Science.gov

Sample records for monitoring invasive species

  1. Invasive Plant Species: Inventory, Mapping, and Monitoring - A National Strategy

    USGS Publications Warehouse

    Ludke, J. Larry; D'Erchia, Frank; Coffelt, Jan; Hanson, Leanne

    2002-01-01

    America is under siege by invasive species of plants and animals, and by diseases. The current environmental, economic, and health-related costs of invasive species could exceed $138 billion per year-more than all other natural disasters combined. Notorious examples include West Nile virus, Dutch elm disease, chestnut blight, and purple loose- strife in the Northeast; kudzu, Brazilian peppertree, water hyacinth, nutria, and fire ants in the Southeast; zebra mussels, leafy spurge, and Asian long-horn beetles in the Midwest; salt cedar, Russian olive, and Africanized bees in the Southwest; yellow star thistle, European wild oats, oak wilt disease, Asian clams, and white pine blister rust in California; cheatgrass, various knapweeds, and thistles in the Great Basin; whirling disease of salmonids in the Northwest; hundreds of invasive species from microbes to mammals in Hawaii; and the brown tree snake in Guam. Thousands of species from other countries are introduced intentionally or accidentally into the United States each year. Based on past experience, 10-15 percent can be expected to establish free-living populations and about 1 percent can be expected to cause significant impacts to ecosystems, native species, economic productivity, and (or) human health.

  2. Using Environmental DNA for Invasive Species Surveillance and Monitoring.

    PubMed

    Mahon, Andrew R; Jerde, Christopher L

    2016-01-01

    The method employed for environmental DNA (eDNA) surveillance for detection and monitoring of rare species in aquatic systems has evolved dramatically since its first large-scale applications. Both active (targeted) and passive (total diversity) surveillance methods provide helpful information for management groups, but each has a suite of techniques that necessitate proper equipment training and use. The protocols described in this chapter represent some of the latest iterations in eDNA surveillance being applied in aquatic and marine systems. PMID:27460374

  3. REMOTE SENSING AND GEOSPATIAL MODELING FOR MONITORING INVASIVE PLANT SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing is used to show the actual distribution of distinctive invasive weeds such as leafy spurge (Euphorbia esula L.), whereas landscape modeling can show the potential distribution over an area. Geographic information system data and hyperspectral imagery [NASA JPL’s Airborne Visible Infra...

  4. An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater.

    PubMed

    Adrian-Kalchhauser, Irene; Burkhardt-Holm, Patricia

    2016-01-01

    Ponto-Caspian gobies are a flock of five invasive fish species that have colonized freshwaters and brackish waters in Europe and North America. One of them, the round goby Neogobius melanostomus, figures among the 100 worst invaders in Europe. Current methods to detect the presence of Ponto-Caspian gobies involve catching or sighting the fish. These approaches are labor intense and not very sensitive. Consequently, populations are usually detected only when they have reached high densities and when management or containment efforts are futile. To improve monitoring, we developed an assay based on the detection of DNA traces (environmental DNA, or eDNA) of Ponto-Caspian gobies in river water. The assay specifically detects invasive goby DNA and does not react to any native fish species. We apply the assay to environmental samples and demonstrate that parameters such as sampling depth, sampling location, extraction protocol, PCR protocol and PCR inhibition greatly impact detection. We further successfully outline the invasion front of Ponto-Caspian gobies in a large river, the High Rhine in Switzerland, and thus demonstrate the applicability of the assay to lotic environments. The eDNA assay requires less time, equipment, manpower, skills, and financial resources than the conventional monitoring methods such as electrofishing, angling or diving. Samples can be taken by untrained individuals, and the assay can be performed by any molecular biologist on a conventional PCR machine. Therefore, this assay enables environment managers to map invaded areas independently of fishermen's' reports and fish community monitorings. PMID:26814998

  5. Agent-based Bayesian approach to monitoring the progress of invasive species eradication programs

    PubMed Central

    Keith, Jonathan M.; Spring, Daniel

    2013-01-01

    Eradication of an invasive species can provide significant environmental, economic, and social benefits, but eradication programs often fail. Constant and careful monitoring improves the chance of success, but an invasion may seem to be in decline even when it is expanding in abundance or spatial extent. Determining whether an invasion is in decline is a challenging inference problem for two reasons. First, it is typically infeasible to regularly survey the entire infested region owing to high cost. Second, surveillance methods are imperfect and fail to detect some individuals. These two factors also make it difficult to determine why an eradication program is failing. Agent-based methods enable inferences to be made about the locations of undiscovered individuals over time to identify trends in invader abundance and spatial extent. We develop an agent-based Bayesian method and apply it to Australia’s largest eradication program: the campaign to eradicate the red imported fire ant (Solenopsis invicta) from Brisbane. The invasion was deemed to be almost eradicated in 2004 but our analyses indicate that its geographic range continued to expand despite a sharp decline in number of nests. We also show that eradication would probably have been achieved with a relatively small increase in the area searched and treated. Our results demonstrate the importance of inferring temporal and spatial trends in ongoing invasions. The method can handle incomplete observations and takes into account the effects of human intervention. It has the potential to transform eradication practices. PMID:23878210

  6. An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater

    PubMed Central

    Adrian-Kalchhauser, Irene; Burkhardt-Holm, Patricia

    2016-01-01

    Ponto-Caspian gobies are a flock of five invasive fish species that have colonized freshwaters and brackish waters in Europe and North America. One of them, the round goby Neogobius melanostomus, figures among the 100 worst invaders in Europe. Current methods to detect the presence of Ponto-Caspian gobies involve catching or sighting the fish. These approaches are labor intense and not very sensitive. Consequently, populations are usually detected only when they have reached high densities and when management or containment efforts are futile. To improve monitoring, we developed an assay based on the detection of DNA traces (environmental DNA, or eDNA) of Ponto-Caspian gobies in river water. The assay specifically detects invasive goby DNA and does not react to any native fish species. We apply the assay to environmental samples and demonstrate that parameters such as sampling depth, sampling location, extraction protocol, PCR protocol and PCR inhibition greatly impact detection. We further successfully outline the invasion front of Ponto-Caspian gobies in a large river, the High Rhine in Switzerland, and thus demonstrate the applicability of the assay to lotic environments. The eDNA assay requires less time, equipment, manpower, skills, and financial resources than the conventional monitoring methods such as electrofishing, angling or diving. Samples can be taken by untrained individuals, and the assay can be performed by any molecular biologist on a conventional PCR machine. Therefore, this assay enables environment managers to map invaded areas independently of fishermen’s’ reports and fish community monitorings. PMID:26814998

  7. Advancing capability for bioassessment using DNA metabarcoding: Application to aquatic invasive species monitoring

    EPA Science Inventory

    Characterizing biological communities by their constituent species is fundamental to biological monitoring and ecological condition assessment. Finding and identifying rare species is a long-standing challenge for monitoring programs. Nevertheless, conducting surveys that can des...

  8. LOUISIANA INVASIVE SPECIES PLAN

    EPA Science Inventory

    Identify the species, locations, and effects of invasive species within the state and the effects of these invasive species in Louisiana. Also identify how these species are spread, and the authorities that exist to manage and control them. With this information, create a m...

  9. Monitoring population and environmental parameters of invasive mosquito species in Europe.

    PubMed

    Petrić, Dušan; Bellini, Romeo; Scholte, Ernst-Jan; Rakotoarivony, Laurence Marrama; Schaffner, Francis

    2014-01-01

    To enable a better understanding of the overwhelming alterations in the invasive mosquito species (IMS), methodical insight into the population and environmental factors that govern the IMS and pathogen adaptations are essential. There are numerous ways of estimating mosquito populations, and usually these describe developmental and life-history parameters. The key population parameters that should be considered during the surveillance of invasive mosquito species are: (1) population size and dynamics during the season, (2) longevity, (3) biting behaviour, and (4) dispersal capacity. Knowledge of these parameters coupled with vector competence may help to determine the vectorial capacity of IMS and basic disease reproduction number (R0) to support mosquito borne disease (MBD) risk assessment. Similarly, environmental factors include availability and type of larval breeding containers, climate change, environmental change, human population density, increased human travel and goods transport, changes in living, agricultural and farming habits (e.g. land use), and reduction of resources in the life cycle of mosquitoes by interventions (e.g. source reduction of aquatic habitats). Human population distributions, urbanisation, and human population movement are the key behavioural factors in most IMS-transmitted diseases. Anthropogenic issues are related to the global spread of MBD such as the introduction, reintroduction, circulation of IMS and increased exposure to humans from infected mosquito bites. This review addresses the population and environmental factors underlying the growing changes in IMS populations in Europe and confers the parameters selected by criteria of their applicability. In addition, overview of the commonly used and newly developed tools for their monitoring is provided. PMID:24739334

  10. Monitoring population and environmental parameters of invasive mosquito species in Europe

    PubMed Central

    2014-01-01

    To enable a better understanding of the overwhelming alterations in the invasive mosquito species (IMS), methodical insight into the population and environmental factors that govern the IMS and pathogen adaptations are essential. There are numerous ways of estimating mosquito populations, and usually these describe developmental and life-history parameters. The key population parameters that should be considered during the surveillance of invasive mosquito species are: (1) population size and dynamics during the season, (2) longevity, (3) biting behaviour, and (4) dispersal capacity. Knowledge of these parameters coupled with vector competence may help to determine the vectorial capacity of IMS and basic disease reproduction number (R0) to support mosquito borne disease (MBD) risk assessment. Similarly, environmental factors include availability and type of larval breeding containers, climate change, environmental change, human population density, increased human travel and goods transport, changes in living, agricultural and farming habits (e.g. land use), and reduction of resources in the life cycle of mosquitoes by interventions (e.g. source reduction of aquatic habitats). Human population distributions, urbanisation, and human population movement are the key behavioural factors in most IMS-transmitted diseases. Anthropogenic issues are related to the global spread of MBD such as the introduction, reintroduction, circulation of IMS and increased exposure to humans from infected mosquito bites. This review addresses the population and environmental factors underlying the growing changes in IMS populations in Europe and confers the parameters selected by criteria of their applicability. In addition, overview of the commonly used and newly developed tools for their monitoring is provided. PMID:24739334

  11. Early detection monitoring of aquatic invasive species: Measuring performance success in a Lake Superior pilot network

    EPA Science Inventory

    The Great Lakes Water Quality Agreement, Annex 6 calls for a U.S.-Canada, basin-wide aquatic invasive species early detection network by 2015. The objective of our research is to explore survey design strategies that can improve detection efficiency, and to develop performance me...

  12. Aquatic invasive species

    USGS Publications Warehouse

    Thorsteinson, Lyman

    2005-01-01

    Invasive species are plants or animals that are present in an ecosystem beyond their native range. They may have few natural controls in their new environment and proliferate. They can threaten native species and interfere with human activities. The Western Fisheries Research Center (WFRC) has been conducting research to understand how non-native species invade and affect ecosystems, thus aiding management efforts.

  13. Remote sensing of California estuaries: Monitoring climate change and invasive species

    NASA Astrophysics Data System (ADS)

    Mulitsch, Melinda Jennifer

    The spread of invasive species and climate change are among the most serious global environmental threats. The goal of this dissertation was to link inter-annual climate change and biological invasions at a landscape scale using novel remote sensing techniques applied to the San Francisco Bay/Sacramento- San Joaquin Delta Estuary. I evaluated the use of hyperspectral imagery for detecting invasive aquatic species in the Delta using 3 m HyMap hyperspectral imagery. The target invasive aquatics weeds were the emergent water hyacinth (Eichhornia crassipes) and the submerged Brazilian waterweed (Egeria densa). Data were analyzed using linear spectral mixture analysis (SMA). The results show the weeds were mapped with a classification accuracy of 90.6% compared to 2003 sample sites and 82.6% accuracy compared to 2004 sample sites. Brazilian waterweed locations were successfully mapped but the abundances were overestimated because we did not separate it from other submerged aquatic vegatation (SAV). I evaluated 3 m HyMap imagery, from 2004, for SAV species in the Delta, including: Brazilian waterweed ( Egeria densa), Eurasian watermilfoil (Myriophyllum spicatum ), curlyleaf pondweed (Potamogeton crispus), coontail (Ceratophyllum demersum), American pondweed (Potamogeton nodosus), fanwort (Cabomba caroliniana), and common elodea (Elodea canadensis). Data were analyzed using SMA with a classification accuracy of 84.4%. Spectral simulations of Brazilian waterweed and American pondweed show how spectral properties can change at different water depths and varying water quality. Finally I address the effect of inter-annual climate change on the estuary ecology in the San Francisco Bay by analyzing current (2002) and historical (1994-1996) Airborne Visible Infrared Imaging Spectrometer (AVIRIS) datasets to map salt marsh species distribution. The species in the estuary, Salicornia virginica, Spartinia foliosa, Scirpus robustus, and Distichlis spicata undergo dramatic changes in

  14. USGS invasive species solutions

    USGS Publications Warehouse

    Simpson, Annie

    2011-01-01

    Land managers must meet the invasive species challenge every day, starting with identification of problem species, then the collection of best practices for their control, and finally the implementation of a plan to remove the problem. At each step of the process, the availability of reliable information is essential to success. The U.S. Geological Survey (USGS) has developed a suite of resources for early detection and rapid response, along with data management and sharing.

  15. Invasive species and climate change

    USGS Publications Warehouse

    Middleton, Beth A.

    2006-01-01

    Invasive species challenge managers in their work of conserving and managing natural areas and are one of the most serious problems these managers face. Because invasive species are likely to spread in response to changes in climate, managers may need to change their approaches to invasive species management accordingly.

  16. Invasive hemodynamic monitoring.

    PubMed

    Magder, Sheldon

    2015-01-01

    Although invasive hemodynamic monitoring requires considerable skill, studies have shown a striking lack of knowledge of the measurements obtained with the pulmonary artery catheter (PAC). This article reviews monitoring using a PAC. Issues addressed include basic physiology that determines cardiac output and blood pressure; methodology in the measurement of data obtained from a PAC; use of the PAC in making a diagnosis and for patient management, with emphasis on a responsive approach to management; and uses of the PAC that are not indications by themselves for placing the catheter, but can provide useful information when a PAC is in place. PMID:25435479

  17. Hyperspectral remote sensing and geospatial modeling for monitoring invasive plant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing is used to show the actual distribution of distinctive invasive weeds such as leafy spurge (Euphorbia esula L.), whereas landscape modeling can show the potential distribution over an area. Geographic information system data and hyperspectral imagery [NASA JPL’s Airborne Visible Infra...

  18. DNA-BASED METHODS FOR MONITORING INVASIVE SPECIES: A REVIEW AND PROSPECTUS

    EPA Science Inventory

    The recent explosion of interest in DNA-based tools for species identification has prompted widespread speculation on the future availability of inexpensive, rapid and accurate means of identifying specimens and assessing biodiversity. One applied field that may benefit dramatic...

  19. Managing the invasive species risk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Florida, California and Hawaii are on the front lines when it comes to the war with invasive species. One study documented the Florida invasion at more than one new arthropod species becoming established in the state each month with California estimated to be one every other month. This does not mea...

  20. Managing the invasive species risk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Florida, California and Hawaii are on the front lines when it comes to the war with invasive species. One study documented the Florida invasion at more than one new arthropod species becoming established in the state each month with California estimated to be one every other month. This does not me...

  1. The Invasive Species Forecasting System

    NASA Technical Reports Server (NTRS)

    Schnase, John; Most, Neal; Gill, Roger; Ma, Peter

    2011-01-01

    The Invasive Species Forecasting System (ISFS) provides computational support for the generic work processes found in many regional-scale ecosystem modeling applications. Decision support tools built using ISFS allow a user to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of management concern, such as a national park, monument, forest, or refuge. This type of decision product helps resource managers plan invasive species protection, monitoring, and control strategies for the lands they manage. Until now, scientists and resource managers have lacked the data-assembly and computing capabilities to produce these maps quickly and cost efficiently. ISFS focuses on regional-scale habitat suitability modeling for invasive terrestrial plants. ISFS s component architecture emphasizes simplicity and adaptability. Its core services can be easily adapted to produce model-based decision support tools tailored to particular parks, monuments, forests, refuges, and related management units. ISFS can be used to build standalone run-time tools that require no connection to the Internet, as well as fully Internet-based decision support applications. ISFS provides the core data structures, operating system interfaces, network interfaces, and inter-component constraints comprising the canonical workflow for habitat suitability modeling. The predictors, analysis methods, and geographic extents involved in any particular model run are elements of the user space and arbitrarily configurable by the user. ISFS provides small, lightweight, readily hardened core components of general utility. These components can be adapted to unanticipated uses, are tailorable, and require at most a loosely coupled, nonproprietary connection to the Web. Users can invoke capabilities from a command line; programmers can integrate ISFS's core components into more complex systems and services. Taken together, these

  2. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

    USGS Publications Warehouse

    Simpson, A.; Jarnevich, C.; Madsen, J.; Westbrooks, R.; Fournier, C.; Mehrhoff, L.; Browne, M.; Graham, J.; Sellers, E.

    2009-01-01

    Accurate analysis of present distributions and effective modeling of future distributions of invasive alien species (IAS) are both highly dependent on the availability and accessibility of occurrence data and natural history information about the species. Invasive alien species monitoring and detection networks (such as the Invasive Plant Atlas of New England and the Invasive Plant Atlas of the MidSouth) generate occurrence data at local and regional levels within the United States, which are shared through the US National Institute of Invasive Species Science. The Inter-American Biodiversity Information Network's Invasives Information Network (I3N), facilitates cooperation on sharing invasive species occurrence data throughout the Western Hemisphere. The I3N and other national and regional networks expose their data globally via the Global Invasive Species Information Network (GISIN). International and interdisciplinary cooperation on data sharing strengthens cooperation on strategies and responses to invasions. However, limitations to effective collaboration among invasive species networks leading to successful early detection and rapid response to invasive species include: lack of interoperability; data accessibility; funding; and technical expertise. This paper proposes various solutions to these obstacles at different geographic levels and briefly describes success stories from the invasive species information networks mentioned above. Using biological informatics to facilitate global information sharing is especially critical in invasive species science, as research has shown that one of the best indicators of the invasiveness of a species is whether it has been invasive elsewhere. Data must also be shared across disciplines because natural history information (e.g. diet, predators, habitat requirements, etc.) about a species in its native range is vital for effective prevention, detection, and rapid response to an invasion. Finally, it has been our

  3. Simple and Efficient Trap for Bark and Ambrosia Beetles (Coleoptera: Curculionidae) to Facilitate Invasive Species Monitoring and Citizen Involvement.

    PubMed

    Steininger, M S; Hulcr, J; Šigut, M; Lucky, A

    2015-06-01

    Bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae & Platypodinae) are among the most damaging forest pests worldwide, and monitoring is essential to damage prevention. Unfortunately, traps and attractants that are currently used are costly, and agencies rely on limited field personnel for deployment. The situation can be greatly aided by 1) the development of cost-effective trapping techniques, and 2) distribution of the effort through the Citizen Science approach. The goal of this study was to test a simple, effective trap that can be made and deployed by anyone interested in collecting bark and ambrosia beetles. Three trap types made from 2-liter soda bottles and, separately, four attractants were compared. Simple, one-window traps performed comparably at capturing species in traps painted or with multiple windows. A comparison of attractants in two-window traps found that 95% ethanol attracted the highest number of species but that Purell hand sanitizer (70% ethanol) and then Germ-X hand sanitizer (63% ethanol) were also effective. A perforated zip-top plastic bag containing Purell hanging over a trap filled with automobile antifreeze attracted the fewest species and individual specimens. Overall, >4,500 bark and ambrosia beetles, including 30 species were captured, representing a third of the regional species diversity. More than three quarters of the specimens were nonnative, representing nearly half of the known regional exotic species. These results suggest that simple one-window soda bottle traps baited with ethanol-based hand sanitizer will be effective and inexpensive tools for large-scale monitoring of bark and ambrosia beetles. PMID:26470236

  4. LOUISIANA EXOTIC INVASIVE SPECIES SYMPOSIUM MX964256

    EPA Science Inventory

    The Louisiana Exotic Invasive Species Symposium will provide a multi-state collaboration among agency representatives, scientists, and the affected public to address the problem of exotic invasive species and to improve coastal environmental conditions in Louisiana.

  5. Genetic monitoring detects an overlooked cryptic species and reveals the diversity and distribution of three invasive Rattus congeners in south Africa

    PubMed Central

    2011-01-01

    Background South Africa's long and extensive trade activity has ensured ample opportunities for exotic species introduction. Whereas the rich biodiversity of endemic southern African fauna has been the focus of many studies, invasive vertebrates are generally overlooked despite potential impacts on biodiversity, health and agriculture. Genetic monitoring of commensal rodents in South Africa which uncovered the presence of Rattus tanezumi, a South-East Asian endemic not previously known to occur in Africa, provided the impetus for expanded studies on all invasive Rattus species present. Results To this end, intensified sampling at 28 South African localities and at one site in Swaziland, identified 149 Rattus specimens. Cytochrome b gene sequencing revealed the presence of two R. tanezumi, seven Rattus rattus and five Rattus norvegicus haplotypes in south Africa. Phylogenetic results were consistent with a single, recent R. tanezumi introduction and indicated that R. norvegicus and R. rattus probably became established following at least two and three independent introductions, respectively. Intra- and inter-specific diversity was highest in informal human settlements, with all three species occurring at a single metropolitan township site. Rattus norvegicus and R. rattus each occurred sympatrically with Rattus tanezumi at one and five sites, respectively. Karyotyping of selected R. rattus and R. tanezumi individuals identified diploid numbers consistent with those reported previously for these cryptic species. Ordination of bioclimatic variables and MaxEnt ecological niche modelling confirmed that the bioclimatic niche occupied by R. tanezumi in south Africa was distinct from that occupied in its naturalised range in south-east Asia suggesting that factors other than climate may influence the distribution of this species. Conclusions This study has highlighted the value of genetic typing for detecting cryptic invasive species, providing historical insights into

  6. 75 FR 69698 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ...Pursuant to the provisions of the Federal Advisory Committee Act, notice is hereby given of meetings of the Invasive Species Advisory Committee (ISAC). Comprised of 30 nonfederal invasive species experts and stakeholders from across the nation, the purpose of the Advisory Committee is to provide advice to the National Invasive Species Council, as authorized by Executive Order 13112, on a broad......

  7. 76 FR 68776 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ...Pursuant to the provisions of the Federal Advisory Committee Act, notice is hereby given of meetings of the Invasive Species Advisory Committee (ISAC). Comprised of 29 nonfederal invasive species experts and stakeholders from across the nation, the purpose of the Advisory Committee is to provide advice to the National Invasive Species Council, as authorized by Executive Order 13112, on a broad......

  8. 77 FR 23740 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ...Pursuant to the provisions of the Federal Advisory Committee Act, notice is hereby given of meetings of the Invasive Species Advisory Committee (ISAC). Comprised of 30 nonfederal invasive species experts and stakeholders from across the nation, the purpose of the Advisory Committee is to provide advice to the National Invasive Species Council, as authorized by Executive Order 13112, on a broad......

  9. 78 FR 11899 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... Office of the Secretary Invasive Species Advisory Committee AGENCY: Office of the Secretary, Interior... Invasive Species Advisory Committee. The document contained incorrect dates. This document corrects those.... Meeting of the Invasive Species Advisory Committee (OPEN): Thursday, March 7, 2013 through Friday, March...

  10. 78 FR 70317 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Office of the Secretary Invasive Species Advisory Committee AGENCY: Office of the Secretary, Interior. ACTION: Notice of Public Meeting (via Teleconference) of the Invasive Species Advisory Committee. SUMMARY... Invasive Species Advisory Committee. The purpose of the Advisory Committee is to provide advice to...

  11. 76 FR 30955 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ...Pursuant to the provisions of the Federal Advisory Committee Act, notice is hereby given of meetings of the Invasive Species Advisory Committee (ISAC). Comprised of 30 nonfederal invasive species experts and stakeholders from across the nation, the purpose of the Advisory Committee is to provide advice to the National Invasive Species Council, as authorized by Executive Order 13112, on a broad......

  12. 75 FR 29359 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ...Pursuant to the provisions of the Federal Advisory Committee Act, notice is hereby given of meetings of the Invasive Species Advisory Committee (ISAC). Comprised of 30 nonfederal invasive species experts and stakeholders from across the nation, the purpose of the Advisory Committee is to provide advice to the National Invasive Species Council, as authorized by Executive Order 13112, on a broad......

  13. Invasion triangle: an organizational framework for species invasion

    PubMed Central

    Perkins, Lora B; Leger, Elizabeth A; Nowak, Robert S

    2011-01-01

    Species invasion is a complex, multifactor process. To encapsulate this complexity into an intuitively appealing, simple, and straightforward manner, we present an organizational framework in the form of an invasion triangle. The invasion triangle is an adaptation of the disease triangle used by plant pathologists to help envision and evaluate interactions among a host, a pathogen, and an environment. Our modification of this framework for invasive species incorporates the major processes that result in invasion as the three sides of the triangle: (1) attributes of the potential invader; (2) biotic characteristics of a potentially invaded site; and (3) environmental conditions of the site. The invasion triangle also includes the impact of external influences on each side of the triangle, such as climate and land use change. This paper introduces the invasion triangle, discusses how accepted invasion hypotheses are integrated in this framework, describes how the invasion triangle can be used to focus research and management, and provides examples of application. The framework provided by the invasion triangle is easy to use by both researchers and managers and also applicable at any level of data intensity, from expert opinion to highly controlled experiments. The organizational framework provided by the invasion triangle is beneficial for understanding and predicting why species are invasive in specific environments, for identifying knowledge gaps, for facilitating communication, and for directing management in regard to invasive species. PMID:22393528

  14. CONSERVATION PROGRAMS THAT PROMOTE INVASIVE SPECIES

    EPA Science Inventory

    Invasive plant species are degrading the structure and function of ecosystems throughout the world. Although most state and federal conservation agencies in the U.S. attempt to reduce the impact of invasive species, some agency activities can contribute to the spread of invasive...

  15. 78 FR 9724 - Invasive Species Advisory Committee; Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Office of the Secretary Invasive Species Advisory Committee; Meetings AGENCY: Office of the Secretary, Interior. ACTION: Notice of public meetings of the Invasive Species Advisory Committee. SUMMARY: Pursuant... Invasive Species Advisory Committee (ISAC). Comprised of 31 nonfederal invasive species experts...

  16. Adaptive invasive species distribution models: A framework for modeling incipient invasions

    USGS Publications Warehouse

    Uden, Daniel R.; Allen, Craig R.; Angeler, David G.; Corral, Lucia; Fricke, Kent A.

    2015-01-01

    The utilization of species distribution model(s) (SDM) for approximating, explaining, and predicting changes in species’ geographic locations is increasingly promoted for proactive ecological management. Although frameworks for modeling non-invasive species distributions are relatively well developed, their counterparts for invasive species—which may not be at equilibrium within recipient environments and often exhibit rapid transformations—are lacking. Additionally, adaptive ecological management strategies address the causes and effects of biological invasions and other complex issues in social-ecological systems. We conducted a review of biological invasions, species distribution models, and adaptive practices in ecological management, and developed a framework for adaptive, niche-based, invasive species distribution model (iSDM) development and utilization. This iterative, 10-step framework promotes consistency and transparency in iSDM development, allows for changes in invasive drivers and filters, integrates mechanistic and correlative modeling techniques, balances the avoidance of type 1 and type 2 errors in predictions, encourages the linking of monitoring and management actions, and facilitates incremental improvements in models and management across space, time, and institutional boundaries. These improvements are useful for advancing coordinated invasive species modeling, management and monitoring from local scales to the regional, continental and global scales at which biological invasions occur and harm native ecosystems and economies, as well as for anticipating and responding to biological invasions under continuing global change.

  17. National Institute of Invasive Species Science (NIISS)

    USGS Publications Warehouse

    Stohlgren, Tom

    2006-01-01

    The National Institute of Invasive Species Science (www.NIISS.org) is a consortium of governmental and nongovernmental partners, led by the U.S. Geological Survey (USGS), whose aim is to provide reliable information and advanced decision support tools for documenting, understanding, predicting, assessing, and addressing the threat of invasive species in the United States. The Institute coordinates the National Aeronautical and Space Administrationa??s (NASAa??s) Invasive Species National Application activities for the Department of the Interior and has al lead role in developing NASA-derived remote sensing and landscape-scale predictive modeling capabilities for the invasive species community.

  18. The Invasive Plant Species Education Guide

    ERIC Educational Resources Information Center

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  19. Fort Collins Science Center: Invasive Species Science

    USGS Publications Warehouse

    Stohlgren, Tom

    2004-01-01

    FORT is also the administrative home of the National Institute of Invasive Species Science, a growing consortium of partnerships between government and private organizations established by the U.S. Geological Survey (USGS) and its many cooperators. The Institute was formed to develop cooperative approaches for invasive species science that meet the urgent needs of land managers and the public. Its mission is to work with others to coordinate data and research from many sources to predict and reduce the effects of harmful nonnative plants, animals, and diseases in natural areas and throughout the United States, with a strategic approach to information management, research, modeling, technical assistance, and outreach. The Institute research team will develop local-, regional-, and national- scale maps of invasive species and identify priority invasive species, vulnerable habitats, and pathways of invasion. County-level and point data on occurrence will be linked to plot-level and site-level information on species abundance and spread. FORT scientists and Institute partners are working to integrate remote sensing data and GIS-based predictive models to track the spread of invasive species across the country. This information will be linked to control and restoration efforts to evaluate their cost-effectiveness. Understanding both successes and failures will advance the science of invasive species containment and control as well as restoration of habitats and native biodiversity.

  20. Global threat to agriculture from invasive species.

    PubMed

    Paini, Dean R; Sheppard, Andy W; Cook, David C; De Barro, Paul J; Worner, Susan P; Thomas, Matthew B

    2016-07-01

    Invasive species present significant threats to global agriculture, although how the magnitude and distribution of the threats vary between countries and regions remains unclear. Here, we present an analysis of almost 1,300 known invasive insect pests and pathogens, calculating the total potential cost of these species invading each of 124 countries of the world, as well as determining which countries present the greatest threat to the rest of the world given their trading partners and incumbent pool of invasive species. We find that countries vary in terms of potential threat from invasive species and also their role as potential sources, with apparently similar countries sometimes varying markedly depending on specifics of agricultural commodities and trade patterns. Overall, the biggest agricultural producers (China and the United States) could experience the greatest absolute cost from further species invasions. However, developing countries, in particular, Sub-Saharan African countries, appear most vulnerable in relative terms. Furthermore, China and the United States represent the greatest potential sources of invasive species for the rest of the world. The analysis reveals considerable scope for ongoing redistribution of known invasive pests and highlights the need for international cooperation to slow their spread. PMID:27325781

  1. Global threat to agriculture from invasive species

    PubMed Central

    Paini, Dean R.; Sheppard, Andy W.; Cook, David C.; De Barro, Paul J.; Worner, Susan P.; Thomas, Matthew B.

    2016-01-01

    Invasive species present significant threats to global agriculture, although how the magnitude and distribution of the threats vary between countries and regions remains unclear. Here, we present an analysis of almost 1,300 known invasive insect pests and pathogens, calculating the total potential cost of these species invading each of 124 countries of the world, as well as determining which countries present the greatest threat to the rest of the world given their trading partners and incumbent pool of invasive species. We find that countries vary in terms of potential threat from invasive species and also their role as potential sources, with apparently similar countries sometimes varying markedly depending on specifics of agricultural commodities and trade patterns. Overall, the biggest agricultural producers (China and the United States) could experience the greatest absolute cost from further species invasions. However, developing countries, in particular, Sub-Saharan African countries, appear most vulnerable in relative terms. Furthermore, China and the United States represent the greatest potential sources of invasive species for the rest of the world. The analysis reveals considerable scope for ongoing redistribution of known invasive pests and highlights the need for international cooperation to slow their spread. PMID:27325781

  2. Alien invasive species and international trade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emergency control measures for invasive species often rely on use of pesticides and other destructive practices. Public concern about pesticide contamination of the ground water and the environment has lead to increased restrictions on the use of pesticides for control of many destructive invasive ...

  3. Control Effort Exacerbates Invasive Species Problem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic invasive species are depleting the World’s native biota. Managers face a difficult dilemma after exotic species invade. They can use aggressive practices to reduce invader abundances, thereby reducing invaders’ competitive impacts on native species. But it is often difficult or impossible ...

  4. Remote sensing as a tool for monitoring plant invasions: Testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed)

    NASA Astrophysics Data System (ADS)

    Müllerová, Jana; Pergl, Jan; Pyšek, Petr

    2013-12-01

    Plant invasions represent a threat not only to biodiversity and ecosystem functioning but also to the character of traditional landscapes. Despite the worldwide efforts to control and eradicate invasive species, their menace grows. New techniques enabling fast and precise monitoring and providing information on spatial structure of invasions are needed for efficient management strategies to be implemented. We present remote sensing assessment of a noxious invasive species Heracleum mantegazzianum (giant hogweed) that integrates different data sources, spatial and spectral resolutions, and image processing techniques. Panchromatic, multispectral and color very high spatial resolution (VHR) aerial photography (1947-2006, resolution 0.5 m), and medium spatial resolution satellite data (Rapid Eye 2010, resolution 5 m) were analyzed to assess their potential for hogweed monitoring by using pixel- (both supervised and unsupervised) and object-based image analysis (OBIA, automated hierarchical, iterative, and rule-based). Both point and grid based accuracy assessment was carried out. Described methods of object-based image analysis of VHR data enabled monitoring of hogweed at high classification accuracies measured by various means, regardless of the spectral resolution of the data provided that the data came from the species flowering period. Although the proposed automated processing of VHR data is relatively time-effective and standardized, application over large areas would be rather demanding due to the size of datasets, and multispectral satellite data of medium spatial resolution (lower than the size of individuals) was therefore tested. On such imagery, only larger stands could be identified but still the pixel-based supervised classification achieved moderate accuracy. Depending on the size of the area of interest and the detail needed the very high or medium spatial resolution data (acquired at the species flowering period) are to be used. High accuracies

  5. Aquatic invasive species: Lessons from cancer research

    USGS Publications Warehouse

    Sepulveda, Adam; Ray, Andrew; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Gresswell, Robert E.; Gross, Jackson A.; Kershner, Jeffrey L.

    2014-01-01

    Aquatic invasive species are disrupting ecosystems with increasing frequency. Successful control of these invasions has been rare: Biologists and managers have few tools for fighting aquatic invaders. In contrast, the medical community has long worked to develop tools for preventing and fighting cancer. Its successes are marked by a coordinated research approach with multiple steps: prevention, early detection, diagnosis, treatment options and rehabilitation. The authors discuss how these steps can be applied to aquatic invasive species, such as the American bullfrog (Lithobates catesbeianus), in the Northern Rocky Mountain region of the United States, to expedite tool development and implementation along with achievement of biodiversity conservation goals.

  6. Invasive species management and research using GIS

    USGS Publications Warehouse

    Holcombe, Tracy R.; Stohlgren, Thomas J.; Jarnevich, Catherine S.

    2007-01-01

    Geographical Information Systems (GIS) are powerful tools in the field of invasive species management. GIS can be used to create potential distribution maps for all manner of taxa, including plants, animals, and diseases. GIS also performs well in the early detection and rapid assessment of invasive species. Here, we used GIS applications to investigate species richness and invasion patterns in fish in the United States (US) at the 6-digit Hydrologic Unit Code (HUC) level. We also created maps of potential spread of the cane toad (Bufo marinus) in the southeastern US at the 8-digit HUC level using regression and environmental envelope techniques. Equipped with this potential map, resource managers can target their field surveys to areas most vulnerable to invasion. Advances in GIS technology, maps, data, and many of these techniques can be found on websites such as the National Institute of Invasive Species Science (www.NIISS.org). Such websites provide a forum for data sharing and analysis that is an invaluable service to the invasive species community.

  7. Invasive Species Science Branch: research and management tools for controlling invasive species

    USGS Publications Warehouse

    Reed, Robert N.; Walters, Katie D.

    2015-01-01

    Invasive, nonnative species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like “biological wildfires,” they can quickly spread and affect nearly all terrestrial and aquatic ecosystems. Invasive species have become one of the greatest environmental challenges of the 21st century in economic, environmental, and human health costs, with an estimated effect in the United States of more than $120 billion per year. Managers of the Department of the Interior and other public and private lands often rank invasive species as their top resource management problem. The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. To disseminate this information, branch scientists are developing platforms to share invasive species information with DOI cooperators, other agency partners, and the public. From these and other data, branch scientists are constructing models to understand and predict invasive species distributions for more effective management. The branch also has extensive herpetological and population biology expertise that is applied to harmful reptile invaders such as the Brown Treesnake on Guam and Burmese Python in Florida.

  8. Teaching Citizen Science Skills Online: Implications for Invasive Species Training Programs

    ERIC Educational Resources Information Center

    Newman, Greg; Crall, Alycia; Laituri, Melinda; Graham, Jim; Stohlgren, Tom; Moore, John C.; Kodrich, Kris; Holfelder, Kirstin A.

    2010-01-01

    Citizen science programs are emerging as an efficient way to increase data collection and help monitor invasive species. Effective invasive species monitoring requires rigid data quality assurances if expensive control efforts are to be guided by volunteer data. To achieve data quality, effective online training is needed to improve field skills…

  9. The Global Invasive Species Information Network: contributing to GEO Task BI-07-01b

    NASA Astrophysics Data System (ADS)

    Graham, J.; Morisette, J. T.; Simpson, A.

    2009-12-01

    Invasive alien species (IAS) threaten biodiversity and exert a tremendous cost on society for IAS prevention and eradication. They endanger natural ecosystem functioning and seriously impact biodiversity and agricultural production. The task definition for the GEO task BI-07-01b: Invasive Species Monitoring System is to characterize, monitor, and predict changes in the distribution of invasive species. This includes characterizing the current requirements and capacity for invasive species monitoring and developing strategies for implementing cross-search functionality among existing online invasive species information systems from around the globe. The Task is being coordinated by members of the Global Invasive Species Information Network (GISIN) and their partners. Information on GISIN and a prototype of the network is available at www.gisin.org. This talk will report on the current status of GISIN and review how researchers can either contribute to or utilize data from this network.

  10. Remote sensing of species invasion

    NASA Astrophysics Data System (ADS)

    Clinton, Nicholas Etienne

    The invasion of the Western United States of America by Bromus tectorum, also known as "cheatgrass" is mapped using techniques of remote sensing. Landsat 5 Thematic Mapper (TM) data was radiometrically processed to ground reflectance using the MODTRAN4 atmospheric simulation model. The results of the radiometric processing were checked against ground reflectances with a portable ASD spectrometer. Landsat TM imagery covering portions of Utah State, USA were obtained at two times for each scene, one in the spring and one in the summer. The imagery was radiometrically processed to ground reflectance. Field data on cheatgrass abundance were collected at the same time period of the Landsat imagery. A variety of regression models were tested for predicting cheatgrass abundance. Prediction variables included the extracted ground reflectance from the multi-temporal imagery and ancillary topographic data. A meta-prediction framework was devised for compositing the results of an ensemble of regression models. Using cross-validation, the method was found to predict cheatgrass abundance (as percent) with approximately 15% Root Mean Square Error. The Landsat based prediction maps were used to scale reference data to 250 meter resolution, for prediction over larger spatial areas using the MODerate resolution Imaging Spectro-radiometer (MODIS). MODIS Normalized Difference Vegetation Index (NDVI) maps, at 250 meter spatial resolution and bi-monthly data frequency, were assembled over a five year time period spanning 2001-2005. PRISM monthly total precipitation data, a spatially interpolated (4 kilometer) resolution data product, were compiled over the same time period and the same spatial coverage as the MODIS data. Thin plate (Duchon) splines were fit to the time series of precipitation data and MODIS NDVI in order to generate time series of precipitation and NDVI (with an arbitrary number of data points) over the study area. Metrics designed to quantify ecosystem response to

  11. 77 FR 23494 - Invasive Species Advisory Committee; Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Invasive Species Advisory Committee; Request for Nominations AGENCY: Office of the Secretary, National Invasive Species Council. ACTION: Request for Nominations for the Invasive Species Advisory Committee. SUMMARY: The U.S. Department of the Interior, on behalf of the interdepartmental National Invasive...

  12. Agricultural Warfare and Bioterrorism using Invasive Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chapter on Agricultural Warfare and Bioterrorism using Invasive Species is part of the book titled Pest Management and Phytosanitary Trade Barriers authored by Neil Heather (Australia) and Guy Hallman. The chapter attempts to briefly put the topic into context with phytosanitation. It presents...

  13. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments

    EPA Science Inventory

    Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to significantly alleviate difficulties associated with traditional monitoring approac...

  14. Ensemble habitat mapping of invasive plant species.

    PubMed

    Stohlgren, Thomas J; Ma, Peter; Kumar, Sunil; Rocca, Monique; Morisette, Jeffrey T; Jarnevich, Catherine S; Benson, Nate

    2010-02-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. PMID:20136746

  15. Ensemble habitat mapping of invasive plant species

    USGS Publications Warehouse

    Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N.

    2010-01-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. ?? 2010 Society for Risk Analysis.

  16. Early Detection Monitoring for Invasive Fish: St. Louis River (SLR) Pilot Study

    EPA Science Inventory

    Early detection of aquatic invasive species is necessary to develop and implement timely management responses. Predicting species introductions, however, is difficult and resources are typically limited. Therefore, monitoring strategies should be designed to effectively and eff...

  17. Invasive species change detection using artificial neural networks and CASI hyperspectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For monitoring and controlling the extent and intensity of an invasive species, a direct multi-date image classification method was applied in invasive species (saltcedar) change detection in the study area of Lovelock, Nevada. With multi-date Compact Airborne Spectrographic Imager (CASI) hyperspec...

  18. Non-invasive glucose monitor

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2001-01-01

    A non-invasive method for determining blood level of an analyte of interest, such as glucose, comprises: generating an excitation laser beam (e.g., at a wavelength of 700 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor in the anterior chamber is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated aqueous humor; and then determining the blood glucose level (or the level of another analyte of interest) for the subject from the Raman spectrum. Preferably, the detecting step is followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing method is also disclosed.

  19. Coevolution between Native and Invasive Plant Competitors: Implications for Invasive Species Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive species may establish in communities because they are better competitors than natives, but in order to remain community dominants, the competitive advantage of invasive species must be persistent. Native species that are not extirpated when highly invasive species are introduced are likely...

  20. A Landscape Approach to Invasive Species Management

    PubMed Central

    Lurgi, Miguel; Wells, Konstans; Kennedy, Malcolm; Campbell, Susan; Fordham, Damien A.

    2016-01-01

    Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our

  1. A Landscape Approach to Invasive Species Management.

    PubMed

    Lurgi, Miguel; Wells, Konstans; Kennedy, Malcolm; Campbell, Susan; Fordham, Damien A

    2016-01-01

    Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our

  2. Non-invasive monitoring of spreading depression.

    PubMed

    Bastany, Zoya J R; Askari, Shahbaz; Dumont, Guy A; Speckmann, Erwin-Josef; Gorji, Ali

    2016-10-01

    Spreading depression (SD), a slow propagating depolarization wave, plays an important role in pathophysiology of different neurological disorders. Yet, research into SD-related disorders has been hampered by the lack of non-invasive recording techniques of SD. Here we compared the manifestations of SD in continuous non-invasive electroencephalogram (EEG) recordings to invasive electrocorticographic (ECoG) recordings in order to obtain further insights into generator structures and electrogenic mechanisms of surface recording of SD. SD was induced by KCl application and simultaneous SD recordings were performed by scalp EEG as well as ECoG electrodes of somatosensory neocortex of rats using a novel homemade EEG amplifier, AgCl recording electrodes, and high chloride conductive gel. Different methods were used to analyze the data; including the spectrogram, bi-spectrogram, pattern distribution, relative spectrum power, and multivariable Gaussian fit analysis. The negative direct current (DC) shifts recorded by scalp electrodes exhibited a high homogeneity to those recorded by ECoG electrodes. Furthermore, this novel method of recording and analysis was able to separate SD recorded by scalp electrodes from non-neuronal DC shifts induced by other potential generators, such as the skin, muscles, arteries, dura, etc. These data suggest a novel application for continuous non-invasive monitoring of DC potential changes, such as SD. Non-invasive monitoring of SD would allow early intervention and improve outcome in SD-related neurological disorders. PMID:27397413

  3. EFFECTS OF CLIMATE CHANGE ON AQUATIC INVASIVE SPECIES AND IMPLICATIONS FOR MANAGEMENT AND RESEARCH

    EPA Science Inventory

    Invasive species are one of the primary threats to ecosystems and biodiversity. They can degrade ecosystem services and cause economic damages ranging from lost revenue to large expenditures for their monitoring, eradication and control. How global change, including climate var...

  4. Morphological features to distinguish the larval stage of invasive Ruffe (Gymnocephalus cernuus) from native fish species

    EPA Science Inventory

    Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....

  5. Morphological features to distinguish the larval stage of invasive Ruffe from native fish species

    EPA Science Inventory

    Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....

  6. The stock of invasive insect species and its economic determinants.

    PubMed

    Hlasny, Vladimir

    2011-06-01

    Invasions of nonindigenous organisms have long been linked to trade, but the contribution of individual trade pathways remains poorly understood, because species are not observed immediately upon arrival and the number of species arriving annually is unknown. Species interception records may count both new arrivals and species long introduced. Furthermore, the stock of invasive insect species already present is unknown. In this study, a state-space model is used to infer the stock of detected as well as undetected invasive insect species established in the United States. A system of equations is estimated jointly to distinguish the patterns of introduction, identification, and eradication. Introductions of invasive species are modeled as dependent on the volume of trade and arrival of people. Identifications depend on the public efforts at invasive species research, as well as on the established stock of invasive species that remain undetected. Eradications of both detected and undetected invasive species depend on containment and quarantine efforts, as well as on the stock of all established invasive species. These patterns are estimated by fitting the predicted number of invasive species detections to the observed record in the North American Non-Indigenous Arthropod Database. The results indicate that agricultural imports are the most important pathway of introduction, followed by immigration of people. Expenditures by the U.S. Department of Agriculture and the Agricultural Research Service are found to explain the species identification record well. Between three and 38 invasive insect species are estimated to be established in the United States undetected. PMID:21735892

  7. Biology and invasive species in the western U.S

    USGS Publications Warehouse

    U.S. Geological Survey

    2005-01-01

    The diversity of environments that characterizes the West is responsible for the region's rich biological heritage. This ecological diversity also means that opportunities for invasive species are many, varied, and complex. Island ecosystems are notoriously vulnerable to invaders as demonstrated in Hawaii and West Coast offshore islands. Aquatic invaders impose high economic and environmental costs in systems as varied as San Francisco Bay and desert springs in the Great Basin. Although the West's arid and montane ecosystems may seem resistant to plant and animal invaders, we now know that ex-otic species have altered physical processes related to fire and hydrology in a manner favoring further expansion and persis-tence of invaders. Natural resource managers value analytical, mapping, and genetics tools developed by USGS scientists to monitor invasive species and help conserve biological systems. USGS biologists conduct research to assist land and water managers' efforts to control invasive species and restore natural systems. Throughout the West, the USGS carries out studies for early detection and rapid assessment of invaders. The following are some examples of how the USGS is making a difference in the western United States.

  8. Limiting invasive species in ballast water

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-06-01

    Ballast water is often intentionally loaded onto cargo ships and other vessels to provide weight necessary for safe maneuvering. However, this practice can unintentionally transport exotic organisms to parts of the world where populations of these organisms can establish themselves in new habitats as invasive and environmentally and economically disruptive species. Each year, an estimated 196 million metric tons of ballast water are discharged into U.S. coastal waters and the Great Lakes alone from an average of more than 90,000 visits of commercial ships greater than 300 metric tons, according to a 2 June report by the U.S. National Research Council (NRC) of the National Academies.

  9. INVASIVE MUSSEL SPECIES AND THE INTEGRITY OF LARGE RIVERS

    EPA Science Inventory

    Presentation is a summary of patterns of invasion and ecological risk associated with invasive mussel species in Great Rivers. Data from EMAP-GRE are included. Findings of this study can inform expectations about where and what invasive species may colonize North American River...

  10. The evolutionary impact of invasive species

    PubMed Central

    Mooney, H. A.; Cleland, E. E.

    2001-01-01

    Since the Age of Exploration began, there has been a drastic breaching of biogeographic barriers that previously had isolated the continental biotas for millions of years. We explore the nature of these recent biotic exchanges and their consequences on evolutionary processes. The direct evidence of evolutionary consequences of the biotic rearrangements is of variable quality, but the results of trajectories are becoming clear as the number of studies increases. There are examples of invasive species altering the evolutionary pathway of native species by competitive exclusion, niche displacement, hybridization, introgression, predation, and ultimately extinction. Invaders themselves evolve in response to their interactions with natives, as well as in response to the new abiotic environment. Flexibility in behavior, and mutualistic interactions, can aid in the success of invaders in their new environment. PMID:11344292

  11. INVASIVE SPECIES: PREDICTING GEOGRAPHIC DISTRIBUTIONS USING ECOLOGICAL NICHE MODELING

    EPA Science Inventory

    Present approaches to species invasions are reactive in nature. This scenario results in management that perpetually lags behind the most recent invasion and makes control much more difficult. In contrast, spatially explicit ecological niche modeling provides an effective solut...

  12. New pasture plants intensify invasive species risk

    PubMed Central

    Driscoll, Don A.; Catford, Jane A.; Barney, Jacob N.; Hulme, Philip E.; Inderjit; Martin, Tara G.; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M.; Riley, Sophie; Visser, Vernon

    2014-01-01

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks. PMID:25368175

  13. New pasture plants intensify invasive species risk.

    PubMed

    Driscoll, Don A; Catford, Jane A; Barney, Jacob N; Hulme, Philip E; Inderjit; Martin, Tara G; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M; Riley, Sophie; Visser, Vernon

    2014-11-18

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks. PMID:25368175

  14. Introduced and invasive cactus species: a global review.

    PubMed

    Novoa, Ana; Le Roux, Johannes J; Robertson, Mark P; Wilson, John R U; Richardson, David M

    2014-01-01

    Understanding which species are introduced and become invasive, and why, are central questions in invasion science. Comparative studies on model taxa have provided important insights, but much more needs to be done to unravel the context dependencies of these findings. The cactus family (Cactaceae), one of the most popular horticultural plant groups, is an interesting case study. Hundreds of cactus species have been introduced outside their native ranges; a few of them are among the most damaging invasive plant species in the world. We reviewed the drivers of introductions and invasions in the family and seek insights that can be used to minimize future risks. We compiled a list of species in the family and determined which have been recorded as invasive. We also mapped current global distributions and modelled the potential global distributions based on distribution data of known invasive taxa. Finally, we identified whether invasiveness is phylogenetically clustered for cacti and whether particular traits are correlated with invasiveness. Only 57 of the 1922 cactus species recognized in this treatment have been recorded as invasive. There are three invasion hotspots: South Africa (35 invasive species recorded), Australia (26 species) and Spain (24 species). However, there are large areas of the world with climates suitable for cacti that are at risk of future invasion-in particular, parts of China, eastern Asia and central Africa. The invasive taxa represent an interesting subset of the total species pool. There is a significant phylogenetic signal: invasive species occur in 2 of the 3 major phylogenetic clades and in 13 of the 130 genera. This phylogenetic signal is not driven by human preference, i.e. horticultural trade, but all invasive species are from 5 of the 12 cactus growth forms. Finally, invasive species tend to have significantly larger native ranges than non-invasive species, and none of the invasive species are of conservation concern in their

  15. Introduced and invasive cactus species: a global review

    PubMed Central

    Novoa, Ana; Le Roux, Johannes J.; Robertson, Mark P.; Wilson, John R.U.; Richardson, David M.

    2015-01-01

    Understanding which species are introduced and become invasive, and why, are central questions in invasion science. Comparative studies on model taxa have provided important insights, but much more needs to be done to unravel the context dependencies of these findings. The cactus family (Cactaceae), one of the most popular horticultural plant groups, is an interesting case study. Hundreds of cactus species have been introduced outside their native ranges; a few of them are among the most damaging invasive plant species in the world. We reviewed the drivers of introductions and invasions in the family and seek insights that can be used to minimize future risks. We compiled a list of species in the family and determined which have been recorded as invasive. We also mapped current global distributions and modelled the potential global distributions based on distribution data of known invasive taxa. Finally, we identified whether invasiveness is phylogenetically clustered for cacti and whether particular traits are correlated with invasiveness. Only 57 of the 1922 cactus species recognized in this treatment have been recorded as invasive. There are three invasion hotspots: South Africa (35 invasive species recorded), Australia (26 species) and Spain (24 species). However, there are large areas of the world with climates suitable for cacti that are at risk of future invasion—in particular, parts of China, eastern Asia and central Africa. The invasive taxa represent an interesting subset of the total species pool. There is a significant phylogenetic signal: invasive species occur in 2 of the 3 major phylogenetic clades and in 13 of the 130 genera. This phylogenetic signal is not driven by human preference, i.e. horticultural trade, but all invasive species are from 5 of the 12 cactus growth forms. Finally, invasive species tend to have significantly larger native ranges than non-invasive species, and none of the invasive species are of conservation concern in their

  16. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    PubMed

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants. PMID:24352844

  17. Mapping, Monitoring and Modeling Submersed Aquatic Vegetation Species and Communities

    NASA Astrophysics Data System (ADS)

    Hartis, Brett Michael

    Aquatic macrophyte communities are critically important habitat species in aquatic systems worldwide. None are more important than those found beneath the water's surface, commonly referred to as submersed aquatic vegetation (SAV). Although vital to such systems, many native submersed plants have shown near irreversible declines in recent decades as water quality impairment, habitat destruction, and encroachment by invasive species have increased. In the past, aquatic plant science has emphasized the restoration and protection of native species and the management of invasive species. Comparatively little emphasis has been directed toward adequately mapping and monitoring these resources to track their viability over time. Modeling the potential intrusion of certain invasive plant species has also been given little attention, likely because aquatic systems in general can be difficult to assess. In recent years, scientists and resource managers alike have begun paying more attention to mapping SAV communities and to address the spread of invasive species across various regions. This research attempts to provide new, cutting-edge techniques to improve SAV mapping and monitoring efforts in coastal regions, at both community and individual species levels, while also providing insights about the establishment potential of Hydrilla verticillata, a noxious, highly invasive submersed plant. Technological advances in satellite remote sensing, interpolation and spatial analysis in geographic information systems, and state-of-the-art climate envelope modeling techniques were used to further assess the dynamic nature of SAV on various scales. This work contributes to the growing science of mapping, monitoring, and modeling of SAV

  18. Non invasive monitoring in mechanically ventilated pediatric patients.

    PubMed

    Al-Subu, Awni M; Rehder, Kyle J; Cheifetz, Ira M; Turner, David A

    2014-12-01

    Cardiopulmonary monitoring is a key component in the evaluation and management of critically ill patients. Clinicians typically rely on a combination of invasive and non-invasive monitoring to assess cardiac output and adequacy of ventilation. Recent technological advances have led to the introduction: of continuous non-invasive monitors that allow for data to be obtained at the bedside of critically ill patients. These advances help to identify hemodynamic changes and allow for interventions before complications occur. In this manuscript, we highlight several important methods of non-invasive cardiopulmonary monitoring, including capnography, transcutaneous monitoring, pulse oximetry, and near infrared spectroscopy. PMID:25119483

  19. The role thermal physiology plays in species invasion

    PubMed Central

    Kelley, Amanda L.

    2014-01-01

    The characterization of physiological phenotypes that may play a part in the establishment of non-native species can broaden our understanding about the ecology of species invasion. Here, an assessment was carried out by comparing the responses of invasive and native species to thermal stress. The goal was to identify physiological patterns that facilitate invasion success and to investigate whether these traits are widespread among invasive ectotherms. Four hypotheses were generated and tested using a review of the literature to determine whether they could be supported across taxonomically diverse invasive organisms. The four hypotheses are as follows: (i) broad geographical temperature tolerances (thermal width) confer a higher upper thermal tolerance threshold for invasive rather than native species; (ii) the upper thermal extreme experienced in nature is more highly correlated with upper thermal tolerance threshold for invasive vs. native animals; (iii) protein chaperone expression—a cellular mechanism that underlies an organism's thermal tolerance threshold—is greater in invasive organisms than in native ones; and (iv) acclimation to higher temperatures can promote a greater range of thermal tolerance for invasive compared with native species. Each hypothesis was supported by a meta-analysis of the invasive/thermal physiology literature, providing further evidence that physiology plays a substantial role in the establishment of invasive ectotherms. PMID:27293666

  20. Priority setting for invasive species management: risk assessment of Ponto-Caspian invasive species into Great Britain.

    PubMed

    Gallardo, Belinda; Aldridge, David C

    2013-03-01

    Invasive species drive important ecological and economic losses across wide geographies, with some regions supporting especially large numbers of nonnative species and consequently suffering relatively high impacts. For this reason, integrated risk assessments able to screen a suite of multiple invaders over large geographic areas are needed for prioritizing the allocation of limited resources. A total of 16 Ponto-Caspian aquatic species (10 gammarids, one isopod, two mysids, and three fishes) have been short-listed as recent or potential future invaders of British waters, whose introduction and spread is of high concern. In this study, we use multiple modeling techniques to assess their risk of establishment and spread into Great Britain. Climate suitability maps for these 16 species differed depending on the eastern and western distribution of species in continental Europe, which was related to their respective migration corridor: southern (Danube-Rhine rivers), and northern (Don and Volga rivers and Baltic lakes). Species whose suitability was high across large parts of Great Britain included four gammarids (Cheliorophium robustum, Dikerogammarus bispinosus, D. villosus, and Echinogammarus trichiatus) and a mysid (Hemimysis anomala). A climatic "heat map" combining the results of all 16 species together pointed to the southeast of England as the area most vulnerable to multiple invasions, particularly the Thames, Anglian, Severn, and Humber river basin districts. Regression models further suggested that alkalinity concentration > 120 mg/L in southeast England may favor the establishment of Ponto-Caspian invaders. The production of integrated risk maps for future invaders provides a means for the scientifically informed prioritization of resources toward particular species and geographic regions. Such tools have great utility in helping environmental managers focus efforts on the most effective prevention, management, and monitoring programs. PMID:23634587

  1. Using habitat suitability models to target invasive plant species surveys

    USGS Publications Warehouse

    Crall, Alycia W.; Jarnevich, Catherine S.; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P 2) = 47.42, P < 0.01). From these findings, we conclude that habitat suitability models can be

  2. The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure

    PubMed Central

    Leung, Brian; Mandrak, Nicholas E

    2007-01-01

    Invasive species are increasingly becoming a policy priority. This has spurred researchers and managers to try to estimate the risk of invasion. Conceptually, invasions are dependent both on the receiving environment (invasibility) and on the ability to reach these new areas (propagule pressure). However, analyses of risk typically examine only one or the other. Here, we develop and apply a joint model of invasion risk that simultaneously incorporates invasibility and propagule pressure. We present arguments that the behaviour of these two elements of risk differs substantially—propagule pressure is a function of time, whereas invasibility is not—and therefore have different management implications. Further, we use the well-studied zebra mussel (Dreissena polymorpha) to contrast predictions made using the joint model to those made by separate invasibility and propagule pressure models. We show that predictions of invasion progress as well as of the long-term invasion pattern are strongly affected by using a joint model. PMID:17711834

  3. Combining local- and large-scale models to predict the distributions of invasive plant species.

    PubMed

    Jones, Chad C; Acker, Steven A; Halpern, Charles B

    2010-03-01

    Habitat distribution models are increasingly used to predict the potential distributions of invasive species and to inform monitoring. However, these models assume that species are in equilibrium with the environment, which is clearly not true for most invasive species. Although this assumption is frequently acknowledged, solutions have not been adequately addressed. There are several potential methods for improving habitat distribution models. Models that require only presence data may be more effective for invasive species, but this assumption has rarely been tested. In addition, combining modeling types to form "ensemble" models may improve the accuracy of predictions. However, even with these improvements, models developed for recently invaded areas are greatly influenced by the current distributions of species and thus reflect near- rather than long-term potential for invasion. Larger scale models from species' native and invaded ranges may better reflect long-term invasion potential, but they lack finer scale resolution. We compared logistic regression (which uses presence/absence data) and two presence-only methods for modeling the potential distributions of three invasive plant species on the Olympic Peninsula in Washington, USA. We then combined the three methods to create ensemble models. We also developed climate envelope models for the same species based on larger scale distributions and combined models from multiple scales to create an index of near- and long-term invasion risk to inform monitoring in Olympic National Park (ONP). Neither presence-only nor ensemble models were more accurate than logistic regression for any of the species. Larger scale models predicted much greater areas at risk of invasion. Our index of near- and long-term invasion risk indicates that < 4% of ONP is at high near-term risk of invasion while 67-99% of the Park is at moderate or high long-term risk of invasion. We demonstrate how modeling results can be used to guide the

  4. Innovative design for early detection of invasive species

    EPA Science Inventory

    Non-native aquatic species impose significant ecological impacts and rising financial costs in marine and freshwater ecosystems worldwide. Early detection of invasive species, as they enter a vulnerable ecosystem, is critical to successful containment and eradication. ORD, at t...

  5. Sampling design for early detection of aquatic invasive species in Great Lakes ports

    EPA Science Inventory

    We evaluated a pilot adaptive monitoring program for aquatic invasive species (AIS) early detection in Lake Superior. The monitoring program is designed to detect newly-introduced fishes, and encompasses the lake’s three major ports (Duluth-Superior, Sault Ste. Marie, Thund...

  6. Predicting the dynamics of local adaptation in invasive species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An invasive plant species may restrict its spread to only one habitat, or, after some time, may continue to spread into a different, secondary, habitat. The question of whether evolution is required for an invasive species to spread from one habitat to another is currently hotly debated. In order fo...

  7. Multidimensional approach to invasive species prevention.

    PubMed

    Briski, Elizabeta; Allinger, Lisa E; Balcer, Mary; Cangelosi, Allegra; Fanberg, Lana; Markee, Tom P; Mays, Nicole; Polkinghorne, Christine N; Prihoda, Kelsey R; Reavie, Euan D; Regan, Deanna H; Reid, Donald M; Saillard, Heidi J; Schwerdt, Tyler; Schaefer, Heidi; TenEyck, Matthew; Wiley, Chris J; Bailey, Sarah A

    2013-02-01

    Nonindigenous species (NIS) cause global biotic homogenization and extinctions, with commercial shipping being a leading vector for spread of aquatic NIS. To reduce transport of NIS by ships, regulations requiring ballast water exchange (BWE) have been implemented by numerous countries. BWE appears to effectively reduce risk for freshwater ports, but provides only moderate protection of marine ports. In the near future, ships may be required to undertake ballast water treatment (BWT) to meet numeric performance standards, and BWE may be phased out of use. However, there are concerns that BWT systems may not operate reliably in fresh or turbid water, or both. Consequently, it has been proposed that BWE could be used in combination with BWT to maximize the positive benefits of both management strategies for protection of freshwater ports. We compared the biological efficacy of "BWE plus BWT" against "BWT alone" at a ballast water treatment experimental test facility. Our comparative evaluation showed that even though BWT alone significantly reduced abundances of all tested organism groups except total heterotrophic bacteria, the BWE plus BWT strategy significantly reduced abundances for all groups and furthermore resulted in significantly lower abundances of most groups when compared to BWT alone. Our study clearly demonstrates potential benefits of combining BWE with BWT to reduce invasion risk of freshwater organisms transported in ships' ballast water, and it should be of interest to policy makers and environmental managers. PMID:23293915

  8. Vision of a cyberinfrastructure for nonnative, invasive species management

    USGS Publications Warehouse

    2008-01-01

    Although the quantity of data on the location, status, and management of invasive species is ever increasing, invasive species data sets are often difficult to obtain and integrate. A cyberinfrastructure for such information could make these data available for Internet users. The data can be used to create regional watch lists, to send e-mail alerts when a new species enters a region, to construct models of species' current and future distributions, and to inform management. Although the exchange of environmental data over the Internet in the form of raster data is maturing, and the exchange of species occurrence data is developing quickly, there is room for improvement. In this article, we present a vision for a comprehensive invasive species cyberinfrastructure that is capable of accessing data effectively, creating models of invasive species spread, and distributing this information.

  9. Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies

    USGS Publications Warehouse

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2008-01-01

    Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.

  10. Lianas as invasive species in North America: Chapter 28

    USGS Publications Warehouse

    Leicht-Young, Stacey A.; Pavlovic, Noel B.

    2015-01-01

    Liana diversity is typically low in the temperate zones; however, the influx of non-native invasive liana species in North America has increased local diversity at the expense of native habitats and species. Some of the most illustrative studies of invasive lianas in temperate North America compared the biological traits of invasive lianas with native congeners or ecological analogs. The majority of these studies focused on two species, Celastrus orbiculatus (oriental bittersweet) and Lonicera japonica (Japanese honeysuckle). Temperate zone lianas generally have higher photosynthetic rates than other early successional species and their host trees. Invasive lianas are having an increasing impact on the dynamics and trajectories of North American plant communities. They often exhibit superior growth and survival compared to their native counterparts, and in some cases, invasive lianas may directly contribute to the decline of their native correlates.

  11. 76 FR 18575 - Nominations of New Members to the Invasive Species Advisory Committee (ISAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Nominations of New Members to the Invasive Species Advisory Committee (ISAC) AGENCY: Office of the Secretary, National Invasive Species Council. ACTION: Request for Nominations for the Invasive Species Advisory... Invasive Species Council, proposes to appoint new members to the Invasive Species Advisory Committee...

  12. Placing invasive species management in a spatiotemporal context.

    PubMed

    Baker, Christopher M; Bode, Michael

    2016-04-01

    Invasive species are a worldwide issue, both ecologically and economically. A large body of work focuses on various aspects of invasive species control, including how to allocate control efforts to eradicate an invasive population as cost effectively as possible: There are a diverse range of invasive species management problems, and past mathematical analyses generally focus on isolated examples, making it hard to identify and understand parallels between the different contexts. In this study, we use a single spatiotemporal model to tackle the problem of allocating control effort for invasive species when suppressing an island invasive species, and for long-term spatial suppression projects. Using feral cat suppression as an illustrative example, we identify the optimal resource allocation for island and mainland suppression projects. Our results demonstrate how using a single model to solve different problems reveals similar characteristics of the solutions in different scenarios. As well as illustrating the insights offered by linking problems through a spatiotemporal model, we also derive novel and practically applicable results for our case studies. For temporal suppression projects on islands, we find that lengthy projects are more cost effective and that rapid control projects are only economically cost effective when population growth rates are high or diminishing returns on control effort are low. When suppressing invasive species around conservation assets (e.g., national parks or exclusion fences), we find that the size of buffer zones should depend on the ratio of the species growth and spread rate. PMID:27411245

  13. Evolutionary responses to global change: lessons from invasive species.

    PubMed

    Moran, Emily V; Alexander, Jake M

    2014-05-01

    Biologists have recently devoted increasing attention to the role of rapid evolution in species' responses to environmental change. However, it is still unclear what evolutionary responses should be expected, at what rates, and whether evolution will save populations at risk of extinction. The potential of biological invasions to provide useful insights has barely been realised, despite the close analogies to species responding to global change, particularly climate change; in both cases, populations encounter novel climatic and biotic selection pressures, with expected evolutionary responses occurring over similar timescales. However, the analogy is not perfect, and invasive species are perhaps best used as an upper bound on expected change. In this article, we review what invasive species can and cannot teach us about likely evolutionary responses to global change and the constraints on those responses. We also discuss the limitations of invasive species as a model and outline directions for future research. PMID:24612028

  14. Risk assessment for invasive species produces net bioeconomic benefits

    PubMed Central

    Keller, Reuben P.; Lodge, David M.; Finnoff, David C.

    2007-01-01

    International commerce in live organisms presents a policy challenge for trade globalization; sales of live organisms create wealth, but some nonindigenous species cause harm. To reduce damage, some countries have implemented species screening to limit the introduction of damaging species. Adoption of new risk assessment (RA) technologies has been slowed, however, by concerns that RA accuracy remains insufficient to produce positive net economic benefits. This concern arises because only a small proportion of all introduced species escape, spread, and cause harm (i.e., become invasive), so a RA will exclude many noninvasive species (which provide a net economic benefit) for every invasive species correctly identified. Here, we develop a simple cost:benefit bioeconomic framework to quantify the net benefits from applying species prescreening. Because invasive species are rarely eradicated, and their damages must therefore be borne for long periods, we have projected the value of RA over a suitable range of policy time horizons (10–500 years). We apply the model to the Australian plant quarantine program and show that this RA program produces positive net economic benefits over the range of reasonable assumptions. Because we use low estimates of the financial damage caused by invasive species and high estimates of the value of species in the ornamental trade, our results underestimate the net benefit of the Australian plant quarantine program. In addition, because plants have relatively low rates of invasion, applying screening protocols to animals would likely demonstrate even greater benefits. PMID:17190819

  15. Complex genetic patterns in closely related colonizing invasive species

    EPA Science Inventory

    Anthropogenic activities frequently result in both rapidly changing environments and translocation of species from their native ranges (i.e., biological invasions). Empirical studies suggest that many factors associated with these changes can lead to complex genetic patterns, par...

  16. Possibility to implement invasive species control in Swedish forests.

    PubMed

    Pettersson, Maria; Strömberg, Caroline; Keskitalo, E Carina H

    2016-02-01

    Invasive alien species constitute an increasing risk to forestry, as indeed to natural systems in general. This study reviews the legislative framework governing invasive species in the EU and Sweden, drawing upon both a legal analysis and interviews with main national level agencies responsible for implementing this framework. The study concludes that EU and Sweden are limited in how well they can act on invasive species, in particular because of the weak interpretation of the precautionary principle in the World Trade Organisation and Sanitary and Phytosanitary agreements. In the Swedish case, this interpretation also conflicts with the stronger interpretation of the precautionary principle under the Swedish Environmental Code, which could in itself provide for stronger possibilities to act on invasive species. PMID:26744055

  17. PHYTOSANITARY MEASURES TO PREVENT THE INTRODUCTION OF INVASIVE SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter discusses phytosanitary measures from the standpoint of invasive species. It lists many problems facing regulators, such as global climate changes, increased quantity and variety of trade, environmental degradation, and smuggling. Phytosanitary measures are divided into those requirin...

  18. A computer controlled non-invasive haemodynamic monitoring system.

    PubMed

    McMenemin, I M; Kenny, G N

    1988-10-01

    A system for the non-invasive monitoring, recording and storing haemodynamic indices has been developed using an Apple II microcomputer, a Dinamap automatic arterial pressure monitor and a non-invasive cardiac output monitor based on bio-electrical impedance. This system was used during the induction and maintenance of anaesthesia. Numerical and graphical displays of heart rate, arterial pressure, cardiac output and systemic vascular resistance are available. A print-out of data can be produced for later analysis. PMID:3190976

  19. Assessing the effects of climate change on aquatic invasive species.

    PubMed

    Rahel, Frank J; Olden, Julian D

    2008-06-01

    Different components of global environmental change are typically studied and managed independently, although there is a growing recognition that multiple drivers often interact in complex and nonadditive ways. We present a conceptual framework and empirical review of the interactive effects of climate change and invasive species in freshwater ecosystems. Climate change is expected to result in warmer water temperatures, shorter duration of ice cover, altered streamflow patterns, increased salinization, and increased demand for water storage and conveyance structures. These changes will alter the pathways by which non-native species enter aquatic systems by expanding fish-culture facilities and water gardens to new areas and by facilitating the spread of species during floods. Climate change will influence the likelihood of new species becoming established by eliminating cold temperatures or winter hypoxia that currently prevent survival and by increasing the construction of reservoirs that serve as hotspots for invasive species. Climate change will modify the ecological impacts of invasive species by enhancing their competitive and predatory effects on native species and by increasing the virulence of some diseases. As a result of climate change, new prevention and control strategies such as barrier construction or removal efforts may be needed to control invasive species that currently have only moderate effects or that are limited by seasonally unfavorable conditions. Although most researchers focus on how climate change will increase the number and severity of invasions, some invasive coldwater species may be unable to persist under the new climate conditions. Our findings highlight the complex interactions between climate change and invasive species that will influence how aquatic ecosystems and their biota will respond to novel environmental conditions. PMID:18577081

  20. Ecological niche transferability using invasive species as a case study.

    PubMed

    Fernández, Miguel; Hamilton, Healy

    2015-01-01

    Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species' native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species' native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger's I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species' dynamics in the invaded range. PMID:25785858

  1. Global phylogenetics of Diuraphis noxia (Hemiptera: Aphididae), an invasive aphid species: Evidence for multiple invasions into North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Critical to the study of an invasive species is understanding the number and origin of invasions that have occurred, as well as the rate or potential of post-invasion adaptation and geographic range expansion. One virulent, invasive insect species that has caused much damage in the United States is...

  2. Near term climate projections for invasive species distributions

    USGS Publications Warehouse

    Jarnevich, C.S.; Stohlgren, T.J.

    2009-01-01

    Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas. ?? 2008 Springer Science+Business Media B.V.

  3. Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring

    NASA Astrophysics Data System (ADS)

    Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.

    2015-08-01

    Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.

  4. Essential elements of online information networks on invasive alien species

    USGS Publications Warehouse

    Simpson, A.; Sellers, E.; Grosse, A.; Xie, Y.

    2006-01-01

    In order to be effective, information must be placed in the proper context and organized in a manner that is logical and (preferably) standardized. Recently, invasive alien species (IAS) scientists have begun to create online networks to share their information concerning IAS prevention and control. At a special networking session at the Beijing International Symposium on Biological Invasions, an online Eastern Asia-North American IAS Information Network (EA-NA Network) was proposed. To prepare for the development of this network, and to provide models for other regional collaborations, we compare four examples of global, regional, and national online IAS information networks: the Global Invasive Species Information Network, the Invasives Information Network of the Inter-American Biodiversity Information Network, the Chinese Species Information System, and the Invasive Species Information Node of the US National Biological Information Infrastructure. We conclude that IAS networks require a common goal, dedicated leaders, effective communication, and broad endorsement, in order to obtain sustainable, long-term funding and long-term stability. They need to start small, use the experience of other networks, partner with others, and showcase benefits. Global integration and synergy among invasive species networks will succeed with contributions from both the top-down and the bottom-up. ?? 2006 Springer.

  5. Population-specific responses to an invasive species.

    PubMed

    Reichard, Martin; Douda, Karel; Przybyłski, Mirosław; Popa, Oana P; Karbanová, Eva; Matasová, Klára; Rylková, Kateřina; Polačik, Matej; Blažek, Radim; Smith, Carl

    2015-08-01

    Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling-mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions. PMID:26180070

  6. [Ambulatory invasive and noninvasive blood pressure monitoring].

    PubMed

    Bachmann, K; Wortmann, A; Engels, G

    1989-08-01

    Indirect arterial blood pressure measurement has not changed substantially since its introduction by Riva-Rocci in 1986, Korotkoff in 1905 and Recklinghausen in 1906. Random measurements in the clinic or practice reflect only incompletely the dynamic nature of the blood pressure. Blood pressure recordings by patients themselves have provided more information through better temporal resolution, however, exact characterization of the pressure response throughout the entire day and, in particular, during physical exertion are not enabled; the latter are especially important with regard to diagnosis and treatment of hypertension. In 1966, therefore, radiotelemetric transmission of direct, continuously-measured arterial blood pressure was developed which enabled beat-to-beat registration of blood pressure, outside the laboratory, during normal daily life and sport activities. The initial results showed a marked variability of the blood pressure during the course of the day (Figure 1). Excessive blood pressure increases were observed during exposure to cold, static and dynamic exercise and to a lesser degree during automobile driving and exposure to heat (Figure 3). Recording of the pressure curves via transmission by radiotelemetry shows a high degree of accuracy and temporal resolution, spatial and situational freedom but is invasive and costly in terms of personnel. The same holds true for direct continuous blood pressure registration and storage on a portable tape recorder. Portable, automatic blood pressure measuring units for ambulatory monitoring employ indirect auscultatory or oscillometric recording with a cuff. As compared with the radiotelemetric direct continuous blood pressure measuring method, the indirect method has subordinate temporal resolution, that is, the measurements are only intermittent.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2676813

  7. Accounting for complementarity to maximize monitoring power for species management.

    PubMed

    Tulloch, Ayesha I T; Chadès, Iadine; Possingham, Hugh P

    2013-10-01

    To choose among conservation actions that may benefit many species, managers need to monitor the consequences of those actions. Decisions about which species to monitor from a suite of different species being managed are hindered by natural variability in populations and uncertainty in several factors: the ability of the monitoring to detect a change, the likelihood of the management action being successful for a species, and how representative species are of one another. However, the literature provides little guidance about how to account for these uncertainties when deciding which species to monitor to determine whether the management actions are delivering outcomes. We devised an approach that applies decision science and selects the best complementary suite of species to monitor to meet specific conservation objectives. We created an index for indicator selection that accounts for the likelihood of successfully detecting a real trend due to a management action and whether that signal provides information about other species. We illustrated the benefit of our approach by analyzing a monitoring program for invasive predator management aimed at recovering 14 native Australian mammals of conservation concern. Our method selected the species that provided more monitoring power at lower cost relative to the current strategy and traditional approaches that consider only a subset of the important considerations. Our benefit function accounted for natural variability in species growth rates, uncertainty in the responses of species to the prescribed action, and how well species represent others. Monitoring programs that ignore uncertainty, likelihood of detecting change, and complementarity between species will be more costly and less efficient and may waste funding that could otherwise be used for management. PMID:24073812

  8. Evolution of Invasion in a Diverse Set of Fusobacterium Species

    PubMed Central

    Manson McGuire, Abigail; Cochrane, Kyla; Griggs, Allison D.; Haas, Brian J.; Abeel, Thomas; Zeng, Qiandong; Nice, Justin B.; MacDonald, Hanlon; Birren, Bruce W.; Berger, Bryan W.; Allen-Vercoe, Emma

    2014-01-01

    ABSTRACT The diverse Fusobacterium genus contains species implicated in multiple clinical pathologies, including periodontal disease, preterm birth, and colorectal cancer. The lack of genetic tools for manipulating these organisms leaves us with little understanding of the genes responsible for adherence to and invasion of host cells. Actively invading Fusobacterium species can enter host cells independently, whereas passively invading species need additional factors, such as compromise of mucosal integrity or coinfection with other microbes. We applied whole-genome sequencing and comparative analysis to study the evolution of active and passive invasion strategies and to infer factors associated with active forms of host cell invasion. The evolution of active invasion appears to have followed an adaptive radiation in which two of the three fusobacterial lineages acquired new genes and underwent expansions of ancestral genes that enable active forms of host cell invasion. Compared to passive invaders, active invaders have much larger genomes, encode FadA-related adhesins, and possess twice as many genes encoding membrane-related proteins, including a large expansion of surface-associated proteins containing the MORN2 domain of unknown function. We predict a role for proteins containing MORN2 domains in adhesion and active invasion. In the largest and most comprehensive comparison of sequenced Fusobacterium species to date, we have generated a testable model for the molecular pathogenesis of Fusobacterium infection and illuminate new therapeutic or diagnostic strategies. PMID:25370491

  9. Managing aquatic species of conservation concern in the face of climate change and invasive species.

    PubMed

    Rahel, Frank J; Bierwagen, Britta; Taniguchi, Yoshinori

    2008-06-01

    The difficult task of managing species of conservation concern is likely to become even more challenging due to the interaction of climate change and invasive species. In addition to direct effects on habitat quality, climate change will foster the expansion of invasive species into new areas and magnify the effects of invasive species already present by altering competitive dominance, increasing predation rates, and enhancing the virulence of diseases. In some cases parapatric species may expand into new habitats and have detrimental effects that are similar to those of invading non-native species. The traditional strategy of isolating imperiled species in reserves may not be adequate if habitat conditions change beyond historic ranges or in ways that favor invasive species. The consequences of climate change will require a more active management paradigm that includes implementing habitat improvements that reduce the effects of climate change and creating migration barriers that prevent an influx of invasive species. Other management actions that should be considered include providing dispersal corridors that allow species to track environmental changes, translocating species to newly suitable habitats where migration is not possible, and developing action plans for the early detection and eradication of new invasive species. PMID:18577084

  10. A decade of aquatic invasive species (AIS) early detection method development in the St. Louis River estuary

    EPA Science Inventory

    As an invasion prone location, the St. Louis River Estuary (SLRE) has been a case study for ongoing research to develop the framework for a practical Great Lakes monitoring network for early detection of aquatic invasive species (AIS). Early detection, however, necessitates findi...

  11. Ecological Niche Transferability Using Invasive Species as a Case Study

    PubMed Central

    Fernández, Miguel; Hamilton, Healy

    2015-01-01

    Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species’ native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species’ native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger’s I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species’ dynamics in the invaded range. PMID:25785858

  12. Remote sensing to test distrubution models of invasive species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafy spurge (Euphorbia esula L.) is a noxious invasive weed that infests over 1.2 million hectares of land in North America. One of the fundamental needs in leafy spurge management is cost-effective, large-scale, and long-term documentation and monitoring of plant populations. Leafy spurge is a g...

  13. Teaching citizen science skills online: Implications for invasive species training programs

    USGS Publications Warehouse

    Newman, G.; Crall, A.; Laituri, M.; Graham, J.; Stohlgren, T.; Moore, J.C.; Kodrich, K.; Holfelder, K.A.

    2010-01-01

    Citizen science programs are emerging as an efficient way to increase data collection and help monitor invasive species. Effective invasive species monitoring requires rigid data quality assurances if expensive control efforts are to be guided by volunteer data. To achieve data quality, effective online training is needed to improve field skills and reach large numbers of remote sentinel volunteers critical to early detection and rapid response. The authors evaluated the effectiveness of online static and multimedia tutorials to teach citizen science volunteers (n = 54) how to identify invasive plants; establish monitoring plots; measure percent cover; and use Global Positioning System (GPS) units. Participants trained using static and multimedia tutorials provided less (p <.001) correct species identifications (63% and 67%) than did professionals (83%) across all species, but they did not differ (p =.125) between each other. However, their ability to identify conspicuous species was comparable to that of professionals. The variability in percent plant cover estimates between static (??10%) and multimedia (??13%) participants did not differ (p =.86 and.08, respectively) from those of professionals (??9%). Trained volunteers struggled with plot setup and GPS skills. Overall, the online approach used did not influence conferred field skills and abilities. Traditional or multimedia online training augmented with more rigorous, repeated, and hands-on, in-person training in specialized skills required for more difficult tasks will likely improve volunteer abilities, data quality, and overall program effectiveness. ?? Taylor & Francis Group, LLC.

  14. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species

    PubMed Central

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability. PMID:25352979

  15. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species.

    PubMed

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability. PMID:25352979

  16. Non-native invasive species and novel ecosystems

    PubMed Central

    2015-01-01

    Invasions by non-native species have caused many extinctions and greatly modified many ecosystems and are among the major anthropogenic global changes transforming the earth. Beginning in the mid-1980s, a dramatic burst of research in invasion biology has revealed a plethora of previously unrecognized impacts and laid bare the scope of the phenomenon. Similarly, research on various methods of managing invasions has expanded enormously, yielding incremental improvements in traditional methods and the advent of several new approaches, including the use of species-specific genetic and pheromonal methods. This research has advanced the field of restoration ecology, of which invasion management is a key component. Amidst this research progress, a group of critics has attempted to cast doubt on the extent of damaging impacts caused by non-native invasive species, the feasibility of counteracting them and restoring ecosystems, and the motives of scientists engaged in such endeavors. The criticisms are misguided but can potentially impede management of this pressing problem. PMID:26097720

  17. Non-native invasive species and novel ecosystems.

    PubMed

    Simberloff, Daniel

    2015-01-01

    Invasions by non-native species have caused many extinctions and greatly modified many ecosystems and are among the major anthropogenic global changes transforming the earth. Beginning in the mid-1980s, a dramatic burst of research in invasion biology has revealed a plethora of previously unrecognized impacts and laid bare the scope of the phenomenon. Similarly, research on various methods of managing invasions has expanded enormously, yielding incremental improvements in traditional methods and the advent of several new approaches, including the use of species-specific genetic and pheromonal methods. This research has advanced the field of restoration ecology, of which invasion management is a key component. Amidst this research progress, a group of critics has attempted to cast doubt on the extent of damaging impacts caused by non-native invasive species, the feasibility of counteracting them and restoring ecosystems, and the motives of scientists engaged in such endeavors. The criticisms are misguided but can potentially impede management of this pressing problem. PMID:26097720

  18. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although corridors have become commonplace in conservation to mitigate negative effects of habitat fragmentation, concerns persist that they may facilitate spread of invasive species. In a large-scale experiment, we measured effects of corridors on invasive fire ants, Solenopsis invicta, and on comm...

  19. Global ecological impacts of invasive species in aquatic ecosystems.

    PubMed

    Gallardo, Belinda; Clavero, Miguel; Sánchez, Marta I; Vilà, Montserrat

    2016-01-01

    The introduction of invasive species, which often differ functionally from the components of the recipient community, generates ecological impacts that propagate along the food web. This review aims to determine how consistent the impacts of aquatic invasions are across taxa and habitats. To that end, we present a global meta-analysis from 151 publications (733 cases), covering a wide range of invaders (primary producers, filter collectors, omnivores and predators), resident aquatic community components (macrophytes, phytoplankton, zooplankton, benthic invertebrates and fish) and habitats (rivers, lakes and estuaries). Our synthesis suggests a strong negative influence of invasive species on the abundance of aquatic communities, particularly macrophytes, zooplankton and fish. In contrast, there was no general evidence for a decrease in species diversity in invaded habitats, suggesting a time lag between rapid abundance changes and local extinctions. Invaded habitats showed increased water turbidity, nitrogen and organic matter concentration, which are related to the capacity of invaders to transform habitats and increase eutrophication. The expansion of invasive macrophytes caused the largest decrease in fish abundance, the filtering activity of filter collectors depleted planktonic communities, omnivores (including both facultative and obligate herbivores) were responsible for the greatest decline in macrophyte abundance, and benthic invertebrates were most negatively affected by the introduction of new predators. These impacts were relatively consistent across habitats and experimental approaches. Based on our results, we propose a framework of positive and negative links between invasive species at four trophic positions and the five different components of recipient communities. This framework incorporates both direct biotic interactions (predation, competition, grazing) and indirect changes to the water physicochemical conditions mediated by invaders (habitat

  20. Ecology of cryptic invasions: latitudinal segregation among Watersipora (Bryozoa) species

    EPA Science Inventory

    Watersipora is an invasive genus of bryozoans, easily dispersed by fouled vessels. We examined Cytochrome c oxidase subunit I haplotypes from introduced populations on the US Pacific coastline to investigate geographic segregation of species and/or haplotypes. In California, the ...

  1. Classical biological control of invasive species: fighting fire with fire

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive species cost the US over $130 billion in losses and control costs every year. Exotic insects, weeds and pathogens are the primary invaders that frequently move across continents, exploding in numbers in areas where they have been newly introduced. There are many reasons that these pests r...

  2. AIRBORNE HYPERSPECTRAL IDENTIFICATION OF INVASIVE AND OPPORTUNISTIC WETLANDS PLANT SPECIES

    EPA Science Inventory

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  3. Insect Eradication and Containment of Invasive Alien Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect eradication programs are nearly always targeted at recently arrived invasive species with significant pest potential. They attempt to contain a pest to a defined area and then completely eliminate the pest from that area. From a Federal regulatory standpoint, eradication programs are undert...

  4. INVASIVE SPECIES RESEARCH IN THE USDA AGRICULTURAL RESEARCH SERVICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive pests cause huge losses to both agricultural production systems and to the natural environment through displacing native species and decreasing biodiversity. It is now estimated that many thousand exotic insects, weeds and pathogens have been established in the United States and that these...

  5. The importance of education in managing invasive plant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive plant species can establish in diverse environments and with the increase in human mobility, they are no longer restricted to isolated pockets in remote parts of the world. Cheat grass (Bromus tectorum L.) in rangelands, purple loosestrife (Lythrum salicaria L.) in wet lands and Canada this...

  6. Effects of invasive plant species on pollinator service and reproduction in native plants at Acadia National Park

    USGS Publications Warehouse

    Stubbs, C.J.; Drummond, F.; Ginsberg, H.

    2007-01-01

    the invasive. In fact, in one year fruit set of S. alba was significantly greater in the presence of L. salicaria. The number of invasive pollen grains on native stigmas was extremely low; on average less than one grain per stigma. These fruit set and pollen deposition findings indicate that native plant reproduction was not adversely affected in the short term by these invasive species and that therefore competition between the native and invasive species for pollinators did not occur. Native bee populations monitored in 2004-2005 at sites with and without B. thunbergii and/or F. alnus indicated a greater abundance of native bees at sites with these invasives present. Native bees collected from the native and invasive plants were compared with historical records to assess whether invasive plants favor different bee species than those that formerly predominated on Mount Desert Island. This does not appear to be the case. Several species of bumble bees (Bombus spp.) as well as nine solitary bee species were found that were not documented by the Procter surveys of 1917-1940. Collecting of native bees was limited to the study plants, which may, in part, explain why some bee species documented in the Procter Surveys were not found in the present research. A field guide for identification of native bumble bees has been produced to help Park Natural Resource personnel monitor the status of native bee populations in Acadia. Other educational materials were also developed, aimed at educating Park visitors by exposing them to: 1) the role of native plants and their bee pollinators in terrestrial ecosystems; 2) the effects of invasive plants on native plant-pollinator mutualisms; 3) the need for conserving native bees and other pollinators; and 4) conservation strategies for protecting and enhancing native plant-pollinator mutualisms in the Park. Based on the present findings, Acadia Park Resource Management personnel should continue to closely

  7. Geographical range, heat tolerance and invasion success in aquatic species

    PubMed Central

    Bates, Amanda E.; McKelvie, Catherine M.; Sorte, Cascade J. B.; Morley, Simon A.; Jones, Nicholas A. R.; Mondon, Julie A.; Bird, Tomas J.; Quinn, Gerry

    2013-01-01

    Species with broader geographical ranges are expected to be ecological generalists, while species with higher heat tolerances may be relatively competitive at more extreme and increasing temperatures. Thus, both traits are expected to relate to increased survival during transport to new regions of the globe, and once there, establishment and spread. Here, we explore these expectations using datasets of latitudinal range breadth and heat tolerance in freshwater and marine invertebrates and fishes. After accounting for the latitude and hemisphere of each species’ native range, we find that species introduced to freshwater systems have broader geographical ranges in comparison to native species. Moreover, introduced species are more heat tolerant than related native species collected from the same habitats. We further test for differences in range breadth and heat tolerance in relation to invasion success by comparing species that have established geographically restricted versus extensive introduced distributions. We find that geographical range size is positively related to invasion success in freshwater species only. However, heat tolerance is implicated as a trait correlated to widespread occurrence of introduced populations in both freshwater and marine systems. Our results emphasize the importance of formal risk assessments before moving heat tolerant species to novel locations. PMID:24266040

  8. Comparison of invasive and non-invasive blood pressure monitoring during clinical anaesthesia in dogs.

    PubMed

    MacFarlane, Paul D; Grint, Nicola; Dugdale, Alexandra

    2010-03-01

    Monitoring blood pressure during anaesthesia is widely recommended in man and animals. The accuracy of any device used to measure blood pressure is an important consideration when selecting monitoring equipment, the ANSI/AAMI SP10 standard is widely cited in this respect in recent veterinary publications. Blood pressure was monitored using invasive and non-invasive techniques during clinical anaesthesia in 19 dogs. The results were compared using Bland-Altman analysis. The bias (and limits of agreement) between invasive and non-invasive measurement was 7.1 mmHg (+/-34.7) for systolic blood pressure, -1.8 mmHg (+/-27.4) for mean blood pressure and 6.9 mmHg (+/-27.5) for diastolic blood pressure. In a clinical setting the bias between invasive and non-invasive measurement techniques was similar or smaller than laboratory reports, however the limits of agreement were considerably wider suggesting that care should be exercised when interpreting NIBP values. PMID:20306347

  9. Ecosystem Change in California Grasslands: Impacts of Species Invasion

    NASA Astrophysics Data System (ADS)

    Koteen, L. E.; Harte, J.; Baldocchi, D. D.

    2009-12-01

    Grassland ecosystems of California have undergone dramatic changes, resulting in the almost complete replacement of native perennial grasses by non-native annuals across millions of hectares of grassland habitat. Our research investigates the effects of this community shift on carbon, water and energy cycles at two sites in northern coastal California. Our goal was to understand how changes to California’s grasslands have affected climate through 1. shifting the balance of carbon storage between terrestrial stocks and the atmosphere, and 2. altering the water and energy regimes that heat or cool the earth's surface. To compare the processes that govern material exchange before and after annual grass invasion, we made use of sites where native vegetation is found adjacent to locations that have undergone non-native invasion. In plots of each vegetation type, we monitored whole plant productivity, root and litter decay rates and soil respiration, as well as soil climatic controls on these processes. At one site, we also measured surface albedo and the components of the surface energy balance in each grass community, using the surface renewal method. Although seemingly subtle, the shift in California grassland communities from native perennial to non-native annual grass dominance has had profound consequences for ecosystem biogeochemical, radiative and hydrological cycles. Soil carbon storage was found to be significantly greater in native perennial grass communities. Across both study sites, we found that non-native grass invasion has resulted in the transfer of from 3 to 6 tons of carbon per hectare from the soil to the atmosphere, dependent on site and species. A soil density fractionation and a radiocarbon analysis also revealed the carbon to be more recalcitrant in native grass dominated locations. The primary plant traits that help explain why soil carbon losses follow annual grass invasion are: 1. differences between annual and perennial grasses in above

  10. Novel organisms: comparing invasive species, GMOs, and emerging pathogens.

    PubMed

    Jeschke, Jonathan M; Keesing, Felicia; Ostfeld, Richard S

    2013-09-01

    Invasive species, range-expanding species, genetically modified organisms (GMOs), synthetic organisms, and emerging pathogens increasingly affect the human environment. We propose a framework that allows comparison of consecutive stages that such novel organisms go through. The framework provides a common terminology for novel organisms, facilitating knowledge exchange among researchers, managers, and policy makers that work on, or have to make effective decisions about, novel organisms. The framework also indicates that knowledge about the causes and consequences of stage transitions for the better studied novel organisms, such as invasive species, can be transferred to more poorly studied ones, such as GMOs and emerging pathogens. Finally, the framework advances understanding of how climate change can affect the establishment, spread, and impacts of novel organisms, and how biodiversity affects, and is affected by, novel organisms. PMID:23456779

  11. Controlling the spread of invasive species while sampling: chapter 13

    USGS Publications Warehouse

    Jacks, Stewart; Sharon, Steve; Kinnunen, Ronald E.; Britton, David K.; Smith, Scott S.

    2009-01-01

    This chapter focuses on measures that should be taken to present, minimize, or control the spread of invasive species in the routine work we do as natural resource professionals. Inadvertently transporting potentially harmful organisms undermines our purposed as natural resource professionals. It is imperative that we understand that pathways that we create and strive to eliminate (when possible) or minimize the potential damage that may result from our actions. A combination of technologies, education, codes of conduct, and government overshot, as recommended by the Ecological Society of America, can prevent invasive species introductions from pathways that already exist (Lodge et al. 2006). In the long run, a purposeful prevention strategy for stopping unintentional species introductions will promote responsible natural resource management and will help us to acheive agency goals.

  12. Mapping invasive species and spectral mixture relationships with neotropical woody formations in southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Amaral, Cibele H.; Roberts, Dar A.; Almeida, Teodoro I. R.; Souza Filho, Carlos R.

    2015-10-01

    Biological invasion substantially contributes to the increasing extinction rates of native vegetative species. The remote detection and mapping of invasive species is critical for environmental monitoring. This study aims to assess the performance of a Multiple Endmember Spectral Mixture Analysis (MESMA) applied to imaging spectroscopy data for mapping Dendrocalamus sp. (bamboo) and Pinus elliottii L. (slash pine), which are invasive plant species, in a Brazilian neotropical landscape within the tropical Brazilian savanna biome. The work also investigates the spectral mixture between these exotic species and the native woody formations, including woodland savanna, submontane and alluvial seasonal semideciduous forests (SSF). Visible to Shortwave Infrared (VSWIR) imaging spectroscopy data at one-meter spatial resolution were atmospherically corrected and subset into the different spectral ranges (VIS-NIR1: 530-919 nm; and NIR2-SWIR: 1141-2352 nm). The data were further normalized via continuum removal (CR). Multiple endmember selection methods, including Interactive Endmember Selection (IES), Endmember average root mean square error (EAR), Minimum average spectral angle (MASA) and Count-based (CoB) (collectively called EMC), were employed to create endmember libraries for the targeted vegetation classes. The performance of the MESMA was assessed at the pixel and crown scales. Statistically significant differences (α = 0.05) were observed between overall accuracies that were obtained at various spectral ranges. The infrared region (IR) was critical for detecting the vegetation classes using spectral data. The invasive species endmembers exhibited spectral patterns in the IR that were not observed in the native formations. Bamboo was characterized as having a high green vegetation (GV) fraction, lower non-photosynthetic vegetation (NPV) and a low shade fraction, while pine exhibited higher NPV and shade fractions. The invasive species showed a statistically

  13. Improving and integrating data on invasive species collected by citizen scientists

    USGS Publications Warehouse

    2010-01-01

    Limited resources make it difficult to effectively document, monitor, and control invasive species across large areas, resulting in large gaps in our knowledge of current and future invasion patterns. We surveyed 128 citizen science program coordinators and interviewed 15 of them to evaluate their potential role in filling these gaps. Many programs collect data on invasive species and are willing to contribute these data to public databases. Although resources for education and monitoring are readily available, groups generally lack tools to manage and analyze data. Potential users of these data also retain concerns over data quality. We discuss how to address these concerns about citizen scientist data and programs while preserving the advantages they afford. A unified yet flexible national citizen science program aimed at tracking invasive species location, abundance, and control efforts could be designed using centralized data sharing and management tools. Such a system could meet the needs of multiple stakeholders while allowing efficiencies of scale, greater standardization of methods, and improved data quality testing and sharing. Finally, we present a prototype for such a system (see www.citsci.org).

  14. Seed bank survival of an invasive species, but not of two native species, declines with invasion.

    PubMed

    Orrock, John L; Christopher, Cory C; Dutra, Humberto P

    2012-04-01

    Soil-borne seed pathogens may play an important role in either hindering or facilitating the spread of invasive exotic plants. We examined whether the invasive shrub Lonicera maackii (Caprifoliaceae) affected fungi-mediated mortality of conspecific and native shrub seeds in a deciduous forest in eastern Missouri. Using a combination of L. maackii removal and fungicide treatments, we found no effect of L. maackii invasion on seed viability of the native Symphoricarpos orbiculatus (Caprifoliaceae) or Cornus drummondii (Cornaceae). In contrast, fungi were significant agents of L. maackii seed mortality in invaded habitats. Losses of L. maackii to soil fungi were also significant in invaded habitats where L. maackii had been removed, although the magnitude of the effect of fungi was lower, suggesting that changes in soil chemistry or microhabitat caused by L. maackii were responsible for affecting fungal seed pathogens. Our work suggests that apparent competition via soil pathogens is not an important factor contributing to impacts of L. maackii on native shrubs. Rather, we found that fungal seed pathogens have density-dependent effects on L. maackii seed survival. Therefore, while fungal pathogens may provide little biotic resistance to early invasion by L. maackii, our study illustrates that more work is needed to understand how changes in fungal pathogens during the course of an invasion contribute to the potential for restoration of invaded systems. More generally, our study suggests that increased rates of fungal pathogen attack may be realized by invasive plants, such as L. maackii, that change the chemical or physical environment of the habitats they invade. PMID:22006283

  15. "Invented Invaders": An Engaging Activity to Teach Characteristics Control of Invasive Species

    ERIC Educational Resources Information Center

    Lampert, Evan

    2015-01-01

    Invasive species, defined as exotic species that reach pest status, are major threats to global biodiversity. Although invasive species can belong to any taxonomic group, general characteristics such as rapid growth and reproduction are shared by many invasive species. "Invented Invaders" is a collaborative activity in which students…

  16. Reintroduction of the invasive mosquito species Aedes albopictus in Belgium in July 2013

    PubMed Central

    Boukraa, Slimane; Raharimalala, Fara N.; Zimmer, Jean-Yves; Schaffner, Francis; Bawin, Thomas; Haubruge, Eric; Francis, Frédéric

    2013-01-01

    Since its first report in 2000, the invasive mosquito Aedes albopictus was not found any more during the different entomological inspections performed at its place of introduction in Belgium between 2001 and 2012. In July 2013, one adult male was captured at the same site (a platform of imported used tires located in Vrasene, Oost-Vlaanderen Province), during a monitoring using CO2-baited trap. This finding suggests the reintroduction of the species in Belgium via the used tire trade. PMID:24325893

  17. Reintroduction of the invasive mosquito species Aedes albopictus in Belgium in July 2013.

    PubMed

    Boukraa, Slimane; Raharimalala, Fara N; Zimmer, Jean-Yves; Schaffner, Francis; Bawin, Thomas; Haubruge, Eric; Francis, Frédéric

    2013-01-01

    Since its first report in 2000, the invasive mosquito Aedes albopictus was not found any more during the different entomological inspections performed at its place of introduction in Belgium between 2001 and 2012. In July 2013, one adult male was captured at the same site (a platform of imported used tires located in Vrasene, Oost-Vlaanderen Province), during a monitoring using CO2-baited trap. This finding suggests the reintroduction of the species in Belgium via the used tire trade. PMID:24325893

  18. Allelopathic Potential of Invasive Plantago virginica on Four Lawn Species.

    PubMed

    Wang, Huatian; Zhou, Yumei; Chen, Yang; Wang, Quanxi; Jiang, Lifen; Luo, Yiqi

    2015-01-01

    Plantago virginica L. has invaded many lawn ecosystems in the Eastern part of China. The invasion has incurred an economic cost to remove them. In order to prevent the invasion, it is critical to understand the invasive mechanisms of this species. However, few studies have been conducted on the allelopathic mechanisms of its invasion. In this study, we examined allelopathic effects of P. virginica on germination of seeds and growth of seedlings of four widely used lawn species. We found extensive allelopathic potential of P. virginica on other lawn species, which varied with species and developmental stage. While most effects of the extracts of P. virginica were inhibitory, some variables in some species were promoted by the addition of the extracts. The extracts of P. virginica significantly inhibited seed germination of Agrostis matsumurae. While the overall differences in seed germination rate of Poa annua were significant among treatments, difference between control and any of the treatments was not significant. The height of seedlings of A. matsumurae and Cynodon dactylon was significantly lower under the treatments of adding extracts of P. virginica. In contrast, growth of seedlings of Festuca elata and P. annua did not show significant differences among treatments. The root length of A. matsumurae, C. dactylon and P. annua was suppressed by the extracts of P. virginica whereas root length of F. elata was not affected. Aboveground biomass of A. matsumurae and F. elata was significantly higher than control, except for F. elata at the concentration of 50mg/mL, whereas aboveground biomass of C. dactylon and P. annua was reduced at higher concentrations of the extracts. Except for A. matsumurae, root biomass of the other three lawn species declined under the treatments with the extracts of P. virginica. Our results revealed that P. virginica had allelopathic potential on four lawn species and supported the theory of "novel weapons hypothesis". Invasion by P

  19. Allelopathic Potential of Invasive Plantago virginica on Four Lawn Species

    PubMed Central

    Wang, Huatian; Zhou, Yumei; Chen, Yang; Wang, Quanxi; Jiang, Lifen; Luo, Yiqi

    2015-01-01

    Plantago virginica L. has invaded many lawn ecosystems in the Eastern part of China. The invasion has incurred an economic cost to remove them. In order to prevent the invasion, it is critical to understand the invasive mechanisms of this species. However, few studies have been conducted on the allelopathic mechanisms of its invasion. In this study, we examined allelopathic effects of P. virginica on germination of seeds and growth of seedlings of four widely used lawn species. We found extensive allelopathic potential of P. virginica on other lawn species, which varied with species and developmental stage. While most effects of the extracts of P. virginica were inhibitory, some variables in some species were promoted by the addition of the extracts. The extracts of P. virginica significantly inhibited seed germination of Agrostis matsumurae. While the overall differences in seed germination rate of Poa annua were significant among treatments, difference between control and any of the treatments was not significant. The height of seedlings of A. matsumurae and Cynodon dactylon was significantly lower under the treatments of adding extracts of P. virginica. In contrast, growth of seedlings of Festuca elata and P. annua did not show significant differences among treatments. The root length of A. matsumurae, C. dactylon and P. annua was suppressed by the extracts of P. virginica whereas root length of F. elata was not affected. Aboveground biomass of A. matsumurae and F. elata was significantly higher than control, except for F. elata at the concentration of 50mg/mL, whereas aboveground biomass of C. dactylon and P. annua was reduced at higher concentrations of the extracts. Except for A. matsumurae, root biomass of the other three lawn species declined under the treatments with the extracts of P. virginica. Our results revealed that P. virginica had allelopathic potential on four lawn species and supported the theory of “novel weapons hypothesis”. Invasion by P

  20. Hybridization can facilitate species invasions, even without enhancing local adaptation.

    PubMed

    Mesgaran, Mohsen B; Lewis, Mark A; Ades, Peter K; Donohue, Kathleen; Ohadi, Sara; Li, Chengjun; Cousens, Roger D

    2016-09-01

    The founding population in most new species introductions, or at the leading edge of an ongoing invasion, is likely to be small. Severe Allee effects-reductions in individual fitness at low population density-may then result in a failure of the species to colonize, even if the habitat could support a much larger population. Using a simulation model for plant populations that incorporates demography, mating systems, quantitative genetics, and pollinators, we show that Allee effects can potentially be overcome by transient hybridization with a resident species or an earlier colonizer. This mechanism does not require the invocation of adaptive changes usually attributed to invasions following hybridization. We verify our result in a case study of sequential invasions by two plant species where the outcrosser Cakile maritima has replaced an earlier, inbreeding, colonizer Cakile edentula (Brassicaceae). Observed historical rates of replacement are consistent with model predictions from hybrid-alleviated Allee effects in outcrossers, although other causes cannot be ruled out. PMID:27601582

  1. Considering native and exotic terrestrial reptiles in island invasive species eradication programmes in the Tropical Pacific

    USGS Publications Warehouse

    Fisher, Richard N.

    2010-01-01

    Most island restoration projects with reptiles, either as direct beneficiaries of conservation or as indicators of recovery responses, have been on temperate or xeric islands. There have been decades of research, particularly on temperate islands in New Zealand, on the responses of native reptiles to mammal eradications but very few studies in tropical insular systems. Recent increases in restoration projects involving feral mammal eradications in the tropical Pacific have led to several specific challenges related to native and invasive reptiles. This paper reviews these challenges and discusses some potential solutions to them. The first challenge is that the tropical Pacific herpetofauna is still being discovered, described and understood. There is thus incomplete knowledge of how eradication activities may affect these faunas and the potential risks facing critical populations of these species from these eradication actions. The long term benefit of the removal of invasives is beneficial, but the possible short term impacts to small populations on small islands might be significant. The second challenge is that protocols for monitoring the responses of these species are not well documented but are often different from those used in temperate or xeric habitats. Lizard monitoring techniques used in the tropical Pacific are discussed. The third challenge involves invasive reptiles already in the tropical Pacific, some of which could easily spread accidentally through eradication and monitoring operations. The species posing the greatest threats in this respect are reviewed, and recommendations for biosecurity concerning these taxa are made.

  2. Cancer Cell Invasion: Treatment and Monitoring Opportunities in Nanomedicine

    PubMed Central

    Veiseh, Omid; Kievit, Forrest; Ellenbogen, Richard G.; Zhang, Miqin

    2011-01-01

    Cell invasion is an intrinsic cellular pathway whereby cells respond to extracellular stimuli to migrate through and modulate the structure of their extracellular matrix (ECM) in order to develop, repair, and protect the body’s tissues. In cancer cells this process can become aberrantly regulated and lead to cancer metastasis. This cellular pathway contributes to the vast majority of cancer related fatalities, and therefore has been identified as a critical therapeutic target. Researchers have identified numerous potential molecular therapeutic targets of cancer cell invasion, yet delivery of therapies remains a major hurdle. Nanomedicine is a rapidly emerging technology which may offer a potential solution for tackling cancer metastasis by improving the specificity and potency of therapeutics delivered to invasive cancer cells. In this review we examine the biology of cancer cell invasion, its role in cancer progression and metastasis, molecular targets of cell invasion, and therapeutic inhibitors of cell invasion. We then discuss how the field of nanomedicine can be applied to monitor and treat cancer cell invasion. We aim to provide a perspective on how the advances in cancer biology and the field of nanomedicine can be combined to offer new solutions for treating cancer metastasis. PMID:21295093

  3. Evaluating the "recovery level" of endangered species without prior information before alien invasion.

    PubMed

    Watari, Yuya; Nishijima, Shota; Fukasawa, Marina; Yamada, Fumio; Abe, Shintaro; Miyashita, Tadashi

    2013-11-01

    For maintaining social and financial support for eradication programs of invasive species, quantitative assessment of recovery of native species or ecosystems is important because it provides a measurable parameter of success. However, setting a concrete goal for recovery is often difficult owing to lack of information prior to the introduction of invaders. Here, we present a novel approach to evaluate the achievement level of invasive predator management based on the carrying capacity of endangered species estimated using long-term monitoring data. In Amami-Oshima Island, Japan, where the eradication project of introduced small Indian mongoose is ongoing since 2000, we surveyed the population densities of four endangered species threatened by the mongoose (Amami rabbit, the Otton frog, Amami tip-nosed frog, and Amami Ishikawa's frog) at four time points ranging from 2003 to 2011. We estimated the carrying capacities of these species using the logistic growth model combined with the effects of mongoose predation and environmental heterogeneity. All species showed clear tendencies toward increasing their density in line with decreased mongoose density, and they exhibited density-dependent population growth. The estimated carrying capacities of three endangered species had small confidence intervals enough to measure recovery levels by the mongoose management. The population density of each endangered species has recovered to the level of the carrying capacity at about 20-40% of all sites, whereas no individuals were observed at more than 25% of all sites. We propose that the present approach involving appropriate monitoring data of native organism populations will be widely applicable to various eradication projects and provide unambiguous goals for management of invasive species. PMID:24363899

  4. Bromus Tectorum (Cheatgrass): Monitoring An Invasion For 10 Years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a Krascheninnikovia lanata (winterfat) community in the Honey Lake Valley of northeastern, CA we have monitored the effect of B. tectorum (a Eurasian exotic annual grass) invasion on surface soil properties. In 1990 a transect of 13 plots, 50 m apart was established, at which time only plots 1-5 ...

  5. Lepidium latifolium: monitoring stem density during 18 years of invasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lepidium latifolium (perennial pepperweed) is a weedy alien crucifer that has invaded wetlands throughout the western United States. We are monitoring the invasion of an Elytrigia elongata (tall wheatgrass) community at the Honey Lake Refuge in northeastern CA. A 40m2 plot was established in 1993 an...

  6. Origin matters: diversity affects the performance of alien invasive species but not of native species.

    PubMed

    Sun, Yan; Müller-Schärer, Heinz; Maron, John L; Schaffner, Urs

    2015-06-01

    At local scales, it has often been found that invasibility decreases with increasing resident plant diversity. However, whether resident community diversity similarly resists invasion by alien versus native species is seldom studied. We examined this issue by invading constructed native plant assemblages that varied in species and functional richness with invasive alien or native Asteraceae species. Assemblages were also invaded with spotted knapweed, Centaurea stoebe, a native European aster that has been previously used in diversity-invasibility experiments in North America. We also conducted a field survey to explore the generality of the patterns generated from our experimental study. Both experimental and observational work revealed that increasing diversity reduced the performance of alien but not native invaders. Centaurea stoebe invading its native community performed poorly regardless of resident diversity, whereas in a parallel, previously published study conducted in North America, C. stoebe easily invaded low-diversity but not high-diversity assemblages. Our results suggest that diversity is an attribute of resident communities that makes them more or less susceptible to invasion by novel invasive alien but not native plant species. PMID:25996858

  7. 78 FR 14351 - Invasive Species Advisory Committee; Meeting Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ...The meeting of the Invasive Species Advisory Committee (ISAC) scheduled for Thursday, March 7, 2013 and Friday, March 8, 2013; is cancelled. The ISAC new member orientation scheduled for Wednesday, March 6, 2013 is also cancelled. Notice of this meeting was published in the February 11, 2013 issue of the Federal Register (78 FR 9724). A correction to meeting dates was published on February 20,......

  8. Land-use proxies for aquatic species invasions in the Laurentian Great Lakes

    EPA Science Inventory

    Aquatic invasive species adversely impact ecosystems, human health, and the economy of the Laurentian Great Lakes region. Targeted preventative and eradication efforts in response to early detection of invasive species can be both cost advantageous and effective. But where should...

  9. Current practices and future opportunities for policy on climate change and invasive species.

    PubMed

    Pyke, Christopher R; Thomas, Roxanne; Porter, Read D; Hellmann, Jessica J; Dukes, Jeffrey S; Lodge, David M; Chavarria, Gabriela

    2008-06-01

    Climate change and invasive species are often treated as important, but independent, issues. Nevertheless, they have strong connections: changes in climate and societal responses to climate change may exacerbate the impacts of invasive species, whereas invasive species may affect the magnitude, rate, and impact of climate change. We argue that the design and implementation of climate-change policy in the United States should specifically consider the implications for invasive species; conversely, invasive-species policy should address consequences for climate change. The development of such policies should be based on (1) characterization of interactions between invasive species and climate change, (2) identification of areas where climate-change policies could negatively affect invasive-species management, and (3) identification of areas where policies could benefit from synergies between climate change and invasive-species management. PMID:18577088

  10. Invasive vascular plant species of limnocrenic karst springs in Poland

    NASA Astrophysics Data System (ADS)

    Spałek, Krzysztof

    2015-04-01

    Natural water reservoirs are very valuable floristic sites in Poland. Among them, the most important for preservation of biodiversity of flora are limnocrenic karst springs. The long-term process of human pressure on habitats of this type caused disturbance of their biological balance. Changes in the water regime, industrial development and chemisation of agriculture, especially in the period of last two hundred years, led to systematic disappearance of localities of many plant species connected with rare habitats and also to appear numerous invasive plant species. They are: Acorus calamus, Echinocystis lobata, Elodea canadensis, Erechtites hieraciifolia, Impatiens glandulifera, Solidago canadensis, S. gigantea and S. graminifolia. Fielworks were conducted in 2010-2014.

  11. [Minimally invasive hemodynamic monitoring with esophageal echoDoppler].

    PubMed

    Monge, M I; Estella, A; Díaz, J C; Gil, A

    2008-01-01

    Hemodynamic monitoring is a key element in the care of the critical patients, providing an unquestionable aid in the attendance to diagnosis and the choice of the adequate treatment. Minimally invasive devices have been emerging over the past few years as an effective alternative to classic monitoring tools. The esophageal echoDoppler is among these. It makes it possible to obtain continuous and minimally invasive monitoring of the cardiac output in addition to other useful parameters by measuring the blood flow rate and the diameter of the thoracic descending aorta, which provides a sufficiently extensive view of the hemodynamic state of the patient and facilitates early detection of the changes produced by a sudden clinical derangement. Although several studies have demonstrated the usefulness of the esophageal Doppler in the surgical scene, there is scarce and dispersed evidence in the literature on its benefits in critical patients. Nevertheless, its advantages make it an attractive element to take into account within the diagnostic arsenal in the intensive care. The purpose of the following article is to describe how it works, its degree of validation with other monitoring methods and the role of esophageal echoDoppler as a minimally invasive monitoring tool for measuring cardiac output in the daily clinical practice, contributing with our own experience in the critical patient. PMID:18221711

  12. Invasive Species Undeterred by Increasing Urbanization and Climate Change

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Conway, T. M.; Fortin, M.

    2011-12-01

    The future of many species appears bleak with the realization that continued urbanization and climate change will have significant effects on the earth's ecosystems by changing water cycles, habitat availability and inter-species dynamics, among other effects. Invasive species are likely to thrive in these changing disturbed ecosystems due to their ability to capitalize on marginal habitats, and therefore pose a severe threat. Our study utilizes the invasive mute swan as a model species to examine invasive species' relationship with urban landcover and predict how its distribution will change with increasing urbanization and climate change in its non-native range. We first use generalized linear models and classification trees to determine current landscape correlates of mute swans in Ontario, Canada. We determine that, after percentage water cover, the presence of urban areas is the second most important factor in determining the presence of mute swans. This is especially significant considering that mute swans are an aquatic species utilizing the limited wetlands and waterbodies found in urban areas. We then use the machine learning tool MaxEnt to model mute swan distribution in the future by taking into account different scenarios of urbanization and climate change. As the percentage of land cover occupied by urban areas increases, the probability of mute swan occupancy of these areas also increases. The effects of climate change are varying. Climate change will increase temperatures in Ontario, thereby increasing the possible locations for establishment by the mute swan, but it will also result in lower lake levels, which will somewhat reduce the percentage water cover. However, due to the large amount of shoreline available for mute swan establishment, especially on the Great Lakes, these effects on waterbodies will likely not inhibit mute swan establishment and range expansion in the next century. While climate change is important, it is not the only

  13. Applying remote sensing to invasive species science—A tamarisk example

    USGS Publications Warehouse

    Morisette, Jeffrey T.

    2011-01-01

    The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. This fact sheet considers the invasive plant species tamarisk (Tamarix spp), addressing three fundamental questions: *Where is it now? *What are the potential or realized ecological impacts of invasion? *Where can it survive and thrive if introduced? It provides peer-review examples of how the U.S. Geological Survey, working with other federal agencies and university partners, are applying remote-sensing technologies to address these key questions.

  14. Invasive hybridization in a threatened species is accelerated by climate change

    NASA Astrophysics Data System (ADS)

    Muhlfeld, Clint C.; Kovach, Ryan P.; Jones, Leslie A.; Al-Chokhachy, Robert; Boyer, Matthew C.; Leary, Robb F.; Lowe, Winsor H.; Luikart, Gordon; Allendorf, Fred W.

    2014-07-01

    Climate change will decrease worldwide biodiversity through a number of potential pathways, including invasive hybridization (cross-breeding between invasive and native species). How climate warming influences the spread of hybridization and loss of native genomes poses difficult ecological and evolutionary questions with little empirical information to guide conservation management decisions. Here we combine long-term genetic monitoring data with high-resolution climate and stream temperature predictions to evaluate how recent climate warming has influenced the spatio-temporal spread of human-mediated hybridization between threatened native westslope cutthroat trout (Oncorhynchus clarkii lewisi) and non-native rainbow trout (Oncorhynchus mykiss), the world's most widely introduced invasive fish. Despite widespread release of millions of rainbow trout over the past century within the Flathead River system, a large relatively pristine watershed in western North America, historical samples revealed that hybridization was prevalent only in one (source) population. During a subsequent 30-year period of accelerated warming, hybridization spread rapidly and was strongly linked to interactions between climatic drivers--precipitation and temperature--and distance to the source population. Specifically, decreases in spring precipitation and increases in summer stream temperature probably promoted upstream expansion of hybridization throughout the system. This study shows that rapid climate warming can exacerbate interactions between native and non-native species through invasive hybridization, which could spell genomic extinction for many species.

  15. Invasive hybridization in a threatened species is accelerated by climate change

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Kovach, Ryan P.; Jones, Leslie A.; Al-Chokhachy, Robert K.; Boyer, Matthew C.; Leary, Robb F.; Lowe, Winsor H.; Luikart, Gordon; Allendorf, Fred W.

    2014-01-01

    Climate change will decrease worldwide biodiversity through a number of potential pathways, including invasive hybridization (cross-breeding between invasive and native species). How climate warming influences the spread of hybridization and loss of native genomes poses difficult ecological and evolutionary questions with little empirical information to guide conservation management decisions. Here we combine long-term genetic monitoring data with high-resolution climate and stream temperature predictions to evaluate how recent climate warming has influenced the spatio-temporal spread of human-mediated hybridization between threatened native westslope cutthroat trout (Oncorhynchus clarkii lewisi) and non-native rainbow trout (Oncorhynchus mykiss), the world’s most widely introduced invasive fish. Despite widespread release of millions of rainbow trout over the past century within the Flathead River system, a large relatively pristine watershed in western North America, historical samples revealed that hybridization was prevalent only in one (source) population. During a subsequent 30-year period of accelerated warming, hybridization spread rapidly and was strongly linked to interactions between climatic drivers—precipitation and temperature—and distance to the source population. Specifically, decreases in spring precipitation and increases in summer stream temperature probably promoted upstream expansion of hybridization throughout the system. This study shows that rapid climate warming can exacerbate interactions between native and non-native species through invasive hybridization, which could spell genomic extinction for many species.

  16. Reduced genetic variation and the success of an invasive species

    PubMed Central

    Tsutsui, Neil D.; Suarez, Andrew V.; Holway, David A.; Case, Ted J.

    2000-01-01

    Despite the severe ecological and economic damage caused by introduced species, factors that allow invaders to become successful often remain elusive. Of invasive taxa, ants are among the most widespread and harmful. Highly invasive ants are often unicolonial, forming supercolonies in which workers and queens mix freely among physically separate nests. By reducing costs associated with territoriality, unicolonial species can attain high worker densities, allowing them to achieve interspecific dominance. Here we examine the behavior and population genetics of the invasive Argentine ant (Linepithema humile) in its native and introduced ranges, and we provide a mechanism to explain its success as an invader. Using microsatellite markers, we show that a population bottleneck has reduced the genetic diversity of introduced populations. This loss is associated with reduced intraspecific aggression among spatially separate nests, and leads to the formation of interspecifically dominant supercolonies. In contrast, native populations are more genetically variable and exhibit pronounced intraspecific aggression. Although reductions in genetic diversity are generally considered detrimental, these findings provide an example of how a genetic bottleneck can lead to widespread ecological success. In addition, these results provide insights into the origin and evolution of unicoloniality, which is often considered a challenge to kin selection theory. PMID:10811892

  17. Complex genetic patterns in closely related colonizing invasive species

    PubMed Central

    Zhan, Aibin; Darling, John A; Bock, Dan G; Lacoursière-Roussel, Anaïs; MacIsaac, Hugh J; Cristescu, Melania E

    2012-01-01

    Anthropogenic activities frequently result in both rapidly changing environments and translocation of species from their native ranges (i.e., biological invasions). Empirical studies suggest that many factors associated with these changes can lead to complex genetic patterns, particularly among invasive populations. However, genetic complexities and factors responsible for them remain uncharacterized in many cases. Here, we explore these issues in the vase tunicate Ciona intestinalis (Ascidiacea: Enterogona: Cionidae), a model species complex, of which spA and spB are rapidly spreading worldwide. We intensively sampled 26 sites (N = 873) from both coasts of North America, and performed phylogenetic and population genetics analyses based on one mitochondrial fragment (cytochrome c oxidase subunit 3–NADH dehydrogenase subunit I, COX3-ND1) and eight nuclear microsatellites. Our analyses revealed extremely complex genetic patterns in both species on both coasts. We detected a contrasting pattern based on the mitochondrial marker: two major genetic groups in C. intestinalis spA on the west coast versus no significant geographic structure in C. intestinalis spB on the east coast. For both species, geo-graphically distant populations often showed high microsatellite-based genetic affinities whereas neighboring ones often did not. In addition, mitochondrial and nuclear markers provided largely inconsistent genetic patterns. Multiple factors, including random genetic drift associated with demographic changes, rapid selection due to strong local adaptation, and varying propensity for human-mediated propagule dispersal could be responsible for the observed genetic complexities. PMID:22957143

  18. The Dispersal and Persistence of Invasive Marine Species

    NASA Astrophysics Data System (ADS)

    Glick, E. R.; Pringle, J.

    2007-12-01

    The spread of invasive marine species is a continuing problem throughout the world, though not entirely understood. Why do some species invade more easily than the rest? How are the range limits of these species set? Recent research (Byers & Pringle 2006, Pringle & Wares 2007) has produced retention criteria that determine whether a coastal species with a benthic adult stage and planktonic larvae can be retained within its range and invade in the direction opposite that of the mean current experienced by the larvae (i.e. upstream). These results however, are only accurate for Gaussian dispersal kernels. For kernels whose kurtosis differs from a Gaussian's, the retention criteria becomes increasingly inaccurate as the mean current increases. Using recent results of Lutscher (2006), we find an improved retention criterion which is much more accurate for non- Gaussian dispersal kernels. The importance of considering non-Gaussian kernels is illustrated for a number of commonly used dispersal kernels, and the relevance of these calculations is illustrated by considering the northward limit of invasion of Hemigrapsus sanguineus, an important invader in the Gulf of Maine.

  19. A framework for spatial risk assessments: Potential impacts of nonindigenous invasive species on native species

    USGS Publications Warehouse

    Allen, C.R.; Johnson, A.R.; Parris, L.

    2006-01-01

    Many populations of wild animals and plants are declining and face increasing threats from habitat fragmentation and loss as well as exposure to stressors ranging from toxicants to diseases to invasive nonindigenous species. We describe and demonstrate a spatially explicit ecological risk assessment that allows for the incorporation of a broad array of information that may influence the distribution of an invasive species, toxicants, or other stressors, and the incorporation of landscape variables that may influence the spread of a species or substances. The first step in our analyses is to develop species models and quantify spatial overlap between stressor and target organisms. Risk is assessed as the product of spatial overlap and a hazard index based on target species vulnerabilities to the stressor of interest. We illustrate our methods with an example in which the stressor is the ecologically destructive nonindigenous ant, Solenopsis invicta, and the targets are two declining vertebrate species in the state of South Carolina, USA. A risk approach that focuses on landscapes and that is explicitly spatial is of particular relevance as remaining undeveloped lands become increasingly uncommon and isolated and more important in the management and recovery of species and ecological systems. Effective ecosystem management includes the control of multiple stressors, including invasive species with large impacts, understanding where those impacts may be the most severe, and implementing management strategies to reduce impacts. Copyright ?? 2006 by the author(s).

  20. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions.

    PubMed

    Stachowicz, John J; Terwin, Jeffrey R; Whitlatch, Robert B; Osman, Richard W

    2002-11-26

    The spread of exotic species and climate change are among the most serious global environmental threats. Each independently causes considerable ecological damage, yet few data are available to assess whether changing climate might facilitate invasions by favoring introduced over native species. Here, we compare our long-term record of weekly sessile marine invertebrate recruitment with interannual variation in water temperature to assess the likely effect of climate change on the success and spread of introduced species. For the three most abundant introduced species of ascidian (sea squirt), the timing of the initiation of recruitment was strongly negatively correlated with winter water temperature, indicating that invaders arrived earlier in the season in years with warmer winters. Total recruitment of introduced species during the following summer also was positively correlated with winter water temperature. In contrast, the magnitude of native ascidian recruitment was negatively correlated with winter temperature (more recruitment in colder years) and the timing of native recruitment was unaffected. In manipulative laboratory experiments, two introduced compound ascidians grew faster than a native species, but only at temperatures near the maximum observed in summer. These data suggest that the greatest effects of climate change on biotic communities may be due to changing maximum and minimum temperatures rather than annual means. By giving introduced species an earlier start, and increasing the magnitude of their growth and recruitment relative to natives, global warming may facilitate a shift to dominance by nonnative species, accelerating the homogenization of the global biota. PMID:12422019

  1. Citizen science contributes to our knowledge of invasive plant species distributions

    USGS Publications Warehouse

    Crall, Alycia W.; Jarnevich, Catherine S.; Young, Nicholas E.; Panke, Brendon; Renz, Mark; Stohlgren, Thomas

    2015-01-01

    Citizen science is commonly cited as an effective approach to expand the scale of invasive species data collection and monitoring. However, researchers often hesitate to use these data due to concerns over data quality. In light of recent research on the quality of data collected by volunteers, we aimed to demonstrate the extent to which citizen science data can increase sampling coverage, fill gaps in species distributions, and improve habitat suitability models compared to professionally generated data sets used in isolation. We combined data sets from professionals and volunteers for five invasive plant species (Alliaria petiolata, Berberis thunbergii, Cirsium palustre, Pastinaca sativa, Polygonum cuspidatum) in portions of Wisconsin. Volunteers sampled counties not sampled by professionals for three of the five species. Volunteers also added presence locations within counties not included in professional data sets, especially in southern portions of the state where professional monitoring activities had been minimal. Volunteers made a significant contribution to the known distribution, environmental gradients sampled, and the habitat suitability of P. cuspidatum. Models generated with professional data sets for the other four species performed reasonably well according to AUC values (>0.76). The addition of volunteer data did not greatly change model performance (AUC > 0.79) but did change the suitability surface generated by the models, making them more realistic. Our findings underscore the need to merge data from multiple sources to improve knowledge of current species distributions, and to predict their movement under present and future environmental conditions. The efficiency and success of these approaches require that monitoring efforts involve multiple stakeholders in continuous collaboration via established monitoring networks.

  2. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species

    USGS Publications Warehouse

    Jordan, Nicholas R.; Larson, Diane L.; Huerd, Sheri C.

    2011-01-01

    Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of

  3. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species

    USGS Publications Warehouse

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2011-01-01

    Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of

  4. Early detection of potentially invasive invertebrate species in Mytilus galloprovincialis Lamarck, 1819 dominated communities in harbours

    NASA Astrophysics Data System (ADS)

    Preda, Cristina; Memedemin, Daniyar; Skolka, Marius; Cogălniceanu, Dan

    2012-12-01

    Constanţa harbour is a major port on the western coast of the semi-enclosed Black Sea. Its brackish waters and low species richness make it vulnerable to invasions. The intensive maritime traffic through Constanţa harbour facilitates the arrival of alien species. We investigated the species composition of the mussel beds on vertical artificial concrete substrate inside the harbour. We selected this habitat for study because it is frequently affected by fluctuating levels of temperature, salinity and dissolved oxygen, and by accidental pollution episodes. The shallow communities inhabiting it are thus unstable and often restructured, prone to accept alien species. Monthly samples were collected from three locations from the upper layer of hard artificial substrata (maximum depth 2 m) during two consecutive years. Ten alien macro-invertebrate species were inventoried, representing 13.5% of the total number of species. Two of these alien species were sampled starting the end of summer 2010, following a period of high temperatures that triggered hypoxia, causing mass mortalities of benthic organisms. Based on the species accumulation curve, we estimated that we have detected all benthic alien species on artificial substrate from Constanţa harbour, but additional effort is required to detect all the native species. Our results suggest that monitoring of benthic communities at small depths in harbours is a simple and useful tool in early detection of potentially invasive alien species. The selected habitat is easily accessible, the method is low-cost, and the samples represent reliable indicators of alien species establishment.

  5. Loss of reproductive output caused by an invasive species

    PubMed Central

    Tremblay, Maude E. M.; Morris, Todd J.; Ackerman, Josef D.

    2016-01-01

    We investigated whether Neogobius melanostomus, an invader of biodiversity ‘hot-spots’ in the Laurentian Great Lakes region, facilitates or inhibits unionid mussel recruitment by serving as a host or sink for their parasitic larvae (glochidia). Infestation and metamorphosis rates of four mussel species with at-risk (conservation) status (Epioblasma torulosa rangiana, Epioblasma triquetra, Lampsilis fasciola and Villosa iris) and one common species (Actinonaias ligamentina) on N. melanostomus were compared with rates on known primary and marginal hosts in the laboratory. All species successfully infested N. melanostomus, but only E. triquetra, V. iris and A. ligamentina successfully metamorphosed into juveniles, albeit at very low rates well below those seen on even the marginal hosts. Neogobius melanostomus collected from areas of unionid occurrence in the Grand and Sydenham rivers (Ontario, Canada) exhibited glochidial infection rates of 39.4% and 5.1%, respectively, with up to 30 glochidia representing as many as six unionid species per fish. A mathematical model suggests that N. melanostomus serve more as a sink for glochidia than as a host for unionids, thereby limiting recruitment success. This represents a novel method by which an invasive species affects a native species. PMID:27152202

  6. Loss of reproductive output caused by an invasive species.

    PubMed

    Tremblay, Maude E M; Morris, Todd J; Ackerman, Josef D

    2016-04-01

    We investigated whether Neogobius melanostomus, an invader of biodiversity 'hot-spots' in the Laurentian Great Lakes region, facilitates or inhibits unionid mussel recruitment by serving as a host or sink for their parasitic larvae (glochidia). Infestation and metamorphosis rates of four mussel species with at-risk (conservation) status (Epioblasma torulosa rangiana, Epioblasma triquetra, Lampsilis fasciola and Villosa iris) and one common species (Actinonaias ligamentina) on N. melanostomus were compared with rates on known primary and marginal hosts in the laboratory. All species successfully infested N. melanostomus, but only E. triquetra, V. iris and A. ligamentina successfully metamorphosed into juveniles, albeit at very low rates well below those seen on even the marginal hosts. Neogobius melanostomus collected from areas of unionid occurrence in the Grand and Sydenham rivers (Ontario, Canada) exhibited glochidial infection rates of 39.4% and 5.1%, respectively, with up to 30 glochidia representing as many as six unionid species per fish. A mathematical model suggests that N. melanostomus serve more as a sink for glochidia than as a host for unionids, thereby limiting recruitment success. This represents a novel method by which an invasive species affects a native species. PMID:27152202

  7. Camera Trapping: A Contemporary Approach to Monitoring Invasive Rodents in High Conservation Priority Ecosystems

    PubMed Central

    Rendall, Anthony R.; Sutherland, Duncan R.; Cooke, Raylene; White, John

    2014-01-01

    Invasive rodent species have established on 80% of the world's islands causing significant damage to island environments. Insular ecosystems support proportionally more biodiversity than comparative mainland areas, highlighting them as critical for global biodiversity conservation. Few techniques currently exist to adequately detect, with high confidence, species that are trap-adverse such as the black rat, Rattus rattus, in high conservation priority areas where multiple non-target species persist. This study investigates the effectiveness of camera trapping for monitoring invasive rodents in high conservation areas, and the influence of habitat features and density of colonial-nesting seabirds on rodent relative activity levels to provide insights into their potential impacts. A total of 276 camera sites were established and left in situ for 8 days. Identified species were recorded in discrete 15 min intervals, referred to as ‘events’. In total, 19 804 events were recorded. From these, 31 species were identified comprising 25 native species and six introduced. Two introduced rodent species were detected: the black rat (90% of sites), and house mouse Mus musculus (56% of sites). Rodent activity of both black rats and house mice were positively associated with the structural density of habitats. Density of seabird burrows was not strongly associated with relative activity levels of rodents, yet rodents were still present in these areas. Camera trapping enabled a large number of rodents to be detected with confidence in site-specific absences and high resolution to quantify relative activity levels. This method enables detection of multiple species simultaneously with low impact (for both target and non-target individuals); an ideal strategy for monitoring trap-adverse invasive rodents in high conservation areas. PMID:24599307

  8. Using environmental DNA to estimate the distribution of an invasive fish species in ponds.

    PubMed

    Takahara, Teruhiko; Minamoto, Toshifumi; Doi, Hideyuki

    2013-01-01

    Knowledge of the presence of an invasive species is critical to monitoring the sustainability of communities and ecosystems. Environmental DNA (eDNA), DNA fragments that are likely to be bound to organic matters in the water or in shed cells, has been used to monitor the presence of aquatic animals. Using an eDNA-based method, we estimated the presence of the invasive bluegill sunfish, Lepomis macrochirus, in 70 ponds located in seven locales on the Japanese mainland and on surrounding islands. We quantified the concentration of DNA copies in a 1 L water sample using quantitative real-time polymerase chain reaction (qPCR) with a primer/probe set. In addition, we visually observed the bluegill presence in the ponds from the shoreline. We detected bluegill eDNA in all the ponds where bluegills were observed visually and some where bluegills were not observed. Bluegills were also less prevalent on the islands than the mainland, likely owing to limited dispersal and introduction by humans. Our eDNA method simply and rapidly detects the presence of this invasive fish species with less disturbance to the environment during field surveys than traditional methods. PMID:23437177

  9. Predicting the geographical distribution of two invasive termite species from occurrence data.

    PubMed

    Tonini, Francesco; Divino, Fabio; Lasinio, Giovanna Jona; Hochmair, Hartwig H; Scheffrahn, Rudolf H

    2014-10-01

    Predicting the potential habitat of species under both current and future climate change scenarios is crucial for monitoring invasive species and understanding a species' response to different environmental conditions. Frequently, the only data available on a species is the location of its occurrence (presence-only data). Using occurrence records only, two models were used to predict the geographical distribution of two destructive invasive termite species, Coptotermes gestroi (Wasmann) and Coptotermes formosanus Shiraki. The first model uses a Bayesian linear logistic regression approach adjusted for presence-only data while the second one is the widely used maximum entropy approach (Maxent). Results show that the predicted distributions of both C. gestroi and C. formosanus are strongly linked to urban development. The impact of future scenarios such as climate warming and population growth on the biotic distribution of both termite species was also assessed. Future climate warming seems to affect their projected probability of presence to a lesser extent than population growth. The Bayesian logistic approach outperformed Maxent consistently in all models according to evaluation criteria such as model sensitivity and ecological realism. The importance of further studies for an explicit treatment of residual spatial autocorrelation and a more comprehensive comparison between both statistical approaches is suggested. PMID:25198370

  10. 77 FR 37064 - Request for Nominations for the Invasive Species Advisory Committee; Extension of Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... Request for Nominations for the Invasive Species Advisory Committee; Extension of Submission Deadline AGENCY: National Invasive Species Council, Office of the Secretary, Interior. ACTION: Notice. ] SUMMARY: The U.S. Department of the Interior, on behalf of the interdepartmental National Invasive...

  11. Two invasive acacia species secure generalist pollinators in invaded communities

    NASA Astrophysics Data System (ADS)

    Montesinos, Daniel; Castro, Sílvia; Rodríguez-Echeverría, Susana

    2016-07-01

    Exotic entomophilous plants need to establish effective pollinator interactions in order to succeed after being introduced into a new community, particularly if they are obligatory outbreeders. By establishing these novel interactions in the new non-native range, invasive plants are hypothesised to drive changes in the composition and functioning of the native pollinator community, with potential impacts on the pollination biology of native co-flowering plants. We used two different sites in Portugal, each invaded by a different acacia species, to assess whether two native Australian trees, Acacia dealbata and Acacia longifolia, were able to recruit pollinators in Portugal, and whether the pollinator community visiting acacia trees differed from the pollinator communities interacting with native co-flowering plants. Our results indicate that in the invaded range of Portugal both acacia species were able to establish novel mutualistic interactions, predominantly with generalist pollinators. For each of the two studied sites, only two other co-occurring native plant species presented partially overlapping phenologies. We observed significant differences in pollinator richness and visitation rates among native and non-native plant species, although the study of β diversity indicated that only the native plant Lithodora fruticosa presented a differentiated set of pollinator species. Acacias experienced a large number of visits by numerous pollinator species, but massive acacia flowering resulted in flower visitation rates frequently lower than those of the native co-flowering species. We conclude that the establishment of mutualisms in Portugal likely contributes to the effective and profuse production of acacia seeds in Portugal. Despite the massive flowering of A. dealbata and A. longifolia, native plant species attained similar or higher visitation rates than acacias.

  12. Species invasion shifts the importance of predator dependence.

    PubMed

    Griffen, Blaine D; Delaney, David G

    2007-12-01

    The strength of interference between foraging individuals can influence per capita consumption rates, with important consequences for predator and prey populations and system stability. Here we demonstrate how the replacement of a previously established invader, the predatory crab Carcinus maenas, by the recently invading predatory crab Hemigrapsus sanguineus shifts predation from a species that experiences strong predator interference (strong predator dependence) to one that experiences weak predator interference (weak predator dependence). We demonstrate using field experiments that differences in the strength of predator dependence persist for these species both when they forage on a single focal prey species only (the mussel Mytilus edulis) and when they forage more broadly across the entire prey community. This shift in predator dependence with species replacement may be altering the biomass across trophic levels, consistent with theoretical predictions, as we show that H. sanguineus populations are much larger than C. maenas populations throughout their invaded ranges. Our study highlights that predator dependence may differ among predator species and demonstrates that different predatory impacts of two conspicuous invasive predators may be explained at least in part by different strengths of predator dependence. PMID:18229836

  13. Founding population size of an aquatic invasive species

    USGS Publications Warehouse

    Kalinowski, Steven T.; Muhlfeld, Clint C.; Guy, Christopher S.; Benjamin Cox

    2010-01-01

    Non-native species of fish threaten native fishes throughout North America, and in the Rocky Mountains, introduced populations of lake trout threaten native populations of bull trout. Effective management of lake trout and other exotic species require understanding the dynamics of invasion in order to either suppress non-native populations or to prevent their spread. In this study, we used microsatellite genetic data to estimate the number of lake trout that invaded a population of bull trout in Swan Lake, MT. Examination of genetic diversity and allele frequencies within the Swan Lake populations showed that most of the genes in the lake trout population are descended from two founders. This emphasizes the importance of preventing even a few lake trout from colonizing new territory.

  14. Seed Removal Increased by Scramble Competition with an Invasive Species.

    PubMed

    Minor, Rebecca L; Koprowski, John L

    2015-01-01

    Competition for seeds has a major influence on the evolution of granivores and the plants on which they rely. The complexity of interactions and coevolutionary relationships vary across forest types. The introduction of non-native granivores has considerable potential to alter seed dispersal dynamics. Non-native species are a major cause of endangerment for native species, but the mechanisms are often unclear. As biological invasions continue to rise, it is important to understand mechanisms to build up strategies to mitigate the threat. Our field experiment quantified the impact of introduced Abert's squirrels (Sciurus aberti) on rates of seed removal within the range of critically endangered Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis), which consumes similar foods. In the presence of invasive Abert's squirrels, the time cones were removed was faster than when the invasive was excluded, accounting for a median removal time of cones available to red and Abert's squirrels that is 32.8% less than that of cones available only to the rare native red squirrels. Moreover, in the presence of Abert's squirrels, removal rates are higher at great distance from a territorial red squirrel larderhoard and in more open portions of the forest, which suggests differential patterns of seed dispersal. The impact on food availability as a result of cone removal by Abert's squirrels suggests the potential of food competition as a mechanism of endangerment for the Mount Graham red squirrel. Furthermore, the magnitude and differential spatial patterns of seed removal suggest that non-native granivores may have impacts on forest regeneration and structure. PMID:26650073

  15. Seed Removal Increased by Scramble Competition with an Invasive Species

    PubMed Central

    Minor, Rebecca L.; Koprowski, John L.

    2015-01-01

    Competition for seeds has a major influence on the evolution of granivores and the plants on which they rely. The complexity of interactions and coevolutionary relationships vary across forest types. The introduction of non-native granivores has considerable potential to alter seed dispersal dynamics. Non-native species are a major cause of endangerment for native species, but the mechanisms are often unclear. As biological invasions continue to rise, it is important to understand mechanisms to build up strategies to mitigate the threat. Our field experiment quantified the impact of introduced Abert’s squirrels (Sciurus aberti) on rates of seed removal within the range of critically endangered Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis), which consumes similar foods. In the presence of invasive Abert’s squirrels, the time cones were removed was faster than when the invasive was excluded, accounting for a median removal time of cones available to red and Abert’s squirrels that is 32.8% less than that of cones available only to the rare native red squirrels. Moreover, in the presence of Abert’s squirrels, removal rates are higher at great distance from a territorial red squirrel larderhoard and in more open portions of the forest, which suggests differential patterns of seed dispersal. The impact on food availability as a result of cone removal by Abert’s squirrels suggests the potential of food competition as a mechanism of endangerment for the Mount Graham red squirrel. Furthermore, the magnitude and differential spatial patterns of seed removal suggest that non-native granivores may have impacts on forest regeneration and structure. PMID:26650073

  16. Commonly Rare and Rarely Common: Comparing Population Abundance of Invasive and Native Aquatic Species

    PubMed Central

    Hansen, Gretchen J. A.; Vander Zanden, M. Jake; Blum, Michael J.; Clayton, Murray K.; Hain, Ernie F.; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S.; McIntyre, Peter B.; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D.; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies. PMID:24194883

  17. Commonly rare and rarely common: comparing population abundance of invasive and native aquatic species.

    PubMed

    Hansen, Gretchen J A; Vander Zanden, M Jake; Blum, Michael J; Clayton, Murray K; Hain, Ernie F; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S; McIntyre, Peter B; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies. PMID:24194883

  18. Genetic control of invasive plants species using selfish genetic elements

    PubMed Central

    Hodgins, Kathryn A; Rieseberg, Loren; Otto, Sarah P

    2009-01-01

    Invasive plants cause substantial environmental damage and economic loss. Here, we explore the possibility that a selfish genetic element found in plants called cytoplasmic male sterility (CMS) could be exploited for weed control. CMS is caused by mutations in the mitochondrial genome that sterilize male reproductive organs. We developed an analytical model and a spatial simulation to assess the use of CMS alleles to manage weed populations. Specifically, we examined how fertility, selfing, pollen limitation and dispersal influenced extinction rate and time until extinction in populations where CMS arises. We found that the introduction of a CMS allele can cause rapid population extinction, but only under a restricted set of conditions. Both models suggest that the CMS strategy will be appropriate for species where pollen limitation is negligible, inbreeding depression is high and the fertility advantage of females over hermaphrodites is substantial. In general, spatial structure did not have a strong influence on the simulation outcome, although low pollen dispersal and intermediate levels of seed dispersal tended to reduce population extinction rates. Given these results, the introduction of CMS alleles into a population of invasive plants probably represents an effective control method for only a select number of species. PMID:25567898

  19. Ecology of cryptic invasions: latitudinal segregation among Watersipora (Bryozoa) species

    PubMed Central

    Mackie, Joshua A.; Darling, John A.; Geller, Jonathan B.

    2012-01-01

    Watersipora is an invasive genus of bryozoans, easily dispersed by fouled vessels. We examined Cytochrome c oxidase subunit I haplotypes from introduced populations on the US Pacific coastline to investigate geographic segregation of species and/or haplotypes. In California, the W. subtorquata group fell into three major sub-groups: W. subtorquata clades A and B, and W. “new sp.”. W. subtorquata clades A and B were common in southern California south of Point Conception, a recognized biogeographic boundary, whereas further north, W. subtorquata clade A and W. n. sp. were frequent. The southern California region also had colonies of a morphologically distinct species, W. arcuata, also found in southern Australia and Hawaii; COI variation indicates a common ancestral source(s) in these introductions. The distribution of Watersipora-complex lineages on different coastlines is shown to be temperature correlated. Accordingly, pre-exisitng temperature-based adaptations may play a key role in determining invasion patterns. PMID:23213354

  20. Successful approaches for battling invasive species in developed countries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological invasions increasingly threaten natural resources and reduce biological diversity worldwide. To curtail biological invasions, developed countries have adopted multitire approaches that systematically address the process of invasion, encompassing introduction, establishment, spread and nat...

  1. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    PubMed

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. . PMID:27008777

  2. Use of DNA Barcodes to Identify Invasive Armyworm Spodoptera Species in Florida

    PubMed Central

    Nagoshi, Rodney N.; Brambila, Julieta; Meagher, Robert L.

    2011-01-01

    A critical component for sustaining adequate food production is the protection of local agriculture from invasive pest insects. Essential to this goal is the ability to accurately distinguish foreign from closely related domestic species, a process that has traditionally required identification using diagnostic morphological “keys” that can be both subtle and labor-intensive. This is the case for the Lepidopteran group of insects represented by Spodoptera, a genus of Noctuidae “armyworm” moths that includes several important agricultural pests. Two of the most destructive species, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) and S. litura (F.) are not yet established in North America. To facilitate the monitoring for these pests, the feasibility of using DNA barcoding methodology for distinguishing between domestic and foreign Spodoptera species was tested. A DNA barcoding database was derived for a subset of Spodoptera species native to Florida, with an emphasis on those attracted to pheromone blends developed for S. litura or S. littoralis. These were then compared to the barcode sequences of S. litura collected from Taiwan and S. littoralis from Portugal. Consistent discrimination of the different species was obtained with phenetic relationships produced that were generally in agreement with phylogenetic studies using morphological characteristics. The data presented here indicate that DNA barcoding has the potential to be an efficient and accurate supplement to morphological methods for the identification of invasive Spodoptera pests in North America. PMID:22239735

  3. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    SciTech Connect

    Resasco, Julian; et al,

    2014-04-01

    Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors than in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.

  4. Impacts of invasive nonnative plant species on the rare forest herb Scutellaria montana

    NASA Astrophysics Data System (ADS)

    Sikkema, Jordan J.; Boyd, Jennifer N.

    2015-11-01

    Invasive plant species and overabundant herbivore populations have the potential to significantly impact rare plant species given their increased risk for local extirpation and extinction. We used interacting invasive species removal and grazer exclusion treatments replicated across two locations in an occurrence of rare Scutellaria montana (large-flowered skullcap) in Chattanooga, Tennessee, USA, to assess: 1) competition by invasive Ligustrum sinense (Chinese privet) and Lonicera japonica (Japanese honeysuckle) and 2) the role of invasive species in mediating Oedocoilus virginianus (white-tailed deer) grazing of S. montana. Contrary to our hypothesis that invasive species presence would suppress S. montana directly via competition, S. montana individuals experienced a seasonal increase in stem height when invasive species were intact but not when invasive species were removed. Marginally significant results indicated that invasive species may afford S. montana protection from grazers, and we suggest that invasive species also could protect S. montana from smaller herbivores and/or positively influence abiotic conditions. In contrast to growth responses, S. montana individuals protected from O. virginianus exhibited a decrease in flowering between seasons relative to unprotected plants, but invasive species did not affect this variable. Although it has been suggested that invasive plant species may negatively influence S. montana growth and fecundity, our findings do not support related concerns. As such, we suggest that invasive species eradication efforts in S. montana habitat could be more detrimental than positive due to associated disturbance. However, the low level of invasion of our study site may not be representative of potential interference in more heavily infested habitat.

  5. Marine fouling invasions in ports of Patagonia (Argentina) with implications for legislation and monitoring programs.

    PubMed

    Schwindt, Evangelina; López Gappa, Juan; Raffo, María Paula; Tatián, Marcos; Bortolus, Alejandro; Orensanz, José María; Alonso, Gloria; Diez, María Emilia; Doti, Brenda; Genzano, Gabriel; Lagger, Cristian; Lovrich, Gustavo; Piriz, María Luz; Mendez, María Martha; Savoya, Verónica; Sueiro, María Cruz

    2014-08-01

    Ports are a key factor in the understanding and solving of most problems associated with marine invasive species across regional and global scales. Yet many regions with active ports remain understudied. The aim of this work was to (a) identify and quantify the marine fouling organisms in all Patagonian ports of Argentina classifying them as native, exotic or cryptogenic species through a rapid assessment survey and experimental studies, (b) survey the environmental and anthropogenic variables of these ports and (c) analyze and discuss these results in the light of the South America context for the study of marine invasive species, legislation and commerce. We found 247 fouling species, including 17 introduced, one of which is a new record for the region, and other 15 species currently considered cryptogenic species that will need further attention to clarify their status. The analysis of mobile and sessile taxa, together with the environmental variables measured in this study and the port movement, allow us to discuss individual ports' vulnerability to future introductions. This is the first large scale study performed for this region on this topic, and it will help in developing monitoring programs and early detection plans to minimize new species introductions along the marine coastline of southern South America. PMID:24999859

  6. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    ERIC Educational Resources Information Center

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  7. They're Here: A Coast-to-Coast Investigation of Invasive Species

    ERIC Educational Resources Information Center

    Hogan, Tracy; Craven, John

    2005-01-01

    According to the National Invasive Species Council, an "invasive species" is defined as a species that is (1) nonnative (or alien) to the ecosystem under consideration, and (2) whose introduction causes or is likely to cause economic or environmental harm or harm to human health. In this article, the authors describe an activity that can be…

  8. Teaching Farmers and Commercial Pesticide Applicators about Invasive Species in Pesticide Training Workshops

    ERIC Educational Resources Information Center

    Wyatt, Gary J.; Herzfeld, Dean; Haugen-Brown, Tana

    2015-01-01

    Farmers and agricultural professionals who are aware of species likely to invade agricultural landscapes can be active participants in efforts to detect invasive species. To reach this audience we created a short invasive species program and added it to the existing and required pesticide applicator recertification workshops. We highlighted four…

  9. The effect of light radiation and temperature variability on the invasion of marine fouling species

    NASA Astrophysics Data System (ADS)

    Kim, T.; Micheli, F.

    2009-12-01

    Climate change can alter the community structure as species which have adapted to the changed climate can compete better with other species. It can also influence the recruitment and invasion success of marine introduced species. Climate change involves not only global warming but also global dimming. However, it was not tested which of warming or dimming factors more significantly influence the invasion of marine species. To test this, we manipulated both temperature variability and light radiation by deploying different shading devices (black, white, transparent, and no treatment) for recruitment tiles in the warmer region where the species invasion rate is high. We compared the species frequency and coverage between shaded and non-shaded treatments. Interestingly, under opaque white plates where light radiation is lower than under transparent plates but the temperature is higher than under black plates, had the highest frequency and coverage of invasive fouling species. The recruitment tiles under black plates got second higher invasion of exotic species. We also deployed recruitment tiles in 14 different sites to determine if temperature influences the success of invasive species. The coverage of invasive species over native species increased significantly with increasing temperature. The results suggest that both low radiation and higher temperature facilitates the success of species invasion in the intertidal region.

  10. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling.

    PubMed

    Mainali, Kumar P; Warren, Dan L; Dhileepan, Kunjithapatham; McConnachie, Andrew; Strathie, Lorraine; Hassan, Gul; Karki, Debendra; Shrestha, Bharat B; Parmesan, Camille

    2015-12-01

    Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships for Parthenium hysterophorus L. (Asteraceae) with four modeling methods run with multiple scenarios of (i) sources of occurrences and geographically isolated background ranges for absences, (ii) approaches to drawing background (absence) points, and (iii) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved using a global dataset for model training, rather than restricting data input to the species' native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e., into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g., boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post hoc test conducted on a new Parthenium dataset from Nepal validated excellent predictive performance of our 'best' model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for parthenium

  11. Getting the right traits: reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species.

    PubMed

    Moravcová, Lenka; Pyšek, Petr; Jarošík, Vojtěch; Pergl, Jan

    2015-01-01

    To better understand the effect of species traits on plant invasion, we collected comparative data on 20 reproductive and dispersal traits of 93 herbaceous alien species in the Czech Republic, central Europe, introduced after 1500 A. D. We explain plant invasion success, expressed by two measures: invasiveness, i.e. whether the species is naturalized but non-invasive, or invasive; and dominance in plant communities expressed as the mean cover in vegetation plots. We also tested how important reproductive and dispersal traits are in models including other characteristics generally known to predict invasion outcome, such as plant height, life history and residence time. By using regression/classification trees we show that the biological traits affect invasion success at all life stages, from reproduction (seed production) to dispersal (propagule properties), and the ability to compete with resident species (height). By including species traits information not usually available in multispecies analyses, we provide evidence that traits do play important role in determining the outcome of invasion and can be used to distinguish between alien species that reach the final stage of the invasion process and dominate the local communities from those that do not. No effect of taxonomy ascertained in regression and classification trees indicates that the role of traits in invasiveness should be assessed primarily at the species level. PMID:25906399

  12. Getting the Right Traits: Reproductive and Dispersal Characteristics Predict the Invasiveness of Herbaceous Plant Species

    PubMed Central

    Moravcová, Lenka; Pyšek, Petr; Pergl, Jan

    2015-01-01

    To better understand the effect of species traits on plant invasion, we collected comparative data on 20 reproductive and dispersal traits of 93 herbaceous alien species in the Czech Republic, central Europe, introduced after 1500 A. D. We explain plant invasion success, expressed by two measures: invasiveness, i.e. whether the species is naturalized but non-invasive, or invasive; and dominance in plant communities expressed as the mean cover in vegetation plots. We also tested how important reproductive and dispersal traits are in models including other characteristics generally known to predict invasion outcome, such as plant height, life history and residence time. By using regression/classification trees we show that the biological traits affect invasion success at all life stages, from reproduction (seed production) to dispersal (propagule properties), and the ability to compete with resident species (height). By including species traits information not usually available in multispecies analyses, we provide evidence that traits do play important role in determining the outcome of invasion and can be used to distinguish between alien species that reach the final stage of the invasion process and dominate the local communities from those that do not. No effect of taxonomy ascertained in regression and classification trees indicates that the role of traits in invasiveness should be assessed primarily at the species level. PMID:25906399

  13. Invasive species: Ocean ecosystem case studies for earth systems and environmental sciences

    USGS Publications Warehouse

    Schofield, Pam; Brown, Mary E.

    2016-01-01

    Marine species are increasingly transferred from areas where they are native to areas where they are not. Some nonnative species become invasive, causing undesirable impacts to environment, economy and/or human health. Nonnative marine species can be introduced through a variety of vectors, including shipping, trade, inland corridors (such as canals), and others. Effects of invasive marine species can be dramatic and irreversible. Case studies of four nonnative marine species are given (green crab, comb jelly, lionfish and Caulerpa algae).

  14. Effects of macroalgal identity on epifaunal assemblages: native species versus the invasive species Sargassum muticum

    NASA Astrophysics Data System (ADS)

    Gestoso, Ignacio; Olabarria, Celia; Troncoso, Jesús S.

    2012-06-01

    Seaweeds are a refuge from stressful conditions associated with life on rocky intertidal shores, and there is evidence that different macrophytes support different assemblages of mobile epifauna. Introduction of non-indigenous macroalgae may have a great impact on associated epifaunal assemblages and ecosystem processes in coastal areas. Previous studies have reported conflicting evidences for the ability of epifauna to colonize non-indigenous species. Here, we analyzed epifaunal assemblages associated with three species of macroalgae that are very abundant on intertidal shores along the Galician coast: the two native species Bifurcaria bifurcata and Saccorhiza polyschides and the invasive species Sargassum muticum. We collected samples of each species from three different sites at three different times to test whether variability of epifaunal assemblages was consistent over space and time. Epifaunal assemblages differed between the three macroalgae. Results suggested that stability and morphology of habitat played an important role in shaping the structure of epifaunal assemblages. This study also showed that the invasive S. muticum offered a suitable habitat for many invertebrates.

  15. Non-Invasive Gait Monitoring in a Ubiquitous Computing House

    NASA Astrophysics Data System (ADS)

    Ohta, Yuji; Motooka, Nobuhisa; Siio, Itiro; Tsukada, Koji; Kambara, Keisuke

    Computers become smaller and cheaper from day to day, and the utilization, as daily life equipments, is now becoming ubiquitous. Therefore, it's essential to discuss the development of applications, as well as the installation of ubiquitous computing technologies into our daily living environments. Based on this idea, in order to investigate how ubiquitous computing can be used in the most efficient way, an experimental house, Ocha House, has been constructed in the campus of Ochanomizu university in 2009. In this study, we described the feature of the design of the experimental house and proposed a non-invasive gait monitoring technique as a healthcare application. Specifically, five wireless accelerometers were fixed on the floor of the house, and the floor vibration was measured when the subject walked along the accelerometers. As a result, the floor acceleration intensity was found to surge at the ground contact, and the gait cycle could be detected. By combining the simple acceleration sensors and the housing structures, human motion monitoring would become less invasive.

  16. Seedling traits, plasticity and local differentiation as strategies of invasive species of Impatiens in central Europe

    PubMed Central

    Skálová, Hana; Havlíčková, Vendula; Pyšek, Petr

    2012-01-01

    Background and Aims Invasiveness of some alien plants is associated with their traits, plastic responses to environmental conditions and interpopulation differentiation. To obtain insights into the role of these processes in contributing to variation in performance, we compared congeneric species of Impatiens (Balsaminaceae) with different origin and invasion status that occur in central Europe. Methods Native I. noli-tangere and three alien species (highly invasive I. glandulifera, less invasive I. parviflora and potentially invasive I. capensis) were studied and their responses to simulated canopy shading and different nutrient and moisture levels were determined in terms of survival and seedling traits. Key Results and Conclusions Impatiens glandulifera produced high biomass in all the treatments and the control, exhibiting the ‘Jack-and-master’ strategy that makes it a strong competitor from germination onwards. The results suggest that plasticity and differentiation occurred in all the species tested and that along the continuum from plasticity to differentiation, the species at the plasticity end is the better invader. The most invasive species I. glandulifera appears to be highly plastic, whereas the other two less invasive species, I. parviflora and I. capensis, exhibited lower plasticity but rather strong population differentiation. The invasive Impatiens species were taller and exhibited higher plasticity and differentiation than native I. noli-tangere. This suggests that even within one genus, the relative importance of the phenomena contributing to invasiveness appears to be species'specific. PMID:22247125

  17. State-of-the-Art Sensor Technology in Spain: Invasive and Non-Invasive Techniques for Monitoring Respiratory Variables

    PubMed Central

    Domingo, Christian; Blanch, Lluis; Murias, Gaston; Luján, Manel

    2010-01-01

    The interest in measuring physiological parameters (especially arterial blood gases) has grown progressively in parallel to the development of new technologies. Physiological parameters were first measured invasively and at discrete time points; however, it was clearly desirable to measure them continuously and non-invasively. The development of intensive care units promoted the use of ventilators via oral intubation ventilators via oral intubation and mechanical respiratory variables were progressively studied. Later, the knowledge gained in the hospital was applied to out-of-hospital management. In the present paper we review the invasive and non-invasive techniques for monitoring respiratory variables. PMID:22399898

  18. Running a network on a shoestring: the Global Invasive Species Information Network

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Simpson, Annie; Graham, James J; Newman, Gregory J.; Bargeron, Chuck T.

    2015-01-01

    The Global Invasive Species Information Network (GISIN) was conceptualized in 2004 to aggregate and disseminate invasive species data in a standardized way. A decade later the GISIN community has implemented a data portal and three of six GISIN data aggregation models in the GISIN data exchange Protocol, including invasive species status information, resource URLs, and occurrence data. The portal is based on a protocol developed by representatives from 15 countries and 27 organizations of the global invasive species information management community. The GISIN has 19 data providers sharing 34,343 species status records, 1,693,073 occurrences, and 15,601 resource URLs. While the GISIN's goal is to be global, much of its data and funding are provided by the United States. Several initiatives use the GISIN as their information backbone, such as the Great Lakes Early Detection Network (GLEDN) and the North American Invasive Species Network (NAISN). Here we share several success stories and organizational challenges that remain.

  19. Making a Bad Situation Worse: An Invasive Species Altering the Balance of Interactions between Local Species

    PubMed Central

    2016-01-01

    Biological invasions pose a significant threat to biodiversity, especially on oceanic islands. One of the primary explanations for the success of plant invaders is direct suppression of competitors. However, indirect interactions can also be important, although they are often overlooked in studies on biological invasion. The shrub Leucaena leucocephala is a widespread island invader with putative allelopathic effects on the germination and growth of other species. We quantified the impact of Leucaena on plant communities richness on an oceanic Brazilian island and, through nursery experiments, investigated the potential for allelopathic effects on the germination of Erythrina velutina, a native species that is often absent from stands of Leucaena. Additionally, in a manipulative field experiment, we examined the direct and indirect effects (mediated by the native species Capparis flexuosa) of the invader on the development of Erythrina. The species richness in invaded sites was lower than in uninvaded sites, and Capparis was the only native species that was frequently present in invaded sites. In the nursery experiments, we found no evidence that Leucaena affects the germination of Erythrina. In the field experiments, the odds of Erythrina germination were lower in the presence of Leucaena litter, but higher in the presence of Leucaena trees. However, the survival and growth of Erythrina were considerably inhibited by the presence of Leucaena trees. The isolated effect of native Capparis on the germination and growth of Erythrina varied from positive to neutral. However, when Capparis and Leucaena were both present, their combined negative effects on Erythrina were worse than the effect of Leucaena alone, which may be attributed to indirect effects. This study provides the first empirical evidence that the balance of the interactions between native species can shift from neutral/positive to negative in the presence of an exotic species. PMID:27010846

  20. Making a Bad Situation Worse: An Invasive Species Altering the Balance of Interactions between Local Species.

    PubMed

    Mello, Thayná Jeremias; Oliveira, Alexandre Adalardo de

    2016-01-01

    Biological invasions pose a significant threat to biodiversity, especially on oceanic islands. One of the primary explanations for the success of plant invaders is direct suppression of competitors. However, indirect interactions can also be important, although they are often overlooked in studies on biological invasion. The shrub Leucaena leucocephala is a widespread island invader with putative allelopathic effects on the germination and growth of other species. We quantified the impact of Leucaena on plant communities richness on an oceanic Brazilian island and, through nursery experiments, investigated the potential for allelopathic effects on the germination of Erythrina velutina, a native species that is often absent from stands of Leucaena. Additionally, in a manipulative field experiment, we examined the direct and indirect effects (mediated by the native species Capparis flexuosa) of the invader on the development of Erythrina. The species richness in invaded sites was lower than in uninvaded sites, and Capparis was the only native species that was frequently present in invaded sites. In the nursery experiments, we found no evidence that Leucaena affects the germination of Erythrina. In the field experiments, the odds of Erythrina germination were lower in the presence of Leucaena litter, but higher in the presence of Leucaena trees. However, the survival and growth of Erythrina were considerably inhibited by the presence of Leucaena trees. The isolated effect of native Capparis on the germination and growth of Erythrina varied from positive to neutral. However, when Capparis and Leucaena were both present, their combined negative effects on Erythrina were worse than the effect of Leucaena alone, which may be attributed to indirect effects. This study provides the first empirical evidence that the balance of the interactions between native species can shift from neutral/positive to negative in the presence of an exotic species. PMID:27010846

  1. The impact of invasive plants on tidal-marsh vertebrate species: common reed (Phragmites australis) and smooth cordgrass (Spartina alterniflora) as case studies

    USGS Publications Warehouse

    Guntenspergen, G.R.; Nordby, J.C.

    2006-01-01

    Large areas of tidal marsh in the contiguous US and the Maritime Provinces of Canada are threatened by invasive plant species. Our understanding of the impact these invasions have on tidal-marsh vertebrates is sparse. In this paper, we focus on two successful invasive plant taxa that have spread outside their native range --common reed (Phragmites australis) and smooth cordgrass (Spartina a/terniflora). A cryptic haplotype of common reed has expanded its range in Atlantic Coast tidal marshes and smooth cordgrass, a native dominant plant of Atlantic Coast low-marsh habitat, has expanded its range and invaded intertidal-marsh habitats of the Pacific Coast. The invasions of common reed in Atlantic Coast tidal marshes and smooth cordgrass in Pacific Coast tidal marshes appear to have similar impacts. The structure and composition of these habitats has been altered and invasion and dominance by these two taxa can lead to profound changes in geomorphological processes, altering the vertical relief and potentially affecting invertebrate communities and the entire trophic structure of these systems. Few studies have documented impacts of invasive plant taxa on tidal-marsh vertebrate species in North America. However, habitat specialists that are already considered threatened or endangered are most likely to be affected. Extensive experimental studies are needed to examine the direct impact of invasive plant species on native vertebrate species. Careful monitoring of sites during the initial stages of plant invasion and tracking ecosystem changes through time are essential. Since tidal marshes are the foci for invasion by numerous species, we also need to understand the indirect impacts of invasion of these habitats on the vertebrate community. We also suggest the initiation of studies to determine if vertebrate species can compensate behaviorally for alterations in their habitat caused by invasive plant species, as well as the potential for adaptation via rapid evolution

  2. The impact of invasive plants on tidal-marsh vertebrate species: Common reed (Phragmites australis) and smooth cordgrass (Spartina alterniflora) as case studies

    USGS Publications Warehouse

    Guntenspergen, G.R.; Nordby, J.C.

    2006-01-01

    Large areas of tidal marsh in the contiguous US and the Maritime Provinces of Canada are threatened by invasive plant species. Our understanding of the impact these invasions have on tidal-marsh vertebrates is sparse. In this paper, we focus on two successful invasive plant taxa that have spread outside their native range - common reed (Phragmites australis) and smooth cordgrass (Spartina alterniflora). A cryptic haplotype of common reed has expanded its range in Atlantic Coast tidal marshes and smooth cordgrass, a native dominant plant of Atlantic Coast low-marsh habitat, has expanded its range and invaded intertidal-marsh habitats of the Pacific Coast. The invasions of common reed in Atlantic Coast tidal marshes and smooth cordgrass in Pacific Coast tidal marshes appear to have similar impacts. The structure and composition of these habitats has been altered and invasion and dominance by these two taxa can lead to profound changes in geomorphological processes, altering the vertical relief and potentially affecting invertebrate communities and the entire trophic structure of these systems. Few studies have documented impacts of invasive plant taxa on tidal-marsh vertebrate species in North America. However, habitat specialists that are already considered threatened or endangered are most likely to be affected. Extensive experimental studies are needed to examine the direct impact of invasive plant species on native vertebrate species. Careful monitoring of sites during the initial stages of plant invasion and tracking ecosystem changes through time are essential. Since tidal marshes are the foci for invasion by numerous species, we also need to understand the indirect impacts of invasion of these habitats on the vertebrate community. We also suggest the initiation of studies to determine if vertebrate species can compensate behaviorally for alterations in their habitat caused by invasive plant species, as well as the potential for adaptation via rapid evolution

  3. A Source Area Approach Demonstrates Moderate Predictive Ability but Pronounced Variability of Invasive Species Traits.

    PubMed

    Klonner, Günther; Fischer, Stefan; Essl, Franz; Dullinger, Stefan

    2016-01-01

    The search for traits that make alien species invasive has mostly concentrated on comparing successful invaders and different comparison groups with respect to average trait values. By contrast, little attention has been paid to trait variability among invaders. Here, we combine an analysis of trait differences between invasive and non-invasive species with a comparison of multidimensional trait variability within these two species groups. We collected data on biological and distributional traits for 1402 species of the native, non-woody vascular plant flora of Austria. We then compared the subsets of species recorded and not recorded as invasive aliens anywhere in the world, respectively, first, with respect to the sampled traits using univariate and multiple regression models; and, second, with respect to their multidimensional trait diversity by calculating functional richness and dispersion metrics. Attributes related to competitiveness (strategy type, nitrogen indicator value), habitat use (agricultural and ruderal habitats, occurrence under the montane belt), and propagule pressure (frequency) were most closely associated with invasiveness. However, even the best multiple model, including interactions, only explained a moderate fraction of the differences in invasive success. In addition, multidimensional variability in trait space was even larger among invasive than among non-invasive species. This pronounced variability suggests that invasive success has a considerable idiosyncratic component and is probably highly context specific. We conclude that basing risk assessment protocols on species trait profiles will probably face hardly reducible uncertainties. PMID:27187616

  4. A Source Area Approach Demonstrates Moderate Predictive Ability but Pronounced Variability of Invasive Species Traits

    PubMed Central

    Essl, Franz; Dullinger, Stefan

    2016-01-01

    The search for traits that make alien species invasive has mostly concentrated on comparing successful invaders and different comparison groups with respect to average trait values. By contrast, little attention has been paid to trait variability among invaders. Here, we combine an analysis of trait differences between invasive and non-invasive species with a comparison of multidimensional trait variability within these two species groups. We collected data on biological and distributional traits for 1402 species of the native, non-woody vascular plant flora of Austria. We then compared the subsets of species recorded and not recorded as invasive aliens anywhere in the world, respectively, first, with respect to the sampled traits using univariate and multiple regression models; and, second, with respect to their multidimensional trait diversity by calculating functional richness and dispersion metrics. Attributes related to competitiveness (strategy type, nitrogen indicator value), habitat use (agricultural and ruderal habitats, occurrence under the montane belt), and propagule pressure (frequency) were most closely associated with invasiveness. However, even the best multiple model, including interactions, only explained a moderate fraction of the differences in invasive success. In addition, multidimensional variability in trait space was even larger among invasive than among non-invasive species. This pronounced variability suggests that invasive success has a considerable idiosyncratic component and is probably highly context specific. We conclude that basing risk assessment protocols on species trait profiles will probably face hardly reducible uncertainties. PMID:27187616

  5. Assessment of substratum effect on the distribution of two invasive Caulerpa (Chlorophyta) species

    NASA Astrophysics Data System (ADS)

    Infantes, Eduardo; Terrados, Jorge; Orfila, Alejandro

    2011-02-01

    Two-year monitoring of the invasive marine Chlorophyta Caulerpa taxifolia and Caulerpa racemosa var. cylindracea shows the great influence of substratum on their spatial distribution. The cover of C. taxifolia and C. racemosa was measured in shallow (<8 m) areas indicating that these species are more abundant in rocks with photophilic algae and in the dead matte of the seagrass Posidonia oceanica than in sand or inside the P. oceanica meadow. A short-term experiment comparing the persistence of C. taxifolia and C. racemosa planted either in a model of dead matte of P. oceanica or in sand shows that the persistence of these species was higher in the dead matte model than in sand. Correlative evidence suggests that C. taxifolia and C. racemosa tolerate near-bottom orbital velocities below 15 cm s -1 and that C. taxifolia cover declines at velocities above that value. These results contribute to understand the process of invasion of these Caulerpa species predicting which substrata would be more susceptible to be invaded and to the adoption of appropriate management strategies.

  6. Morphology delimits more species than molecular genetic clusters of invasive Pilosella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study: Reliable identifications of invasive species are essential for effective management. Several species of Pilosella (syn. Hieracium, Asteraceae) hawkweeds invade North America, where unreliable identification hinders their control. Here we ask (i) do morphological traits dependab...

  7. A Hands-On Activity to Introduce the Effects of Transmission by an Invasive Species

    ERIC Educational Resources Information Center

    May, Barbara Jean

    2013-01-01

    This activity engages students to better understand the impact of transmission by invasive species. Using dice, poker chips, and paper plates, an entire class mimics the spread of an invasive species within a geographic region. The activity can be modified and conducted at the K-16 levels.

  8. THE MILLENNIUM CHALLENGE: THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S RESPONSE TO INVASIVE SPECIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is responding to the scientific and regulatory challenges of invasive species in a variety of ways. One response has been to use existing programs and regulations, as appropriate, to address invasive species. A recent example is th...

  9. Preventing species invasion: A role for integrative taxonomy?

    PubMed

    Mazzamuto, Maria V; Galimberti, Andrea; Cremonesi, Giacomo; Pisanu, Benoît; Chapuis, Jean-Louis; Stuyck, Jan; Amori, Giovanni; Su, Haijun; Aloise, Gaetano; Preatoni, Damiano G; Wauters, Lucas A; Casiraghi, Maurizio; Martinoli, Adriano

    2016-05-01

    Integrative taxonomy, a multi-disciplinary approach adding modern techniques to traditional morphology-based methods (e.g. molecular and morphological criteria), can play an important role in bioinvasion research to identify introduced taxa, discover pathways of introduction and inform authorities to control and prevent future introductions. The present study is the first on introduced populations of Callosciurus, Asiatic tree squirrels, known as potentially invasive species in Europe (Italy, Belgium and France). We combined molecular (mitochondrial DNA markers: CoxI, D-loop) and morphometric analysis on skulls, comparing them to the widest morphological and molecular datasets ever assembled for Callosciurus. Squirrels collected in Italy and Belgium share the same haplotypes and skull characteristics, but are conspicuously different from the French population in Antibes. Genetic data revealed close similarity between French squirrels and Pallas's squirrels, Callosciurus erythraeus, from Taiwan, China. Italian and Belgian squirrels formed an independent taxonomic lineage in genetic analyses, whose taxonomic rank needs further investigation. The morphological and morphometric characteristics of these 2 populations are, however, similar to known specimens assigned to Callosciurus erythraeus. These results may indicate a common origin for the populations found in Belgium and Italy. In contrast, French specimens suggest an independent introduction event of squirrels originating from Asia. PMID:26748591

  10. Evolution of invasive traits in nonindigenous species: increased survival and faster growth in invasive populations of rusty crayfish (Orconectes rusticus)

    PubMed Central

    Sargent, Lindsey W; Lodge, David M

    2014-01-01

    The importance of evolution in enhancing the invasiveness of species is not well understood, especially in animals. To evaluate evolution in crayfish invasions, we tested for differences in growth rate, survival, and response to predators between native and invaded range populations of rusty crayfish (Orconectes rusticus). We hypothesized that low conspecific densities during introductions into lakes would select for increased investment in growth and reproduction in invasive populations. We reared crayfish from both ranges in common garden experiments in lakes and mesocosms, the latter in which we also included treatments of predatory fish presence and food quality. In both lake and mesocosm experiments, O. rusticus from invasive populations had significantly faster growth rates and higher survival than individuals from the native range, especially in mesocosms where fish were present. There was no influence of within-range collection location on growth rate. Egg size was similar between ranges and did not affect crayfish growth. Our results, therefore, suggest that growth rate, which previous work has shown contributes to strong community-level impacts of this invasive species, has diverged since O. rusticus was introduced to the invaded range. This result highlights the need to consider evolutionary dynamics in invasive species mitigation strategies. PMID:25469173

  11. Hybrid CARS for Non-Invasive Blood Glucose Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Pestov, Dmitry; Zhang, Aihua; Murawski, Robert; Sokolov, Alexei; Welch, George; Laane, Jaan; Scully, Marlan

    2007-10-01

    We develop a spectroscopy technique that combines the advantages of both the frequency-resolved coherent anti-Stokes Raman scattering (CARS) and the time-resolved CARS. We use broadband preparation pulses to get an instantaneous coherent excitation of multiplex molecular vibration levels and subsequent optically shaped time-delayed narrowband probing pulse to detect these vibrations. This technique can suppress the nonresonant background and retrieve the molecular fingerprint signal efficiently and rapidly. We employ this technique to glucose detection, the final goal of which is accurate, non-invasive (i.e. painless) and continuous monitoring of blood glucose concentration in the Diabetes diagnosis to replace the current glucose measurement process, which requires painful fingerpricks and therefore cannot be performed more than a few times a day. We have gotten the CARS spectra of glucose aqueous solution down to 2 mM.

  12. Towards a global terrestrial species monitoring program

    USGS Publications Warehouse

    Schmeller, Dirk S.; Julliard, Romain; Bellingham, Peter J.; Böhm, Monika; Brummitt, Neil; Chiarucci, Alessandro; Couvet, Denis; Elmendorf, Sarah; Forsyth, David M.; Moreno, Jaime García; Gregory, Richard D.; Magnusson, William E.; Martin, Laura J.; McGeoch, Melodie A.; Mihoub, Jean-Baptiste; Pereira, Henrique M.; Proença, Vânia; van Swaay, Chris A.M.; Yahara, Tetsukazu; Belnap, Jayne

    2015-01-01

    Introduction: The Convention for Biological Diversity’s (CBD) Strategic Plan for Biodiversity 2011-2020 envisions that “By 2050, biodiversity is valued, conserved, restored and wisely used, maintaining ecosystem services, sustaining a healthy planet and delivering benefits essential for all people.” Although 193 parties have adopted these goals, there is little infrastructure in place to monitor global biodiversity trends. Recent international conservation policy requires such data to be up-to-date, reliable, comparable among sites, relevant, and understandable; as is becoming obvious from the work plan adopted by the Intergovernmental Panel for Biodiversity and Ecosystem Services (IPBES: www.ipbes.net/; http://tinyurl.com/ohdnknq). In order to meet the five strategic goals of the Strategic Plan for Biodiversity 2011-2020 and its 20 accompanying Aichi Targets for 2020 (www.cbd.int/sp/targets/), advances need to be made in coordinating large-scale biodiversity monitoring and linking these with environmental data to develop a comprehensive Global Observation Network, as is the main idea behind GEOSS the Global Earth Observation System of Systems (Christian 2005)...Here we identify ten requirements important for the successful implementation of a global biodiversity monitoring network under the flag of GEO BON and especially a global terrestrial species monitoring program.

  13. Global threats from invasive alien species in the twenty-first century and national response capacities.

    PubMed

    Early, Regan; Bradley, Bethany A; Dukes, Jeffrey S; Lawler, Joshua J; Olden, Julian D; Blumenthal, Dana M; Gonzalez, Patrick; Grosholz, Edwin D; Ibañez, Ines; Miller, Luke P; Sorte, Cascade J B; Tatem, Andrew J

    2016-01-01

    Invasive alien species (IAS) threaten human livelihoods and biodiversity globally. Increasing globalization facilitates IAS arrival, and environmental changes, including climate change, facilitate IAS establishment. Here we provide the first global, spatial analysis of the terrestrial threat from IAS in light of twenty-first century globalization and environmental change, and evaluate national capacities to prevent and manage species invasions. We find that one-sixth of the global land surface is highly vulnerable to invasion, including substantial areas in developing economies and biodiversity hotspots. The dominant invasion vectors differ between high-income countries (imports, particularly of plants and pets) and low-income countries (air travel). Uniting data on the causes of introduction and establishment can improve early-warning and eradication schemes. Most countries have limited capacity to act against invasions. In particular, we reveal a clear need for proactive invasion strategies in areas with high poverty levels, high biodiversity and low historical levels of invasion. PMID:27549569

  14. Global threats from invasive alien species in the twenty-first century and national response capacities

    PubMed Central

    Early, Regan; Bradley, Bethany A.; Dukes, Jeffrey S.; Lawler, Joshua J.; Olden, Julian D.; Blumenthal, Dana M.; Gonzalez, Patrick; Grosholz, Edwin D.; Ibañez, Ines; Miller, Luke P.; Sorte, Cascade J. B.; Tatem, Andrew J.

    2016-01-01

    Invasive alien species (IAS) threaten human livelihoods and biodiversity globally. Increasing globalization facilitates IAS arrival, and environmental changes, including climate change, facilitate IAS establishment. Here we provide the first global, spatial analysis of the terrestrial threat from IAS in light of twenty-first century globalization and environmental change, and evaluate national capacities to prevent and manage species invasions. We find that one-sixth of the global land surface is highly vulnerable to invasion, including substantial areas in developing economies and biodiversity hotspots. The dominant invasion vectors differ between high-income countries (imports, particularly of plants and pets) and low-income countries (air travel). Uniting data on the causes of introduction and establishment can improve early-warning and eradication schemes. Most countries have limited capacity to act against invasions. In particular, we reveal a clear need for proactive invasion strategies in areas with high poverty levels, high biodiversity and low historical levels of invasion. PMID:27549569

  15. Ecology of invasive mosquitoes: effects on resident species and on human health

    PubMed Central

    Juliano, Steven A.; Lounibos, L. Philip

    2007-01-01

    Investigations of biological invasions focus on patterns and processes that are related to introduction, establishment, spread and impacts of introduced species. This review focuses on the ecological interactions operating during invasions by the most prominent group of insect vectors of disease, mosquitoes. First, we review characteristics of non-native mosquito species that have established viable populations, and those invasive species that have spread widely and had major impacts, testing whether biotic characteristics are associated with the transition from established non-native to invasive. Second, we review the roles of interspecific competition, apparent competition, predation, intraguild predation and climatic limitation as causes of impacts on residents or as barriers to invasion. We concentrate on the best-studied invasive mosquito, Aedes albopictus, evaluating the application of basic ecological theory to invasions by Aedes albopictus. We develop a model based on observations of Aedes albopictus for effects of resource competition and predation as barriers to invasion, evaluating which community and ecosystem characteristics favour invasion. Third, we evaluate the ways in which invasive mosquitoes have contributed to outbreaks of human and animal disease, considering specifically whether invasive mosquitoes create novel health threats, or modify disease transmission for existing pathogen–host systems. PMID:17637849

  16. Trait Values, Not Trait Plasticity, Best Explain Invasive Species' Performance in a Changing Environment

    PubMed Central

    Matzek, Virginia

    2012-01-01

    The question of why some introduced species become invasive and others do not is the central puzzle of invasion biology. Two of the principal explanations for this phenomenon concern functional traits: invasive species may have higher values of competitively advantageous traits than non-invasive species, or they may have greater phenotypic plasticity in traits that permits them to survive the colonization period and spread to a broad range of environments. Although there is a large body of evidence for superiority in particular traits among invasive plants, when compared to phylogenetically related non-invasive plants, it is less clear if invasive plants are more phenotypically plastic, and whether this plasticity confers a fitness advantage. In this study, I used a model group of 10 closely related Pinus species whose invader or non-invader status has been reliably characterized to test the relative contribution of high trait values and high trait plasticity to relative growth rate, a performance measure standing in as a proxy for fitness. When grown at higher nitrogen supply, invaders had a plastic RGR response, increasing their RGR to a much greater extent than non-invaders. However, invasive species did not exhibit significantly more phenotypic plasticity than non-invasive species for any of 17 functional traits, and trait plasticity indices were generally weakly correlated with RGR. Conversely, invasive species had higher values than non-invaders for 13 of the 17 traits, including higher leaf area ratio, photosynthetic capacity, photosynthetic nutrient-use efficiency, and nutrient uptake rates, and these traits were also strongly correlated with performance. I conclude that, in responding to higher N supply, superior trait values coupled with a moderate degree of trait variation explain invasive species' superior performance better than plasticity per se. PMID:23119098

  17. Species richness and interacting factors control invasibility of a marine community

    PubMed Central

    Marraffini, M. L.; Geller, J. B.

    2015-01-01

    Anthropogenic vectors have moved marine species around the world leading to increased invasions and expanded species' ranges. The biotic resistance hypothesis of Elton (in The ecology of invasions by animals and plants, 1958) predicts that more diverse communities should have greater resistance to invasions, but experiments have been equivocal. We hypothesized that species richness interacts with other factors to determine experimental outcomes. We manipulated species richness, species composition (native and introduced) and availability of bare space in invertebrate assemblages in a marina in Monterey, CA. Increased species richness significantly interacted with both initial cover of native species and of all organisms to collectively decrease recruitment. Although native species decreased recruitment, introduced species had a similar effect, and we concluded that biotic resistance is conferred by total species richness. We suggest that contradictory conclusions in previous studies about the role of diversity in regulating invasions reflect uncontrolled variables in those experiments that modified the effect of species richness. Our results suggest that patches of low diversity and abundance may facilitate invasions, and that such patches, once colonized by non-indigenous species, can resist both native and non-indigenous species recruitment. PMID:26203005

  18. Invasive species and climate change: an agronomic perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increase in the introduction of new, invasive pests (pathogens, fungi, weeds and insects) represents a significant challenge to USDA in maintaining a secure, safe and adequate food supply. Although invasive biology has become the focus of a number of research efforts, no systematic evaluation o...

  19. 76 FR 32135 - National Forest System Invasive Species Management Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    .... Agency procedure at 36 CFR 220.6(d)(2) (73 FR 43093) excludes from documentation in an environmental... terrestrial ecosystems from the impacts of invasive plants, pathogens, vertebrates, and invertebrates. DATES... impacts of invasive plants, pathogens, vertebrates, and invertebrates. The proposed directive applies...

  20. Do invasive species perform better in their new ranges?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fundamental assumption in invasion biology is that successful invaders exhibit enhanced vigor following introductions to new ranges, including larger size, greater fecundity, and denser populations. This assumption of ‘increased vigour’ underlies most empirical and theoretical studies of invasion ...

  1. An invasive species facilitates the recovery of salt marsh ecosystems on Cape Cod.

    PubMed

    Bertness, Mark D; Coverdale, Tyler C

    2013-09-01

    With global increases in human impacts, invasive species have become a major threat to ecosystems worldwide. While they have been traditionally viewed as harmful, invasive species may facilitate the restoration of degraded ecosystems outside their native ranges. In New England (USA) overfishing has depleted salt marsh predators, allowing the herbivorous crab Sesarma reticulatum to denude hundreds of hectares of low marsh. Here, using multiple site surveys and field caging experiments, we show that the subsequent invasion of green crabs, Carcinus maenas, into heavily burrowed marshes partially reverses decades of cordgrass die-off. By consuming Sesarma, eliciting a nonlethal escape response, and evicting Sesarma from burrows, Carcinus reduces Sesarma herbivory and promotes cordgrass recovery. These results suggest that invasive species can contribute to restoring degraded ecosystems and underscores the potential for invasive species to return ecological functions lost to human impacts. PMID:24279265

  2. Study on species invasion warning modeling using GIS and data mining

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Chen, Lijun; Li, Jiatian; Albright, Thomas P.; Guo, Qinfeng; Ma, Li

    2007-11-01

    Biological invasion has been one of the most dramatic ecological even in human history that threatens our economy, public health and ecological integrity. GIS and Remote Sensing technology should be integrated with spatial data mining to recognize the patterns of invasive species over space and time and predict the distribution at the large-scale. Presented with the challenge of problems during the prediction modeling including the uncertainty in biodiversity data, the uncertainty in model selection, and the uncertainty in niche cross the geographic space, this paper used information-theoretic approaches based on a set of GIS/RS environment layers to generate two kinds of species invasion warning models: global species invasion warning model (G-SIWM) and local species invasion warning model (L-SIWM) and illustrated the approach through a habitat-suitability analysis of ragweed (Ambrosia artemisiifolia L.).

  3. Mutualism between co-introduced species facilitates invasion and alters plant community structure

    PubMed Central

    Prior, Kirsten M.; Robinson, Jennifer M.; Meadley Dunphy, Shannon A.; Frederickson, Megan E.

    2015-01-01

    Generalized mutualisms are often predicted to be resilient to changes in partner identity. Variation in mutualism-related traits between native and invasive species however, can exacerbate the spread of invasive species (‘invasional meltdown’) if invasive partners strongly interact. Here we show how invasion by a seed-dispersing ant (Myrmica rubra) promotes recruitment of a co-introduced invasive over native ant-dispersed (myrmecochorous) plants. We created experimental communities of invasive (M. rubra) or native ants (Aphaenogaster rudis) and invasive and native plants and measured seed dispersal and plant recruitment. In our mesocosms, and in laboratory and field trials, M. rubra acted as a superior seed disperser relative to the native ant. By contrast, previous studies have found that invasive ants are often poor seed dispersers compared with native ants. Despite belonging to the same behavioural guild, seed-dispersing ants were not functionally redundant. Instead, native and invasive ants had strongly divergent effects on plant communities: the invasive plant dominated in the presence of the invasive ant and the native plants dominated in the presence of the native ant. Community changes were not due to preferences for coevolved partners: variation in functional traits of linked partners drove differences. Here, we show that strongly interacting introduced mutualists can be major drivers of ecological change. PMID:25540283

  4. Mutualism between co-introduced species facilitates invasion and alters plant community structure.

    PubMed

    Prior, Kirsten M; Robinson, Jennifer M; Meadley Dunphy, Shannon A; Frederickson, Megan E

    2015-02-01

    Generalized mutualisms are often predicted to be resilient to changes in partner identity. Variation in mutualism-related traits between native and invasive species however, can exacerbate the spread of invasive species ('invasional meltdown') if invasive partners strongly interact. Here we show how invasion by a seed-dispersing ant (Myrmica rubra) promotes recruitment of a co-introduced invasive over native ant-dispersed (myrmecochorous) plants. We created experimental communities of invasive (M. rubra) or native ants (Aphaenogaster rudis) and invasive and native plants and measured seed dispersal and plant recruitment. In our mesocosms, and in laboratory and field trials, M. rubra acted as a superior seed disperser relative to the native ant. By contrast, previous studies have found that invasive ants are often poor seed dispersers compared with native ants. Despite belonging to the same behavioural guild, seed-dispersing ants were not functionally redundant. Instead, native and invasive ants had strongly divergent effects on plant communities: the invasive plant dominated in the presence of the invasive ant and the native plants dominated in the presence of the native ant. Community changes were not due to preferences for coevolved partners: variation in functional traits of linked partners drove differences. Here, we show that strongly interacting introduced mutualists can be major drivers of ecological change. PMID:25540283

  5. Differential Allocation to Photosynthetic and Non-Photosynthetic Nitrogen Fractions among Native and Invasive Species

    PubMed Central

    Funk, Jennifer L.; Glenwinkel, Lori A.; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the “high-return” end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids. PMID:23700483

  6. Using a Novel Spatial Tool to Inform Invasive Species Early Detection and Rapid Response Efforts

    NASA Astrophysics Data System (ADS)

    Davidson, Alisha D.; Fusaro, Abigail J.; Kashian, Donna R.

    2015-07-01

    Management of invasive species has increasingly emphasized the importance of early detection and rapid response (EDRR) programs in limiting introductions, establishment, and impacts. These programs require an understanding of vector and species spatial dynamics to prioritize monitoring sites and efficiently allocate resources. Yet managers often lack the empirical data necessary to make these decisions. We developed an empirical mapping tool that can facilitate development of EDRR programs through identifying high-risk locations, particularly within the recreational boating vector. We demonstrated the utility of this tool in the Great Lakes watershed. We surveyed boaters to identify trips among water bodies and to quantify behaviors associated with high likelihood of species transfer (e.g., not removing organic materials from boat trailers) during that trip. We mapped water bodies with high-risk inbound and outbound boater movements using ArcGIS. We also tested for differences in high-risk behaviors based on demographic variables to understand risk differences among boater groups. Incorporation of boater behavior led to identification of additional high-risk water bodies compared to using the number of trips alone. Therefore, the number of trips itself may not fully reflect the likelihood of invasion. This tool can be broadly applied in other geographic contexts and with different taxa, and can be adjusted according to varying levels of information concerning the vector or species of interest. The methodology is straightforward and can be followed after a basic introduction to ArcGIS software. The visual nature of the mapping tool will facilitate site prioritization by managers and stakeholders from diverse backgrounds.

  7. Creating a Successful Citizen Science Model to Detect and Report Invasive Species

    ERIC Educational Resources Information Center

    Gallo, Travis; Waitt, Damon

    2011-01-01

    The Invaders of Texas program is a successful citizen science program in which volunteers survey and monitor invasive plants throughout Texas. Invasive plants are being introduced at alarming rates, and our limited knowledge about their distribution is a major cause for concern. The Invaders of Texas program trains citizen scientists to detect the…

  8. Pre-adaptation or genetic shift after introduction in the invasive species Impatiens glandulifera?

    NASA Astrophysics Data System (ADS)

    Elst, Evelyne M.; Acharya, Kamal P.; Dar, Pervaiz A.; Reshi, Zafar A.; Tufto, Jarle; Nijs, Ivan; Graae, Bente J.

    2016-01-01

    Invasive exotic plants often grow fast, reproduce rapidly and display considerable phenotypic plasticity in their invasive range, which may be essential characteristics for successful invasion. However, it remains unclear whether these characteristics are already present in native populations (pre-adaptation hypothesis) or evolve after introduction (genetic shift hypothesis). To test these hypotheses we compared means and phenotypic plasticity of vegetative and reproductive traits between populations of Impatiens glandulifera collected from either the invasive (Norway) or native range (India). Seeds were sown and the resulting plants were exposed to different experimental environments in a glasshouse. We also tested whether trait means and reaction norms harbored genetic variation, as this may promote fitness in the novel environment. We did not find evidence that invasive populations of I. glandulifera grew more vigorously or produced more seeds than native populations. Phenotypic plasticity did not differ between the native and invasive range, except for the number of nodes which was more plastic in the invasive range. Genetic variation in the slope of reaction norms was absent, suggesting that the lack of change in phenotypic plasticity between native and invasive populations resulted from low genetic variation in phenotypic plasticity initially harbored by this species. Post-introduction evolution of traits thus probably did not boost the invasiveness of I. glandulifera. Instead, the species seems to be pre-adapted for invasion. We suggest that differences in habitat between the native and invasive range, more specifically the higher nutrient availability observed in the new environment, are the main factor driving the invasion of this species. Indeed, plants in the more nutrient-rich invasive range had greater seed mass, likely conferring a competitive advantage, while seed mass also responded strongly to nutrients in the glasshouse. Interactions between

  9. The control of invasive species on private property with neighbor-to-neighbor spillovers.

    PubMed

    Fenichel, Eli P; Richards, Timothy J; Shanafelt, David W

    2014-10-01

    Invasive pests cross property boundaries. Property managers may have private incentives to control invasive species despite not having sufficient incentive to fully internalize the external costs of their role in spreading the invasion. Each property manager has a right to future use of his own property, but his property may abut others' properties enabling spread of an invasive species. The incentives for a foresighted property manager to control invasive species have received little attention. We consider the efforts of a foresighted property manager who has rights to future use of a property and has the ability to engage in repeated, discrete control activities. We find that higher rates of dispersal, associated with proximity to neighboring properties, reduce the private incentives for control. Controlling species at one location provides incentives to control at a neighboring location. Control at neighboring locations are strategic complements and coupled with spatial heterogeneity lead to a weaker-link public good problem, in which each property owner is unable to fully appropriate the benefits of his own control activity. Future-use rights and private costs suggest that there is scope for a series of Coase-like exchanges to internalize much of the costs associated with species invasion. Pigouvian taxes on invasive species potentially have qualitatively perverse behavioral effects. A tax with a strong income effect (e.g, failure of effective revenue recycling) can reduce the value of property assets and diminish the incentive to manage insects on one's own property. PMID:25346573

  10. The control of invasive species on private property with neighbor-to-neighbor spillovers

    PubMed Central

    Fenichel, Eli P.; Richards, Timothy J.; Shanafelt, David W.

    2013-01-01

    Invasive pests cross property boundaries. Property managers may have private incentives to control invasive species despite not having sufficient incentive to fully internalize the external costs of their role in spreading the invasion. Each property manager has a right to future use of his own property, but his property may abut others’ properties enabling spread of an invasive species. The incentives for a foresighted property manager to control invasive species have received little attention. We consider the efforts of a foresighted property manager who has rights to future use of a property and has the ability to engage in repeated, discrete control activities. We find that higher rates of dispersal, associated with proximity to neighboring properties, reduce the private incentives for control. Controlling species at one location provides incentives to control at a neighboring location. Control at neighboring locations are strategic complements and coupled with spatial heterogeneity lead to a weaker-link public good problem, in which each property owner is unable to fully appropriate the benefits of his own control activity. Future-use rights and private costs suggest that there is scope for a series of Coase-like exchanges to internalize much of the costs associated with species invasion. Pigouvian taxes on invasive species potentially have qualitatively perverse behavioral effects. A tax with a strong income effect (e.g, failure of effective revenue recycling) can reduce the value of property assets and diminish the incentive to manage insects on one’s own property. PMID:25346573

  11. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny.

    PubMed

    Gallagher, R V; Randall, R P; Leishman, M R

    2015-04-01

    The ability to predict which alien plants will transition from naturalized to invasive prior to their introduction to novel regions is a key goal for conservation and has the potential to increase the efficacy of weed risk assessment (WRA). However, multiple factors contribute to plant invasion success (e.g., functional traits, range characteristics, residence time, phylogeny), and they all must be taken into account simultaneously in order to identify meaningful correlates of invasion success. We compiled 146 pairs of phylogenetically paired (congeneric) naturalized and invasive plant species in Australia with similar minimum residence times (i.e., time since introduction in years). These pairs were used to test for differences in 5 functional traits (flowering duration, leaf size, maximum height, specific leaf area [SLA], seed mass) and 3 characteristics of species' native ranges (biome occupancy, mean annual temperature, and rainfall breadth) between naturalized and invasive species. Invasive species, on average, had larger SLA, longer flowering periods, and were taller than their congeneric naturalized relatives. Invaders also exhibited greater tolerance for different environmental conditions in the native range, where they occupied more biomes and a wider breadth of rainfall and temperature conditions than naturalized congeners. However, neither seed mass nor leaf size differed between pairs of naturalized and invasive species. A key finding was the role of SLA in distinguishing between naturalized and invasive pairs. Species with high SLA values were typically associated with faster growth rates, more rapid turnover of leaf material, and shorter lifespans than those species with low SLA. This suite of characteristics may contribute to the ability of a species to transition from naturalized to invasive across a wide range of environmental contexts and disturbance regimes. Our findings will help in the refinement of WRA protocols, and we advocate the inclusion

  12. Predicting the presence and cover of management relevant invasive plant species on protected areas.

    PubMed

    Iacona, Gwenllian; Price, Franklin D; Armsworth, Paul R

    2016-01-15

    Invasive species are a management concern on protected areas worldwide. Conservation managers need to predict infestations of invasive plants they aim to treat if they want to plan for long term management. Many studies predict the presence of invasive species, but predictions of cover are more relevant for management. Here we examined how predictors of invasive plant presence and cover differ across species that vary in their management priority. To do so, we used data on management effort and cover of invasive plant species on central Florida protected areas. Using a zero-inflated multiple regression framework, we showed that protected area features can predict the presence and cover of the focal species but the same features rarely explain both. There were several predictors of either presence or cover that were important across multiple species. Protected areas with three days of frost per year or fewer were more likely to have occurrences of four of the six focal species. When invasive plants were present, their proportional cover was greater on small preserves for all species, and varied with surrounding household density for three species. None of the predictive features were clearly related to whether species were prioritized for management or not. Our results suggest that predictors of cover and presence can differ both within and across species but do not covary with management priority. We conclude that conservation managers need to select predictors of invasion with care as species identity can determine the relationship between predictors of presence and the more management relevant predictors of cover. PMID:26599567

  13. Plant invasions differentially affected by diversity and dominant species in native- and exotic-dominated grasslands.

    PubMed

    Xu, Xia; Polley, H Wayne; Hofmockel, Kirsten; Daneshgar, Pedram P; Wilsey, Brian J

    2015-12-01

    Plant invasions are an increasingly serious global concern, especially as the climate changes. Here, we explored how plant invasions differed between native- and novel exotic-dominated grasslands with experimental addition of summer precipitation in Texas in 2009. Exotic species greened up earlier than natives by an average of 18 days. This was associated with a lower invasion rate early in the growing season compared to native communities. However, invasion rate did not differ significantly between native and exotic communities across all sampling times. The predictors of invasion rate differed between native and exotic communities, with invasion being negatively influenced by species richness in natives and by dominant species in exotics. Interestingly, plant invasions matched the bimodal pattern of precipitation in Temple, Texas, and did not respond to the pulse of precipitation during the summer. Our results suggest that we will need to take different approaches in understanding of invasion between native and exotic grasslands. Moreover, with anticipated increasing variability in precipitation under global climate change, plant invasions may be constrained in their response if the precipitation pulses fall outside the normal growing period of invaders. PMID:27069615

  14. Changing trends of hemodynamic monitoring in ICU - from invasive to non-invasive methods: Are we there yet?

    PubMed

    Arora, Shubhangi; Singh, Preet Mohinder; Goudra, Basavana G; Sinha, Ashish C

    2014-04-01

    Hemodynamic monitoring in the form of invasive arterial, central venous pressure and pulmonary capillary wedge pressure monitoring may be required in seriously ill Intensive care unit patients, in patients undergoing surgeries involving gross hemodynamic changes and in patients undergoing cardiac surgeries. These techniques are considered the gold standards of hemodynamic monitoring but are associated with their inherent risks. A number of non-invasive techniques based on various physical principles are under investigation at present. The goal is to not only avoid the risk of invasive intervention, but also to match the gold standard set by them as far as possible. Techniques based on photoplethysmography, arterial tonometry and pulse transit time analysis have come up for continuous arterial pressure monitoring. Of these the first has been studied most extensively and validated, however it has been shown to be substandard in patients with gross hemodynamic instability. The other two still need further evaluation. While the non-invasive methods for arterial blood pressure monitoring are based on diverse technologies, those for measurement of central venous and pulmonary pressures are mostly based on imaging techniques such as echocardiography, Doppler ultrasound, computed tomography scan and chest X ray. Most of these techniques are based on measurement of the dimensions of the great veins. This makes them operator and observer dependent. However, studies done till now have revealed adequate inter-observer agreement. These techniques are still in their incipience and although initial studies are encouraging, further research is needed on this front. PMID:25024945

  15. Globalization and Invasive Species Issues in Hawaii: Role-Playing Some Local Perspectives

    ERIC Educational Resources Information Center

    Fox, Alison M.; Loope, Lloyd L.

    2007-01-01

    Increasingly recognized as having significant economic and ecological impacts, non-native invasive species have become an important interdisciplinary topic in biological and social science courses. Oceanic island systems like Hawaii have been particularly susceptible to invaders and efforts to prevent further invasions focus on reducing the…

  16. Insecticide-mediated apparent displacement between two invasive species of Leafminer fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Closely related invasive species may often displace one another, but it is often difficult to determine mechanisms because of the historical nature of these events. The leafmining flies Liriomyza sativae and Liriomyza trifolii have become serious invasive agricultural pests throughout the world. W...

  17. Modelling Favourability for Invasive Species Encroachment to Identify Areas of Native Species Vulnerability

    PubMed Central

    Báez, José C.; Ferri-Yáñez, Francisco; Bellido, Jesús J.

    2014-01-01

    We assessed the vulnerability of the native Mediterranean pond turtle to encroachment by the invasive red-eared slider in southern Spain. We first obtained an ecogeographical favourability model for the Mediterranean pond turtle. We then modelled the presence/absence of the red-eared slider in the Mediterranean pond turtle range and obtained an encroachment favourability model. We also obtained a favourability model for the red-eared slider using the ecogeographical favourability for the Mediterranean pond turtle as a predictor. When favourability for the Mediterranean pond turtle was high, favourability for the red-eared slider was low, suggesting that in these areas the Mediterranean pond turtle may resist encroachment by the red-eared slider. We also calculated favourability overlap between the two species, which is their simultaneous favourability. Grids with low overlap had higher favourability values for the Mediterranean pond turtle and, consequently, were of lesser conservation concern. A few grids had high values for both species, being potentially suitable for coexistence. Grids with intermediate overlap had similar intermediate favourability values for both species and were therefore areas where the Mediterranean pond turtle was more vulnerable to encroachment by the red-eared slider. We mapped the favourability overlap to provide a map of vulnerability of the Mediterranean pond turtle to encroachment by the red-eared slider. PMID:24719577

  18. Modelling favourability for invasive species encroachment to identify areas of native species vulnerability.

    PubMed

    Romero, David; Báez, José C; Ferri-Yáñez, Francisco; Bellido, Jesús J; Real, Raimundo

    2014-01-01

    We assessed the vulnerability of the native Mediterranean pond turtle to encroachment by the invasive red-eared slider in southern Spain. We first obtained an ecogeographical favourability model for the Mediterranean pond turtle. We then modelled the presence/absence of the red-eared slider in the Mediterranean pond turtle range and obtained an encroachment favourability model. We also obtained a favourability model for the red-eared slider using the ecogeographical favourability for the Mediterranean pond turtle as a predictor. When favourability for the Mediterranean pond turtle was high, favourability for the red-eared slider was low, suggesting that in these areas the Mediterranean pond turtle may resist encroachment by the red-eared slider. We also calculated favourability overlap between the two species, which is their simultaneous favourability. Grids with low overlap had higher favourability values for the Mediterranean pond turtle and, consequently, were of lesser conservation concern. A few grids had high values for both species, being potentially suitable for coexistence. Grids with intermediate overlap had similar intermediate favourability values for both species and were therefore areas where the Mediterranean pond turtle was more vulnerable to encroachment by the red-eared slider. We mapped the favourability overlap to provide a map of vulnerability of the Mediterranean pond turtle to encroachment by the red-eared slider. PMID:24719577

  19. Optimal approaches for balancing invasive species eradication and endangered species management.

    PubMed

    Lampert, Adam; Hastings, Alan; Grosholz, Edwin D; Jardine, Sunny L; Sanchirico, James N

    2014-05-30

    Resolving conflicting ecosystem management goals-such as maintaining fisheries while conserving marine species or harvesting timber while preserving habitat-is a widely recognized challenge. Even more challenging may be conflicts between two conservation goals that are typically considered complementary. Here, we model a case where eradication of an invasive plant, hybrid Spartina, threatens the recovery of an endangered bird that uses Spartina for nesting. Achieving both goals requires restoration of native Spartina. We show that the optimal management entails less intensive treatment over longer time scales to fit with the time scale of natural processes. In contrast, both eradication and restoration, when considered separately, would optimally proceed as fast as possible. Thus, managers should simultaneously consider multiple, potentially conflicting goals, which may require flexibility in the timing of expenditures. PMID:24876497

  20. Rapid molecular detection of invasive species in ballast and harbor water by integrating environmental DNA and light transmission spectroscopy.

    PubMed

    Egan, Scott P; Grey, Erin; Olds, Brett; Feder, Jeffery L; Ruggiero, Steven T; Tanner, Carol E; Lodge, David M

    2015-04-01

    Invasive species introduced via the ballast water of commercial ships cause enormous environmental and economic damage worldwide. Accurate monitoring for these often microscopic and morphologically indistinguishable species is challenging but critical for mitigating damages. We apply eDNA sampling, which involves the filtering and subsequent DNA extraction of microscopic bits of tissue suspended in water, to ballast and harbor water sampled during a commercial ship's 1400 km voyage through the North American Great Lakes. Using a lab-based gel electrophoresis assay and a rapid, field-ready light transmission spectroscopy (LTS) assay, we test for the presence of two invasive species: quagga (Dreissena bugensis) and zebra (D. polymorpha) mussels. Furthermore, we spiked a set of uninfested ballast and harbor samples with zebra mussel tissue to further test each assay's detection capabilities. In unmanipulated samples, zebra mussel was not detected, while quagga mussel was detected in all samples at a rate of 85% for the gel assay and 100% for the LTS assay. In the spiked experimental samples, both assays detected zebra mussel in 94% of spiked samples and 0% of negative controls. Overall, these results demonstrate that eDNA sampling is effective for monitoring ballast-mediated invasions and that LTS has the potential for rapid, field-based detection. PMID:25686279

  1. Effect of the internet commerce on dispersal modes of invasive alien species.

    PubMed

    Lenda, Magdalena; Skórka, Piotr; Knops, Johannes M H; Moroń, Dawid; Sutherland, William J; Kuszewska, Karolina; Woyciechowski, Michał

    2014-01-01

    The spread of invasive alien plants has considerable environmental and economic consequences, and is one of the most challenging ecological problems. The spread of invasive alien plant species depends largely on long-distance dispersal, which is typically linked with human activity. The increasing domination of the internet will have impacts upon almost all components of our lives, including potential consequences for the spread of invasive species. To determine whether the rise of Internet commerce has any consequences for the spread of invasive alien plant species, we studied the sale of thirteen of some of the most harmful Europe invasive alien plant species sold as decorative plants from twenty-eight large, well known gardening shops in Poland that sold both via the Internet and through traditional customer sales. We also analyzed temporal changes in the number of invasive plants sold in the largest Polish internet auction portal. When sold through the Internet invasive alien plant species were transported considerably longer distances than for traditional sales. For internet sales, seeds of invasive alien plant species were transported further than were live plants saplings; this was not the case for traditional sales. Also, with e-commerce the shape of distance distribution were flattened with low skewness comparing with traditional sale where the distributions were peaked and right-skewed. Thus, e-commerce created novel modes of long-distance dispersal, while traditional sale resembled more natural dispersal modes. Moreover, analysis of sale in the biggest Polish internet auction portal showed that the number of alien specimens sold via the internet has increased markedly over recent years. Therefore internet commerce is likely to increase the rate at which ecological communities become homogenized and increase spread of invasive species by increasing the rate of long distance dispersal. PMID:24932498

  2. Effect of the Internet Commerce on Dispersal Modes of Invasive Alien Species

    PubMed Central

    Lenda, Magdalena; Skórka, Piotr; Knops, Johannes M. H.; Moroń, Dawid; Sutherland, William J.; Kuszewska, Karolina; Woyciechowski, Michał

    2014-01-01

    The spread of invasive alien plants has considerable environmental and economic consequences, and is one of the most challenging ecological problems. The spread of invasive alien plant species depends largely on long-distance dispersal, which is typically linked with human activity. The increasing domination of the internet will have impacts upon almost all components of our lives, including potential consequences for the spread of invasive species. To determine whether the rise of Internet commerce has any consequences for the spread of invasive alien plant species, we studied the sale of thirteen of some of the most harmful Europe invasive alien plant species sold as decorative plants from twenty-eight large, well known gardening shops in Poland that sold both via the Internet and through traditional customer sales. We also analyzed temporal changes in the number of invasive plants sold in the largest Polish internet auction portal. When sold through the Internet invasive alien plant species were transported considerably longer distances than for traditional sales. For internet sales, seeds of invasive alien plant species were transported further than were live plants saplings; this was not the case for traditional sales. Also, with e-commerce the shape of distance distribution were flattened with low skewness comparing with traditional sale where the distributions were peaked and right-skewed. Thus, e-commerce created novel modes of long-distance dispersal, while traditional sale resembled more natural dispersal modes. Moreover, analysis of sale in the biggest Polish internet auction portal showed that the number of alien specimens sold via the internet has increased markedly over recent years. Therefore internet commerce is likely to increase the rate at which ecological communities become homogenized and increase spread of invasive species by increasing the rate of long distance dispersal. PMID:24932498

  3. Recent records of steppe species in Belarus, first indications of a steppe species invasion?

    PubMed

    Aleksandrowicz, Oleg

    2011-01-01

    BELARUS IS SITUATED AT A CROSSROAD OF NATURAL BORDERS OF SPECIES DISTRIBUTIONS: the NE part is situated in a taiga zone, whereas the other part of terrain is in the European forest zone. The distance of Belarus to the steppe zone is about 330 kilometers. This geographical position and the extensive knowledge of its fauna can be used to monitor changes in the distribution of different species. An intensive study of open habitat ground beetles was carried out from 1975-2008 in Belarus, using pitfall traps, quadrate-sampling methods, hand collecting, netting and light traps. In total, more than 130 000 specimens of ground beetles belonging to 169 species were collected from 62 fields and 11 meadows of different types. 217 specimens of Calosoma investigator (Illiger 1798), 2 specimens of Calosoma denticolle (Gebler 1833), and one specimen of Harpalus subcylindricus (Dejean, 1829), Harpalus honestus (Duftschmid 1812) and Zabrus tenebrioides (Goeze 1777) were present in this material. All specimens were macropterous and exclusively caught at fields and waste grounds on sandy soil. Nowadays Belarus is the northernmost location for these species in Eastern Europe. Steppe species most probably migrated to SE Belarus from NE Ukraine, using Dnieper and its river valleys. The shift in the geographic distribution of steppe species during the last thirty years in Belarus have been attributed to a higher frequency of warmer and wetter summers in the last few decades. PMID:21738428

  4. Evaluating the invasive potential of Miscanthus biofeedstocks: Estimating population parameters for current and hypothetical candidate species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy crops have been promoted as environmentally friendly alternatives to petroleum, with widespread efforts underway to identify candidate species. However, many species under consideration share key traits (e.g. rapid growth, vegetative spread) with invasive species, creating concern that fee...

  5. Does seeding after wildfires in rangelands reduce erosion or invasive species?

    USGS Publications Warehouse

    Pyke, David A.; Wirth, Troy A.; Beyers, Jan L.

    2013-01-01

    Mitigation of ecological damage caused by rangeland wildfires has historically been an issue restricted to the western United States. It has focused on conservation of ecosystem function through reducing soil erosion and spread of invasive plants. Effectiveness of mitigation treatments has been debated recently. We reviewed recent literature to conduct a meta-analysis of seeding after wildfires to determine if seedings may (1) protect ecosystems against soil erosion and (2) reduce invasion or abundance of undesirable nonnative plant species. Effectiveness of postfire seedings was examined in 8 erosion and 19 invasive species cases. Seeding has little effect on erosion during the first year after fire and is highly dependent upon initial establishment and coverage of species in successive years. Among all seeding cases, 28% reduced, 67% were neutral, and 5% increased invasive species abundance. Older seedings were more likely to show reductions in invasives than younger seedings. Seedings with high plant establishment were more likely to reduce invasives than those with low establishment. Studies are needed that examine (1) frequency of adequate establishment of postfire seedings and causal factors of success or failure, (2) long-term impacts of seeding along a range of initial establishment and concomitant plant coverage over time as it relates to erosion and abundance of invasive plant species, and (3) auxiliary treatments designed to increase likelihood of germination and establishment given the inevitable variability of environmental conditions. These studies would aid land managers in deciding when postfire treatments are required and their likely level of success.

  6. The Scirtothrips dorsalis species complex: Endemism and invasion in a global pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive arthropods pose unique management challenges in various environments, the first of which is correct identification. This apparently mundane task is particularly difficult if multiple species are morphologically indistinguishable but accurate identification can be determined with DNA barcodi...

  7. Efficient species-level monitoring at the landscape scale.

    PubMed

    Noon, Barry R; Bailey, Larissa L; Sisk, Thomas D; McKelvey, Kevin S

    2012-06-01

    Monitoring the population trends of multiple animal species at a landscape scale is prohibitively expensive. However, advances in survey design, statistical methods, and the ability to estimate species presence on the basis of detection-nondetection data have greatly increased the feasibility of species-level monitoring. For example, recent advances in monitoring make use of detection-nondetection data that are relatively inexpensive to acquire, historical survey data, and new techniques in genetic evaluation. The ability to use indirect measures of presence for some species greatly increases monitoring efficiency and reduces survey costs. After adjusting for false absences, the proportion of sample units in a landscape where a species is detected (occupancy) is a logical state variable to monitor. Occupancy monitoring can be based on real-time observation of a species at a survey site or on evidence that the species was at the survey location sometime in the recent past. Temporal and spatial patterns in occupancy data are related to changes in animal abundance and provide insights into the probability of a species' persistence. However, even with the efficiencies gained when occupancy is the monitored state variable, the task of species-level monitoring remains daunting due to the large number of species. We propose that a small number of species be monitored on the basis of specific management objectives, their functional role in an ecosystem, their sensitivity to environmental changes likely to occur in the area, or their conservation importance. PMID:22594594

  8. Validation of a New Minimally Invasive Intracranial Pressure Monitoring Method by Direct Comparison with an Invasive Technique.

    PubMed

    Vilela, Gustavo Henrique Frigieri; Cabella, Brenno; Mascarenhas, Sérgio; Czosnyka, Marek; Smielewski, Peter; Dias, Celeste; Cardim, Danilo Augusto; Mascarenhas, Yvonne Maria; Wang, Charles Chenwei; Andrade, Rodrigo; Tanaka, Koji; Lopes, Luiza Silva; Colli, Benedicto Oscar

    2016-01-01

    In this chapter we present in vivo experiments with a new minimally invasive method of monitoring intracranial pressure (ICP). Strain gauge deformation sensors are externally glued onto the exposed skull. The signal from these sensors is amplified, filtered, and sent to a computer with appropriate software for analysis and data storage. Saline infusions into the spinal channel of rats were performed to produce ICP changes, and minimally invasive ICP and direct Codman intraparenchymal ICP were simultaneously acquired in six animals. The similarity between the invasive and minimally invasive methods in response to ICP increase was assessed using Pearson's correlation coefficient. It demonstrated good agreement between the two measures < r > = 0.8 ± 0.2, with a range of 0.31-0.99. PMID:27165885

  9. The Scirtothrips dorsalis Species Complex: Endemism and Invasion in a Global Pest

    PubMed Central

    Dickey, Aaron M.; Kumar, Vivek; Hoddle, Mark S.; Funderburk, Joe E.; Morgan, J. Kent; Jara-Cavieres, Antonella; Shatters, Robert G. Jr.; Osborne, Lance S.; McKenzie, Cindy L.

    2015-01-01

    Invasive arthropods pose unique management challenges in various environments, the first of which is correct identification. This apparently mundane task is particularly difficult if multiple species are morphologically indistinguishable but accurate identification can be determined with DNA barcoding provided an adequate reference set is available. Scirtothrips dorsalis is a highly polyphagous plant pest with a rapidly expanding global distribution and this species, as currently recognized, may be comprised of cryptic species. Here we report the development of a comprehensive DNA barcode library for S. dorsalis and seven nuclear markers via next-generation sequencing for identification use within the complex. We also report the delimitation of nine cryptic species and two morphologically distinguishable species comprising the S. dorsalis species complex using histogram analysis of DNA barcodes, Bayesian phylogenetics, and the multi-species coalescent. One member of the complex, here designated the South Asia 1 cryptic species, is highly invasive, polyphagous, and likely the species implicated in tospovirus transmission. Two other species, South Asia 2, and East Asia 1 are also highly polyphagous and appear to be at an earlier stage of global invasion. The remaining members of the complex are regionally endemic, varying in their pest status and degree of polyphagy. In addition to patterns of invasion and endemism, our results provide a framework both for identifying members of the complex based on their DNA barcode, and for future species delimiting efforts. PMID:25893251

  10. The Scirtothrips dorsalis Species Complex: Endemism and Invasion in a Global Pest.

    PubMed

    Dickey, Aaron M; Kumar, Vivek; Hoddle, Mark S; Funderburk, Joe E; Morgan, J Kent; Jara-Cavieres, Antonella; Shatters, Robert G; Osborne, Lance S; McKenzie, Cindy L

    2015-01-01

    Invasive arthropods pose unique management challenges in various environments, the first of which is correct identification. This apparently mundane task is particularly difficult if multiple species are morphologically indistinguishable but accurate identification can be determined with DNA barcoding provided an adequate reference set is available. Scirtothrips dorsalis is a highly polyphagous plant pest with a rapidly expanding global distribution and this species, as currently recognized, may be comprised of cryptic species. Here we report the development of a comprehensive DNA barcode library for S. dorsalis and seven nuclear markers via next-generation sequencing for identification use within the complex. We also report the delimitation of nine cryptic species and two morphologically distinguishable species comprising the S. dorsalis species complex using histogram analysis of DNA barcodes, Bayesian phylogenetics, and the multi-species coalescent. One member of the complex, here designated the South Asia 1 cryptic species, is highly invasive, polyphagous, and likely the species implicated in tospovirus transmission. Two other species, South Asia 2, and East Asia 1 are also highly polyphagous and appear to be at an earlier stage of global invasion. The remaining members of the complex are regionally endemic, varying in their pest status and degree of polyphagy. In addition to patterns of invasion and endemism, our results provide a framework both for identifying members of the complex based on their DNA barcode, and for future species delimiting efforts. PMID:25893251