tensor components were measured for strong adverse pressure gradient conditions and different suction rates. Two peaks of turbulence intensity were found: one in the inner and one in the outer regions. The outer peak is shown to be displaced outward by an adverse pressure gradient and suppressed by suction.

  17. Absorption of intense microwaves and ion acoustic turbulence due to heat transport

    SciTech Connect

    De Groot, J.S.; Liu, J.M.; Matte, J.P.

    1994-02-04

    Measurements and calculations of the inverse bremsstrahlung absorption of intense microwaves are presented. The isotropic component of the electron distribution becomes flat-topped in agreement with detailed Fokker-Planck calculations. The plasma heating is reduced due to the flat-topped distributions in agreement with calculations. The calculations show that the heat flux at high microwave powers is very large, q{sub max} {approx} 0.3 n{sub e}v{sub e}T{sub e}. A new particle model to, calculate the heat transport inhibition due to ion acoustic turbulence in ICF plasmas is also presented. One-dimensional PIC calculations of ion acoustic turbulence excited due to heat transport are presented. The 2-D PIC code is presently being used to perform calculations of heat flux inhibition due to ion acoustic turbulence.

  18. A fluid model for the edge pressure pedestal height and width in tokamaks based on the transport constraint of particle, energy, and momentum balance

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2016-06-01

    A fluid model for the tokamak edge pressure profile required by the conservation of particles, momentum and energy in the presence of specified heating and fueling sources and electromagnetic and geometric parameters has been developed. Kinetics effects of ion orbit loss are incorporated into the model. The use of this model as a "transport" constraint together with a "Peeling-Ballooning (P-B)" instability constraint to achieve a prediction of edge pressure pedestal heights and widths in future tokamaks is discussed.

  19. Anisotropic Fermi Couplings due to Large Unquenched Orbital Angular Momentum: Q-band 1H, 14N and 11B ENDOR of bistrispyrazolylborate Co(II)

    PubMed Central

    Myers, William K.; Scholes, Charles P.; Tierney, David L.

    2009-01-01

    We report Q-band ENDOR of 1H, 14N, and 11B at the g|| extreme of the EPR spectrum of bistrispyrazolylborate Co(II), Co(Tp)2 and two structural analogs. This trigonally symmetric, high-spin (hs) S = 3/2 Co(II) complex shows large unquenched ground–state orbital angular momentum, which leads to highly anisotropic electronic g-values [g|| = 8.48, g⊥ = 1.02]. The large g-anisotropy is shown to result in large dipolar couplings near g|| and uniquely anisotropic 14N Fermi couplings, which arise from spin transferred to the nitrogen 2s orbital (2.2 %) via anti-bonding interactions with singly occupied metal dx2−y2 and dz2 orbitals. Large, well-resolved 1H and 11B dipolar couplings were also observed. Taken in concert with our previous X-band ENDOR measurements at g⊥ (Myers, et al, Inorg. Chem. 2008, 47, 6701–6710), the present data allow a detailed analysis of the dipolar hyperfine tensors of two of the four symmetry distinct protons in the parent molecule. In the substituted analogs, changes in hyperfine coupling due to altered metal-proton distances give further evidence of an anisotropic Fermi contact interaction. For the pyrazolyl 3H proton, the data indicate a 0.2 MHz anisotropic contact interaction and ~ 4 % transfer of spin away from Co(II). Dipolar coupling also dominates for the axial boron atoms, consistent with their distance from the Co(II) ion, and resolved 11B quadrupolar coupling showed ~ 30 % electronic inequivalence between the B-H and B-C sp3 bonds. This is the first comprehensive ENDOR study of any hs Co(II) species and lays the foundation for future development. PMID:19591466

  20. Combined Structural and Compositional Evolution of Planetary Rings Due to Micrometeoroid Impacts and Ballistic Transport

    NASA Technical Reports Server (NTRS)

    Estrada, Paul R.; Durisen, Richard H.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2015-01-01

    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. In this paper, we describe the methodology based on the original structural code of Durisen et al. (1989, Icarus 80, 136-166) and on the pollution transport code of Cuzzi and Estrada (1998, Icarus 132, 1-35). We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data. In particular, we explicitly verify the claim that the inner B (and presumably A) ring edge can be maintained over long periods of time due to an ejecta distribution that is heavily biased in the prograde direction through a balance between the sharpening effects of ballistic transport and the broadening effects of viscosity. We also see that a "ramp"-like feature forms over time just inside that edge. However, it does not remain linear for the duration of the runs presented here unless a less steep ejecta velocity distribution is adopted. We also model the C ring plateaus and find that their outer edges can be maintained at their observed sharpness for long periods due to ballistic transport. We hypothesize that the addition of a significant component of a retrograde-biased ejecta distribution may help explain the linearity of the ramp and is probably essential for maintaining the sharpness of C ring plateau inner edges. This component would arise for the subset of micrometeoroid impacts which are destructive rather than merely cratering. Such a distribution will be introduced in future work.

  1. Mass Distribution and Mass Transport in the Earth System: Recent Scientific Progress Due to Interdisciplinary Research

    NASA Astrophysics Data System (ADS)

    Kusche, Jürgen; Klemann, Volker; Sneeuw, Nico

    2014-11-01

    This Special Issue on "Mass Distribution and Mass Transport in the Earth System: Recent Scientific Progress due to Interdisciplinary Research" reports a number of findings resulting from a collaborative effort run from 2006 until 2013, in the framework of the DFG Priority Program 1257 "Mass Distribution and Mass Transport in the Earth System". Contributions have been arranged along five lines, i.e. (1) improvements in geodesy: satellite mass monitoring through gravimetry and altimetry, (2) applications in large-scale hydrology, (3) applications in solid Earth research, (4) applications in cryospheric research, (5) applications in ocean sciences.

  2. Magnetorotational Turbulence Transports Angular Momentum in Stratified Disks with Low Magnetic Prandtl Number but Magnetic Reynolds Number above a Critical Value

    SciTech Connect

    Oishi, Jeffrey S.; Low, Mordecai-Mark Mac; /Amer. Museum Natural Hist.

    2012-02-14

    The magnetorotational instability (MRI) may dominate outward transport of angular momentum in accretion disks, allowing material to fall onto the central object. Previous work has established that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system. Recently, however, simulations of the scaling of the angular momentum transport parameter {alpha}{sub SS} with the magnetic Prandtl number Pm have cast doubt on the ability of the MRI to transport astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations including explicit physical viscosity and resistivity to show that when vertical stratification is included, mean field dynamo action operates, driving the system to a configuration in which the magnetic field is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity conservation, allowing the generation of a mean field on timescales independent of the resistivity. Our models demonstrate the existence of a critical magnetic Reynolds number Rm{sub crit}, below which transport becomes strongly Pm-dependent and chaotic, but above which the transport is steady and Pm-independent. Prior simulations showing Pm-dependence had Rm < Rm{sub crit}. We conjecture that this steady regime is possible because the mean field dynamo is not helicity-limited and thus does not depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters suggests that disks around both protostars and stellar mass black holes have Rm >> Rm{sub crit}. Thus, we suggest that the strong Pm dependence seen in recent simulations does not occur in real systems.

  3. MAGNETOROTATIONAL TURBULENCE TRANSPORTS ANGULAR MOMENTUM IN STRATIFIED DISKS WITH LOW MAGNETIC PRANDTL NUMBER BUT MAGNETIC REYNOLDS NUMBER ABOVE A CRITICAL VALUE

    SciTech Connect

    Oishi, Jeffrey S.

    2011-10-10

    The magnetorotational instability (MRI) may dominate outward transport of angular momentum in accretion disks, allowing material to fall onto the central object. Previous work has established that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system. Recently, however, simulations of the scaling of the angular momentum transport parameter {alpha}{sub SS} with the magnetic Prandtl number Pm have cast doubt on the ability of the MRI to transport astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations including explicit physical viscosity and resistivity to show that when vertical stratification is included, mean-field dynamo action operates, driving the system to a configuration in which the magnetic field is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity conservation, allowing the generation of a mean field on timescales independent of the resistivity. Our models demonstrate the existence of a critical magnetic Reynolds number Rm{sub crit}, below which transport becomes strongly Pm-dependent and chaotic, but above which the transport is steady and Pm-independent. Prior simulations showing Pm dependence had Rm < Rm{sub crit}. We conjecture that this steady regime is possible because the mean-field dynamo is not helicity-limited and thus does not depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters suggests that disks around both protostars and stellar mass black holes have Rm >> Rm{sub crit}. Thus, we suggest that the strong Pm dependence seen in recent simulations does not occur in real systems.

  4. Morphological changes due to tsunami impact: Numerical modelling of sediments transport and deposit at Tangier - Morocco

    NASA Astrophysics Data System (ADS)

    Ramalho, Inês; Omira, Rachid; Baptista, Maria Ana; El Moussaoui, Said; Najib Zaghloul, Mohamed

    2016-04-01

    Coastal areas in the North of Morocco are at risk of tsunami inundation. Overland tsunami propagation leads to widespread and dramatic changes in coastal morphology due to sediments erosion, transport and deposition processes. Tsunami sediments transport and morphological changes must take into consideration bed-load and suspended load transport of non-cohesive sediments and suspended load of cohesive sediments. Numerical calculation of suspended sediment transport/deposition is performed by solving the advection-diffusion equations for the suspended sediment, where the velocities are obtained from the hydrodynamic modelling. In this study, we assess the morphological changes under tsunami impact at the Bay of Tangier-Morocco. We use a coupled hydrodynamic and morpho-dynamic numerical code, based on two open sources codes: COMCOT and Xbeach, to simulate the tsunami impact and the associated sediments transport and deposition. COMCOT solves the shallow water equations to calculate the inundation characteristics (flow depth and velocity), while Xbeach allows solving the advection-diffusion equations to determine the amount of sediments eroded, transported and deposed. The results of this study are presented in terms of maps displaying the amount of sediments eroded, transported and deposed at the bay of Tangier following a tsunami similar to the 1755 Lisbon event. We find that the bay of Tangier is vulnerable to morphological changes under tsunami threat coming from SW Iberia margin. This work is supported by the EU project ASTARTE - Assessment, Strategy And Risk Reduction for Tsunamis in Europe, Grant 603839, 7th FP (ENV.2013,6.4-3).

  5. Investigation of VOC Transport in Soil Vapors due to Wind Effects using Models and Measurement

    NASA Astrophysics Data System (ADS)

    Pennell, K. G.; Roghani, M.; Shirazi, E.; Willett, E.

    2014-12-01

    For the past several years, vapor intrusion of volatile organic compounds (VOCs) that emanate from hazardous waste sites has been gaining attention due to adverse health effects and regulatory action. Most studies of VOC vapor intrusion suggest that diffusion is the dominant contaminant transport mechanism, while advection is only considered important near contaminant entry points (i.e. building cracks). This conceptual framework is accurate when above-ground surface features do not promote air flow into (or out of) the ground surface. Recent research related to air flow in the atmospheric boundary layer (ABL) due to wind effects around buildings suggests a need for better understanding how advective transport processes can impact contaminant profiles and vapor intrusion exposure risks. In this study, a numerical model using COMSOL Multiphysics was developed to account for parameters affecting the transport of VOCs from the subsurface into buildings by considering wind effects in the ABL. Model simulations are compared to preliminary laboratory and field data to evaluate the relative importance of wind induced pressure gradients, soil permeability, soil porosity, and soil effective diffusivity on vapor intrusion entry rates. The major goal of this research is to develop an improved conceptual understanding of the vapor intrusion process so that remediation efforts can be better designed and implemented.

  6. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    PubMed

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance. PMID:26134922

  7. Prolonged river water pollution due to variable-density flow and solute transport in the riverbed

    NASA Astrophysics Data System (ADS)

    Jin, Guangqiu; Tang, Hongwu; Li, Ling; Barry, D. A.

    2015-04-01

    A laboratory experiment and numerical modeling were used to examine effects of density gradients on hyporheic flow and solute transport under the condition of a solute pulse input to a river with regular bed forms. Relatively low-density gradients due to an initial salt pulse concentration of 1.55 kg m-3 applied in the experiment were found to modulate significantly the pore-water flow and solute transport in the riverbed. Such density gradients increased downward flow and solute transport in the riverbed by factors up to 1.6. This resulted in a 12.2% increase in the total salt transfer from the water column to the riverbed over the salt pulse period. As the solute pulse passed, the effect of the density gradients reversed, slowing down the release of the solute back to the river water by a factor of 3.7. Numerical modeling indicated that these density effects intensified as salt concentrations in the water column increased. Simulations further showed that the density gradients might even lead to unstable flow and result in solute fingers in the bed of large bed forms. The slow release of solute from the bed back to the river led to a long tail of solute concentration in the river water. These findings have implications for assessment of impact of pollution events on river systems, in particular, long-term effects on both the river water and riverbed due to the hyporheic exchange.

  8. Incorporating Super-Diffusion due to Sub-Grid Heterogeneity to Capture Non-Fickian Transport.

    PubMed

    Baeumer, Boris; Zhang, Yong; Schumer, Rina

    2015-01-01

    Numerical transport models based on the advection-dispersion equation (ADE) are built on the assumption that sub-grid cell transport is Fickian such that dispersive spreading around the average velocity is symmetric and without significant tailing on the front edge of a solute plume. However, anomalous diffusion in the form of super-diffusion due to preferential pathways in an aquifer has been observed in field data, challenging the assumption of Fickian dispersion at the local scale. This study develops a fully Lagrangian method to simulate sub-grid super-diffusion in a multidimensional regional-scale transport model by using a recent mathematical model allowing super-diffusion along the flow direction given by the regional model. Here, the time randomizing procedure known as subordination is applied to flow field output from MODFLOW simulations. Numerical tests check the applicability of the novel method in mapping regional-scale super-diffusive transport conditioned on local properties of multidimensional heterogeneous media. PMID:25214174

  9. ARCN1 Mutations Cause a Recognizable Craniofacial Syndrome Due to COPI-Mediated Transport Defects.

    PubMed

    Izumi, Kosuke; Brett, Maggie; Nishi, Eriko; Drunat, Séverine; Tan, Ee-Shien; Fujiki, Katsunori; Lebon, Sophie; Cham, Breana; Masuda, Koji; Arakawa, Michiko; Jacquinet, Adeline; Yamazumi, Yusuke; Chen, Shu-Ting; Verloes, Alain; Okada, Yuki; Katou, Yuki; Nakamura, Tomohiko; Akiyama, Tetsu; Gressens, Pierre; Foo, Roger; Passemard, Sandrine; Tan, Ene-Choo; El Ghouzzi, Vincent; Shirahige, Katsuhiko

    2016-08-01

    Cellular homeostasis is maintained by the highly organized cooperation of intracellular trafficking systems, including COPI, COPII, and clathrin complexes. COPI is a coatomer protein complex responsible for intracellular protein transport between the endoplasmic reticulum and the Golgi apparatus. The importance of such intracellular transport mechanisms is underscored by the various disorders, including skeletal disorders such as cranio-lenticulo-sutural dysplasia and osteogenesis imperfect, caused by mutations in the COPII coatomer complex. In this article, we report a clinically recognizable craniofacial disorder characterized by facial dysmorphisms, severe micrognathia, rhizomelic shortening, microcephalic dwarfism, and mild developmental delay due to loss-of-function heterozygous mutations in ARCN1, which encodes the coatomer subunit delta of COPI. ARCN1 mutant cell lines were revealed to have endoplasmic reticulum stress, suggesting the involvement of ER stress response in the pathogenesis of this disorder. Given that ARCN1 deficiency causes defective type I collagen transport, reduction of collagen secretion represents the likely mechanism underlying the skeletal phenotype that characterizes this condition. Our findings demonstrate the importance of COPI-mediated transport in human development, including skeletogenesis and brain growth. PMID:27476655

  10. Suppression pattern of neutral pions at high transverse momentum in Au + Au collisions at sqrt[sNN]=200 GeV and constraints on medium transport coefficients.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J-S; Chang, B S; Charvet, J-L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Das, K; David, G; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S-Y; Fusayasu, T; Gadrat, S; Garishvili, I; Gastineau, F; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gunji, T; Gustafsson, H-A; Hachiya, T; Henni, A Hadj; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Han, R; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; He, X; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Hur, M G; Ichihara, T; Imai, K; Imrek, J; Inaba, M; Inoue, Y; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Kawagishi, T; Kawall, D; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kroon, P J; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y-S; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Lim, H; Liska, T; Litvinenko, A; Liu, M X; Li, X; Li, X H; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mao, Y; Masek, L; Masui, H; Matathias, F; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mikes, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oka, M; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Slunecka, M; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomásek, L; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vertesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L

    2008-12-01

    For Au + Au collisions at 200 GeV, we measure neutral pion production with good statistics for transverse momentum, pT, up to 20 GeV/c. A fivefold suppression is found, which is essentially constant for 5 < pT < 20 GeV/c. Experimental uncertainties are small enough to constrain any model-dependent parametrization for the transport coefficient of the medium, e.g., q in the parton quenching model. The spectral shape is similar for all collision classes, and the suppression does not saturate in Au + Au collisions. PMID:19113542

  11. Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot

    NASA Astrophysics Data System (ADS)

    Svilans, Artis; Burke, Adam M.; Svensson, Sofia Fahlvik; Leijnse, Martin; Linke, Heiner

    2016-08-01

    Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.

  12. Propagation behavior of permeability reduction in heterogeneous porous media due to particulate transport

    NASA Astrophysics Data System (ADS)

    Xu, Jianping

    2016-04-01

    In this letter we explore the propagation behavior of permeability reduction due to particulate transport in heterogeneous porous media. By simulating an advection-dispersion–based model we find that an attenuating sequence exists in terms of the propagation of particle concentration, permeability reduction and heterogeneity perturbation. The advancing speed of the fronts of the mentioned physical quantities attenuates successively from const to \\text{const}(1/n)1/t1-1/n to \\text{const}1/t (where n > 1 and t denotes time) regardless of the heterogeneity patterns. Then we move on to discuss the micro-dynamics of the propagation sequence, involving how it originates and how it connects with the macroscopic results. Moreover, exploiting the propagation mechanism enables us to know the condition under which we can apply the hypothesis of media homogeneity to describe the behavior of the particulate transport system in porous media.

  13. Model predictions of latitude-dependent ozone depletion due to supersonic transport operations

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Whitten, R. C.; Watson, V. R.; Woodward, H. T.; Riegel, C. A.; Capone, L. A.; Becker, T.

    1976-01-01

    Results are presented from a two-dimensional model of the stratosphere that simulates the seasonal movement of ozone by both wind and eddy transport, and contains all the chemistry known to be important. The calculated reductions in ozone due to NO2 injection from a fleet of supersonic transports are compared with the zonally averaged results of a three-dimensional model for a similar episode of injection. The agreement is good in the northern hemisphere, but is not as good in the southern hemisphere. Both sets of calculations show a strong corridor effect in that the predicted ozone depletions are largest to the north of the flight corridor for aircraft operating in the northern hemisphere.

  14. Investigations of turbulent transport and intrinsic torque of toroidal momentum at the edge of J-TEXT tokamak with electrode biasing

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Chen, Z. P.; Zhuang, G.; Wang, L.; Liu, H.; Wang, Z. J.

    2016-04-01

    The influences of electrode biasing (EB) on toroidal rotation and turbulent (toroidal) momentum transport at the plasma edge have been experimentally studied in the J-TEXT tokamak. In the absence of bias (i.e. the bias current I b  =  0 A), plasma toroidal rotation at the edge of the confined region is intrinsically towards the co-I p direction (parallel to plasma current); in the presence of bias, edge rotation can be greatly modified, and shows positive correlation with the bias current. As the dominant term in the turbulent momentum flux, the toroidal-radial Reynolds stress term is found to give rise to an intrinsic torque in the experiments. The local momentum balance is provided by a viscous damping-like term on the velocity. Moreover, the existence of intrinsic torque at the edge is directly verified by cancelling out the local rotation under negative bias (I b  ≈  -60 A). The corresponding intrinsic torque density at the plasma edge is about 0.65 N m-2, in the co-I p direction. Further comparison shows that this intrinsic torque can be reasonably explained by the measured residual stress, providing direct evidence for the hypothesis that the residual stress is the origin of the intrinsic rotation.

  15. Inhibition of quantum transport due to 'scars' of unstable periodic orbits

    NASA Technical Reports Server (NTRS)

    Jensen, R. V.; Sanders, M. M.; Saraceno, M.; Sundaram, B.

    1989-01-01

    A new quantum mechanism for the suppression of chaotic ionization of highly excited hydrogen atoms explains the appearance of anomalously stable states in the microwave ionization experiments of Koch et al. A novel phase-space representation of the perturbed wave functions reveals that the inhibition of quantum transport is due to the selective excitation of wave functions that are highly localized near unstable periodic orbits in the chaotic classical phase space. The 'scarred' wave functions provide a new basis for the quantum description of a variety of classically chaotic systems.

  16. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    SciTech Connect

    Rawl, Richard R; Scofield, Patricia A; Leggett, Richard Wayne; Eckerman, Keith F

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low-level NORM

  17. Analysis of the Momentum and Pollutant Transport at the Roof Level of 2D Idealized Street Canyons: a Large-Eddy Simulation Solution

    NASA Astrophysics Data System (ADS)

    Cheng, Wai Chi; Liu, Chun-Ho

    2010-05-01

    To investigate the detailed momentum and pollutant transports between urban street canyons and the shear layer, a large-eddy simulation (LES) model was developed to calculate the flow and pollutant dispersion in isothermal conditions. The computational domain consisted of three identical two-dimensional (2D) idealized street canyons of unity aspect ratio. The flow field was assumed to be periodic in the horizontal domain boundaries. The subgrid-scale (SGS) stress was calculated by solving the SGS turbulent kinetic energy (TKE) conservation. An area pollutant source with constant pollutant concentration was prescribed on the ground of all streets. Zero pollutant concentration and an open boundary were applied at the domain inflow and outflow, respectively. The quadrant and budget analyses were employed to examine the momentum and pollutant transports at the roof level of the street canyons. Quadrant analyses of the resolved-scale vertical fluxes of momentum and pollutant along the roof level were performed to compare the contributions of different events/scales to the transport processes. The roof of the street canyon is divided into five segments, namely leeward side, upwind shift, center core, downwind shift and windward side in the streamwise direction. Among the four quadrants considered, the sweeps/ejections, which correspond to the downward/upward motions, dominate the momentum/pollutant transfer. The inward/outward interactions play relatively minor roles. While studying the events in detail, the contribution from the sweeps is mainly large-scale fluctuation compared with that of ejections. Moreover, most of the momentum and pollutant transports take place on the windward side. The strong shear at the roof level initiates instability that in turn promotes the increasing turbulent transport from the leeward side to the windward side. At the same time, the roof-level fluctuations grow linearly in the streamwise direction leading to the

  18. CFD Assessment of Aerodynamic Degradation of a Subsonic Transport Due to Airframe Damage

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar Z.; Atkins, Harold L.; Viken, Sally A.; Morrison, Joseph H.

    2010-01-01

    A computational study is presented to assess the utility of two NASA unstructured Navier-Stokes flow solvers for capturing the degradation in static stability and aerodynamic performance of a NASA General Transport Model (GTM) due to airframe damage. The approach is to correlate computational results with a substantial subset of experimental data for the GTM undergoing progressive losses to the wing, vertical tail, and horizontal tail components. The ultimate goal is to advance the probability of inserting computational data into the creation of advanced flight simulation models of damaged subsonic aircraft in order to improve pilot training. Results presented in this paper demonstrate good correlations with slope-derived quantities, such as pitch static margin and static directional stability, and incremental rolling moment due to wing damage. This study further demonstrates that high fidelity Navier-Stokes flow solvers could augment flight simulation models with additional aerodynamic data for various airframe damage scenarios.

  19. New fluid model for the turbulent transport due to the ion temperature gradient

    SciTech Connect

    Kim, C. ); Horton, W. ); Hamaguchi, S. )

    1993-05-01

    A new set of equations appropriate for the study of the turbulence, due to the ion temperature gradient in the slab in the fluid description, is proposed. This model is similar to many existing models including the one used in the work of Hamaguchi and Horton (HH) [S. Hamaguchi and W. Horton, Phys. Fluids B [bold 2], 1834 (1990)]. The main difference is that in this model the ion diamagnetic drift contributes to the kinetic energy in the energy balance relation. It is achieved through more complete analysis for the polarization drift due to the finite-Larmor-radius effects. The linear growth rate in the model is found to be smaller and the numerical results show that the heat transport is smaller by an order of magnitude when compared to HH.

  20. Coevolution between Supermassive Black Holes and Bulges Is Not via Internal Feedback Regulation but by Rationed Gas Supply due to Angular Momentum Distribution

    NASA Astrophysics Data System (ADS)

    Cen, Renyue

    2015-05-01

    We reason that without physical fine-tuning, neither the supermassive black holes (SMBHs) nor the stellar bulges can self-regulate or inter-regulate by driving away already fallen cold gas to produce the observed correlation between them. We suggest an alternative scenario where the observed mass ratios of the SMBHs to bulges reflect the angular momentum distribution of infallen gas such that the mass reaching the stable accretion disk is a small fraction of that reaching the bulge region, averaged over the cosmological timescales. We test this scenario using high-resolution, large-scale cosmological hydrodynamic simulations, without active galactic nucleus (AGN) feedback, assuming the angular momentum distribution of gas landing in the bulge region yields a Mestel disk that is supported by independent simulations resolving the Bondi radii of SMBHs. A mass ratio of 0.1%-0.3% between the very low angular momentum gas that free falls to the subparsec region to accrete to the SMBH and the overall star formation rate is found. This ratio is found to increase with increasing redshift to within a factor of ˜2, suggesting that the SMBH-to-bulge ratio is nearly redshift independent, with a modest increase with redshift, which is a testable prediction. Furthermore, the duty cycle of AGNs with high Eddington ratios is expected to increase significantly with redshift. Finally, while SMBHs and bulges are found to coevolve on ˜30-150 Myr timescales or longer, there is indication that on still smaller timescales, the SMBH accretion and star formation may be less correlated.

  1. Full-f Neoclassical Simulations toward a Predictive Model for H-mode Pedestal Ion Energy, Particle and Momentum Transport

    SciTech Connect

    Battaglia, D. J.; Boedo, J. A.; Burrell, K. H.; Chang, C. S.; Canik, J. M.; deGrassie, J. S.; Gerhardt, S. P.; Grierson, B. A.; Groebner, R. J.; Maingi, Rajesh; Smith, S. P.

    2014-09-01

    Energy and particle transport rates are decoupled in the H-mode edge since the ion thermal transport rate is primarily set by the neoclassical transport of the deuterium ions in the tail of the thermal energy distribution, while the net particle transport rate is set by anomalous transport of the colder bulk ions. Ion orbit loss drives the energy distributions away from Maxwellian, and describes the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the Ti profile. Non-Maxwellian distributions also drive large intrinsic edge flows, and the interaction of turbulence at the top of the pedestal with the intrinsic edge flow can generate an intrinsic core torque. The primary driver of the radial electric field (Er) in the pedestal and scrapeoff layer (SOL) are kinetic neoclassical effects, such as ion orbit loss of tail ions and parallel electron loss to the divertor. This paper describes the first multi-species kinetic neoclassical transport calculations for ELM-free H-mode pedestal and scrape-off layer on DIII-D using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. This interpretative technique quantifies the role of neoclassical, anomalous and neutral transport to the overall pedestal structure, and consequently illustrates the importance of including kinetic effects self-consistently in transport calculations around transport barriers.

  2. Numerical simulation of fracture permeability evolution due to reactive transport and pressure solution processes

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Sun, Y.; Taron, J.; Shao, H.; Kolditz, O.

    2013-12-01

    Modeling fracture permeability evolution is of great interest in various geotechnical applications including underground waste repositories, carbon capture and storage, and engineered geothermal systems where fractures dominate transport behaviors. In this study, a numerical model is presented to simulate fracture permeability evolution due to reactive transport and pressure solution processes in single fractures. The model was developed within the international benchmarking project for radioactive waste disposals, DECOVALEX 2015 (Task C1). The model combines bulk behavior in pore spaces with intergranular process at asperity contacts. Hydraulic flow and reactive transport including mineral dissolution and precipitation in fracture pore space are simulated using the Galerkin finite element method. A pressure solution model developed by Taron and Elsworth (2010 JGR) is applied to simulating stress-enhanced dissolution, solute exchange with pore space, and volume removal at grain contacts. Fracture aperture and contact area ratio are updated as a result of the pore-space reaction and intergranular dissolution. In order to increase robustness and time step size, relevant processes are monolithically coupled with the simulations. The model is implemented in a scientific open-source project OpenGeoSys (www.opengeosys.org) for numerical simulation of thermo-hydro-mechanical/chemical processes in porous and fractured media. Numerical results are compared to previous experiment performed by Yasuhara et al. (2006) on flow through fractures in the Arkansas novaculite sample. The novaculite is approximated as pure quartz aggregates. Only with fitted quartz dissolution rate constants and solubility is the current model capable of reproducing observed hydraulic aperture reduction and aqueous silicate concentrations. Future work will examine reaction parameters and further validate the model against experimental results.

  3. Oil droplets transport due to irregular waves: Development of large-scale spreading coefficients.

    PubMed

    Geng, Xiaolong; Boufadel, Michel C; Ozgokmen, Tamay; King, Thomas; Lee, Kenneth; Lu, Youyu; Zhao, Lin

    2016-03-15

    The movement of oil droplets due to waves and buoyancy was investigated by assuming an irregular sea state following a JONSWAP spectrum and four buoyancy values. A technique known as Wheeler stretching was used to model the movement of particles under the moving water surface. In each simulation, 500 particles were released and were tracked for a real time of 4.0 h. A Monte Carlo approach was used to obtain ensemble properties. It was found that small eddy diffusivities that decrease rapidly with depth generated the largest horizontal spreading of the plume. It was also found that large eddy diffusivities that decrease slowly with depth generated the smallest horizontal spreading coefficient of the plume. The increase in buoyancy resulted in a decrease in the horizontal spreading coefficient, which suggests that two-dimensional (horizontal) models that predict the transport of surface oil could be overestimating the spreading of oil. PMID:26795121

  4. Significant change of spin transport property in Cu/Nb bilayer due to superconducting transition

    PubMed Central

    Ohnishi, Kohei; Ono, Yuma; Nomura, Tatsuya; Kimura, Takashi

    2014-01-01

    The combination between the spin-dependent and super-conducting (SC) transports is expected to provide intriguing properties such as crossed Andreev reflection and spin-triplet superconductivity. This may be able to open a new avenue in the field of spintronics, namely superconducting spintronics because a superconductor itself has great potential for future nanoelectronic applications. To observe such SC spin transports, the suppression of the extrinsic effects originating from the heating and Oersted field due to the electric current is a crucial role. Pure spin current without accompanying the charge current is known as a powerful mean for preventing such extrinsic effects. However, non-negligible heat flow is found to exist even in a conventional pure spin current device based on laterally-configured spin valve because of the heating around the spin injector. Here, we develop a nanopillar-based lateral spin valve, which significantly reduces the heat generation, on a superconducting Nb film. By using this ideal platform, we found that the spin absorption is strongly suppressed by the SC transition of Nb. This demonstration is the clear evidence that the super-conducting Nb is an insulator for the pure spin current. PMID:25179118

  5. Radiative forcing due to changes in ozone and methane caused by the transport sector

    NASA Astrophysics Data System (ADS)

    Myhre, G.; Shine, K. P.; Rädel, G.; Gauss, M.; Isaksen, I. S. A.; Tang, Q.; Prather, M. J.; Williams, J. E.; van Velthoven, P.; Dessens, O.; Koffi, B.; Szopa, S.; Hoor, P.; Grewe, V.; Borken-Kleefeld, J.; Berntsen, T. K.; Fuglestvedt, J. S.

    2011-01-01

    The year 2000 radiative forcing (RF) due to changes in O 3 and CH 4 (and the CH 4-induced stratospheric water vapour) as a result of emissions of short-lived gases (oxides of nitrogen (NO x), carbon monoxide and non-methane hydrocarbons) from three transport sectors (ROAD, maritime SHIPping and AIRcraft) are calculated using results from five global atmospheric chemistry models. Using results from these models plus other published data, we quantify the uncertainties. The RF due to short-term O 3 changes (i.e. as an immediate response to the emissions without allowing for the long-term CH 4 changes) is positive and highest for ROAD transport (31 mW m -2) compared to SHIP (24 mW m -2) and AIR (17 mW m -2) sectors in four of the models. All five models calculate negative RF from the CH 4 perturbations, with a larger impact from the SHIP sector than for ROAD and AIR. The net RF of O 3 and CH 4 combined (i.e. including the impact of CH 4 on ozone and stratospheric water vapour) is positive for ROAD (+16(±13) (one standard deviation) mW m -2) and AIR (+6(±5) mW m -2) traffic sectors and is negative for SHIP (-18(±10) mW m -2) sector in all five models. Global Warming Potentials (GWP) and Global Temperature change Potentials (GTP) are presented for AIR NO x emissions; there is a wide spread in the results from the 5 chemistry models, and it is shown that differences in the methane response relative to the O 3 response drive much of the spread.

  6. Reactive transport modeling of secondary water quality impacts due to anaerobic bioremediation

    NASA Astrophysics Data System (ADS)

    Ng, G. H. C.; Bekins, B. A.; Kent, D. B.; Borden, R. C.; Tillotson, J.

    2014-12-01

    Bioremediation using electron donor addition produces reducing conditions in an aquifer that promote the anaerobic biodegradation of contaminants such as chlorinated solvents. There is growing concern about secondary water quality impacts (SWQIs) triggered by the injection of electron donors, due to redox reactions with electron acceptors other than the target contaminant. Secondary plumes, including those with elevated concentrations of Mn(II), Fe(II), and CH4, may create long-lasting impairment of water quality. Understanding conditions that control the production and attenuation of SWQIs is needed for guiding responsible bioremediation strategies that limit unintended consequences. Using a reactive transport model developed with data from long-term anaerobic biodegradation monitoring sites, we simulate diverse geochemical scenarios to examine the sensitivity of secondary plume extent and persistence to a range of aquifer properties and treatment implementations. Data compiled from anaerobic bioremediation sites, which include variable physical and geochemical relationships, provide the basis for the conditions evaluated. Our simulations show that reduced metal and CH4 plumes may be significantly attenuated due to immobilization (through sorption and/or precipitation) and outgassing, respectively, and that recovery time to background conditions depends strongly on the chemical forms of reduced metals on sediments. Unsurprisingly, scenarios that do not easily allow outgassing (e.g. deeper injections) led to higher CH4 concentrations, and scenarios with higher hydraulic conductivity produced more dilute concentrations of secondary species. Results are sensitive to the assumed capacity for Fe(II) sorption and reductive dissolution rates of Fe(III) oxides, which control Fe(II) concentrations. Simulations also demonstrated the potential importance of chemical reactions between different secondary components. For example, limited CH4 loss from outgassing and Fe

  7. The metabolic basis for developmental disorders due to defective folate transport.

    PubMed

    Desai, Ankuri; Sequeira, Jeffrey M; Quadros, Edward V

    2016-07-01

    Folates are essential in the intermediary metabolism of amino acids, synthesis of nucleotides and for maintaining methylation reactions. They are also linked to the production of neurotransmitters through GTP needed for the synthesis of tetrahydrobiopterin. During pregnancy, folate is needed for fetal development. Folate deficiency during this period has been linked to increased risk of neural tube defects. Disturbances of folate metabolism due to genetic abnormalities or the presence of autoantibodies to folate receptor alpha (FRα) can impair physiologic processes dependent on folate, resulting in a variety of developmental disorders including cerebral folate deficiency syndrome and autism spectrum disorders. Overall, adequate folate status has proven to be important during pregnancy as well as neurological development and functioning in neonates and children. Treatment with pharmacologic doses of folinic acid has led to reversal of some symptoms in many children diagnosed with cerebral folate deficiency syndrome and autism, especially in those positive for autoantibodies to FRα. Thus, as the brain continues to develop throughout fetal and infant life, it can be affected and become dysfunctional due to a defective folate transport contributing to folate deficiency. Treatment and prevention of these disorders can be achieved by identification of those at risk and supplementation with folinic acid. PMID:26924398

  8. Angular Momentum

    ERIC Educational Resources Information Center

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  9. Net Fluorescein Flux Across Corneal Endothelium Strongly Suggests Fluid Transport is due to Electro-osmosis.

    PubMed

    Sanchez, J M; Cacace, V; Kusnier, C F; Nelson, R; Rubashkin, A A; Iserovich, P; Fischbarg, J

    2016-08-01

    We have presented prior evidence suggesting that fluid transport results from electro-osmosis at the intercellular junctions of the corneal endothelium. Such phenomenon ought to drag other extracellular solutes. We have investigated this using fluorescein-Na2 as an extracellular marker. We measured unidirectional fluxes across layers of cultured human corneal endothelial (HCE) cells. SV-40-transformed HCE layers were grown to confluence on permeable membrane inserts. The medium was DMEM with high glucose and no phenol red. Fluorescein-labeled medium was placed either on the basolateral or the apical side of the inserts; the other side carried unlabeled medium. The inserts were held in a CO2 incubator for 1 h (at 37 °C), after which the entire volume of the unlabeled side was collected. After that, label was placed on the opposite side, and the corresponding paired sample was collected after another hour. Fluorescein counts were determined with a (Photon Technology) DeltaScan fluorometer (excitation 380 nm; emission 550 nm; 2 nm bwth). Samples were read for 60 s. The cells utilized are known to transport fluid from the basolateral to the apical side, just as they do in vivo in several species. We used 4 inserts for influx and efflux (total: 20 1-h periods). We found a net flux of fluorescein from the basolateral to the apical side. The flux ratio was 1.104 ± 0.056. That difference was statistically significant (p = 0.00006, t test, paired samples). The endothelium has a definite restriction at the junctions. Hence, an asymmetry in unidirectional fluxes cannot arise from osmosis, and can only point instead to paracellular solvent drag. We suggest, once more, that such drag is due to electro-osmotic coupling at the paracellular junctions. PMID:26989056

  10. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    NASA Astrophysics Data System (ADS)

    Lindsay, Alexander; Anderson, Carly; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-10-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 μ m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling. Though the temperature magnitudes may vary among atmospheric discharge types (different amounts of plasma-gas heating), this relative difference between gas and liquid bulk temperatures is expected to be present for any system in which convection is significant. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2O2, NO2- , and NO3- are observed in this study if the effect of evaporative cooling is not included.

  11. Infrared rovibrational spectroscopy of OH–C{sub 2}H{sub 2} in {sup 4}He nanodroplets: Parity splitting due to partially quenched electronic angular momentum

    SciTech Connect

    Douberly, Gary E. Liang, Tao; Raston, Paul L.; Marshall, Mark D.

    2015-04-07

    The T-shaped OH–C{sub 2}H{sub 2} complex is formed in helium droplets via the sequential pick-up and solvation of the monomer fragments. Rovibrational spectra of the a-type OH stretch and b-type antisymmetric CH stretch vibrations contain resolved parity splitting that reveals the extent to which electronic angular momentum of the OH moiety is quenched upon complex formation. The energy difference between the spin-orbit coupled {sup 2}B{sub 1} (A″) and {sup 2}B{sub 2} (A′) electronic states is determined spectroscopically to be 216 cm{sup −1} in helium droplets, which is 13 cm{sup −1} larger than in the gas phase [Marshall et al., J. Chem. Phys. 121, 5845 (2004)]. The effect of the helium is rationalized as a difference in the solvation free energies of the two electronic states. This interpretation is motivated by the separation between the Q(3/2) and R(3/2) transitions in the infrared spectrum of the helium-solvated {sup 2}Π{sub 3/2} OH radical. Despite the expectation of a reduced rotational constant, the observed Q(3/2) to R(3/2) splitting is larger than in the gas phase by ≈0.3 cm{sup −1}. This observation can be accounted for quantitatively by assuming the energetic separation between {sup 2}Π{sub 3/2} and {sup 2}Π{sub 1/2} manifolds is increased by ≈40 cm{sup −1} upon helium solvation.

  12. The impact and treatment of the Gibbs phenomenon in immersed boundary method simulations of momentum and scalar transport

    NASA Astrophysics Data System (ADS)

    Li, Qi; Bou-Zeid, Elie; Anderson, William

    2016-04-01

    Spectral discretization of quantities exhibiting abrupt shifts results in oscillations, or "ringing", known as the Gibbs phenomenon. When spectral discretization is used to evaluate spatial gradients during numerical integration of the transport equations governing turbulent fluid flows, these oscillations can contaminate various flow quantities. A particularly relevant application where the emergence of Gibbs phenomenon is a well-recognized weakness is in the context of simulations using the immersed boundary method. In this paper, we examine the effect of the Gibbs phenomenon in such simulations in detail, and we propose a computationally efficient smoothing treatment to reduce the associated oscillations. The effectiveness of this treatment is demonstrated in a priori tests on functions with abrupt shifts, and in a posteriori tests in wall-modeled large-eddy simulations of incompressible flow and passive scalar transport over solid bluff bodies. Furthermore, the large eddy simulation results indicate that the Gibbs phenomenon's impacts are significantly more detrimental to the computations of the subgrid-scale quantities and of scalar transport close to the solid interface, as compared to their impact on computations involving the resolved velocity field.

  13. Reduced sediment transport in the Yellow River due to anthropogenic changes

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Fu, Bojie; Piao, Shilong; Lü, Yihe; Ciais, Philippe; Feng, Xiaoming; Wang, Yafeng

    2016-01-01

    The erosion, transport and redeposition of sediments shape the Earth’s surface, and affect the structure and function of ecosystems and society. The Yellow River was once the world’s largest carrier of fluvial sediment, but its sediment load has decreased by approximately 90% over the past 60 years. The decline in sediment load is due to changes in water discharge and sediment concentration, which are both influenced by regional climate change and human activities. Here we use an attribution approach to analyse 60 years of runoff and sediment load observations from the traverse of the Yellow River over China’s Loess Plateau -- the source of nearly 90% of its sediment load. We find that landscape engineering, terracing and the construction of check dams and reservoirs were the primary factors driving reduction in sediment load from the 1970s to 1990s, but large-scale vegetation restoration projects have also reduced soil erosion from the 1990s onwards. We suggest that, as the ability of existing dams and reservoirs to trap sediments declines in the future, erosion rates on the Loess Plateau will increasingly control the Yellow River’s sediment load.

  14. Charge transport due to photoelectric interface activation in pure nematic liquid-crystal cells

    NASA Astrophysics Data System (ADS)

    Pagliusi, P.; Cipparrone, G.

    2002-11-01

    We report a study of the crucial role of liquid-crystal-polymer interface on photoinduced transport and redistribution of charges in pure nematic liquid-crystal cells that exhibit a photorefractivelike effect. A stationary photocurrent that is 30% of the dark current has been measured for very low power illumination (few mW) and low applied dc electric field (about 0.1 V/mum). The experimental results indicate a clear dependence of the effect on the light wavelength. The absence of photocurrent in cells with only one component, liquid-crystal, or polymer, suggests that both are not intrinsically photoconductive, rules out light-induced charge injection by the electrodes, and indicates the polymer-liquid-crystal interface as the photoactive element in the effect. The photocurrent dynamics indicate the presence of various mechanisms. We suppose that the effect is due to photoinduced carriers injection through the liquid-crystal-polymer interface and recombination process with the counterions present on the opposite side. Different hypotheses are made and discussed.

  15. Erosion Processes, Sediment Transport and Hydrological Responses Due to Land Use Changes in Serbian Ski Resorts

    NASA Astrophysics Data System (ADS)

    Ristic, R.; Radic, B.; Vasiljevic, N.; Nikic, Z.; Malusevic, I.

    2012-04-01

    The construction or improvement of Serbian ski resorts provoked intensive erosion processes, sediment transport and hydrological responses due to land use changes, affecting the surrounding environment and even endangering the functionality of the built objects. The dominant disturbing activities (clear cuttings, trunk transport, machine grading of slopes, huge excavations, and access road construction) were followed by the activities during skiing and non skiing periods (skiing, usage of snow groomers, moving of vehicles and tourists, forestry activities and overgrazing). These activities put a lot of pressure on the environment, including the removal or compaction of the surface soil layer, the reduction of the infiltration capacity, the destruction or degradation of the vegetation cover, the intensifying of the surface runoff and the development of erosion processes. The most affected ski runs were surveyed (scale 1:1000) and all damages were mapped and classified during the summers of 2007-2010. The development of rills and gullies was measured at experimental plots (100x60 m), and the survey data were entered into a GIS application. The area sediment yield and the intensity of erosion processes were estimated on the basis of the "Erosion Potential Method"(EPM). The changes in hydrological conditions were estimated by comparing the computed values of maximal discharges in the conditions before and after massive activities in the ski resorts, as well as by using the local hydrological records. The determination of maximal discharges was achieved using a combined method: the synthetic unit hydrograph (maximum ordinate of unit runoff, qmax) and the Soil Conservation Service (SCS, 1979) methodology (deriving effective rainfall, Pe, from total precipitation, Pb). The determination was performed for AMC III (Antecedent Moisture Conditions III: high water content in the soil and significantly reduced infiltration capacity). The computations of maximal discharges were

  16. Anomalous Electron Transport Due to Multiple High Frequency Beam Ion Driven Alfven Eigenmode

    SciTech Connect

    Gorelenkov, N. N.; Stutman, D.; Tritz, K.; Boozer, A.; Delgardo-Aparicio, L.; Fredrickson, E.; Kaye, S.; White, R.

    2010-07-13

    We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment (NSTX). In order to model the electron transport of the guiding center code ORBIT is employed. A spectrum of test functions of multiple core localized Global shear Alfven Eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.

  17. Rigorous upper bounds for transport due to passive advection by inhomogeneous turbulence

    SciTech Connect

    Krommes, J.A.; Smith, R.A.

    1987-05-01

    A variational procedure, due originally to Howard and explored by Busse and others for self-consistent turbulence problems, is employed to determine rigorous upper bounds for the advection of a passive scalar through an inhomogeneous turbulent slab with arbitrary generalized Reynolds number R and Kubo number K. In the basic version of the method, the steady-state energy balance is used as a constraint; the resulting bound, though rigorous, is independent of K. A pedagogical reference model (one dimension, K = infinity) is described in detail; the bound compares favorably with the exact solution. The direct-interaction approximation is also worked out for this model; it is somewhat more accurate than the bound, but requires considerably more labor to solve. For the basic bound, a general formalism is presented for several dimensions, finite correlation length, and reasonably general boundary conditions. Part of the general method, in which a Green's function technique is employed, applies to self-consistent as well as to passive problems, and thereby generalizes previous results in the fluid literature. The formalism is extended for the first time to include time-dependent constraints, and a bound is deduced which explicitly depends on K and has the correct physical scalings in all regimes of R and K. Two applications from the theory of turbulent plasmas ae described: flux in velocity space, and test particle transport in stochastic magnetic fields. For the velocity space problem the simplest bound reproduces Dupree's original scaling for the strong turbulence diffusion coefficient. For the case of stochastic magnetic fields, the scaling of the bounds is described for the magnetic diffusion coefficient as well as for the particle diffusion coefficient in the so-called collisionless, fluid, and double-streaming regimes.

  18. Angular momentum

    NASA Astrophysics Data System (ADS)

    Shakur, Asif; Sinatra, Taylor

    2013-12-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in the physics laboratory. Many traditional physics experiments can now be performed very conveniently in a pedagogically enlightening environment while simultaneously reducing the laboratory budget substantially by using student-owned smartphones.

  19. Magnetic stochasticity and transport due to nonlinearly excited subdominant microtearing modes

    SciTech Connect

    Hatch, D. R.; Jenko, F.; Doerk, H.; Pueschel, M. J.; Terry, P. W.; Nevins, W. M.

    2013-01-15

    Subdominant, linearly stable microtearing modes are identified as the main mechanism for the development of magnetic stochasticity and transport in gyrokinetic simulations of electromagnetic ion temperature gradient driven plasma microturbulence. The linear eigenmode spectrum is examined in order to identify and characterize modes with tearing parity. Connections are demonstrated between microtearing modes and the nonlinear fluctuations that are responsible for the magnetic stochasticity and electromagnetic transport, and nonlinear coupling with zonal modes is identified as the salient nonlinear excitation mechanism. A simple model is presented, which relates the electromagnetic transport to the electrostatic transport. These results may provide a paradigm for the mechanisms responsible for electromagnetic stochasticity and transport, which can be examined in a broader range of scenarios and parameter regimes.

  20. Enhanced radial transport and energization of radiation belt electrons due to drift orbit bifurcations

    PubMed Central

    Ukhorskiy, A Y; Sitnov, M I; Millan, R M; Kress, B T; Smith, D C

    2014-01-01

    [1]Relativistic electron intensities in Earth's outer radiation belt can vary by multiple orders of magnitude on the time scales ranging from minutes to days. One fundamental process contributing to dynamic variability of radiation belt intensities is the radial transport of relativistic electrons across their drift shells. In this paper we analyze the properties of three-dimensional radial transport in a global magnetic field model driven by variations in the solar wind dynamic pressure. We use a test particle approach which captures anomalous effects such as drift orbit bifurcations. We show that the bifurcations lead to an order of magnitude increase in radial transport rates and enhance the energization at large equatorial pitch angles. Even at quiet time fluctuations in dynamic pressure, radial transport at large pitch angles exhibits strong deviations from the diffusion approximation. The radial transport rates are much lower at small pitch angle values which results in a better agreement with the diffusion approximation. PMID:26167431

  1. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters

    PubMed Central

    Jiang, Fangming; Peng, Peng

    2016-01-01

    Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870

  2. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters.

    PubMed

    Jiang, Fangming; Peng, Peng

    2016-01-01

    Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870

  3. Poloidal electric field due to ICRH and its effect on neoclassical transport

    SciTech Connect

    Vacca, L. )

    1994-10-15

    We study the transport of a plasma in which a minority ion species is heated by fast Alfven waves. The strong anisotropy of the minority distribution function gives origin to a poloidal electric field. We calculate the poloidal dependence of the electric potential by numerically integrating the leading order minority distribution function. When the amplitude of this field is such that electrostatic trapping is not negligible in comparison to the magnetic trapping then neoclassical transport can be enhanced as found in previous work. The linearized kinetic equations are solved using a variational method in the banana regime. Approximate analytic expressions for the transport coefficients are given.

  4. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

    NASA Astrophysics Data System (ADS)

    Ruiz, Maritza

    Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well

  5. Experimental and numerical investigations of flow structure and momentum transport in a turbulent buoyancy-driven flow inside a tilted tube

    NASA Astrophysics Data System (ADS)

    Znaien, J.; Hallez, Y.; Moisy, F.; Magnaudet, J.; Hulin, J. P.; Salin, D.; Hinch, E. J.

    2009-11-01

    Buoyancy-driven turbulent mixing of fluids of slightly different densities [At=Δρ/(2⟨ρ⟩)=1.15×10-2] in a long circular tube tilted at an angle θ=15° from the vertical is studied at the local scale, both experimentally from particle image velocimetry and laser induced fluorescence measurements in the vertical diametrical plane and numerically throughout the tube using direct numerical simulation. In a given cross section of the tube, the axial mean velocity and the mean concentration both vary linearly with the crosswise distance z from the tube axis in the central 70% of the diameter. A small crosswise velocity component is detected in the measurement plane and is found to result from a four-cell mean secondary flow associated with a nonzero streamwise component of the vorticity. In the central region of the tube cross section, the intensities of the three turbulent velocity fluctuations are found to be strongly different, that of the streamwise fluctuation being more than twice larger than that of the spanwise fluctuation which itself is about 50% larger than that of the crosswise fluctuation. This marked anisotropy indicates that the turbulent structure is close to that observed in homogeneous turbulent shear flows. Still in the central region, the turbulent shear stress dominates over the viscous stress and reaches a maximum on the tube axis. Its crosswise variation is approximately accounted for by a mixing length whose value is about one-tenth of the tube diameter. The momentum exchange in the core of the cross section takes place between its lower and higher density parts and there is no net momentum exchange between the core and the near-wall regions. A sizable part of this transfer is due both to the mean secondary flow and to the spanwise turbulent shear stress. Near-wall regions located beyond the location of the extrema of the axial velocity (|z|≳0.36 d) are dominated by viscous stresses which transfer momentum toward (from) the wall near the

  6. Transverse momentum diffusion and collisional jet energy loss in non-Abelian plasmas

    SciTech Connect

    Schenke, Bjoern; Strickland, Michael; Dumitru, Adrian; Nara, Yasushi; Greiner, Carsten

    2009-03-15

    We consider momentum broadening and energy loss of high-momentum partons in a hot non-Abelian plasma due to collisions. We solve the coupled system of Wong-Yang-Mills equations on a lattice in real time, including binary hard elastic collisions among the partons. The collision kernel is constructed such that the total collisional energy loss and momentum broadening are lattice-spacing independent. We find that the transport coefficient q corresponding to transverse momentum broadening receives sizable contributions from a power-law tail in the p{sub perpendicular} distribution of high-momentum partons. We establish the scaling of q and of dE/dx with density, temperature, and energy in the weak-coupling regime. We also estimate the nuclear modification factor R{sub AA} due to elastic energy loss of a jet in a classical Yang-Mills field.

  7. Branching of the vortex nucleation period in superconductor Nb microtubes due to an inhomogeneous transport current

    NASA Astrophysics Data System (ADS)

    Rezaev, R. O.; Levchenko, E. A.; Fomin, V. M.

    2016-04-01

    An inhomogeneous transport current, which is introduced through multiple electrodes in an open Nb microtube, is shown to lead to a controllable branching of the vortex nucleation period. The detailed mechanism of this branching is analyzed using the time-dependent Ginzburg-Landau equation. The relative change of the vortex nucleation period strongly depends on the geometry of multiple electrodes. The average number of vortices occurring in the tube per nanosecond can be effectively reduced using the inhomogeneous transport current, which is important for noise and energy dissipation reduction in superconductor applications, e.g. for an extension of the operation regime of superconductor-based sensors to lower frequencies.

  8. An Enhanced Nonlinear Critical Gradient for Electron Turbulent Transport due to Reversed Magnetic Shear

    SciTech Connect

    Peterson, J. L.; Hammet, G. W.; Mikkelsen, D. R.; Yuh, H. Y.; Candy, J.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B.

    2011-05-11

    The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is non- linearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.

  9. A strategy for representing the effects of convective momentum transport in multiscale models: Evaluation using a new superparameterized version of the Weather Research and Forecast model (SP-WRF)

    NASA Astrophysics Data System (ADS)

    Tulich, S. N.

    2015-06-01

    This paper describes a general method for the treatment of convective momentum transport (CMT) in large-scale dynamical solvers that use a cyclic, two-dimensional (2-D) cloud-resolving model (CRM) as a "superparameterization" of convective-system-scale processes. The approach is similar in concept to traditional parameterizations of CMT, but with the distinction that both the scalar transport and diagnostic pressure gradient force are calculated using information provided by the 2-D CRM. No assumptions are therefore made concerning the role of convection-induced pressure gradient forces in producing up or down-gradient CMT. The proposed method is evaluated using a new superparameterized version of the Weather Research and Forecast model (SP-WRF) that is described herein for the first time. Results show that the net effect of the formulation is to modestly reduce the overall strength of the large-scale circulation, via "cumulus friction." This statement holds true for idealized simulations of two types of mesoscale convective systems, a squall line, and a tropical cyclone, in addition to real-world global simulations of seasonal (1 June to 31 August) climate. In the case of the latter, inclusion of the formulation is found to improve the depiction of key synoptic modes of tropical wave variability, in addition to some aspects of the simulated time-mean climate. The choice of CRM orientation is also found to importantly affect the simulated time-mean climate, apparently due to changes in the explicit representation of wide-spread shallow convective regions.

  10. Discoveries from the exploration of gyrokinetic momentum transporta)

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.; Waltz, R. E.; Kinsey, J. E.

    2011-05-01

    The momentum transport due to gyroradius scale turbulence in tokamak plasmas is very complex. In general, some type of breaking of the parity of the gyrokinetic equation under simultaneous reflection of the poloidal angle and the sign of the parallel velocity phase space coordinate (poloidal parity) is always involved. There are three distinct types of poloidal parity breaking effects. In this paper, all three types of poloidal parity breaking are explored using the quasi-linear trapped gyro-Landau fluid [G. M. Staebler et al., Phys. Plasmas 12, 102508 (2005)] transport code. Selected results are verified with full nonlinear turbulence simulations using the gyro [J. Candy et al., J. Comput. Phys. 186, 545 (2003)] gyrokinetic code. The observable properties like an energy pinch driven by a parallel velocity shear and a dependence of momentum transport on the direction of the ion grad-B drift relative to the X-point location in single null divertor geometry have been discovered.

  11. Experimental evidence of the increased transport due to the wall bounded magnetic drift in low temperature plasma

    SciTech Connect

    Gaboriau, F. Baude, R.; Hagelaar, G. J. M.

    2014-05-26

    This paper presents experimental results on plasma transport across the magnetic field (B) in magnetized low-temperature plasma sources. Due to the presence of chamber walls, this transport can be complex even in a non-turbulent regime. In particular, in configurations without cylindrical symmetry, the magnetic drifts tend to be bounded by the chamber walls, thereby inducing plasma asymmetry and reducing magnetic confinement. In this work, we measure electron and ion current densities at metal chamber walls bounding a rectangular magnetic filter and demonstrate that these current densities are asymmetrically nonuniform. We also provide an experimental confirmation of model predictions of increased cross-field electron transport in such filter configuration, scaling as 1/B rather than the classical 1/B{sup 2} scaling.

  12. Non-steady State Soil Organic Carbon Storage in Undisturbed Watersheds Due to Diffusive Sediment Transport

    NASA Astrophysics Data System (ADS)

    Yoo, K.; Amundson, R.; Heimsath, A. M.; Dietrich, W. E.

    2003-12-01

    Most soil C models assume that plant C inputs are matched by C loss through heterotrophic respiration. While these models are applicable for level terrain, on soil mantled uplands in hilly to mountainous regions, persistent soil mass transport represents a potentially large, but unstudied, flux of soil C. In this research we quantify the soil C erosional fluxes and non-steady state soil C storage within two undisturbed grass-covered hillslopes in Coastal California: Tennessee Valley (TV) (coastal Marin County) and Black Diamond (BD) (interior Contra Costa County). At both sites, previous geomorphic studies have quantified both the sediment transport processes (TV= gopher driven sediment transport; BD= abiotic soil shrink/swell) and their rates. Hillslope patterns of soil C storage were examined in relation to slope position with a hillslope sediment transport model. The average C erosion rates from convex slopes are between 1.4 and 2.7 g C m -2 yr-1 at TV and approximately 8 g C m-2 yr-1 at BD. The C erosional flux is locally as high as 14% of above ground net primary productivity (NPP) at TV and 8% at BD. The convex slopes are net C sinks because NPP likely exceeds respiration by a value equaling the size of C erosion. Eroded soils ultimately accumulate in depositional settings which have residence times on the order of 13kyrs at TV and 5.3kyrs at BD. At TV hollow, 15-24 kg C m-2 of soil C has accumulated at a long-term rate of 1.6-1.9 g C m-2 yr-1 . The present rates of C accumulation were calculated to be 0.3 g C m-2 yr-1 at TV and 0.6 g C m-2 yr-1 at BD. During the hollow infilling, the depositional C inputs have been greater than C accumulation rates, meaning that much of the incoming eroded C is ultimately oxidized to CO2. At both sites, a fraction of the eroded C is exported from the watershed (C of 0.1-0.5 g C m-2 yr-1 at TV and 2 g C m-2 yr-1 at BD). When all hillslope components are integrated, these watersheds are continuous atmospheric C sinks at rates

  13. Multimodel estimates of premature human mortality due to intercontinental transport of air pollution

    NASA Astrophysics Data System (ADS)

    Liang, C.; Silva, R.; West, J. J.; Sudo, K.; Lund, M. T.; Emmons, L. K.; Takemura, T.; Bian, H.

    2015-12-01

    Numerous modeling studies indicate that emissions from one continent influence air quality over others. Reducing air pollutant emissions from one continent can therefore benefit air quality and health on multiple continents. Here, we estimate the impacts of the intercontinental transport of ozone (O3) and fine particulate matter (PM2.5) on premature human mortality by using an ensemble of global chemical transport models coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP). We use simulations of 20% reductions of all anthropogenic emissions from 13 regions (North America, Central America, South America, Europe, Northern Africa, Sub-Saharan Africa, Former Soviet Union, Middle East, East Asia, South Asia, South East Asia, Central Asia, and Australia) to calculate their impact on premature mortality within each region and elsewhere in the world. To better understand the impact of potential control strategies, we also analyze premature mortality for global 20% perturbations from five sectors individually: power and industry, ground transport, forest and savannah fires, residential, and others (shipping, aviation, and agriculture). Following previous studies, premature human mortality resulting from each perturbation scenario is calculated using a health impact function based on a log-linear model for O3 and an integrated exposure response model for PM2.5 to estimate relative risk. The spatial distribution of the exposed population (adults aged 25 and over) is obtained from the LandScan 2011 Global Population Dataset. Baseline mortality rates for chronic respiratory disease, ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, and lung cancer are estimated from the GBD 2010 country-level mortality dataset for the exposed population. Model results are regridded from each model's original grid to a common 0.5°x0.5° grid used to estimate mortality. We perform uncertainty analysis and evaluate the sensitivity

  14. Momentum dependence of symmetry energy

    NASA Astrophysics Data System (ADS)

    Coupland, Daniel D.; Youngs, Michael; Chajecki, Zbigniew; Lynch, William; Tsang, Betty; Zhang, Yingxun; Famiano, Michael; Ghosh, Tilak; Giacherio, B.; Kilburn, Micha; Lee, Jenny; Lu, Fei; Russotto, Paulo; Sanetullaev, Alisher; Showalter, Rachel; Verde, Giuseppe; Winkelbauer, Jack

    2014-09-01

    One of the main uncertainties in the Equation of State of neutron-rich nuclear matter concerns the density and momentum dependence of the nuclear symmetry energy. Some constraints on the density dependence of the symmetry energy at sub-saturation densities have been recently obtained. However questions remain, especially concerning the momentum dependence of the symmetry mean-field potential that can make the neutron and proton effective masses different. We probe the momentum dependence of this isovector mean-field potential by comparing the energy spectra of neutrons and protons emitted in 112Sn+112Sn and 124Sn +124Sn collisions at incident energies of E/A = 50 and 120 MeV. We achieve an experimental precision that can discriminate between transport model predictions for the n/p double ratio for different momentum dependencies of the symmetry mean-field potential. One of the main uncertainties in the Equation of State of neutron-rich nuclear matter concerns the density and momentum dependence of the nuclear symmetry energy. Some constraints on the density dependence of the symmetry energy at sub-saturation densities have been recently obtained. However questions remain, especially concerning the momentum dependence of the symmetry mean-field potential that can make the neutron and proton effective masses different. We probe the momentum dependence of this isovector mean-field potential by comparing the energy spectra of neutrons and protons emitted in 112Sn+112Sn and 124Sn+124Sn collisions at incident energies of E/A = 50 and 120 MeV. We achieve an experimental precision that can discriminate between transport model predictions for the n/p double ratio for different momentum dependencies of the symmetry mean-field potential. PHY-1102511.

  15. Electronic transport in the quantum spin Hall state due to the presence of adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Lima, Leandro; Lewenkopf, Caio

    Heavy adatoms, even at low concentrations, are predicted to turn a graphene sheet into a topological insulator with substantial gap. The adatoms mediate the spin-orbit coupling that is fundamental to the quantum spin Hall effect. The adatoms act as local spin-orbit scatterer inducing hopping processes between distant carbon atoms giving origin to transverse spin currents. Although there are effective models that describe spectral properties of such systems with great detail, quantitative theoretical work for the transport counterpart is still lacking. We developed a multiprobe recursive Green's function technique with spin resolution to analyze the transport properties for large geometries. We use an effective tight-binding Hamiltonian to describe the problem of adatoms randomly placed at the center of the honeycomb hexagons, which is the case for most transition metals. Our choice of current and voltage probes is favorable to experiments since it filters the contribution of only one spin orientation, leading to a quantized spin Hall conductance of e2 / h . We also discuss the electronic propagation in the system by imaging the local density of states and the electronic current densities. The authors acknowledge the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  16. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    NASA Astrophysics Data System (ADS)

    Wang, Guihua; Ogden, Joan M.; Chang, Daniel P. Y.

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality

  17. Replicas of the Kondo peak due to electron-vibration interaction in molecular transport properties

    NASA Astrophysics Data System (ADS)

    Roura-Bas, P.; Tosi, L.; Aligia, A. A.

    2016-03-01

    The low temperature properties of single level molecular quantum dots including both electron-electron and electron-vibration interactions, are theoretically investigated. The calculated differential conductance in the Kondo regime exhibits not only the zero bias anomaly but also side peaks located at bias voltages which coincide with multiples of the energy of vibronic mode V ˜ℏ Ω /e . We obtain that the evolution with temperature of the two main satellite conductance peaks follows the corresponding one of the Kondo peak when ℏ Ω ≫kBTK , TK being the Kondo temperature, in agreement with recent transport measurements in molecular junctions. However, we find that this is no longer valid when ℏ Ω is of the order of a few times kBTK .

  18. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    PubMed

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health. PMID:27455817

  19. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks

    NASA Astrophysics Data System (ADS)

    Nogues, Juan P.; Fitts, Jeffrey P.; Celia, Michael A.; Peters, Catherine A.

    2013-09-01

    A reactive transport model was developed to simulate reaction of carbonates within a pore network for the high-pressure CO2-acidified conditions relevant to geological carbon sequestration. The pore network was based on a synthetic oolithic dolostone. Simulation results produced insights that can inform continuum-scale models regarding reaction-induced changes in permeability and porosity. As expected, permeability increased extensively with dissolution caused by high concentrations of carbonic acid, but neither pH nor calcite saturation state alone was a good predictor of the effects, as may sometimes be the case. Complex temporal evolutions of interstitial brine chemistry and network structure led to the counterintuitive finding that a far-from-equilibrium solution produced less permeability change than a nearer-to-equilibrium solution at the same pH. This was explained by the pH buffering that increased carbonate ion concentration and inhibited further reaction. Simulations of different flow conditions produced a nonunique set of permeability-porosity relationships. Diffusive-dominated systems caused dissolution to be localized near the inlet, leading to substantial porosity change but relatively small permeability change. For the same extent of porosity change caused from advective transport, the domain changed uniformly, leading to a large permeability change. Regarding precipitation, permeability changes happen much slower compared to dissolution-induced changes and small amounts of precipitation, even if located only near the inlet, can lead to large changes in permeability. Exponent values for a power law that relates changes in permeability and porosity ranged from 2 to 10, but a value of 6 held constant when conditions led to uniform changes throughout the domain.

  20. Reduced ability to release adenosine by diabetic rat cardiac fibroblasts due to altered expression of nucleoside transporters

    PubMed Central

    Podgorska, Marzena; Kocbuch, Katarzyna; Grden, Marzena; Szutowicz, Andrzej; Pawelczyk, Tadeusz

    2006-01-01

    Adenosine produced by cardiac cells is known to attenuate the proliferation of cardiac fibroblasts (CFs), inhibit collagen synthesis, and protect the myocardium against ischaemic and reperfusion injury. Diabetic patients' hearts exhibit ventricular hypertrophy and demonstrate reduced tolerance to hypoxia or ischaemia. In this study, we characterize the effects of glucose and insulin on processes that determine the release of adenosine from CFs. We showed that during ATP depletion, rat CFs cultured in the absence of insulin release significantly less adenosine compared to cells grown in the presence of insulin. Moreover, under both conditions the quantity of released adenosine depends on glucose concentration. We demonstrate that this is due to altered expression of nucleoside transporters. High glucose (25 mm) induced 85% decrease in nucleoside transporter ENT1 mRNA levels. Decrease of the insulin level below 10−11m resulted in over 3-fold increase in the nucleoside transporter CNT2 mRNA content. Measurements of adenosine transport in CFs cultured in the presence of 5 mm glucose and 10 nm insulin showed that the bidirectional equilibrative adenosine transport accounted for 70% of the overall adenosine uptake. However, cells grown in the presence of high glucose (25 mm) demonstrated 65% decrease of the bidirectional equilibrative adenosine transport. Experiments on CFs cultured in the absence of insulin showed that the unidirectional Na+-dependent adenosine uptake rose in these cells more than 4-fold. These results indicate that the development of diabetes may result in an increased uptake of interstitial adenosine by CFs, and reduction of the ability of these cells to release adenosine during ATP deprivation. PMID:16873415

  1. Acceleration and Transport of Particles in Collisionless Plasmas: Wakes due to the Interaction with Moving Bodies

    NASA Astrophysics Data System (ADS)

    Ponomarjov, Maxim G.

    2001-06-01

    A method is developed that allows the numerical and analytical description of the effects of ambient magnetic field on the time-dependent 3D structures of space plasma flows due to bodies in motion through a plasma. Some of these effects have been observed in space and ionosphere as stratified, flute and yacht sail like structures of plasma disturbances, jets, wakes and clouds. The method can be used for the simulations of Solar Wind flow taking into account the magnetic field effects and the interactions with the Interstellar Medium. These problems are of practical interest in fluid mechanics, space sciences, astrophysics, in turbulence theory. They also have some fundamental interest in their own right, as they enable one to concentrate on the effects of the ambient electric and magnetic fields.

  2. Sediment transport due to extreme events: The Hudson River estuary after tropical storms Irene and Lee

    NASA Astrophysics Data System (ADS)

    Ralston, David K.; Warner, John C.; Geyer, W. Rockwell; Wall, Gary R.

    2013-10-01

    Storms Irene and Lee in 2011 produced intense precipitation and flooding in the U.S. Northeast, including the Hudson River watershed. Sediment input to the Hudson River was approximately 2.7 megaton, about 5 times the long-term annual average. Rather than the common assumption that sediment is predominantly trapped in the estuary, observations and model results indicate that approximately two thirds of the new sediment remained trapped in the tidal freshwater river more than 1 month after the storms and only about one fifth of the new sediment reached the saline estuary. High sediment concentrations were observed in the estuary, but the model results suggest that this was predominantly due to remobilization of bed sediment. Spatially localized deposits of new and remobilized sediment were consistent with longer term depositional records. The results indicate that tidal rivers can intercept (at least temporarily) delivery of terrigenous sediment to the marine environment during major flow events.

  3. Angular Momentum Ejection and Recoil*

    NASA Astrophysics Data System (ADS)

    Ohia, O.; Coppi, B.

    2009-11-01

    The spontaneous rotation phenomenon observed in axisymmetric magnetically confined plasmas has been explained by the ``accretion theory'' [1] that considers the plasma angular momentum as gained from its interaction with the magnetic field and the surrounding material wall. The ejection of angular momentum to the wall, and the consequent recoil are attributed to modes excited at the edge while the transport of the (recoil) angular momentum from the edge toward the center is attributed to a different kind of mode. The toroidal phase velocity of the edge mode, to which the sign of the ejected angular momentum is related, is considered to change its direction in the transition from the H-regime to the L-regime. For the latter case, edge modes with phase velocity in the direction of vdi are driven by the temperature gradient of a cold ion population at the edge and damped on the ``hot'' ion population. The ``balanced'' double interaction [2] of the mode with the two populations, corresponding to a condition of marginal stability, leads to ejection of hot ions and loss of angular momentum in the direction of vdi while the cold population acquires angular momentum in the opposite direction. In the H-regime resistive ballooning modes with phase velocities in the direction of vde are viewed as the best candidates for the excited edge modes. *Sponsored in part by the U.S. DOE. [1] B. Coppi, Nucl. Fusion 42, 1 (2002) [2] B. Coppi and F. Pegoraro, Nucl. Fusion 17, 969 (1977)

  4. Atmospheric transport of radionuclides emitted due to wildfires near the Chernobyl Nuclear Power Plant in 2015

    NASA Astrophysics Data System (ADS)

    Evangeliou, Nikolaos; Zibtsev, Sergey; Myroniuk, Viktor; Zhurba, Marina; Hamburger, Thomas; Stohl, Andreas; Balkanski, Yves; Paugam, Ronan; Mousseau, Timothy A.; Møller, Anders P.; Kireev, Sergey I.

    2016-04-01

    In 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) have caused concerns about the secondary radioactive contamination that might have spread over Europe. The total active burned area was estimated to be about 15,000 hectares, of which 9000 hectares burned in April and 6000 hectares in August. The present paper aims to assess, for the first time, the transport and impact of these fires over Europe. For this reason, direct observations of the prevailing deposition levels of 137Cs and 90Sr, 238Pu, 239Pu, 240Pu and 241Am in the CEZ were processed together with burned area estimates. Based on literature reports, we made the conservative assumption that 20% of the deposited labile radionuclides 137Cs and 90Sr, and 10% of the more refractory 238Pu, 239Pu, 240Pu and 241Am, were resuspended by the fires. We estimate that about 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events. These releases could be classified as of "Level 3" on the relative INES (International Nuclear Events Scale) scale, which corresponds to a serious incident, in which non-lethal deterministic effects are expected from radiation. To simulate the dispersion of the resuspended radionuclides in the atmosphere and their deposition onto the terrestrial environment, we used a Lagrangian dispersion model. Spring fires redistributed radionuclides over the northern and eastern parts of Europe, while the summer fires also affected Central and Southern Europe. The more labile elements escaped more easily from the CEZ and then reached and deposited in areas far from the source, whereas the larger refractory particles were removed more efficiently from the atmosphere and thus did mainly affect the CEZ and its vicinity. For the spring 2015 fires, we estimate that about 80% of 137Cs and 90Sr and about 69% of 238Pu, 239Pu, 240Pu and 241Am were deposited over areas outside the CEZ. 93% of the labile and 97% of

  5. Risk assessment of the fatality due to explosion in land mass transport infrastructure by fast transient dynamic analysis.

    PubMed

    Giannopoulos, G; Larcher, M; Casadei, F; Solomos, G

    2010-01-15

    Terrorist attacks in New York have shocked the world community showing clearly the vulnerability of air transport in such events. However, the terrorist attacks in Madrid and London showed that land mass transport infrastructure is equally vulnerable in case of similar attacks. The fact that there has not been substantial investment in the domain of risk analysis and evaluation of the possible effects due to such events in land mass transportation infrastructure leaves large room for new developments that could eventually fill this gap. In the present work using the finite element code EUROPLEXUS there has been a large effort to perform a complete study of the land mass infrastructure in case of explosion events. This study includes a train station, a metro station and a metro carriage providing thus valuable simulation data for a variety of different situations. For the analysis of these structures it has been necessary to apply a laser scanning method for the acquisition of geometrical data, to improve the simulation capabilities of EUROPLEXUS by adding failure capabilities for specific finite elements, to implement new material models (e.g. glass), and to add new modules that achieve data post-processing for the calculation of fatal and non-fatal injuries risk. The aforementioned improvements are explained in the present work with emphasis in the newly developed risk analysis features of EUROPLEXUS. PMID:19773121

  6. Neoclassical Angular Momentum Flux Revisited

    NASA Astrophysics Data System (ADS)

    Wong, S. K.; Chan, V. S.

    2004-11-01

    The toroidal angular momentum flux in neoclassical transport theory of small rotations depends on the second order (in ion poloidal gyroradius over plasma scale length) ion distribution function. Owing to the complexity of the calculation, the result obtained a long time ago for circular cross-section tokamak plasmas in the banana regime [M.N. Rosenbluth, et al., Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1971), Vol. 1, p. 495] has never been reproduced. Using a representation of the angular momentum flux based on the solution of an adjoint equation to the usual linearized drift kinetic equation, and performing systematically a large-aspect-ratio expansion, we have obtained the flux for flux surfaces of arbitrary shape. We have found the same analytic form for the temperature gradient driven part of the flux, but the overall numerical multiplier is different and has the opposite sign. Implications for rotations in discharges with no apparent momentum input will be discussed.

  7. Smoothed dissipative particle dynamics with angular momentum conservation

    NASA Astrophysics Data System (ADS)

    Müller, Kathrin; Fedosov, Dmitry A.; Gompper, Gerhard

    2015-01-01

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier-Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor-Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  8. Smoothed dissipative particle dynamics with angular momentum conservation

    SciTech Connect

    Müller, Kathrin Fedosov, Dmitry A. Gompper, Gerhard

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  9. Suppression Pattern of Neutral Pions at High Transverse Momentum in Au+Au Collisions at {radical}(s{sub NN})=200 GeV and Constraints on Medium Transport Coefficients

    SciTech Connect

    Adare, A.; Bickley, A. A.; Ellinghaus, F.; Kelly, S.; Kinney, E.; Nagle, J. L.; Seele, J.; Wysocki, M.; Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.; Aidala, C.; Bjorndal, M. T.; Chi, C. Y.; Cole, B. A.; D'Enterria, D.

    2008-12-05

    For Au+Au collisions at 200 GeV, we measure neutral pion production with good statistics for transverse momentum, p{sub T}, up to 20 GeV/c. A fivefold suppression is found, which is essentially constant for 5transport coefficient of the medium, e.g., in the parton quenching model. The spectral shape is similar for all collision classes, and the suppression does not saturate in Au+Au collisions.

  10. Nanophotonics: Momentum in metamaterials

    NASA Astrophysics Data System (ADS)

    Kemp, Brandon A.

    2016-05-01

    Optical forces are increasingly relevant in nanoscale optical science and engineering, but optical momentum in materials is still not fully understood. It is now shown that microstructure details as well as macroscopic optical parameters are important in determining optical momentum.

  11. Improved rigorous upper bounds for transport due to passive advection described by simple models of bounded systems

    SciTech Connect

    Kim, Chang-Bae; Krommes, J.A.

    1988-08-01

    The work of Krommes and Smith on rigorous upper bounds for the turbulent transport of a passively advected scalar (/ital Ann. Phys./ 177:246 (1987)) is extended in two directions: (1) For their ''reference model,'' improved upper bounds are obtained by utilizing more sophisticated two-time constraints which include the effects of cross-correlations up to fourth order. Numerical solutions of the model stochastic differential equation are also obtained; they show that the new bounds compare quite favorably with the exact results, even at large Reynolds and Kubo numbers. (2) The theory is extended to take account of a finite spatial autocorrelation length L/sub c/. As a reasonably generic example, the problem of particle transport due to statistically specified stochastic magnetic fields in a collisionless turbulent plasma is revisited. A bound is obtained which reduces for small L/sub c/ to the quasilinear limit and for large L/sub c/ to the strong turbulence limit, and which provides a reasonable and rigorous interpolation for intermediate values of L/sub c/. 18 refs., 6 figs.

  12. Study of Ag transport in Cr2N0.61-7Ag nanocomposite thin film due to thermal exposition

    NASA Astrophysics Data System (ADS)

    Bílek, P.; Jurči, P.; Podgornik, B.; Jenko, D.; Hudáková, M.; Kusý, M.

    2015-12-01

    Cr2N0.61-7Ag nanocomposite coatings were deposited on substrates made of Cr-V ledeburitic tool steel Vanadis 6 using reactive magnetron sputtering at a deposition temperature of 500 °C. Investigations of as-deposited films and annealing experiments in closed-air atmosphere at temperatures of 300, 400 and 500 °C and the durations up to 24 h, followed by quantitative scanning electron microscopy, transmission electron microscopy, Auger electron spectroscopy and X-ray diffraction revealed that the films were composed of Cr2N0.61 matrix and individual silver agglomerates located along columnar crystals of the matrix. The maximal size of Ag-agglomerates was 80 nm. The surface population density of silver agglomerates increased with prolonging the annealing time up to 2 h and then decreased. The increase was more pronounced at lower annealing temperatures. This behaviour was referred to the competition between three phenomena, namely the transport of detached Ag atoms to the free surface, formation of oxide layer on the surface and sublimation of silver from the surface. At lower temperatures and/or shorter annealing times, the Ag-transport to the free surface was determined to be prevalent, thus, an increase in population density of silver agglomerates was determined. On the other hand, for higher temperatures and/or longer annealing times the population density of Ag-agglomerates rather decreased due to retarding effect of thicker oxide layer and sublimation of silver.

  13. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  14. Studies on gravity waves momentum flux variations in different seasons using MST radar

    NASA Astrophysics Data System (ADS)

    I, V.; Y-H, C.; v, S.; D, N.; S, V.

    2006-12-01

    MST radars are the best tools to study the high frequency gravity waves and its associated momentum fluxes because of excellent temporal and spatial resolutions. The upward propagating gravity waves transport energy and momentum in different regions of the atmosphere along with their propagation to produce effects at upper heights. The estimation of the vertical flux of horizontal momentum in the troposphere and lower stratosphere involves two methods, using three beams V one vertical and two oblique, and using four beams V two pairs of oblique beams systematically offset from the vertical. The rapid steerability of the Indian MST radar allows to make three and four beam measurements simultaneously. The objective of this study is to examine the variations of zonal and meridional momentum fluxes with height, variation of momentum fluxes with wave periods and body forces. We choose frequency bands corresponding to periods of 30 min-2h, 2-8 h, and 2-16h. Vertical profiles of the zonal and meridional flux in each frequency band were found to be consistent, in general, with the total flux. The study also compares momentum fluxes computed with three and four beam methods. Zonal fluxes were small at lower levels and increasingly negative (westward) at higher heights. The dominant contributions to the meridional flux occur in the lower-frequency band. The large vertical momentum flux values observed around the 16 km altitude on most of the observations are due to the presence of large zonal wind shears at that altitude. Due to their persistent southward direction of propagation the meridional momentum flux during winter and summer shows southward direction of propagation and long period waves make contributions to the momentum flux in the lower stratosphere which is comparable to that of short period waves. The detailed discussion will be presented in the meeting.

  15. Enhancement of Eddy Heat Transport due to the Anticyclonic Submesoscale Eddies around Ryukyu Islands near Kuroshio in East China Sea

    NASA Astrophysics Data System (ADS)

    Kamidaira, Y.; Uchiyama, Y.; Mitarai, S.; Miyazawa, Y.

    2014-12-01

    A synoptic, regional downscaling experiment of Kuroshio off Ryukyu Islands, Japan, exhibits the evident predominance of submesoscale anticyclonic eddies over cyclones in the narrow strip between Kuroshio and the islands (Uchiyama et al., 2013). In the present study, the mechanism and impacts of the anticyclone dominance are examined with a detailed oceanic downscaling model in a double nested ROMS configuration at the horizontal resolution of 3km (ROMS-L1) and 1km (ROMS-L2), forced by the assimilative JCOPE2 oceanic reanalysis and the JMA GPV-MSM atmospheric hindcast. The model results are extensively validated against a variety of data including shipboard hydrography and satellite altimetry and temperature data to show a good agreement. An alternative ROMS-L2 experiment is also conducted to examine topographic effects on the anticyclones around the Ryukyu Islands by eliminating all the island topography above z > -1000 m, while the other configurations are held unchanged. If the islands are removed, the submesoscale negative vortices on the eastern side of the Kuroshio become much weaker than those of the original case with the islands. The experiment clearly demonstrates that dominance of the negative vorticity between Kuroshio and the Ryukyu Islands is caused by enhanced lateral shear due to the concentrated Kuroshio mean current associated with appropriate formation of the eastern branch, the northward-drifting Ryuku Current, and resultant eddy shedding in the narrow channel between the continental shelf of the East China Sea and the Okinawan ridge. A diagnostic eddy heat flux analysis illustrates that the submesoscale anticyclonic eddies play a crucial role in enhancing the eddy heat transport and thus the lateral mixing between Kuroshio and the islands as compared to those in the coarser resolution models (L1 and JCOPE2), resulting in promoting regional larval and material transport from Kuroshio to the islands.

  16. Resolving the mystery of transport within internal transport barriers

    SciTech Connect

    Staebler, G. M.; Belli, E. A.; Candy, J.; Waltz, R. E.; Greenfield, C. M.; Lao, L. L.; Smith, S. P.; Kinsey, J. E.; Grierson, B. A.; Chrystal, C.

    2014-05-15

    The Trapped Gyro-Landau Fluid (TGLF) quasi-linear model [G. M. Staebler, et al., Phys. Plasmas 12, 102508 (2005)], which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures, and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by E×B velocity shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high E×B velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.

  17. Angular momentum conservation in a simplified Venus General Circulation Model

    NASA Astrophysics Data System (ADS)

    Lee, C.; Richardson, M. I.

    2012-11-01

    Angular momentum (AM) conservation and transport are critical components of all General Circulation Model (GCM) simulations, and particularly for simulations of the Venus atmosphere. We show that a Venus GCM based upon the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS) GCM conserves angular momentum to better than 2% per 1000 Venus years (≈225,000 Earth days) of integration under the extreme conditions of a simplified Venus simulation with low surface torques. With no topography in the GCM, physical torques due to surface/atmosphere frictional interactions dominate the acceleration of an initially stationary atmosphere and provide more than four times the angular momentum of solid body co-rotation over an integration period of 100 Venus years. During the subsequent steady state period of 200 Venus years negligible mean physical torques cause variation in the total angular momentum of less than 5% and produce a stable multi-century simulation. Diffusion and damping processes within the GCM account for AM losses of less than 0.2% per 1000 Venus years. This study provides a stable comparison point for other GCMs by employing a simplified forcing scheme. The diagnostics and analysis require little or no modification to the core GCM and are sufficiently robust to allow easy model inter-comparison.

  18. Impulse-Momentum Diagrams

    NASA Astrophysics Data System (ADS)

    Rosengrant, David

    2011-01-01

    Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists.2 These representations include: pictures, free-body diagrams,3 energy bar charts,4 electrical circuits, and, more recently, computer simulations and animations.5 However, instructors have limited choices when they want to help their students understand impulse and momentum. One of the only available options is the impulse-momentum bar chart.6 The bar charts can effectively show the magnitude of the momentum as well as help students understand conservation of momentum, but they do not easily show the actual direction. This paper highlights a new representation instructors can use to help their students with momentum and impulse—the impulse-momentum diagram (IMD).

  19. Partonic orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2013-04-01

    Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.

  20. TDRSS momentum unload planning

    NASA Technical Reports Server (NTRS)

    Cross, George R.; Potter, Mitchell A.; Whitehead, J. Douglass; Smith, James T.

    1991-01-01

    A knowledge-based system is described which monitors TDRSS telemetry for problems in the momentum unload procedure. The system displays TDRSS telemetry and commands in real time via X-windows. The system constructs a momentum unload plan which agrees with the preferences of the attitude control specialists and the momentum growth characteristics of the individual spacecraft. During the execution of the plan, the system monitors the progress of the procedure and watches for unexpected problems.

  1. Nonsurvivable momentum exchange system

    NASA Technical Reports Server (NTRS)

    Roder, Russell (Inventor); Ahronovich, Eliezer (Inventor); Davis, III, Milton C. (Inventor)

    2007-01-01

    A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.

  2. Debuncher Momentum Aperture Measurements

    SciTech Connect

    O'Day, S.

    1991-01-01

    During the November 1990 through January 1991 {bar p} studies period, the momentum aperture of the beam in the debuncher ring was measured. The momentum aperture ({Delta}p/p) was found to be 4.7%. The momentum spread was also measured with beam bunch rotation off. A nearly constant particle population density was observed for particles with {Delta}p/p of less than 4.3%, indicating virtually unobstructed orbits in this region. The population of particles with momenta outside this aperture was found to decrease rapidly. An absolute or 'cut-off' momentum aperture of {Delta}p/p = 5.50% was measured.

  3. Advanced Control Algorithms for Compensating the Phase Distortion Due to Transport Delay in Human-Machine Systems

    NASA Technical Reports Server (NTRS)

    Guo, Liwen; Cardullo, Frank M.; Kelly, Lon C.

    2007-01-01

    The desire to create more complex visual scenes in modern flight simulators outpaces recent increases in processor speed. As a result, simulation transport delay remains a problem. New approaches for compensating the transport delay in a flight simulator have been developed and are presented in this report. The lead/lag filter, the McFarland compensator and the Sobiski/Cardullo state space filter are three prominent compensators. The lead/lag filter provides some phase lead, while introducing significant gain distortion in the same frequency interval. The McFarland predictor can compensate for much longer delay and cause smaller gain error in low frequencies than the lead/lag filter, but the gain distortion beyond the design frequency interval is still significant, and it also causes large spikes in prediction. Though, theoretically, the Sobiski/Cardullo predictor, a state space filter, can compensate the longest delay with the least gain distortion among the three, it has remained in laboratory use due to several limitations. The first novel compensator is an adaptive predictor that makes use of the Kalman filter algorithm in a unique manner. In this manner the predictor can accurately provide the desired amount of prediction, while significantly reducing the large spikes caused by the McFarland predictor. Among several simplified online adaptive predictors, this report illustrates mathematically why the stochastic approximation algorithm achieves the best compensation results. A second novel approach employed a reference aircraft dynamics model to implement a state space predictor on a flight simulator. The practical implementation formed the filter state vector from the operator s control input and the aircraft states. The relationship between the reference model and the compensator performance was investigated in great detail, and the best performing reference model was selected for implementation in the final tests. Theoretical analyses of data from offline

  4. Quantitative constraints on the transport properties of hot partonic matter from semi-inclusive single high transverse momentum pion suppression in Au+Au collisions at {radical}(s{sub NN})=200 GeV

    SciTech Connect

    Adare, A.; Bickley, A. A.; Ellinghaus, F.; Kelly, S.; Kinney, E.; Nagle, J. L.; Seele, J.; Wysocki, M.; Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.; Aidala, C.; Bjorndal, M. T.; Chi, C. Y.; Cole, B. A.; D'Enterria, D.

    2008-06-15

    The PHENIX experiment has measured the suppression of semi-inclusive single high-transverse-momentum {pi}{sup 0}'s in Au+Au collisions at {radical}(s{sub NN})=200 GeV. The present understanding of this suppression is in terms of energy loss of the parent (fragmenting) parton in a dense color-charge medium. We have performed a quantitative comparison between various parton energy-loss models and our experimental data. The statistical point-to-point uncorrelated as well as correlated systematic uncertainties are taken into account in the comparison. We detail this methodology and the resulting constraint on the model parameters, such as the initial color-charge density dN{sup g}/dy, the medium transport coefficient , or the initial energy-loss parameter {epsilon}{sub 0}. We find that high-transverse-momentum {pi}{sup 0} suppression in Au+Au collisions has sufficient precision to constrain these model-dependent parameters at the {+-}20-25% (one standard deviation) level. These constraints include only the experimental uncertainties, and further studies are needed to compute the corresponding theoretical uncertainties.

  5. Angular momentum radio

    NASA Astrophysics Data System (ADS)

    Thidé, B.; Tamburini, F.; Then, H.; Someda, C. G.; Mari, Elletra; Parisi, G.; Spinello, F.; Romanato, Fra

    2014-02-01

    Wireless communication amounts to encoding information onto physical observables carried by electromagnetic (EM) fields, radiating them into surrounding space, and detecting them remotely by an appropriate sensor connected to an informationdecoding receiver. Each observable is second order in the fields and fulfills a conservation law. In present-day radio only the EM linear momentum observable is fully exploited. A fundamental physical limitation of this observable, which represents the translational degrees of freedom of the charges (typically an oscillating current along a linear antenna) and the fields, is that it is single-mode. This means that a linear-momentum radio communication link comprising one transmitting and one receiving antenna, known as a single-input-single-output (SISO) link, can provide only one transmission channel per frequency (and polarization). In contrast, angular momentum, which represents the rotational degrees of freedom, is multi-mode, allowing an angular-momentum SISO link to accommodate an arbitrary number of independent transmission channels on one and the same frequency (and polarization). We describe the physical properties of EM angular momentum and how they can be exploited, discuss real-world experiments, and outline how the capacity of angular momentum links may be further enhanced by employing multi-port techniques, i.e., the angular momentum counterpart of linear-momentum multiple-input-multiple-output (MIMO).

  6. Introducing Conservation of Momentum

    ERIC Educational Resources Information Center

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…

  7. The Momentum of Compliance.

    ERIC Educational Resources Information Center

    Nevin, John A.

    1996-01-01

    Reviews laboratory research on behavioral momentum conducted with pigeons and summarizes its findings and their generality to people, including those with mental retardation. Discusses the high-probability procedure used to establish compliance in clinical settings and based in part on an extension of the momentum metaphor. (CR)

  8. Characterizing the Velocity Profile of a Swirling Gas Experiment by Particle Imaging Velocimetry to Study Angular Momentum Transport in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Greess, Samuel; Ji, Hantao; Merino, Enrique; Berrios, William

    2013-10-01

    The method by which angular momentum transfers between different sections of accretion disks is a matter of ongoing debate. One suggested answer is Magnetorotational instability (MRI), which would facilitate this transfer through the magnetic interactions between particles at different distances from the center of the disk. While ongoing experiments with MRI have focused on the use of liquid metals to test the effects of magnetic fields, we are developing a swirling gas experiment to study effects beyond incompressible hydrodynamics, including compressible gas dynamics and plasma effects when gas is ionized. A second-generation prototype swirling gas experiment has been built to test the principle and to establish favorable rotation profiles using a chamber of swirling fog to simulate the formation and movement of accretion disks about some gravitational center. The paths of the visible fog particles can then be analyzed with Particle Imaging Velocimetry (PIV) techniques; these velocity measurements can then be organized by a Python program. Anticipated results include a radial profile of velocities at different times during the gas injection process, as well as further refinement of the fog chamber design to improve the accuracy in controlling the profile.

  9. Cross-shelf transport into nearshore waters due to shoaling internal tides in San Pedro Bay, CA

    USGS Publications Warehouse

    Noble, M.; Jones, B.; Hamilton, P.; Xu, Jie; Robertson, G.; Rosenfeld, L.; Largier, J.

    2009-01-01

    In the summer of 2001, a coastal ocean measurement program in the southeastern portion of San Pedro Bay, CA, was designed and carried out. One aim of the program was to determine the strength and effectiveness of local cross-shelf transport processes. A particular objective was to assess the ability of semidiurnal internal tidal currents to move suspended material a net distance across the shelf. Hence, a dense array of moorings was deployed across the shelf to monitor the transport patterns associated with fluctuations in currents, temperature and salinity. An associated hydrographic program periodically monitored synoptic changes in the spatial patterns of temperature, salinity, nutrients and bacteria. This set of measurements show that a series of energetic internal tides can, but do not always, transport subthermocline water, dissolved and suspended material from the middle of the shelf into the surfzone. Effective cross-shelf transport occurs only when (1) internal tides at the shelf break are strong and (2) subtidal currents flow strongly downcoast. The subtidal downcoast flow causes isotherms to tilt upward toward the coast, which allows energetic, nonlinear internal tidal currents to carry subthermocline waters into the surfzone. During these events, which may last for several days, the transported water remains in the surfzone until the internal tidal current pulses and/or the downcoast subtidal currents disappear. This nonlinear internal tide cross-shelf transport process was capable of carrying water and the associated suspended or dissolved material from the mid-shelf into the surfzone, but there were no observation of transport from the shelf break into the surfzone. Dissolved nutrients and suspended particulates (such as phytoplankton) transported from the mid-shelf into the nearshore region by nonlinear internal tides may contribute to nearshore algal blooms, including harmful algal blooms that occur off local beaches.

  10. Momentum fractionation on superstrata

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.

    2016-05-01

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.