Science.gov

Sample records for monitoring remote vehicles

  1. Remote monitoring of emissions using on-vehicle sensing and vehicle to roadside communications

    SciTech Connect

    Davis, D.T.

    1995-06-01

    Recent developments in on-vehicle electronics makes practical remote monitoring of vehicle emissions compliance with CARB and EPA regulations. A system consisting of emission controls malfunction sensors, an on-board computer (OBC), and vehicle-to-roadside communications (VRC) would enable enforcement officials to remotely and automatically detect vehicle out-of-compliance status. Remote sensing could be accomplished at highway speeds as vehicles pass a roadside RF antenna and reader unit which would interrogate the on- vehicle monitoring and recording system. This paper will focus on the hardware system components require to achieve this goal with special attention to the VRC; a key element for remote monitoring. this remote sensing concept piggybacks on the development of inexpensive VRC equipment for automatic vehicle identification for electronic toll collection and intelligent transportation applications. Employing an RF transponder with appropriate interface to the OBC and malfunction sensors, a practical monitoring system can be developed with potentially important impact on air quality and enforcement. With such a system in place, the current -- and costly and ineffective -- emission control strategy of periodic smog checking could be replaced or modified.

  2. Remote Video Monitor of Vehicles in Cooperative Information Platform

    NASA Astrophysics Data System (ADS)

    Qin, Guofeng; Wang, Xiaoguo; Wang, Li; Li, Yang; Li, Qiyan

    Detection of vehicles plays an important role in the area of the modern intelligent traffic management. And the pattern recognition is a hot issue in the area of computer vision. An auto- recognition system in cooperative information platform is studied. In the cooperative platform, 3G wireless network, including GPS, GPRS (CDMA), Internet (Intranet), remote video monitor and M-DMB networks are integrated. The remote video information can be taken from the terminals and sent to the cooperative platform, then detected by the auto-recognition system. The images are pretreated and segmented, including feature extraction, template matching and pattern recognition. The system identifies different models and gets vehicular traffic statistics. Finally, the implementation of the system is introduced.

  3. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  4. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  5. Research and implement of remote vehicle monitoring and early-warning system based on GPS/GPRS

    NASA Astrophysics Data System (ADS)

    Li, Shiwu; Tian, Jingjing; Yang, Zhifa; Qiao, Feiyan

    2013-03-01

    Concerning the problem of road traffic safety, remote monitoring and early-warning of vehicle states was the key to prevent road traffic accidents and improve the transportation effectiveness. Through the embedded development technology, a remote vehicle monitoring and early-warning system was developed based on UNO2170 industrial computer of Advantech with WinCE operating system using Embedded Visual C++ (EVC), which combined with multisensor data acquisition technology, global positioning system (GPS) and general packet radio service (GPRS). It achieved the remote monitoring and early-warning of commercial vehicle. This system was installed in a CA1046L2 light truck. Through many road tests, test results showed that the system reacted rapidly for abnormal vehicle states and had stable performance.

  6. Construction of an unmanned aerial vehicle remote sensing system for crop monitoring

    NASA Astrophysics Data System (ADS)

    Jeong, Seungtaek; Ko, Jonghan; Kim, Mijeong; Kim, Jongkwon

    2016-04-01

    We constructed a lightweight unmanned aerial vehicle (UAV) remote sensing system and determined the ideal method for equipment setup, image acquisition, and image processing. Fields of rice paddy (Oryza sativa cv. Unkwang) grown under three different nitrogen (N) treatments of 0, 50, or 115 kg/ha were monitored at Chonnam National University, Gwangju, Republic of Korea, in 2013. A multispectral camera was used to acquire UAV images from the study site. Atmospheric correction of these images was completed using the empirical line method, and three-point (black, gray, and white) calibration boards were used as pseudo references. Evaluation of our corrected UAV-based remote sensing data revealed that correction efficiency and root mean square errors ranged from 0.77 to 0.95 and 0.01 to 0.05, respectively. The time series maps of simulated normalized difference vegetation index (NDVI) produced using the UAV images reproduced field variations of NDVI reasonably well, both within and between the different N treatments. We concluded that the UAV-based remote sensing technology utilized in this study is potentially an easy and simple way to quantitatively obtain reliable two-dimensional remote sensing information on crop growth.

  7. Remote vehicle controller

    NASA Astrophysics Data System (ADS)

    Schmitz, John J.

    1992-06-01

    A remote control system is disclosed for use with vehicles having radios. A first vehicle has a controller attached to the radio for use in sending signals to a second vehicle. The second, remotely controlled, vehicle has a receiver connected to the vehicle radio which receives commands from the first radio to effect the desired motion and action of the second vehicle. The receiver and controller have circuitry which allows them to be reprogrammed to function on various military vehicles and also be attached to the different radio systems in use by the U.S. Military.

  8. Monitoring of atmospheric aerosol emissions using a remotely piloted air vehicle (RPV)-Borne Sensor Suite

    SciTech Connect

    1996-05-01

    We have developed a small sensor system, the micro-atmospheric measurement system ({mu}-AMS), to monitor and track aerosol emissions. The system was developed to fly aboard a remotely piloted air vehicle, or other mobile platform, to provide real-time particle measurements in effluent plumes and to collect particles for chemical analysis. The {mu}-AMS instrument measures atmospheric parameters including particle mass concentration and size distribution, temperature, humidity, and airspeed, altitude and position (by GPS receiver) each second. The sensor data are stored onboard and are also down linked to a ground station in real time. The {mu}-AMS is battery powered, small (8 in. dia x 36 in.), and lightweight (15 pounds). Aerosol concentrations and size distributions from above ground explosive tests, airbone urban pollution, and traffic-produced particulates are presented.

  9. Remotely piloted LTA vehicle for surveillance

    NASA Technical Reports Server (NTRS)

    Seemann, G. R.; Harris, G. L.; Brown, G. J.

    1975-01-01

    Various aspects of a remotely piloted mini-LTA vehicle for surveillance, monitoring and measurement for civilian and military applications are considered. Applications, operations and economics are discussed.

  10. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    SciTech Connect

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  11. DEVELOPMENT OF A GEOGRAPHIC VISUALIZATION AND COMMUNICATIONS SYSTEMS (GVCS) FOR MONITORING REMOTE VEHICLES

    SciTech Connect

    COLEMAN, P.; DUNCAN, M.; DURFEE, R.C.; GOELTZ, R; HARRISON, G.; HODGSON, M.E.; KOOK, M.; MCCLAIN, S.

    1998-03-30

    The purpose of this project is to integrate a variety of geographic information systems capabilities and telecommunication technologies for potential use in geographic network and visualization applications. The specific technical goals of the project were to design, develop, and simulate the components of an audio/visual geographic communications system to aid future real-time monitoring, mapping and managing of transport vehicles. The system components of this feasibility study are collectively referred to as a Geographic Visualization and Communications System (GVCS). State-of-the-art techniques will be used and developed to allow both the vehicle operator and network manager to monitor the location and surrounding environment of a transport vehicle during shipment.

  12. Remote control for motor vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)

    1984-01-01

    A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.

  13. Remote Monitoring Transparency Program

    SciTech Connect

    Sukhoruchkin, V.K.; Shmelev, V.M.; Roumiantsev, A.N.

    1996-08-01

    The objective of the Remote Monitoring Transparency Program is to evaluate and demonstrate the use of remote monitoring technologies to advance nonproliferation and transparency efforts that are currently being developed by Russia and the United States without compromising the national security to the participating parties. Under a lab-to-lab transparency contract between Sandia National Laboratories (SNL) and the Kurchatov Institute (KI RRC), the Kurchatov Institute will analyze technical and procedural aspects of the application of remote monitoring as a transparency measure to monitor inventories of direct- use HEU and plutonium (e.g., material recovered from dismantled nuclear weapons). A goal of this program is to assist a broad range of political and technical experts in learning more about remote monitoring technologies that could be used to implement nonproliferation, arms control, and other security and confidence building measures. Specifically, this program will: (1) begin integrating Russian technologies into remote monitoring systems; (2) develop remote monitoring procedures that will assist in the application of remote monitoring techniques to monitor inventories of HEU and Pu from dismantled nuclear weapons; and (3) conduct a workshop to review remote monitoring fundamentals, demonstrate an integrated US/Russian remote monitoring system, and discuss the impacts that remote monitoring will have on the national security of participating countries.

  14. Remote Monitoring Transparency Program

    SciTech Connect

    Sukhoruchkin, V.K.; Shmelev, V.M.; Roumiantsev, A.N.; Croessmann, C.D.; Horton, R.D.; Matter, J.C.; Czajkowski, A.F.; Sheely, K.B.; Bieniawski, A.J.

    1996-12-31

    The objective of the Remote Monitoring Transparency Program is to evaluate and demonstrate the use of remote monitoring technologies to advance nonproliferation and transparency efforts that are currently being developed by Russia and the US without compromising the national security of the participating parties. Under a lab-to-lab transparency contract between Sandia National Laboratories (SNL) and the Kurchatov Institute (KI RRC), the Kurchatov Institute will analyze technical and procedural aspects of the application of remote monitoring as a transparency measure to monitor inventories of direct-use HEU and plutonium (e.g., material recovered from dismantled nuclear weapons). A goal of this program is to assist a broad range of political and technical experts in learning more about remote monitoring technologies that could be used to implement nonproliferation, arms control, and other security and confidence building measures. Specifically, this program will: (1) begin integrating Russian technologies into remote monitoring systems; (2) develop remote monitoring procedures that will assist in the application of remote monitoring techniques to monitor inventories of HEU and Pu from dismantled nuclear weapons; and (3) conduct a workshop to review remote monitoring fundamentals, demonstrate an integrated US/Russian remote monitoring will have on the national security of participating countries.

  15. Rangeland resource assessment, monitoring, and management using unmanned aerial vehicle-based remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Civilian applications of Unmanned Aerial Vehicles (UAV) have rapidly been expanding recently. Thanks to military development many civil UAVs come via the defense sector. Although numerous UAVs can perform civilian tasks, the regulations imposed by FAA in the national airspace system and military e...

  16. UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING

    SciTech Connect

    Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

    2012-06-01

    UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

  17. Mobile remote manipulator vehicle system

    NASA Technical Reports Server (NTRS)

    Bush, Harold G. (Inventor); Mikulas, Martin M., Jr. (Inventor); Wallsom, Richard E. (Inventor); Jensen, J. Kermit (Inventor)

    1987-01-01

    A mobile remote manipulator system is disclosed for assembly, repair and logistics transport on, around and about a space station square bay truss structure. The vehicle is supported by a square track arrangement supported by guide pins integral with the space station truss structure and located at each truss node. Propulsion is provided by a central push-pull drive mechanism that extends out from the vehicle one full structural bay over the truss and locks drive rods into the guide pins. The draw bar is now retracted and the mobile remote manipulator system is pulled onto the next adjacent structural bay. Thus, translation of the vehicle is inchworm style. The drive bar can be locked onto two guide pins while the extendable draw bar is within the vehicle and then push the vehicle away one bay providing bidirectional push-pull drive. The track switches allow the vehicle to travel in two orthogonal directions over the truss structure which coupled with the bidirectional drive, allow movement in four directions on one plane. The top layer of this trilayered vehicle is a logistics platform. This platform is capable of 369 degees of rotation and will have two astronaut foot restraint platforms and a space crane integral.

  18. Monitoring intensity and patterns of off-highway vehicle (OHV) use in remote areas of the western USA

    USGS Publications Warehouse

    Ouren, Douglas S.; Coffin, Alisa W.

    2013-01-01

    The continued growth of off-highway vehicle (OHV) activities – demonstrated by the dramatic increase in OHV sales, number of users, and areas experiencing OHV use – has elevated concerns about their ecological effects, the impacts on wildlife, and the sustainability of OHV use on secondary and tertiary road networks. Conflicts between visitors and wildlife are raising concerns about system resiliency and sustainable management. In order to quantify the spatial and temporal impacts of OHV use it is imperative to know about the timing and patterns of vehicle use. This study tested and used multiple vehicle-counter types to study vehicular OHV use patterns and volume throughout a mountainous road network in western Colorado. OHV counts were analyzed by time of day, day of week, season, and year. While daily use peaked within a two to three hour range for all sites, the overall volume of use varied among sites on an annual basis. The data also showed that there are at least two distinct patterns of OHV use: one dominated by a majority of use on weekends, and the other with continuous use throughout the week. This project provided important, but rarely captured, metrics about patterns of OHV use in a remote, mountainous region of Colorado. The techniques described here can provide land managers with a quantitative evaluation of OHV use across the landscape, an essential foundation for travel management planning. They also provide researchers with robust tools to further investigate the impacts of OHV use.

  19. Development of a compact untethered remotely operated vehicle

    NASA Astrophysics Data System (ADS)

    Shimoo, Kosei; Ishimatsu, Takakazu M.; Kishima, Saturo; Taguchi, Nobuyoshi; Nagashima, Yutaka

    2007-12-01

    Recently, the scientific investigations of marine environment, marine products and algae fields often require the use of underwater vehicle to perform survey and monitoring tasks. This paper describes a compact unthethered remotely operated vehicle (UROV). The vehicle is compact and light in weight by employing a VARIVEC propeller. The UROV operator controls by the UROV monitor including the data of GPS, electronic compass, sonar, depth and range sensor. The sensor data are extracted smartly by the Programmable System on Chip (PSoC) microprocessor. The performance of UROV is examined about the operating characteristics, image transmission, and remotely monitoring system. The temperature, conductivity, and turbidity of the sea surface are collected with accuracy.

  20. Remote water monitoring system

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Haynes, D. P. (Inventor)

    1978-01-01

    A remote water monitoring system is described that integrates the functions of sampling, sample preservation, sample analysis, data transmission and remote operation. The system employs a floating buoy carrying an antenna connected by lines to one or more sampling units containing several sample chambers. Receipt of a command signal actuates a solenoid to open an intake valve outward from the sampling unit and communicates the water sample to an identifiable sample chamber. Such response to each signal receipt is repeated until all sample chambers are filled in a sample unit. Each sample taken is analyzed by an electrochemical sensor for a specific property and the data obtained is transmitted to a remote sending and receiving station. Thereafter, the samples remain isolated in the sample chambers until the sampling unit is recovered and the samples removed for further laboratory analysis.

  1. Remote maintenance monitoring system

    NASA Technical Reports Server (NTRS)

    Simpkins, Lorenz G. (Inventor); Owens, Richard C. (Inventor); Rochette, Donn A. (Inventor)

    1992-01-01

    A remote maintenance monitoring system retrofits to a given hardware device with a sensor implant which gathers and captures failure data from the hardware device, without interfering with its operation. Failure data is continuously obtained from predetermined critical points within the hardware device, and is analyzed with a diagnostic expert system, which isolates failure origin to a particular component within the hardware device. For example, monitoring of a computer-based device may include monitoring of parity error data therefrom, as well as monitoring power supply fluctuations therein, so that parity error and power supply anomaly data may be used to trace the failure origin to a particular plane or power supply within the computer-based device. A plurality of sensor implants may be rerofit to corresponding plural devices comprising a distributed large-scale system. Transparent interface of the sensors to the devices precludes operative interference with the distributed network. Retrofit capability of the sensors permits monitoring of even older devices having no built-in testing technology. Continuous real time monitoring of a distributed network of such devices, coupled with diagnostic expert system analysis thereof, permits capture and analysis of even intermittent failures, thereby facilitating maintenance of the monitored large-scale system.

  2. Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Darrach, Muray

    2007-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) identifies gases that are present in minute quantities in the International Space Station (ISS) breathing air that could harm the crew s health. If successful, instruments like VCAM could accompany crewmembers during long-duration exploration missions to the Moon or traveling to Mars.

  3. Cardiac remote monitoring in France.

    PubMed

    Maillard, Nicolas; Perrotton, Fanny; Delage, Emilie; Gourraud, Jean-Baptiste; Lande, Gilles; Solnon, Aude; Probst, Vincent; Grimandi, Gael; Clouet, Johann

    2014-04-01

    The increase in number of implanted cardiac medical devices and the announced decrease in number of cardiologists have led to remote monitoring being considered as a pivotal tool for patient follow-up. For 10 years, remote monitoring has been the subject of multiple clinical studies. In these studies, reliability and clinical efficacy have been demonstrated, but the use of remote monitoring remains quite limited in France compared with other countries. To explain this delay in uptake, some organizational difficulties and the lack of reimbursement of remote monitoring are often mentioned. The results of medico-economic studies might provide answers about the value of remote monitoring and enable the supervisory authorities to define how its use will be financed. This review provides a global view of remote monitoring in France, and covers the principle, clinical efficacy, organizational and regulatory aspects, and medico-economic data. PMID:24709285

  4. Optimizing Optics For Remotely Controlled Underwater Vehicles

    NASA Astrophysics Data System (ADS)

    Billet, A. B.

    1984-09-01

    The past decade has shown a dramatic increase in the use of unmanned tethered vehicles in worldwide marine fields. These vehicles are used for inspection, debris removal and object retrieval. With advanced robotic technology, remotely operated vehicles (ROVs) are now able to perform a variety of jobs previously accomplished only by divers. The ROVs can be used at greater depths and for riskier jobs, and safety to the diver is increased, freeing him for safer, more cost-effective tasks requiring human capabilities. Secondly, the ROV operation becomes more cost effective to use as work depth increases. At 1000 feet a diver's 10 minutes of work can cost over $100,000 including support personnel, while an ROV operational cost might be 1/20 of the diver cost per day, based on the condition that the cost for ROV operation does not change with depth, as it does for divers. In the ROV operation the television lens must be as good as the human eye, with better light gathering capability than the human eye. The RCV-150 system is an example of these advanced technology vehicles. With the requirements of manueuverability and unusual inspection, a responsive, high performance, compact vehicle was developed. The RCV-150 viewing subsystem consists of a television camera, lights, and topside monitors. The vehicle uses a low light level Newvicon television camera. The camera is equipped with a power-down iris that closes for burn protection when the power is off. The camera can pan f 50 degrees and tilt f 85 degrees on command from the surface. Four independently controlled 250 watt quartz halogen flood lamps illuminate the viewing area as required; in addition, two 250 watt spotlights are fitted. A controlled nine inch CRT monitor provides real time camera pictures for the operator. The RCV-150 vehicle component system consists of the vehicle structure, the vehicle electronics, and hydraulic system which powers the thruster assemblies and the manipulator. For this vehicle, a light

  5. Remotely Accessed Vehicle Traffic Management System

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Raida

    2010-06-01

    The ever increasing number of vehicles in most metropolitan cities around the world and the limitation in altering the transportation infrastructure, led to serious traffic congestion and an increase in the travelling time. In this work we exploit the emergence of novel technologies such as the internet, to design an intelligent Traffic Management System (TMS) that can remotely monitor and control a network of traffic light controllers located at different sites. The system is based on utilizing Embedded Web Servers (EWS) technology to design a web-based TMS. The EWS located at each intersection uses IP technology for communicating remotely with a Central Traffic Management Unit (CTMU) located at the traffic department authority. Friendly GUI software installed at the CTMU will be able to monitor the sequence of operation of the traffic lights and the presence of traffic at each intersection as well as remotely controlling the operation of the signals. The system has been validated by constructing a prototype that resembles the real application.

  6. Autoreturn Function for a Remotely Piloted Vehicle

    NASA Technical Reports Server (NTRS)

    McMinn, J. D.; Jackson, E. Bruce

    2002-01-01

    An algorithm to maneuver an air vehicle to intercept and follow a pre-planned path while remaining within an arbitrary, closed boundary is outlined. The immediate application is for an autonomous lost-link return-to-runway function for a remotely piloted vehicle being developed by NASA, but other applications are hypothesized. Results of implementation in a flight simulator are given.

  7. Remote reconnaissance vehicle program. Final report

    SciTech Connect

    Giefer, D.; Hine, R.; Pavelek, M.

    1985-09-01

    This report documents the development and initial use of remote reconnaissance vehicle No. 1 (RRV-1) in the Three Mile Island Unit 2 (TMI-2) cleanup. The RRV-1 is a rugged, remotely operated, highly maneuverable six-wheeled vehicle which is tethered to transmit power and control signals. It has a system for controlled reel-in and pay-out of the tether, TV cameras with remotely controlled lighting, pan, tilt, and zoom capabilities and radiation detectors for floor, wall, and general area measurements. The design, development, and modifications of the vehicle and the operator training program are described, as are the TMI-2 reactor building modifications, the initial entries into the highly contaminated reactor building basement, the data gathered during the initial entries and recommendations for future improvements. The potential for future missions at TMI-2 and the general applicability of such remote devices to other nuclear power plants is also discussed.

  8. The automation of remote vehicle control. [in Mars roving vehicles

    NASA Technical Reports Server (NTRS)

    Paine, G.

    1977-01-01

    The automation of remote vehicles is becoming necessary to overcome the requirement of having man present as a controller. By removing man, remote vehicles can be operated in areas where the environment is too hostile for man, his reaction times are too slow, time delays are too long, and where his presence is too costly, or where system performance can be improved. This paper addresses the development of automated remote vehicle control for nonspace and space tasks from warehouse vehicles to proposed Mars rovers. The state-of-the-art and the availability of new technology for implementing automated control are reviewed and the major problem areas are outlined. The control strategies are divided into those where the path is planned in advance or constrained, or where the system is a teleoperator, or where automation or robotics have been introduced.

  9. An optimized international vehicle monitor

    SciTech Connect

    York, R.L.; Close, D.A.; Fehlau, P.E.

    1997-03-01

    The security plans for many DOE facilities require the monitoring of pedestrians and vehicles to control the movement of special nuclear material (SNM). Vehicle monitors often provide the outer-most barrier against the theft of SNM. Automatic monitors determine the presence of SNM by comparing the gamma-ray and neutron intensity while occupied, to the continuously updated background radiation level which is measured while the unit is unoccupied. The most important factors in choosing automatic vehicle monitors are sensitivity, cost and in high traffic applications total monitoring time. The two types of automatic vehicle monitors presently in use are the vehicle monitoring station and the drive-through vehicle monitor. These two types have dramatically different cost and sensitivities. The vehicle monitoring station has a worst-case detection sensitivity of 40 g of highly enriched uranium, HEU, and a cost approximately $180k. This type of monitor is very difficult to install and can only be used in low traffic flow locations. The drive-through vehicle portal has a worst-case detection sensitivity of 1 kg of HEU and a cost approximately $20k. The world`s political situation has created a pressing need to prevent the diversion of SNM from FSU nuclear facilities and across international borders. Drive-through vehicle monitors would be an effective and practical nuclear material proliferation deterrent if their sensitivity can be improved to a sufficient level. The goal of this project is to evaluate different detector configurations as a means of improving the sensitivity of these instruments to achieve a vehicle monitor that is economical, practical to install, and has adequate sensitivity to be an effective barrier to illegal transportation of SNM.

  10. The technology of submersible remotely operated vehicles

    SciTech Connect

    Not Available

    1991-02-01

    Today`s offshore underwater service industry is dominated by unmanned vehicles that act in many ways as a surrogate diver. These vehicles are called Remotely Operated Vehicles or ROVs. They come in many shapes and sizes, and are designed for many purposes: structural inspection, maintenance and repair; cleaning; pipeline and cable trenching; bulldozing; bottom surveying; nodule mining and a host of other tasks catering to industrial, military, scientific and recreational interests. There is no Webster`s definition of a Remotely Operated Vehicle (ROV). Indeed, if there was, there would have to be several definitions since no single one would describe the entire vehicle spectrum. As a rule all ROVs have three features in common: (1) they are unmanned; (2) a video or TV camera provides real-time and/or slow-scan optical viewing and (3) all have some degree of maneuverability. One convenient method of categorizing ROVs is by their means of propulsion and whether or not they are cable-connected to the surface. Using these criteria six different types of ROVs can be identified: (1) Tethered, free-swimming vehicles; (2) towed vehicles; (3) bottom-reliant vehicles; (4) structurally-reliant vehicles and (5) untethered or autonomous vehicles.

  11. The technology of submersible remotely operated vehicles

    SciTech Connect

    Not Available

    1991-02-01

    Today's offshore underwater service industry is dominated by unmanned vehicles that act in many ways as a surrogate diver. These vehicles are called Remotely Operated Vehicles or ROVs. They come in many shapes and sizes, and are designed for many purposes: structural inspection, maintenance and repair; cleaning; pipeline and cable trenching; bulldozing; bottom surveying; nodule mining and a host of other tasks catering to industrial, military, scientific and recreational interests. There is no Webster's definition of a Remotely Operated Vehicle (ROV). Indeed, if there was, there would have to be several definitions since no single one would describe the entire vehicle spectrum. As a rule all ROVs have three features in common: (1) they are unmanned; (2) a video or TV camera provides real-time and/or slow-scan optical viewing and (3) all have some degree of maneuverability. One convenient method of categorizing ROVs is by their means of propulsion and whether or not they are cable-connected to the surface. Using these criteria six different types of ROVs can be identified: (1) Tethered, free-swimming vehicles; (2) towed vehicles; (3) bottom-reliant vehicles; (4) structurally-reliant vehicles and (5) untethered or autonomous vehicles.

  12. Canadair CL-227 Remotely Piloted Vehicle

    NASA Astrophysics Data System (ADS)

    Clark, Andrew S.

    1983-08-01

    The Canadair CL-227 is a rotary winged Remotely Piloted Vehicle (RPV) intended initially as the air-vehicle for a medium range battlefield surveillance and target acquisition system. The concept on which this vehicle is based brings together in-house expertise as a designer and manufacturer of surveillance drones (AN-USD-50l -MIDGE-) with experience in rigid rotor technology from the CL-84 tilt wing VTOL program. The vehicle is essentially modular in design with a power module containing the engine, fuel and related systems, a rotor module containing the two counter-rotating rotors and control actuators, and a control module containing the autopilot, data link and sensor system. The vehicle is a true RPV (as opposed to a drone) as it is flown in real time by an operator on the ground and requires relatively little skill to pilot.

  13. Remotely Monitored Sealing Array Software

    Energy Science and Technology Software Center (ESTSC)

    2012-09-12

    The Remotely Monitored Sealing Array (RMSA) utilizes the Secure Sensor Platform (SSP) framework to establish the fundamental operating capabilities for communication, security, power management, and cryptography. In addition to the SSP framework the RMSA software has unique capabilities to support monitoring a fiber optic seal. Fiber monitoring includes open and closed as well as parametric monitoring to detect tampering attacks. The fiber monitoring techniques, using the SSP power management processes, allow the seals to lastmore » for years while maintaining the security requirements of the monitoring application. The seal is enclosed in a tamper resistant housing with software to support active tamper monitoring. New features include LED notification of fiber closure, the ability to retrieve the entire fiber optic history via translator command, separate memory storage for fiber optic events, and a more robust method for tracking and resending failed messages.« less

  14. Remotely Monitored Sealing Array Software

    SciTech Connect

    2012-09-12

    The Remotely Monitored Sealing Array (RMSA) utilizes the Secure Sensor Platform (SSP) framework to establish the fundamental operating capabilities for communication, security, power management, and cryptography. In addition to the SSP framework the RMSA software has unique capabilities to support monitoring a fiber optic seal. Fiber monitoring includes open and closed as well as parametric monitoring to detect tampering attacks. The fiber monitoring techniques, using the SSP power management processes, allow the seals to last for years while maintaining the security requirements of the monitoring application. The seal is enclosed in a tamper resistant housing with software to support active tamper monitoring. New features include LED notification of fiber closure, the ability to retrieve the entire fiber optic history via translator command, separate memory storage for fiber optic events, and a more robust method for tracking and resending failed messages.

  15. Remote vehicle emissions sensing feasibility studies

    SciTech Connect

    Rendahl, C.S.

    1996-12-31

    Previous papers have addressed quality assurance efforts with regard to collecting data of known quality, data validation, and preliminary analysis of Wisconsin`s Remote Vehicle Emissions Sensing (RVES) project conducted in 1993 and 1994. This paper will analyze in greater detail the field data collected over the two years of studies. This analysis included making comparisons of mass emissions of total hydrocarbon emissions with respect to vehicle model year and total contribution to tropospheric ozone forming emissions in Southeastern Wisconsin. A simple analysis of errors of commission and errors of omission as a function of varying RVES cut points will be reviewed. And finally, potential emission reductions gained from the use of remote vehicle sensing will also be explored. 5 figs., 4 tabs.

  16. Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...

  17. Remote Environmental Monitoring System CRADA

    SciTech Connect

    Hensley, R.D.

    2000-03-30

    The goal of the project was to develop a wireless communications system, including communications, command, and control software, to remotely monitor the environmental state of a process or facility. Proof of performance would be tested and evaluated with a prototype demonstration in a functioning facility. AR Designs' participation provided access to software resources and products that enable network communications for real-time embedded systems to access remote workstation services such as Graphical User Interface (GUI), file I/O, Events, Video, Audio, etc. in a standardized manner. This industrial partner further provided knowledge and links with applications and current industry practices. FM and T's responsibility was primarily in hardware development in areas such as advanced sensors, wireless radios, communication interfaces, and monitoring and analysis of sensor data. This role included a capability to design, fabricate, and test prototypes and to provide a demonstration environment to test a proposed remote sensing system. A summary of technical accomplishments is given.

  18. The future of remote ECG monitoring systems.

    PubMed

    Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su

    2016-09-01

    Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring. PMID:27582770

  19. The future of remote ECG monitoring systems

    PubMed Central

    Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su

    2016-01-01

    Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring. PMID:27582770

  20. An Optimized International Vehicle Monitor

    SciTech Connect

    York, R.L.; Close, D.A.; Fehlau, P.E.

    1999-07-16

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to evaluate detector configurations to achieve a vehicle monitor that is economical, practical to install, and has adequate sensitivity to be an effective barrier to illegal transportation of special nuclear materials. We designed a new detector configuration that improves the sensitivity of available drive-through vehicle monitors by more than a factor of 5 while not changing the nuisance alarm rate.

  1. Reduced bandwidth video for remote vehicle operations

    SciTech Connect

    Noell, T.E.; DePiero, F.W.

    1993-08-01

    Oak Ridge National Laboratory staff have developed a video compression system for low-bandwidth remote operations. The objective is to provide real-time video at data rates comparable to available tactical radio links, typically 16 to 64 thousand bits per second (kbps), while maintaining sufficient quality to achieve mission objectives. The system supports both continuous lossy transmission of black and white (gray scale) video for remote driving and progressive lossless transmission of black and white images for remote automatic target acquisition. The average data rate of the resulting bit stream is 64 kbps. This system has been demonstrated to provide video of sufficient quality to allow remote driving of a High-Mobility Multipurpose Wheeled Vehicle at speeds up to 15 mph (24.1 kph) on a moguled dirt track. The nominal driving configuration provides a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of {approximately}1s. This paper reviews the system approach and implementation, and further describes some of our experiences when using the system to support remote driving.

  2. Orbital Maneuvering Vehicle (OMV) remote servicing kit

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1988-01-01

    With the design and development of the Orbital Maneuvering Vehicle (OMV) progressing toward an early 1990 initial operating capability (IOC), a new era in remote space operations will evolve. The logical progression to OMV front end kits would make available in situ satellite servicing, repair, and consummables resupply to the satellite community. Several conceptual design study efforts are defining representative kits (propellant tanks, debris recovery, module servicers); additional focus must also be placed on an efficient combination module servicer and consummables resupply kit. A remote servicer kit of this type would be designed to perform many of the early maintenance/resupply tasks in both nominal and high inclination orbits. The kit would have the capability to exchange Orbital Replacement Units (ORUs), exchange propellant tanks, and/or connect fluid transfer umbilicals. Necessary transportation system functions/support could be provided by interfaces with the OMV, Shuttle (STS), or Expendable Launch Vehicle (ELV). Specific remote servicer kit designs, as well as ground and flight demonstrations of servicer technology are necessary to prepare for the potential overwhelming need. Ground test plans should adhere to the component/system/breadboard test philosophy to assure maximum capability of one-g testing. The flight demonstration(s) would most likely be a short duration, Shuttle-bay experiment to validate servicer components requiring a micro-g environment.

  3. Remote Arrhythmia Monitoring System Developed

    NASA Technical Reports Server (NTRS)

    York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.

    2004-01-01

    Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.

  4. Underwater work by remotely operated vehicles (ROV's)

    SciTech Connect

    Batten, C.J. )

    1988-01-01

    This paper describes experience with respect to underwater work carried out by Remotely Operated Vehicles (ROV's) on the North West Shelf Development Project, North Rankin A field located off the North West coast of Australia. Typical work includes detailed pipeline and platform inspections, underwater support for the installation of gravity anchors and associated guy wires, general construction support, underwater cutting, marine fouling removal, scour protection installation and pipeline stabilization. The paper describes special tooling procedures and systems developed to perform the work. Also presented are new information and statistics associated with bulk marine fouling removal by purpose designed/built remotely operated equipment. Specific data related to time/costs associated with performance of significant aspects of the work are presented.

  5. Semantic remote patient monitoring system.

    PubMed

    Shojanoori, Reza; Juric, Radmila

    2013-02-01

    We propose an automated and personalized remote patient monitoring (RPM) system, which is applied to care homes and is dependent on the manipulation of semantics describing situations during patient monitoring in ontological models. Decision making in RPM is based on reasoning performed upon ontologies, which secures the delivery of appropriate e-health services in care homes. Our working experiment shows an example of preventive e-healthcare, but it can be extended to any situation that requires either urgent action from healthcare professionals or a simple recommendation during RPM. We use Semantic Web technology and OWL/SWRL-enabled ontologies to illustrate the proposal and feasibility of implementing this RPM system as a software solution in pervasive healthcare. It will be of interest to healthcare professionals, who can directly shape and populate the proposed ontological model, and software engineers, who would consider using OWL/SWRL when creating e-health services in general. PMID:23363406

  6. An advanced unmanned vehicle for remote applications

    SciTech Connect

    Pletta, J.B.; Sackos, J.

    1998-03-01

    An autonomous mobile robotic capability is critical to developing remote work applications for hazardous environments. A few potential applications include humanitarian demining and ordnance neutralization, extraterrestrial science exploration, and hazardous waste cleanup. The ability of the remote platform to sense and maneuver within its environment is a basic technology requirement which is currently lacking. This enabling technology will open the door for force multiplication and cost effective solutions to remote operations. The ultimate goal of this work is to develop a mobile robotic platform that can identify and avoid local obstacles as it traverses from its current location to a specified destination. This goal directed autonomous navigation scheme uses the Global Positioning System (GPS) to identify the robot`s current coordinates in space and neural network processing of LADAR range images for local obstacle detection and avoidance. The initial year funding provided by this LDRD project has developed a small exterior mobile robotic development platform and a fieldable version of Sandia`s Scannerless Range Imager (SRI) system. The robotic testbed platform is based on the Surveillance And Reconnaissance ground Equipment (SARGE) robotic vehicle design recently developed for the US DoD. Contingent upon follow-on funding, future enhancements will develop neural network processing of the range map data to traverse unstructured exterior terrain while avoiding obstacles. The SRI will provide real-time range images to a neural network for autonomous guidance. Neural network processing of the range map data will allow real-time operation on a Pentium based embedded processor board.

  7. Remotely sensed small reservoir monitoring

    NASA Astrophysics Data System (ADS)

    Eilander, Dirk; Annor, Frank; Iannini, Lorenzo; van de Giesen, Nick

    2013-04-01

    A new 'growing' maximum likelihood classification algorithm for small reservoir delineation has been developed and is tested with Radarsat-2 data for reservoirs in the semi-arid Upper East Region, Ghana. The delineation algorithm is able to find the land-water boundary from SAR imagery for different weather and environmental conditions. As such, the algorithm allows for remote sensed operational monitoring of small reservoirs. Multipurpose small reservoirs (1-100 ha) are important for many livelihoods in rural semi-arid West Africa. In order to manage and plan these reservoirs and to assess their hydrological impact at a river basin scale, it is important to monitor their water storage fluctuation. Several studies on remotely sensed reservoir mapping have recently been published, but no single method yields good results for all weather and environmental conditions. Detection of small reservoirs from optical satellite imagery using supervised maximum likelihood classification is a well proved method. The application of this method for the monitoring of small reservoirs is however limited because of its dependence on cloud-free day-acquisitions. Delineation from SAR images is promising, but because of difficulties with wind induced Bragg-scattering and low contrast between the water surface and the dried-out surroundings at the end of the dry season, only quasi manual methods have been applied successfully. A smart combination of optical satellite based detection combined with a delineation method for SAR imagery is proposed. From the optical satellite based small reservoir detection the reservoir window is determined in which the 'growing' maximum likelihood classification on SAR images is performed. A water-class seed and land-class seed are implemented and grown dependent on the likelihood of a pixel to belong to one class. The likelihood is calculated based on the probability distributions of the growing land and water populations. Combinations of single

  8. Remote patient monitoring in chronic heart failure.

    PubMed

    Palaniswamy, Chandrasekar; Mishkin, Aaron; Aronow, Wilbert S; Kalra, Ankur; Frishman, William H

    2013-01-01

    Heart failure (HF) poses a significant economic burden on our health-care resources with very high readmission rates. Remote monitoring has a substantial potential to improve the management and outcome of patients with HF. Readmission for decompensated HF is often preceded by a stage of subclinical hemodynamic decompensation, where therapeutic interventions would prevent subsequent clinical decompensation and hospitalization. Various methods of remote patient monitoring include structured telephone support, advanced telemonitoring technologies, remote monitoring of patients with implanted cardiac devices such as pacemakers and defibrillators, and implantable hemodynamic monitors. Current data examining the efficacy of remote monitoring technologies in improving outcomes have shown inconsistent results. Various medicolegal and financial issues need to be addressed before widespread implementation of this exciting technology can take place. PMID:23018667

  9. DESIGN OF A REMOTELY CONTROLLED HOVERCRAFT VEHICLE FOR SPILL RECONNAISSANCE

    EPA Science Inventory

    This program was undertaken to prepare a conceptual design for a practical prototype of a remotely-controlled reconnaissance vehicle for use in hazardous material spill environment. Data from past hazardous material spills were analyzed to determine the type of vehicle best suite...

  10. ENHANCEMENTS OF REMOTE SENSING FOR VEHICLE EMISSIONS IN TUNNELS

    EPA Science Inventory

    The University of Denver in cooperation with the Desert Research Institute, U.S. EPA, and General Motors Corporation have successfully adapted the University of Denver's remote sensing system for vehicle exhaust to the measurement of vehicles in a tunnel environment. wo studies c...

  11. From Antarctica to space: Use of telepresence and virtual reality in control of remote vehicles

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Hine, Butler P., III; Sims, Michael; Rasmussen, Daryl; Hontalas, Phil; Fong, Terrence W.; Steele, Jay; Barch, Don; Andersen, Dale; Miles, Eric

    1994-01-01

    In the Fall of 1993, NASA Ames deployed a modified Phantom S2 Remotely-Operated underwater Vehicle (ROV) into an ice-covered sea environment near McMurdo Science Station, Antarctica. This deployment was part of the antarctic Space Analog Program, a joint program between NASA and the National Science Foundation to demonstrate technologies relevant for space exploration in realistic field setting in the Antarctic. The goal of the mission was to operationally test the use of telepresence and virtual reality technology in the operator interface to a remote vehicle, while performing a benthic ecology study. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research Center. Local control of the vehicle was accomplished using the standard Phantom control box containing joysticks and switches, with the operator viewing stereo video camera images on a stereo display monitor. Remote control of the vehicle over the satellite link was accomplished using the Virtual Environment Vehicle Interface (VEVI) control software developed at NASA Ames. The remote operator interface included either a stereo display monitor similar to that used locally or a stereo head-mounted head-tracked display. The compressed video signal from the vehicle was transmitted to NASA Ames over a 768 Kbps satellite channel. Another channel was used to provide a bi-directional Internet link to the vehicle control computer through which the command and telemetry signals traveled, along with a bi-directional telephone service. In addition to the live stereo video from the satellite link, the operator could view a computer-generated graphic representation of the underwater terrain, modeled from the vehicle's sensors. The virtual environment contained an animate graphic model of the vehicle which reflected the state of the actual vehicle, along with ancillary information such

  12. 1997 update for the applications guide to vehicle SNM monitors

    SciTech Connect

    York, R.L.; Fehlau, P.E.

    1997-04-01

    Ten years have elapsed since the publication of the original applications guide to vehicle special nuclear material (SNM) monitors. During that interval, use of automatic vehicle monitors has become more commonplace, and formal procedures for monitor upkeep and evaluation have become available. New concepts for vehicle monitoring are being explored, as well. This update report reviews the basics of vehicle SNM monitoring, discusses what is new in vehicle SNM monitoring, and catalogs the vehicle SNM monitors that are commercial available.

  13. Remote monitoring: A global partnership for safeguards

    SciTech Connect

    Bardsley, J.

    1996-08-01

    With increased awareness of the significant changes of the past several years and their effect on the expectations to international safeguards, it is necessary to reflect on the direction for development of nuclear safeguards in a new era and the resulting implications. The time proven monitoring techniques, based on quantitative factors and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent, and open implementation regime. With the establishment of such a regime, it is highly likely that remote monitoring will play a significant role. Several states have seen value in cooperating with each other to address the many problems associated with the remote interrogation of integrated monitoring systems. As a consequence the International Remote Monitoring Project was organized to examine the future of remote monitoring in International Safeguards. This paper provides an update on the technical issues, the future plans, and the safeguards implications of cooperative programs relating to remote monitoring. Without providing answers to the policy questions involved, it suggests that it is timely to begin addressing these issues.

  14. Mobile remote monitoring of biological signals.

    PubMed

    da Rocha, Murilo F; de Azevedo, Dario F G; Russomano, Thais; Figueira, Marcio V; Helegda, Sergio

    2006-01-01

    This research purposes the development of a telemedicine system capable of remote monitoring and digitalization the patients biological signals. It includes a mobile device which transmits the patient electroencephalogram (EEG) and electrocardiogram (ECG) to a monitoring host using the wireless communication, allowing mobility to the patient in hospital or in his daily routine. PMID:17946934

  15. Development of a remote digital augmentation system and application to a remotely piloted research vehicle

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Deets, D. A.

    1975-01-01

    A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.

  16. Predicting asthma exacerbations employing remotely monitored adherence.

    PubMed

    Killane, Isabelle; Sulaiman, Imran; MacHale, Elaine; Breathnach, Aoife; Taylor, Terence E; Holmes, Martin S; Reilly, Richard B; Costello, Richard W

    2016-03-01

    This Letter investigated the efficacy of a decision-support system, designed for respiratory medicine, at predicting asthma exacerbations in a multi-site longitudinal randomised control trial. Adherence to inhaler medication was acquired over 3 months from patients with asthma employing a dose counter and a remote monitoring adherence device which recorded participant's inhaler use: n = 184 (23,656 audio files), 61% women, age (mean ± sd) 49.3 ± 16.4. Data on occurrence of exacerbations was collected at three clinical visits, 1 month apart. The relative risk of an asthma exacerbation for those with good and poor adherence was examined employing a univariate and multivariate modified Poisson regression approach; adjusting for age, gender and body mass index. For all months dose counter adherence was significantly (p < 0.01) higher than remote monitoring adherence. Overall, those with poor adherence had a 1.38 ± 0.34 and 1.42 ± 0.39 (remotely monitored) and 1.25 ± 0.32 and 1.18 ± 0.31 (dose counter) higher relative risk of an exacerbation in model 1 and model 2, respectively. However, this was not found to be statistically significantly different. Remotely monitored adherence holds important clinical information and future research should focus on refining adherence and exacerbation measures. Decision-support systems based on remote monitoring may enhance patient-physician communication, possibly reducing preventable adverse events. PMID:27222733

  17. Exporting automatic vehicle SNM monitoring technology

    SciTech Connect

    York, R.L.; Fehlau, P.E.; Close, D.A.

    1995-10-01

    Controlling the transportation of nuclear materials is still one of the most effective nuclear proliferation barriers. The recent increase of global nuclear material proliferation has expanded the application of vehicle monitor technology to prevent the diversion of special nuclear material across international borders. To satisfy this new application, a high-sensitivity vehicle monitor, which is easy to install and capable of operating in high-traffic areas, is required. A study of a new detector configuration for a drive-through vehicle monitor is discussed in this paper.

  18. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    NASA Astrophysics Data System (ADS)

    Rango, A.; Laliberte, A.; Winters, C.; Maxwell, C.; Steele, C.

    2008-12-01

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial photographic, multispectral and hyperspectral radiometric, LIDAR, and radar data. The characteristics of several small UAVs less than 55lbs (25kg)) along with some payload instruments will be reviewed. Common types of remote sensing coverage available from a small, limited-payload UAV are video and hyperspatial, digital photography. From evaluation of these simple types of remote sensing data, we conclude that UAVs can play an important role in measuring and monitoring vegetation health and structure of the vegetation/soil complex in rangelands. If we fly our MLB Bat-3 at an altitude of 700ft (213m), we can obtain a digital photographic resolution of 6cm. The digital images acquired cover an area of approximately 29,350sq m. Video imaging is usually only useful for monitoring the flight path of the UAV in real time. In our experiments with the 6cm resolution data, we have been able to measure vegetation patch size, crown width, gap sizes between vegetation, percent vegetation and bare soil cover, and type of vegetation. The UAV system is also being tested to acquire height of the vegetation canopy using shadow measurements and a digital elevation model obtained with stereo images. Evaluation of combining the UAV digital photography with LIDAR data of the Jornada Experimental Range in south central New Mexico is ongoing. The use of UAVs is increasing and is becoming a very promising tool for vegetation assessment and change, but there are several operational components to flying UAVs that users need to consider. These include cost, a whole set of, as yet, undefined regulations regarding flying in the National Air Space(NAS), procedures to gain approval for flying in the NAS

  19. Remote Monitoring of Sensitive Nuclear Materials.

    SciTech Connect

    MacArthur, D. W.; Langner, D. C.

    2005-01-01

    Remote and/or unattended monitoring of safeguarded nuclear materials is a reasonably well-understood problem, and a number of well-developed measurement and data transmission technologies are available in this field. The advantages of remote monitoring - in terms of cost, time, and access requirements - have been widely documented. Even so, there are still some major challenges posed by remote/unattended monitoring, including (1) the culling of interesting events from very large data sets and (2) the authentication (by the inspector) of transmitted measurement data. In addition to these, remote/unattended monitoring of sensitive material brings another series of challenges. For examples, the host country may have concerns about information that could be released about the material itself. Not only could the material's characteristics be sensitive, but its location and movements could be as well. Although these issues are closely related to issues associated with measuring sensitive materials in an attended mode, they add another set of inspector needs and host requirements to the scenario. If a conceptual remote monitoring system for sensitive materials is created, three overlapping areas of concern can be seen. The first concern, primarily from the host's point of view, is that sensitive information must be protected without interfering in the efficient operation of the facility being monitored. The second concern, of particular interest to the inspector, is that it must be possible to authenticate the data, both during monitoring or measurement and after transmission. Finally, the third concern is that the verification system must be reliable and robust, which is a concern of both parties.

  20. Rangeland monitoring with unmanned aerial vehicles (UAVs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned aerial vehicles (UAVs) have great potential for rangeland management applications, such as monitoring vegetation change, developing grazing strategies, determining rangeland health, and assessing remediation treatment effectiveness. UAVs have several advantages: they can be deployed quickly...

  1. Plant Condition Remote Monitoring Technique

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Krishen, K.

    1996-01-01

    This paper summarizes the results of a radiation transfer study conducted on houseplants using controlled environmental conditions. These conditions included: (1) air and soil temperature; (2) incident and reflected radiation; and (3) soil moisture. The reflectance, transmittance, and emittance measurements were conducted in six spectral bands: microwave, red, yellow, green, violet and infrared, over a period of three years. Measurements were taken on both healthy and diseased plants. The data was collected on plants under various conditions which included: variation in plant bio-mass, diurnal variation, changes in plant pathological conditions (including changes in water content), different plant types, various disease types, and incident light wavelength or color. Analysis of this data was performed to yield an algorithm for plant disease from the remotely sensed data.

  2. Remote control of an impact demonstration vehicle

    NASA Technical Reports Server (NTRS)

    Harney, P. F.; Craft, J. B., Jr.; Johnson, R. G.

    1985-01-01

    Uplink and downlink telemetry systems were installed in a Boeing 720 aircraft that was remotely flown from Rogers Dry Lake at Edwards Air Force Base and impacted into a designated crash site on the lake bed. The controlled impact demonstration (CID) program was a joint venture by the National Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) to test passenger survivability using antimisting kerosene (AMK) to inhibit postcrash fires, improve passenger seats and restraints, and improve fire-retardent materials. The uplink telemetry system was used to remotely control the aircraft and activate onboard systems from takeoff until after impact. Aircraft systems for remote control, aircraft structural response, passenger seat and restraint systems, and anthropomorphic dummy responses were recorded and displayed by the downlink stems. The instrumentation uplink and downlink systems are described.

  3. Multiple Scale Remote Sensing for Monitoring Rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on a land-cover classification from NASA’s MODerate resolution Imaging Spectroradiometer (MODIS), rangelands cover 48% of the Earth’s land surface, not including Antarctica. Nearly all analyses imply the most economical means of monitoring large areas of rangelands worldwide is with remote se...

  4. Monitoring Rangeland Health by Remote Sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on a land-cover classification from NASA’s MODerate resolution Imaging Spectroradiometer (MODIS), rangelands cover 48% of the Earth’s land surface, not including Antarctica. Nearly all analyses imply the most economical means of monitoring large areas of rangelands worldwide is with remote s...

  5. OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING

    EPA Science Inventory

    The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...

  6. Satellite Remote Sensing for Monitoring and Assessment

    EPA Science Inventory

    Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...

  7. New uses of remote vehicles for law enforcement operations

    SciTech Connect

    Henderson, L. )

    1992-01-01

    The use of teleoperated robotic devices for law enforcement operations has risen dramatically in recent years. The typical device is a portable, teleoperated vehicle with a manipulator. The availability of reliable, affordable equipment and emphasis on personnel safety are some of the primary driving forces. The primary use of these robots is for investigation and handling of explosive devices. The Kentucky State Police (KSP) have been using a remote vehicle since December 1988.

  8. Information security implementations for remote monitoring

    SciTech Connect

    Nilsen, C.A.

    1997-10-01

    In September 1993, President Clinton stated the United States would ensure that its fissile material meet the {open_quotes}highest standards of safety, security, and international accountability.{close_quotes} Frequent human inspection of the material could be used to ensure these standards. However, it may be more effective and less expensive to replace these manual inspections with virtual inspections via remote monitoring technologies. A successful implementation of a comprehensive remote monitoring system, however, requires significant attention to a variety of information security issues. In pursuing Project Straight-Line and the follow-on Storage Monitoring System, Sandia National Laboratories developed remote monitoring implementations that can satisfy a variety of information security requirements. Special emphasis was given to developing methods for using the Internet to disseminate the data securely. This paper describes the various information security implementations applied to the Project Straight-Line and the Storage Monitoring System. Also included is a discussion of the security provided by the Windows NT operating system.

  9. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    SciTech Connect

    NELSON RL

    2008-07-18

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

  10. Monitoring water quality by remote sensing

    NASA Technical Reports Server (NTRS)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  11. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    SciTech Connect

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-08-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. This paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.

  12. Visual Systems for Remotely Controlled Vehicles

    NASA Technical Reports Server (NTRS)

    Rezek, T.

    1984-01-01

    The Variable Acuity Remote Viewing System is discussed. It was conceived as a technique for resolving the field of view/resolution/ bandwidth tradeoffs that exist in remote viewing systems. This system is based on the fact that integration of the human eye acuity function shows only about 130,000 pixels are required to fully support the human vision. This quantity is well within the capabilities of conventional video systems. The technique utilizes a non-linear optical system in both the sensing and display equipment. The non-linearity is achieved by a special lens which translates a uniform pixel array on its image plane into the object field as a variable angular array. This lens will record the same angular detail the eye would see when viewing the same scene and compress this detail into a uniform matrix of equal sized picture elements on its image plane. This image can be scanned with a broadcast quality tv having a 525 line raster scan. Conventional transmission equipment can then also be used to send the image information to a remote location. When received, the image is projected by a light valve projector onto a hemispherical screen by an identical non-linear lens.

  13. The remote characterization of vegetation using Unmanned Aerial Vehicle photography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial phot...

  14. Remote Sensing Crop Leaf Area Index Using Unmanned Airborne Vehicles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing with unmanned airborne vehicles (UAVs) has more potential for within-season crop management than conventional satellite imagery because: (1) pixels have very high resolution, (2) cloud cover would not prevent acquisition during critical periods of growth, and (3) quick delivery of inf...

  15. Rendezvous and docking with remote piloted vehicles

    NASA Technical Reports Server (NTRS)

    Micheal, J. D.

    1984-01-01

    The man-in-the-loop control system requirements for the Orbital Maneuvering Vehicle (OMV) are examined. Since many similarities exist between the Teleoperator Retrieval System (TRS) and the unfolding OMV concept, a review of the TRS control system baseline along with selected design trades which led to that baseline are discussed. TRS program issues relevant to the man-in-the-loop control system design include thruster size, communication delays and TV bandwidth compression, range/range rate radar, tumbling targets, shimmed docking interface, and control system definition. A TRS vs. OMV simulation comparative study is summarized, and the major issues currently facing the control system designer on OMV are discussed.

  16. Monitoring and analysis of lung sounds remotely.

    PubMed

    Sahgal, Nitin

    2011-01-01

    Visual and auditory analysis of respiratory sound signals promises improved detection of certain types of lung diseases. LabVIEW software was used to design a system that monitors the respiratory activity of the patient. The program developed calculates the respiratory rate, displays the time expanded waveform of the lung sound, and computes the fast Fourier transform and short-time Fourier transform to present the power spectrum and spectrogram respectively. These parameters are transmitted synchronously to the remote station using the Internet for online monitoring of the patient. PMID:21857780

  17. Remote monitoring of a Fire Protection System

    NASA Astrophysics Data System (ADS)

    Bauman, Steven; Vermeulen, Tom; Roberts, Larry; Matsushige, Grant; Gajadhar, Sarah; Taroma, Ralph; Elizares, Casey; Arruda, Tyson; Potter, Sharon; Hoffman, James

    2011-03-01

    Some years ago CFHT proposed developing a Remote Observing Environment aimed at producing Science Observations at their Observatory Facility on Mauna Kea from their Headquarters facility in Waimea, HI. This Remote Observing Project commonly referred to as OAP (Observatory Automation Project) was completed at the end of January 2011 and has been providing the majority of Science Data since. My poster will discuss the upgrades to the existing fire alarm protection system. With no one at the summit during nightly operations, the observatory facility required automated monitoring of the facility for safety to personnel and equipment in the case of a fire. An addressable analog fire panel was installed which utilizes digital communication protocol (DCP), intelligent communication with other devices, and an RS-232 interface which provides feedback and real-time monitoring of the system. Using the interface capabilities of the panel, it provides notifications when heat detectors, smoke sensors, manual pull stations, or the main observatory computer room fire suppression system has been activated. The notifications are sent out as alerts to staff in the form of test massages and emails and the observing control GUI interface alerts the remote telescope operator with a map showing the location of the fire occurrence and type of device that has been triggered. And all of this was accomplished without the need for an outside vendor to monitor the system and facilitate warnings or notifications regarding the system.

  18. Remotely controlled vehicles and systems for integrated remediation of buried tru wastes

    SciTech Connect

    Tucker, H.J.; Ballantyne, J.; Rife, G.; Fung, P.

    1996-12-31

    This paper describes the design, implementation and testing of remotely controlled vehicle systems developed for cooperative retrieval and transportation of Transuranic (TRU) buried wastes. The systems described are for the control of a Remote Excavator (REMEX), a Self Guided Transfer Vehicle (SGTV), a Remotely Controlled Materials Handling System and a Virtual Environment for Remote Operations (VERO), using imaging by a 3D Laser Camera.

  19. Remote imagery for unmanned ground vehicles (RIUGV)

    NASA Astrophysics Data System (ADS)

    Frederick, Philip A.; Kania, Robert; Theisen, Bernard; Ward, Derek; Benz, Ursula; Baylot, Alex; Willis, John; Yamauchi, Harold

    2005-05-01

    The combination of high-resolution multi-spectral satellite imagery and advanced COTS object-oriented image processing software provides for an automated terrain feature extraction and classification capability. This information, along with elevation data, infrared imagery, a vehicle mobility model and various meta-data (local weather reports, Zobler Soil map, etc...), is fed into automated path planning software to provide a stand-alone ability to generate rapidly updateable dynamic mobility maps for Manned or Unmanned Ground Vehicles (MGVs or UGVs). These polygon based mobility maps can reside on an individual platform or a tactical network. When new information is available, change files are generated and ingested into existing mobility maps based on user selected criteria. Bandwidth concerns are mitigated by the use of shape files for the representation of the data (e.g. each object in the scene is represented by a shape file and thus can be transmitted individually). User input (desired level of stealth, required time of arrival, etc...) determines the priority in which objects are tagged for updates. This technology was tested at Fort Knox, Kentucky October 11th-15th 2004. Satellite imagery was acquired in a near-real-time fashion for the selected test site. Portions of the resulting geo-rectified image were compared with surveyed range locations to assess the accuracy of the approach. The derived UGV Path Plans were ingested into a Stryker UGV and the routes were autonomously traversed. This paper will detail the feasibility of this approach based of the results of this testing.

  20. Summary of remote vehicle emissions sensing studies conducted in Wisconsin

    SciTech Connect

    Rendahl, C.S.

    1996-10-01

    The State of Wisconsin received Congestion Mitigation & Air Quality Improvement (CMAQ) grants to conduct studies during the summers of 1993 and 1994 to determine the effectiveness of using a remote sensing device (RSD) to fulfill the {open_quotes}On-Road{close_quotes} emissions testing requirements of the Clean Air Act Amendments (CAAA) of 1990. The RSD used in the Wisconsin studies was designed and patented by Dr. Donald H. Stedman of the University of Denver, and was produced by Remote Sensing Technologies, Inc. (RSTi) of Tucson, AZ. This paper will summarize sampling activities, intercomparison results with the existing Basic vehicle inspection/maintenance (IM) centralized test facilities, and look at the results of data collected on close to 200,000 vehicles tested in the two year period.

  1. The remotely piloted vehicle as an earth science research aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Dean S.; Bufton, Jack L.

    1991-01-01

    A brief study was conducted at the Goddard Space Flight Center to identify existing remotely piloted vehicle (RPV) capabilities and to determine if the use of an RPV was advantageous and practical for Earth science investigations. A total of 17 instrument systems were identified. It was found that RPV's were considered especially valuable for dangerous missions, e.g., flights through volcano plumes and hurricanes, long duration profiles over inaccessible regions such as the Antarctic, and very low altitude ocean profiling missions.

  2. US Army remotely piloted vehicle supporting technology program

    NASA Technical Reports Server (NTRS)

    Gossett, T. D.

    1981-01-01

    Essential technology programs that lead to the full scale engineering development of the Aquila Remotely Piloted Vehicle system for U.S. Army are described. The Aquila system uses a small recoverable and reusable RPV to provide target acquisition, designation, and aerial reconnaissance mission support for artillery and smart munitions. Developments that will provide growth capabilities to the Aquila RPV system, as well as future RPV mission concepts being considered by the U.S. Army are presented.

  3. Wireless remote monitoring system for sleep apnea

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.

    2011-04-01

    Sleep plays the important role of rejuvenating the body, especially the central nervous system. However, more than thirty million people suffer from sleep disorders and sleep deprivation. That can cause serious health consequences by increasing the risk of hypertension, diabetes, heart attack and so on. Apart from the physical health risk, sleep disorders can lead to social problems when sleep disorders are not diagnosed and treated. Currently, sleep disorders are diagnosed through sleep study in a sleep laboratory overnight. This involves large expenses in addition to the inconvenience of overnight hospitalization and disruption of daily life activities. Although some systems provide home based diagnosis, most of systems record the sleep data in a memory card, the patient has to face the inconvenience of sending the memory card to a doctor for diagnosis. To solve the problem, we propose a wireless sensor system for sleep apnea, which enables remote monitoring while the patient is at home. The system has 5 channels to measure ECG, Nasal airflow, body position, abdominal/chest efforts and oxygen saturation. A wireless transmitter unit transmits signals with Zigbee and a receiver unit which has two RF modules, Zigbee and Wi-Fi, receives signals from the transmitter unit and retransmits signals to the remote monitoring system with Zigbee and Wi-Fi, respectively. By using both Zigbee and Wi-Fi, the wireless sensor system can achieve a low power consumption and wide range coverage. The system's features are presented, as well as continuous monitoring results of vital signals.

  4. Synthesis of the unmanned aerial vehicle remote control augmentation system

    NASA Astrophysics Data System (ADS)

    Tomczyk, Andrzej

    2014-12-01

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the "ideal" remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  5. Synthesis of the unmanned aerial vehicle remote control augmentation system

    SciTech Connect

    Tomczyk, Andrzej

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  6. Development of a remote building monitoring system

    SciTech Connect

    Olken, F.; Jacobsen, H.A.; McParland, C.; Piette, M.A.; Anderson, M.F.

    1998-07-01

    The authors describe the design, development and initial operation of a prototype system which permits remote monitoring of multiple heterogeneous commercial buildings across the Internet from a single control center. Their system is distinguished by its ability to interface to multiple heterogeneous legacy building Energy Management Control Systems (EMCSs), its use of the Common Object Request Broker Architecture (CORBA) standard communication protocols, development of a standardized naming system for monitoring points, the use of a relational DBMS to store time series data, automatic unit conversion, and a scripted time series visualization system. The authors discuss design decisions related to the selection of CORBA and a relational DBMS implementation. They also discuss related standards efforts such as BACnet and the International Alliance for Interoperability. They conclude with discussions of the HVAC system data and future work.

  7. A remotely interrogatable sensor for chemical monitoring

    NASA Technical Reports Server (NTRS)

    Stoyanov, P. G.; Doherty, S. A.; Grimes, C. A.; Seitz, W. R.

    1998-01-01

    A new type of continuously operating, in-situ, remotely monitored sensor is presented. The sensor is comprised of a thin film array of magnetostatically coupled, magnetically soft ferromagnetic thin film structures, adhered to or encased within a thin polymer layer. The polymer is made so that it swells or shrinks in response to the chemical analyte of interest, which in this case is pH. As the polymer swells or shrinks, the magnetostatic coupling between the magnetic elements changes, resulting in changes in the magnetic switching characteristics of the sensor. Placed within a sinusoidal magnetic field the magnetization vector of the coupled sensor elements periodically reverses directions, generating magnetic flux that can be remotely detected as a series of voltage spikes in appropriately placed pickup coils. one preliminary sensor design consists of four triangles, initially spaced approximately 50 micrometers apart, arranged to form a 12 mm x 12 mm square with the triangle tips centered at a common origin. Our preliminary work has focused on monitoring of pH using a lightly crosslinked pH sensitive polymer layer of hydroxyethylmethacrylate and 2-(dimethylamino) ethylmethacrylate. As the polymer swells or shrinks the magnetostatic coupling between the triangles changes, resulting in measurable changes in the amplitude of the detected voltage spirits.

  8. Improving collection efficiency through remote monitoring of charity assets.

    PubMed

    McLeod, Fraser; Erdogan, Gunes; Cherrett, Tom; Bektas, Tolga; Davies, Nigel; Shingleton, Duncan; Speed, Chris; Dickinson, Janet; Norgate, Sarah

    2014-02-01

    Collection costs associated with servicing a major UK charity's donation banks and collecting unsold goods from their retail shops can account for up to 20% of the overall income gained. Bank and shop collections are commingled and are typically made on fixed days of the week irrespective of the amounts of materials waiting to be collected. Using collection records from a major UK charity, this paper considers what vehicle routing and scheduling benefits could accrue if bank and shop servicing requirements were monitored, the former using remote sensing technology to allow more proactive collection scheduling. A vehicle routing and scheduling algorithm employing tabu search methods was developed, and suggested time and distance savings of up to 30% over the current fixed schedules when a minimum bank and shop fill level of between 50% and 60% was used as a collection trigger. For the case study investigated, this led to a potential revenue gain of 5% for the charity and estimated CO2 savings of around 0.5 tonnes per week across the fleet of six heterogeneous vehicles. PMID:24332998

  9. International Remote Monitoring Project Embalse Nuclear Power Station, Argentina Embalse Remote Monitoring System

    SciTech Connect

    Schneider, Sigfried L.; Glidewell, Donnie D.; Bonino, Anibal; Bosler, Gene; Mercer, David; Maxey, Curt; Vones, Jaromir; Martelle, Guy; Busse, James; Kadner, Steve; White, Mike; Rovere, Luis

    1999-07-21

    The Autoridad Regulatoria Nuclear of Argentina (ARN), the International Atomic Energy Agency (IAEA), ABACC, the US Department of Energy, and the US Support Program POTAS, cooperated in the development of a Remote Monitoring System for nuclear nonproliferation efforts. This system was installed at the Embalse Nuclear Power Station last year to evaluate the feasibility of using radiation sensors in monitoring the transfer of spent fuel from the spent fuel pond to dry storage. The key element in this process is to maintain continuity of knowledge throughout the entire transfer process. This project evaluated the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguard efficiency. New technology has been developed to enhance the design of the system to include storage capability on board sensor platforms. This evaluation has led to design enhancements that will assure that no data loss will occur during loss of RF transmission of the sensors.

  10. Interdisciplinary group explores seafloor eruption with remotely operated vehicle

    NASA Astrophysics Data System (ADS)

    Embley, Robert; Baker, Edward

    One of the most successful open-ocean, interdisciplinary expeditions using a remotely operated vehicle was conducted last year and is being looked on as a harbinger for future deep submergence expeditions. Unmanned systems have emerged in the past decade as an alternative to manned submersibles for deep-ocean studies. But until now they have not proven themselves to be equal to manned vehicles in conducting multiple sampling tasks in an interdisciplinary milieu. Last year's expedition involved extensive investigations and sampling using the Canadian Remotely Operated Vehicle for Ocean Sciences (ROPOS) [Shepherd and Juniper, 1997].A team of 33 chemists, biologists, geologists, and engineers, including a number of principal investigators from the United States and Canada, sailed on the Ronald H. Browne National Oceanic and Atmospheric Administration (NOAA) ship, with ROPOS to investigate in detail the aftermath of a diking event in the Pacific Ocean and its effect on hydrothermal chemistry and on seafloor and subseafloor biological communities. The expedition was part of the New Millennium Observatory (NeMO) project and began in earnest the in situ portion of the project in August 1998.

  11. Impact of Remote Monitoring on Clinical Outcomes.

    PubMed

    Varma, Niraj; Ricci, Renato Pietro

    2015-12-01

    Follow-up of patients with cardiac implantable electronic devices is challenging due to both their increasing volume and technical complexity coupled to increasing clinical complexity of recipient patients. Remote monitoring (RM) offers an opportunity to resolve some of these difficulties by improving clinic efficiencies and providing a mechanism for device monitoring and patient management. Several recent randomized clinical trials and registries have demonstrated that RM may reduce in-hospital visit numbers, time required for patient follow-up, physician and nurse time, and hospital and social costs. Furthermore, patient retention and adherence to follow-up schedule are significantly improved by RM. Continuous wireless monitoring of data stored in the device memory with automatic alerts allows early detection of device malfunctions and of events, such as atrial fibrillation, ventricular arrhythmias, and heart failure suitable for clinical intervention. Early reaction may improve patient outcome. RM is easy to use and patients showed a high level of acceptance and satisfaction. Implementing RM in daily practice may require changes in clinic workflow. New organizational models promote significant efficiencies regarding physician and nursing time. Data management techniques are under development. Despite these demonstrable advantages of RM, adoption still remains modest, even in health care systems incentivized to use this follow-up method. PMID:26337400

  12. Flexible Wing Base Micro Aerial Vehicles: Micro Air Vehicles (MAVs) for Surveillance and Remote Sensor Delivery

    NASA Technical Reports Server (NTRS)

    Ifju, Peter

    2002-01-01

    Micro Air Vehicles (MAVs) will be developed for tracking individuals, locating terrorist threats, and delivering remote sensors, for surveillance and chemical/biological agent detection. The tasks are: (1) Develop robust MAV platform capable of carrying sensor payload. (2) Develop fully autonomous capabilities for delivery of sensors to remote and distant locations. The current capabilities and accomplishments are: (1) Operational electric (inaudible) 6-inch MAVs with novel flexible wing, providing superior aerodynamic efficiency and control. (2) Vision-based flight stability and control (from on-board cameras).

  13. Land border monitoring with remote sensing technologies

    NASA Astrophysics Data System (ADS)

    Malinowski, Radoslaw

    2010-09-01

    The remote sensing technology has many practical applications in different fields of science and industry. There is also a need to examine its usefulness for the purpose of land border surveillance. This research started with analysis of potential direct use of Earth Observation technology for monitoring migrations of people and preventing smuggling. The research, however, proved that there are still many fields within which the EO technology needs to be improved. From that point the analysis focused on improving Border Permeability Index which utilizes EO techniques as a source of information. The result of BPI analysis with use of high resolution data provides new kind of information which can support and make more effective work of authorities from security domain.

  14. Development of vehicle intelligent monitoring system (VIMS)

    NASA Astrophysics Data System (ADS)

    Fujino, Yozo; Kitagawa, Keisuke; Furukawa, Takashi; Ishii, Hironori

    2005-05-01

    In an urban highway network system such as Tokyo Metropolitan Expressway, to detect conditions of road pavement and expansion joints is a very important issue. Although accurate surface condition can be captured by using a road profiler system, the operating cost is expensive and development of a simpler and more inexpensive system is really needed to reduce monitoring cost. "Vehicle Intelligent Monitoring System (VIMS)" developed for this purpose is described in this paper. An accelerometer and GPS are installed to an ordinary road patrol car. GPS together with a PC computer are used to measure the road surface condition and to identify the location of the vehicle, respectively. Dynamic response of the vehicle is used as a measure of the road pavements surface condition as well as the expansion joints. A prototype of VIMS is installed to a motor car and measurement is made at the actual roads. Accuracy of measuring result and effectiveness of this system are demonstrated; the outline of the system and some of the measurement results are reported herein.

  15. Remote operated vehicle with carbon dioxide blasting (ROVCO{sub 2})

    SciTech Connect

    Resnick, A.M.

    1995-12-01

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO{sub 2}), as shown in a front view, is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO{sub 2} xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. Figure 2 shows a block diagram with the various subsystems labeled.

  16. Development of sea ice monitoring with aerial remote sensing technology

    NASA Astrophysics Data System (ADS)

    Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei

    2014-11-01

    In the north China Sea district, sea ice disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the sea ice situation becomes too critical. The monitoring of sea ice is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor sea ice mainly include: first, shore observation; second, icebreaker monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the sea ice in the shore observation. The icebreaker monitoring means: the workers complete the test of the properties of sea ice, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get sea ice charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor sea ice. Aerial remote sensing is an important means in sea ice monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the sea ice monitoring using aerial remote sensing technology are discussed.

  17. From Antarctica to space: use of telepresence and virtual reality in control of a remote underwater vehicle

    NASA Astrophysics Data System (ADS)

    Stoker, Carol R.

    1995-01-01

    We describe an experiment which simulated many aspects of control of a remote vehicle on another planetary surface. We have developed a Telepresence-controlled Remotely Operated underwater Vehicle (TROV) and used it to perform scientific exploration in an ice-covered marine environment near McMurdo Station, Antarctica. The goal of the mission was to use telepresence and virtual reality technology to operate a remote vehicle to perform a scientific study of the marine environment under the sea ice in Antarctica. The TROV was operated both locally, from a habitat building located on the sea ice above a dive hole through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research Center. Local control of the vehicle was accomplished using a control box containing joysticks and switches, with the operator viewing stereo video camera images on a stereo display monitor. Remote control of the vehicle over the satellite link used either a stereo display monitor similar to that used locally, or a stereo head-mounted head- tracked display. The remote operators could also view a computer-generated graphic representation of the underwater terrain, modeled from the vehicle's sensors. The actual vehicle was driven either from within the virtual environment or by watching stereo video. Satellite communication was used to transmit stereo video from the TROV to NASA Ames and to provide a bi-directional Internet link to the TROV control computer for command and telemetry signals. All vehicle functions could be controlled remotely over the satellite link. The TROV was operated in Antarctica nearly continuously using both local and remote control for 7 weeks. The results of our experiments suggest that surface rovers using control technology with real time telepresence could vastly expand the range of human exploration from a human base on the Moon or Mars. Planetary surface rovers can also be controlled from Earth, although

  18. Implementation of remote monitoring and managing switches

    NASA Astrophysics Data System (ADS)

    Leng, Junmin; Fu, Guo

    2010-12-01

    In order to strengthen the safety performance of the network and provide the big convenience and efficiency for the operator and the manager, the system of remote monitoring and managing switches has been designed and achieved using the advanced network technology and present network resources. The fast speed Internet Protocol Cameras (FS IP Camera) is selected, which has 32-bit RSIC embedded processor and can support a number of protocols. An Optimal image compress algorithm Motion-JPEG is adopted so that high resolution images can be transmitted by narrow network bandwidth. The architecture of the whole monitoring and managing system is designed and implemented according to the current infrastructure of the network and switches. The control and administrative software is projected. The dynamical webpage Java Server Pages (JSP) development platform is utilized in the system. SQL (Structured Query Language) Server database is applied to save and access images information, network messages and users' data. The reliability and security of the system is further strengthened by the access control. The software in the system is made to be cross-platform so that multiple operating systems (UNIX, Linux and Windows operating systems) are supported. The application of the system can greatly reduce manpower cost, and can quickly find and solve problems.

  19. Remote monitoring of molten radioactive glass

    SciTech Connect

    Schumacher, R.F. ); Li, Kang-Wen K. . Nuclear Engineering Program); Schneider, A. . Dept. of Nuclear Engineering)

    1991-01-01

    An on-line method is described for the near-continuous monitoring of the composition of a molten radioactive waste glass or, alternatively, for signaling a deviation from the target composition of a waste glass. The principle of this method, proposed by A. Schneider in 1986, is founded on the relation between two specific physical properties and composition in a ternary system. Most glasses currently considered as waste forms can be represented as pseudo-ternary system. The pairs of properties especially suited for this purpose are viscosity/density and viscosity/electrical conductivity. A novel viscometry method was developed which uses the remotely determined rise velocity of carefully metered gas bubbles. The monitoring method was tested successfully with simulated Savannah River waste glasses. An integrated probe was conceived for a Joule-heated melter for the on-line determination of viscosity, temperature, density, and liquid level. A computer program calculates the glass composition from the measured data, using information from a previously developed data base.

  20. Remote monitoring of molten radioactive glass

    SciTech Connect

    Schumacher, R.F.; Li, Kang-Wen K.; Schneider, A.

    1991-12-31

    An on-line method is described for the near-continuous monitoring of the composition of a molten radioactive waste glass or, alternatively, for signaling a deviation from the target composition of a waste glass. The principle of this method, proposed by A. Schneider in 1986, is founded on the relation between two specific physical properties and composition in a ternary system. Most glasses currently considered as waste forms can be represented as pseudo-ternary system. The pairs of properties especially suited for this purpose are viscosity/density and viscosity/electrical conductivity. A novel viscometry method was developed which uses the remotely determined rise velocity of carefully metered gas bubbles. The monitoring method was tested successfully with simulated Savannah River waste glasses. An integrated probe was conceived for a Joule-heated melter for the on-line determination of viscosity, temperature, density, and liquid level. A computer program calculates the glass composition from the measured data, using information from a previously developed data base.

  1. Remote monitoring of heart failure patients.

    PubMed

    Bhimaraj, Arvind

    2013-01-01

    "The Teledactyl (Tele, far; Dactyl, finger--from the Greek) is a future instrument by which it will be possible for us to 'feel at a distance.' This idea is not at all impossible, for the instrument can be built today with means available right now. It is simply the well known telautograph, translated into radio terms, with additional refinements. The doctor of the future, by means of this instrument, will be able to feel his patient, as it were, at a distance...The doctor manipulates his controls, which are then manipulated at the patient's room in exactly the same manner. The doctor sees what is going on in the patient's room by means of a television screen." -Hugo Gernsback, Science and Invention Magazine, February 1925 Heart failure continues to be a major burden on our health care system. As the number of patients with heart failure increases, the cost of hospitalization alone is contributing significantly to the overall cost of this disease. Readmission rate and hospital length of stay are emerging as quality markers of heart failure care along with reimbursement policies that force hospitals to optimize these outcomes. Apart from maintaining quality assurance, the disease process of heart failure per-se requires demanding and close attention to vitals, diet, and medication compliance to prevent acute decompensation episodes. Remote patient monitoring is morphing into a key disease management strategy to optimize care for heart failure. Innovative implantable technologies to monitor intracardiac hemodynamics also are evolving, which potentially could offer better and substantial parameters to monitor. PMID:23519115

  2. Remote Monitoring of Heart Failure Patients

    PubMed Central

    Bhimaraj, Arvind

    2013-01-01

    “The Teledactyl (Tele, far; Dactyl, finger — from the Greek) is a future instrument by which it will be possible for us to ‘feel at a distance.’ This idea is not at all impossible, for the instrument can be built today with means available right now. It is simply the well known telautograph, translated into radio terms, with additional refinements. The doctor of the future, by means of this instrument, will be able to feel his patient, as it were, at a distance…The doctor manipulates his controls, which are then manipulated at the patient’s room in exactly the same manner. The doctor sees what is going on in the patient’s room by means of a television screen.” —Hugo Gernsback, Science and Invention Magazine, February 1925 Heart failure continues to be a major burden on our health care system. As the number of patients with heart failure increases, the cost of hospitalization alone is contributing significantly to the overall cost of this disease. Readmission rate and hospital length of stay are emerging as quality markers of heart failure care along with reimbursement policies that force hospitals to optimize these outcomes. Apart from maintaining quality assurance, the disease process of heart failure per-se requires demanding and close attention to vitals, diet, and medication compliance to prevent acute decompensation episodes. Remote patient monitoring is morphing into a key disease management strategy to optimize care for heart failure. Innovative implantable technologies to monitor intracardiac hemodynamics also are evolving, which potentially could offer better and substantial parameters to monitor. PMID:23519115

  3. Remote sensing monitoring of the global ozonosphere

    NASA Astrophysics Data System (ADS)

    Genco, S.; Bortoli, D.; Ravegnani, F.

    2013-10-01

    The use of CFCs, which are the main responsible for the ozone depletion in the upper atmosphere and the formation of the so-called "ozone hole" over Antarctic Region, was phase out by Montreal Protocol (1989). CFCs' concentration is recently reported to decrease in the free atmosphere, but severe episodes of ozone depletion in both Arctic and Antarctic regions are still occurring. Nevertheless the complete recovery of the Ozone layer is expected by about 2050. Recent simulation of perturbations in stratospheric chemistry highlight that circulation, temperature and composition are strictly correlated and they influence the global climate changes. Chemical composition plays an important role in the thermodynamic of the atmosphere, as every gaseous species can absorb and emit in different wavelengths, so their different concentration is responsible for the heating or cooling of the atmosphere. Therefore long-term observations are required to monitor the evolution of the stratospheric ozone layer. Measurements from satellite remote sensing instruments, which provide wide coverage, are supplementary to selective ground-based observations which are usually better calibrated, more stable in time and cover a wider time span. The combination of the data derived from different space-borne instruments calibrated with ground-based sensors is needed to produce homogeneous and consistent long-term data records. These last are required for robust investigations and especially for trend analysis. Here, we perform a review of the major remote-sensing techniques and of the principal datasets available to study the evolution of ozone layer in the past decades and predict future behavio

  4. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    PubMed Central

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  5. Precision wildlife monitoring using unmanned aerial vehicles

    PubMed Central

    Hodgson, Jarrod C.; Baylis, Shane M.; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H.

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  6. Precision wildlife monitoring using unmanned aerial vehicles.

    PubMed

    Hodgson, Jarrod C; Baylis, Shane M; Mott, Rowan; Herrod, Ashley; Clarke, Rohan H

    2016-01-01

    Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility. PMID:26986721

  7. O-THREE: A high altitude, remotely piloted vehicle

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A conceptual design for a remotely piloted vehicle to be used for ozone research above 80,000 feet was developed as part of the one-semester NASA/Universities Space Research Association Aerospace Design course at Case Western Reserve University in Fall 1989. The O-Three design team chose as its mission requirements a cruise altitude of 100,000 ft, a range of 1000 n.m., an endurance of 6 hrs., a 1000 lb payload, and a power to payload of 2 kW. These are based on the Boeing requirements for an ozone research vehicle. In addition, the vehicle should not be restricted to operation over any particular global location. Efforts were made to minimize atmospheric contamination that might increase the rate of ozone depletion and cause discrepancies in data accuracy. Design was not limited to today's level of technology. The design team was divided into four groups: aerodynamics, structures, stability, and control. The specifications and performance estimates for cruise at altitude are given in tabular form.

  8. Observation of increases in emission from modern vehicles over time in Hong Kong using remote sensing.

    PubMed

    Lau, Jason; Hung, W T; Cheung, C S

    2012-04-01

    In this study on-road gaseous emissions of vehicles are investigated using remote sensing measurements collected over three different periods. The results show that a high percentage of gaseous pollutants were emitted from a small percentage of vehicles. Liquified Petroleum Gas (LPG) vehicles generally have higher gaseous emissions compared to other vehicles, particularly among higher-emitting vehicles. Vehicles with high vehicle specific power (VSP) tend to have lower CO and HC emissions while petrol and LPG vehicles tend to have higher NO emissions when engine load is high. It can be observed that gaseous emission factors of petrol and LPG vehicles increase greatly within 2 years of being introduced to the vehicle fleet, suggesting that engine and catalyst performance deteriorate rapidly. It can be observed that LPG vehicles have higher levels of gaseous emissions than petrol vehicles, suggesting that proper maintenance of LPG vehicles is essential in reducing gaseous emissions from vehicles. PMID:22325426

  9. Remote Sensing Techniques for Monitoring Aquatic Vegetation

    NASA Astrophysics Data System (ADS)

    Blanco, Alfonso

    Hydrilla is an important submerged aquatic vegetation because it has a large capacity to absorb pollutants and it is an indicator of the eutrophic status of a waterbody. Monitoring and restoration of submerged aquatic vegetation is key for the preservation and restoration of the Chesapeake Bay. Remote sensing techniques have been used for assessing wetlands and non-invasive aquatic species, but there is limited studies of hydrilla monitoring combined with space-borne, airborne and in-situ remote sensing measurements for detecting and mapping hydrilla infestation. The first objective of this research was to establish a database of hydrilla spectral signatures from an experimental tank and from a field setting using a handheld spectrometer. The spectral signatures collected will be used to identify the optimal spectral and spatial characteristics that are required to identify and classify the distribution of hydrilla canopies in water bodies. The second objective is to process and analyze two hyperspectral images from a space-borne (Hyperion) and airborne (AISA) sensors with ENVI for detecting and mapping the infestation of hydrilla vertillicata in a coastal estuary in Chesapeake Bay. The third objective was to validate the satellite and airborne hyperspectral images with the spectral signatures collected with the in-situ field measurements. In addition, the Hyperion and AISA imaging results were compared with ground surveys and aerial photos collected by the Maryland Department of Natural Resources and the Virginia Institute of Marine Sciences for verifying the extent and the location of the hydrilla canopies. The hyperspectral analysis of both sensors provided for a dual results, one is the identification and classification of hydrilla from hyperspectral imaging sensors and secondly the identification of algae blooms in very productive waters. A hydrilla spectral signature database was established and housed in GMU's EastFIRE Lab of Environmental Science and

  10. Remote robot manipulator coupled with remote-controlled guide vehicle for soil sampling in hazardous waste sites

    NASA Astrophysics Data System (ADS)

    Kim, Kiho

    The important initial step for remediation of hazardous waste is contaminant analysis since the cleanup operation can not begin until the contaminants in hazardous waste sites have been clearly identified. Ames Laboratory, one of the U.S. Department of Energy sites, has developed a robotic sampling system for automation of real-time contaminant analysis in situ which will provide the advantage of lowering the cost per sample, eliminating personnel exposure to hazardous environments, and allowing quicker results. Successful accomplishment of real-time contaminant analysis will require a remote manipulator to perform the sampling tasks in remote and unstructured surroundings, and a remote-controlled guide vehicle to move a remote manipulator into the desired sampling location. This thesis focuses on the design and construction of a remote-controlled guide vehicle to move the robotic sampling system into the contaminated field to obtain soil samples at the desired locations, the development of an integrated dynamic model of a remote manipulator, the identification of dynamic parameters in the integrated dynamic model, and the design of a mobile robotic sampling system. A four-wheeled vehicle prototype has been constructed and its performance tested manually in the field to verify the design requirements. To remotely control the vehicle, mechanical requirements to activate the brake, throttle, transmission, and steering linkages were determined based on experimental results. A teleoperated control utilizing hundred feet long umbilical cords was first employed to remotely control the vehicle. Next, the vehicle was modified to remotely operate in the field by radio control without the aid of long umbilical cords, satisfying all the design specifications. To reduce modeling error in the robotic system, the integrated dynamic system comprised of a remote manipulator (located on a trailer pulled by the remote-controlled guide vehicle) and its drive system has been modeled

  11. Remote quality monitoring in the banana chain

    PubMed Central

    Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter

    2014-01-01

    Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container. PMID:24797132

  12. Survey of remote data monitoring systems

    SciTech Connect

    Logee, T.L.; Kendall, P.W.; Pollock, E.O.; Raymond, M.G.; Knapp, R.C. Jr.

    1984-09-01

    A self-contained data-logger device called an SDAS (Site Data Acquisition Subsystem) was built for the National Solar Data Network (NSDN) which could collect analog data from 96 channels, store the data for up to three days, and then transmit the stored data on request to a central facility by voice-grade telephone lines. This system has worked fairly well for the eight years that it has been in service. However, the design and components are getting old and newer dataloggers may be more reliable and accurate and less expensive. This report discusses the results of an extensive search for an SDAS replacement. The survey covered 62 models from 36 manufacturers. These numbers are not indicative of all the dataloggers or manufacturers available, but only those which appeared to have some qualifications for the NSDN datalogger replacement. This report views the datalogger as a system which is made up of sensors, a data acquisition and storage unit, a telecommunications subsystem, and a data processing subsystem. Therefore, there is a section on sensors used in the NSDN, telecommunications technology, and data processing requirements. These four components or subsystems are all necessary in order to have an integrated, successful remote data monitoring network.

  13. Remote quality monitoring in the banana chain.

    PubMed

    Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter

    2014-06-13

    Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container. PMID:24797132

  14. Environmental monitoring: civilian applications of remote sensing

    SciTech Connect

    Bolton, W.; Lapp, M.; Vitko, J. Jr.; Phipps, G.

    1996-11-01

    This report documents the results of a Laboratory Directed Research and Development (LDRD) program to explore how best to utilize Sandia`s defense-related sensing expertise to meet the Department of Energy`s (DOE) ever-growing needs for environmental monitoring. In particular, we focused on two pressing DOE environmental needs: (1) reducing the uncertainties in global warming predictions, and (2) characterizing atmospheric effluents from a variety of sources. During the course of the study we formulated a concept for using unmanned aerospace vehicles (UAVs) for making key 0798 climate measurements; designed a highly accurate, compact, cloud radiometer to be flown on those UAVs; and established the feasibility of differential absorption Lidar (DIAL) to measure atmospheric effluents from waste sites, manufacturing processes, and potential treaty violations. These concepts have had major impact since first being formulated in this ,study. The DOE has adopted, and DoD`s Strategic Environmental Research Program has funded, much of the UAV work. And the ultraviolet DIAL techniques have already fed into a major DOE non- proliferation program.

  15. Remotely Operated Vehicles (ROVs) Provide a "Big Data Progression"

    NASA Astrophysics Data System (ADS)

    Oostra, D.; Sanghera, S. S.; Mangosing, D. C., Jr.; Lewis, P. M., Jr.; Chambers, L. H.

    2015-12-01

    This year, science and technology teams at the NASA Langley Science Directorate were challenged with creating an API-based web application using RockBlock Mobile sensors mounted on a zero pressure high-altitude balloon. The system tracks and collects meteorological data parameters and visualizes this data in near real time, using a MEAN development stack to create an HTML5 based tool that can send commands to the vehicle, parse incoming data, and perform other functions to store and serve data to other devices. NASA developers and science educators working on this project saw an opportunity to use this emerging technology to address a gap identified in science education between middle and high school curricula. As students learn about data analysis in elementary and middle school, they are taught to collect data from in situ sources. In high school, students are then asked to work with remotely sensed data, without always having the experience or understanding of how that data is collected. We believe that using ROVs to create a "big data progression" for students will not only enhance their ability to understand how remote satellite data is collected, but will also provide the outlet for younger students to expand their interest in science and data prior to entering high school. In this presentation, we will share and discuss our experiences with ROVs, APIs and data viz applications, with a focus on the next steps for developing this emerging capability.

  16. REMOTE SENSING FOR ENVIRONMENTAL COMPLIANCE MONITORING

    EPA Science Inventory

    I. Remote Sensing Basics
    A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors.
    B. Resolution refers to what a remote sensor can see and how often.
    1. Sp...

  17. FLARE EFFICIENCY MONITORING BY REMOTE INFRARED SENSING: A FEASIBILITY DEMONSTRATION

    EPA Science Inventory

    The report gives results of an evaluation, involving field tests, of passive infrared methods for use in remotely monitoring the efficiency of industrial flares. The tests utilized a general infrared measurement device, the EPA ROSE (Remote Optical Sensing of Emissions), a Fourie...

  18. Groundwater inventory and monitoring technical guide: Remote sensing of groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of remotely sensed data in conjunction with in situ data greatly enhances the ability of the USDA Forest Service to meet the demands of field staff, customers, and others for groundwater information. Generally, the use of remotely sensed data to inventory and monitor groundwater reso...

  19. Remote monitoring system research and implementation based on wireless communication

    NASA Astrophysics Data System (ADS)

    Fu, Weizhi; Meng, Xiaofeng

    2013-03-01

    With rapid development of automatic control and network techniques, network-based remote monitoring is becoming an investigating hotspot in the elevator industry. At the same time as the development of wireless communication technology, remote wireless monitoring technology is applied more and more widely in recent years. A variety of wireless detection equipment is entering various industrial enterprises, and has been widely used. At present, there are many defects of the traditional monitoring system, such as poor real-time, low reliability, low intelligence. Based on the analysis of the difficulties to monitor the mobile terminal, this paper firstly analyzes the GSM/GPRS technology, and then discusses a design of the remote monitoring system based on wireless communication. The architecture of the monitoring center is introduced in detail. It is characterized by user-friendly, easy operate, good real-time and easy to extend.

  20. [Monitoring gas concentration from carbon emissions by remote sensing].

    PubMed

    Wang, Li-Wen; Wei, Ya-Xing

    2012-06-01

    Global climate warming has become the focus question of international global climate change research, and is an important factor influencing world economy, political situation, and ecological environment. Produced carbon emission gases such as CO2, CH4, N2O, etc. caused by human activity are the main reason for global warming. In order to forecast future climate change and construct accurate carbon cycle model, monitoring accuracy of gas concentration from carbon emission must be improved. In the present paper, the newest progress in the international research results about monitoring gas concentration from carbon emissions by remote sensing was considered, monitoring method for carbon emissions was introduced, and remotely sensed monitoring technology about gas concentration from carbon emissions (including thermal infrared, sun spectrum, active remote sensing monitoring technology) was stated. In detail, several present and future satellite sensors were introduced (including TOVS, AIRS, IASI, SCIAMACHY, GOSAT, OCO, A-SCOPE and ASCENDS), and monitoring results achieved by these sensors were analyzed. PMID:22870656

  1. Remotely operated vehicles as underwater inspection and maintenance tools: An operator's viewpoint

    SciTech Connect

    Simpson, J.

    1984-10-01

    Utilisation of remotely operated vehicles in the Northern North Sea is tending towards a science. Various vehicles compete in a razor-sharp market for jacket and pipeline inspections, drilling support and diver assist roles. This paper discusses Conoco's Northern Operations viewpoint and their vehicle utilisation experience.

  2. Remotely-powered intracranial pressure monitor

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.

    1979-01-01

    Implantable RF powered monitor uses capacitive transducer and stiff metal diaphragm that gives high stability for long term intracranial pressure monitoring. Design of monitor reduces risk of infection while improving patient comfort and mobility.

  3. Data analysis for remote monitoring of safeguarded facilities

    SciTech Connect

    DeLand, S.M.

    1997-08-01

    The International Remote Monitoring Project (IRMP) sponsored by the US DOE allows DOE and its international partners to gain experience with the remote collection, transmission, and interpretation of safeguards-relevant data. This paper focuses on the interpretation of the data from these remote monitoring systems. Users of these systems need to be able to ascertain that the remote monitoring system is functioning as expected and that the events generated by the sensors are consistent with declared activity. The initial set of analytical tools being provided for IRMP installations this year include a suite of automatically generated views of user-selected data. The baseline set of tools, with illustrative examples, will be discussed. Plans for near-term enhancements will also be discussed. Finally, the applicability of more advanced analytical techniques such as expert systems will be discussed.

  4. NASA advanced aeronautics design solar powered remotely piloted vehicle

    NASA Technical Reports Server (NTRS)

    Elario, David S.; Guillmette, Neal H.; Lind, Gregory S.; Webster, Jonathan D.; Ferreira, Michael J.; Konstantakis, George C.; Marshall, David L.; Windt, Cari L.

    1991-01-01

    Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is beneficial to society. The design and construction of a Multi-Purpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of utilizing solar propulsion as a primary fuel source. This task has been a year long effort by a group of ten students, divided into five teams, each dealing with different aspects of the design. The aircraft was designed to take-off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design in order to achieve flight in this regime. Optimal performance requires a light weight configuration with both structural integrity and maximum power availability. The structure design and choice of solar cells for the propulsion was governed by the weight, efficiency, and cost considerations. The final design is a MPRPV weighting 35 N which cruises 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 10 percent efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were research and tested during the design process.

  5. Online remote monitoring facilities for the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Kolos, S.; Alexandrov, E.; Feng, E.; Hauser, R.; Iakovlev, A.; Zaytsev, A.

    2011-12-01

    ATLAS is one of the 4 LHC experiments which started to be operated in the collisions mode in 2010. The ATLAS apparatus itself as well as the Trigger and the DAQ system are extremely complex facilities which have been built up by the collaboration including 144 institutes from 33 countries. The effective running of the experiment is supported by a large number of experts distributed all over the world. This paper describes the online remote monitoring system which has been developed in the ATLAS Trigger and DAQ(TDAQ) community in order to support efficient participation of the experts from remote institutes in the exploitation of the experiment. The facilities provided by the remote monitoring system are ranging from the WEB based access to the general status and data quality for the ongoing data taking session to the scalable service providing real-time mirroring of the detailed monitoring data from the experimental area to the dedicated computers in the CERN public network, where this data is made available to remote users through the same set of software tools as being used in the main ATLAS control room. The remote monitoring facilities have been put in place in 2009 to support the ATLAS commissioning and have been improved in face of the first collisions runs based on the feedback which was received from the users. Now the remote monitoring system are in mature state and being actively used by the ATLAS collaboration for running the experiment.

  6. Irrigated lands: Monitoring by remote sensing

    NASA Technical Reports Server (NTRS)

    Epiphanio, J. C. N.; Vitorelli, I.

    1983-01-01

    The use of remote sensing for irrigated areas, especially in the region of Guaira, Brazil (state of Sao Paulo), is examined. Major principles of utilizing LANDSAT data for the detection and mapping of irrigated lands are discussed. In addition, initial results obtained by computer processing of digital data, use of MSS (Multispectral Scanner System)/LANDSAT products, and the availability of new remote sensing products are highlighted. Future activities include the launching of the TM (Thematic Mapper)/LANDSAT 4 with 30 meters of resolution and SPOT (Systeme Probatorie d'Observation de la Terre) with 10 to 20 meters of resolution, to be operational in 1984 and 1986 respectively.

  7. Cost efficiency and reimbursement of remote monitoring: a US perspective.

    PubMed

    Slotwiner, David; Wilkoff, Bruce

    2013-06-01

    Demographic and technological changes are driving increased utilization of cardiac implantable electronic devices (CIEDs) remote monitoring. In the USA, fee-for-service model of healthcare delivery, services rendered are valued based upon time, intensity, and technical or practice expense costs. As a consequence of this perspective, and to contain spending, Medicare has grouped physician services into families. Spending within each family of services must, by law, remain budget neutral. Cardiac implantable electronic devices monitoring services, remote and in-person, are grouped into one family. As the volume of services within this family increases, the individual encounters are destined to be discounted into ever decreasing portions. However, if the value of remote monitoring is demonstrated to extend beyond the previous boundaries of in-person interrogations, a rational request can be made to reconsider the relative value of remote monitoring. Outcome data supporting the value-added benefits of remote monitoring are rapidly accumulating, including (i) patient convenience, with reduced use of office services, (ii) equal safety compared with in-person evaluation, (iii) shorter detection time to actionable events (arrhythmias, cardiovascular disease progression, and device malfunction), (iv) reduced length of stay for hospitalizations, (v) reduced inappropriate shocks, (vi) increased battery longevity, and (vii) a relative reduction in the risk of death. Fully automatic wireless technology, only recently widely implemented, will add considerable clinical efficiencies and further increase the value of remote monitoring. The U.S. challenge will be to appropriately define the relative value of CIEDs remote monitoring now that outcome data have demonstrated its value extends beyond in-person interrogation. PMID:23737232

  8. Remote intelligent nuclear facility monitoring in LabVIEW

    SciTech Connect

    Kucewicz, J.C.; Argo, P.E.; Caffrey, M.; Loveland, R.C.; McNeil, P.J.

    1996-08-01

    A prototype system implemented in LabVIEW for the intelligent monitoring of the movement of radioactive` material within a nuclear facility is presented. The system collects and analyzes radiation sensor and video data to identify suspicious movement of material within the facility. The facility system also transmits wavelet- compressed data to a remote system for concurrent monitoring. 2 refs., 2 figs.

  9. Remote monitoring of VRLA batteries for telecommunications systems

    NASA Astrophysics Data System (ADS)

    Tsujikawa, Tomonobu; Matsushima, Toshio

    This paper describes a remote monitoring system that can be set up in an operating center to monitor the state of valve regulated lead acid batteries (VRLA) used as a backup power supply for telecommunications. This system has a battery voltage monitoring function, a lifetime prediction function based on ambient temperature, and a discharge circuit diagnosis function. In addition, the system can be equipped with an internal resistance measurement function and an electrolyte leakage detection function to further insure power-supply reliability. Various states of batteries observed with the system are transmitted to the remote operating center by a remote monitoring function. This function enables obtaining immediate information about the condition of batteries and helps to avoid unexpected failures.

  10. Remote operated vehicle with carbon dioxide blasting (ROVCO{sub 2})

    SciTech Connect

    Resnick, A.M.

    1995-10-01

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO{sub 2}), as shown in a front view is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO{sub 2} xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. The cryogenesis subsystem performs the actual decontamination work and consists of the dry ice supply unit, the blasting nozzle, the remotely controlled electric and pneumatic valves, and the vacuum work-head. The COYOTEE subsystem positions the blasting work-head within a planar work space and the vacuum subsystem provides filtration and containment of the debris generated by the CO{sub 2} blasting. It employs a High Efficiency Particulate Air (HEPA) filtration unit to separate contaminants for disposal. All of the above systems are attached to the vehicle subsystem via the support structure.

  11. Some applications of remote sensing in atmospheric monitoring programs

    NASA Technical Reports Server (NTRS)

    Heller, A. N.; Bryson, J. C.; Vasuki, N. C.

    1972-01-01

    The applications of remote sensing in atmospheric monitoring programs are described. The organization, operations, and functions of an air quality monitoring network at New Castle County, Delaware is discussed. The data obtained by the air quality monitoring network ground stations and the equipment used to obtain atmospheric data are explained. It is concluded that correlation of the information obtained by the network will make it possible to anticipate air pollution problems in the Chesapeake Bay area before a crisis develops.

  12. Energy and remote sensing. [satellite exploration, monitoring, siting

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1977-01-01

    Exploration for uranium, thorium, oil, gas and geothermal activity through remote sensing techniques is considered; satellite monitoring of coal-derived CO2 in the atmosphere, and the remote assessment of strip mining and land restoration are also mentioned. Reference is made to color ratio composites based on Landsat data, which may aid in the detection of uranium deposits, and to computer-enhanced black and white airborne scanning imagery, which may locate geothermal anomalies. Other applications of remote sensing to energy resources management, including mapping of transportation networks and power plant siting, are discussed.

  13. An intelligent remote monitoring system for artificial heart.

    PubMed

    Choi, Jaesoon; Park, Jun W; Chung, Jinhan; Min, Byoung G

    2005-12-01

    A web-based database system for intelligent remote monitoring of an artificial heart has been developed. It is important for patients with an artificial heart implant to be discharged from the hospital after an appropriate stabilization period for better recovery and quality of life. Reliable continuous remote monitoring systems for these patients with life support devices are gaining practical meaning. The authors have developed a remote monitoring system for this purpose that consists of a portable/desktop monitoring terminal, a database for continuous recording of patient and device status, a web-based data access system with which clinicians can access real-time patient and device status data and past history data, and an intelligent diagnosis algorithm module that noninvasively estimates blood pump output and makes automatic classification of the device status. The system has been tested with data generation emulators installed on remote sites for simulation study, and in two cases of animal experiments conducted at remote facilities. The system showed acceptable functionality and reliability. The intelligence algorithm also showed acceptable practicality in an application to animal experiment data. PMID:16379373

  14. Effective Technologies for Noninvasive Remote Monitoring in Heart Failure

    PubMed Central

    Conway, Aaron; Inglis, Sally C.

    2014-01-01

    Abstract Background: Trials of new technologies to remotely monitor for signs and symptoms of worsening heart failure are continually emerging. The extent to which technological differences impact the effectiveness of noninvasive remote monitoring for heart failure management is unknown. This study examined the effect of specific technology used for noninvasive remote monitoring of people with heart failure on all-cause mortality and heart failure–related hospitalizations. Materials and Methods: A subanalysis of a large systematic review and meta-analysis was conducted. Studies were stratified according to the specific type of technology used, and separate meta-analyses were performed. Four different types of noninvasive remote monitoring technologies were identified, including structured telephone calls, videophone, interactive voice response devices, and telemonitoring. Results: Only structured telephone calls and telemonitoring were effective in reducing the risk of all-cause mortality (relative risk [RR]=0.87; 95% confidence interval [CI], 0.75–1.01; p=0.06; and RR=0.62; 95% CI, 0.50–0.77; p<0.0001, respectively) and heart failure–related hospitalizations (RR=0.77; 95% CI, 0.68–0.87; p<0.001; and RR=0.75; 95% CI, 0.63–0.91; p=0.003, respectively). More research data are required for videophone and interactive voice response technologies. Conclusions: This subanalysis identified that only two of the four specific technologies used for noninvasive remote monitoring in heart failure improved outcomes. When results of studies that involved these disparate technologies were combined in previous meta-analyses, significant improvements in outcomes were identified. As such, this study has highlighted implications for future meta-analyses of randomized controlled trials focused on evaluating the effectiveness of remote monitoring in heart failure. PMID:24731212

  15. Cooperative Remote Monitoring, Arms control and nonproliferation technologies: Fourth quarter 1995

    SciTech Connect

    Alonzo, G M

    1995-01-01

    The DOE`s Cooperative Remote Monitoring programs integrate elements from research and development and implementation to achieve DOE`s objectives in arms control and nonproliferation. The contents of this issue are: cooperative remote monitoring--trends in arms control and nonproliferation; Modular Integrated Monitoring System (MIMS); Authenticated Tracking and Monitoring Systems (ATMS); Tracking and Nuclear Materials by Wide-Area Nuclear Detection (WAND); Cooperative Monitoring Center; the International Remote Monitoring Project; international US and IAEA remote monitoring field trials; Project Dustcloud: monitoring the test stands in Iraq; bilateral remote monitoring: Kurchatov-Argonne-West Demonstration; INSENS Sensor System Project.

  16. Development and Flight Testing of an Adaptable Vehicle Health-Monitoring Architecture

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.; Taylor, B. Douglas; Brett, Rube R.

    2003-01-01

    Development and testing of an adaptable wireless health-monitoring architecture for a vehicle fleet is presented. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained adaptable expert system. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate, and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear.

  17. Major Constituents Analysis for the Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Mandrake, Lukas; Bornstein, Benjamin J.; Madzunkov, Stojan; Macaskill, John A.

    2011-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) can provide a means for monitoring the air within enclosed environments such as the International Space Station, the Crew Exploration Vehicle (CEV), a Lunar habitat, or another vehicle traveling to Mars. The software processes a sum total spectra (counts vs. mass channel) with the intention of computing abundance ratios for N2, O2, CO2, Ar2, and H2O. A brute-force powerset expansion compares a library of expected mass lines with those found within the data. Least squares error is combined with a penalty term for using small peaks.

  18. Remote monitoring and nondestructive evaluation of wind turbine towers

    NASA Astrophysics Data System (ADS)

    Chiang, Chih-Hung; Yu, Chih-Peng; Hsu, Keng-Tsang; Cheng, Chia-Chi; Ke, Ying-Tzu; Shih, Yi-Ru

    2014-03-01

    Wind turbine towers are in need of condition monitoring so as to lower the cost of unexpected maintenance. Wind loading from turbulence and gusts can cause damage in horizontal axis wind turbines even the supporting towers. Monitoring of wind turbines in service using embedded data sensor arrays usually is not targeted at the turbine-tower interaction from the perspective of structural dynamics. In this study the remote monitoring of the tower supporting a horizontal-axis wind turbine was attempted using a microwave interferometer. The dominant frequency of one tower was found to be decreased by more than 20% in 16 months. Numerical modeling using spectral finite elements is in progress and should provide further information regarding frequency shift due to stiffness variation and added mass. Expected outcome will contribute to remote monitoring procedures and nondestructive evaluation techniques for local wind turbine structures during operation.

  19. Drought monitoring using remote sensing of evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought assessment is a complex endeavor, requiring monitoring of deficiencies in multiple components of the hydrologic budget. Precipitation anomalies reflect variability in water supply to the land surface, while soil moisture (SM), ground and surface water anomalies reflect deficiencies in moist...

  20. The DAST-1 remotely piloted research vehicle development and initial flight testing

    NASA Technical Reports Server (NTRS)

    Kotsabasis, A.

    1981-01-01

    The development and initial flight testing of the DAST (drones for aerodynamic and structural testing) remotely piloted research vehicle, fitted with the first aeroelastic research wing ARW-I are presented. The ARW-I is a swept supercritical wing, designed to exhibit flutter within the vehicle's flight envelope. An active flutter suppression system (FSS) designed to increase the ARW-I flutter boundary speed by 20 percent is described. The development of the FSS was based on prediction techniques of structural and unsteady aerodynamic characteristics. A description of the supporting ground facilities and aircraft systems involved in the remotely piloted research vehicle (RPRV) flight test technique is given. The design, specification, and testing of the remotely augmented vehicle system are presented. A summary of the preflight and flight test procedures associated with the RPRV operation is given. An evaluation of the blue streak test flight and the first and second ARW-I test flights is presented.

  1. Development of a remote handheld cardiac arrhythmia monitor.

    PubMed

    Singh, Swaroop S; Hsiao, Henry S

    2006-01-01

    In this paper we present the design and development of a real-time remote handheld cardiac arrhythmic monitoring system (RCAM). A client-server model based on Internet protocols was used. ECG data was transmitted from the remote handheld client to a centralized server, where the QRS and premature ventricular contraction detection algorithms were implemented and graded depending on the number and pattern of PVCs present. The QRS sensitivity and specificity on ECG records from Physionet archives in absence of arrhythmia was 100% and 99.62%, while in presence of arrhythmia was 99.34% and 99.31%. The average 'negative time' measured on ventricular tachyarrhythmia records was 92 seconds. The RCAM can provide remote detection of cardiac abnormalities and give specific diagnosis and recommendations of actions to be taken immediately. The limitation due to the inability of the PDA to perform complex computations was overcome by the use of the remote server. PMID:17947043

  2. Monitoring asphalt pavement damages using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Mettas, Christodoulos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Christofe, Andreas; Pilakoutas, Kypros; Hadjimitsis, Diofantos

    2015-06-01

    One of the main issues in the maintenance plans of road agencies or governmental organizations is the early detection of damaged asphalt pavements. The development of a smart and non-destructive systematic technique for monitoring damaged asphalt pavements is considered a main priority to fill this gap. During the 1970's, remote sensing was used to map road surface distress, while during the last decade, remote sensing became more advanced, thereby assisting in the evolution of the identification and mapping of roads. Various techniques were used in order to explore condition, age, weaknesses and imperfections of asphalted pavements. These methods were fairly successful in the classification of asphalted surfaces and in the detection of some of their characteristics. This paper explores the state of the art of using remote sensing techniques for monitoring damaged pavements and some typical spectral profiles of various asphalt pavements in Cyprus area acquired using the SVC1024 field spectroradiometer.

  3. Remote sensing hazard monitoring and assessment in Yushu earthquake disaster

    NASA Astrophysics Data System (ADS)

    Wen, Qi; Xu, Feng; Chen, Shirong

    2011-12-01

    Yushu Earthquake of magnitude 7.1 Richter in 2010 has brought a huge loss of personal lives and properties to China. National Disaster Reduction Center of China implemented the disaster assessment by using remote sensing images and field investigation. Preliminary judgment of disaster scope and damage extent was acquired by change detection. And the building region of hard-hit area Jiegu town was partitioned into 3-level grids in airborne remote sensing images by street, type of use, structure, and about 685 girds were numbered. Hazard assessment expert group were sent to implement field investigation according to each grid. The housing damage scope and extent of loss were defined again integrated field investigation data and local government reported information. Though remote sensing technology has played an important role in huge disaster monitoring and assessment, the automatic capability of disaster information extraction flow, three-dimensional disaster monitoring mode and bidirectional feedback mechanism of products and services should still be further improved.

  4. Web based remote monitoring and controlling system for vulnerable environments

    NASA Astrophysics Data System (ADS)

    Thomas, Aparna; George, Minu

    2016-03-01

    The two major areas of concern in industrial establishments are monitoring and security. The remote monitoring and controlling can be established with the help of Web technology. Managers can monitor and control the equipment in the remote area through a web browser. The targeted area includes all type of susceptible environment like gas filling station, research and development laboratories. The environmental parameters like temperature, light intensity, gas etc. can be monitored. Security is a very important factor in an industrial setup. So motion detection feature is added to the system to ensure the security. The remote monitoring and controlling system makes use of the latest, less power consumptive and fast working microcontroller like S3C2440. This system is based on ARM9 and Linux operating system. The ARM9 will collect the sensor data and establish real time video monitoring along with motion detection feature. These captured video data as well as environmental data is transmitted over internet using embedded web server which is integrated within the ARM9 board.

  5. Natural Resource Monitoring of Rheum tanguticum by Multilevel Remote Sensing

    PubMed Central

    Xie, Caixiang; Song, Jingyuan; Suo, Fengmei; Li, Xiwen; Li, Ying; Yu, Hua; Xu, Xiaolan; Luo, Kun; Li, Qiushi; Xin, Tianyi; Guan, Meng; Xu, Xiuhai; Miki, Eiji; Takeda, Osami; Chen, Shilin

    2014-01-01

    Remote sensing has been extensively applied in agriculture for its objectiveness and promptness. However, few applications are available for monitoring natural medicinal plants. In the paper, a multilevel monitoring system, which includes satellite and aerial remote sensing, as well as ground investigation, was initially proposed to monitor natural Rheum tanguticum resource in Baihe Pasture, Zoige County, Sichuan Province. The amount of R. tanguticum from images is M = S*ρ and S is vegetation coverage obtained by satellite imaging, whereas ρ is R. tanguticum density obtained by low-altitude imaging. Only the R. tanguticum which coverages exceeded 1 m2 could be recognized from the remote sensing image because of the 0.1 m resolution of the remote sensing image (called effective resource at that moment), and the results of ground investigation represented the amounts of R. tanguticum resource in all sizes (called the future resource). The data in paper showed that the present available amount of R. tanguticum accounted for 4% to 5% of the total quantity. The quantity information and the population structure of R. tanguticum in the Baihe Pasture were initially confirmed by this system. It is feasible to monitor the quantitative distribution for natural medicinal plants with scattered distribution. PMID:25101134

  6. REMOTE MONITORING OF ORGANIC CARBON IN SURFACE WATERS

    EPA Science Inventory

    This study shows that the intensity of the Raman normalized fluorescence emission induced in surface waters by ultraviolet radiation can be used to provide a unique remote sensing capability for airborne monitoring the concentration of dissolved organic carbon (DOC). Trace concen...

  7. How Can Remote Sensing Be Used for Water Quality Monitoring?

    EPA Science Inventory

    “How can remote sensing address information needs and gaps in water quality and quantity management?” was a workshop convened during the biennial National Water Quality Monitoring Conference 2014, held in Cincinnati, OH. The focus of this workshop was to provide an o...

  8. PLANT INCORPORATED PROTECTANT CROP MONITORING USING REMOTE SENSING

    EPA Science Inventory

    The extent of past and anticipated plantings of transgenic corn in the United States requires a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial and/or satellite images may provide a method of identifying transgenic pest...

  9. A NEW APPROACH TO PIP CROP MONITORING USING REMOTE SENSING

    EPA Science Inventory

    Current plantings of 25+ million acres of transgenic corn in the United States require a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal cro...

  10. Security warning system monitors up to fifteen remote areas simultaneously

    NASA Technical Reports Server (NTRS)

    Fusco, R. C.

    1966-01-01

    Security warning system consisting of 15 television cameras is capable of monitoring several remote or unoccupied areas simultaneously. The system uses a commutator and decommutator, allowing time-multiplexed video transmission. This security system could be used in industrial and retail establishments.

  11. Development of a Remote Monitoring System Using Meteor Burst Technology

    SciTech Connect

    Ewanic, M.A.; Dunstan, M.T.; Reichhardt, D.K.

    2006-07-01

    Monitoring the cleanup and closure of contaminated sites requires extensive data acquisition, processing, and storage. At remote sites, the task of monitoring often becomes problematical due to the lack of site infrastructure (i.e., electrical power lines, telephone lines, etc.). MSE Technology Applications, Inc. (MSE) has designed an economical and efficient remote monitoring system that will handle large amounts of data; process the data, if necessary; and transmit this data over long distances. Design criteria MSE considered during the development of the remote monitoring system included: the ability to handle multiple, remote sampling points with independent sampling frequencies; robust (i.e., less susceptible to moisture, heat, and cold extremes); independent of infrastructure; user friendly; economical; and easy to expand system capabilities. MSE installed and tested a prototype system at the Mike Mansfield Advanced Technology Center (MMATC), Butte, Montana, in June 2005. The system MSE designed and installed consisted of a 'master' control station and two remote 'slave' stations. Data acquired at the two slave stations were transmitted to the master control station, which then transmits a complete data package to a ground station using meteor burst technology. The meteor burst technology has no need for hardwired land-lines or man-made satellites. Instead, it uses ionized particles in the Earth's atmosphere to propagate a radio signal. One major advantage of the system is that it can be configured to accept data from virtually any type of device, so long as the signal from the device can be read and recorded by a standard data-logger. In fact, MSE has designed and built an electrical resistivity monitoring system that will be powered and controlled by the meteor burst system components. As sites move through the process of remediation and eventual closure, monitoring provides data vital to the successful long term management of the site. The remote

  12. Adaptable System for Vehicle Health and Usage Monitoring

    NASA Technical Reports Server (NTRS)

    Woodart, Stanley E.; Woodman, Keith L.; Coffey, Neil C.; Taylor, Bryant D.

    2005-01-01

    Aircraft and other vehicles are often kept in service beyond their original design lives. As they age, they become susceptible to system malfunctions and fatigue. Unlike future aircraft that will include health-monitoring capabilities as integral parts in their designs, older aircraft have not been so equipped. The Adaptable Vehicle Health and Usage Monitoring System is designed to be retrofitted into a preexisting fleet of military and commercial aircraft, ships, or ground vehicles to provide them with state-of-the-art health- and usage-monitoring capabilities. The monitoring system is self-contained, and the integration of it into existing systems entails limited intrusion. In essence, it has bolt-on/ bolt-off simplicity that makes it easy to install on any preexisting vehicle or structure. Because the system is completely independent of the vehicle, it can be certified for airworthiness as an independent system. The purpose served by the health-monitoring system is to reduce vehicle operating costs and to increase safety and reliability. The monitoring system is a means to identify damage to, or deterioration of, vehicle subsystems, before such damage or deterioration becomes costly and/or disastrous. Frequent monitoring of a vehicle enables identification of the embryonic stages of damage or deterioration. The knowledge thus gained can be used to correct anomalies while they are still somewhat minor. Maintenance can be performed as needed, instead of having the need for maintenance identified during cyclic inspections that take vehicles off duty even when there are no maintenance problems. Measurements and analyses acquired by the health-monitoring system also can be used to analyze mishaps. Overall, vehicles can be made more reliable and kept on duty for longer times. Figure 1 schematically depicts the system as applied to a fleet of n vehicles. The system has three operational levels. All communication between system components is by use of wireless

  13. Water quality monitoring using remote sensing technique

    NASA Astrophysics Data System (ADS)

    Adsavakulchai, Suwannee; Panichayapichet, Paweena

    2003-03-01

    There has been a rapid growth of shrimp farm around Kung Krabaen Bay in the past decade. This has caused enormous rise in generation of domestic and industrial wastes. Most of these wastes are disposed in the Kung Krabaen Bay. There is a serious need to retain this glory by better water quality management of this river. Conventional methods of monitoring of water quality have limitations in collecting information about water quality parameters for a large region in detailed manner due to high cost and time. Satellite based technologies have offered an alternate approach for many environmental monitoring needs. In this study, the high-resolution satellite data (LANDSAT TM) was utilized to develop mathematical models for monitoring of chlorophyll-a. Comparison between empirical relationship of spectral reflectance with chl-a and band ratio between the near infrared (NIR) and red was suggested to detect chlorophyll in water. This concept has been successfully employed for marine zones and big lakes but not for narrow rivers due to constraints of spatial resolution of satellite data. This information will be very useful in locating point and non-point sources of pollution and will help in designing and implementing controlling structures.

  14. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    NASA Astrophysics Data System (ADS)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  15. Application of network technology to Remote Monitoring System

    SciTech Connect

    Johnson, C.S.; Sorokowski, D.L.; Veevers, K.

    1994-08-01

    The Australian Safeguards Office (ASO) and the US Department of Energy (DOE) have sponsored work under a bilateral agreement to implement a Remote Monitoring System (RMS) at an Australian nuclear site operated by the Australian Nuclear Science and Technology Organization (ANSTO). The RMS, designed by Sandia National Laboratories (SNL), was installed in February 1994 at the Dry Spent Fuel Storage Facility (DSFSF) located at Lucas Heights, Australia. The RMS was designed to test a number of different concepts that would be useful for unattended remote monitoring activities. The DSFSF located in Building 27 is a very suitable test site for a RMS. The RMS uses a network of low cost nodes to collect data from a number of different sensors and security devices. Different sensors and detection devices have been installed to study how they can be used to complement each other for C/S applications. The data collected from the network will allow a comparison of how the various types of sensors perform under the same set of conditions. A video system using digital compression collects digital images and stores them on a hard drive and a digital optical disk. Data and images from the storage area are remotely monitored via telephone from Canberra, Australia and Albuquerque, NM, USA. These remote monitoring stations operated by ASO and SNL respectively, can retrieve data and images from the RMS computer at the DSFSF. The data and images are encrypted before transmission. The Remote Monitoring System field tests have been operational for six months with good test results. Sensors have performed well and the digital images have excellent resolution. The hardware and software have performed reliably without any major difficulties. This paper summarizes the highlights of the prototype system and the ongoing field tests.

  16. Research remote laser methods for radionuclides monitoring

    NASA Astrophysics Data System (ADS)

    Kascheev, S. V.; Elizarov, Valentin V.; Grishkanich, Alexander S.; Bespalov, V. G.; Vasil'ev, Sergey K.; Zhevlakov, A. P.

    2014-05-01

    Laser sensing can serve as a highly effective method of searching and monitoring of radioactive contamination. The first method is essence consists in definition the Sr90 and Сs137 concentration by excitation and registration of fluorescence at wavelength of λ = 0.347÷7.0 μm at laser sounding. The second method experiments were carried out under the Raman-scattering circuit. Preliminary results of investigation show the real possibility to register of leakage of a radionuclide with concentration at level of 108÷109 сm-3 on a safe distance from the infected object.

  17. State-of-the-art remote sensing geospatial technologies in support of transportation monitoring and management

    NASA Astrophysics Data System (ADS)

    Paska, Eva Petra

    The widespread use of digital technologies, combined with rapid sensor advancements resulted in a paradigm shift in geospatial technologies the end of the last millennium. The improved performance provided by the state-of-the-art airborne remote sensing technology created opportunities for new applications that require high spatial and temporal resolution data. Transportation activities represent a major segment of the economy in industrialized nations. As such both the transportation infrastructure and traffic must be carefully monitored and planned. Engineering scale topographic mapping has been a long-time geospatial data user, but the high resolution geospatial data could also be considered for vehicle extraction and velocity estimation to support traffic flow analysis. The objective of this dissertation is to provide an assessment on what state-of-the-art remote sensing technologies can offer in both areas: first, to further improve the accuracy and reliability of topographic, in particular, roadway corridor mapping systems, and second, to assess the feasibility of extracting primary data to support traffic flow computation. The discussion is concerned with airborne LiDAR (Light Detection And Ranging) and digital camera systems, supported by direct georeferencing. The review of the state-of-the-art remote sensing technologies is dedicated to address the special requirements of the two transportation applications of airborne remotely sensed data. The performance characteristics of the geospatial sensors and the overall error budget are discussed. The error analysis part is focused on the overall achievable point positioning accuracy performance of directly georeferenced remote sensing systems. The QA/QC (Quality Assurance/Quality Control) process is a challenge for any airborne direct georeferencing-based remote sensing system. A new method to support QA/QC is introduced that uses the road pavement markings to improve both sensor data accuracy as well as the

  18. Tracking and Monitoring Oil Slicks Using remote Sensing

    NASA Astrophysics Data System (ADS)

    Klemas, V. V.

    2011-12-01

    Tracking and Monitoring Oil Slicks Using Remote Sensing Victor Klemas, Ph.D. , College of Earth, Ocean and Environment, University of Delaware, Newark, DE 19716 Abstract Oil spills can harm marine life in the ocean, estuaries and wetlands. To limit the damage by a spill and facilitate cleanup efforts, emergency managers need information on spill location, size and extent, direction and speed of oil movement, wind, current, and wave information for predicting oil drift and dispersion. The main operational data requirements are fast turn-around time and frequent imaging to monitor the dynamics of the spill. Radar and multispectral remote sensors on satellites and aircraft meet most of these requirements by tracking the spilled oil at various resolutions, over wide areas and at frequent intervals. They also provide key inputs to drift prediction models and facilitate targeting of skimming and booming efforts. Satellite data are frequently supplemented by information provided by aircraft, ships and remotely controlled underwater robots. The Sea Princess tanker grounding off the coast of Wales and the explosion on the Deepwater Horizon rig in the Gulf of Mexico provide two representative, yet different, scenarios for evaluating the effectiveness of remote sensors during oil spill emergencies. Session NH17: Remote Sensing of Natural Hazards Session Chair: Ramesh P. Singh Sponsor: Natural Hazards (NH)

  19. Optimized Radar Remote Sensing for Levee Health Monitoring

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen E.

    2013-01-01

    Radar remote sensing offers great potential for high resolution monitoring of ground surface changes over large areas at one time to detect movement on and near levees and for location of seepage through levees. Our NASA-funded projects to monitor levees in the Sacramento Delta and the Mississippi River have developed and demonstrated methods to use radar remote sensing to measure quantities relevant to levee health and of great value to emergency response. The DHS-funded project will enable us is to define how to optimally monitor levees in this new way and set the stage for transition to using satellite SAR (synthetic aperture radar) imaging for better temporal and spatial coverage at lower cost to the end users.

  20. A Self Calibrating Remote Controllable Water Monitoring System

    NASA Astrophysics Data System (ADS)

    Croft, J. E.; Heath, G. L.

    2006-12-01

    The Idaho National Laboratory (INL) has been asked to support Mountain States Environmental (MSE) by providing an automated remote monitoring system for a treatment process of acid mine discharge from the Susie mine, which is located outside of Rimini near Helena, Montana. The mine, now abandoned, produces water year around that is contaminated with lead, zinc, cadmium and arsenic (Pb, Zn, Cd, and As). MSE is managing a project to install and test a pilot scale treatment system that will operate year around treating the discharge water to remove the metal contaminants of concern. The treatment system employs a combination of lime addition, iron addition, settling chambers, sand filters and polishing to treat the contaminated water. The system requires routine monitoring to ensure that process controls remain functional. The INL is developing a monitoring system capable of self calibrating, with two way communication, in a remote location that will provide physical and chemical water quality measurements throughout the treatment system.

  1. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    PubMed Central

    Fay, Cormac; Doherty, Aiden R.; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M.; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O’Connor, Noel E.; Smeaton, Alan F.; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  2. Remote real-time monitoring of subsurface landfill gas migration.

    PubMed

    Fay, Cormac; Doherty, Aiden R; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O'Connor, Noel E; Smeaton, Alan F; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  3. An automated personalised intervention algorithm for remote patient monitoring.

    PubMed

    Fursse, Joanna; Clarke, Malcolm; Jones, Russell; Khemka, Sneh; Findlay, Genevieve

    2008-01-01

    An automated personalised intervention algorithm was developed to determine when and if patients with chronic disease in a remote monitoring programme required intervention for management of their condition. The effectiveness of the algorithm has so far been evaluated on 29 patients. It was found to be particularly effective in monitoring newly diagnosed patients, patients requiring a change in medication as well as highlighting those that were not conforming to their medication. Our approach indicates that RPM used with the intervention algorithm and a clinical protocol can be effective in a primary care setting for targeting those patients that would most benefit from monitoring. PMID:18487728

  4. ZigBee-based remote patient monitoring.

    PubMed

    Fernandez-Lopez, Helena; Afonso, José Augusto; Correia, José Higino; Simões, Ricardo

    2012-01-01

    This paper describes a developed continuous patient monitoring system based on the ZigBee protocol. The system was tested in the hospital environment using six sensor devices in two different modes. For electrocardiogram transmission and in the absence of hidden-nodes, the system achieved a mean delivery ratio of 100% and 98.56%, respectively for star and 2-hop tree network topologies. When sensor devices were arranged in a way that three of them were unable to hear the transmissions made by the other three, the mean delivery ratio dropped to 83.96%. However, when sensor devices were reprogrammed to transmit only heart rate values, the mean delivery ratio increased to 99.90%, despite the presence of hidden-nodes. PMID:22942059

  5. A Microinstrumentation System for Remote Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Mason, Andrew; Baer, Wayne G.; Wise, Kensall D.

    1995-01-01

    This paper reports on a hybrid micro-instrumentation system that includes a embedded micro-controller, transducers for monitoring environmental parameters, interface/readout electronics for linking the controller and the transducers, and custom circuitry for system power management. Sensors for measuring temperature, pressure, humidity, and acceleration are included in the initial system, which operates for more than 180 days and dissipates less than 700 microW from a 6V battery supply. The sensor scan rate is adaptive and can be event triggered. The system communicates internally over a 1 MHz, nine-line intramodule sensor bus and outputs data over a hard-wired serial interface or a 315MHz wireless link. The use of folding platform packaging allows an internal system volume as small as 5 cc.

  6. Regional Drought Monitoring Based on Multi-Sensor Remote Sensing

    NASA Astrophysics Data System (ADS)

    Rhee, Jinyoung; Im, Jungho; Park, Seonyoung

    2014-05-01

    Drought originates from the deficit of precipitation and impacts environment including agriculture and hydrological resources as it persists. The assessment and monitoring of drought has traditionally been performed using a variety of drought indices based on meteorological data, and recently the use of remote sensing data is gaining much attention due to its vast spatial coverage and cost-effectiveness. Drought information has been successfully derived from remotely sensed data related to some biophysical and meteorological variables and drought monitoring is advancing with the development of remote sensing-based indices such as the Vegetation Condition Index (VCI), Vegetation Health Index (VHI), and Normalized Difference Water Index (NDWI) to name a few. The Scaled Drought Condition Index (SDCI) has also been proposed to be used for humid regions proving the performance of multi-sensor data for agricultural drought monitoring. In this study, remote sensing-based hydro-meteorological variables related to drought including precipitation, temperature, evapotranspiration, and soil moisture were examined and the SDCI was improved by providing multiple blends of the multi-sensor indices for different types of drought. Multiple indices were examined together since the coupling and feedback between variables are intertwined and it is not appropriate to investigate only limited variables to monitor each type of drought. The purpose of this study is to verify the significance of each variable to monitor each type of drought and to examine the combination of multi-sensor indices for more accurate and timely drought monitoring. The weights for the blends of multiple indicators were obtained from the importance of variables calculated by non-linear optimization using a Machine Learning technique called Random Forest. The case study was performed in the Republic of Korea, which has four distinct seasons over the course of the year and contains complex topography with a variety

  7. Monitoring the Snowpack in Remote, Ungauged Mountains

    NASA Astrophysics Data System (ADS)

    Dozier, J.; Davis, R. E.; Bair, N.; Rittger, K. E.

    2013-12-01

    Our objective is to estimate seasonal snow volumes, relative to historical trends and extremes, in snow-dominated mountains that have austere infrastructure, sparse gauging, challenges of accessibility, and emerging or enduring insecurity related to water resources. The world's mountains accumulate substantial snow and, in some areas, produce the bulk of the runoff. In ranges like Afghanistan's Hindu Kush, availability of water resources affects US policy, military and humanitarian operations, and national security. The rugged terrain makes surface measurements difficult and also affects the analysis of remotely sensed data. To judge feasibility, we consider two regions, a validation case and a case representing inaccessible mountains. For the validation case, we use the Sierra Nevada of California, a mountain range of extensive historical study, emerging scientific innovation, and conflicting priorities in managing water for agriculture, urban areas, hydropower, recreation, habitat, and flood control. For the austere regional focus, we use the Hindu Kush, where some of the most persistent drought in the world causes food insecurity and combines with political instability, and occasional flooding. Our approach uses a mix of satellite data and spare modeling to present information essential for planning and decision making, ranging from optimization of proposed infrastructure projects to assessment of water resources stored as snow for seasonal forecasts. We combine optical imagery (MODIS on Terra/Aqua), passive microwave data (SSM/I and AMSR-E), retrospective reconstruction with energy balance calculations, and a snowmelt model to establish the retrospective context. With the passive microwave data we bracket the historical range in snow cover volume. The rank orders of total retrieved volume correlates with reconstructions. From a library of historical reconstruction, we find similar cases that provide insights about snow cover distribution at a finer scale than

  8. Estimated validity and reliability of on-board diagnostics for older vehicles: comparison with remote sensing observations.

    PubMed

    Supnithadnaporn, Anupit; Noonan, Douglas S; Samoylov, Alexander; Rodgers, Michael O

    2011-10-01

    Based on requirements under the Clean Air Act Amendments of 1990, most state vehicle inspection and maintenance (I/M) programs have, since 2002, replaced the tailpipe emission testing with the on-board diagnostic (OBD) II testing for 1996 model and newer vehicles. This test relies on the OBD II system to give the pass or fail result, depending on certain conditions that might cause the vehicle to emit pollution 1.5 times higher than the regulated standard. The OBD II system is a computer and sensors installed in the vehicle to monitor the emission control units and signal if there is any malfunction. As a vehicle ages, its engine, pollution control units, and OBD II system deteriorate. Because the OBD II system's durability directly influences the test outcome, it is important to examine the fleetwide trend in the OBD II test results in comparison with an alternative measure of identifying high emitting vehicles. This study investigates whether the validity and reliability of the OBD II test is related to the age of the OBD II system installed in the fleet. Using Atlanta's I/M testing records and remote sensing device (RSD) data collected during 2002-2005, this research establishes the convergent validity and interobserver reliability criteria for the OBD II test based on on-road emissions measured by RSDs. The study results show that older vehicles exhibit significantly lower RSD-OBD II outcome agreement than newer vehicles. This suggests that the validity and reliability of the OBD II test may decline in the older vehicle fleets. Explanations and possible confounding factors for these findings are discussed. PMID:22070032

  9. Display aids for remote control of untethered undersea vehicles

    NASA Technical Reports Server (NTRS)

    Verplank, W. L.

    1978-01-01

    A predictor display superimposed on slow-scan video or sonar data is proposed as a method to allow better remote manual control of an untethered submersible. Simulation experiments show good control under circumstances which otherwise make control practically impossible.

  10. Comparison of passive-remote and conventional Fourier transform infrared systems for continuously monitoring incinerator emissions

    SciTech Connect

    Demirgian, J.C.; Hammer, C.L.; Kroutil, R.T.

    1992-07-01

    Significant improvements in detection technology are needed to comply with the requirements in the Clean Air Act of 1990, Title 3, which requires the monitoring of air toxics. Fourier transform infrared (FTIR) spectroscopy can satisfy these requirements in two different modes. Conventional FTIR spectrometers can be installed on-stream so that a vapor stream enters an infrared cell for analysis. Other types of FTIR spectrometers can detect chemical plumes remotely, measure the natural emissions of the molecules in the plume. The samples do not come to the instrument, and the instrument has neither source nor reflector mirrors. We will discuss the applications of FTIR spectrometry for both conventional and passive-remote FTIR spectroscopy. Some applications of conventional FTIR include a continuous emission monitor for measuring incinerator emissions and determining indoor air quality. Passive-remote FTIR spectroscopy can be used to identify and track a chemical plume. It can also be used to detect fugitive emissions. Hence, it can be used as an independent means to assure compliance with environmental regulations in real-time. Because of the relatively simple instrumentation, passive-remote instruments can be helicopter- or vehicle-mounted for mobile detection of plumes.

  11. Comparison of passive-remote and conventional Fourier transform infrared systems for continuously monitoring incinerator emissions

    SciTech Connect

    Demirgian, J.C.; Hammer, C.L. ); Kroutil, R.T. )

    1992-01-01

    Significant improvements in detection technology are needed to comply with the requirements in the Clean Air Act of 1990, Title 3, which requires the monitoring of air toxics. Fourier transform infrared (FTIR) spectroscopy can satisfy these requirements in two different modes. Conventional FTIR spectrometers can be installed on-stream so that a vapor stream enters an infrared cell for analysis. Other types of FTIR spectrometers can detect chemical plumes remotely, measure the natural emissions of the molecules in the plume. The samples do not come to the instrument, and the instrument has neither source nor reflector mirrors. We will discuss the applications of FTIR spectrometry for both conventional and passive-remote FTIR spectroscopy. Some applications of conventional FTIR include a continuous emission monitor for measuring incinerator emissions and determining indoor air quality. Passive-remote FTIR spectroscopy can be used to identify and track a chemical plume. It can also be used to detect fugitive emissions. Hence, it can be used as an independent means to assure compliance with environmental regulations in real-time. Because of the relatively simple instrumentation, passive-remote instruments can be helicopter- or vehicle-mounted for mobile detection of plumes.

  12. Remote Sensing Techniques as a Tool for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Faisal, K.; AlAhmad, M.; Shaker, A.

    2012-07-01

    The disposal of the solid wastes in landfill sites should be properly monitored by analyzing samples from soil, water, and landfill gases within the landfill site. Nevertheless, ground monitoring systems require intensive efforts and cost. Furthermore, ground monitoring may be difficult to be achieved in large geographic extent. Remote sensing technology has been introduced for waste disposal management and monitoring effects of the landfill sites on the environment. In this paper, two case studies are presented in the Trail Road landfill, Ottawa, Canada and the Al-Jleeb landfill, Al-Farwanyah, Kuwait to evaluate the use of multi-temporal remote sensing images to monitor the landfill sites. The work objectives are: 1) to study the usability of multi-temporal Landsat images for landfill site monitoring by studying the land surface temperature (LST) in the Trail Road landfill, 2) to investigate the relationship between the LST and the amount of the landfill gas emitted in the Trail Road landfill, and 3) to use the multi-temporal LST images to detect the suspicious dumping areas within the Al-Jleeb landfill site. Free archive of multi-temporal Landsat images are obtained from the USGS EarthExplorer. The Landsat images are then atmospherically corrected and the LST images are derived from the thermal band of the corrected Landsat images. In the Trail Road landfill, the results reveal that the LST of the landfill site is always higher than the air temperature by 10°C in average as well as the surroundings. A correlation is also observed between the recorded emitted methane (CH4) from the ground monitoring stations and the LST derived from the Landsat images. Based on the findings in the Al-Jleeb landfill, five locations are identified as suspicious dumping areas by overlaying the highest LST contours generated from the multi-temporal LST images. The study demonstrates that the use of multi-temporal remote sensing images can provide supplementary information for

  13. Scarab III Remote Vehicle Deployment for Waste Retrieval and Tank Inspection

    SciTech Connect

    Burks, B.L.; Falter, D.D.; Noakes, M.; Vesco, D.

    1999-04-25

    The Robotics Technology Development Program now known as the Robotics Crosscut Program, funded the development and deployment of a small remotely operated vehicle for inspection and cleanout of small horizontal waste storage tanks that have limited access. Besides the advantage of access through tank risers as small as 18-in. diameter, the small robotic system is also significantly less expensive to procure and to operate than larger remotely operated vehicle (ROV) systems. The vehicle specified to support this activity was the ROV Technologies, Inc., Scarab. The Scarab is a tracked vehicle with an independently actuated front and rear ''toe'' degree-of-freedom which allows the stand-off and angle of the vehicle platform with respect to the floor to be changed. The Scarab is a flexible remote tool that can be used for a variety of tasks with its primary uses targeted for inspection and small scale waste retrieval. The vehicle and any necessary process equipment are mounted in a deployment and containment enclosure to simplify deployment and movement of the system from tank to tank. This paper outlines the technical issues related to the Scarab vehicle and its deployment for use in tank inspection and waste retrieval operation

  14. Wind-driven desertification: Process modeling, remote monitoring, and forecasting

    NASA Astrophysics Data System (ADS)

    Okin, Gregory Stewart

    Arid and semiarid landscapes comprise nearly a third of the Earth's total land surface. These areas are coming under increasing land use pressures. Despite their low productivity these lands are not barren. Rather, they consist of fragile ecosystems vulnerable to anthropogenic disturbance. The purpose of this thesis is threefold: (I) to develop and test a process model of wind-driven desertification, (II) to evaluate next-generation process-relevant remote monitoring strategies for use in arid and semiarid regions, and (III) to identify elements for effective management of the world's drylands. In developing the process model of wind-driven desertification in arid and semiarid lands, field, remote sensing, and modeling observations from a degraded Mojave Desert shrubland are used. This model focuses on aeolian removal and transport of dust, sand, and litter as the primary mechanisms of degradation: killing plants by burial and abrasion, interrupting natural processes of nutrient accumulation, and allowing the loss of soil resources by abiotic transport. This model is tested in field sampling experiments at two sites and is extended by Fourier Transform and geostatistical analysis of high-resolution imagery from one site. Next, the use of hyperspectral remote sensing data is evaluated as a substantive input to dryland remote monitoring strategies. In particular, the efficacy of spectral mixture analysis (SMA) in discriminating vegetation and soil types and determining vegetation cover is investigated. The results indicate that hyperspectral data may be less useful than often thought in determining vegetation parameters. Its usefulness in determining soil parameters, however, may be leveraged by developing simple multispectral classification tools that can be used to monitor desertification. Finally, the elements required for effective monitoring and management of arid and semiarid lands are discussed. Several large-scale multi-site field experiments are proposed to

  15. A remotely augmented vehicle approach to flight testing RPV control systems

    NASA Technical Reports Server (NTRS)

    Deets, D. A.; Edwards, J. W.

    1974-01-01

    A remotely augmented vehicle concept for flight testing advanced control systems was developed as an outgrowth of a remotely piloted research vehicle (RPV) program in which control laws are implemented through telemetry uplink and downlink data channels using a general purpose ground based digital computer which provides the control law computations. Some advantages of this approach are that the cost of one control system facility is spread over a number of RPV programs, and control laws can be changed quickly as required, without changing the flight hardware. The remotely augmented vehicle concept is described, and flight test results from a subscale F-15 program are discussed. Suggestions of how the concept could lead to more effective testing of RPV control system concepts, and how it is applicable to a military RPV reconnaissance mission are given.

  16. Quartz resonator fluid monitors for vehicle applications

    NASA Astrophysics Data System (ADS)

    Cernosek, R. W.; Martin, S. J.; Wessendorf, K. O.; Terry, M. D.; Rumpf, A. N.

    Thickness shear mode (TSM) quartz resonators operating in a new 'Lever oscillator' circuit are used as monitors for critical automotive fluids. These monitors respond to the density and viscosity of liquids contacting the quartz surface. Sensors have been developed for determining the viscosity characteristics of engine lubricating oil, the state-of-charge of lead-acid storage batteries, and the concentration variations in engine coolant.

  17. Quartz resonator fluid monitors for vehicle applications

    SciTech Connect

    Cernosek, R.W.; Martin, S.J.; Wessendorf, K.O.; Terry, M.D.; Rumpf, A.N.

    1994-09-01

    Thickness shear mode (TSM) quartz resonators operating in a new {open_quotes}Lever oscillator{close_quotes} circuit are used as monitors for critical automotive fluids. These monitors respond to the density and viscosity of liquids contacting the quartz surface. Sensors have been developed for determining the viscosity characteristics of engine lubricating oil, the state-of-charge of lead-acid storage batteries, and the concentration variations in engine coolant.

  18. Use of a remotely operated vehicle (submarine) for nuclear plant inspections

    SciTech Connect

    Duink, S.S.; Adam, J.D.

    1989-01-01

    This paper describes the use of a specialized remotely operated vehicle (ROV) to perform visual underwater inspections in nuclear power plants. An underwater ROV, or minisubmarine, for visual inspections has several advantages over the more traditional camera-on-a-pole techniques and can perform some inspections easily that in the past were considered too difficult to conduct remotely. Other advantages include radiation does savings, outage critical path savings, and reduced manpower and expenses.

  19. A new tool for the rapid remote detection of leaks from subsea pipelines during remotely operated vehicle inspections

    NASA Astrophysics Data System (ADS)

    McStay, D.; McIlroy, J.; Forte, A.; Lunney, F.; Greenway, T.; Thabeth, K.; Dean, G.

    2005-06-01

    A new 2000 m depth rated subsea sensor that can effectively, rapidly and remotely detect leaks of fluorescein dye, leak detection chemicals and hydraulic fluids from underwater structures is reported. The system utilizes ultra-bright LED technology to project a structured beam of light, at a wavelength suitable to excite the fluorescence of the target material, into the water column. The resultant fluorescence is collected and digital signal processing used to extract the intensity. The system is capable of detecting ppm concentrations of fluorescein at a range of 2.5 m in water in real time. The ability to stand-off from subsea structures, while rapidly detecting the chemicals makes the system highly suited to subsea leak inspections with remotely operated vehicles or autonomous underwater vehicles, as it allows the vehicles to be flown quickly and safely over the structure to be inspected. This increases both the speed and effectiveness of the inspection. The remote detection capability is also highly effective for probing complex underwater structures. The system has been successfully used in real subsea survey applications and has been found to be effective, user friendly and to dramatically reduce inspection times and hence costs.

  20. Structural monitoring for rare events in remote locations

    NASA Astrophysics Data System (ADS)

    Hale, J. M.

    2005-01-01

    A structural monitoring system has been developed for use on high value engineering structures, which is particularly suitable for use in remote locations where rare events such as accidental impacts, seismic activity or terrorist attack might otherwise go undetected. The system comprises a low power intelligent on-site data logger and a remote analysis computer that communicate with one another using the internet and mobile telephone technology. The analysis computer also generates e-mail alarms and maintains a web page that displays detected events in near real-time to authorised users. The application of the prototype system to pipeline monitoring is described in which the analysis of detected events is used to differentiate between impacts and pressure surges. The system has been demonstrated successfully and is ready for deployment.

  1. Remote sensing: Snow monitoring tool for today and tomorrow

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1977-01-01

    Various types of remote sensing are now available or will be in the future for snowpack monitoring. Aircraft reconnaissance is now used in a conventional manner by various water resources agencies to obtain information on snowlines, depth, and melting of the snowpack for forecasting purposes. The use of earth resources satellites for mapping snowcovered area, snowlines, and changes in snowcover during the spring has increased during the last five years. Gamma ray aircraft flights, although confined to an extremely low altitude, provide a means for obtaining valuable information on snow water equivalent. The most recently developed remote sensing technology for snow, namely, microwave monitoring, has provided initial results that may eventually allow us to infer snow water equivalent or depth, snow wetness, and the hydrologic condition of the underlying soil.

  2. Preliminary Analysis of Remote Monitoring & Robotic Concepts for Performance Confirmation

    SciTech Connect

    D.A. McAffee

    1997-02-18

    As defined in 10 CFR Part 60.2, Performance Confirmation is the ''program of tests, experiments and analyses which is conducted to evaluate the accuracy and adequacy of the information used to determine with reasonable assurance that the performance objectives for the period after permanent closure will be met''. The overall Performance Confirmation program begins during site characterization and continues up to repository closure. The main purpose of this document is to develop, explore and analyze initial concepts for using remotely operated and robotic systems in gathering repository performance information during Performance Confirmation. This analysis focuses primarily on possible Performance Confirmation related applications within the emplacement drifts after waste packages have been emplaced (post-emplacement) and before permanent closure of the repository (preclosure). This will be a period of time lasting approximately 100 years and basically coincides with the Caretaker phase of the project. This analysis also examines, to a lesser extent, some applications related to Caretaker operations. A previous report examined remote handling and robotic technologies that could be employed during the waste package emplacement phase of the project (Reference 5.1). This analysis is being prepared to provide an early investigation of possible design concepts and technical challenges associated with developing remote systems for monitoring and inspecting activities during Performance Confirmation. The writing of this analysis preceded formal development of Performance Confirmation functional requirements and program plans and therefore examines, in part, the fundamental Performance Confirmation monitoring needs and operating conditions. The scope and primary objectives of this analysis are to: (1) Describe the operating environment and conditions expected in the emplacement drifts during the preclosure period. (Presented in Section 7.2). (2) Identify and discuss the

  3. Long-term remote monitoring of salt marsh biomass

    NASA Technical Reports Server (NTRS)

    Gross, M. F.; Klemas, V.; Hardisky, M. A.

    1990-01-01

    Methods developed for monitoring salt-marsh biomass remotedly are considered in the framework of NASA's Biospheric Research Program. Satellite-derived estimates of the aboveground biomass is considered, and it is noted that a long-term program for long-term remote monitoring is only practical if the relationship between biomass and spectral data remains essentially constant from year to year. Emphasis is placed on ground-based sampling, satellite measurements of mean marsh live aboveground biomass, the spatial distribution of biomass within the marsh, and changes in marsh hydrography as seen from a satellite. Linking aboveground and belowground biomass is discussed, as well as the problem with obtaining cloud-free images and measuring dead biomass.

  4. U.S. SUPPORT PROGRAM CONTRIBUTIONS TO REMOTE MONITORING

    SciTech Connect

    PEPPER,S.E.

    2000-05-08

    Since 1993, the IAEA has made great progress in the implementation of remote monitoring. Equipment has been developed and tested, and installed systems are being used for safeguards purposes. The cost of equipment, the complexity of communication technology, and maintenance of the equipment are challenges that still face the IAEA. Resolution of these challenges will require significant effort. The USSP is committed to assisting the IAEA to overcome these challenges.

  5. Development and Flight Testing of an Adaptive Vehicle Health-Monitoring Architecture

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.

    2002-01-01

    On going development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle, and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. The expert system is parameterized, which makes it adaptable to be trained to both a user's subject reasoning and existing quantitative analytic tools. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation and, data acquisition, storage and retrieval.

  6. Remote optoelectronic sensors for monitoring of nonlinear surfaces

    NASA Astrophysics Data System (ADS)

    Petrochenko, Andrew V.; Konyakhin, Igor A.

    2015-05-01

    Actually during construction of the high building actively are used objects of various nonlinear surface, for example, sinuous (parabolic or hyperbolic) roofs of the sport complexes that require automatic deformation control [1]. This type of deformation has character of deflection that is impossible to monitor objectively with just one optoelectronic sensor (which is fixed on this surface). In this article is described structure of remote optoelectronic sensor, which is part of the optoelectronic monitoring system of nonlinear surface, and mathematical transformation of exterior orientation sensor elements in the coordinates of control points.

  7. Cardiac Resynchronization Therapy Follow-up: Role of Remote Monitoring.

    PubMed

    Linde, Cecilia; Braunschweig, Frieder

    2015-12-01

    Cardiac resynchronization therapy (CRT) is increasingly used in heart failure treatment and management of these patients imposes significant challenges. Remote monitoring is becoming essential for CRT follow-up and allows close surveillance of device function and patient condition. It is helpful to reduce clinic visits, increase device longevity and provide early detection of device failure. Clinical effects include prevention of appropriate and inappropriate shocks and early detection of arrhythmias, such as atrial fibrillation. For modification of heart failure the addition of monitoring to CRT by means of device-based multiparameters may help to modify disease progression and improve survival. PMID:26596821

  8. Volcano monitoring by short wavelength infrared satellite remote sensing

    NASA Technical Reports Server (NTRS)

    Rothery, D. A.; Francis, P. W.; Wood, C. A.

    1988-01-01

    The use of short wavelength IR Landsat TM data for volcano monitoring is examined. By determining the pixel-integrated from the TM data, it is possible to estimate the temperature and size of hot areas which occupy less than one complete pixel. Examples of volcano monitoring with remote sensing data are discussed. It is suggested that the entire volcanic temperature range (100-1200 C) could be accomplished by decreasing the band 6 gain by just one order of magnitude so that it was sensitive to radiance from 1 to 100 mW/sq cm/sr/micron.

  9. NN-SITE: A remote monitoring testbed facility

    SciTech Connect

    Kadner, S.; White, R.; Roman, W.; Sheely, K.; Puckett, J.; Ystesund, K.

    1997-08-01

    DOE, Aquila Technologies, LANL and SNL recently launched collaborative efforts to create a Non-Proliferation Network Systems Integration and Test (NN-Site, pronounced N-Site) facility. NN-Site will focus on wide area, local area, and local operating level network connectivity including Internet access. This facility will provide thorough and cost-effective integration, testing and development of information connectivity among diverse operating systems and network topologies prior to full-scale deployment. In concentrating on instrument interconnectivity, tamper indication, and data collection and review, NN-Site will facilitate efforts of equipment providers and system integrators in deploying systems that will meet nuclear non-proliferation and safeguards objectives. The following will discuss the objectives of ongoing remote monitoring efforts, as well as the prevalent policy concerns. An in-depth discussion of the Non-Proliferation Network Systems Integration and Test facility (NN-Site) will illuminate the role that this testbed facility can perform in meeting the objectives of remote monitoring efforts, and its potential contribution in promoting eventual acceptance of remote monitoring systems in facilities worldwide.

  10. Remote health monitoring system for detecting cardiac disorders.

    PubMed

    Bansal, Ayush; Kumar, Sunil; Bajpai, Anurag; Tiwari, Vijay N; Nayak, Mithun; Venkatesan, Shankar; Narayanan, Rangavittal

    2015-12-01

    Remote health monitoring system with clinical decision support system as a key component could potentially quicken the response of medical specialists to critical health emergencies experienced by their patients. A monitoring system, specifically designed for cardiac care with electrocardiogram (ECG) signal analysis as the core diagnostic technique, could play a vital role in early detection of a wide range of cardiac ailments, from a simple arrhythmia to life threatening conditions such as myocardial infarction. The system that the authors have developed consists of three major components, namely, (a) mobile gateway, deployed on patient's mobile device, that receives 12-lead ECG signals from any ECG sensor, (b) remote server component that hosts algorithms for accurate annotation and analysis of the ECG signal and (c) point of care device of the doctor to receive a diagnostic report from the server based on the analysis of ECG signals. In the present study, their focus has been toward developing a system capable of detecting critical cardiac events well in advance using an advanced remote monitoring system. A system of this kind is expected to have applications ranging from tracking wellness/fitness to detection of symptoms leading to fatal cardiac events. PMID:26577166

  11. The NUROV: a Networked Underwater Remote Observation Vehicle

    NASA Astrophysics Data System (ADS)

    Rognstad, M. R.; Jones, W. H.

    2006-12-01

    NUROV, a small observation class underwater vehicle, is under development at the Hawaii Mapping Research Group (HMRG) of the University of Hawaii. Connected by tether to a Base100T Internet Protocol (IP) network, such as those presently in use or proposed for cabled ocean observatories, it enables control of the vehicle through a web browser virtual control panel, and delivers live video through the same IP network. The vehicle is simple, with two horizontal thrusters and one vertical thruster, and a motorized tilt function for the video camera. Arrays of Light Emitting Diodes (LEDs) are mounted on either side of the camera so its field of view can be illuminated. Thruster motors and LED arrays are oil filled and pressure tolerant. The video camera, motor controller, and network electronics are enclosed in pressure housings; the initial prototype housings are designed for shallow water, but future housings for water depths to 6000 meters are planned. The LED arrays and camera housing window incorporate ultraviolet LEDs to reduce the effects of biofouling. A pressure sensor allows for automatic depth regulation by the motor controller on command from the vehicle pilot. In addition to applications observing near ocean observatory nodes, NUROV may also be used from a ship, using a standard fiber-optic electromechanical cable connected to a fiber to electrical network converter contained in a pressure housing. In fact, with the addition of a network switch, multiple vehicles could be deployed simultaneously on a single cable. Connection of the NUROV network to the Internet would allow users located around the world to pilot the vehicle and observe the IP video; this would be particularly useful for educational outreach.

  12. High Speed Lunar Navigation for Crewed and Remotely Piloted Vehicles

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Allan, M.; To, V.; Utz, H.; Wojcikiewicz, W.; Chautems, C.

    2010-01-01

    Increased navigation speed is desirable for lunar rovers, whether autonomous, crewed or remotely operated, but is hampered by the low gravity, high contrast lighting and rough terrain. We describe lidar based navigation system deployed on NASA's K10 autonomous rover and to increase the terrain hazard situational awareness of the Lunar Electric Rover crew.

  13. Remote resupply systems for unmanned FCS-related vehicles

    NASA Astrophysics Data System (ADS)

    Murphy, Robin R.; Gonzalez, Noel; Fitz-Coy, Norman G.; Papila, Nilay; Shyy, Wei

    2003-09-01

    This paper summarizes a study on refueling and rearming FCS-related vehicles in the field. In keeping with the FCS philosophy, the resupply process should be unmanned. For the purposes of the study, a resupply (RS) system is defined as an autonomous robotic platform, which interacts with a combat vehicle (CV). The purpose of the interaction is transfer of liquid fuel and/or ammunition. The RS may be capable of providing both the fuel and the ammunition simultaneously, or there may be separate resupply vehicles, each dedicated to one consumable. The CV may be resupplied while on-station and operational or may be taken out of service and moved to a resupply point. The study proposed a resupply system, which consists of two RS vehicles (i.e., separate vehicles for fuel and ammunition) to refuel the CV. Four families of scenarios were considered: the RS moves to the CV ("door to door"), the RS and CV both move ("rendezvous"), the CV move the RS ("filling station"), and the CV move to a pod dropped nearby. The "door to door" scenario was rated the most feasible, with the rendezvous scenario a close second. The study ascertained that RS vehicles using a robotic manipulator for the transfer mechanism is based on best engineering practices and constitute a low risk design. The required level of autonomy to accomplish resupply is teleoperation, though a mixed-initiative approach poses relatively low risk. A teleoperator or simple mixed-initiative system can be completed in 3 years, and offers significant performance benefits. Full autonomy was determined to be too high risk, but mixed-initiative work could serve as a basis for evolving to full autonomy. The study also considered the impact of emerging technologies on resupply. The key technical risks in ascending order of investment priority are: platform design, munitions transfer mechanism, and human-robot interaction (HRI). The platform design and munitions transfer mechanism are lower risk than HRI, which is a

  14. Secure Remote Health Monitoring with Unreliable Mobile Devices

    PubMed Central

    Shin, Minho

    2012-01-01

    As the nation's healthcare information infrastructure continues to evolve, new technologies promise to provide readily accessible health information that can help people address personal and community health concerns. In particular, wearable and implantable medical sensors and portable computing devices present many opportunities for providing timely health information to health providers, public health professionals, and consumers. Concerns about privacy and information quality, however, may impede the development and deployment of these technologies for remote health monitoring. Patients may fail to apply sensors correctly, device can be stolen or compromised (exposing the medical data therein to a malicious party), low-cost sensors controlled by a capable attacker might generate falsified data, and sensor data sent to the server can be captured in the air by an eavesdropper; there are many opportunities for sensitive health data to be lost, forged, or exposed. In this paper, we design a framework for secure remote health-monitoring systems; we build a realistic risk model for sensor-data quality and propose a new health-monitoring architecture that is secure despite the weaknesses of common personal devices. For evaluation, we plan to implement a proof of concept for secure health monitoring. PMID:22910449

  15. Secure remote health monitoring with unreliable mobile devices.

    PubMed

    Shin, Minho

    2012-01-01

    As the nation's healthcare information infrastructure continues to evolve, new technologies promise to provide readily accessible health information that can help people address personal and community health concerns. In particular, wearable and implantable medical sensors and portable computing devices present many opportunities for providing timely health information to health providers, public health professionals, and consumers. Concerns about privacy and information quality, however, may impede the development and deployment of these technologies for remote health monitoring. Patients may fail to apply sensors correctly, device can be stolen or compromised (exposing the medical data therein to a malicious party), low-cost sensors controlled by a capable attacker might generate falsified data, and sensor data sent to the server can be captured in the air by an eavesdropper; there are many opportunities for sensitive health data to be lost, forged, or exposed. In this paper, we design a framework for secure remote health-monitoring systems; we build a realistic risk model for sensor-data quality and propose a new health-monitoring architecture that is secure despite the weaknesses of common personal devices. For evaluation, we plan to implement a proof of concept for secure health monitoring. PMID:22910449

  16. Remote health monitoring for elderly through interactive television

    PubMed Central

    2012-01-01

    Background Providing remote health monitoring to specific groups of patients represents an issue of great relevance for the national health systems, because of the costs related to moving health operators, the time spent to reach remote sites, and the high number of people needing health assistance. At the same time, some assistance activities, like those related to chronical diseases, may be satisfied through a remote interaction with the patient, without a direct medical examination. Methods Moving from this considerations, our paper proposes a system architecture for the provisioning of remote health assistance to older adults, based on a blind management of a network of wireless medical devices, and an interactive TV Set Top Box for accessing health related data. The selection of TV as the interface between the user and the system is specifically targeted to older adults. Due to the private nature of the information exchanged, a certified procedure is implemented for data delivery, through the use of non conditional smart cards. All these functions may be accomplished through a proper design of the system management, and a suitable interactive application. Results The interactive application acting as the interface between the user and the system on the TV monitor has been evaluated able to help readability and clear understanding of the contents and functions proposed. Thanks to the limited amount of data to transfer, even a Set Top Box equipped with a traditional PSTN modem may be used to support the proposed service at a basic level; more advanced features, like audio/video connection, may be activated if the Set Top Box enables a broadband connection (e.g. ADSL). Conclusions The proposed layered architecture for a remote health monitoring system can be tailored to address a wide range of needs, according with each patient’s conditions and capabilities. The system exploits the potentialities offered by Digital Television receivers, a friendly MHP interface

  17. Remote Sensing of Leaf Area Index from Unmanned Airborne Vehicles (UAVs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing with unmanned airborne vehicles (UAVs) has potential for rangeland management because: (1) pixels have very high spatial resolution, (2) cloud cover would not prevent acquisition during critical periods of plant growth, and (3) information is quickly delivered to the user. Winter whe...

  18. Remote Sensing Crop Leaf Area Index Using Unmanned Airborne Vehicles (UAV's)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing with unmanned airborne vehicles (UAVs) has more potential for within-season crop management than conventional satellite imagery because: (1) pixels have very high resolution, (2) cloud cover would not prevent acquisition during critical periods of growth, and (3) quick delivery of inf...

  19. Remote Sensing Leaf Area Index of Winter Wheat from Unmanned Airborne Vehicles (UAVs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing with unmanned airborne vehicles (UAVs) has more potential for within-season crop management than conventional satellite imagery because: (1) pixels have very high resolution, (2) cloud cover would not prevent acquisition during critical periods of growth, and (3) quick delivery of inf...

  20. Real-Time Remote Monitoring with Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Faizal Zainal Abidin, Ahmad; Huzaimy Jusoh, Mohammad; James, Elster; Junid, Syed Abdul Mutalib Al; Mohd Yassin, Ahmad Ihsan

    2015-11-01

    The purpose of this system is to provide monitoring system for an electrical device and enable remote monitoring via web based application. This monitoring system allow the user to monitor the device condition from anywhere as the information will be synchronised to the website. The current and voltage reading of the monitored equipment, ambient temperature and humidity level are monitored and recorded. These parameters will be updated on the web page. All these sensor are connected to the microcontroller and the data will saved in micro secure digital (SD) card and send all the gathered information to a web page using the GPRS service connection synchronously. The collected data will be displayed on the website and the user enable to download the data directly from the website. The system will help user to monitor the devices condition and ambient changes with ease. The system is successfully developed, tested and has been installed at residential area in Taman Cahaya Alam, Section U12, Shah Alam, Selangor, Malaysia.

  1. Field Experiments using Telepresence and Virtual Reality to Control Remote Vehicles: Application to Mars Rover Missions

    NASA Technical Reports Server (NTRS)

    Stoker, Carol

    1994-01-01

    This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary

  2. Remote monitoring of nursing home residents using a humanoid robot.

    PubMed

    Bäck, Iivari; Kallio, Jouko; Perälä, Sami; Mäkelä, Kari

    2012-09-01

    We studied the feasibility of using a humanoid robot as an assistant in the monitoring of nursing home residents. The robot can receive alarms via its wireless Internet connection and navigate independently to the room where the alarm originated. Once it has entered the room, the robot can transmit near real time images to the staff and also open a voice connection between the resident and the remote caregivers. This way the remote caregiver is able to check the situation in the room, and take appropriate actions. We tested the prototype robot in three private nursing homes in the Finnish county of South Ostrobothnia. During the testing, 2-4 alarms were produced by each participant and there were 29 alarms in total. The robot was able to navigate correctly to the room from which the alarm was sent and open the speech connection, as well as transmit images via the wireless Internet connection. The experiments provided evidence of the feasibility of using autonomous robots as assistants to nursing home staff in remote monitoring. The response from the nursing home residents was uniformly positive. PMID:22912489

  3. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    SciTech Connect

    Not Available

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar{trademark} wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task.

  4. Monitoring Movement Patterns on a Large Landslide Using Remote Methods.

    NASA Astrophysics Data System (ADS)

    Murphy, W.; Bulmer, M. H.; Petley, D.

    2002-12-01

    Traditional methods of landslide monitoring have normally employed ground based instrumentation that is either read directly, logged by computer or telemetered to a remote station. While such methods have shown excellent results they remain labour intensive and costly. Furthermore such equipment is frequently lost. In recent years the use of remotely sensed data for the detection and monitoring of landslides has become more common. Such methods may take a number of forms. Firstly, the use of multitemporal satellite-based systems in either multispectral or panchromatic mode has allowed the detection and growth of landslides. These methods, despite allowing a stable platform and regular data collection are limited with regards to their spatial (and sometimes spectral) resolution. Secondly, repeat pass aerial photography now may have the advantage of being collected digitally, and possesses the capability of being orthorectified using either ground control stations or to onboard GPS measurements. These have the advantages of superior ground resolution and can be used to create high resolution digital elevation models allowing the frequent monitoring of landform change by DEM subtraction methods. The limiting factor is that the absence of good spectral coverage may make the detection of landslide related features (such as vegetation stress) difficult. Such a limitation can be overcome by simultaneous collection of airborne multispectral data, such as ATM, that can give excellent results for landslide monitoring and mapping. These techniques compliment the use of InSAR for the monitoring of ground deformation. While the use of InSAR allows the detection of surface deformation other methods allow actual landslide observation. Additionally, the greater precision of DEM derived from orthophotography can enhance the quality of the InSAR product. These complimentary techniques have been combined over the Black Ven landslide on the south-west coast of England to test their

  5. Analysis of remote reflection spectroscopy to monitor plant health

    NASA Astrophysics Data System (ADS)

    Woodhouse, R.; Heeb, M.; Berry, W.; Hoshizaki, T.; Wood, M.

    1994-11-01

    Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System CELSS type crops. Lettuce (Latuca Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.

  6. Analysis of remote reflection spectroscopy to monitor plant health.

    PubMed

    Woodhouse, R; Heeb, M; Berry, W; Hoshizaki, T; Wood, M

    1994-11-01

    Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System CELSS type crops. Lettuce (Lactuca [correction of Latuca] Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise. PMID:11540181

  7. A remote sensing system for northern ecosystem monitoring

    SciTech Connect

    Li, Zhanqing; Cihlar, J.; Chen, Jing

    1997-11-01

    A suite of remote sensing techniques intended for northern terrestrial environment monitoring are described. Algorithms designed to derive land cover type, leaf area index, canopy absorbed photosynthetically active radiation, net primary productivity, active fires, and annual total burned area from remote sensing are also outlined. Prototype products of these parameters across Canada from single day and 10-day composite satellite measurements, some of which have been validated, are presented and discussed. The system used for data acquisition and processing includes three major components: data preprocessing, removal of artifacts, and inversion of surface parameters. The preprocessing includes satellite data calibration, registration, and clear sky compositing. Artifacts introduced by the presence of clouds, atmosphere, and angular dependence are eliminated or alleviated using various correction models. 69 refs., 1 fig.

  8. Analysis of remote reflectin spectroscopy to monitor plant health

    NASA Technical Reports Server (NTRS)

    Woodhouse, R.; Heeb, M.; Berry, W.; Hoshizaki, T.; Wood, M.

    1994-01-01

    Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System (CELSS) type crops. Lettuce (Latuca Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.

  9. Remote hemodynamic monitoring for ambulatory left ventricular assist device patients

    PubMed Central

    Emani, Sitaramesh

    2015-01-01

    Left ventricular assist devices (LVADs) have been shown to markedly improve survival and quality of life in patients with end-stage heart failure. However, despite ongoing improvements in survival and quality of life, significant challenges still exist in the management of these patients, including a high rate of recurrent heart failure and rehospitalizations. Similar challenges exist in the non-LVAD heart failure population as well, and recent efforts to utilize remote hemodynamic monitoring techniques to improve outcomes have shown promise. No data currently exist demonstrating extension of this benefit into the LVAD population, although a theoretical benefit can be extrapolated. Herein we review current remote hemodynamic methods and potential applications towards LVAD patients. PMID:26793337

  10. Remote Control and Monitoring of VLBI Experiments by Smartphones

    NASA Astrophysics Data System (ADS)

    Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.

    2012-12-01

    For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.

  11. Towards Comprehensive Variation Models for Designing Vehicle Monitoring Systems

    NASA Technical Reports Server (NTRS)

    McAdams, Daniel A.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    When designing vehicle vibration monitoring systems for aerospace devices, it is common to use well-established models of vibration features to determine whether failures or defects exist. Most of the algorithms used for failure detection rely on these models to detect significant changes in a flight environment. In actual practice, however, most vehicle vibration monitoring systems are corrupted by high rates of false alarms and missed detections. This crucial roadblock makes their implementation in real vehicles (e.g., helicopter transmissions and aircraft engines) difficult, making their operation costly and unreliable. Research conducted at the NASA Ames Research Center has determined that a major reason for the high rates of false alarms and missed detections is the numerous sources of statistical variations that are not taken into account in the modeling assumptions. In this paper, we address one such source of variations, namely, those caused during the design and manufacturing of rotating machinery components that make up aerospace systems. We present a novel way of modeling the vibration response by including design variations via probabilistic methods. Using such models, we develop a methodology to account for design and manufacturing variations, and explore the changes in the vibration response to determine its stochastic nature. We explore the potential of the methodology using a nonlinear cam-follower model, where the spring stiffness values are assumed to follow a normal distribution. The results demonstrate initial feasibility of the method, showing great promise in developing a general methodology for designing more accurate aerospace vehicle monitoring systems.

  12. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  13. Remote monitoring of instrumented structures using the Internet information superhighway

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Huston, Dryver R.; Ambrose, Timothy P.

    1994-09-01

    The requirements of sensor monitoring associated with instrumented civil structures poses potential logistical constraints on manpower, training, and costs. The need for frequent or even continuous data monitoring places potentially severe constraints on overall system performance given real-world factors such as available manpower, geographic separation of the instrumented structures, and data archiving as well as the training and cost issues. While the pool of available low wage, moderate skill workers available to the authors is sizable (undergraduate engineering students), the level of performance of such workers is quite variable leading to data acquisition integrity and continuity issues - matters that are not acceptable in the practical field implementation of such developed systems. In the case of acquiring data from the numerous sensors within the civil structures which the authors have instrumented (e.g., a multistory building, roadway/railway bridges, and a hydroelectric dam), we have found that many of these concerns may be alleviated through the use of an automated data acquisition system which archives the acquired information in an electronic location remotely accessible through the Internet global computer network. It is therefore a possible for the data monitoring to be performed at a remote location with the only requirements for data acquisition being Internet accessibility. A description of the developed scheme is presented as well as guiding philosophies.

  14. Concepts for continuous quality monitoring and station remote control

    NASA Astrophysics Data System (ADS)

    Ettl, M.; Neidhardt, A.; Rottmann, H.; Mühlbauer, M.; Plötz, C.; Himwich, E.; Beaudoin, C.; Szomoru, A.

    2011-07-01

    In the newly funded "Novel EXploration Pushing Robuste-VLBI Services", - project (NEXPReS) the Technische Universitaet Muenchen realize concepts for continuous quality monitoring and station remote control in cooperation with the Max-Planck-Institute for Radioastronomy, Bonn. NEXPReS is a three-year project aimed at further developing e-VLBI services of the European VLBI Network (EVN), with the goal of incorporating e-VLBI into every astronomical observation conducted by the EVN. This project focus on developments of an operational e-control system with authentication and authorization. It includes an appropriate role management with different remote access states for future observation strategies. To allow a flexible control of different systems in parallel sophisticated graphical user interfaces are designed and realized. It requires also a session oriented data management. Because of the higher degree of automation additional system parameters and information is collected with a new system monitoring. The whole system for monitoring and control is fully compatible to the NASA field system as extension. The concept will be proofed with regular tests between Wettzell and Effelsberg.

  15. Remote monitoring of organic matter in the ocean

    NASA Astrophysics Data System (ADS)

    Niccolai, Filippo; Bazzani, Marco; Cecchi, Giovanna; Innamorati, Mario; Massi, Luca; Nuccio, Caterina; Santoleri, Rosalia

    1999-12-01

    The monitoring of organic matter, suspended or dissolved in the water column, is relevant for the study of the aquatic environment. Actually, the Dissolved Organic Matter (DOM) represents a major reservoir of reactive carbon in the global carbon cycle, thus influencing significantly the marine ecosystem. Due to the strong absorption in the near ultraviolet, DOM reduces considerably the extinction path of solar light in the water column, affecting phytoplankton population and its vertical distribution. The measurement of the DOM absorption coefficient has to be regarded as a good parameter for the monitoring of water quality. This paper deals with the measurements carried out during the oceanographic campaign 'Marine Fronts,' which took place in the Western Mediterranean Sea and Atlantic Ocean from July 14 to August 5, 1998. In this measurement campaign, a high spectral resolution fluorescence lidar (FLIDAR) was installed on the rear-deck of the O/V 'Urania,' acquiring remote fluorescence spectra both in ship motion and in stations. A particular attention was devoted to the monitoring of DOM distribution in the different water masses in marine frontal areas. The lidar data were compared and integrated with SST satellite data and biological samplings. The results show that FLIDAR data agree with satellite imagery, particularly for marine front detection. The comparison with water sample data gave indications for retrieving the DOM absorption coefficient directly from fluorescence remote spectra. In addition, a protein like fluorescence band was detected in the measurements carried out on total suspended matter filtered from the water samplings.

  16. Assessment of a remote monitoring system for implantable cardioverter defibrillators.

    PubMed

    Masella, Cristina; Zanaboni, Paolo; Di Stasi, Francesca; Gilardi, Serena; Ponzi, Patrizia; Valsecchi, Sergio

    2008-01-01

    We conducted a multicentre study in five Italian hospitals to assess the feasibility of a remote monitoring service for the follow-up of implanted cardiac devices. The system was designed to monitor device performance as well as physiological aspects of the patient's condition. Sixty-seven patients (mean age 64 years) affected by chronic heart failure and with a biventricular implantable cardioverter defibrillator for cardiac re-synchronization therapy (CRT-D) were enrolled for a three-month observation period. A total of 267 device recordings were transmitted through the ordinary telephone network, with a success rate of 99%. The telemonitoring service was more efficient than conventional face-to-face follow-up in terms of the time savings: both for physicians (4.7 minutes versus 15 minutes for remote and conventional monitoring) and for patients (6.6 minutes versus 116.3 minutes). In addition, a total of 23 clinical events occurred during the study, but only two cases required a clinic visit, thus reducing inappropriate hospital admissions. Finally, the service was well accepted by all the users. PMID:18776073

  17. A Self-Calibrating Remote Control Chemical Monitoring System

    SciTech Connect

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  18. Designing Robust and Reliable Timestamps for Remote Patient Monitoring.

    PubMed

    Clarke, Malcolm; Schluter, Paul; Reinhold, Barry; Reinhold, Brian

    2015-09-01

    Having timestamps that are robust and reliable is essential for remote patient monitoring in order for patient data to have context and to be correlated with other data. However, unlike hospital systems for which guidelines on timestamps are currently provided by HL7 and IHE, remote patient monitoring platforms are: operated in environments where it can be difficult to synchronize with reliable time sources; include devices with simple or no clock; and may store data spanning significant periods before able to upload. Existing guidelines prove inadequate. This paper analyzes the requirements and the operating scenarios of remote patient monitoring platforms and defines a framework to convey information on the conditions under which observations were made by the device and forwarded by the gateway in order for data to be managed appropriately and to include both reference to local time and an underlying continuous reference timeline. We define the timestamp formats of HL7 to denote the different conditions of operation and describe extensions to the existing definition of the HL7 timestamp to differentiate between time local to GMT (+0000) and universal coordinated time or network time protocol time where no geographic time zone is implied (-0000). We further describe how timestamps from devices having only simple or no clocks might be managed reliably by a gateway to provide timestamps that are referenced to local time and an underlying continuous reference timeline. We extend the HL7 message to include information to permit a subsequent receiver of the data to understand the quality of the timestamp and how it has been translated. We present evaluation from deploying a platform for 12 months. PMID:25095271

  19. Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Kavoura, Katerina; Depountis, Nikolaos; Argyropoulos, Nikolaos; Koukouvelas, Ioannis; Sabatakakis, Nikolaos

    2015-10-01

    An active landslide can be monitored using many different methods: Classical geotechnical measurements like inclinometer, topographical survey measurements with total stations or GPS and photogrammetric techniques using airphotos or high resolution satellite images. As the cost of the aerial photo campaign and the acquisition of very high resolution satellite data is quite expensive the use of cameras on board UAV could be an identical solution. Small UAVs (Unmanned Aerial Vehicles) have started their development as expensive toys but they currently became a very valuable tool in remote sensing monitoring of small areas. The purpose of this work is to demonstrate a cheap but effective solution for an active landslide monitoring. We present the first experimental results of the synergistic use of UAV, GPS measurements and remote sensing data. A six-rotor aircraft with a total weight of 6 kg carrying two small cameras has been used. Very accurate digital airphotos, high accuracy DSM, DGPS measurements and the data captured from the UAV are combined and the results are presented in the current study.

  20. Thermal Analysis Of The NASA Integrated Vehicle Health Monitoring Experiment Technology For X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2001-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  1. Thermal Analysis of the NASA Integrated Vehicle Health Monitoring Experiment Technology for X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2002-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  2. An optically remote powered subsea video monitoring system

    NASA Astrophysics Data System (ADS)

    Lau, Fat Kit; Stewart, Brian; McStay, Danny

    2012-06-01

    The drive for Ocean pollution prevention requires a significant increase in the extent and type of monitoring of subsea hydrocarbon production equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such monitoring systems will all require to be powered. Conventionally electrical powering is supplied by standard subsea electrical cabling. The ability to visualise the assets being monitored and any changes or faults in the equipment is advantageous to an overall monitoring system. However the effective use of video cameras, particularly if the transmission of real time high resolution video is desired, requires a high data rate and low loss communication capability. This can be challenging for heavy and costly electrical cables over extended distances. For this reason optical fibre is often adopted as the communication channel. Using optical fibre cables for both communications and power delivery can also reduce the cost of cabling. In this paper we report a prototype optically remote powered subsea video monitoring system that provides an alternative approach to powering subsea video cameras. The source power is transmitted to the subsea module through optical fibre with an optical-to-electrical converter located in the module. To facilitate intelligent power management in the subsea module, a supercapacitor based intermediate energy storage is installed. Feasibility of the system will be demonstrated. This will include energy charging and camera operation times.

  3. Dynamic Task Optimization in Remote Diabetes Monitoring Systems

    PubMed Central

    Suh, Myung-kyung; Woodbridge, Jonathan; Moin, Tannaz; Lan, Mars; Alshurafa, Nabil; Samy, Lauren; Mortazavi, Bobak; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid

    2016-01-01

    Diabetes is the seventh leading cause of death in the United States, but careful symptom monitoring can prevent adverse events. A real-time patient monitoring and feedback system is one of the solutions to help patients with diabetes and their healthcare professionals monitor health-related measurements and provide dynamic feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the domain of remote health monitoring. This paper presents a wireless health project (WANDA) that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. The WANDA dynamic task management function applies data analytics in real-time to discretize continuous features, applying data clustering and association rule mining techniques to manage a sliding window size dynamically and to prioritize required user tasks. The developed algorithm minimizes the number of daily action items required by patients with diabetes using association rules that satisfy a minimum support, confidence and conditional probability thresholds. Each of these tasks maximizes information gain, thereby improving the overall level of patient adherence and satisfaction. Experimental results from applying EM-based clustering and Apriori algorithms show that the developed algorithm can predict further events with higher confidence levels and reduce the number of user tasks by up to 76.19 %.

  4. An application of unattended and remote monitoring to sensitive systems

    SciTech Connect

    Langner, D. C.; MacArthur, D. W.

    2004-01-01

    Unattended and remote monitoring has proven to be an effective way to reduce the cost of inspection activities as well as the impact of inspections on a facility. Recently, remote transmission of data over the internet has become more cost effective and is an attractive option to reduce travel to a facility and thus further reduce costs. In some cases, however, the data collected by these systems is deemed classified or sensitive by the host country and under such circumstances the data cannot be transmitted. This is a type of catch-22 situation where the host country may have acceptable means to transmit classified data, but that means is itself classified and cannot be shared. Unattended systems sometimes fail and after such a failure an inspector may discover that months of safeguards information has been lost. If state-of-health information can be remotely transmitted such a failure can be detected in a more timely manner and less data will be lost. When classified data are involved, however, a host may be reluctant to allow the transmittal of this type of information because of the potential that this transmission route could provide unauthorized access to the sensitive data. In this paper we will discuss an application of the information barrier concept that may allow an inspector to have access to information from the unattended system while giving the host assurances that no classified data are being transmitted.

  5. Jellyfish monitoring on coastlines using remote piloted aircraft

    NASA Astrophysics Data System (ADS)

    Barrado, C.; Fuentes, J. A.; Salamí, E.; Royo, P.; Olariaga, A. D.; López, J.; Fuentes, V. L.; Gili, J. M.; Pastor, E.

    2014-03-01

    In the last 10 years the number of jellyfish shoals that reach the swimming area of the Mediterranean Sea are increasing constantly. The term "Jellyfish" refers to animals from different taxonomic groups but the Scyphomedusae are within the most significant one. Four species of Scyphomedusae are the most conspicuous ones inhabiting the studied area, the Barcelona metropolitan area. Jellyfish are usually found at the surface waters, forming big swarms. This feature makes possible to detect them remotely, using a visual camera and image processing algorithms. In this paper we present the characteristics of a remote piloted aircraft capable to perform monitoring flights during the whole summer season. The requirements of the aircraft are to be easy to operate, to be able to flight at low altitude (100 m) following the buoy line (200 m from the beach line) and to be save for other users of the seaside. The remote piloted aircraft will carry a vision system and a processing board able to obtain useful information on real-time.

  6. Monitoring crop biochemical concentrations by high spectral remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Yan, Jing; Chen, Yonghua; Niu, Zheng; Wang, Changyao

    1999-12-01

    High spectral remote sensing is a hopeful technology in diagnosing crop nutrition background. With surface spectral measurement and laboratory biochemical analysis, the relationship between crop properties and spectral remote sensing data has been established. Seven chemical components - total chlorophyll, water crude protein, soluble sugar, N, P, K - were analyzed by laboratory chemical analyzing instrument. Foliar spectral property was detected outdoors by surface spectrometer. Chemical concentrations have been related to foliar spectral properties through stepwise multiple regression. The statistical equations between the chemical concentrations and reflectance as well as its several transformations were established. They underscored good estimation performance for chlorophyll, water crude protein, N and K with high squared multiple correlation coefficients (R2) values and high believable level. Especially R2 value of the equation between crude protein concentration and the first derivative of reflectance is 0.9564, which is the best result in the study of the fresh leave biochemistry up to now. On the basis of field experiment, an airborne remote sensing for crop nutrition monitoring was conducted in Shunyi County, Beijing, PR China. The sensor, made by Chinese Academy of Sciences, is in visible and near IR band. By image processing, the crop biochemistry map is obtained.

  7. Online change detection: Monitoring land cover from remotely sensed data

    SciTech Connect

    Fang, Yi; Ganguly, Auroop R; Singh, Nagendra; Vijayaraj, Veeraraghavan; Feierabend, Robert Neal; Potere, David T

    2006-01-01

    We present a fast and statistically principled approach to land cover change detection. A reference statistical distribution is fitted to prior data based on off-line analysis, and an adaptive metric based on the exponentially weighted moving average (EWMA) of normal scores derived from p-values are tracked for new or streaming data, leading to alarms for large or sustained change. Methods which can track the origin of the change are also discussed. The approach is illustrated with a geographic application which involves monitoring remotely sensed data to detect changes in the normalized difference vegetation index (NDVI) in near real-time. We use Wal-Mart store openings as a nontraditional way to monitor and validate known cases of NDVI change. The proposed approach performs well on this validation dataset.

  8. Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)

    NASA Astrophysics Data System (ADS)

    Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.

    2016-04-01

    Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project

  9. Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling

    NASA Astrophysics Data System (ADS)

    La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino

    2011-11-01

    Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.

  10. Remotely Piloted Vehicles for Experimental Flight Control Testing

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  11. Remote safeguards and monitoring of reactors with antineutrinos.

    SciTech Connect

    Reyna, David

    2010-10-01

    The current state-of-the-art in antineutrino detection is such that it is now possible to remotely monitor the operational status, power levels and fissile content of nuclear reactors in real-time. This non-invasive and incorruptible technique has been demonstrated at civilian power reactors in both Russia and the United States and has been of interest to the IAEA Novel Technologies Unit for several years. Expert's meetings were convened at IAEA headquarters in 2003 and again in 2008. The latter produced a report in which antineutrino detection was called a 'highly promising technology for safeguards applications' at nuclear reactors and several near-term goals and suggested developments were identified to facilitate wider applicability. Over the last few years, we have been working to achieve some of these goals and improvements. Specifically, we have already demonstrated the successful operation of non-toxic detectors and most recently, we are testing a transportable, above-ground detector system, which is fully contained within a standard 6 meter ISO container. If successful, such a system could allow easy deployment at any reactor facility around the world. As well, our previously demonstrated ability to remotely monitor the data and respond in real-time to reactor operational changes could allow the verification of operator declarations without the need for costly site-visits. As the global nuclear power industry expands around the world, the burden on maintaining operational histories and safeguarding inventories will increase greatly. Such a system for providing remote data to verify operator's declarations could greatly reduce the need for frequent site inspections while still providing a robust warning of anomalies requiring further investigation.

  12. Remote safeguards and monitoring of reactors with antineutrinos.

    SciTech Connect

    Kiff, Scott D.; Dazeley, Steven; Reyna, David; Cabrera-Palmer, Belkis; Bernstein, Adam; Keefer, Greg; Bowden, Nathaniel S.

    2010-09-01

    The current state-of-the-art in antineutrino detection is such that it is now possible to remotely monitor the operational status, power levels and fissile content of nuclear reactors in real-time. This non-invasive and incorruptible technique has been demonstrated at civilian power reactors in both Russia and the United States and has been of interest to the IAEA Novel Technologies Unit for several years. Expert's meetings were convened at IAEA headquarters in 2003 and again in 2008. The latter produced a report in which antineutrino detection was called a 'highly promising technology for safeguards applications' at nuclear reactors and several near-term goals and suggested developments were identified to facilitate wider applicability. Over the last few years, we have been working to achieve some of these goals and improvements. Specifically, we have already demonstrated the successful operation of non-toxic detectors and most recently, we are testing a transportable, above-ground detector system, which is fully contained within a standard 6 meter ISO container. If successful, such a system could allow easy deployment at any reactor facility around the world. As well, our previously demonstrated ability to remotely monitor the data and respond in real-time to reactor operational changes could allow the verification of operator declarations without the need for costly site-visits. As the global nuclear power industry expands around the world, the burden on maintaining operational histories and safeguarding inventories will increase greatly. Such a system for providing remote data to verify operator's declarations could greatly reduce the need for frequent site inspections while still providing a robust warning of anomalies requiring further investigation.

  13. Lidar for remote measurement of ozone in the exhaust plumes of launch vehicles

    NASA Astrophysics Data System (ADS)

    Gelbwachs, Jerry A.

    1996-05-01

    Large quantities of chlorine and alumina particles are injected directly into the stratosphere by the current fleet of launch vehicles. Environmental concerns have been raised over the impact of the rocket exhaust on the ozone layer. Recently, differential absorption lidar (DIAL) was selected for remote sensing of ozone density within the plumes of Titan IV launch vehicles. The application of DIAL to this very challenging problem is described, and an implementation of UV-ozone DIAL is discussed that holds promise for this application.

  14. Remote Operated Vehicle with CO{sub 2} Blasting (ROVCO{sub 2}). Phase 1

    SciTech Connect

    1994-10-01

    This report documents the first phase of the Remote Operated Vehicle with CO{sub 2} Blasting (ROVCO{sub 2}) Program. The ROVCO{sub 2} Program`s goal is to develop and demonstrate a tool to improve the productivity of concrete floor decontamination. The first phase adapted and tested the critical subsystems: the CO{sub 2} blasting, the workhead manipulation, the controls, and the base vehicle. The testing documented the performance of the subsystems and preformed a concept demonstration of the integrated ROVCO{sub 2} system. This testing and demonstration verified that the ROVCO{sub 2} development exceeded it Phase 1 success criteria.

  15. Monitoring Tamarisk Defoliation and Scaling Evapotranspiration Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Dennison, P. E.; Hultine, K. R.; Nagler, P. L.; Miura, T.; Glenn, E. P.; Ehleringer, J. R.

    2008-12-01

    Non-native tamarisk (Tamarix spp.) has invaded riparian ecosystems throughout the Western United States. Another non-native species, the saltcedar leaf beetle (Diorhabda elongata), has been released in an attempt to control tamarisk infestations. Most efforts directed towards monitoring tamarisk defoliation by Diorhabda have focused on changes in leaf area or sap flux, but these measurements only give a local view of defoliation impacts. We are assessing the ability of remote sensing data for monitoring tamarisk defoliation and measuring resulting changes in evapotranspiration over space and time. Tamarisk defoliation by Diorhabda has taken place during the past two summers along the Colorado River and its tributaries near Moab, Utah. We are using 15 meter spatial resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 250 meter spatial resolution Moderate Resolution Imaging Spectrometer (MODIS) data to monitor tamarisk defoliation. An ASTER normalized difference vegetation index (NDVI) time series has revealed large drops in index values associated with loss of leaf area due to defoliation. MODIS data have superior temporal monitoring abilities, but at the sacrifice of much lower spatial resolution. A MODIS enhanced vegetation index time series has revealed that for pixels where the percentage of riparian cover is moderate or high, defoliation is detectable even at 250 meter spatial resolution. We are comparing MODIS vegetation index time series to site measurements of leaf area and sap flux. We are also using an evapotranspiration model to scale potential water savings resulting from the biocontrol of tamarisk.

  16. Some practical issues in remote structural health monitoring

    NASA Astrophysics Data System (ADS)

    Han, L.; Newhook, J. P.; Mufti, A. A.

    2005-05-01

    Structural health monitoring (SHM) activities in civil engineering grow at a rapid pace and mature in both research and field applications. Internet technology was successfully incorporated into structural health monitoring, which makes it possible to manage real-time sensing data and centralize the remote structural monitoring systems. With the increase in size and complexity of the monitored structures, more sensors and data acquisition equipment is involved. This paper addresses some specific issues related to long distance small signal transmission and Ethernet IP sharing between different devices. The issue of data volume versus storage space and communication bandwidth is discussed especially in the application of web camera image transfer and recording. The approaches are illustrated through reference to two current case studies, which include a bridge and a statue. It can be seen that these practical solutions employed by ISIS Canada are easy to implement and reduce the cost for the maintenance of SHM systems. The paper also discusses future activities and research needs related to the reliability and security of the SHM system.

  17. Design of a remotely piloted vehicle for a low Reynolds number station keeping mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Six teams of senior level Aerospace Engineering undergraduates were given a request for proposal, asking for a design concept for a remotely piloted vehicle (RPV). This RPV was to be designed to fly at a target Reynolds number of 1 times 10(exp 5). The craft was to maximize loiter time and perform an indoor, closed course flight. As part of the proposal, each team was required to construct a prototype and validate their design with a flight demonstration.

  18. A concept study of a remotely piloted vehicle for Mars exploration

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Candidate configurations are discussed for shuttle-transported, spacecraft-deployed remotely piloted vehicles having individual aeroshells, parachutes, and scientific payloads for Mars exploration. Topics covered include aerodynamics; powerplants; structural materials; deployment and descent interface systems; payloads; secondary power; thermal control; navigation, guidance and control, communications, weight and center of gravity; performance; and flight testing. The advantages of the recommended electric-powered cruiser/lander configuration are summarized.

  19. [Research on vehicle-based remote sensing of natural gas pipeline leakage].

    PubMed

    Wang, Lei; Tan, Tu; Cao, Zhen-song; Wang, Gui-shi; Zhang, Wei-jun; Gao, Xiao-ming

    2010-08-01

    In the present paper the authors designed a vehicle-based remote sensing system using simulated platform and presented a new method of concentration calibration of natural gas pipeline leakage remote sensing. By investigating the performance of different distance, different material, different angle of topographic back scatter and different scan speed, a good coincidence was achieved between experimental results and theoretical results. The system can realize the remote detection of low-level methane concentration at a velocity of 53.3 km x h(-1), and the detecting distance is about 70 m with the minimum detectable sensitivity being 28.9 ppm x m. The research result shows the feasibility in the application. PMID:20939337

  20. Multiplexing Technology for Acoustic Emission Monitoring of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, William; Percy, Daniel

    2003-01-01

    The initiation and propagation of damage mechanisms such as cracks and delaminations generate acoustic waves, which propagate through a structure. These waves can be detected and analyzed to provide the location and severity of damage as part of a structural health monitoring (SHM) system. This methodology of damage detection is commonly known as acoustic emission (AE) monitoring, and is widely used on a variety of applications on civil structures. AE has been widely considered for SHM of aerospace vehicles. Numerous successful ground and flight test demonstrations have been performed, which show the viability of the technology for damage monitoring in aerospace structures. However, one significant current limitation for application of AE techniques on aerospace vehicles is the large size, mass, and power requirements for the necessary monitoring instrumentation. To address this issue, a prototype multiplexing approach has been developed and demonstrated in this study, which reduces the amount of AE monitoring instrumentation required. Typical time division multiplexing techniques that are commonly used to monitor strain, pressure and temperature sensors are not applicable to AE monitoring because of the asynchronous and widely varying rates of AE signal occurrence. Thus, an event based multiplexing technique was developed. In the initial prototype circuit, inputs from eight sensors in a linear array were multiplexed into two data acquisition channels. The multiplexer rapidly switches, in less than one microsecond, allowing the signals from two sensors to be acquired by a digitizer. The two acquired signals are from the sensors on either side of the trigger sensor. This enables the capture of the first arrival of the waves, which cannot be accomplished with the signal from the trigger sensor. The propagation delay to the slightly more distant neighboring sensors makes this possible. The arrival time from this first arrival provides a more accurate source location

  1. Design of overload vehicle monitoring and response system based on DSP

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Liu, Yiheng; Zhao, Xuefeng

    2014-03-01

    The overload vehicles are making much more damage to the road surface than the regular ones. Many roads and bridges are equipped with structural health monitoring system (SHM) to provide early-warning to these damage and evaluate the safety of road and bridge. However, because of the complex nature of SHM system, it's expensive to manufacture, difficult to install and not well-suited for the regular bridges and roads. Based on this application background, this paper designs a compact structural health monitoring system based on DSP, which is highly integrated, low-power, easy to install and inexpensive to manufacture. The designed system is made up of sensor arrays, the charge amplifier module, the DSP processing unit, the alarm system for overload, and the estimate for damage of the road and bridge structure. The signals coming from sensor arrays go through the charge amplifier. DSP processing unit will receive the amplified signals, estimate whether it is an overload signal or not, and convert analog variables into digital ones so that they are compatible with the back-end digital circuit for further processing. The system will also restrict certain vehicles that are overweight, by taking image of the car brand, sending the alarm, and transferring the collected pressure data to remote data center for further monitoring analysis by rain-flow counting method.

  2. Monitoring abandoned dreg fields of high-speed railway construction with UAV remote sensing technology

    NASA Astrophysics Data System (ADS)

    Lin, Jiayuan; Wang, Zhiliang; Wang, Yangchun; Lin, Yi; Du, Xiaolin

    2015-12-01

    High-speed railway construction will produce a large amount of abandoned dregs, so it is necessary to build enough dreg deposition fields along the railway. The task of the department of soil and water conservation is to monitor the construction and usage of abandoned dreg fields according to the design in the whole process of railway construction. As long linear construction projects, many high-speed railways go through regions of complex terrain, which poses great difficulties to monitoring current status of abandoned dreg fields. With the advantages of low cost, flexible launch and landing, safety, under-cloud-flying, hyperspatial image resolution, Unmanned Aerial Vehicles (UAVs) are very suitable for obtaining remote sensing imagery along the railway. One segment of the high-speed railway from Chongqing to Wanzhou and its neighborhood was chosen as the study area to demonstrate key technologies and specific procedures of monitoring abandoned dreg fields using the UAV system. The UAV system and its components are introduced along with the flight trajectories, acquired UAV imagery, and attitude data. Image preprocessing and generation of DEM and DOM are described in detail followed by image-based measurement accuracy assessment and abandoned dreg field status investigation on the resulting DOM and DEM. Results prove the feasibility and effectiveness of applying the fixed wing UAV system to rapidly monitoring the construction and usage of abandoned dreg fields

  3. Angkor site monitoring and evaluation by radar remote sensing

    NASA Astrophysics Data System (ADS)

    Chen, Fulong; Jiang, Aihui; Ishwaran, Natarajan

    2014-11-01

    Angkor, in the northern province of Siem Reap, Cambodia, is one of the most important world heritage sites of Southeast Asia. Seasonal flood and ground sinking are two representative hazards in Angkor site. Synthetic Aperture Radar (SAR) remote sensing has played an important role for the Angkor site monitoring and management. In this study, 46 scenes of TerraSAR data acquired in the span of February, 2011 to December, 2013 were used for the time series analysis and hazard evaluation; that is, two-fold classification for flood area extracting and Multi-Temporal SAR Interferometry (MT-InSAR) for ground subsidence monitoring. For the flood investigation, the original Single Look Complex (SLC) TerraSAR-X data were transferred into amplitude images. Water features in dry and flood seasons were firstly extracted using a proposed mixed-threshold approach based on the backscattering; and then for the correlation analysis between water features and the precipitation in seasonally and annually. Using the MT-InSAR method, the ground subsidence was derived with values ranging from -50 to +12 mm/yr in the observation period of February, 2011 to June, 2013. It is clear that the displacement on the Angkor site was evident, implying the necessity of continuous monitoring.

  4. Wireless remote monitoring of toxic gases in shipbuilding.

    PubMed

    Pérez-Garrido, Carlos; González-Castaño, Francisco J; Chaves-Díeguez, David; Rodríguez-Hernández, Pedro S

    2014-01-01

    Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness). PMID:24534919

  5. Remote monitoring of nuclear power plants in Baden-Wuerttemberg.

    PubMed

    Neff, U; Müller, U; Mandel, C; Coutinho, P; Aures, R; Grimm, C; Hagmann, M; Wilbois, T; Ren, Y

    2014-08-01

    As part of its responsibilities as nuclear supervisory authority, the Ministry of the Environment, Climate Protection and the Energy Sector Baden-Wuerttemberg (UM) operates a computer-based system for remote monitoring of nuclear power plants (NPPs) (KFUe, Kernreaktor-Fernüberwachung). In addition to the Baden-Wuerttemberg NPPs located at Philippsburg, Neckarwestheim and the disused Obrigheim, those in foreign locations close to the border area, i.e. Fessenheim in France, and Leibstadt and Beznau in Switzerland, are monitored. The KFUe system provides several methods to evaluate and present the measured data as well as to ensure compliance of threshold limits and safety objectives. For the UM, it serves as an instrument of the nuclear supervision. In case of a radioactive release, the authorities responsible for civil protection can use dispersion calculations in order to identify potentially affected areas and to initiate protective measures for the population. Beyond the data collected at the plant sites, various international radiation and meteorological measuring networks are integrated in the KFUe. The State Institute for Environment, Measurements and Nature Protection (LUBW), the technical operator of the KFUe, runs its own special monitoring network for ambient gamma dose rate and nuclide specific activity concentration measurements in the vicinity of each NPP. This article gives an overview of the solution to combine data of different sources on a single screen: dose rate networks, dose rate traces measured by car, airborne gamma spectra of helicopters, mobile dose rate probes, grid data of weather forecasts, dispersion calculations, etc. PMID:24525946

  6. Wireless Remote Monitoring of Toxic Gases in Shipbuilding

    PubMed Central

    Pérez-Garrido, Carlos; González-Castaño, Francisco J.; Chaves-Diéguez, David; Rodríguez-Hernández, Pedro S.

    2014-01-01

    Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness). PMID:24534919

  7. Observer based output feedback tuning for underwater remotely operated vehicle based on linear quadratic performance

    NASA Astrophysics Data System (ADS)

    Aras, Mohd Shahrieel Mohd; Abdullah, Shahrum Shah; Kamarudin, Muhammad Nizam; Rahman, Ahmad Fadzli Nizam Abdul; Azis, Fadilah Abd; Jaafar, Hazriq Izzuan

    2015-05-01

    This paper describes the effectiveness of observer-based output feedback for Unmanned Underwater Vehicle (UUV) with Linear Quadratic Regulation (LQR) performance. Tuning of observer parameters is crucial for tracking purpose. Prior to tuning facility, the ranges of observer and LQR parameters are obtained via system output cum error. The validation of this technique using unmanned underwater vehicles called Remotely Operated Vehicle (ROV) modelling helps to improve steady state performance of system response. The ROV modeling is focused for depth control using ROV 1 developed by the Underwater Technology Research Group (UTeRG). The results are showing that this technique improves steady state performances in term of overshoot and settling time of the system response.

  8. Fluorescence lidar method for remote monitoring of effects on vegetation

    NASA Astrophysics Data System (ADS)

    Matvienko, Gennady; Timofeev, Valery; Grishin, Anatoly; Fateyeva, Natalia

    2006-09-01

    Plants constantly interact with environment, mainly, by means of photosynthesis and soil nutrition. The state of plant photosynthetic apparatus that reflects the general physiological state of a plant, can be analyzed remotely on a basis of laser-induced fluorescence using a fluorescence lidar. In this respect, a fluorescence lidar can be a technical means of remote sensing of the effects on vegetation including chemical soil pollution. Among a series of applications, of interest is development of a lidar technique for detecting the effects of oil products and mechanical disturbances. This paper is devoted to the application of the fluorescence lidar technique to monitoring mechanical and chemical impacts on the woody vegetation typical of Siberia. A physical basis of this technique is the red fluorescence of chlorophyll of green plants excited by the second harmonic (532 nm) of Nd:YAG laser. Red fluorescence of plants consists of two bands centered at 685 and 740 nm which is conditioned by functioning of two photosystems. As in situ experiments show, the indicated photosystems and, respectively, the fluorescence on these bands respond differently to feeding disturbances and mechanical impacts, making the increase in the fluorescence intensity informative. Time criteria of fluorescence characteristics were obtained at single and multiple effects on the vegetation. The paper describes a lidar system that meets the requirements for detecting the effects on vegetation.

  9. Monitoring desertification around Huolinguole using multitemporal remotely sensed imagery

    NASA Astrophysics Data System (ADS)

    Wang, Guangjun; Fu, Meichen; Xiao, Qiuping; Wang, Zeng

    2010-11-01

    Because of the capability of remote sensing to acquire synoptic coverage and repetitive data acquisition it has become a widely used technique for monitoring the effects of human activity on terrestrial ecosystems. This paper presents the spatial extent, magnitude and temporal behavior of land desertification around Holinguole caused by city expansion. The selected test area, Huoliguole City, is a typical grassland city in China that is located in the northeast of China. A time-series of Landsat TM images covering a period of 20 years (1987-2006) were used. The data sets were geometrically and radiometrically pre-processed in a rigorous fashion, followed by a linear spectral mixture unmixing model to extract feature images of vegetation and sandy soil. The biomass images were derived using a polynomial regression model based on the ground-based observations of the amount of grass and a vegetation index based on satellite remote sensing. By combing the vegetation fraction images, the sandy soil fraction images, biomass images, and PC (principal components) images, the grassland desertification information around the built-up area of the city was extracted based on BP (Back-Propagation) neural network algorithm. The results of our studies indicate significant expansion of the city over the last 20 years, and a similar trend was also observed in the temporal magnitude behavior of severe grassland desertification away from the city.

  10. Integrating remote sensing data from multiple optical sensors for ecological and crop condition monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecological and crop condition monitoring requires high temporal and spatial resolution remote sensing data. Due to technical limitations and budget constraints, remote sensing instruments trade spatial resolution for swath width. As a result, it is difficult to acquire remotely sensed data with both...