Science.gov

Sample records for monitoring singlet oxygen

  1. Membrane Transport of Singlet Oxygen Monitored by Dipole Potential Measurements

    PubMed Central

    Sokolov, Valerij S.; Pohl, Peter

    2009-01-01

    Abstract The efficiency of photodynamic reactions depends on 1), the penetration depth of the photosensitizer into the membrane and 2), the sidedness of the target. Molecules which are susceptible to singlet oxygen (1O2) experience less damage when separated from the photosensitizer by the membrane. Since 1O2 lifetime in the membrane environment is orders of magnitude longer than the time required for nonexcited oxygen (O2) to cross the membrane, this observation suggests that differences between the permeabilities or membrane partition of 1O2 and O2 exist. We investigated this hypothesis by releasing 1O2 at one side of a planar membrane while monitoring the kinetics of target damage at the opposite side of the same membrane. Damage to the target, represented by dipole-modifying molecules (phloretin or phlorizin), was indicated by changes in the interleaflet dipole potential difference Δϕb. A simple analytical model allowed estimation of the 1O2 interleaflet concentration difference from the rate at which Δϕb changed. It confirmed that the lower limit of 1O2 permeability is ∼2 cm/s; i.e., it roughly matches O2 permeability as predicted by Overton's rule. Consequently, the membrane cannot act as a barrier to 1O2 diffusion. Differences in the reaction rates at the cytoplasmic and extracellular membrane leaflets may be attributed only to 1O2 quenchers inside the membrane. PMID:18931253

  2. Singlet oxygen in photosensitization.

    PubMed

    Moan, Johan; Juzenas, Petras

    2006-01-01

    Oxygen is a ubiquitous element and a vitally important substance for life on the Earth, and especially for human life. Living organisms need oxygen for most, if not all, of their cellular functions. On the other hand, oxygen can produce metabolites that are toxic and potentially lethal to the same cells. Being reactive and chemically unstable reactive oxygen species (ROS) are the most important metabolites that initiate reduction and oxidation (redox) reactions under physiological conditions. Oxygen in its excited singlet state (1O2) is probably the most important intermediate in such reactions. Since the discovery of oxygen by Joseph Priestley in 1775 it has been recognized that oxygen can be both beneficial and harmful to life. PMID:16566709

  3. SINGLET OXYGEN IN NATURAL WATERS

    EPA Science Inventory

    Singlet oxygen is a reactive, electronically excited form of molecular oxygen that rapidly oxidizes a wide variety of organic substances, such as the polycyclic aromatics in petroleum hydrocarbon and the amino acids, histidine, tryptophan, and methionine. Studies of water samples...

  4. Monitoring of singlet oxygen in the lower troposphere and processes of ozone depletion.

    NASA Astrophysics Data System (ADS)

    Iasenko, Egor; Chelibanov, Vladimir; Marugin, Alexander; Kozliner, Marat

    2016-04-01

    The processes of ozone depletion in the atmosphere are widely discussed now in a connection with the problem of a global climate changes. It is known fact that photolysis of ozone in the upper atmosphere is the source of metastable molecules of oxygen. But, metastable molecules of oxygen can be formed as a result of photo initiated heterogeneous oxidation of molecules adsorbed on the surface of natural aerosol particles. During the outdoor experiment, we observed a formation of Singlet oxygen (1Δg) at concentration level of 2 ... 5 ppb when ice crystals have been exposed to the sun light. In experiments, we used Analyzers of Singlet oxygen and Ozone (produced by JSC "OPTEC") that utilize solid-state chemiluminescence technology. We assumed that the singlet oxygen is formed in the active centers on the surface of ice crystals in the presence or absence of anthropogenic pollutants in the atmosphere. Identified efficiency of heterogeneous reaction of O2 (1Δg) formation suggests the importance of the additional channel O3 + O2 (1Δg) → 2O2 + O (3P) of atmospheric ozone removal comparable with other well known cycles of ozone depletion.

  5. Real-time luminescence microspectroscopy monitoring of singlet oxygen in individual cells.

    PubMed

    Scholz, Marek; Dědic, Roman; Valenta, Jan; Breitenbach, Thomas; Hála, Jan

    2014-08-01

    A new setup for direct microspectroscopic monitoring of singlet oxygen ((1)O2) has been developed in our laboratory using a novel near-infrared sensitive InGaAs 2D-array detector. An imaging spectrograph has been inserted in front of the 2D-array detector, which allows us to acquire spectral images where one dimension is spatial and the other is spectral. The work presents a detailed examination of sensitivity and noise characteristics of the setup and its ability to detect (1)O2. The (1)O2 phosphorescence-based images and near-infrared luminescence spectral images recorded from single TMPyP-containing fibroblast cells reflecting spectral changes during irradiation are demonstrated. The introduction of spectral images addresses the issue of a potential spectral overlap of (1)O2 phosphorescence with near-infrared-extended luminescence of the photosensitizer and provides a powerful tool for distinguishing and separating them, which can be applied to any photosensitizer manifesting near-infrared luminescence. PMID:24954013

  6. Far-red fluorescence probe for monitoring singlet oxygen during photodynamic therapy.

    PubMed

    Kim, Sooyeon; Tachikawa, Takashi; Fujitsuka, Mamoru; Majima, Tetsuro

    2014-08-20

    Singlet oxygen ((1)O2), molecular oxygen in the lowest excited state, has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Although (1)O2 phosphorescence measurement has been mainly used to monitor (1)O2 formation during PDT, its intensity is far insufficient to obtain two-dimensional images of intracellular (1)O2 with the subcellular spatial resolution using the currently available near-IR detector. Here, we propose a new far-red fluorescence probe of (1)O2, namely, Si-DMA, composed of silicon-containing rhodamine and anthracene moieties as a chromophore and a (1)O2 reactive site, respectively. In the presence of (1)O2, fluorescence of Si-DMA increases 17 times due to endoperoxide formation at the anthracene moiety. With the advantage of negligible self-oxidation by photoirradiation (ΦΔ < 0.02) and selective mitochondrial localization, Si-DMA is particularly suitable for imaging (1)O2 during PDT. Among three different intracellular photosensitizers (Sens), Si-DMA could selectively detect the (1)O2 that is generated by 5-aminolevulinic acid-derived protoporphyrin IX, colocalized with Si-DMA in mitochondria. On the other hand, mitochondria-targeted KillerRed and lysosomal porphyrins could not induce fluorescence change of Si-DMA. This surprising selectivity of Si-DMA response depending on the Sens localization and photosensitization mechanism is caused by a limited intracellular (1)O2 diffusion distance (∼300 nm) and negligible generation of (1)O2 by type-I Sens, respectively. For the first time, we successfully visualized (1)O2 generated during PDT with a spatial resolution of a single mitochondrial tubule. PMID:25075870

  7. Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro.

    PubMed

    Li, Weitao; Huang, Dong; Zhang, Yan; Liu, Yangyang; Gu, Yueqing; Qian, Zhiyu

    2016-09-01

    Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging. PMID:26833036

  8. Measurements Of Singlet Oxygen In Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Profio, A. E.; Shu, Kuang-Hsien

    1989-06-01

    Photochemical reactions are used in photodynamic therapy of cancer and other disease. The cytotoxic agent in photochemotherapy is usually singlet oxygen. Thus measurements of singlet oxygen production or concentration may allow prediction of the biological response. The decrease in fluorescence of L-tryptophan because of reaction with singlet oxygen, the decrease in absorbance of a dye such as RNO subject to secondary oxidation by singlet oxygen, and the decrease in fluorescence of the most common photosensitizer, dihematoporphyrin ether/ester (DHE) because of photobleaching, have been investigated in solutions in vitro. The most promising method for dosimetry and prediction of biological response appears to be the photobleaching of DHE.

  9. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress.

    PubMed

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-01-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase. PMID:26831215

  10. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress

    PubMed Central

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-01-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase. PMID:26831215

  11. A tandem mass spectrometric method for singlet oxygen measurement.

    PubMed

    Karonen, Maarit; Mattila, Heta; Huang, Ping; Mamedov, Fikret; Styring, Stenbjörn; Tyystjärvi, Esa

    2014-01-01

    Singlet oxygen, a harmful reactive oxygen species, can be quantified with the substance 2,2,6,6-tetramethylpiperidine (TEMP) that reacts with singlet oxygen, forming a stable nitroxyl radical (TEMPO). TEMPO has earlier been quantified with electron paramagnetic resonance (EPR) spectroscopy. In this study, we designed an ultra-high-performance liquid chromatographic-tandem mass spectrometric (UHPLC-ESI-MS/MS) quantification method for TEMPO and showed that the method based on multiple reaction monitoring (MRM) can be used for the measurements of singlet oxygen from both nonbiological and biological samples. Results obtained with both UHPLC-ESI-MS/MS and EPR methods suggest that plant thylakoid membranes produce 3.7 × 10(-7) molecules of singlet oxygen per chlorophyll molecule in a second when illuminated with the photosynthetic photon flux density of 2000 μmol m(-2 ) s(-1). PMID:24849296

  12. Oxygen pressure measurement using singlet oxygen emission

    SciTech Connect

    Khalil, Gamal E.; Chang, Alvin; Gouterman, Martin; Callis, James B.; Dalton, Larry R.; Turro, Nicholas J.; Jockusch, Steffen

    2005-05-15

    Pressure sensitive paint (PSP) provides a visualization of two-dimensional pressure distributions on airfoil and model automobile surfaces. One type of PSP utilizes platinum tetra(pentafluorophenyl)porphine (PtTFPP) dissolved in a fluoro-polymer film. Since the intense 650 nm triplet emission of PtTFPP is quenched by ground state oxygen, it is possible to measure two-dimensional oxygen concentration from the 650 nm emission intensity using a Stern-Volmer-type relationship. This article reports an alternative luminescence method to measure oxygen concentration based on the porphyrin-sensitized 1270 nm singlet oxygen emission, which can be imaged with an InGaAs near infrared camera. This direct measurement of oxygen emission complements and further validates the oxygen measurement based on PtTFPP phosphorescence quenching. Initial success at obtaining a negative correlation between the 650 nm PtTFPP emission and the 1270 nm O{sub 2} emission in solution led us to additional two-dimensional film studies using surfaces coated with PtTFPP, MgTFPP, and H{sub 2}TFPP in polymers in a pressure and temperature controlled chamber.

  13. Reactions of singlet oxygen with pine pollen.

    NASA Technical Reports Server (NTRS)

    Dowty, B.; Laseter, J. L.; Griffin, G. W.; Politzer, I. R.; Walkinshaw, C. H.

    1973-01-01

    A study was initiated to determine whether viable atmospheric particles such as plant pollens and fungal spores containing unsaturated lipids can interact with singlet oxygen to give oxygenated products that are potentially toxic. The results obtained confirm that surface and near surface components of common viable particulate matter in the atmosphere may be subject to rapid oxidation by singlet oxygen, leading to products which are probably allylic hydroperoxides. In connection with increasing atmospheric pollution, it is important to note that materials toxic to mammalian lung tissue may be oxidatively produced on the surfaces of viable particulate matter.

  14. Combined phosphorescence-holographic approach for singlet oxygen detection in biological media

    NASA Astrophysics Data System (ADS)

    Semenova, I. V.; Belashov, A. V.; Beltukova, D. M.; Petrov, N. V.; Vasyutinskii, O. S.

    2015-06-01

    The paper presents a novel combined approach aimed to detect and monitor singlet oxygen molecules in biological specimens by means of the simultaneous recording and monitoring of their deactivation dynamics in the two complementary channels: radiative and nonradiative. The approach involves both the direct registration of phosphorescence at the wavelength of about 1270 nm caused by radiative relaxation of excited singlet oxygen molecules and holographic recording of thermal disturbances in the medium produced by their nonradiative relaxation. The data provides a complete set of information on singlet oxygen location and dynamics in the medium. The approach was validated in the case study of photosensitized generation of singlet oxygen in onion cell structures.

  15. Generation of singlet oxygen in fullerene-containing media: 1. Photodesorption of singlet oxygen from fullerene-containing surfaces

    SciTech Connect

    Belousova, I M; Belousov, V P; Danilov, O B; Ermakov, A V; Kiselev, V M; Kislyakov, I M; Sosnov, E N

    2008-03-31

    It is shown that upon irradiation of fullerene-containing surfaces by laser or flashlamp pulses, oxygen adsorbed by these surfaces efficiently escapes to the gas phase. The observation of luminescence pulses in the spectral region of 762 and 1268 nm confirms the presence of oxygen molecules in the excited singlet state in the desorbed oxygen. The conditions for optimisation of the efficiency of singlet-oxygen production are studied. It is shown that singlet oxygen at the concentration sufficient for obtaining operation of a fullerene-oxygen-iodine laser can be produced in this way. (laser applications and other topics in quantum electronics)

  16. Generation of singlet oxygen on the surface of metal oxides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. M.; Kislyakov, I. M.; Burchinov, A. N.

    2016-04-01

    Generation of singlet oxygen on the surface of metal oxides is studied. It is shown that, under conditions of heterogeneous photo-catalysis, along with the conventional mechanism of singlet oxygen formation due to the formation of electron-hole pairs in the oxide structure, there is an additional and more efficient mechanism involving direct optical excitation of molecular oxygen adsorbed on the oxide surface. The excited adsorbate molecule then interacts with the surface or with other adsorbate molecules. It is shown that, with respect to singlet oxygen generation, yttrium oxide is more than an order of magnitude more efficient than other oxides, including titanium dioxide.

  17. Singlet Oxygen Generation on Porous Superhydrophobic Surfaces: Effect of Gas Flow and Sensitizer Wetting on Trapping Efficiency

    PubMed Central

    2015-01-01

    We describe physical-organic studies of singlet oxygen generation and transport into an aqueous solution supported on superhydrophobic surfaces on which silicon–phthalocyanine (Pc) particles are immobilized. Singlet oxygen (1O2) was trapped by a water-soluble anthracene compound and monitored in situ using a UV–vis spectrometer. When oxygen flows through the porous superhydrophobic surface, singlet oxygen generated in the plastron (i.e., the gas layer beneath the liquid) is transported into the solution within gas bubbles, thereby increasing the liquid–gas surface area over which singlet oxygen can be trapped. Higher photooxidation rates were achieved in flowing oxygen, as compared to when the gas in the plastron was static. Superhydrophobic surfaces were also synthesized so that the Pc particles were located in contact with, or isolated from, the aqueous solution to evaluate the relative effectiveness of singlet oxygen generated in solution and the gas phase, respectively; singlet oxygen generated on particles wetted by the solution was trapped more efficiently than singlet oxygen generated in the plastron, even in the presence of flowing oxygen gas. A mechanism is proposed that explains how Pc particle wetting, plastron gas composition and flow rate as well as gas saturation of the aqueous solution affect singlet oxygen trapping efficiency. These stable superhydrophobic surfaces, which can physically isolate the photosensitizer particles from the solution may be of practical importance for delivering singlet oxygen for water purification and medical devices. PMID:24885074

  18. Singlet Oxygen Generation by Cyclometalated Complexes and Applications†

    PubMed Central

    Ashen-Garry, David; Selke, Matthias

    2014-01-01

    While cyclometalated complexes have been extensively studied for optoelectronic applications, these compounds also represent a relatively new class of photosensitizers for the production of singlet oxygen. Thus far, singlet oxygen generation from cyclometalated Ir and Pt complexes has been studied in detail. In this review, photophysical data for singlet oxygen generation from these complexes is presented, and the mechanism of 1O2 generation is discussed, including evidence for singlet oxygen generation via an electron transfer mechanism for some of cyclometalated Ir complexes. The period from the first report of singlet oxygen generation by a cyclometalated Ir complex in 2002 through August 2013 is covered in this review. This new class of singlet oxygen photosensitizers may prove to be rather versatile due to the ease of substitution of ancillary ligands without loss of activity. Several cyclometalated complexes have been tethered to zeolites, polystyrene, or quantum dots. Applications for photooxygenation of organic molecules, including “traditional” singlet oxygen reactions (ene reaction, [4+2] and [2+2] cycloadditions) as well as oxidative coupling of amines are presented. Potential biomedical applications are also reviewed. PMID:24344628

  19. Water-soluble naphthalene diimides as singlet oxygen sensitizers.

    PubMed

    Doria, Filippo; Manet, Ilse; Grande, Vincenzo; Monti, Sandra; Freccero, Mauro

    2013-08-16

    Bromo- and/or alkylamino-substituted and hydrosoluble naphthalene diimides (NDIs) were synthesized to study their multimodal photophysical and photochemical properties. Bromine-containing NDIs (i.e., 11) behaved as both singlet oxygen ((1)O2) photosensitizers and fluorescent molecules upon irradiation at 532 nm. Among the NDIs not containing Br, only 12 exhibited photophysical properties similar to those of Br-NDIs, by irradiation above 610 nm, suggesting that for these NDIs both singlet and triplet excited-state properties are strongly affected by length, structure of the solubilizing moieties, and pH of the solution. Laser flash photolysis confirmed that the NDI lowest triplet excited state was efficiently populated, upon excitation at both 355 and 532 nm, and that free amine moieties quenched both the singlet and triplet excited states by intramolecular electron transfer, with generation of detectable radical anions. Time-resolved experiments, monitoring the 1270 nm (1)O2 phosphorescence decay generated upon laser irradiation at 532 nm, allowed a ranking of the NDIs as sensitizers, based on their (1)O2 quantum yields (ΦΔ). The tetrafunctionalized 12, exhibiting a long-lived triplet state (τ ~ 32 μs) and the most promising absorptivity for photodynamic therapy application, was tested as efficient photosensitizers in the photo-oxidations of 1,5-dihydroxynaphthalene and 9,10-anthracenedipropionic acid in acetonitrile and water. PMID:23869544

  20. Singlet oxygen production in superoxide ion-halocarbon systems

    SciTech Connect

    Kanofsky, J.R.

    1986-05-28

    A search for singlet oxygen chemiluminescence at 1268 nm was made in a number of reactions of superoxide ion. Carbon tetrachloride and carbon tetrabromide reacted with suspended potassium superoxide to produce 1268-nm emission consistent with singlet oxygen. Chloroform was less reactive but produced 1268-nm emission when the concentration of superoxide ion in the halocarbon phase was increased with 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6). The dismutation of superoxide ion in deuterium oxide was not accompanied by 1268-nm chemiluminescence. Less than 0.02 mol of singlet oxygen was produced per mole of superoxide ion between p/sup 2/H 6 and 9.

  1. Direct optical excitation of singlet oxygen in organic solvents

    NASA Astrophysics Data System (ADS)

    Bagrov, I. V.; Kiselev, V. M.; Kislyakov, I. M.; Sosnov, E. N.

    2014-04-01

    Efficient excitation of singlet oxygen is demonstrated for several organic solvents (CS2, CCl4, and C6F14) that are irradiated using LED in the visible spectral range in the absorption bands of the O2-O2 collision complexes at the corresponding cooperative transitions. It is shown that the two-photon interaction of the pumping radiation in the Herzberg I band of molecular oxygen with its excitation to the 3Σ{/u +} state and the subsequent collisional relaxation to the 1Σ g and 1Δ g singlet states contributes to the excitation of singlet oxygen.

  2. The influence of excitation radiation parameters on photosensitized generation of singlet oxygen in water

    NASA Astrophysics Data System (ADS)

    Il'ina, A. D.; Glazov, A. L.; Semenova, I. V.; Vasyutinskii, O. S.

    2016-06-01

    Photosensitized generation of singlet oxygen with the aid of Radahlorin® photosensitizer has been investigated. The dependences of the intensity of singlet oxygen phosphorescence and photosensitizer fluorescence on the excitation radiation wavelength in the range of 350-440 nm and on the irradiation dose have been obtained. The dependence of the ratio of the sensitizer fluorescence intensity at about 670 nm to the singlet oxygen phosphorescence intensity at a wavelength of 1270 nm on the excitation radiation wavelength is found to be nonmonotonic and have a minimum near the center of the absorption band on its red wing. The results obtained can be used to monitor the singlet oxygen concentration in solutions.

  3. Singlet Oxygen in Aqueous Solution: A Lecture Demonstration

    ERIC Educational Resources Information Center

    Shakhashiri, Bassam Z.; Williams, Lloyd G.

    1976-01-01

    Describes a demonstration that illustrates the red chemiluminescence due to singlet molecular oxygen that can be observed when aqueous solutions of hypochlorite ion and hydrogen peroxide are mixed. (MLH)

  4. Singlet Oxygen Generation by Laser Irradiation of Gold Nanoparticles

    PubMed Central

    2016-01-01

    The formation of singlet oxygen by irradiation of gold nanoparticles in their plasmon resonance band with continuous or pulsed laser light has been investigated. Citrate-stabilized nanoparticles were found to facilitate the photogeneration of singlet oxygen, albeit with low quantum yield. The reaction caused by pulsed laser irradiation makes use of the equilibrated hot electrons that can reach temperatures of several thousand degrees during the laser pulse. Although less efficient, continuous irradiation, which acts via the short-lived directly excited primary “hot” electrons only, can produce enough singlet oxygen for photodynamic cancer therapy and has significant advantages for practical applications. However, careful design of the nanoparticles is needed, since even a moderately thick capping layer can completely inhibit singlet oxygen formation. Moreover, the efficiency of the process also depends on the nanoparticle size. PMID:27239247

  5. Biological hydroperoxides and singlet molecular oxygen generation.

    PubMed

    Miyamoto, Sayuri; Ronsein, Graziella E; Prado, Fernanda M; Uemi, Miriam; Corrêa, Thais C; Toma, Izaura N; Bertolucci, Agda; Oliveira, Mauricio C B; Motta, Flávia D; Medeiros, Marisa H G; Mascio, Paolo Di

    2007-01-01

    The decomposition of lipid hydroperoxides (LOOH) into peroxyl radicals is a potential source of singlet molecular oxygen ((1)O(2)) in biological systems. Recently, we have clearly demonstrated the generation of (1)O(2) in the reaction of lipid hydroperoxides with biologically important oxidants such as metal ions, peroxynitrite and hypochlorous acid. The approach used to unequivocally demonstrate the generation of (1)O(2) in these reactions was the use of an isotopic labeled hydroperoxide, the (18)O-labeled linoleic acid hydroperoxide, the detection of labeled compounds by HPLC coupled to tandem mass spectrometry (HPLC-MS/MS) and the direct spectroscopic detection and characterization of (1)O(2) light emission. Using this approach we have observed the formation of (18)O-labeled (1)O(2) by chemical trapping of (1)O(2) with anthracene derivatives and detection of the corresponding labeled endoperoxide by HPLC-MS/MS. The generation of (1)O(2) was also demonstrated by direct spectral characterization of (1)O(2) monomol light emission in the near-infrared region (lambda = 1270 nm). In summary, our studies demonstrated that LOOH can originate (1)O(2). The experimental evidences indicate that (1)O(2) is generated at a yield close to 10% by the Russell mechanism, where a linear tetraoxide intermediate is formed in the combination of two peroxyl radicals. In addition to LOOH, other biological hydroperoxides, including hydroperoxides formed in proteins and nucleic acids, may also participate in reactions leading to the generation (1)O(2). This hypothesis is currently being investigated in our laboratory. PMID:17505972

  6. Synergism between Airborne Singlet Oxygen and a Trisubstituted Olefin Sulfonate for the Inactivation of Bacteria

    PubMed Central

    2015-01-01

    The reactivity of a trisubstituted alkene surfactant (8-methylnon-7-ene-1 sulfonate, 1) to airborne singlet oxygen in a solution containing E. coli was examined. Surfactant 1 was prepared by a Strecker-type reaction of 9-bromo-2-methylnon-2-ene with sodium sulfite. Submicellar concentrations of 1 were used that reacted with singlet oxygen by an “ene” reaction to yield two hydroperoxides (7-hydroperoxy-8-methylnon-8-ene-1 sulfonate and (E)-8-hydroperoxy-8-methylnon-6-ene-1 sulfonate) in a 4:1 ratio. Exchanging the H2O solution for D2O where the lifetime of solution-phase singlet oxygen increases by 20-fold led to an ∼2-fold increase in the yield of hydroperoxides pointing to surface activity of singlet oxygen with the surfactant in a partially solvated state. In this airborne singlet oxygen reaction, E. coli inactivation was monitored in the presence and absence of 1 and by a LIVE/DEAD cell permeabilization assay. It was shown that the surfactant has low dark toxicity with respect to the bacteria, but in the presence of airborne singlet oxygen, it produces a synergistic enhancement of the bacterial inactivation. How the ene-derived surfactant hydroperoxides can provoke 1O2 toxicity and be of general utility is discussed. PMID:24611688

  7. Singlet oxygen kinetics in a double microwave discharge

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Lange, Matthew A.; Perram, Glen P.

    2004-09-01

    Chemical lasers offer the highest powers necessary for many weapons applications, but require significant logistical support in the delivery of specialized fuels to the battlefield. In the Chemical Oxygen-Iodine Laser (COIL), which is the weapon aboard the Airborne Laser (ABL), gaseous chlorine and liquid basic hydrogen peroxide are used to generate the singlet oxygen energy reservoir. The goal of the current multi-university research program is to demonstrate an oxygen-iodine laser with electrical discharge production of singlet oxygen. Typically, oxygen discharges are limited to about 15% yield for singlet oxygen. The electron excitation cross-sections as a function of E/N are well established. However, the kinetics for electron and singlet oxygen interactions is considerably more difficult to study. Optical diagnostics for O2(a, b), and O, have been applied to a double microwave discharge flow tube. By examining the difference in singlet oxygen kinetics between the two discharges in series, considerable information regarding the excited-state, excited-state interactions is obtained. Under certain discharge conditions, the O2(a) concentration significantly increases outside of the discharge, even after thermal effects are accounted.

  8. Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies.

    PubMed

    Krasnovsky, A A

    1998-01-01

    Singlet molecular oxygen (1O2) is one of the most active intermediates involved in photosensitized oxygenation reactions in chemical and biological systems. Deactivation of singlet oxygen is accompanied by infrared phosphorescence (1270 nm) which is widely employed for 1O2 detection and study. This review considers techniques for phosphorescence detection, phosphorescence spectra, quantum yields and kinetics under laser excitation, the radiative and real 1O2 lifetimes in organic solvents and water, 1O2 quenching by biomolecules, and estimation of singlet oxygen lifetimes, diffusion lengths and phosphorescence quantum yields in blood plasma, cell cytoplasm, erythrocyte ghosts, retinal rod outer segments and chloroplast thylakoids. The experiments devoted to 1O2 phosphorescence detection in photosensitizer-containing living cells are discussed in detail. Information reviewed is important for understanding the mechanisms of photodestruction in biological systems and various applied problems of photobiology and photomedicine. PMID:10379647

  9. Singlet-Oxygen Generation in Alkaline Periodate Solution.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2015-12-15

    A nonphotochemical generation of singlet oxygen ((1)O2) using potassium periodate (KIO4) in alkaline condition (pH > 8) was investigated for selective oxidation of aqueous organic pollutants. The generation of (1)O2 was initiated by the spontaneous reaction between IO4(-) and hydroxyl ions, along with a stoichiometric conversion of IO4(-) to iodate (IO3(-)). The reactivity of in-situ-generated (1)O2 was monitored by using furfuryl alcohol (FFA) as a model substrate. The formation of (1)O2 in the KIO4/KOH system was experimentally confirmed using electron spin resonance (ESR) measurements in corroboration with quenching studies using azide as a selective (1)O2 scavenger. The reaction in the KIO4/KOH solution in both oxic and anoxic conditions initiated the generation of superoxide ion as a precursor of the singlet oxygen (confirmed by using superoxide scavengers), and the presence of molecular oxygen was not required as a precursor of (1)O2. Although hydrogen peroxide had no direct influence on the FFA oxidation process, the presence of natural organic matter, such as humic and fulvic acids, enhanced the oxidation efficiency. Using the oxidation of simple organic diols as model compounds, the enhanced (1)O2 formation is attributed to periodate-mediated oxidation of vicinal hydroxyl groups present in humic and fulvic constituent moieties. The efficient and simple generation of (1)O2 using the KIO4/KOH system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral and near-alkaline conditions. PMID:26594871

  10. Using singlet oxygen to synthesize polyoxygenated natural products from furans.

    PubMed

    Montagnon, Tamsyn; Tofi, Maria; Vassilikogiannakis, Georgios

    2008-08-01

    [Reaction: see text]. Singlet oxygen is a powerful tool in the armament of the synthetic organic chemist and possibly in that of nature itself. In this Account, we illustrate a small selection of the many ways singlet oxygen can be harnessed in the laboratory to aid in the construction of the complex molecular motifs found in natural products. A more philosophical question is also addressed: namely, how much do singlet oxygen oxidations influence the biogenesis of these natural products? All the synthetic examples surveyed in this Account can be characterized as belonging to the same class because they all involve the oxidation of a substituted furan nucleus by singlet oxygen. Readily accessible and relatively simple furans can be transformed into a host of complex motifs present in a diverse range of natural products by the action of singlet-oxygen-mediated reaction sequences. These reactions are highly advantageous because they frequently deliver a rapid and dramatic increase in molecular complexity in high yield. Furthermore, an unusually wide structural diversity is exhibited by the molecular motifs obtained from these reaction sequences. For example, relatively minor modifications to the starting substrate and to the reaction conditions may lead to products as variable as spiroketal lactones, 3-keto-tetrahydrofurans, various types of bis-spiroketals, 4-hydroxy cyclopentenones, or spiroperoxylactones. In addition, two more specialized examples are discussed in this Account. The core of the prunolide molecules and the chinensine family of natural products were rapidly synthesized using effective and short singlet oxygen mediated strategies; this adds weight to the assertion that singlet oxygen is a very effective moderator of complex cascade reaction sequences. We also show how our synthetic investigations have provided evidence that these same strategies might be used in the biogenesis of these molecules. In the cases of the chinensines and the

  11. Improving singlet oxygen resistance during photochemical water oxidation by cobalt porphyrin catalysts.

    PubMed

    Nakazono, Takashi; Parent, Alexander R; Sakai, Ken

    2015-04-27

    Enabling the production of solar fuels on a global scale through artificial photosynthesis requires the development of water oxidation catalysts with significantly improved stability. The stability of photosystems is often reduced owing to attack by singlet oxygen, which is produced during light harvesting. Here, we report photochemical water oxidation by CoFPS, a fluorinated Co-porphyrin designed to resist attack by singlet oxygen. CoFPS exhibits significantly improved stability relative to its non-fluorinated analogue, as shown by a large increase in turnover numbers. This increased stability results from resistance of CoFPS to attack by singlet oxygen, the formation of which was monitored in situ by using 9,10-diphenylanthracene as a chemical probe. Dynamic light scattering (DLS) confirms that CoFPS remains homogeneous, proving its stability during water oxidation catalysis. PMID:25808406

  12. Monitoring oxygenation.

    PubMed

    Severinghaus, John W

    2011-06-01

    Cyanosis was used for a century after dentists began pulling teeth under 100% N(2)O in 1844 because brief (2 min) severe hypoxia is harmless. Deaths came with curare and potent anesthetic respiratory arrest. Leland Clark's invention of a polarographic blood oxygen tension electrode (1954) was introduced for transcutaneous PO2 monitoring to adjust PEEP and CPAP PO2 to prevent premature infant blindness from excess O2 (1972). Oximetry for warning military aviators was tried after WW II but not used for routine monitoring until Takuo Aoyagi (1973) discovered an equation to measure SaO2 by the ratio of ratios of red and IR light transmitted through tissue as it changed with arterial pulses. Pulse oximetry (1982) depended on simultaneous technology improvements of light emitting red and IR diodes, tiny cheap solid state sensors and micro-chip computers. Continuous monitoring of airway anesthetic concentration and oxygen also became very common after 1980. Death from anesthesia fell 10 fold between 1985 and 2000 as pulse oximetry became universally used, but no proof of a causative relationship to pulse oximetry exists. It is now assumed that all anesthesiologist became much more aware of the dangers of prolonged hypoxia, perhaps by using the pulse oximeters. PMID:21717228

  13. Photosensitized generation of singlet oxygen by rhenium(I) complex

    NASA Astrophysics Data System (ADS)

    Burchinov, A. N.; Kiselev, V. M.; Penni, A. A.; Khistyaeva, V. V.

    2015-12-01

    The photosensitized generation of singlet oxygen in solutions of rhenium(I) complex fac-[Re(bipy)(CO)3NCCH3]+OTf-, where bipy=2,2'-bipyridine, in chloride methylene and carbon tetrachloride under continuous LED irradiation in the UV and visible ranges has been investigated.

  14. Photoactivatable protein labeling by singlet oxygen mediated reactions.

    PubMed

    To, Tsz-Leung; Medzihradszky, Katalin F; Burlingame, Alma L; DeGrado, William F; Jo, Hyunil; Shu, Xiaokun

    2016-07-15

    Protein-protein interactions regulate many biological processes. Identification of interacting proteins is thus an important step toward molecular understanding of cell signaling. The aim of this study was to investigate the use of photo-generated singlet oxygen and a small molecule for proximity labeling of interacting proteins in cellular environment. The protein of interest (POI) was fused with a small singlet oxygen photosensitizer (miniSOG), which generates singlet oxygen ((1)O2) upon irradiation. The locally generated singlet oxygen then activated a biotin-conjugated thiol molecule to form a covalent bond with the proteins nearby. The labeled proteins can then be separated and subsequently identified by mass spectrometry. To demonstrate the applicability of this labeling technology, we fused the miniSOG to Skp2, an F-box protein of the SCF ubiquitin ligase, and expressed the fusion protein in mammalian cells and identified that the surface cysteine of its interacting partner Skp1 was labeled by the biotin-thiol molecule. This photoactivatable protein labeling method may find important applications including identification of weak and transient protein-protein interactions in the native cellular context, as well as spatial and temporal control of protein labeling. PMID:27220724

  15. Singlet oxygen and organic light-emitting diodes

    SciTech Connect

    Jacobs, S.J.; Sinclair, M.B.; Valencia, V.S.; Kepler, R.G.; Clough, R.L.; Scurlock, R.D.; Ogilby, P.R.

    1995-07-01

    The preparation of light emitting diodes employing a new class of materials, 5,10-dihetera 5,10-dihydro-indeno[3,2b]indenes, as hole transport agents is described. These materials have been found to be more resistant to degradation by singlet oxygen than a poly(p-phenylene vinylene) (PPV) derivative.

  16. Reactive Oxygen Species Mediated Activation of a Dormant Singlet Oxygen Photosensitizer: From Autocatalytic Singlet Oxygen Amplification to Chemicontrolled Photodynamic Therapy.

    PubMed

    Durantini, Andrés M; Greene, Lana E; Lincoln, Richard; Martínez, Sol R; Cosa, Gonzalo

    2016-02-01

    Here we show the design, preparation, and characterization of a dormant singlet oxygen ((1)O2) photosensitizer that is activated upon its reaction with reactive oxygen species (ROS), including (1)O2 itself, in what constitutes an autocatalytic process. The compound is based on a two segment photosensitizer-trap molecule where the photosensitizer segment consists of a Br-substituted boron-dipyrromethene (BODIPY) dye. The trap segment consists of the chromanol ring of α-tocopherol, the most potent naturally occurring lipid soluble antioxidant. Time-resolved absorption, fluorescence, and (1)O2 phosphorescence studies together with fluorescence and (1)O2 phosphorescence emission quantum yields collected on Br2B-PMHC and related bromo and iodo-substituted BODIPY dyes show that the trap segment provides a total of three layers of intramolecular suppression of (1)O2 production. Oxidation of the trap segment with ROS restores the sensitizing properties of the photosensitizer segment resulting in ∼40-fold enhancement in (1)O2 production. The juxtaposed antioxidant (chromanol) and prooxidant (Br-BODIPY) antagonistic chemical activities of the two-segment compound enable the autocatalytic, and in general ROS-mediated, activation of (1)O2 sensitization providing a chemical cue for the spatiotemporal control of (1)O2.The usefulness of this approach to selectively photoactivate the production of singlet oxygen in ROS stressed vs regular cells was successfully tested via the photodynamic inactivation of a ROS stressed Gram negative Escherichia coli strain. PMID:26789198

  17. Production of Singlet Oxygen within a Flow Discharge

    NASA Astrophysics Data System (ADS)

    Lange, Matthew; Pitz, Greg; Perram, Glen

    2008-10-01

    The Airborne laser program is an Air Force sponsored program to place a laser on the battle field for use as a tactical weapon. The chemical oxygen iodine laser offers the powers necessary for this weapons application, but it requires significant logistical support. The goal of this current research program is to demonstrate an oxygen-iodine laser with electrical discharge production of singlet oxygen. Optical diagnostics have been applied to microwave and radio frequency discharges within a pure oxygen flow. The O2(a) emissions within a discharge are complicated by atomic oxygen emission requiring care in determining gas concentrations from optically measured emissions. Thermal effects also complicate optical emissions. The inclusion of vibrationally excited oxygen as a quencher of the O2(a) state appears to be the limiting rate for production of O2(a) within the electric discharge conditions studied in this research.

  18. Probing the reactivity of singlet oxygen with purines.

    PubMed

    Dumont, Elise; Grüber, Raymond; Bignon, Emmanuelle; Morell, Christophe; Moreau, Yohann; Monari, Antonio; Ravanat, Jean-Luc

    2016-01-01

    The reaction of singlet molecular oxygen with purine DNA bases is investigated by computational means. We support the formation of a transient endoperoxide for guanine and by classical molecular dynamics simulations we demonstrate that the formation of this adduct does not affect the B-helicity. We thus identify the guanine endoperoxide as a key intermediate, confirming a low-temperature nuclear magnetic resonance proof of its existence, and we delineate its degradation pathway, tracing back the preferential formation of 8-oxoguanine versus spiro-derivates in B-DNA. Finally, the latter oxidized 8-oxodGuo product exhibits an almost barrierless reaction profile, and hence is found, coherently with experience, to be much more reactive than guanine itself. On the contrary, in agreement with experimental observations, singlet-oxygen reactivity onto adenine is kinetically blocked by a higher energy transition state. PMID:26656495

  19. Probing the reactivity of singlet oxygen with purines

    PubMed Central

    Dumont, Elise; Grüber, Raymond; Bignon, Emmanuelle; Morell, Christophe; Moreau, Yohann; Monari, Antonio; Ravanat, Jean-Luc

    2016-01-01

    The reaction of singlet molecular oxygen with purine DNA bases is investigated by computational means. We support the formation of a transient endoperoxide for guanine and by classical molecular dynamics simulations we demonstrate that the formation of this adduct does not affect the B-helicity. We thus identify the guanine endoperoxide as a key intermediate, confirming a low-temperature nuclear magnetic resonance proof of its existence, and we delineate its degradation pathway, tracing back the preferential formation of 8-oxoguanine versus spiro-derivates in B-DNA. Finally, the latter oxidized 8-oxodGuo product exhibits an almost barrierless reaction profile, and hence is found, coherently with experience, to be much more reactive than guanine itself. On the contrary, in agreement with experimental observations, singlet-oxygen reactivity onto adenine is kinetically blocked by a higher energy transition state. PMID:26656495

  20. Conference on Singlet Molecular Oxygen (COSMO 84), program and abstracts

    NASA Astrophysics Data System (ADS)

    Stevens, B.

    1984-09-01

    The Conference objective was to promote interdisciplinary awareness and communication by assembling research workers in such diverse fields as photochemistry, photophysics, synthetic chemistry, photobiology, photomedicine, laser and atmospheric physics; and to present their recent findings with singlet molecular oxygen as the common theme. This was prompted by several recent developments: notably the direct observation of 02 superscript 1 micron g in emission at 1.27 microns which now provides solvent-dependent life-times, reaction or quenching rate constants, and sensitized yields directly; the trapping of zwitterionic intermediates and the role of catalysts in electron transfer peroxidation; the feasibility of a singlet oxygen-iodine chemical laser; direct observation of 02 microns g in enzymic processes; the use of endoperoxides as actinometers; the phototherapy of malignant tumors; prospects for 02 superscript 1 delta g as a solar energy storage intermediate.

  1. In vivo outcome study of BPD-mediated PDT using a macroscopic singlet oxygen model

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Penjweini, Rozhin; Zhu, Timothy C.

    2015-03-01

    Macroscopic modeling of the apparent reacted singlet oxygen concentration ([1O2]rx) for use with photodynamic therapy (PDT) has been developed and studied for benzoporphryin derivative monoacid ring A (BPD), a common photosensitizer. The four photophysical parameters (ξ, σ, β, δ) and threshold singlet oxygen dose ([1O2]rx, sh) have been investigated and determined using the RIF model of murine fibrosarcomas and interstitial treatment delivery. These parameters are examined and verified further by monitoring tumor growth post-PDT. BPD was administered at 1 mg/kg, and mice were treated 3 hours later with fluence rates ranging between 75 - 150 mW/cm2 and total fluences of 100 - 350 J/cm2. Treatment was delivered superficially using a collimated beam. Changes in tumor volume were tracked following treatment. The tumor growth rate was fitted for each treatment condition group and compared using dose metrics including total light dose, PDT dose, and reacted singlet oxygen. Initial data showing the correlation between outcomes and various dose metrics indicate that reacted singlet oxygen serves as a good dosimetric quantity for predicting PDT outcome.

  2. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane.

    PubMed

    Sokolov, V S; Gavrilchik, A N; Kulagina, A O; Meshkov, I N; Pohl, P; Gorbunova, Yu G

    2016-08-01

    Photosensitizers are widely used as photodynamic therapeutic agents killing cancer cells by photooxidation of their components. Development of new effective photosensitive molecules requires profound knowledge of possible targets for reactive oxygen species, especially for its singlet form. Here we studied photooxidation of voltage-sensitive styryl dyes (di-4-ANEPPS, di-8-ANEPPS, RH-421 and RH-237) by singlet oxygen on the surface of bilayer lipid membranes commonly used as cell membrane models. Oxidation was induced by irradiation of a photosensitizer (aluminum phthalocyanine tetrasulfonate) and monitored by the change of dipole potential on the surface of the membrane. We studied the drop of the dipole potential both in the case when the dye molecules were adsorbed on the same side of the lipid bilayer as the photosensitizer (cis-configuration) and in the case when they were adsorbed on the opposite side (trans-configuration). Based on a simple model, we determined the rate of oxidation of the dyes from the kinetics of change of the potential during and after irradiation. This rate is proportional to steady-state concentration of singlet oxygen in the membrane under irradiation. Comparison of the oxidation rates of various dyes reveals that compounds of ANEPPS series are more sensitive to singlet oxygen than RH type dyes, indicating that naphthalene group is primarily responsible for their oxidation. PMID:27236238

  3. Macroscopic singlet oxygen model incorporating photobleaching as an input parameter

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Finlay, Jarod C.; Zhu, Timothy C.

    2015-03-01

    A macroscopic singlet oxygen model for photodynamic therapy (PDT) has been used extensively to calculate the reacted singlet oxygen concentration for various photosensitizers. The four photophysical parameters (ξ, σ, β, δ) and threshold singlet oxygen dose ([1O2]r,sh) can be found for various drugs and drug-light intervals using a fitting algorithm. The input parameters for this model include the fluence, photosensitizer concentration, optical properties, and necrosis radius. An additional input variable of photobleaching was implemented in this study to optimize the results. Photobleaching was measured by using the pre-PDT and post-PDT sensitizer concentrations. Using the RIF model of murine fibrosarcoma, mice were treated with a linear source with fluence rates from 12 - 150 mW/cm and total fluences from 24 - 135 J/cm. The two main drugs investigated were benzoporphyrin derivative monoacid ring A (BPD) and 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH). Previously published photophysical parameters were fine-tuned and verified using photobleaching as the additional fitting parameter. Furthermore, photobleaching can be used as an indicator of the robustness of the model for the particular mouse experiment by comparing the experimental and model-calculated photobleaching ratio.

  4. Singlet oxygen scavengers affect laser-dye impairment of endothelium-dependent responses of brain arterioles.

    PubMed

    Rosenblum, W I; Nelson, G H

    1996-04-01

    This study investigates the possible role of singlet oxygen in accounting for the inhibitory effect of laser-dye injury on endothelium-dependent dilations. The combination of helium-neon (HeNe) laser (20-s exposure) and intravascular Evans blue impairs endothelium-dependent dilation of mouse pial arterioles by acetylcholine (ACh), bradykinin (BK), and calcium ionophore A23187. Each has a different endothelium-derived mediator (EDRFACh, EDRFBK, EDRFionophore, respectively). In this study, diameters at a craniotomy site were monitored in vivo with an image splitter-television microscope. The laser-dye injury, as usual, abolished the responses 10 and 30 min after injury, with recovery, complete or partial, at 60 min. Dilations by sodium nitroprusside, an endothelium-independent dilator, were not affected by laser-dye. When the singlet oxygen scavengers L-histidine (10(-3) M) and L-tryptophan (10(-2) M) were added to the suffusate over the site, the responses to ACh at 10 and 30 min were relatively intact, the response to BK was partly protected at 10 min only, and the response to ionophore was still totally impaired at 10 and 30 min. Lysine, a nonscavenging amino acid, had no protective effects with any dilator. We postulate that a heat-induced injury initiates a chain of events resulting in prolonged singlet oxygen generation by the endothelial cell (not by the dye). We postulate further that destruction of EDRFACh by singlet oxygen is responsible for laser-dye inhibition of ACh and that generation of the radical must continue for > or = 30 min. On the other hand, the heat injury itself is probably responsible for the elimination of the response to ionophore. Heat plus singlet oxygen generated by heat-damaged tissue may initially impair the response to BK, but by 30 min only the effects of some other factor, presumably heat injury, account for the impaired response to BK. PMID:8967364

  5. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    PubMed

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  6. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    PubMed Central

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  7. Singlet oxygen as a reactive intermediate in the photodegradation of an electroluminescent polymer

    SciTech Connect

    Scurlock, R.D.; Wang, B.; Ogilby, P.R.; Sheats, J.R.; Clough, R.L.

    1995-10-18

    Singlet molecular oxygen (a{sup 1}{Delta}{sub g}) is shown to be a reactive intermediate in the photoinduced oxidative decomposition of the electroluminescent material poly(2,5-bis(5,6-dihydrocholestanoxy)-1,4-phenylenevinylene) [BCHA-PPV] in both liquid solutions and solid films. Upon irradiation of this polymer in CS{sub 2}, singlet oxygen is produced by energy transfer from the BCHA-PPV triplet state to ground state oxygen with a quantum yield of nearly 0.025. Singlet oxygen reacts with BCHA-PPV, resulting in extensive chain scission of the macromolecule. The reaction with singlet oxygen is unique to the polymer; the monomeric analog of this system, stilbene, does not appreciably react with singlet oxygen. Polymer degradation is proposed to proceed via addition of singlet oxygen in a{sub {pi}} 2+{sub {pi}}2 cycloaddition reaction to the double bond that connects phenylene groups in the macromolecule. 60 refs., 6 figs.

  8. Luminescence of the oxygen dimole at the output of a chemical singlet-oxygen generator

    SciTech Connect

    Azyazov, V N; Nikolaev, V D; Svistun, M I; Ufimtsev, N I

    1999-09-30

    The luminescence spectra of the singlet oxygen dimole, formed in a chemical jet - droplet generator, were recorded in the visible range of the spectrum with a resolution of 0.15 nm. In the gas-temperature range T = 150 - 350 K, the emission spectrum of the dimole was diffuse and had a half-width of 12 nm. The vibrational population of the oxygen at the output from the chemical singlet-oxygen generator reached 2%, which was an order of magnitude above its equilibrium value. (active media)

  9. Detection techniques for singlet oxygen production during photodynamic therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Buhong

    2016-03-01

    Singlet oxygen is widely considered to be the major cytotoxic reactive oxygen species (ROS) generated during photodynamic therapy (PDT). This talk summarizes recent advances and future perspectives in detection techniques for singlet oxygen production, and the advantages and limitations of each technique will be presented. In addition, our custom developed novel configuration of a near-infrared sensitive camera and adaptive optics for in vivo fast imaging of singlet oxygen luminescence around 1270 nm will be highlighted. For clinical PDT application, the challenges for direct measrement of singlet oxygen luminescence will be discussed.

  10. Polymer characterization using the time-resolved phosphorescence of singlet oxygen as a spectroscopic probe

    SciTech Connect

    Ogilby, P.R.; Kristiansen, M.; Dillon, M.P. . Dept. of Chemistry); Taylor, V.L.; Clough, R.L. )

    1990-01-01

    The lowest excited electronic state of molecular oxygen, singlet oxygen ({sup 1}{Delta}{sub g}0{sub 2}), can be produced in solid organic polymers by a variety of different methods. Once produced, singlet oxygen will return to the ground triplet state by two pathways, radiative (phosphorescence) and non-radiative decay. Although the quantum efficiency of phosphorescence is small ({minus}10{sup {minus}5}), singlet oxygen can be detected by its emission at 1270 mn in both steady-state and time-resolved experiments. The phosphorescence of singlet oxygen can be used to characterize many properties of a solid organic polymer. 2 refs., 5 figs.

  11. Preliminary study of a centrifugal-flow singlet oxygen generator

    SciTech Connect

    Shi, W; Deng, L; Yang, H; Sha, G; Zhang, C

    2008-02-28

    By using the concept of a high-pressure, gravity-independent singlet oxygen generator (SOG) proposed by Emanuel and based on the principle that a rotating fluid is capable of producing an enormous centrifugal force, a novel-type centrifugal-flow singlet oxygen generator (CFSOG) was designed and constructed. In this device, O{sub 2}({sup 1}{delta}) was generated in the reaction of gaseous Cl{sub 2} with a rotating basic hydrogen peroxide (BHP) liquid flow and then was removed from the BHP liquid phase by the centrifugal force. Meanwhile, the microdroplets formed during the Cl{sub 2}+BHP reaction were removed from the O{sub 2}({sup 1}{delta}) gas flow by the centrifugal force produced by the high-speed flow along an arc-shaped channel. Preliminary investigations showed that, because the specific reactive surface area of this SOG was noticeably larger than that of the jet-SOG normally used in current chemical oxygen-iodine lasers (COILs), the O{sub 2}({sup 1}{delta}) yield of {approx}60%, the O{sub 2}({sup 1}{delta}) partial pressure as high as 31 Torr, and chlorine utilisation higher than 96% were realised. Moreover, steady operation was obtained. (laser components)

  12. Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling

    PubMed Central

    Wang, Ken Kang-Hsin; Finlay, Jarod C.; Busch, Theresa M.; Hahn, Stephen M.; Zhu, Timothy C.

    2011-01-01

    Singlet oxygen (1O2) is the major cytotoxic agent responsible for cell killing for type-II photodynamic therapy (PDT). An empirical four-parameter macroscopic model is proposed to calculate the “apparent reacted 1O2 concentration”, [1O2]rx, as a clinical PDT dosimetry quantity. This model incorporates light diffusion equation and a set of PDT kinetics equations, which can be applied in any clinical treatment geometry. We demonstrate that by introducing a fitting quantity “apparent singlet oxygen threshold concentration” [1O2]rx,sd, it is feasible to determine the model parameters by fitting the computed [1O2]rx to the Photofrin-mediated PDT-induced necrotic distance using interstitially-measured Photofrin concentration and optical properties within each mouse. After determining the model parameters and the [1O2]rx,sd, we expect to use this model as an explicit dosimetry to assess PDT treatment outcome for a specific photosensitizer in an in vivo environment. The results also provide evidence that the [1O2]rx, because it takes into account the oxygen consumption (or light fluence rate) effect, can be a better predictor of PDT outcome than the PDT dose defined as the energy absorbed by the photosensitizer, which is proportional to the product of photosensitizer concentration and light fluence. PMID:20222102

  13. Theoretical and experimental analysis of the luminescence signal of singlet oxygen for different photosensitizers.

    PubMed

    Baier, Jürgen; Fuss, Thomas; Pöllmann, Claudia; Wiesmann, Christopher; Pindl, Katrin; Engl, Roland; Baumer, Daniela; Maier, Max; Landthaler, Michael; Bäumler, Wolfgang

    2007-06-26

    After the generation by different photosensitizers, the direct detection of singlet oxygen is performed by measuring its luminescence at 1270 nm. Using an infrared sensitive photomultiplier, the complete rise and decay time of singlet oxygen luminescence is measured at different concentrations of a photosensitizer, quencher, or oxygen. This allows the extraction of important information about the photosensitized generation of singlet oxygen and its decay, in particular at different oxygen concentrations. Based on theoretical considerations all important relaxation rates and rate constants were determined for the triplet T(1) states of the photosensitizers and for singlet oxygen. In particular, depending on the oxygen or quencher concentration, the rise or the decay time of the luminescence signal exhibit different meanings regarding the lifetime of singlet oxygen or triplet T(1)-state. To compare with theory, singlet oxygen was generated by nine different photosensitizers dissolved in either H2O, D2O or EtOD. When using H2O as solvent, the decaying part of the luminescence signal is frequently not the lifetime of singlet oxygen, in particular at low oxygen concentration. Since cells show low oxygen concentrations, this must have an impact when looking at singlet oxygen detection in vitro or in vivo. PMID:17482831

  14. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization

    NASA Astrophysics Data System (ADS)

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Burjor, Captain; Sortino, Salvatore; Callan, John F.; Raymo, Françisco M.

    2015-08-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.An amphiphilic

  15. Singlet-oxygen generation at gas-liquid interfaces: A significant artifact in the measurement of singlet-oxygen yields from ozone-biomolecule reactions

    SciTech Connect

    Kanofsky, J.R.; Sima, P.D. )

    1993-09-01

    Several ozone-biomolecule reactions have previously been shown to generate singlet oxygen in high yields. For some of these ozone-biomolecule reactions, we now show that the apparent singlet-oxygen yields determined from measurements of 1270 nm chemiluminescence were artifactually elevated by production of gas-phase singlet oxygen. The gas-phase singlet oxygen results from the reaction of gas-phase ozone with biomolecules near the surface of the solution. Through the use of a flow system that excludes air from the reaction chamber, accurate singlet-oxygen yields can be obtained. The revised singlet-oxygen yields (mol 1O2 per mol O3) for the reactions of ozone with cysteine, reduced glutathione, NADH, NADPH, human albumin, methionine, uric acid and oxidized glutathione are 0.23 +/- 0.02, 0.26 +/- 0.2, 0.48 +/- 0.04, 0.41 +/- 0.01, 0.53 +/- 0.06, 1.11 +/- 0.04, 0.73 +/- 0.05 and 0.75 +/- 0.01, respectively. These revised singlet-oxygen yields are still substantial.

  16. Detection of singlet oxygen in photoexcited porous silicon nanocrystals by photoluminescence measurements

    SciTech Connect

    Gongalsky, M. B. Konstantinova, E. A.; Osminkina, L. A.; Timoshenko, V. Yu.

    2010-01-15

    Luminescence of gas-phase singlet oxygen optically sensitized by microporous silicon at room temperature is detected for the first time. At the same time, a photoinduced increase in the photoluminescence intensity of defects at the sample surface in oxygen atmosphere is observed. It is shown that mechanical grinding of porous silicon layers yields a decrease in the amount of photogenerated singlet oxygen.

  17. Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery.

    PubMed

    Wandt, Johannes; Jakes, Peter; Granwehr, Josef; Gasteiger, Hubert A; Eichel, Rüdiger-A

    2016-06-01

    Aprotic lithium-oxygen (Li-O2 ) batteries have attracted considerable attention in recent years owing to their outstanding theoretical energy density. A major challenge is their poor reversibility caused by degradation reactions, which mainly occur during battery charge and are still poorly understood. Herein, we show that singlet oxygen ((1) Δg ) is formed upon Li2 O2 oxidation at potentials above 3.5 V. Singlet oxygen was detected through a reaction with a spin trap to form a stable radical that was observed by time- and voltage-resolved in operando EPR spectroscopy in a purpose-built spectroelectrochemical cell. According to our estimate, a lower limit of approximately 0.5 % of the evolved oxygen is singlet oxygen. The occurrence of highly reactive singlet oxygen might be the long-overlooked missing link in the understanding of the electrolyte degradation and carbon corrosion reactions that occur during the charging of Li-O2 cells. PMID:27145532

  18. Cell death induced by direct laser activation of singlet oxygen at 1270 nm

    NASA Astrophysics Data System (ADS)

    Anquez, F.; El Yazidi Belkoura, I.; Suret, P.; Randoux, S.; Courtade, E.

    2013-02-01

    Singlet oxygen plays a major role in many chemical and biological photo-oxidation processes. It has a high chemical reactivity, which is commonly harnessed for therapeutic issues. Indeed, singlet oxygen is recognized as the major cytotoxic agent in photodynamic therapy. In this treatment of cancer, singlet oxygen is created, among other reactive species, by an indirect transfer of energy from light to molecular oxygen via excitation of a photosensitizer. In this paper, we show that the conventional singlet oxygen production scheme can be simplified. Production of singlet oxygen is achieved in living cells from photosensitizer-free 1270 nm laser excitation of the electronic ground state of molecular oxygen. The quantity of singlet oxygen produced in this way is sufficient to induce an oxidative stress leading to cell death. Other effects such as thermal stress are discriminated, and we conclude that cell death is only due to singlet oxygen creation. This new simplified scheme of singlet oxygen activation can be seen as a breakthrough for phototherapies of malignant diseases and/or as a non-invasive possibility to generate reactive oxygen species in a tightly controlled manner.

  19. Kinetic analysis of nitroxide radical formation under oxygenated photolysis: toward quantitative singlet oxygen topology.

    PubMed

    Zigler, David F; Ding, Eva Chuheng; Jarocha, Lauren E; Khatmullin, Renat R; DiPasquale, Vanessa M; Sykes, R Brendan; Tarasov, Valery F; Forbes, Malcolm D E

    2014-12-01

    Reaction kinetics for two sterically hindered secondary amines with singlet oxygen have been studied in detail. A water soluble porphyrin sensitizer, 5,10,15,20-tetrakis-(4-sulfunatophenyl)-21,23H-porphyrin (TPPS), was irradiated in oxygenated aqueous solutions containing either 2,2,6,6-tetramethylpiperidin-4-one (TMPD) or 4-[N,N,N-trimethyl-ammonium]-2,2,6,6-tetramethylpiperidinyl chloride (N-TMPCl). The resulting sensitization reaction produced singlet oxygen in high yield, ultimately leading to the formation of the corresponding nitroxide free radicals (R2NO) which were detected using steady-state electron paramagnetic resonance (EPR) spectroscopy. Careful actinometry and EPR calibration curves, coupled with a detailed kinetic analysis, led to a simple and compact expression relating the nitroxide quantum yield ΦR2NO (from the doubly-integrated EPR signal intensity) to the initial amine concentration [R2NH]i. With all other parameters held constant, a plot of ΦR2NOvs. [R2NH]i gave a straight line with a slope proportional to the rate constant for nitroxide formation, kR2NO. This establishment of a rigorous quantitative relationship between the EPR signal and the rate constant provides a mechanism for quantifying singlet oxygen production as a function of its topology in heterogeneous media. Implications for in vivo assessment of singlet oxygen topology are briefly discussed. PMID:25369860

  20. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    NASA Astrophysics Data System (ADS)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  1. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization

    NASA Astrophysics Data System (ADS)

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Burjor, Captain; Sortino, Salvatore; Callan, John F.; Raymo, Françisco M.

    2015-08-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.An amphiphilic

  2. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization.

    PubMed

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Captain, Burjor; Sortino, Salvatore; Callan, John F; Raymo, Françisco M

    2015-09-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy. PMID:26238536

  3. Generation of singlet oxygen for an oxygen-iodine laser in a radio-frequency discharge

    SciTech Connect

    Braginskii, O V; Vasil'eva, A N; Klopovskii, K S; Kovalev, A S; Lopaev, D V; Mankelevich, Yu A; Popov, N A; Rakhimov, Aleksandr T; Rakhimova, T V

    2005-01-31

    The generation of singlet oxygen (SO) in a radio-frequency discharge (13.56 MHz) in the gas flow was investigated experimentally and theoretically. The oxygen pressure was varied from 2 to 20 Torr and the energy deposition in gas from 10 to 2000 J mmol{sup -1}. The saturation of the SO concentration with increasing the energy deposition was shown to arise from the three-body process of SO quenching by atomic oxygen. Removing atomic oxygen allowed a 2.5-fold increase in the ultimate SO concentration at the discharge output. For an oxygen pressure of 15 Torr, the SO fraction amounts to 10%. (active media. lasers)

  4. Biradical vs singlet oxygen photogeneration in suprofen-cholesterol systems.

    PubMed

    Palumbo, Fabrizio; Bosca, Francisco; Morera, Isabel Maria; Andreu, Inmaculada; Miranda, Miguel A

    2016-01-01

    Cholesterol (Ch) is an important lipidic building block and a target for oxidative degradation, which can be induced via free radicals or singlet oxygen ((1)O2). Suprofen (SP) is a nonsteroidal anti-inflammatory drug that contains the 2-benzoylthiophene (BZT) chromophore and has a π,π* lowest triplet excited state. In the present work, dyads (S)- and (R)-SP-α-Ch (1 and 2), as well as (S)-SP-β-Ch (3) have been prepared from β- or α-Ch and SP to investigate the possible competition between photogeneration of biradicals and (1)O2, the key mechanistic steps in Ch photooxidation. Steady-state irradiation of 1 and 2 was performed in dichloromethane, under nitrogen, through Pyrex, using a 400 W medium pressure mercury lamp. The spectral analysis of the separated fractions revealed formation of two photoproducts 4 and 5, respectively. By contrast, under the same conditions, 3 did not give rise to any isolable Ch-derived product. These results point to an intramolecular hydrogen abstraction in 1 and 2 from the C7 position of Ch and subsequent C-C coupling of the generated biradicals. Interestingly, 2 was significantly more photoreactive than 1 indicating a clear stereodifferentiation in the photochemical behavior. Transient absorption spectra obtained for 1-3 were very similar and matched that described for the SP triplet excited state (typical bands with maxima at ca. 350 nm and 600 nm). Direct kinetic analysis of the decay traces at 620 nm led to determination of triplet lifetimes that were ca. 4.1 μs for 1 and 2 and 5.8 μs for 3. From these data, the intramolecular quenching rate constants in 1 and 2 were determined as 0.78 × 10(5) s(-1). The capability of dyads 1-3 to photosensitize the production of singlet oxygen was assessed by time-resolved near infrared emission studies in dichloromethane using perinaphthenone as standard. The quantum yields (ΦΔ) were 0.52 for 1 and 2 and 0.56 for 3. In conclusion, SP-α-Ch dyads are unique in the sense that they can be

  5. Biradical vs singlet oxygen photogeneration in suprofen–cholesterol systems

    PubMed Central

    Palumbo, Fabrizio; Bosca, Francisco; Morera, Isabel Maria

    2016-01-01

    Summary Cholesterol (Ch) is an important lipidic building block and a target for oxidative degradation, which can be induced via free radicals or singlet oxygen (1O2). Suprofen (SP) is a nonsteroidal anti-inflammatory drug that contains the 2-benzoylthiophene (BZT) chromophore and has a π,π* lowest triplet excited state. In the present work, dyads (S)- and (R)-SP-α-Ch (1 and 2), as well as (S)-SP-β-Ch (3) have been prepared from β- or α-Ch and SP to investigate the possible competition between photogeneration of biradicals and 1O2, the key mechanistic steps in Ch photooxidation. Steady-state irradiation of 1 and 2 was performed in dichloromethane, under nitrogen, through Pyrex, using a 400 W medium pressure mercury lamp. The spectral analysis of the separated fractions revealed formation of two photoproducts 4 and 5, respectively. By contrast, under the same conditions, 3 did not give rise to any isolable Ch-derived product. These results point to an intramolecular hydrogen abstraction in 1 and 2 from the C7 position of Ch and subsequent C–C coupling of the generated biradicals. Interestingly, 2 was significantly more photoreactive than 1 indicating a clear stereodifferentiation in the photochemical behavior. Transient absorption spectra obtained for 1–3 were very similar and matched that described for the SP triplet excited state (typical bands with maxima at ca. 350 nm and 600 nm). Direct kinetic analysis of the decay traces at 620 nm led to determination of triplet lifetimes that were ca. 4.1 μs for 1 and 2 and 5.8 μs for 3. From these data, the intramolecular quenching rate constants in 1 and 2 were determined as 0.78 × 105 s−1. The capability of dyads 1–3 to photosensitize the production of singlet oxygen was assessed by time-resolved near infrared emission studies in dichloromethane using perinaphthenone as standard. The quantum yields (ΦΔ) were 0.52 for 1 and 2 and 0.56 for 3. In conclusion, SP-α-Ch dyads are unique in the sense that they

  6. New singlet oxygen donors based on naphthalenes: synthesis, physical chemical data, and improved stability.

    PubMed

    Klaper, Matthias; Linker, Torsten

    2015-06-01

    Singlet oxygen donors are of current interest for medical applications, but suffer from a short half-life leading to low singlet oxygen yields and problems with storage. We have synthesized more than 25 new singlet oxygen donors based on differently substituted naphthalenes in only a few steps. The influence of functional groups on the reaction rate of the photooxygenations, thermolysis, half-life, and singlet oxygen yield has been thoroughly studied. We determined various thermodynamic data and compared them with density functional calculations. Interestingly, remarkable stabilities of functional groups during the photooxygenations and stabilizing effects for some endoperoxides during the thermolysis have been found. Furthermore, we give evidence for a partly concerted and partly stepwise thermolysis mechanism leading to singlet and triplet oxygen, respectively. Our results might be interesting for "dark oxygenations" and future applications in medicine. PMID:25919359

  7. L-ascorbic acid quenching of singlet delta molecular oxygen in aqueous media: generalized antioxidant property of vitamin C

    SciTech Connect

    Chou, P.T.; Khan, A.U.

    1983-09-30

    L-ascorbic acid quenches singlet (/sup 1/..delta../sub g/) molecular oxygen in aqueous media (pH 6.8 for (/sup 1/H)H/sub 2/O and pD 7.2 for (/sup 2/H)D/sub 2/O) as measured directly by monitoring (0,0) /sup 1/..delta../sub g/ ..-->.. /sup 3/..sigma../sub g//sup -/ emission at 1.28 micron. Singlet oxygen was generated at room temperature in the solutions via photosensitization of sodium chrysene sulfonate; this sulfonated polycyclic hydrocarbon was synthesized to provide a water soluble chromophore inert to usual dye-ascorbate photobleaching. A marked isotope effect is found; k/sub Q//sup H/sub 2/O/ is 3.3 times faster than k/sub Q//sup D/sub 2/O/, suggesting ascorbic acid is chemically quenching singlet oxygen.

  8. Controlling energy transfer in ytterbium complexes: oxygen dependent lanthanide luminescence and singlet oxygen formation.

    PubMed

    Watkis, Andrew; Hueting, Rebekka; Sørensen, Thomas Just; Tropiano, Manuel; Faulkner, Stephen

    2015-11-01

    Pyrene-appended ytterbium complexes have been prepared using Ugi reactions to vary the chromophore-lanthanide separation. Formation of the ytterbium(iii) excited state is sensitised via both the singlet and triplet excited states of the chromophore. Energy transfer from the latter is relatively slow, and gives rise to oxygen-dependent luminescence. PMID:26346499

  9. Photosensitized generation of singlet oxygen in porous silicon studied by simultaneous measurements of luminescence of nanocrystals and oxygen molecules

    SciTech Connect

    Gongalsky, M. B.; Kharin, A. Yu.; Zagorodskikh, S. A.; Osminkina, L. A.; Timoshenko, V. Yu.

    2011-07-01

    Photosensitization of singlet oxygen generation in porous silicon (PSi) was investigated by simultaneous measurements of the photoluminescence (PL) of silicon nanocrystals (nc-Si) and the infrared emission of the {sup 1}{Delta}-state of oxygen molecules at 1270 nm (0.98 eV) at room temperature. Photodegradation of the nc-Si PL properties was found to correlate with the efficiency of singlet oxygen generation. The quantum efficiency of singlet oxygen generation in PSi was estimated to be about 1%, while the lifetime of singlet oxygen was about fifteen ms. The kinetics of nc-Si PL intensity under cw excitation undergoes a power law dependence with the exponent dependent on the photon energy of luminescence. The experimental results are explained with a model of photodegradation controlled by the diffusion of singlet oxygen molecules in a disordered structure of porous silicon.

  10. Solar photolysis of ozone to singlet D oxygen atoms

    NASA Technical Reports Server (NTRS)

    Blackburn, Thomas E.; Bairai, Solomon T.; Stedman, Donald H.

    1992-01-01

    The ground-level photolysis frequency of ozone J(O3) to produce metastable singlet D oxygen atoms (O (D-1)) is measured using a novel instrumental technique involving electrical conductivity. The O(D-1) atoms produced react with nitrous oxide (N2O) carrier gas to form higher oxides of nitrogen (NO(x)). These oxides were detected by mixing with methanol and determining the increase in electrical conductivity with a continuous-flow dual conductivity cell. Over 70 days of data were collected under varying sky conditions. The effect of temperature on J(O3) was measured. The results agree with model predictions. The effects of atmospheric aerosols, changes in overhead ozone column, and local cloudiness are discussed.

  11. Photosensitized generation of singlet oxygen in powders and aqueous suspensions of silicon nanocrystals

    SciTech Connect

    Ryabchikov, Yu. V.; Belogorokhov, I. A.; Gongalskii, M. B.; Osminkina, L. A.; Timoshenko, V. Yu.

    2011-08-15

    The photoluminescence spectra and kinetics in powders and aqueous suspensions produced from porous silicon layers are studied. The systematic features of photosensitized generation of singlet oxygen by silicon nanocrystals in the samples are established. The dependence of the efficiency of generation of singlet oxygen on the pressure of molecular oxygen is analyzed. It is concluded that the generation can be described on the basis of concepts of energy transfer from photoexcited silicon nanocrystals to oxygen molecules adsorbed at the nanocrystal surface to the concentration described by Langmuir's adsorption model. The processes limiting the efficiency of photosensitized generation of singlet oxygen in the systems are discussed.

  12. Singlet oxygen in the low-temperature plasma of an electron-beam-sustained discharge

    SciTech Connect

    Vagin, N. P.; Ionin, A. A.; Klimachev, Yu. M.; Kotkov, A. A.; Kochetov, I. V.; Napartovich, A. P.; Podmar'kov, Yu. P.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.; Frolov, M. P.; Yuryshev, N. N.

    2006-05-15

    Results are presented from experimental and theoretical studies of the production of singlet delta oxygen in a pulsed electron-beam-sustained discharge ignited in a large ({approx}18-1) volume at a total gas mixture pressure of up to 210 Torr. The measured yield of singlet oxygen reaches 10.5%. It is found that varying the reduced electric field from {approx}2 to {approx}11 kV/(cm atm) slightly affects singlet oxygen production. It is shown experimentally that an increase in the gas mixture pressure or the specific input energy reduces the duration of singlet oxygen luminescence. The calculated time evolution of the singlet oxygen concentration is compared with experimental results.

  13. Mechanism of singlet oxygen deactivation in an electric discharge oxygen – iodine laser

    SciTech Connect

    Azyazov, V N; Mikheyev, P A; Torbin, A P; Pershin, A A; Heaven, M C

    2014-12-31

    We have determined the influence of the reaction of molecular singlet oxygen with a vibrationally excited ozone molecule O{sub 2}(a {sup 1}Δ) + O{sub 3}(ν) → 2O{sub 2} + O on the removal rate of O{sub 2}(a {sup 1}Δ) in an electric-discharge-driven oxygen – iodine laser. This reaction has been shown to be a major channel of O{sub 2}(a {sup 1}Δ) loss at the output of an electric-discharge singlet oxygen generator. In addition, it can also contribute significantly to the loss of O{sub 2}(a {sup 1}Δ) in the discharge region of the generator. (lasers)

  14. Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: comparison of ex vivo application of two photosensitizer formulations

    NASA Astrophysics Data System (ADS)

    Schlothauer, Jan C.; Hackbarth, Steffen; Jäger, Lutz; Drobniewski, Kai; Patel, Hemantbhai; Gorun, Sergiu M.; Röder, Beate

    2012-11-01

    Singlet oxygen plays a crucial role in photo-dermatology and photodynamic therapy (PDT) of cancer. Its direct observation by measuring the phosphorescence at 1270 nm, however, is still challenging due to the very low emission probability. It is especially challenging for the time-resolved detection of singlet oxygen kinetics in vivo which is of special interest for biomedical applications. Photosensitized generation of singlet oxygen, in pig ear skin as model for human skin, is investigated here. Two photosensitizers (PS) were topically applied to the pig ear skin and examined in a comparative study, which include the amphiphilic pheophorbide-a and the highly hydrophobic perfluoroalkylated zinc phthalocyanine (F64PcZn). Fluorescence microscopy indicates the exclusive accumulation of pheophorbide-a in the stratum corneum, while F64PcZn can also accumulate in deeper layers of the epidermis of the pig ear skin. The kinetics obtained with phosphorescence measurements show the singlet oxygen interaction with the PS microenvironment. Different generation sites of singlet oxygen correlate with the luminescence kinetics. The results show that singlet oxygen luminescence detection can be used as a diagnostic tool, not only for research, but also during treatment. The detection methodology is suitable for the monitoring of chemical quenchers' oxidation as well as O2 saturation at singlet oxygen concentration levels relevant to PDT treatment protocols.

  15. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii

    PubMed Central

    Wakao, Setsuko; Chin, Brian L; Ledford, Heidi K; Dent, Rachel M; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S; Niyogi, Krishna K

    2014-01-01

    Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation. DOI: http://dx.doi.org/10.7554/eLife.02286.001 PMID:24859755

  16. Direct detection of singlet oxygen generated by UVA irradiation in human cells and skin.

    PubMed

    Baier, Jürgen; Maisch, Tim; Maier, Max; Landthaler, Michael; Bäumler, Wolfgang

    2007-06-01

    UVA light produces deleterious biological effects in which singlet oxygen plays a major role. These effects comprise a significant risk of carcinogenesis in the skin and cataract formation of the eye lens. Singlet oxygen is generated by UVA light absorption in endogenous molecules present in the cells. To elucidate the primary processes and sources of singlet oxygen in tissue, it is a major goal to uncover the hidden process of singlet oxygen generation, in particular in living tissue. When exposing keratinocytes or human skin in vivo to UVA laser light (355 nm) at 6 J/cm2, we measured the luminescence of singlet oxygen at 1,270 nm. This is a positive and direct proof of singlet oxygen generation in cells and skin by UVA light. Moreover, a clear signal of singlet oxygen luminescence was detected in phosphatidylcholine suspensions (water or ethanol) irradiated by UVA. Oxidized products of phosphatidylcholine are the likely chromophores because phosphatidylcholine itself does not absorb at 355 nm. The signal intensity was reduced by mannitol or super oxide dismutase. Additionally, the monochromatic UVA irradiation at 355 nm leads to upregulation of the key cytokine IL-12. This affects the balance of UV radiation on the immune system, which is comparable to effects of broadband UVA irradiation. PMID:17363921

  17. Singlet oxygen generation in gas discharge for oxygen-iodine laser pumping

    NASA Astrophysics Data System (ADS)

    Lopaev, D. V.; Braginsky, O. V.; Klopovsky, K. S.; Kovalev, A. S.; Mankelevich, Yu. A.; Popov, N. A.; Rakhimov, A. T.; Rakhimova, T. V.; Vasilieva, A. N.

    2004-09-01

    The possibility of development of effective discharged singlet oxygen (SO) generator (DSOG) for oxygen-iodine laser (OIL) is studied in detail. Researches of kinetics of oxygen atoms and oxygen molecules in the lowest metastable singlet states have been carried out in the different discharges and its afterglow (DC discharges, E-beam controlled discharge and RF discharges) in both CW and pulsed mode in a wide range of conditions (pressures, gas mixtures, energy deposits etc.). The models developed for all the discharges have allowed us to analyze SO generation and loss mechanisms and to find out the key-parameters controlling the highest SO yield. It is shown that in addition to spatial plasma uniformity at low E/N and high specific energy deposit per oxygen molecule, DSOG must be oxygen atom free to avoid fast three-body quenching of SO by atomic oxygen with increasing pressure and thereby to provide pressure scaling (in tens Torrs) for applying to real OIL systems.

  18. Brain Oxygenation Monitoring.

    PubMed

    Kirkman, Matthew A; Smith, Martin

    2016-09-01

    A mismatch between cerebral oxygen supply and demand can lead to cerebral hypoxia/ischemia and deleterious outcomes. Cerebral oxygenation monitoring is an important aspect of multimodality neuromonitoring. It is increasingly deployed whenever intracranial pressure monitoring is indicated. Although there is a large body of evidence demonstrating an association between cerebral hypoxia/ischemia and poor outcomes, it remains to be determined whether restoring cerebral oxygenation leads to improved outcomes. Randomized prospective studies are required to address uncertainties about cerebral oxygenation monitoring and management. This article describes the different methods of monitoring cerebral oxygenation, their indications, evidence base, limitations, and future perspectives. PMID:27521197

  19. Laser-induced luminescence of singlet molecular oxygen: generation by drugs and pigments of biological importance

    NASA Astrophysics Data System (ADS)

    Egorov, Sergei Y.; Krasnovsky, Alexander A., Jr.

    1991-05-01

    The photon counting technique and flashlaser excitation were applied to the timeresolved measurement of photosensitized singlet oxygen luminescence in organic and aqueous media. The quantum yields for singlet oxygen generation have been measured in solutions of photosynthetic pigments synthetic and natural porphyrins porphyrins conjugated with monoclonal antibodies furocoumarins flavins fluorescein tetracycline and endogenous photosensitizers of human lens. The data obtained indicate that the measurement of the singlet oxygen luminescence is a reliable tool to study the photosensitizing activity of drugs and to elucidate primary mechanisms of photodynamic destruction. 1.

  20. Cytotoxicity But No Mutagenicity In Bacteria With Externally Generated Singlet Oxygen

    NASA Astrophysics Data System (ADS)

    Midden, W. Robert; Dahl, Thomas A.; Hartman, Philip E.

    1988-02-01

    Singlet oxygen is believed to be an important intermediate responsible for the cytotoxicity of HpD phototherapy. It has been recognized as a possible intermediate in photosensitization for more than 20 years. However, it has been difficult to obtain conclusive evidence of its biological characteristics in the past because most of the methods available for its generation that are compatible with biological systems also generate other reactive intermediates whose effects are difficult to distinguish from singlet oxygen. We have used a recently devised separated-surface-sensi-tizer (S-S-S) system for singlet oxygen generation' to measure the cytotoxicity and mutagenicity of singlet oxygen in bacteria. The S-S-S system employs rose bengal as a sensitizer immobilized on one surface of a glass plate. The glass plate is placed sensitizer-side down a small distance (< 1.5 mm) above a microscopically flat membrane (MilliporeTM or NucleoporeTM) that carries a monocellular layer of bacteria. The sensi-tizer-coated plate is illuminated from above to generate singlet oxygen at the surface of the sensitizer. The singlet oxygen thus generated can diffuse the short dis-tance to the surface of the membrane to react with the bacteria. Because of the short lifetime of singlet oxygen in air, increasing the distance between the sensitizer and the membrane causes a decline in the amount of singlet oxygen reaching the membrane according to a function derived from the Einstein-Smoluchowski equation for net displacement by diffusion. Plotting the log of the effect measured (e.g., cytotoxicity) vs. the square of the distance gives a straight line. The slope of this line can be used to calculate the gas phase half life of the intermediate responsible for the observed effects. We have found that bacteria are rapidly killed in the illuminated S-S-S system and that the gas phase half life of the agent responsible for cell killing is the same as that of singlet oxygen. This observation and other

  1. Pallidol, a resveratrol dimer from red wine, is a selective singlet oxygen quencher

    SciTech Connect

    He Shan; Jiang Liyan; Wu Bin; Pan Yuanjiang; Sun Cuirong

    2009-02-06

    Pallidol is a naturally occurring resveratrol dimer from red wine with antioxidant and antifungal activities. In this report, with the use of the EPR spin-trapping technique, the scavenging and quenching effects of pallidol on reactive oxygen species (ROS) were investigated. The results demonstrated that pallidol showed strong quenching effects on singlet oxygen at very low concentrations, but it was ineffective to scavenge hydroxyl radicals or superoxide anions. Further kinetic study revealed that the reaction of pallidol with singlet oxygen had an extremely high rate constant (k{sub a} = 1.71 x 10{sup 10}). Therefore, pallidol is a potent and selective singlet oxygen quencher in aqueous systems. It may be used in singlet oxygen-mediated diseases as a pharmacological agent, which may contribute to the health beneficial effects of red wine.

  2. Collective spin 1 singlet phase in high-pressure oxygen

    PubMed Central

    Crespo, Yanier; Fabrizio, Michele; Scandolo, Sandro; Tosatti, Erio

    2014-01-01

    Oxygen, one of the most common and important elements in nature, has an exceedingly well-explored phase diagram under pressure, up to and beyond 100 GPa. At low temperatures, the low-pressure antiferromagnetic phases below 8 GPa where O2 molecules have spin S = 1 are followed by the broad apparently nonmagnetic ε phase from about 8 to 96 GPa. In this phase, which is our focus, molecules group structurally together to form quartets while switching, as believed by most, to spin S = 0. Here we present theoretical results strongly connecting with existing vibrational and optical evidence, showing that this is true only above 20 GPa, whereas the S = 1 molecular state survives up to about 20 GPa. The ε phase thus breaks up into two: a spinless ε0 (20−96 GPa), and another ε1 (8−20 GPa) where the molecules have S = 1 but possess only short-range antiferromagnetic correlations. A local spin liquid-like singlet ground state akin to some earlier proposals, and whose optical signature we identify in existing data, is proposed for this phase. Our proposed phase diagram thus has a first-order phase transition just above 20 GPa, extending at finite temperature and most likely terminating into a crossover with a critical point near 30 GPa and 200 K. PMID:25002513

  3. Collective spin 1 singlet phase in high-pressure oxygen.

    PubMed

    Crespo, Yanier; Fabrizio, Michele; Scandolo, Sandro; Tosatti, Erio

    2014-07-22

    Oxygen, one of the most common and important elements in nature, has an exceedingly well-explored phase diagram under pressure, up to and beyond 100 GPa. At low temperatures, the low-pressure antiferromagnetic phases below 8 GPa where O2 molecules have spin S = 1 are followed by the broad apparently nonmagnetic ε phase from about 8 to 96 GPa. In this phase, which is our focus, molecules group structurally together to form quartets while switching, as believed by most, to spin S = 0. Here we present theoretical results strongly connecting with existing vibrational and optical evidence, showing that this is true only above 20 GPa, whereas the S = 1 molecular state survives up to about 20 GPa. The ε phase thus breaks up into two: a spinless ε0 (20-96 GPa), and another ε1 (8-20 GPa) where the molecules have S = 1 but possess only short-range antiferromagnetic correlations. A local spin liquid-like singlet ground state akin to some earlier proposals, and whose optical signature we identify in existing data, is proposed for this phase. Our proposed phase diagram thus has a first-order phase transition just above 20 GPa, extending at finite temperature and most likely terminating into a crossover with a critical point near 30 GPa and 200 K. PMID:25002513

  4. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production.

    PubMed

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-01

    Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease. PMID:22185691

  5. Singlet molecular oxygen generated in dark biological process.

    PubMed

    Di Mascio, Paolo; Medeiros, Marisa H G

    2014-10-01

    Ultraweak chemiluminescence arising from biomolecules oxidation has been attributed to the radiative deactivation of singlet molecular oxygen [(1)O2] and electronically excited triplet carbonyl products involving dioxetane intermediates. As examples, we will discuss the generation of (1)O2 from lipid hydroperoxides, which involves a cyclic mechanism from a linear tetraoxide intermediate. The generation of (1)O2 in aqueous solution via energy transfer from the excited triplet acetone arising from the thermodecomposition of dioxetane a chemical source, and horseradish peroxidase-catalyzed oxidation of 2-methylpropanal, as an enzymatic source, will also be discussed. The approach used to unequivocally demonstrate the generation of (1)O2 in these reactions is the use of (18)O-labeled hydroperoxide / triplet dioxygen ((18)[(3)O2]), the detection of labeled compounds by HPLC coupled to tandem mass spectrometry (HPLC-MS/MS) and the direct spectroscopic detection and characterization of (1)O2 light emission. Characteristic light emission at 1,270nm, corresponding to the singlet delta state monomolecular decay was observed. Using(18)[(3)O2], we observed the formation of (18)O-labeled (1)O2 ((18)[(1)O2]) by the chemical trapping of (18)[(1)O2]with the anthracene-9,10-diyldiethane-2,1-diyl disulfate disodium salt (EAS) and detected the corresponding (18)O-labeled EAS endoperoxide usingHPLC-MS/MS. The combined use of the thermolysis of a water-soluble naphthalene endoperoxide as a generator of (18)O labeled (1)O2 and the sensitivity of HPLC-MS/MS allowed the study of (1)O2reactivity toward biomolecules. Photoemission properties and chemical trapping clearly demonstrate that the production of hydroperoxide and excited carbonyls generates (18)[(1)O2], and points to the involvement of (1)O2 in physiological and pathophysiological mechanism. Supported by FAPESP (2012/12663-1), CAPES, INCT Redoxoma (FAPESP/CNPq/CAPES; 573530/2008-4), NAP Redoxoma (PRPUSP; 2011.1.9352.1.8), CEPID

  6. Oxygen-iodine ejector laser with a centrifugal bubbling singlet-oxygen generator

    SciTech Connect

    Zagidullin, M V; Nikolaev, V D; Svistun, M I; Khvatov, N A

    2005-10-31

    It is shown that if a supersonic oxygen-iodine ejector laser is fed by singlet oxygen from a centrifugal bubbling generator operating at a centrifugal acceleration of {approx}400g, the laser output power achieves a value 1264 W at a chemical efficiency of 24.6% for an alkaline hydrogen peroxide flow rate of 208 cm{sup 3}s{sup -1} and a specific chlorine load of 1.34 mmol s{sup -1} per square centimetre of the bubble layer. (lasers)

  7. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield.

    PubMed

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C; Goldys, Ewa M

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8 keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79 ± 0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result we estimate the singlet oxygen dose generated from CeF3-verteporfin conjugates for a therapeutic dose of 60 Gy of ionizing radiation at energies of 6 MeV and 30 keV to be (1.2 ± 0.7) × 10(8) and (2.0 ± 0.1) × 10(9) singlet oxygen molecules per cell, respectively. These are comparable with cytotoxic doses of 5 × 10(7)-2 × 10(9) singlet oxygen molecules per cell reported in the literature for photodynamic therapy using light activation. We confirmed that the CeF3-VP conjugates enhanced cell killing with 6 MeV radiation. This work confirms the feasibility of using X- or γ- ray activated nanoparticle-photosensitizer conjugates, either to supplement the radiation treatment of cancer, or as an independent treatment modality. PMID:26818819

  8. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield

    PubMed Central

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C.; Goldys, Ewa M.

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8 keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79 ± 0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result we estimate the singlet oxygen dose generated from CeF3-verteporfin conjugates for a therapeutic dose of 60 Gy of ionizing radiation at energies of 6 MeV and 30 keV to be (1.2 ± 0.7) × 108 and (2.0 ± 0.1) × 109 singlet oxygen molecules per cell, respectively. These are comparable with cytotoxic doses of 5 × 107–2 × 109 singlet oxygen molecules per cell reported in the literature for photodynamic therapy using light activation. We confirmed that the CeF3-VP conjugates enhanced cell killing with 6 MeV radiation. This work confirms the feasibility of using X- or γ- ray activated nanoparticle-photosensitizer conjugates, either to supplement the radiation treatment of cancer, or as an independent treatment modality. PMID:26818819

  9. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield

    NASA Astrophysics Data System (ADS)

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C.; Goldys, Ewa M.

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8 keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79 ± 0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result we estimate the singlet oxygen dose generated from CeF3-verteporfin conjugates for a therapeutic dose of 60 Gy of ionizing radiation at energies of 6 MeV and 30 keV to be (1.2 ± 0.7) × 108 and (2.0 ± 0.1) × 109 singlet oxygen molecules per cell, respectively. These are comparable with cytotoxic doses of 5 × 107-2 × 109 singlet oxygen molecules per cell reported in the literature for photodynamic therapy using light activation. We confirmed that the CeF3-VP conjugates enhanced cell killing with 6 MeV radiation. This work confirms the feasibility of using X- or γ- ray activated nanoparticle-photosensitizer conjugates, either to supplement the radiation treatment of cancer, or as an independent treatment modality.

  10. Towards photodynamic therapy with ionizing radiation: nanoparticle-mediated singlet oxygen generation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian; Goldys, Ewa

    2016-03-01

    Photodynamic therapy (PDT) is a clinically approved method for the treatment of cancer by using singlet oxygen, a highly reactive oxygen generated from a photosensitizer drug upon photoactivation. Limited light penetration depth into to the tissue means that PDT is unsuitable for deep tissue cancer treatments. This can be overcome by using X-ray /gamma rays activated nanoparticles able to trigger the photosensitizer drug and generate singlet oxygen. Additionally, inorganic nanoparticles interact more strongly with X and/or gamma rays than the tissue, allowing to concentrate the effects of radiation near nanoparticle surface and they can also be molecularly targeted to cancer cells. In this work we synthesized and characterized CeF3 nanoparticles, a well-known scintillator material. The nanoparticles were conjugated with Verteporfin, a photosensitizer drug by electrostatic interaction. We assessed the performance of CeF3 and the conjugates to generate singlet oxygen exposed to X-ray radiation. The X-ray singlet oxygen quantum yield of the nanoparticle-photosensitizer system was accurately quantified for the first time. This provided realistic estimates of the singlet oxygen dose taking into consideration the dose partition of the radiation between CeF3 and the tissue. Furthermore, we investigated gold nanoparticle-photosensitizer systems. We confirmed that pure gold nanoparticles itself generate singlet oxygen which is attributed to plasmonic effects. We found enhanced singlet oxygen generation from gold-Rose Bengal conjugates and gold nanorod-verteporfin conjugates. These singlet-oxygen-generating nanomaterials add a new dimension to radiation-assisted PDT.

  11. Dynamics of photosensitized formation of singlet oxygen by porous silicon in aqueous solution

    SciTech Connect

    Fujii, Minoru; Nishimura, Naoki; Fumon, Hirokazu; Hayashi, Shinji; Kovalev, Dmitry; Goller, Bernhard; Diener, Joachim

    2006-12-15

    Generation of singlet oxygen due to energy transfer from photoexcited silicon nanocrystals in D{sub 2}O is demonstrated. It is shown that the singlet oxygen generation efficiency, i.e., the intensity of near-infrared emission from singlet oxygen gradually decreases when Si nanocrystals are continuously irradiated in O{sub 2}-saturated D{sub 2}O. The mechanism of the photodegradation of the photosensitizing efficiency is studied using photoluminescence and infrared absorption techniques. Experimental results suggest that the interaction of photogenerated singlet oxygen with the hydrogen-terminated surface of silicon nanocrystals results in photo-oxidation of silicon nanocrystals, and the surface oxides reduce the photosensitizing efficiency. It is also demonstrated that photo-oxidation of porous silicon in O{sub 2}-saturated water results in a strong enhancement of the photoluminescence quantum yield of porous Si.

  12. Determination of the low concentration correction in the macroscopic singlet oxygen model for PDT

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Penjweini, Rozhin; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    The macroscopic singlet oxygen model has been used for singlet oxygen explicit dosimetry in photodynamic therapy (PDT). The photophysical parameters for commonly used sensitizers, HPPH and BPD, have been investigated in pre-clinical studies using mouse models. So far, studies have involved optimizing fitting algorithms to obtain the some of the photophysical parameters (ξ, σ, g) and the threshold singlet oxygen dose ([1O2]rx,sh), while other parameters such as the low concentration correction, δ, has been kept as a constant. In this study, using photobleaching measurements of mice in vivo, the value of δ was also optimized and fit to better describe experimental data. Furthermore, the value of the specific photobleaching ratio (σ) was also fine-tuned using the photobleaching results. Based on literature values of δ, σ for photosensitizers can be uniquely determined using the additional photobleaching measurements. This routine will further improve the macroscopic model of singlet oxygen production for use in explicit dosimetry.

  13. Singlet oxygen production from the reactions of ozone with biological molecules

    SciTech Connect

    Kanofsky, J.R.; Sima, P. )

    1991-05-15

    The reaction of ozone with a number of biological molecules was found to produce singlet oxygen in high yield. At pH 7.0, the reaction of ozone with an equimolar amount of biological molecule produced the following singlet oxygen yields (mole of singlet oxygen/mole of ozone): cysteine, 0.49 +/- 0.02; methionine, 1.13 +/- 0.11; reduced glutathione, 0.33 +/- 0.02; albumin, 1.00 +/- 0.05; uric acid, 0.64 +/- 0.09; ascorbic acid, 0.96 +/- 0.007; NADPH, 1.07 +/- 0.07; NADH, 0.95 +/- 0.01. Thus, singlet oxygen may be an important intermediate in the biochemical damage caused by ozone.

  14. Multiphase reacting flow modeling of singlet oxygen generators for chemical oxygen iodine lasers.

    SciTech Connect

    Salinger, Andrew Gerhard; Pawlowski, Roger Patrick; Hewett, Kevin B.; Madden, Timothy J.; Musson, Lawrence Cale

    2008-08-01

    Singlet oxygen generators are multiphase flow chemical reactors used to generate energetic oxygen to be used as a fuel for chemical oxygen iodine lasers. In this paper, a theoretical model of the generator is presented along with its solutions over ranges of parameter space and oxygen maximizing optimizations. The singlet oxygen generator (SOG) is a low-pressure, multiphase flow chemical reactor that is used to produce molecular oxygen in an electronically excited state, i.e. singlet delta oxygen. The primary product of the reactor, the energetic oxygen, is used in a stage immediately succeeding the SOG to dissociate and energize iodine. The gas mixture including the iodine is accelerated to a supersonic speed and lased. Thus the SOG is the fuel generator for the chemical oxygen iodine laser (COIL). The COIL has important application for both military purposes--it was developed by the US Air Force in the 1970s--and, as the infrared beam is readily absorbed by metals, industrial cutting and drilling. The SOG appears in various configurations, but the one in focus here is a crossflow droplet generator SOG. A gas consisting of molecular chlorine and a diluent, usually helium, is pumped through a roughly rectangular channel. An aqueous solution of hydrogen peroxide and potassium hydroxide is pumped through small holes into the channel and perpendicular to the direction of the gas flow. So doing causes the solution to become aerosolized. Dissociation of the potassium hydroxide draws a proton from the hydrogen peroxide generating an HO{sub 2} radical in the liquid. Chlorine diffuses into the liquid and reacts with the HO{sub 2} ion producing the singlet delta oxygen; some of the oxygen diffuses back into the gas phase. The focus of this work is to generate a predictive multiphase flow model of the SOG in order to optimize its design. The equations solved are the so-called Eulerian-Eulerian form of the multiphase flow Navier-Stokes equations wherein one set of the

  15. Photochemical inactivation of viruses by antibody conjugates of compounds generating singlet oxygen

    NASA Astrophysics Data System (ADS)

    Savitsky, Alexander P.; Tourkin, Andrey I.; Tourkina, Elena V.; Cherednikova, Tatyana V.; Ponomarev, Gely V.; Poglazov, Boris F.

    1994-03-01

    For the first time a method is proposed for targeted destruction of viral particles with a photoimmuno-toxin. The photoinununotoxin is a conjugate of antibodies and dimethoxy haematoporphyrin (a potent singlet oxygen generator), binding with the viral particle and upon illumination with visible light inactivating the virus by singlet oxygen. The method can be used to combat viral infection in humans and to prevent lysis of industrial micro-organisms by lysogenic bacteriophage strains.

  16. Photochemical production of singlet oxygen from particulate organic matter.

    PubMed

    Appiani, Elena; McNeill, Kristopher

    2015-03-17

    Dissolved organic matter is established as one of the most relevant photosensitizers in aquatic environments, producing singlet oxygen (1O2) alongside other photochemically produced reactive intermediates. While the production of 1O2 from DOM has been well studied, the relative importance of particulate organic matter (POM) to the overall 1O2 production is less well understood. POM is known to play an important role in pollutant fate through the sorption and transport of hydrophobic pollutants. If POM is directly involved in 1O2 production, sorbed molecules would be expected to undergo enhanced photodegradation. In this work, synthetic POM was prepared by coating silica particles with commercial humic acid. The photochemical behavior of these POM samples was compared to dissolved commercial humic acids (DOM). Suspended natural sediment was also studied to test the environmental relevance of the synthetic POM model. Synthetic POM particles appear to simulate well the 1O2-production of suspended sediment. The 1O2 concentrations experienced by POM-sorbed probe molecules was up to 30% higher than experienced by DOM-sorbed ones, even though the aqueous concentration of 1O2 in irradiated POM suspensions was much lower than the analogous DOM solutions. These results were interpreted with a reaction-diffusion model, which suggested that the production rate of 1O2 by POM is lower than DOM, but the loss of 1O2 from the POM-phase is also lower than DOM. Based on the experimental results of this study, calculations were conducted to estimate the impact of removing POM on 1O2-mediated processes. These calculations indicate that compounds with a log Koc value near 4 will be most affected by removal of POM and that the magnitude of the effect is proportional to the fraction of the total organic matter represented by POM. This study demonstrates that particles can play an important role in the degradation of organic compounds via aquatic photochemistry. PMID:25674663

  17. The role of vasoactive intestinal peptide in scavenging singlet oxygen

    SciTech Connect

    Misra, B.R.; Misra, H.P. )

    1990-02-26

    The neuropeptide vasoactive intestinal peptide (VIP), a highly basic 28 amino acid peptide, has a widespread distribution in the body. The functional specificity of this peptide not only includes its potent vasodilatory activity, but also its role in protecting lungs against acute injury, in preventing T-lymphocyte proliferation and in modulating immune function. The purpose of this study was to examine the possible antioxidant properties of VIP. The authors found that VIP up to 50 {mu}g/ml had no inhibitory effect on its reduction of cytochrome C by xanthine and xanthine oxidase, indicating that the peptide does not have significant O{sub 2} scavenging ability. However, VIP was found to inhibit, in a dose-dependent manner, the {sup 1}O{sub 2} dependent 2, 2, 6, 6 tetramethyl piperidine oxide (TEMPO) formation. {sup 1}O{sub 2} was produced by rose benzal photosensitizing system and was detected as TEMP-{sup 1}O{sub 2} adduct (TEMPO) by electron paramagnetic resonance (EPR) spectroscopic technique. The formation of TEMPO signal was strongly inhibited by {beta}-carotene, histidine as well as azide, but not by superoxide dismutase (48 {mu}g/ml), catalase (20 {mu}g/ml) and mannitol (6mM), indicating that TEMPO signal was a TEMP-{sup 1}O{sub 2} adduct. These results indicate that VIP has potent antioxidant activity and may serve as a singlet O{sub 2} scavenger, thus it may modulate the oxidative tissue injury caused by this reactive oxygen species.

  18. Exposure of vitamins to UVB and UVA radiation generates singlet oxygen.

    PubMed

    Knak, Alena; Regensburger, Johannes; Maisch, Tim; Bäumler, Wolfgang

    2014-05-01

    Deleterious effects of UV radiation in tissue are usually attributed to different mechanisms. Absorption of UVB radiation in cell constituents like DNA causes photochemical reactions. Absorption of UVA radiation in endogenous photosensitizers like vitamins generates singlet oxygen via photosensitized reactions. We investigated two further mechanisms that might be involved in UV mediated cell tissue damage. Firstly, UVB radiation and vitamins also generate singlet oxygen. Secondly, UVB radiation may change the chemical structure of vitamins that may change the role of such endogenous photosensitizers in UVA mediated mechanisms. Vitamins were irradiated in solution using monochromatic UVB (308 nm) or UVA (330, 355, or 370 nm) radiation. Singlet oxygen was directly detected and quantified by its luminescence at 1270 nm. All investigated molecules generated singlet oxygen with a quantum yield ranging from 0.007 (vitamin D3) to 0.64 (nicotinamide) independent of the excitation wavelength. Moreover, pre-irradiation of vitamins with UVB changed their absorption in the UVB and UVA spectral range. Subsequently, molecules such as vitamin E and vitamin K1, which normally exhibit no singlet oxygen generation in the UVA, now produce singlet oxygen when exposed to UVA at 355 nm. This interplay of different UV sources is inevitable when applying serial or parallel irradiation with UVA and UVB in experiments in vitro. These results should be of particular importance for parallel irradiation with UVA and UVB in vivo, e.g. when exposing the skin to solar radiation. PMID:24691875

  19. Singlet molecular oxygen on natural snow and ice

    NASA Astrophysics Data System (ADS)

    Bower, J. P.; Anastasio, C.

    2010-12-01

    Singlet molecular oxygen (1O2*) is a reactive intermediate formed when a chromophore absorbs light and subsequently transfers energy to dissolved oxygen. As an oxidant, 1O2* reacts rapidly with a number of electron-rich environmental pollutants. In our work, we show enhanced kinetics for 1O2* in frozen solutions, where its rate of formation (Rf) and steady state concentration ([1O2*]) can be many orders of magnitude higher than found in the same unfrozen solution. Our goal here is to identify the contribution of 1O2* to the decay of pollutants on snow and ice. We conducted experiments in laboratory solutions made to simulate the concentrations and characteristics of natural snow, as well as in natural snow collected in the Sierra Nevada mountains of California and at Summit, Greenland. Natural snow contains a mixture of inorganic salts and organic species that can function as sources and/or sinks for oxidants, as well as contribute colligative control on the volume of quasi-liquid layers that occur at the surface and grain boundaries of ice. In our experiments, solutions typically contained up to five components: (1) Furfuryl alcohol (FFA), a commonly used probe for 1O2*, (2) Rose Bengal (RB), a 1O2* sensitizer, (3) HOOH, a photochemical precursor for hydroxyl radical (●OH), (4) glycerol to simulate unknown, naturally occurring sinks for ●OH, and (5) sodium sulfate to control the total concentration of solutes. We illuminated samples in a temperature-controlled solar simulator and subsequently measured the loss of FFA using high performance liquid chromatography. To differentiate reactions of 1O2* from other sinks (e.g. ●OH), selective sink species were added to determine the fraction of FFA loss due to direct photolysis, reaction with 1O2*, and reaction with ●OH. We verified reactions of 1O2* with FFA by two methods. First, we utilized the kinetic solvent isotope effect, where an enhancement of FFA loss in a mixture of D2O/water is indicative 1O2* since [1

  20. Singlet oxygen-sensitized delayed fluorescence of common water-soluble photosensitizers.

    PubMed

    Scholz, Marek; Dědic, Roman; Breitenbach, Thomas; Hála, Jan

    2013-10-01

    Six common water-soluble singlet oxygen ((1)O2) photosensitizers - 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphine (TMPyP), meso-tetrakis(4-sulfonathophenyl)porphine (TPPS4), Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4), eosin Y, rose bengal, and methylene blue - were investigated in terms of their ability to produce delayed fluorescence (DF) in solutions at room temperature. All the photosensitizers dissolved in air-saturated phosphate buffered saline (PBS, pH 7.4) exhibit easily detectable DF, which can be nearly completely quenched by 10 mM NaN3, a specific (1)O2 quencher. The DF kinetics has a biexponential rise-decay character in a microsecond time domain. Therefore, we propose that singlet oxygen-sensitized delayed fluorescence (SOSDF), where the triplet state of a photosensitizer reacts with (1)O2 giving rise to an excited singlet state of the photosensitizer, is the prevailing mechanism. It was confirmed by additional evidence, such as a monoexponential decay of triplet-triplet transient absorption kinetics, dependence of SOSDF kinetics on oxygen concentration, absence of SOSDF in a nitrogen-saturated sample, or the effect of isotopic exchange H2O-D2O. Eosin Y and AlPcS4 show the largest SOSDF quantum yield among the selected photosensitizers, whereas rose bengal possesses the highest ratio of SOSDF intensity to prompt fluorescence intensity. The rate constant for the reaction of triplet state with (1)O2 giving rise to the excited singlet state of photosensitizer was estimated to be ~/>1 × 10(9) M(-1) s(-1). SOSDF kinetics contains information about both triplet and (1)O2 lifetimes and concentrations, which makes it a very useful alternative tool for monitoring photosensitizing and (1)O2 quenching processes, allowing its detection in the visible spectral region, utilizing the photosensitizer itself as a (1)O2 probe. Under our experimental conditions, SOSDF was up to three orders of magnitude more intense than the infrared (1)O2

  1. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    SciTech Connect

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Some photo-excited carotenoids have photosensitizing ability. Black-Right-Pointing-Pointer They are able to produce ROS. Black-Right-Pointing-Pointer Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as {beta}-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  2. Singlet oxygen induced advanced glycation end-product photobleaching of in vivo human fingertip autofluorescence

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Simental, Anabel; Lutz, Patrick; Shaheen, George; Chaiken, Joseph

    2012-01-01

    Nonenzymatic glycation and oxidation of ubiquitous proteins in vivo leads to irreversible formation of advanced glycation end products (AGEs). Due to their relatively long half life and low clearance rate AGEs tend to accumulate within static tissues and the circulatory system. Spectra obtained using 830 nm near-infrared (NIR) excitation suggest that the so-called "autofluorescence" from all tissues has a finite number of sources but the fact that senior and diabetic subjects produce more than other members of the general population suggests that a significant portion of the total autofluorescence from all sources originates from AGEs. Using pentosidine generated in a reaction mixture as described by Monnier as representative, an in vitro study unveiled very similar fluorescence and photobleaching pattern as observed for autofluorescence in vivo. A series of oxygen, air and argon purging experiments on the pentosidine-generating reaction mixture suggests that pentosidine is a singlet oxygen sensitizer and secondary reactions between the pentosidine itself and/or other fluorophores and the photosensitized singlet oxygen explain the observed photobleaching. Ab initio Gaussian calculations on pentosidine reveal the existence of low-lying triplet excited states required for the sensitization of ground state oxygen. A commercially available product known as singlet oxygen sensor green (SOSG) that specifically serves as a singlet oxygen detection reagent confirms the generation of singlet oxygen from NIR irradiated pentosidine trimixture. This study provides one definite chemical mechanism for understanding in vivo human skin autofluorescence and photobleaching.

  3. Capturing Transient Endoperoxide in the Singlet Oxygen Oxidation of Guanine.

    PubMed

    Lu, Wenchao; Liu, Jianbo

    2016-02-24

    The chemistry of singlet O2 toward the guanine base of DNA is highly relevant to DNA lesion, mutation, cell death, and pathological conditions. This oxidative damage is initiated by the formation of a transient endoperoxide through the Diels-Alder cycloaddition of singlet O2 to the guanine imidazole ring. However, no endoperoxide formation was directly detected in native guanine or guanosine, even at -100 °C. Herein, gas-phase ion-molecule scattering mass spectrometry was utilized to capture unstable endoperoxides in the collisions of hydrated guanine ions (protonated or deprotonated) with singlet O2 at ambient temperature. Corroborated by results from potential energy surface exploration, kinetic modeling, and dynamics simulations, various aspects of endoperoxide formation and transformation (including its dependence on guanine ionization and hydration states, as well as on collision energy) were determined. This work has pieced together reaction mechanisms, kinetics, and dynamics data concerning the early stage of singlet O2 induced guanine oxidation, which is missing from conventional condensed-phase studies. PMID:26813583

  4. Singlet oxygen scavenging activity of tocopherol and plastochromanol in Arabidopsis thaliana: relevance to photooxidative stress.

    PubMed

    Rastogi, Anshu; Yadav, Deepak Kumar; Szymańska, Renata; Kruk, Jerzy; Sedlářová, Michaela; Pospíšil, Pavel

    2014-02-01

    In the present study, singlet oxygen (¹O₂) scavenging activity of tocopherol and plastochromanol was examined in tocopherol cyclase-deficient mutant (vte1) of Arabidopsis thaliana lacking both tocopherol and plastochromanol. It is demonstrated here that suppression of tocopherol and plastochromanol synthesis in chloroplasts isolated from vte1 Arabidopsis plants enhanced ¹O₂ formation under high light illumination as monitored by electron paramagnetic resonance spin-trapping spectroscopy. The exposure of vte1 Arabidopsis plants to high light resulted in the formation of secondary lipid peroxidation product malondialdehyde as determined by high-pressure liquid chromatography. Furthermore, it is shown here that the imaging of ultra-weak photon emission known to reflect oxidation of lipids was unambiguously higher in vte1 Arabidopsis plants. Our results indicate that tocopherol and plastochromanol act as efficient ¹O₂ scavengers and protect effectively lipids against photooxidative damage in Arabidopsis plants. PMID:23848570

  5. Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Lin, Lisheng; Li, Yirong; Zhang, Jinde; Tan, Zou; Chen, Defu; Xie, Shusen; Gu, Ying; Li, Buhong

    2014-11-01

    In this study, the vessel constriction was measured as a biological indicator of acute vascular response after vascular targeted photodynamic therapy (V-PDT). During V-PDT treatment, the near-infrared (NIR) singlet oxygen (1O2) luminescence at 1270 nm generated in blood vessels in a dorsal skinfold window chamber model in vivo was directly monitored using a custom built high-sensitive NIR imaging system. In order to compare the acute vascular response, various irradiances with the same light dose were utilized for treatments. The obtained results show that the complete arteriole constriction occurred frequently, while some of the larger veins were constricted partially. For the vessels that have significant constriction after V-PDT, our preliminary data suggest that the vasoconstriction in the selected ROIs are roughly correlated with the local cumulative 1O2 luminescence intensities. This study implies that the 1O2 luminescence dosimetry maybe also effective for evaluating V-PDT efficiency.

  6. Endogenous Generation of Singlet Oxygen and Ozone in Human and Animal Tissues: Mechanisms, Biological Significance, and Influence of Dietary Components

    PubMed Central

    2016-01-01

    Recent studies have shown that exposing antibodies or amino acids to singlet oxygen results in the formation of ozone (or an ozone-like oxidant) and hydrogen peroxide and that human neutrophils produce both singlet oxygen and ozone during bacterial killing. There is also mounting evidence that endogenous singlet oxygen production may be a common occurrence in cells through various mechanisms. Thus, the ozone-producing combination of singlet oxygen and amino acids might be a common cellular occurrence. This paper reviews the potential pathways of formation of singlet oxygen and ozone in vivo and also proposes some new pathways for singlet oxygen formation. Physiological consequences of the endogenous formation of these oxidants in human tissues are discussed, as well as examples of how dietary factors may promote or inhibit their generation and activity. PMID:27042259

  7. Phenomenological model of photoluminescence degradation and photoinduced defect formation in silicon nanocrystal ensembles under singlet oxygen generation

    SciTech Connect

    Gongalsky, Maxim B. Timoshenko, Victor Yu.

    2014-12-28

    We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, which depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.

  8. Development of Singlet Oxygen Luminescence Kinetics during the Photodynamic Inactivation of Green Algae.

    PubMed

    Bornhütter, Tobias; Pohl, Judith; Fischer, Christian; Saltsman, Irena; Mahammed, Atif; Gross, Zeev; Röder, Beate

    2016-01-01

    Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations. PMID:27089311

  9. Singlet-Oxygen Generation From Individual Semiconducting and Metallic Nanostructures During Near-Infrared Laser Trapping

    SciTech Connect

    Smith, Bennett E.; Roder, Paden B.; Hanson, Jennifer L.; Manandhar, Sandeep; Devaraj, Arun; Perea, Daniel E.; Kim, Woo-Joong; Kilcoyne, Arthur L.; Pauzauskie, Peter J.

    2015-03-13

    Photodynamic therapy has been used for several decades in the treatment of solid tumors through the generation of reactive singlet-oxygen species (1O2). Recently, nanoscale metallic and semiconducting materials have been reported to act as photosensitizing agents with additional diagnostic and therapeutic functionality. To date there have been no reports of observing the generation of singlet-oxygen at the level of single nanostructures, particularly at near infrared (NIR) wavelengths. Here we demonstrate that NIR laser-tweezers can be used to observe the formation of singlet-oxygen produced from individual silicon and gold nanowires via use of a commercially available reporting dye. The laser trap also induces 2-photon photoexcitation of the dye following a chemical reaction with singlet oxygen. Corresponding 2-photon emission spectra confirms the generation of singlet oxygen from individual silicon nanowires at room temperature (30°C), suggesting a range of applications in understanding the impact of 1O2 on individual cancer cells.

  10. Singlet oxygen generation using iodinated squaraine and squaraine-rotaxane dyes†

    PubMed Central

    Arunkumar, Easwaran; Sudeep, Pallikkara K.; Kamat, Prashant V.; Noll, Bruce C.

    2010-01-01

    The goal of this study was to assess the ability of squaraine-rotaxanes to generate singlet oxygen for potential application in photodynamic therapy (PDT). Specifically, we compare the aggregation and photophysical properties of an iodinated squaraine dye and an iodinated squaraine-rotaxane. Even under strongly aggregating conditions, the absorption spectra of both remain relatively sharp. An X-ray crystal structure of the iodinated squaraine dye shows that it adopts perpendicular, end-to-face orientations in the solid state. Singlet oxygen generation efficiency was measured by trapping with 1,3-diphenylisobenzofuran. The triplet state of the rotaxane was characterized using laser flash photolysis. The results of this study suggest that heavily halogenated squaraine-rotaxanes have potential as singlet oxygen photosensitizers for PDT. PMID:20376333

  11. Oxidative Damage of U937 Human Leukemic Cells Caused by Hydroxyl Radical Results in Singlet Oxygen Formation

    PubMed Central

    Rác, Marek; Křupka, Michal; Binder, Svatopluk; Sedlářová, Michaela; Matušková, Zuzana; Raška, Milan; Pospíšil, Pavel

    2015-01-01

    The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules. PMID:25730422

  12. Kinetic study of the quenching reaction of singlet oxygen by carotenoids and food extracts in solution. Development of a singlet oxygen absorption capacity (SOAC) assay method.

    PubMed

    Ouchi, Aya; Aizawa, Koichi; Iwasaki, Yuko; Inakuma, Takahiro; Terao, Junji; Nagaoka, Shin-ichi; Mukai, Kazuo

    2010-09-22

    A kinetic study of the quenching reaction of singlet oxygen (1O2) with eight kinds of carotenoids and α-tocopherol was performed in ethanol/chloroform/D2O (50:50:1, v/v/v) solution at 35 °C. The overall rate constants, kQ (=kq+kr, physical quenching+chemical reaction), for the reaction of carotenoids with 1O2 were measured, using the competition reaction method, where endoperoxide was used as a singlet oxygen generator, 2,5-diphenyl-3,4-benzofuran (DPBF) as an UV-vis absorption prove, and α-tocopherol as a standard compound. The rate constants, kQ (S) and kQ (t1/2), were determined by analyzing the first-order rate constant (S) and the half-life (t1/2) of the decay curve of DPBF with carotenoids, respectively, showing good accordance with each other. Similar measurements were performed for tomato and carrot extracts. From the results, a new assay method that can quantify the singlet oxygen absorption capacity (SOAC) of antioxidants, including carotenoids, α-tocopherol, and vegetable extracts, has been proposed. PMID:20726555

  13. New sensitive agents for detecting singlet oxygen by electron spin resonance spectroscopy.

    PubMed

    Igarashi, T; Sakurai, K; Oi, T; Obara, H; Ohya, H; Kamada, H

    1999-05-01

    Free radicals are well-established transient intermediates in chemical and biological processes. Singlet oxygen, though not a free radical, is also a fairly common reactive chemical species. It is rare that singlet oxygen is studied with the electron spin resonance (ESR) technique in biological systems, because there are few suitable detecting agents. We have recently researched some semiquinone radicals. Specifically, our focus has been on bipyrazole derivatives, which slowly convert to semiquinone radicals in DMSO solution in the presence of potassium tert-butoxide and oxygen. These bipyrazole derivatives are dimers of 3-methyl-1-phenyl-2-pyrazolin-5-one and have anti-ischemic activities and free radical scavenging properties. In this work, we synthesized a new bipyrazole derivative, 4,4'-bis(1p-carboxyphenyl-3-methyl-5-hydroxyl)-pyrazole, DRD156. The resulting semiquinone radical, formed by reaction with singlet oxygen, was characterized by ESR spectroscopy. DRD156 gave no ESR signals from hydroxyl radical, superoxide, and hydrogen peroxide. DRD156, though, gives an ESR response with hypochlorite. This agent, nevertheless, has a much higher ability to detect singlet oxygen than traditional agents with the ESR technique. PMID:10381208

  14. Singlet Oxygen Is the Major Reactive Oxygen Species Involved in Photooxidative Damage to Plants1[W

    PubMed Central

    Triantaphylidès, Christian; Krischke, Markus; Hoeberichts, Frank Alfons; Ksas, Brigitte; Gresser, Gabriele; Havaux, Michel; Van Breusegem, Frank; Mueller, Martin Johannes

    2008-01-01

    Reactive oxygen species act as signaling molecules but can also directly provoke cellular damage by rapidly oxidizing cellular components, including lipids. We developed a high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry-based quantitative method that allowed us to discriminate between free radical (type I)- and singlet oxygen (1O2; type II)-mediated lipid peroxidation (LPO) signatures by using hydroxy fatty acids as specific reporters. Using this method, we observed that in nonphotosynthesizing Arabidopsis (Arabidopsis thaliana) tissues, nonenzymatic LPO was almost exclusively catalyzed by free radicals both under normal and oxidative stress conditions. However, in leaf tissues under optimal growth conditions, 1O2 was responsible for more than 80% of the nonenzymatic LPO. In Arabidopsis mutants favoring 1O2 production, photooxidative stress led to a dramatic increase of 1O2 (type II) LPO that preceded cell death. Furthermore, under all conditions and in mutants that favor the production of superoxide and hydrogen peroxide (two sources for type I LPO reactions), plant cell death was nevertheless always preceded by an increase in 1O2-dependent (type II) LPO. Thus, besides triggering a genetic cell death program, as demonstrated previously with the Arabidopsis fluorescent mutant, 1O2 plays a major destructive role during the execution of reactive oxygen species-induced cell death in leaf tissues. PMID:18676660

  15. Benzoylation of Ergosterol through Nucleophilic Acyl Substitution and Subsequent Formation of Ergosterol Benzoate Endoperoxide by Reaction with Singlet Oxygen Generated by Photosensitization

    ERIC Educational Resources Information Center

    Roslaniec, Mary C.; Sanford, Elizabeth M.

    2011-01-01

    Reactive oxygen species such as singlet oxygen have been a major focus of research in medicine. The effect of singlet oxygen on sterols within biological membranes is becoming increasingly more important. Ergosterol, a vitamin D precursor, is one such sterol. The benzoylation of ergosterol and subsequent reaction with singlet oxygen to form an…

  16. Luminescence investigation of photosensitizer distribution in skin: correlation of singlet oxygen kinetics with the microarchitecture of the epidermis.

    PubMed

    Schlothauer, Jan C; Falckenhayn, Julian; Perna, Tobias; Hackbarth, Steffen; Röder, Beate

    2013-11-01

    This is the first study showing that singlet oxygen kinetics of topically applied photosensitizers coincides with the microarchitecture of skin, e.g., fissures and hair follicles. The kinetics indicate a chemical interaction of singlet oxygen with the skin, which allows differentiating between residual crème, e.g., in the follicular orifice, and photosensitizer penetrated into the skin. We show the feasibility of an easy-to-use fiber optic application providing the opportunity for in situ investigation, as well as a setup with focused optics for high-resolution two-dimensional scanning of singlet oxygen luminescence kinetics in skin samples. The results show that time-resolved singlet oxygen luminescence detection in tissue is a desirable tool for medical therapy, diagnostics, and evaluation of singlet oxygen interaction with biological environments. PMID:24194061

  17. Generation of singlet oxygen in fullerene-containing media: 2. Fullerene-containing solutions

    SciTech Connect

    Bagrov, I V; Belousova, I M; Grenishin, A S; Danilov, O B; Ermakov, A V; Kiselev, V M; Kislyakov, I M; Murav'eva, T D; Sosnov, E N

    2008-03-31

    The generation of singlet oxygen in fullerene solutions is studied by luminescence methods upon excitation by pulsed, repetitively pulsed, and continuous radiation sources. The concentration of singlet oxygen in solutions is measured in stationary and pulsed irradiation regimes. The rate constants of quenching of O{sub 2}({sup 1}{delta}{sub g}) by fullerenes C{sub 70} and C{sub 60} in the CCl{sub 4} solution are measured to be (7.2{+-}0.1)x10{sup 7} L mol{sup -1} s{sup -1} and less than 6x10{sup 4} L mol{sup -1} s{sup -1}, respectively. The temperature and photolytic variations in the generation properties of the fullerene solution exposed to intense continuous radiation are studied by the methods of optical and EPR spectroscopy. Pulsed irradiation resulted in the production of singlet oxygen in suspensions of fullerene-like structures, in particular, astralenes. A liquid pulsed singlet-oxygen generator based on the fullerene solution in CCl{sub 4} is developed and studied, in which the yield of O{sub 2} ({sup 1}{delta}{sub g}) to the gas phase at concentrations up to 5x10{sup 16} cm{sup -3} is obtained. (laser applications and other topics in quantum electronics)

  18. Laser induced singlet-oxygen-sensitised delayed fluorescence of dyes in aqueous solutions

    SciTech Connect

    Krasnovskii, A A; Bashtanov, M E; Drozdova, N N; Yuzhakova, O A; Luk'yanets, Evgenii A

    2002-01-31

    It is shown that water-soluble derivatives of phthalocyanines - poly(diethoxyphosphinylmethyl)substituted aluminium phthalocyanines - emit intense singlet-oxygen-sensitised delayed fluorescence upon laser-induced formation of singlet oxygen in air-saturated aqueous (D{sub 2}O) solutions. The delayed fluorescence is emitted by the dye molecules which accepted energy from two molecules of singlet oxygen. The quantum efficiency of delayed fluorescence in aerated D{sub 2}O of the chloroaluminium complex of octa(diethoxyphosphinylmethyl) phthalocyanine corresponds to the rate constant of population of excited dye molecules which is equal to (5.5 {+-} 3) x 10{sup 12} mole{sup -2} L{sup 2} s{sup -1}. This value is only an order of magnitude smaller than that for tetra(4-tert.-butyl)phthalocyanine earlier studied in aerated organic solvents. It is shown that these phthalocyanine derivatives can be used as highly sensitive luminescence indicators of singlet oxygen produced in aqueous solutions of different compounds upon laser excitation. (laser applications and other topics in quantum electronics)

  19. Graphene oxide functionalized with methylene blue and its performance in singlet oxygen generation

    SciTech Connect

    Wojtoniszak, M.; Rogińska, D.; Machaliński, B.; Drozdzik, M.; Mijowska, E.

    2013-07-15

    Graphical abstract: - Highlights: • Adsorption of methylene blue (MB) on graphene oxide (GO). • Characterization of graphene oxide–methylene blue nanocomposite (MB–GO). • Examination of MB–GO efficiency in singlet oxygen generation (SOG). • MB–GO performs higher SOG efficiency than pristine MB. - Abstract: Due to unique electronic, mechanical, optical and structural properties, graphene has shown promising applications in many fields, including biomedicine. One of them is noninvasive anticancer therapy – photodynamic therapy (PDT), where singlet oxygen (SO), generated under the irradiation of light with appropriate wavelengths, kills cancer cells. In this study, authors report graphene oxide (GO) noncovalent functionalization with methylene blue (MB). MB molecules underwent adsorption on the surface of GO. Detailed characterization of the obtained material was carried out with UV–vis spectroscopy, Raman spectroscopy, FT-IR spectroscopy, and confocal laser scanning microscopy. Furthermore, its performance in singlet oxygen generation (SOG) under irradiation of laser with excitation wavelengths of 785 nm was investigated. Interestingly, GO functionalized with MB (MB–GO) showed enhanced efficiency in singlet oxygen generation compared to pristine MB. The efficiency in SOG was detected by photobleaching of 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABMDMA). These results indicate the material is promising in PDT anticancer therapy and further in vitro and in vivo studies are required.

  20. Calibration Of Oxygen Monitors

    NASA Technical Reports Server (NTRS)

    Zalenski, M. A.; Rowe, E. L.; Mcphee, J. R.

    1988-01-01

    Readings corrected for temperature, pressure, and humidity of air. Program for handheld computer developed to ensure accuracy of oxygen monitors in National Transonic Facility, where liquid nitrogen stored. Calibration values, determined daily, based on entries of data on barometric pressure, temperature, and relative humidity. Output provided directly in millivolts.

  1. Singlet oxygen generator for a solar powered chemically pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Busch, G. E.

    1984-01-01

    The potential of solid phase endoperoxides as a means to produce single-delta oxygen in the gas phase in concentrations useful to chemical oxygen-iodine lasers was investigated. The 1,4 - endoperoxide of ethyl 3- (4-methyl - 1-naphthyl) propanoate was deposited over an indium-oxide layer on a glass plate. Single-delta oxygen was released from the endoperoxide upon heating the organic film by means of an electrical discharge through the conductive indium oxide coating. The evolution of singlet-delta oxygen was determined by measuring the dimol emission signal at 634 nm. Comparison of the measured signal with an analytic model leads to two main conclusions: virtually all the oxygen being evolved is in the singlet-delta state and in the gas phase, and there is no significant quenching other than energy pooling on the time scale of the experiment (approximately 10 msec). The use of solid phase endoperoxide as a singlet-delta oxygen generator for an oxygen-iodine laser appears promising.

  2. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    transmitted to a receiving station on Earth. By comparison of the short-circuit currents from the fluence-measuring photodiode and the reference photodiode, one can compute the accumulated atomic oxygen fluence arriving in the direction that the fluence monitor is pointing. The device produces a signal that is linear with atomic oxygen fluence using a material whose atomic oxygen erosion yield has been measured over a period of several years in low-Earth orbit.

  3. Visible light-induced singlet oxygen-mediated intracellular disassembly of polymeric micelles co-loaded with a photosensitizer and an anticancer drug for enhanced photodynamic therapy.

    PubMed

    Saravanakumar, Gurusamy; Lee, Junseok; Kim, Jihoon; Kim, Won Jong

    2015-06-21

    Herein, we report a biocompatible amphiphilic block copolymer micelle bearing a singlet oxygen-sensitive vinyldithioether cleavable linker at the core-shell junction, which undergoes singlet oxygen-mediated photocleavage in the presence of visible light. The micelle facilitates the light-responsive release of singlet oxygen and an anticancer drug for enhanced photodynamic therapy. PMID:25998105

  4. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  5. A study of a singlet-oxygen generator with a twisted aerosol flow

    SciTech Connect

    Adamenkov, A A; Vyskubenko, B A; Il'in, S P; Krukovskii, I M

    2002-06-30

    The results of a study of a singlet-oxygen generator (SOG) with a twisted aerosol flow are presented. The output parameters of the generator obtained in experiments exceed the corresponding characteristics reported earlier in the literature. The maximum chemical efficiency of the reactor amounts to {approx} 70%. The flux density of the electron energy stored by the excited oxygen molecules in the reaction zone is above 1.5 kJ cm{sup -2} s{sup -1}. The measured singlet-oxygen yield is {approx} 60% at a pressure of 100 Torr. Adding a buffer gas (N{sub 2}) to chlorine ensures an increase in the outlet pressure up to 250 Torr without a decrease in the singlet-oxygen yield. The utilisation of chlorine under such conditions exceeds 95 %. The SOG design with a twisted flow ensures atmospheric pressure of the waste solution at the reactor outlet, thus significantly simplifying the development of a system for liquid recycling. (active media)

  6. Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.

    PubMed

    Fukuzumi, Shunichi; Ohkubo, Kei; Zheng, Xiang; Chen, Yihui; Pandey, Ravindra K; Zhan, Riqiang; Kadish, Karl M

    2008-03-01

    A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile). PMID:18254618

  7. Kinetic study of the quenching reaction of singlet oxygen by seven rice bran extracts in ethanol solution. Development of a singlet oxygen absorption capacity (SOAC) assay method.

    PubMed

    Mukai, Kazuo; Ishikawa, Eri; Abe, Takumi; Ouchi, Aya; Nagaoka, Shin-Ichi; Murata, Kazumasa; Miyazawa, Teruo; Nakagawa, Kiyotaka

    2015-01-01

    Measurements of singlet oxygen ((1)O2) quenching rates (kQ (S)) and the relative singlet oxygen absorption capacity (SOAC) values were performed for seven rice bran extracts 1-7, which contained different concentrations of antioxidants (AOs) (such as α-, β-, γ-, and δ-tocopherols and -tocotrienols, three carotenoids (lutein, β-carotene, and zeaxanthin), and γ-oryzanol), in ethanol at 35 °C using UV-vis spectrophotometry. The concentrations of four tocopherols and four tocotrienols, three carotenoids, and γ-oryzanol contained in the extracts were determined using HPLC-MS/MS, UV-HPLC, and UV-vis absorption spectroscopy, respectively. Furthermore, comparisons of kQ (S) (Obsd.) values observed for the above extracts 1-7 with the sum of the product {[Formula: see text] [AO-i]} of the [Formula: see text] values obtained for each AO-i and the concentration ([AO-i]) of AO-i contained in extracts 1-7 were performed. From the results, it has been ascertained that the SOAC method is applicable to general food extracts to evaluate their (1)O2-quenching activity. PMID:26222314

  8. Optical oxygen concentration monitor

    DOEpatents

    Kebabian, Paul

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  9. Singlet oxygen-trapping reaction as a method of (1)O2 detection: role of some reducing agents.

    PubMed

    Dzwigaj, S; Pezerat, H

    1995-08-01

    The production of singlet oxygen by H2O2 disproportionation and via the oxidation of H2O2 by NaOCl in a neutral medium was monitored by spin trapping with 2,2,6,6 tetramethyl-4-piperidone (TMPone). The singlet oxygen formed in both reactions oxidized 2,2,6,6 tetramethyl-4-piperidone to give nitroxide radicals. However the production of nitroxide radicals was relatively small considering the concentrations of H2O2 and NaOCl used in the reaction systems. Addition of electron donating agents: ascorbate, Fe2+ and desferrioxamine leads to an increase in the production of nitroxide radicals. We assumed that a very slow step of the reaction sequence, the homolytic breaking of the O-O bond of N-hydroperoxide (formed as an intermediate product during the reaction of 1O2 with TMPone) could be responsible for the relatively small production of nitroxide radicals. Electron donating agents added to the reaction system probably raise the rate of the hydroperoxide decomposition by allowing a more rapid heterolytic cleavage of the O-O bond leading to a greater production of nitroxide radicals. The largest effect was observed in the presence of desferrioxamine. Its participation in this process is proved by the concomitant appearance of desferrioxamine nitroxide radicals. The results obtained demonstrate that the method proposed by several authors and tested in this study to detect singlet oxygen is not convenient for precise quantitative studies. The reactivity of TMPone towards O2.-/HO2. and .OH has been also investigated. It has been found that both O2.-/HO2. and .OH radicals formed in a phosphate buffer solution (pH 7.4, 37 degrees C), respectively by a xanthine-oxidase/hypoxanthine system and via H2O2 UV irradiation, do not oxidize 2,2,6,6 tetramethyl-4-piperidone to nitroxide radicals. PMID:7581808

  10. Photophysical Properties and Singlet Oxygen Generation Efficiencies of Water-Soluble Fullerene Nanoparticles

    PubMed Central

    Stasheuski, Alexander S; Galievsky, Victor A; Stupak, Alexander P; Dzhagarov, Boris M; Choi, Mi Jin; Chung, Bong Hyun; Jeong, Jin Young

    2014-01-01

    As various fullerene derivatives have been developed, it is necessary to explore their photophysical properties for potential use in photoelectronics and medicine. Here, we address the photophysical properties of newly synthesized water-soluble fullerene-based nanoparticles and polyhydroxylated fullerene as a representative water-soluble fullerene derivative. They show broad emission band arising from a wide-range of excitation energies. It is attributed to the optical transitions from disorder-induced states, which decay in the nanosecond time range. We determine the kinetic properties of the singlet oxygen (1O2) luminescence generated by the fullerene nanoparticles and polyhydroxylated fullerene to consider the potential as photodynamic agents. Triplet state decay of the nanoparticles was longer than 1O2 lifetime in water. Singlet oxygen quantum yield of a series of the fullerene nanoparticles is comparably higher ranging from 0.15 to 0.2 than that of polyhydroxylated fullerene, which is about 0.06. PMID:24893622

  11. Nontoxic singlet oxygen generator as a therapeutic candidate for treating tauopathies

    PubMed Central

    Sheik Mohideen, Sahabudeen; Yamasaki, Yasutoyo; Omata, Yasuhiro; Tsuda, Leo; Yoshiike, Yuji

    2015-01-01

    Methylene blue (MB) inhibits the aggregation of tau, a main constituent of neurofibrillary tangles. However, MB’s mode of action in vivo is not fully understood. MB treatment reduced the amount of sarkosyl-insoluble tau in Drosophila that express human wild-type tau. MB concurrently ameliorated the climbing deficits of transgenic tau flies to a limited extent and diminished the climbing activity of wild-type flies. MB also decreased the survival rate of wild-type flies. Based on its photosensitive efficacies, we surmised that singlet oxygen generated through MB under light might contribute to both the beneficial and toxic effects of MB in vivo. We identified rose bengal (RB) that suppressed tau accumulation and ameliorated the behavioral deficits to a lesser extent than MB. Unlike MB, RB did not reduce the survival rate of flies. Our findings indicate that singlet oxygen generators with little toxicity may be suitable drug candidates for treating tauopathies. PMID:26027742

  12. Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency

    PubMed Central

    Zhao, Qiang; Wang, Yao; Xu, Yanshuang; Yan, Yun; Huang, Jianbin

    2016-01-01

    A supramolecular porphyrin nanotube displaying J-aggregation feature was constructed by out-of-plane coordinated bismuth-porphyrin. Significantly, compared to traditional J-aggregated porphyrin suffering from fluorescence and singlet oxygen quenching, the nanotube exhibits excellent bio-imaging ability and enhanced production efficiency of singlet oxygen. The out-of-plane structure of bismuth to porphyrin makes the aggregation an appropriate material for theranostics. Furthermore, it is also a potential radio-therapeutic drug owing to the presence of radio-active bismuth. Thus, the self-assembly of out-of-plane coordinated porphyrin can be a facile approach toward effective therapy of tumors and other diseases. PMID:27527403

  13. Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency.

    PubMed

    Zhao, Qiang; Wang, Yao; Xu, Yanshuang; Yan, Yun; Huang, Jianbin

    2016-01-01

    A supramolecular porphyrin nanotube displaying J-aggregation feature was constructed by out-of-plane coordinated bismuth-porphyrin. Significantly, compared to traditional J-aggregated porphyrin suffering from fluorescence and singlet oxygen quenching, the nanotube exhibits excellent bio-imaging ability and enhanced production efficiency of singlet oxygen. The out-of-plane structure of bismuth to porphyrin makes the aggregation an appropriate material for theranostics. Furthermore, it is also a potential radio-therapeutic drug owing to the presence of radio-active bismuth. Thus, the self-assembly of out-of-plane coordinated porphyrin can be a facile approach toward effective therapy of tumors and other diseases. PMID:27527403

  14. Protein reactivity with singlet oxygen: Influence of the solvent exposure of the reactive amino acid residues.

    PubMed

    Sjöberg, Béatrice; Foley, Sarah; Staicu, Angela; Pascu, Alexandru; Pascu, Mihail; Enescu, Mironel

    2016-06-01

    The singlet oxygen quenching rate constants were measured for three model proteins, bovine serum albumin, β-lactoglobulin and lysozyme. The results were analyzed by comparing them with the corresponding singlet oxygen quenching rate constants for a series of tripeptides with the basic formula GlyAAGly where the central amino acid (AA) was the oxidizable amino acid, tryptophan, tyrosine, methionine and histidine. It was found that the reaction rate constant in proteins can be satisfactorily modelled by the sum of the individual contributions of the oxidizable AA residues corrected for the solvent accessible surface area (SASA) effects. The best results were obtained when the SASA of the AA residues were determined by averaging over molecular dynamics simulated trajectories of the proteins. The limits of this geometrical correction of the AA residue reactivity are also discussed. PMID:27045278

  15. Pro-oxidating properties of melatonin in the in vitro interaction with the singlet oxygen.

    PubMed

    Medina-Navarro, R; Duran-Reyes, G; Hicks, J J

    1999-01-01

    In an aqueous system, the oxidation of the erythrocyte membrane by the singlet oxygen formed during the photoactivation of the rose bengal coloring was examined. The effects of the singlet oxygen on lipids and proteins were studied through the simultaneous quantification of peroxidation products, lipoperoxides and carbonyl groups, the oxidation of protein SH groups and the activity of the glyceraldehyde 3-phosphate dehydrogenase (G3PD) associated with the erythrocyte membrane. The antioxidant activity of melatonin was tested and compared to that of two antioxidants in extreme cases of hydrosolubility, ascorbate and beta-carotene, with the purpose of comparing the protective ability of melatonin against singlet oxygen. The results show the expected effect even at low (0.125-0.75 mM; 0.015-0.90 mM, respectively) for ascorbate and beta-carotene, antioxidants known to possess important antioxidant qualities against singlet oxygen. It is shown that melatonin, under the conditions described, and at the concentrations at which the other two compounds are efficacious, not only confers little antioxidant protection, but that a pro-oxidant tendency was proven both on lipids and proteins, as well as on G3PD enzymatic activity. The results show that the antioxidant protective effect that melatonin can exert on biological systems is probably not by a direct interaction with oxidant species, but probably, as has been previously proposed, through the regulation of antioxidant defense systems. The formation of secondary oxidation products, such as melatonin-derived endoperoxides, may explain the evidence found on pro-oxidant qualities of this molecule. PMID:10596722

  16. Silicon nanocrystals as efficient photosensitizer of singlet oxygen for biomedical applications

    NASA Astrophysics Data System (ADS)

    Timoshenko, V. Yu.; Osminkina, L. A.; Vorontsov, A. S.; Ryabchikov, Yu. V.; Gongalsky, M. B.; Efimova, A. I.; Konstantinova, E. A.; Bazylenko, T. Yu.; Kashkarov, P. K.; Kudriavtsev, A. A.

    2007-03-01

    Luminescent silicon nanocrystals (nc-Si) are shown to be efficient photosensitizers of singlet oxygen (SO) generation. Photoluminescence (PL) spectroscopy method is used to study the mechanism and efficiency of the SO photosensitization in gaseous and aqueous ambiences. In vitro experiments demonstrated that the SO, photosensitized by nc-Si dispersed in nutrient solutions, could kill cancer cells. This finding opens a broad opportunity for biomedical applications of nc-Si, e.g. for the photodynamic therapy of cancer or antibacterial treatments.

  17. A highly efficient supramolecular photoswitch for singlet oxygen generation in water.

    PubMed

    Liu, Guoxing; Xu, Xiufang; Chen, Yong; Wu, Xianjing; Wu, Huang; Liu, Yu

    2016-06-28

    A series of water-soluble supramolecular assemblies were constructed from dithienylethene-modified permethyl-β-cyclodextrins and porphyrin derivatives, accompanied by a high FRET efficiency, and could be applied in the control of singlet oxygen generation in a 1% ethanol aqueous solution upon irradiation of different wavelength light. These findings will provide a feasible and convenient way to construct a potential photodynamic therapy material. PMID:27251874

  18. Inhibition by singlet molecular oxygen of the vascular reactivity in rabbit mesenteric artery

    PubMed Central

    Mizukawa, Hisae; Okabe, Eiichiro

    1997-01-01

    The effects of reactive oxygen intermediates derived from photoactivated rose bengal on the vascular reactivity have been evaluated in rabbit mesenteric artery ring preparations. The artery rings were exposed to xanthene dye rose bengal (50 nM) illuminated (6,000 lux) at 560 nm for 30 min. Spin trapping studies with 2,2,6,6-tetramethylpiperidine (TEMP) and 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) with electron spin resonance spectrometry were also conducted in solution (and not within tissues) to determine quantitatively the reactive oxygen species generated from photoactivated rose bengal. Contraction of the ring preparations induced by noradrenaline (10−8 to 10−4 M) was attenuated by previous exposure to photolysed rose bengal; the observation that the pD2 decreased without a significant reduction in maximum tension generation is consistent with the view that receptor dysfunction may be involved in the effect of photolysed rose bengal. Prior exposure to photolysed rose bengal of the ring preparations inhibited the endothelium-dependent relaxation evoked by acetylcholine (10−6 M) and calcium ionophore A23187 (10−7 M), but not the endothelium-independent relaxation evoked by nitroglycerin (10−6 M). A variety of scavengers, superoxide dismutase (33 units ml−1), catalase (32 units ml−1) and 1,3-dimethyl-2-thiourea (DMTU, 10 mM), which should eliminate the superoxide anion radical, H2O2 and the hydroxyl radical, had no effect on the attenuated responses to noradrenaline and acetylcholine induced by photolysed rose bengal. In contrast, the inhibition of the observed effect of photolysed rose bengal was obtained with addition of histidine (25 mM), a singlet molecular oxygen quencher. It was found that photolysis of rose bengal from a 1 : 2 : 2 : 1 quartet, characteristic of the hydroxyl radical-DMPO spin adduct, which was effectively blunted by DMTU, superoxide dismutase and catalase whereas histidine was ineffective. The

  19. Phenol degradation in heterogeneous system generating singlet oxygen employing light activated electropolymerized phenothiazines

    NASA Astrophysics Data System (ADS)

    Piwowar, Katarzyna; Blacha-Grzechnik, Agata; Bernas, Paulina; Zak, Jerzy

    2015-12-01

    Five selected amine-derivatives of phenothiazine were electropolymerized on an ITO/glass substrate and then used in the daylight-activated process to produce in situ singlet oxygen which degrades phenol in a solution. The phenothiazines were immobilized in a simple electrochemical procedure in an acidic solution which led to the formation of an ultrathin transparent polymeric film. All films obtained on the ITO substrate including azure A (AA), azure C (AC), methylene blue (MB), toluidine blue (TBO), and thionine (Th) had a comparable surface coverage at the level of picomoles/cm2. The activity of these materials was then compared and presented in terms of an efficiency of the phenol degradation process in an aqueous solution by photogenerated singlet oxygen. That efficiency was determined by the UV-vis spectroscopy employing a phenol/4-aminoantipyrine complex. All the phenothiazine ultrathin polymeric films were capable of generating the singlet oxygen in the aqueous solution under daylight activation, which was used in the consecutive process of phenol degradation. The highest efficiency at a level of 51.4% and 45.4% was found for the AC/ITO and MB/ITO layers, respectively.

  20. Generating singlet oxygen bubbles: a new mechanism for gas-liquid oxidations in water.

    PubMed

    Bartusik, Dorota; Aebisher, David; Ghafari, BiBi; Lyons, Alan M; Greer, Alexander

    2012-02-01

    Laser-coupled microphotoreactors were developed to bubble singlet oxygen [(1)O(2) ((1)Δ(g))] into an aqueous solution containing an oxidizable compound. The reactors consisted of custom-modified SMA fiberoptic receptacles loaded with 150 μm silicon phthalocyanine glass sensitizer particles, where the particles were isolated from direct contact with water by a membrane adhesively bonded to the bottom of each device. A tube fed O(2) gas to the reactor chambers. In the presence of O(2), singlet oxygen was generated by illuminating the sensitizer particles with 669 nm light from an optical fiber coupled to the top of the reactor. The generated (1)O(2) was transported through the membrane by the O(2) stream and formed bubbles in solution. In solution, singlet oxygen reacted with probe compounds (9,10-anthracene dipropionate dianion, trans-2-methyl-2-pentanoate anion, N-benzoyl-D,L-methionine, or N-acetyl-D,L-methionine) to give oxidized products in two stages. The early stage was rapid and showed that (1)O(2) transfer occurred via bubbles mainly in the bulk water solution. The later stage was slow; it arose only from (1)O(2)-probe molecule contact at the gas/liquid interface. A mechanism is proposed that involves (1)O(2) mass transfer and solvation, where smaller bubbles provide better penetration of (1)O(2) into the flowing stream due to higher surface-to-volume contact between the probe molecules and (1)O(2). PMID:22260325

  1. Time-Resolved Insight into the Photosensitized Generation of Singlet Oxygen in Endoperoxides

    PubMed Central

    2014-01-01

    A synergistic approach combining high-level multiconfigurational static calculations and full-dimensional ab initio surface hopping dynamics has been employed to gain insight into the photochemistry of endoperoxides. Electronic excitation of endoperoxides triggers two competing pathways, cycloreversion and O–O homolysis, that result in the generation of singlet oxygen and oxygen diradical rearrangement products. Our results reveal that cycloreversion or the rupture of the two C–O bonds occurs via an asynchronous mechanism that can lead to the population of a ground-state intermediate showing a single C–O bond. Furthermore, singlet oxygen is directly generated in its most stable excited electronic state 1Δg. The triplet states do not intervene in this mechanism, as opposed to the O–O homolysis where the exchange of population between the singlet and triplet manifolds is remarkable. In line with recent experiments performed on the larger anthracene-9,10-endoperoxide, upon excitation to the spectroscopic ππ* electronic states, the primary photoreactive pathway that governs deactivation of endoperoxides is O–O homolysis with a quantum yield of 65%. PMID:25688180

  2. In-vivo outcome study of HPPH mediated PDT using singlet oxygen explicit dosimetry (SOED)

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Zhu, Timothy C.

    2015-03-01

    Type II photodynamic therapy (PDT) is based on the use of photochemical reactions mediated through an interaction between a tumor-selective photosensitizer, photoexcitation with a specific wavelength of light, and production of reactive singlet oxygen. However, the medical application of this technique has been limited due to inaccurate PDT dosimetric methods. The goal of this study is to examine the relationship between outcome (in terms of tumor growth rate) and calculated reacted singlet oxygen concentration [1O2]rx after HPPH-mediated PDT to compare with other PDT dose metrics, such as PDT dose or total light fluence. Mice with radiation-induced fibrosarcoma (RIF) tumors were treated with different light fluence and fluence rate conditions. Explicit measurements of photosensitizer drug concentration and tissue optical properties via fluorescence and absorption measurement with a contact probe before and after PDT were taken to then quantify total light fluence, PDT dose, and [1O2]rx based on a macroscopic model of singlet oxygen. In addition, photobleaching of photosenitizer were measured during PDT as a second check of the model. Changes in tumor volume were tracked following treatment and compared to the three calculated dose metrics. The correlations between total light fluence, PDT dose, reacted [1O2]rx and tumor growth demonstrate that [1O2]rx serves as a better dosimetric quantity for predicting treatment outcome and a clinically relevant tumor growth endpoint.

  3. A Classic Near-Infrared Probe Indocyanine Green for Detecting Singlet Oxygen

    PubMed Central

    Tang, Cheng-Yi; Wu, Feng-Yao; Yang, Min-Kai; Guo, Yu-Min; Lu, Gui-Hua; Yang, Yong-Hua

    2016-01-01

    The revelation of mechanisms of photodynamic therapy (PDT) at the cellular level as well as singlet oxygen (1O2) as a second messengers requires the quantification of intracellular 1O2. To detect singlet oxygen, directly measuring the phosphorescence emitted from 1O2 at 1270 nm is simple but limited for the low quantum yield and intrinsic efficiency of 1O2 emission. Another method is chemically trapping 1O2 and measuring fluorescence, absorption and Electron Spin Resonance (ESR). In this paper, we used indocyanine green (ICG), the only near-infrared (NIR) probe approved by the Food and Drug Administration (FDA), to detect 1O2 in vitro. Once it reacts with 1O2, ICG is decomposed and its UV absorption at 780 nm decreases with the laser irradiation. Our data demonstrated that ICG could be more sensitive and accurate than Singlet Oxygen Sensor Green reagent® (SOSG, a commercialized fluorescence probe) in vitro, moreover, ICG functioned with Eosin Y while SOSG failed. Thus, ICG would reasonably provide the possibility to sense 1O2 in vitro, with high sensitivity, selectivity and suitability to most photosensitizers. PMID:26861313

  4. Characterization of singlet oxygen-accumulating mutants isolated in a screen for altered oxidative stress response in Chlamydomonas reinhardtii

    PubMed Central

    2010-01-01

    Background When photosynthetic organisms are exposed to harsh environmental conditions such as high light intensities or cold stress, the production of reactive oxygen species like singlet oxygen is stimulated in the chloroplast. In Chlamydomonas reinhardtii singlet oxygen was shown to act as a specific signal inducing the expression of the nuclear glutathione peroxidase gene GPXH/GPX5 during high light stress, but little is known about the cellular mechanisms involved in this response. To investigate components affecting singlet oxygen signaling in C. reinhardtii, a mutant screen was performed. Results Mutants with altered GPXH response were isolated from UV-mutagenized cells containing a GPXH-arylsulfatase reporter gene construct. Out of 5500 clones tested, no mutant deficient in GPXH induction was isolated, whereas several clones showed constitutive high GPXH expression under normal light conditions. Many of these GPXH overexpressor (gox) mutants exhibited higher resistance to oxidative stress conditions whereas others were sensitive to high light intensities. Interestingly, most gox mutants produced increased singlet oxygen levels correlating with high GPXH expression. Furthermore, different patterns of altered photoprotective parameters like non-photochemical quenching, carotenoid contents and α-tocopherol levels were detected in the various gox mutants. Conclusions Screening for mutants with altered GPXH expression resulted in the isolation of many gox mutants with increased singlet oxygen production, showing the relevance of controlling the production of this ROS in photosynthetic organisms. Phenotypic characterization of these gox mutants indicated that the mutations might lead to either stimulated triplet chlorophyll and singlet oxygen formation or reduced detoxification of singlet oxygen in the chloroplast. Furthermore, changes in multiple protection mechanisms might be responsible for high singlet oxygen formation and GPXH expression, which could either

  5. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    EPA Science Inventory

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  6. Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield

    SciTech Connect

    Vagin, Nikolai P; Ionin, Andrei A; Klimachev, Yu M; Kotkov, A A; Podmar'kov, Yu P; Seleznev, L V; Sinitsyn, D V; Frolov, M P; Yuryshev, Nikolai N; Kochetov, Igor' V; Napartovich, A P; Hager, G D

    2004-09-30

    The electrical and spectroscopic characteristics of electron-beam-sustained discharge (EBSD) in oxygen and oxygen-containing gas mixtures are studied experimentally under gas pressures up to 100 Torr in a large excitation volume ({approx}18 L). It is shown that the EBSD in pure oxygen and its mixtures with inert gases is unstable and is characterised by a small specific energy contribution. The addition of small amounts ({approx}1%-10%) of carbon monoxide or hydrogen to oxygen or its mixtures with inert gases considerably improves the stability of the discharge, while the specific energy contribution W increases by more then an order of magnitude, achieving {approx}6.5 kJ L{sup -1} atm{sup -1} per molecular component of the gas mixture. A part of the energy supplied to the EBSD is spent to excite vibrational levels of molecular additives. This was demonstrated experimentally by the initiation of a CO laser based on the O{sub 2} : Ar : CO = 1 : 1 : 0.1 mixture. Experimental results on spectroscopy of the excited electronic states O{sub 2}(a{sup 1{Delta}}{sub g}) and O{sub 2}(b{sup 1{Sigma}}{sub g}{sup +}), of oxygen formed in the EBSD are presented. A technique was worked out for measuring the concentration of singlet oxygen in the O{sub 2}(a{sup 1{Delta}}{sub g}) state in the afterglow of the pulsed EBSD by comparing with the radiation intensity of singlet oxygen of a given concentration produced in a chemical generator. Preliminary measurements of the singlet-oxygen yield in the EBSD show that its value {approx}3% for W {approx} 1.0 kJ L{sup -1} atm{sup -1} is in agreement with the theoretical estimate. Theoretical calculations performed for W {approx} 6.5 kJ L{sup -1} atm{sup -1} at a fixed temperature show that the singlet-oxygen yield may be {approx}20%, which is higher than the value required to achieve the lasing threshold in an oxygen-iodine laser at room temperature. (laser applications and other topics in quantum electronics)

  7. Triplet-triplet energy transfer and protection mechanisms against singlet oxygen in photosynthesis

    NASA Astrophysics Data System (ADS)

    Kihara, Shigeharu

    In photosynthesis, (bacterio)chlorophylls ((B)Chl) play a crucial role in light harvesting and electron transport. (B)Chls, however, are known to be potentially dangerous due to the formation of the triplet excited state which forms the singlet oxygen (1O2*) when exposed to the sunlight. Singlet oxygen is highly reactive and all modern organisms incorporate special protective mechanisms to minimize the oxidative damage. One of the conventional photoprotective mechanisms used by photosynthetic organisms is by the nearby carotenoids quenching the excess energy and releasing it by heat. In this dissertation, two major aspects of this process are studied. First, based on experimental data and model calculations, the oxygen content in a functioning oxygenic photosynthetic oxygen cell was determined. These organisms perform water splitting and as a result significant amount of oxygen can be formed within the organism itself. It was found, that contrary to some published estimates, the excess oxygen concentration generated within an individual cell is extremely low -- 0.025 ... 0.25 microM, i.e. about 103-104 times lower than the oxygen concentration in air saturated water. Such low concentrations imply that the first oxygenic photosynthetic cells that evolved in oxygen-free atmosphere of the Earth ~2.8 billion years ago might have invented the water splitting machinery (photosystem II) without the need for special oxygen-protective mechanisms, and the latter mechanisms could have evolved in the next 500 million years during slow rise of oxygen in the atmosphere. This result also suggests that proteins within photosynthetic membranes are not exposed to significant O2 levels and thus can be studied in vitro under the usual O2 levels. Second, the fate of triplet excited states in the Fenna Matthew Olson (FMO) pigment-protein complex is studied by means of time-resolved nanosecond spectroscopy and exciton model simulations. For the first time, the properties of several

  8. Singlet Oxygen-Induced Membrane Disruption and Serpin-Protease Balance in Vacuolar-Driven Cell Death1[OPEN

    PubMed Central

    Carmieli, Raanan; Mor, Avishai; Fluhr, Robert

    2016-01-01

    Singlet oxygen plays a role in cellular stress either by providing direct toxicity or through signaling to initiate death programs. It was therefore of interest to examine cell death, as occurs in Arabidopsis, due to differentially localized singlet oxygen photosensitizers. The photosensitizers rose bengal (RB) and acridine orange (AO) were localized to the plasmalemma and vacuole, respectively. Their photoactivation led to cell death as measured by ion leakage. Cell death could be inhibited by the singlet oxygen scavenger histidine in treatments with AO but not with RB. In the case of AO treatment, the vacuolar membrane was observed to disintegrate. Concomitantly, a complex was formed between a vacuolar cell-death protease, RESPONSIVE TO DESSICATION-21 and its cognate cytoplasmic protease inhibitor ATSERPIN1. In the case of RB treatment, the tonoplast remained intact and no complex was formed. Over-expression of AtSerpin1 repressed cell death, only under AO photodynamic treatment. Interestingly, acute water stress showed accumulation of singlet oxygen as determined by fluorescence of Singlet Oxygen Sensor Green, by electron paramagnetic resonance spectroscopy and the induction of singlet oxygen marker genes. Cell death by acute water stress was inhibited by the singlet oxygen scavenger histidine and was accompanied by vacuolar collapse and the appearance of serpin-protease complex. Over-expression of AtSerpin1 also attenuated cell death under this mode of cell stress. Thus, acute water stress damage shows parallels to vacuole-mediated cell death where the generation of singlet oxygen may play a role. PMID:26884487

  9. Liquid-liquid reaction of hydrogen peroxide and sodium hypochlorite for the production of singlet oxygen in a centrifugal flow singlet oxygen generator

    SciTech Connect

    Cui Rongrong; Deng Liezheng; Shi Wenbo; Yang Heping; Sha Guohe; Zhang Cunhao

    2011-02-28

    An attempt is made to produce gas-phase singlet oxygen O{sub 2}(a{sup 1{Delta}}{sub g}) in a liquid-liquid reaction between acidic hydrogen peroxide (AHP) and sodium hypochlorite (NaOCl). The attempt arises from the fact that basic hydrogen peroxide (BHP) has long been the prime source for producing singlet delta oxygen through its reaction with chlorine. However, BHP suffers from the defect of being unstable during storage. Exploratory experiments were performed in a centrifugal flow singlet oxygen generator (CF-SOG) with two streams of solutions, AHP and NaOCl, mixed in a slit nozzle and then injected into the arc-shaped concavity in the CF-SOG to form a rotating liquid flow with a remarkable centrifugal force. With the help of this centrifugal force, the product of the O{sub 2}({sup 1{Delta}}) reaction was quickly separated from the liquid phase. The gas-phase O{sub 2}({sup 1{Delta}}) was detected via the spectrum of O{sub 2}({sup 1{Delta}}) cooperative dimolecular emission with a CCD spectrograph. Experimental results show that it is feasible to produce gas-phase O{sub 2}({sup 1{Delta}}) from the AHP + NaOCl reaction, and the stronger the acidity, the more efficient the O{sub 2}({sup 1{Delta}}) production. However, since in the AHP + NaOCl reaction, Cl{sub 2} unavoidably appears as a byproduct, its catalytic action on the decomposition of H{sub 2}O{sub 2} into ground-state O{sub 2} remains a major obstacle to utilising the AHP + NaOCl reaction in producing gas-phase O{sub 2}({sup 1{Delta}}). Qualitative interpretation shows that the AHP + NaOCl reaction is virtually the reaction of interaction of molecular H{sub 2}O{sub 2} with molecular HOCl, its mechanism being analogous to that of reaction of BHP with Cl{sub 2}, where HOOCl is the key intermediate. It is difficult to form the intermediate HOOCl via the H{sub 2}O{sub 2} + NaOCl reaction in a basic medium, thus gas-phase O{sub 2}({sup 1{Delta}}) cannot be obtained in appreciable quantities. (active media)

  10. Liquid-liquid reaction of hydrogen peroxide and sodium hypochlorite for the production of singlet oxygen in a centrifugal flow singlet oxygen generator

    NASA Astrophysics Data System (ADS)

    Cui, Rong-rong; Deng, Lie-zheng; Shi, Wen-bo; Yang, He-ping; Sha, Guo-he; Zhang, Cun-hao

    2011-02-01

    An attempt is made to produce gas-phase singlet oxygen O2(a1Δg) in a liquid-liquid reaction between acidic hydrogen peroxide (AHP) and sodium hypochlorite (NaOCl). The attempt arises from the fact that basic hydrogen peroxide (BHP) has long been the prime source for producing singlet delta oxygen through its reaction with chlorine. However, BHP suffers from the defect of being unstable during storage. Exploratory experiments were performed in a centrifugal flow singlet oxygen generator (CF-SOG) with two streams of solutions, AHP and NaOCl, mixed in a slit nozzle and then injected into the arc-shaped concavity in the CF-SOG to form a rotating liquid flow with a remarkable centrifugal force. With the help of this centrifugal force, the product of the O2(1Δ) reaction was quickly separated from the liquid phase. The gas-phase O2(1Δ) was detected via the spectrum of O2(1Δ) cooperative dimolecular emission with a CCD spectrograph. Experimental results show that it is feasible to produce gas-phase O2(1Δ) from the AHP + NaOCl reaction, and the stronger the acidity, the more efficient the O2(1Δ) production. However, since in the AHP + NaOCl reaction, Cl2 unavoidably appears as a byproduct, its catalytic action on the decomposition of H2O2 into ground-state O2 remains a major obstacle to utilising the AHP + NaOCl reaction in producing gas-phase O2(1Δ). Qualitative interpretation shows that the AHP + NaOCl reaction is virtually the reaction of interaction of molecular H2O2 with molecular HOCl, its mechanism being analogous to that of reaction of BHP with Cl2, where HOOCl is the key intermediate. It is difficult to form the intermediate HOOCl via the H2O2 + NaOCl reaction in a basic medium, thus gas-phase O2(1Δ) cannot be obtained in appreciable quantities.

  11. Spray generator of singlet oxygen with a centrifugal separation of liquid

    NASA Astrophysics Data System (ADS)

    Špalek, Otomar; Jirásek, Vít; Censký, Miroslav; Kodymová, Jarmila; Picková, Irena

    2008-10-01

    A new spray-type generator of singlet oxygen, O2(1Δ), with a following centrifugal separation of depleted liquid was studied. This generator was developed to fulfill following requirements suitable for an advanced Chemical Oxygen- Iodine Laser (COIL): (i) a high-pressure operation, (ii) a single pass of reaction liquid, (iii) an efficient disengagement of gas/liquid mixture, and (iv) a scalability for airborne and mobile application. The generator design takes advantage of very high g/l interfacial surface area of a fine spray produced by a two-phase nozzle and a very fast liquid separation by applying a high centrifugal force.

  12. Evaluation of Diethyl-3-3′-(9,10-anthracenediyl)bis Acrylate as a Probe for Singlet Oxygen Formation during Photodynamic Therapy

    PubMed Central

    Kessel, David; Price, Michael

    2013-01-01

    The cell-permeable anthracene analog diethyl-3-3′-(9,10-anthracenediyl)bis acrylate (DADB) was recently identified as a highly selective probe for singlet oxygen (1O2). Now, we show that DADB can be used to monitor 1O2 formation in cell culture during photodynamic therapy. An atypical property of DADB is that fluorescence emission is decreased upon oxidation. Using photosensitizers that target specific organelles, we determined that DADB could detect 1O2 whether formed in ER, mitochondria or lysosomes. DADB fluorescence was not, however, significantly altered when the photosensitizing agent was the palladium bacteriopheophorbide termed WST11, an agent reported to produce mainly oxygen radicals upon irradiation in an aqueous environment, whereas singlet oxygen was formed in organic solvents. PMID:22296586

  13. Enhanced Singlet Oxygen Production by Photodynamic Therapy and a Novel Method for Its Intracellular Measurement

    PubMed Central

    Marin, Gustavo Horacio; Aviles, Kevin; Acuña, Ricardo Cruz; Roque, Gustavo; Nieto, Felipe Rodríguez; Sanchez, Francisco; Tarditi, Adrián; Rivera, Luis; Mansilla, Eduardo

    2014-01-01

    Abstract The generation of singlet oxygen (SO) in the presence of specific photosensitizers (PSs) or semiconductor quantum dots (QDs) and its application in photodynamic therapy (PDT) is of great interest to develop cancer therapies with no need of surgery, chemotherapy, and/or radiotherapy. This work was focused on the identification of the main factors leading to the enhancement of SO production using Rose Bengal (RB), and Methylene Blue (MB) as PS species in organic and aqueous mediums. Subsequently, the capacity of zinc oxide (ZnO), zinc sulfide (ZnS), and ZnO/ZnS core-shell QDs as well as manganese (Mn+2) doped ZnO and ZnS nanoparticles (NPs) as potential PS was also investigated. Many variable parameters such as type of quencher, PSs, NPs, as well as its different concentrations, light source, excitation wavelength, reaction time, distance from light source, and nature of solvent were used. The degradation kinetics of the quenchers generated by SO species and the corresponding quantum yields were determined by monitoring the photo-oxidation of the chemical quencher and measuring its disappearance by fluorometry and spectrophotometry in the presence of NPs. Small intracellular changes of SO induced by these metal Zn (zinc) NPs and PDT could execute and accelerate deadly programs in these leukemic cells, providing in this way an innovative modality of treatment. In order to perform further more specific in vitro cytotoxic studies on B-chronic lymphocytic leukemia cells exposed to Zn NPs and PDT, we needed first to measure and ascertain those possible intracellular SO variations generated by this type of treatment; for this purpose, we have also developed and tested a novel method first described by us. PMID:25490599

  14. Enhanced singlet oxygen production by photodynamic therapy and a novel method for its intracellular measurement.

    PubMed

    Pena Luengas, Sandra L; Marin, Gustavo Horacio; Aviles, Kevin; Cruz Acuña, Ricardo; Roque, Gustavo; Rodríguez Nieto, Felipe; Sanchez, Francisco; Tarditi, Adrián; Rivera, Luis; Mansilla, Eduardo

    2014-12-01

    The generation of singlet oxygen (SO) in the presence of specific photosensitizers (PSs) or semiconductor quantum dots (QDs) and its application in photodynamic therapy (PDT) is of great interest to develop cancer therapies with no need of surgery, chemotherapy, and/or radiotherapy. This work was focused on the identification of the main factors leading to the enhancement of SO production using Rose Bengal (RB), and Methylene Blue (MB) as PS species in organic and aqueous mediums. Subsequently, the capacity of zinc oxide (ZnO), zinc sulfide (ZnS), and ZnO/ZnS core-shell QDs as well as manganese (Mn(+2)) doped ZnO and ZnS nanoparticles (NPs) as potential PS was also investigated. Many variable parameters such as type of quencher, PSs, NPs, as well as its different concentrations, light source, excitation wavelength, reaction time, distance from light source, and nature of solvent were used. The degradation kinetics of the quenchers generated by SO species and the corresponding quantum yields were determined by monitoring the photo-oxidation of the chemical quencher and measuring its disappearance by fluorometry and spectrophotometry in the presence of NPs. Small intracellular changes of SO induced by these metal Zn (zinc) NPs and PDT could execute and accelerate deadly programs in these leukemic cells, providing in this way an innovative modality of treatment. In order to perform further more specific in vitro cytotoxic studies on B-chronic lymphocytic leukemia cells exposed to Zn NPs and PDT, we needed first to measure and ascertain those possible intracellular SO variations generated by this type of treatment; for this purpose, we have also developed and tested a novel method first described by us. PMID:25490599

  15. Rapid Induction of Distinct Stress Responses after the Release of Singlet Oxygen in ArabidopsisW⃞

    PubMed Central

    op den Camp, Roel G. L.; Przybyla, Dominika; Ochsenbein, Christian; Laloi, Christophe; Kim, Chanhong; Danon, Antoine; Wagner, Daniela; Hideg, Éva; Göbel, Cornelia; Feussner, Ivo; Nater, Mena; Apel, Klaus

    2003-01-01

    The conditional fluorescent (flu) mutant of Arabidopsis accumulates the photosensitizer protochlorophyllide in the dark. After a dark-to-light shift, the generation of singlet oxygen, a nonradical reactive oxygen species, starts within the first minute of illumination and was shown to be confined to plastids. Immediately after the shift, plants stopped growing and developed necrotic lesions. These early stress responses of the flu mutant do not seem to result merely from physicochemical damage. Peroxidation of chloroplast membrane lipids in these plants started rapidly and led to the transient and selective accumulation of a stereospecific and regiospecific isomer of hydroxyoctadecatrieonic acid, free (13S)-HOTE, that could be attributed almost exclusively to the enzymatic oxidation of linolenic acid. Within the first 15 min of reillumination, distinct sets of genes were activated that were different from those induced by superoxide/hydrogen peroxide. Collectively, these results demonstrate that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. Its biological activity in Arabidopsis exhibits a high degree of specificity that seems to be derived from the chemical identity of this reactive oxygen species and/or the intracellular location at which it is generated. PMID:14508004

  16. Fiber-optic Singlet Oxygen [1O2 (1Δg)] Generator Device Serving as a Point Selective Sterilizer

    PubMed Central

    Aebisher, David; Zamadar, Matibur; Mahendran, Adaickapillai; Ghosh, Goutam; McEntee, Catherine; Greer, Alexander

    2016-01-01

    Traditionally, Type II heterogeneous photo-oxidations produce singlet oxygen via external irradiation of a sensitizer and external supply of ground-state oxygen. A potential improvement is reported here. A hollow-core fiber-optic device was developed with an “internal” supply of light and flowing oxygen, and a porous photosensitizer-end capped configuration. Singlet oxygen was delivered through the fiber tip. The singlet oxygen steady-state concentration in the immediate vicinity of the probe tip was ca 20 fM by N-benzoyl-DL-methionine trapping. The device is portable and the singlet oxygen-generating tip is maneuverable, which opened the door to simple disinfectant studies. Complete Escherichia coli inactivation was observed in 2 h when the singlet oxygen sensitizing probe tip was immersed in 0.1 mL aqueous samples of 0.1–4.4 × 107 cells. Photobleaching of the probe tip occurred after ca 12 h of use, requiring baking and sensitizer reloading steps for reuse. PMID:20497367

  17. Production of Singlet Oxygen in a Non-Self-Sustained Discharge

    SciTech Connect

    Vasil'eva, A.N.; Klopovskii, K.S.; Kovalev, A.S.; Lopaev, D.V.; Mankelevich, Yu.A.; Popov, N.A.; Rakhimov, A.T.; Rakhimova, T.V.

    2005-04-15

    The production of O{sub 2}(a{sup 1}{delta}{sub g}) singlet oxygen in non-self-sustained discharges in pure oxygen and mixtures of oxygen with noble gases (Ar or He) was studied experimentally. It is shown that the energy efficiency of O{sub 2}(a{sup 1}{delta}{sub g}) production can be optimized with respect to the reduced electric field E/N. It is shown that the optimal E/N values correspond to electron temperatures of 1.2-1.4 eV. At these E/N values, a decrease in the oxygen percentage in the mixture leads to an increase in the excitation rate of singlet oxygen because of the increase in the specific energy deposition per O{sub 2} molecule. The onset of discharge instabilities not only greatly reduces the energy efficiency of singlet oxygen production but also makes it impossible to achieve high energy deposition in a non-self-sustained discharge. A model of a non-self-sustained discharge in pure oxygen is developed. It is shown that good agreement between the experimental and computed results for a discharge in oxygen over a wide range of reduced electric fields can be achieved only by taking into account the ion component of the discharge current. The cross section for the electron-impact excitation of O{sub 2}(a{sup 1}{delta}{sub g}) and the kinetic scheme of the discharge processes with the participation of singlet oxygen are verified by comparing the experimental and computed data on the energy efficiency of the production of O{sub 2}(a{sup 1}{delta}{sub g}) and the dynamics of its concentration. It is shown that, in the dynamics of O{sub 2}(a{sup 1}{delta}{sub g}) molecules in the discharge afterglow, an important role is played by their deexcitation in a three-body reaction with the participation of O({sup 3}P) atoms. At high energy depositions in a non-self-sustained discharge, this reaction can reduce the maximal attainable concentration of singlet oxygen. The effect of a hydrogen additive to an Ar : O{sub 2} mixture is analyzed based on the results

  18. Singlet oxygen production by amphiphilic C60 derivatives and its correlation to cell cytotoxicity in vitro

    NASA Astrophysics Data System (ADS)

    So, Grace; Karotki, Aliaksandr; Verma, Sarika; Hauck, Tanya S.; Wilson, Brian; Pritzker, Kenneth P. H.; Chiang, Long

    2005-09-01

    Fullerene derivatives have appealing properties that can potentially be used in materials science and medical applications. In particular, fullerenes are known to produce reactive oxygen species upon their excitation with light. This makes them particularly attractive as photosensitizers for photodynamic therapy (PDT). Photodynamic therapy is a new modality of treatment of cancer as well as some non-cancerous conditions. It involves the combined actions of a drug (photosensitizer) and light to produce a cytotoxic effect. Water-soluble hexa(sulfo-n-butyl)[60]fullerenes (FC4S) was reported recently to generate singlet oxygen (1O2) and superoxide radical (O2-.) upon its excitation with light, making it a promising candidate for PDT treatments. Recently, we synthesized new amphiphilic fullerene derivatives, namely, [60]fullerene-diphenylaminofluorene-oligo(ethylene glycol) conjugates, C60(>DPAF-PEG600) and C60(>DPAF-PEG2000), as potential photosensitizers. In this paper we compare FC4S to PEG-based fullerenes in terms of their singlet oxygen photosensitization ability. We measured time-resolved kinetics of singlet oxygen luminescence photosensitized by excitation of fullerenes via a 10 ns pulsed laser at 523 nm. For FC4S we observed "normal" kinetics with a monoexponential decay profile giving a time constant 3.8 us in water. In contrast, for the case of C60(>DPAF-PEG600) and C60(>DPAF-PEG2000), a non-monoexponential decay profile with a long tail (~ 102 μs) in water was observed. We hypothesize that this is due to formation of vesicles by PEG fullerenes in aqueous solution. To investigate photodynamic activity of these fullerene derivatives in vitro, we used HeLa human adenocarcinoma and B16 mouse melanoma cell lines. FC4S showed clear photodynamic effects in both cell lines. The total fluence required to kill 50% of the cells at the drug concentration of 20 μM was 36 Jcm-2 for HeLa cells and 72 Jcm-2 for B16 cells. Neither PEG-based fullerene derivatives showed any

  19. Generating Singlet Oxygen Bubbles: A New Mechanism for Gas-Liquid Oxidations in Water

    PubMed Central

    Bartusik, Dorota; Aebisher, David; Ghafari, BiBi

    2012-01-01

    Laser-coupled microphotoreactors were developed to bubble singlet oxygen [1O2 (1Δg)] into an aqueous solution containing an oxidizable compound. The reactors consisted of custom-modified SMA fiber-optic receptacles loaded with 150-μm silicon phthalocyanine glass sensitizer particles, where the particles were isolated from direct contact with water by a membrane adhesively bonded to the bottom of each device. A tube fed O2 gas to the reactor chambers. In the presence of O2, singlet oxygen was generated by illuminating the sensitizer particles with 669-nm light from an optical fiber coupled to the top of the reactor. The generated 1O2 was transported through the membrane by the O2 stream and formed bubbles in solution. In solution, singlet oxygen reacted with probe compounds (either 9,10-anthracene dipropionate dianion, trans-2-methyl-2-pentanoate anion, N-benzoyl-D,L-methionine, and N-acetyl-D,L-methionine) to give oxidized products in two stages. The early stage was rapid and showed that 1O2 transfer occurred via bubbles mainly in the bulk water solution. The later stage was slow, it arose only from 1O2-probe molecule contact at the gas/liquid interface. A mechanism is proposed that involves 1O2 mass transfer and solvation, where smaller bubbles provide better penetration of 1O2 into the flowing stream due to higher surface-to-volume contact between the probe molecules and 1O2. PMID:22260325

  20. A quantitative structure-property relationship (QSPR) study of singlet oxygen generation by pteridines.

    PubMed

    Buglak, Andrey A; Telegina, Taisiya A; Kritsky, Mikhail S

    2016-06-01

    The QSPR method is used in photochemistry for the prediction of the absorption wavelength, fluorescence intensity, photolysis quantum yield, etc. However, to our knowledge, no attempts have been made to use the quantum yield of singlet oxygen ((1)O2) generation (ΦΔ) as an analyzed parameter in a QSPR study. We performed QSPR analysis of 29 pteridine compounds (including pterin and flavin sensitizers) for their ability to produce singlet oxygen in aqueous (D2O) solutions. Pteridines are ubiquitously present in living systems (mostly as coenzymes), possess high photochemical activity and have multiple applications as photosensitizers. Our goal was to develop a QSPR model for the fast virtual screening and prediction of the (1)O2 generation quantum yield of pteridines. Quantum-chemical descriptors were calculated using the AM1 semi-empirical method. The ability of pteridines to generate singlet oxygen was found to be significantly correlated with the HOMO orbital energy (R(2) = 0.806) and electronegativity (R(2) = 0.840). The best QSPR model obtained using electronegativity, dipole density and electrostatic charge of the N3 atom of the pteridine system allows us to predict ΦΔ of pterin and flavin photosensitizers. The model possesses high internal stability (q(2) = 0.881), as well as high predicting ability for the external dataset (pred_R(2) = 0.873). More QSPR analysis is needed for the prediction of ΦΔ of pteridines and other groups of sensitizers in aqueous as well as in non-polar solutions. PMID:27216311

  1. Intracellular singlet oxygen photosensitizers: on the road to solving the problems of sensitizer degradation, bleaching and relocalization.

    PubMed

    da Silva, Elsa F F; Pimenta, Frederico M; Pedersen, Brian W; Blaikie, Frances H; Bosio, Gabriela N; Breitenbach, Thomas; Westberg, Michael; Bregnhøj, Mikkel; Etzerodt, Michael; Arnaut, Luis G; Ogilby, Peter R

    2016-02-01

    Selected singlet oxygen photosensitizers have been examined from the perspective of obtaining a molecule that is sufficiently stable under conditions currently employed to study singlet oxygen behavior in single mammalian cells. Reasonable predictions about intracellular sensitizer stability can be made based on solution phase experiments that approximate the intracellular environment (e.g., solutions containing proteins). Nevertheless, attempts to construct a stable sensitizer based solely on the expected reactivity of a given functional group with singlet oxygen are generally not sufficient for experiments in cells; it is difficult to construct a suitable chromophore that is impervious to all of the secondary and/or competing degradative processes that are present in the intracellular environment. On the other hand, prospects are reasonably positive when one considers the use of a sensitizer encapsulated in a specific protein; the local environment of the chromophore is controlled, degradation as a consequence of bimolecular reactions can be mitigated, and genetic engineering can be used to localize the encapsulated sensitizer in a given cellular domain. Also, the option of directly exciting oxygen in sensitizer-free experiments provides a useful complementary tool. These latter systems bode well with respect to obtaining more accurate control of the "dose" of singlet oxygen used to perturb a cell; a parameter that currently limits mechanistic studies of singlet-oxygen-mediated cell signaling. PMID:26878203

  2. The role of the singlet metastables in capacitively coupled oxygen discharges

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Jon Tomas; Lieberman, Michael A.

    2015-09-01

    The roles of the singlet metastable molecules O2(a1Δg) and O2(b1Σg) in a capacitively coupled rf driven oxygen discharge at 50 mTorr are explored using the one-dimensional object-oriented PIC/MCC code oopd1. Earlier we have demonstrated that the metastable molecule O2(a1Δg) has a significant influence on the discharge properties such as the electronegativity, the effective electron temperature and the electron heating processes. A recent global model study indicates that the density of O2(b1Σg) state can be higher than the density of the O2(a1Δg) state. Thus the oxygen discharge model now includes the O2(b1Σg) molecule and related reactions. The singlet metastable states of the oxygen molecule have significant influence on the discharge properties. Electron heating is only observed in the sheath region and the electron energy probability function becomes even more concave or bi-Maxwellian when the O2(b1Σg) state is included in the simulation. The center electronegativity is in the range of 0.67 - 1.9.

  3. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication

    PubMed Central

    Graindorge, Dany; Martineau, Sylvain; Machon, Christelle; Arnoux, Philippe; Guitton, Jérôme; Francesconi, Stefania; Frochot, Céline; Sage, Evelyne; Girard, Pierre-Marie

    2015-01-01

    UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen. PMID:26485711

  4. Photodynamic biofilm inactivation by SAPYR--an exclusive singlet oxygen photosensitizer.

    PubMed

    Cieplik, Fabian; Späth, Andreas; Regensburger, Johannes; Gollmer, Anita; Tabenski, Laura; Hiller, Karl-Anton; Bäumler, Wolfgang; Maisch, Tim; Schmalz, Gottfried

    2013-12-01

    Prevention and control of biofilm-growing microorganisms are serious problems in public health due to increasing resistances of some pathogens against antimicrobial drugs and the potential of these microorganisms to cause severe infections in patients. Therefore, alternative approaches that are capable of killing pathogens are needed to supplement standard treatment modalities. One alternative is the photodynamic inactivation of bacteria (PIB). The lethal effect of PIB is based on the principle that visible light activates a photosensitizer, leading to the formation of reactive oxygen species, e.g., singlet oxygen, which induces phototoxicity immediately during illumination. SAPYR is a new generation of photosensitizers. Based on a 7-perinaphthenone structure, it shows a singlet oxygen quantum yield ΦΔ of 99% and is water soluble and photostable. Moreover, it contains a positive charge for good adherence to cell walls of pathogens. In this study, the PIB properties of SAPYR were investigated against monospecies and polyspecies biofilms formed in vitro by oral key pathogens. SAPYR showed a dual mechanism of action against biofilms: (I) it disrupts the structure of the biofilm even without illumination; (II) when irradiated, it inactivates bacteria in a polymicrobial biofilm after one single treatment with an efficacy of ≥ 99.99%. These results encourage further investigation on the potential of PIB using SAPYR for the treatment of localized infectious diseases. PMID:23891675

  5. Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion.

    PubMed

    Konaka, R; Kasahara, E; Dunlap, W C; Yamamoto, Y; Chien, K C; Inoue, M

    1999-08-01

    Although photoexcited TiO2 has been known to initiate various chemical reactions, such as the generation of reactive oxygen species, precise mechanism and chemical nature of the generated species remain to be elucidated. The present work demonstrates the generation of singlet oxygen by irradiated TiO2 in ethanol as measured by ESR spectroscopy using 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TMP) as a 1O2-sensitive trapping agent. Under identical conditions, the superoxide ion was also detected by spin trapping agent 5,5-dimethyl-pyrroline-N-oxide (DMPO). Kinetic analysis in the presence of both 4-oxo-TMP and DMPO revealed that singlet oxygen is produced directly at the irradiated TiO2 surface but not by a successive reaction involving superoxide anion. The basis for this view is the fact that DMPO added in the mixture increased the signals responsible for 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), a reaction product of 4-oxo-TMP and 1O2. The detailed mechanism for the generation of 1O2 and superoxide ion by irradiated TiO2 and reactions between these species and DMPO are discussed. PMID:10468201

  6. Unsaturated lipids protect the integral membrane peptide gramicidin A from singlet oxygen.

    PubMed

    Rokitskaya, Tatyana I; Kotova, Elena A; Agapov, Igor I; Moisenovich, Mikhail M; Antonenko, Yuri N

    2014-05-01

    In contrast to expectations that unsaturated fatty acids contribute to oxidative stress by providing a source of lipid peroxides, we demonstrated the protective effect of double bonds in lipids on oxidative damage to membrane proteins. Photodynamic inactivation of gramicidin channels was decreased in unsaturated lipid compared to saturated lipid bilayers. By estimating photosensitizer (boronated chlorine e6 amide) binding to the membrane with the current relaxation technique, the decrease in gramicidin photoinactivation was attributed to singlet oxygen scavenging by double bonds in lipids rather than to the reduction in photosensitizer binding. Gramicidin protection by unsaturated lipids was also observed upon induction of oxidative stress with tert-butyl hydroperoxide. PMID:24613917

  7. Hydroxy-plastochromanol and plastoquinone-C as singlet oxygen products during photo-oxidative stress in Arabidopsis.

    PubMed

    Szymańska, Renata; Nowicka, Beatrycze; Kruk, Jerzy

    2014-06-01

    In the present study, we have shown that hydroxy-plastochromanol and plastoquinone-C, the hydroxy derivatives of plastochromanol and plastoquinone-9, respectively, are specifically formed from the parent compounds upon action of singlet oxygen and can be regarded as stable, specific, natural products of singlet oxygen action during photo-oxidative stress in vivo. The presented data indicate that plastoquinone-C formation dominates mainly during relatively short periods of high light stress where efficient production of singlet oxygen takes place, whereas hydroxy-plastochromanol is rather formed under conditions of long-term, less pronounced generation of singlet oxygen. An interesting observation was that hydroxy-plastochromanol is formed even at very low light conditions (5-10 μmol photons m(-2) s(-1)), indicating that singlet oxygen is generated not only during high light stress but also its formation by photosystem II is inseparably connected with the functioning of this photosystem even at the lowest light intensities. PMID:24329808

  8. Selective para hydroxylation of phenol and aniline by singlet molecular oxygen.

    PubMed

    Briviba, K; Devasagayam, T P; Sies, H; Steenken, S

    1993-01-01

    Phenol reacts with singlet oxygen (1O2) generated in aqueous solution (H2O or D2O) by (a) the exposure of methylene blue to light or (b) the thermal dissociation of the endoperoxide of 3,3'-(1,4-naphthylidene)dipropionate to lead selectively to hydroquinone as the primary product. The other isomers of phenol hydroxylation, catechol and resorcinol, were not observed. In agreement with the involvement of 1O2 as the reactive species in the hydroxylation, in D2O the yield of hydroquinone is 7 times that in H2O, and the 1O2 quenchers azide and the thiols, glutathione and dithiothreitol, suppress the production of hydroquinone. In contrast, the hydroxyl radical scavengers, tert-butyl alcohol, propanol, or sodium formate, are without effect. In a follow-up reaction, hydroquinone is converted into benzoquinone. Reaction of 1O2 with aniline leads to the selective formation of 4-hydroxyaniline as the initial product. This is further converted to hydroquinone with formation of ammonia (deamination), and then to benzoquinone. On the basis of these results, the selective para hydroxylation of phenol or aniline may be used as an indicator for the involvement of singlet oxygen as compared to .OH radical- or cytochrome P450-mediated reactions. PMID:8374055

  9. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase.

    PubMed

    Miyaji, Akimitsu; Kohno, Masahiro; Inoue, Yoshihiro; Baba, Toshihide

    2016-03-18

    The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that (1)O2 generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte. PMID:26898801

  10. Temporal profile of the singlet oxygen emission endogenously produced by photosystem II reaction centre in an aqueous buffer.

    PubMed

    Li, Heng; Melø, Thor Bernt; Arellano, Juan B; Razi Naqvi, K

    2012-04-01

    The temporal profile of the phosphorescence of singlet oxygen endogenously photosensitized by photosystem II (PSII) reaction centre (RC) in an aqueous buffer has been recorded using laser excitation and a near infrared photomultiplier tube. A weak emission signal was discernible, and could be fitted to the functional form a[exp(-t/τ(2) - exp(-t/τ(1)], with a > 0 and τ(2) > τ(1). The value of τ(2) decreased from 11.6 ± 0.5 μs under aerobic conditions to 4.1 ± 0.2 μs in oxygen-saturated samples, due to enhanced bimolecular quenching of the donor triplet by oxygen, whereas that of τ(1), identifiable with the lifetime of singlet oxygen, was close to 3 μs in both cases. Extrapolations based on the low amplitude of the emission signal of singlet oxygen formed by PSII RC in the aqueous buffer and the expected values of τ(1) and τ(2) in chloroplasts indicate that attempts to analyse the temporal profile of singlet oxygen in chloroplasts are unlikely to be rewarded with success without a significant advance in the sensitivity of the detection equipment. PMID:22481218

  11. Distribution of O{sub 2} molecules over vibrational levels at the output of a singlet-oxygen generator

    SciTech Connect

    Azyazov, V N; Pichugin, S Yu; Safonov, V S; Ufimtsev, N I

    2001-09-30

    Simple formulas are obtained for determining the population of the vibrational levels of singlet oxygen generated chemically in a singlet-oxygen generator. The rate of decrease in the vibrational energy of oxygen is limited by the exchange between its first vibrational level and the bending mode of the water molecule. It is shown that the populations of singlet oxygen molecules at the second and third vibrational levels are comparable with the population of oxygen in the excited electronic state b{sup 1}{Sigma}{sub g}{sup +}. The possibility of formation of electronically excited iodine in the reaction O{sub 2}({alpha}{sup 1}{Delta}{sub g}, {nu}=2) +I{sub 2}(X) {yields} O{sub 2}(X {sup 3}{Sigma}{sub g}{sup -}) +O{sub 2}({Lambda} {sup 3}{Pi}{sub 1u}), which may be the intermediate state in the process of dissociation of iodine in singlet-oxygen medium, is substantiated. (active media. lasers)

  12. Yeast thioredoxin peroxidase expression enhances the resistance of Escherichia coli to oxidative stress induced by singlet oxygen.

    PubMed

    Kim, Sun Yee; Kim, Eun Ju; Park, Jeen-Woo

    2002-01-01

    Singlet oxygen ((1)O(2)) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. A soluble protein from Saccharomyces cerevisiae specifically provides protection against a thiol-containing metal-catalyzed oxidation system (thiol/Fe(3+)/O(2)) but not against an oxidation system without thiol. This 25 kDa protein acts as a peroxidase but requires the NADPH-dependent thioredoxin system or a thiol-containing intermediate, and was named thioredoxin peroxidase (TPx). The role of TPx in the cellular defense against oxidative stress induced by singlet oxygen was investigated in Escherichia coli containing an expression vector with a yeast genomic DNA fragment that encodes TPx and mutant in which the catalytically essential amino acid cysteine (Cys-47) has been replaced with alanine by a site-directed mutagenesis. Upon exposure to methylene blue and visible light, which generates singlet oxygen, there was a distinct difference between the two strains in regard to growth kinetics, viability, the accumulation of oxidized proteins and lipids, and modulation of activities of superoxide dismutase and catalase. The results suggest that TPx may play an important protective role in a singlet oxygen-mediated cellular damage. PMID:12189053

  13. Generation of singlet oxygen and other radical species by quantum dot and carbon dot nanosensitizers

    NASA Astrophysics Data System (ADS)

    Generalov, Roman; Christensen, Ingeborg L.; Chen, Wei; Sun, Ya-Ping; Kristensen, Solveig; Juzenas, Petras

    2009-06-01

    Medicinal applications of luminescent semiconductor quantum dots are of growing interest. In spite of the fact that their fabrication and imaging applications have been extensively investigated for the last decade, very little is documented on photodynamic action of quantum dots. In this study we demonstrate generation of singlet oxygen and other radical species upon exposure of quantum dots to blue light and therapeutic red light. Extent of radical production can be readily modified by antioxidants. Lay and scientific communities are two sites concerning potential hazards and enthusiastic applications of nanotechnology. Synthesis of quantum dots composed of less toxic materials is of great interest. A new candidate is a ubiquitous element carbon, which on nanoscale exhibits strong photoluminescence.

  14. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation

    PubMed Central

    Ge, Jiechao; Lan, Minhuan; Zhou, Bingjiang; Liu, Weimin; Guo, Liang; Wang, Hui; Jia, Qingyan; Niu, Guangle; Huang, Xing; Zhou, Hangyue; Meng, Xiangmin; Wang, Pengfei; Lee, Chun-Sing; Zhang, Wenjun; Han, Xiaodong

    2014-01-01

    Clinical applications of current photodynamic therapy (PDT) agents are often limited by their low singlet oxygen (1O2) quantum yields, as well as by photobleaching and poor biocompatibility. Here we present a new PDT agent based on graphene quantum dots (GQDs) that can produce 1O2 via a multistate sensitization process, resulting in a quantum yield of ~1.3, the highest reported for PDT agents. The GQDs also exhibit a broad absorption band spanning the UV region and the entire visible region and a strong deep-red emission. Through in vitro and in vivo studies, we demonstrate that GQDs can be used as PDT agents, simultaneously allowing imaging and providing a highly efficient cancer therapy. The present work may lead to a new generation of carbon-based nanomaterial PDT agents with overall performance superior to conventional agents in terms of 1O2 quantum yield, water dispersibility, photo- and pH-stability, and biocompatibility. PMID:25105845

  15. "Ene" Reactions of Singlet Oxygen at the Air-Water Interface.

    PubMed

    Malek, Belaid; Fang, William; Abramova, Inna; Walalawela, Niluksha; Ghogare, Ashwini A; Greer, Alexander

    2016-08-01

    Prenylsurfactants [(CH3)2C═CH(CH2)nSO3(-) Na(+) (n = 4, 6, or 8)] were designed to probe the "ene" reaction mechanism of singlet oxygen at the air-water interface. Increasing the number of carbon atoms in the hydrophobic chain caused an increase in the regioselectivity for a secondary rather than tertiary surfactant hydroperoxide, arguing for an orthogonal alkene on water. The use of water, deuterium oxide, and H2O/D2O mixtures helped to distinguish mechanistic alternatives to homogeneous solution conditions that include dewetting of the π bond and an unsymmetrical perepoxide transition state in the hydroperoxide-forming step. The prenylsurfactants and a photoreactor technique allowed a certain degree of interfacial control of the hydroperoxidation reaction on a liquid support, where the oxidant (airborne (1)O2) is delivered as a gas. PMID:27385423

  16. Direct imaging of singlet oxygen luminescence generated in blood vessels during photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Lin, Lisheng; Lin, Huiyun; Chen, Defu; Chen, Longchao; Wang, Min; Xie, Shusen; Gu, Ying; Wilson, Brian C.; Li, Buhong

    2014-05-01

    Singlet oxygen (1O2) is commonly recognized to be a major phototoxic component for inducing the biological damage during photodynamic therapy (PDT). In this study, a novel configuration of a thermoelectrically-cooled near-infrared sensitive InGaAs camera was developed for imaging of photodynamically-generated 1O2 luminescence. The validation of 1O2 luminescence images for solution samples was performed with the model photosensitizer Rose Bengal (RB). Images of 1O2 luminescence generated in blood vessels in vivo in a well-controlled dorsal skinfold window chamber model were also recorded during PDT. This study demonstrated the capacity of the newly-developed imaging system for imaging of 1O2 luminescence, and the first reported images of 1O2 luminescence in blood vessels in vivo. This system has potential for elucidating the mechanisms of vascular targeted PDT.

  17. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation.

    PubMed

    Ge, Jiechao; Lan, Minhuan; Zhou, Bingjiang; Liu, Weimin; Guo, Liang; Wang, Hui; Jia, Qingyan; Niu, Guangle; Huang, Xing; Zhou, Hangyue; Meng, Xiangmin; Wang, Pengfei; Lee, Chun-Sing; Zhang, Wenjun; Han, Xiaodong

    2014-01-01

    Clinical applications of current photodynamic therapy (PDT) agents are often limited by their low singlet oxygen ((1)O2) quantum yields, as well as by photobleaching and poor biocompatibility. Here we present a new PDT agent based on graphene quantum dots (GQDs) that can produce (1)O2 via a multistate sensitization process, resulting in a quantum yield of ~1.3, the highest reported for PDT agents. The GQDs also exhibit a broad absorption band spanning the UV region and the entire visible region and a strong deep-red emission. Through in vitro and in vivo studies, we demonstrate that GQDs can be used as PDT agents, simultaneously allowing imaging and providing a highly efficient cancer therapy. The present work may lead to a new generation of carbon-based nanomaterial PDT agents with overall performance superior to conventional agents in terms of (1)O2 quantum yield, water dispersibility, photo- and pH-stability, and biocompatibility. PMID:25105845

  18. Au nanorods modulated NIR fluorescence and singlet oxygen generation of water soluble dendritic zinc phthalocyanine.

    PubMed

    Zhou, Xuefei; He, Xiaohong; Wei, Shiliang; Jia, Kun; Liu, Xiaobo

    2016-11-15

    A novel cyano-terminated zinc phthalocyanine (ZnPc-CN) exhibiting visible near infrared (vis-NIR) emitting around 690nm in N,N-dimethylformamide (DMF) solvent has been synthesized. Furthermore, the peripheral cyano groups of newly synthesized zinc phthalocyanine were hydrolyzed in strong basic solution, leading to water soluble carboxylated zinc phthalocyanine (ZnPc-COOH) with completely quenched fluorescence in aqueous solution. Interestingly, we found that the NIR fluorescence of aqueous ZnPc-COOH was dramatically recovered in the presence of gold nanorods (Au NR), which was due to the alternation of ZnPc-COOH molecules self-assembling via electrostatic interaction between cetyltrimethylammonium bromide (CTAB) on the surface of Au NR and peripheral carboxyl of ZnPc-COOH. In addition, ZnPc-COOH/Au NR conjugates demonstrated an improved singlet oxygen generation, which could be served as potential bioimaging probe and photosensitizer for photodynamic therapy. PMID:27505278

  19. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Ge, Jiechao; Lan, Minhuan; Zhou, Bingjiang; Liu, Weimin; Guo, Liang; Wang, Hui; Jia, Qingyan; Niu, Guangle; Huang, Xing; Zhou, Hangyue; Meng, Xiangmin; Wang, Pengfei; Lee, Chun-Sing; Zhang, Wenjun; Han, Xiaodong

    2014-08-01

    Clinical applications of current photodynamic therapy (PDT) agents are often limited by their low singlet oxygen (1O2) quantum yields, as well as by photobleaching and poor biocompatibility. Here we present a new PDT agent based on graphene quantum dots (GQDs) that can produce 1O2 via a multistate sensitization process, resulting in a quantum yield of ~1.3, the highest reported for PDT agents. The GQDs also exhibit a broad absorption band spanning the UV region and the entire visible region and a strong deep-red emission. Through in vitro and in vivo studies, we demonstrate that GQDs can be used as PDT agents, simultaneously allowing imaging and providing a highly efficient cancer therapy. The present work may lead to a new generation of carbon-based nanomaterial PDT agents with overall performance superior to conventional agents in terms of 1O2 quantum yield, water dispersibility, photo- and pH-stability, and biocompatibility.

  20. Low noise InGaAs/InP single-photon detector for singlet oxygen detection

    NASA Astrophysics Data System (ADS)

    Boso, Gianluca; Korzh, Boris; Lunghi, Tommaso; Sanguinetti, Bruno; Zbinden, Hugo

    2015-01-01

    Single-photon detectors are the best option for applications where low noise measurements and/or high timing resolution are required. At wavelengths between 900 nm and 1700 nm, however, low noise detectors have typically been based on cryogenic superconducting technology, precluding their extended use in industrial or clinical applications. Here we present a practical (i.e. compact, reliable and affordable) detector, based on a negative feedback InGaAs/InP avalanche photodiode and exhibiting dark counts < 1 count-per-second at 10% efficiency, and with efficiencies of up to 27%. We show how this detector enables novel applications such as singlet-oxygen luminescence detection for Photo Dynamic Therapy (PDT) but can be an enabling technology also for a diverse set of applications in both quantum communication (e.g. long-distance quantum key distribution) and biomedical imaging.

  1. Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model

    PubMed Central

    Zhu, Timothy C.; Liu, Baochang; Penjweini, Rozhin

    2015-01-01

    Abstract. An appropriate expression for the oxygen supply rate (Γs) is required for the macroscopic modeling of the complex mechanisms of photodynamic therapy (PDT). It is unrealistic to model the actual heterogeneous tumor microvascular networks coupled with the PDT processes because of the large computational requirement. In this study, a theoretical microscopic model based on uniformly distributed Krogh cylinders is used to calculate Γs=g (1−[O32]/[O32]0) that can replace the complex modeling of blood vasculature while maintaining a reasonable resemblance to reality; g is the maximum oxygen supply rate and [O32]/[O32]0 is the volume-average tissue oxygen concentration normalized to its value prior to PDT. The model incorporates kinetic equations of oxygen diffusion and convection within capillaries and oxygen saturation from oxyhemoglobin. Oxygen supply to the tissue is via diffusion from the uniformly distributed blood vessels. Oxygen can also diffuse along the radius and the longitudinal axis of the cylinder within tissue. The relations of Γs to [3O2]/[3O2]0 are examined for a biologically reasonable range of the physiological parameters for the microvasculature and several light fluence rates (ϕ). The results show a linear relationship between Γs and [3O2]/[3O2]0, independent of ϕ and photochemical parameters; the obtained g ranges from 0.4 to 1390  μM/s. PMID:25741665

  2. Tetra(1,1,4,4-tetramethyl-6,7-tetralino)porphyrazine as a novel luminescence sensor of laser-induced singlet oxygen generation in solutions

    SciTech Connect

    Krasnovskii, A A; Schweitzer, C; Leismann, H; Tanielian, C; Luk'yanets, Evgenii A

    2000-05-31

    Absorption and fluorescence spectra and quantum yields of fluorescence and singlet oxygen generation were studied in air-saturated solutions of a newly synthesised dye, tetra(1,1,4,4-tetramethyl-6,7-tetralino)porphyrazine (TMTP), in benzene. Photophysical properties of TMTP are similar to those of previously studied tetra(4-tert-butyl) phthalocyanine (TBPc). However, the TMTP absorption and fluorescence bands are shifted to the longer wavelengths compared with those of TBPc. The laser-induced generation of singlet molecular oxygen {sup 1}O{sub 2} in TMTP solutions caused strong singlet oxygen-sensitised delayed fluorescence of the dye. The efficiency of singlet-oxygen-sensitised formation of excited TMTP molecules is two times higher than that of TBPc. It is shown that TMTP can serve as an efficient luminescence sensor of singlet oxygen. (laser applications and other topics in quantum electronics)

  3. Photoeffects of textile dye wastewaters: Sensitization of singlet oxygen formation, oxidation of phenols and toxicity to bacteria

    SciTech Connect

    Tratnyek, P.G.; Elovitz, M.S. . Dept. of Environmental Science and Engineering); Colverson, P. . Life Science Dept.)

    1994-01-01

    An effluent sample from a municipal wastewater treatment plant that receives a heavy loading from two textile dyeing facilities was tested for a variety of photoeffects. Solar irradiation of solutions containing the effluent produced evidence for sensitized formation of transient oxidants, primarily singlet oxygen; dye-sensitized photooxidation of several phenols; and photoinhibition of Escherichia coli.

  4. Light-induced generation of singlet oxygen by naked gold nanoparticles and its implications to cancer cell phototherapy.

    PubMed

    Pasparakis, George

    2013-12-20

    Generation of singlet oxygen by direct irradiation of naked gold nanoparticles is observed using either continuous wave or pulsed laser sources. The underlying mechanism involves plasmon- and hot-electron-mediated reaction pathways and (1) O2 seems to significantly amplify the overall death rates during photothermal treatment of cancer cell lines in vitro. PMID:23813944

  5. Cold atmospheric pressure plasma jets as sources of singlet delta oxygen for biomedical applications

    SciTech Connect

    Sousa, J. S.; Niemi, K.; Cox, L. J.; Algwari, Q. Th.; Gans, T.; O'Connell, D.

    2011-06-15

    Absolute densities of singlet delta oxygen (SDO) molecules were measured using infrared optical emission spectroscopy in the flowing effluents of two different atmospheric-pressure plasma jets (APPJs): a capacitively coupled radio-frequency-driven jet (rf-APPJ) and a lower frequency kilohertz-driven dielectric barrier discharge jet. The plasma jets were operated in helium, with small admixtures of molecular oxygen (O{sub 2} < 2%). High absolute SDO densities of up to 6.2 x 10{sup 15} cm{sup -3} were measured at approximately 10 cm downstream. The rf-APPJ seems to be much more efficient in producing SDO. The influence of different parameters, such as gas flows and mixtures and power coupled to the plasmas, on the production of SDO by the two APPJs has been investigated. Despite the considerable differences between the two plasma jets (excitation frequency, electric field direction, inter-electrode distance, plasma propagation), similar dependencies on the oxygen admixture and on the dissipated power were found in both APPJs. However, opposite trends were observed for the gas flow dependence. The results presented in this paper show that the control of the external operating conditions of each APPJ enables the tailoring of the SDO composition of both plasma effluents. This provides scope to tune the plasma jets for desired applications, e.g., in biomedicine.

  6. Singlet molecular oxygen-quenching activity of carotenoids: relevance to protection of the skin from photoaging

    PubMed Central

    Terao, Junji; Minami, Yuko; Bando, Noriko

    2011-01-01

    Carotenoids are known to be potent quenchers of singlet molecular oxygen [O2 (1Δg)]. Solar light-induced photooxidative stress causes skin photoaging by accelerating the generation of reactive oxygen species via photodynamic actions in which O2 (1Δg) can be generated by energy transfer from excited sensitizers. Thus, dietary carotenoids seem to participate in the prevention of photooxidative stress by accumulating as antioxidants in the skin. An in vivo study using hairless mice clarified that a O2 (1Δg) oxygenation-specific peroxidation product of cholesterol, cholesterol 5α-hydroperoxide, accumulates in skin lipids due to ultraviolet-A exposure. Matrix metalloproteinase-9, a metalloproteinase family enzyme responsible for the formation of wrinkles and sagging, was enhanced in the skin of ultraviolet-A -irradiated hairless mice. The activation of metalloproteinase-9 and the accumulation of 5α-hydroperoxide, as well as formation of wrinkles and sagging, were lowered in mice fed a β-carotene diet. These results strongly suggest that dietary β-carotene prevents the expression of metalloproteinase-9 (at least in part), by inhibiting the photodynamic action involving the formation of 5α-hydroperoxide in the skin. Intake of β-Carotene therefore appears to be helpful in slowing down ultraviolet-A -induced photoaging in human skin by acting as a O2 (1Δg) quencher. PMID:21297913

  7. Involvement of singlet oxygen in cytochrome P450-dependent substrate oxidations.

    PubMed

    Osada, M; Ogura, Y; Yasui, H; Sakurai, H

    1999-09-24

    Cytochrome P450 (P450)-dependent p-hydroxylation of aniline and o-deethylation of 7-ethoxycoumarin were examined in rat liver microsomes in the presence of radical scavengers. The addition of beta-carotene, a quencher of singlet oxygen species ((1)O(2)), suppressed the aniline hydroxylation, while the addition of sodium azide (NaN(3)) ((1)O(2) quencher) enhanced the reaction. No other reactive oxygen scavengers or chelating agents such as superoxide dismutase, catalase, dimethylsulfoxide, or deferoxamine altered the reaction. In contrast, the microsomal o-deethylation of 7-ethoxycoumarin was suppressed by the addition of NaN(3). (1)O(2) was detectable during the reaction of microsomes and NADPH by ESR spin-trapping when 2,2,6,6-tetramethyl-4-piperidone (TMPD) was used as a spin trap, and the (1)O(2) was quenched by the additions of beta-carotene, NaN(3), aniline, and 7-ethoxycoumarin. The enhancement effect of NaN(3) in the hydroxylation of aniline appeared to be due to the conformational change of P450 protein, which in turn enhances the binding of aniline to P450 in terms of the spectral dissociation constant (K(s)). In contrast, (1)O(2) appeared to be active in the o-deethylation of 7-ethoxycoumarin. On the basis of the results, the involvement of (1)O(2) in P450-dependent substrate oxygenations is proposed. PMID:10491304

  8. Photosensitization of singlet oxygen formation by pterins and flavins. Time-resolved studies of oxygen phosphorescence under laser excitation.

    PubMed

    Egorov, S Y; Krasnovsky, A A; Bashtanov, M Y; Mironov, E A; Ludnikova, T A; Kritsky, M S

    1999-10-01

    To elucidate the biochemical roles of singlet molecular oxygen (1(O2)) in the light-dependent reactions photosensitized by biological blue-light photoreceptors, time-resolved measurements of photosensitized 1O2 phosphorescence (1270 nm) were performed in air-saturated aqueous ((D2)O) solutions of pterins (2-amino-4-hydroxy-6,7-dimethylpteridine (DMP) and 2-amino-4-hydroxy-6-tetrahydroxybutyl-(D-arabo)pteridine (TOP)) and flavins (riboflavin and flavin mononucleotide (FMN)) under excitation with nitrogen laser (337.1 nm) pulses. The 1(O2) quantum yields were found to be 0.16, 0.20, 0.50, and 0.50 for DMP, TOP, riboflavin, and FMN, respectively. The data indicate that pterins and flavins are rather efficient photosensitizers of 1(O2) production that might be important for their photobiological functions. PMID:10561557

  9. GUN4-Protoporphyrin IX Is a Singlet Oxygen Generator with Consequences for Plastid Retrograde Signaling.

    PubMed

    Tarahi Tabrizi, Shabnam; Sawicki, Artur; Zhou, Shuaixiang; Luo, Meizhong; Willows, Robert D

    2016-04-22

    The genomes uncoupled 4 (GUN4) protein is a nuclear-encoded, chloroplast-localized, porphyrin-binding protein implicated in retrograde signaling between the chloroplast and nucleus, although its exact role in this process is still unclear. Functionally, it enhances Mg-chelatase activity in the chlorophyll biosynthesis pathway. Because GUN4 is present only in organisms that carry out oxygenic photosynthesis and because it binds protoporphyrin IX (PPIX) and Mg-PPIX, it has been suggested that it prevents production of light- and PPIX- or Mg-PPIX-dependent reactive oxygen species. A chld-1/GUN4 mutant with elevated PPIX has a light-dependent up-regulation of GUN4, implicating this protein in light-dependent sensing of PPIX, with the suggestion that GUN4 reduces PPIX-generated singlet oxygen, O2(a(1)Δg), and subsequent oxidative damage (Brzezowski, P., Schlicke, H., Richter, A., Dent, R. M., Niyogi, K. K., and Grimm, B. (2014) Plant J. 79, 285-298). In direct contrast, our results show that purified GUN4 and oxidatively damaged ChlH increase the rate of PPIX-generated singlet oxygen production in the light, by a factor of 5 and 10, respectively, when compared with PPIX alone. Additionally, the functional GUN4-PPIX-ChlH complex and ChlH-PPIX complexes generate O2(a(1)Δg) at a reduced rate when compared with GUN4-PPIX. As O2(a(1)Δg) is a potential plastid-to-nucleus signal, possibly through second messengers, light-dependent O2(a(1)Δg) generation by GUN4-PPIX is proposed to be part of a signal transduction pathway from the chloroplast to the nucleus. GUN4 thus senses the availability and flux of PPIX through the chlorophyll biosynthetic pathway and also modulates Mg-chelatase activity. The light-dependent O2(a(1)Δg) generation from GUN4-PPIX is thus proposed as the first step in retrograde signaling from the chloroplast to the nucleus. PMID:26969164

  10. Organization and Evolution of the Biological Response to Singlet Oxygen Stress

    PubMed Central

    Dufour, Yann S.; Landick, Robert; Donohue, Timothy J.

    2008-01-01

    The appearance of atmospheric oxygen from photosynthetic activity led to the evolution of aerobic respiration and responses to the resulting reactive oxygen species. In Rhodobacter sphaeroides, a photosynthetic α-proteobacterium, a transcriptional response to the reactive oxygen species singlet oxygen (1O2) is controlled by the group IV σ factor σE and the anti-σ factor ChrR. In this study, we integrated various large datasets to identify genes within the 1O2 stress response that contain σE-dependent promoters both within R. sphaeroides and across the bacterial phylogeny. Transcript pattern clustering and a σE-binding sequence model were used to predict candidate promoters that respond to 1O2 stress in R. sphaeroides. These candidate promoters were experimentally validated to nine R. sphaeroides σE-dependent promoters that control the transcription of 15 1O2-activated genes. Knowledge of the R. sphaeroides response to 1O2 and its regulator σE–ChrR was combined with large-scale phylogenetic and sequence analyses to predict the existence of a core set of approximately eight conserved σE-dependent genes in α-proteobacteria and γ-proteobacteria. The bacteria predicted to contain this conserved response to 1O2 include photosynthetic species, as well as free-living and symbiotic/pathogenic nonphotosynthetic species. Our analysis also predicts that the response to 1O2 evolved within the time frame of the accumulation of atmospheric molecular oxygen on this planet. PMID:18723027

  11. Involvement of Singlet Oxygen in 5-Aminolevulinic Acid-Induced Photodynamic Damage of Cucumber (Cucumis sativus L.) Chloroplasts 1

    PubMed Central

    Chakraborty, Niranjan; Tripathy, Baishnab Charan

    1992-01-01

    Cucumber (Cucumis sativus L., cv Poinsette) plants were sprayed with 20 millimolar 5-aminolevulinic acid and then incubated in the dark for 14 hours. The intact chloroplasts were isolated from the above plants in the dark and were exposed to weak light (250 micromoles per square meter per second). Within 30 minutes, photosystem II activity was reduced by 50%. The singlet oxygen (1O2) scavengers, histidine and sodium azide (NaN3) significantly protected against the damage caused to photosystem II. The hydroxyl radical scavenger formate failed to protect the thylakoid membranes. The production of 1O2 monitored as N,N-dimethyl p-nitrosoaniline bleaching increased as a function of light exposure time of treated chloroplasts and was abolished by the 1O2 quencher, NaN3. Membrane lipid peroxidation monitored as malondialdehyde production was also significantly reduced when chloroplasts were illuminated in the presence of NaN3 and histidine. Protochlorophyllide was the most abundant pigment accumulated in intact chloroplasts isolated from 5-aminolevulinic acid-treated plants and was probably acting as type II photosensitizer. PMID:16668650

  12. The generation of singlet oxygen (o(2)) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis.

    PubMed

    Haworth, P; Hess, F D

    1988-03-01

    The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10(-4) molar and paraquat) and also under temperature conditions (3 degrees C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10(-9) molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane. PMID:16665968

  13. The Generation of Singlet Oxygen (1O2) by the Nitrodiphenyl Ether Herbicide Oxyfluorfen Is Independent of Photosynthesis

    PubMed Central

    Haworth, Phil; Hess, F. Dan

    1988-01-01

    The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10−4 molar and paraquat) and also under temperature conditions (3°C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10−9 molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane. PMID:16665968

  14. Mechanism of the photochemical process of singlet oxygen production by phenalenone.

    PubMed

    Segado, Mireia; Reguero, Mar

    2011-03-01

    Phenalenone (PN) is a very efficient singlet oxygen sensitiser in a wide range of solvents. This work uses ab initio quantum chemical calculations (CASSCF/CASPT2 protocol) to study the mechanism for populating the triplet state of PN responsible for this reaction, the (3)(π-π*) state. To describe in detail this reaction path, the singlet and triplet low-lying excited states of PN have been studied, the critical points of the potential energy surfaces corresponding to these states located and the vertical and adiabatic energies calculated. Our results show that, after the initial population of the S(2) excited state of (π-π*) character, the system undergoes an internal conversion to the (1)(n-π*) state. After populating the dark S(1) state, the system relaxes to the (1)(n-π*) minimum, but rapidly populates the triplet manifold through a very efficient intersystem crossing to the (3)(π-π*) state. Although the population of the minimum of this triplet state is strongly favoured, a conical intersection with the (3)(n-π*) surface opens an internal conversion channel to this state, a path accessible only at high temperatures. Radiationless deactivation processes are ruled out on the basis of the high-energy barriers found for the crossings between the excited states and the ground state. Our computational results satisfactorily explain the experimental findings and are in very good agreement with the experimental data available. In the case of the frequency of fluorescence, this is the first time that these data have been theoretically predicted in good agreement with the experimental results. PMID:21225064

  15. Superoxide and Singlet Oxygen Produced within the Thylakoid Membranes Both Cause Photosystem I Photoinhibition.

    PubMed

    Takagi, Daisuke; Takumi, Shigeo; Hashiguchi, Masaki; Sejima, Takehiro; Miyake, Chikahiro

    2016-07-01

    Photosystem I (PSI) photoinhibition suppresses plant photosynthesis and growth. However, the mechanism underlying PSI photoinhibition has not been fully clarified. In this study, in order to investigate the mechanism of PSI photoinhibition in higher plants, we applied repetitive short-pulse (rSP) illumination, which causes PSI-specific photoinhibition in chloroplasts isolated from spinach leaves. We found that rSP treatment caused PSI photoinhibition, but not PSII photoinhibition in isolated chloroplasts in the presence of O2 However, chloroplastic superoxide dismutase and ascorbate peroxidase activities failed to protect PSI from its photoinhibition. Importantly, PSI photoinhibition was largely alleviated in the presence of methyl viologen, which stimulates the production of reactive oxygen species (ROS) at the stromal region by accepting electrons from PSI, even under the conditions where CuZn-superoxide dismutase and ascorbate peroxidase activities were inactivated by KCN. These results suggest that the ROS production site, but not the ROS production rate, is critical for PSI photoinhibition. Furthermore, we found that not only superoxide (O2 (-)) but also singlet oxygen ((1)O2) is involved in PSI photoinhibition induced by rSP treatment. From these results, we suggest that PSI photoinhibition is caused by both O2 (-) and (1)O2 produced within the thylakoid membranes when electron carriers in PSI become highly reduced. Here, we show, to our knowledge, new insight into the PSI photoinhibition in higher plants. PMID:26936894

  16. Infrared laser pulse triggers increased singlet oxygen production in tumour cells

    NASA Astrophysics Data System (ADS)

    Sokolovski, S. G.; Zolotovskaya, S. A.; Goltsov, A.; Pourreyron, C.; South, A. P.; Rafailov, E. U.

    2013-12-01

    Photodynamic therapy (PDT) is a technique developed to treat the ever-increasing global incidence of cancer. This technique utilises singlet oxygen (1O2) generation via a laser excited photosensitiser (PS) to kill cancer cells. However, prolonged sensitivity to intensive light (6-8 weeks for lung cancer), relatively low tissue penetration by activating light (630 nm up to 4 mm), and the cost of PS administration can limit progressive PDT applications. The development of quantum-dot laser diodes emitting in the highest absorption region (1268 nm) of triplet oxygen (3O2) presents the possibility of inducing apoptosis in tumour cells through direct 3O2 --> 1O2 transition. Here we demonstrate that a single laser pulse triggers dose-dependent 1O2 generation in both normal keratinocytes and tumour cells and show that tumour cells yield the highest 1O2 far beyond the initial laser pulse exposure. Our modelling and experimental results support the development of direct infrared (IR) laser-induced tumour treatment as a promising approach in tumour PDT.

  17. Light-Induced Acclimation of the Arabidopsis chlorina1 Mutant to Singlet Oxygen[C][W

    PubMed Central

    Ramel, Fanny; Ksas, Brigitte; Akkari, Elsy; Mialoundama, Alexis S.; Monnet, Fabien; Krieger-Liszkay, Anja; Ravanat, Jean-Luc; Mueller, Martin J.; Bouvier, Florence; Havaux, Michel

    2013-01-01

    Singlet oxygen (1O2) is a reactive oxygen species that can function as a stress signal in plant leaves leading to programmed cell death. In microalgae, 1O2-induced transcriptomic changes result in acclimation to 1O2. Here, using a chlorophyll b–less Arabidopsis thaliana mutant (chlorina1 [ch1]), we show that this phenomenon can also occur in vascular plants. The ch1 mutant is highly photosensitive due to a selective increase in the release of 1O2 by photosystem II. Under photooxidative stress conditions, the gene expression profile of ch1 mutant leaves very much resembled the gene responses to 1O2 reported in the Arabidopsis mutant flu. Preexposure of ch1 plants to moderately elevated light intensities eliminated photooxidative damage without suppressing 1O2 formation, indicating acclimation to 1O2. Substantial differences in gene expression were observed between acclimation and high-light stress: A number of transcription factors were selectively induced by acclimation, and contrasting effects were observed for the jasmonate pathway. Jasmonate biosynthesis was strongly induced in ch1 mutant plants under high-light stress and was noticeably repressed under acclimation conditions, suggesting the involvement of this hormone in 1O2-induced cell death. This was confirmed by the decreased tolerance to photooxidative damage of jasmonate-treated ch1 plants and by the increased tolerance of the jasmonate-deficient mutant delayed-dehiscence2. PMID:23590883

  18. Spatially resolved measurement of singlet delta oxygen by radar resonance-enhanced multiphoton ionization.

    PubMed

    Wu, Yue; Zhang, Zhili; Ombrello, Timothy M

    2013-07-01

    Coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization (REMPI) was demonstrated to directly and nonintrusively measure singlet delta oxygen, O(2)(a(1)Δ(g)), with high spatial resolution. Two different approaches, photodissociation of ozone and microwave discharge plasma in an argon and oxygen flow, were utilized for O(2)(a(1)Δ(g)) generation. The d(1)Π(g)←a(1)Δ(g) (3-0) and d(1)Π(g)←a(1)Δ(g) (1-0) bands of O(2)(a(1)Δ(g)) were detected by Radar REMPI for two different flow conditions. Quantitative absorption measurements using sensitive off-axis integrated cavity output spectroscopy (ICOS) was used simultaneously to evaluate the accuracy and sensitivity of the Radar REMPI technique. The detection limit of Radar REMPI was found to be comparable to the ICOS technique with a detection threshold of approximately 10(14) molecules/cm(3) but with a spatial resolution that was 8 orders of magnitude smaller than the ICOS technique. PMID:23811904

  19. The singlet-oxygen-sensitized delayed fluorescence in mammalian cells: a time-resolved microscopy approach.

    PubMed

    Scholz, Marek; Biehl, Anna-Louisa; Dědic, Roman; Hála, Jan

    2015-04-01

    The present work provides a proof-of-concept that the singlet oxygen-sensitized delayed fluorescence (SOSDF) can be detected from individual living mammalian cells in a time-resolved microscopy experiment. To this end, 3T3 mouse fibroblasts incubated with 100 μM TPPS4 or TMPyP were used and the microsecond kinetics of the delayed fluorescence (DF) were recorded. The analysis revealed that SOSDF is the major component of the overall DF signal. The microscopy approach enables precise control of experimental conditions - the DF kinetics are clearly influenced by the presence of the (1)O2 quencher (sodium azide), H2O/D2O exchange, and the oxygen concentration. Analysis of SOSDF kinetics, which was reconstructed as a difference DF kinetics between the unquenched and the NaN3-quenched samples, provides a cellular (1)O2 lifetime of τΔ = 1-2 μs and a TPPS4 triplet lifetime of τT = 22 ± 5 μs in agreement with previously published values. The short SOSDF acquisition times, typically in the range of tens of seconds, enable us to study the dynamic cellular processes. It is shown that SOSDF lifetimes increase during PDT-like treatment, which may provide valuable information about changes of the intracellular microenvironment. SOSDF is proposed and evaluated as an alternative tool for (1)O2 detection in biological systems. PMID:25591544

  20. Superoxide and Singlet Oxygen Produced within the Thylakoid Membranes Both Cause Photosystem I Photoinhibition1[OPEN

    PubMed Central

    Takumi, Shigeo; Hashiguchi, Masaki; Sejima, Takehiro

    2016-01-01

    Photosystem I (PSI) photoinhibition suppresses plant photosynthesis and growth. However, the mechanism underlying PSI photoinhibition has not been fully clarified. In this study, in order to investigate the mechanism of PSI photoinhibition in higher plants, we applied repetitive short-pulse (rSP) illumination, which causes PSI-specific photoinhibition in chloroplasts isolated from spinach leaves. We found that rSP treatment caused PSI photoinhibition, but not PSII photoinhibition in isolated chloroplasts in the presence of O2. However, chloroplastic superoxide dismutase and ascorbate peroxidase activities failed to protect PSI from its photoinhibition. Importantly, PSI photoinhibition was largely alleviated in the presence of methyl viologen, which stimulates the production of reactive oxygen species (ROS) at the stromal region by accepting electrons from PSI, even under the conditions where CuZn-superoxide dismutase and ascorbate peroxidase activities were inactivated by KCN. These results suggest that the ROS production site, but not the ROS production rate, is critical for PSI photoinhibition. Furthermore, we found that not only superoxide (O2−) but also singlet oxygen (1O2) is involved in PSI photoinhibition induced by rSP treatment. From these results, we suggest that PSI photoinhibition is caused by both O2− and 1O2 produced within the thylakoid membranes when electron carriers in PSI become highly reduced. Here, we show, to our knowledge, new insight into the PSI photoinhibition in higher plants. PMID:26936894

  1. Calculation of singlet oxygen formation from one photon absorbing photosensitizers used in PDT

    NASA Astrophysics Data System (ADS)

    Potasek, M.; Parilov, Evgueni; Beeson, K.

    2013-03-01

    Advances in biophotonic medicine require new information on photodynamic mechanisms. In photodynamic therapy (PDT), a photosensitizer (PS) is injected into the body and accumulates at higher concentrations in diseased tissue compared to normal tissue. The PS absorbs light from a light source and generates excited-state triplet states of the PS. The excited triplet states of the PS can then react with ground state molecular oxygen to form excited singlet - state oxygen or form other highly reactive species. The reactive species react with living cells, resulting in cel l death. This treatment is used in many forms of cancer including those in the prostrate, head and neck, lungs, bladder, esophagus and certain skin cancers. We developed a novel numerical method to model the photophysical and photochemical processes in the PS and the subsequent energy transfer to O2, improving the understanding of these processes at a molecular level. Our numerical method simulates light propagation and photo-physics in PS using methods that build on techniques previously developed for optical communications and nonlinear optics applications.

  2. Overlapping Alternative Sigma Factor Regulons in the Response to Singlet Oxygen in Rhodobacter sphaeroides▿ †

    PubMed Central

    Nuss, Aaron M.; Glaeser, Jens; Berghoff, Bork A.; Klug, Gabriele

    2010-01-01

    Organisms performing photosynthesis in the presence of oxygen have to cope with the formation of highly reactive singlet oxygen (1O2) and need to mount an adaptive response to photooxidative stress. Here we show that the alternative sigma factors RpoHI and RpoHII are both involved in the 1O2 response and in the heat stress response in Rhodobacter sphaeroides. We propose RpoHII to be the major player in the 1O2 response, whereas RpoHI is more important for the heat stress response. Mapping of the 5′ ends of RpoHII- and also RpoHI/RpoHII-dependent transcripts revealed clear differences in the −10 regions of the putative promoter sequences. By using bioinformatic tools, we extended the RpoHII regulon, which includes genes induced by 1O2 exposure. These genes encode proteins which are, e.g., involved in methionine sulfoxide reduction and in maintaining the quinone pool. Furthermore, we identified small RNAs which depend on RpoHI and RpoHII and are likely to contribute to the defense against photooxidative stress and heat stress. PMID:20304993

  3. Liquid- and Ice-Phase Kinetics of Singlet Molecular Oxygen with Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Bower, J. P.; Anastasio, C.

    2012-12-01

    Singlet molecular oxygen (1O2*), a reactive state of dissolved oxygen, is formed from a sensitizer chromophore that absorbs light and transfers energy to ground-state O2. The chemistry of 1O2* has been studied predominantly in surface waters and aqueous atmospheric drops, where 1O2* can be an important sink for electron-rich pollutants. In our recent work we have shown that 1O2* concentrations can be enhanced by several orders of magnitude on ice compared to in identical, but unfrozen, aqueous solutions. The goal of this work is to assess the potential importance of 1O2* to the decay of organic pollutants on ice in order to better understand pollutant cycling in the cryosphere. Using 549 nm radiation we illuminated liquid and bulk ice samples containing a 1O2* sensitizer (Rose Bengal), salt (NaCl), and an organic pollutant at a controlled temperature. Organic species were chosen to represent several chemical classes, including furans (furfuryl alcohol), phenols (bisphenol A), and amino acids (tryptophan). During illumination the decay of the pollutant was measured to determine the rate constant for loss by reaction with 1O2*. In all cases we observe enhanced loss of pollutants on ice relative to liquid samples. We will discuss how the magnitude of the ice-phase enhancement depends on the different pollutant classes, their aqueous solubility, and freezing point depression.

  4. Enhancement of singlet oxygen production based on FRET between Coumarin tri-compound and CdSe/ZnS QDs

    NASA Astrophysics Data System (ADS)

    Duong, Hong Dinh; Lee, Jee Won; Rhee, Jong Il

    2014-08-01

    The compatibility between coumarin-derived dendrimer (CdD)-captured silica particles (SiCdDs) and watersoluble CdSe/ZnS quantum dots (QDs) in the FRET process improved the excited state of QDs in the reaction of singlet oxygen production under LED irradiation. Sol-gel GA was successfully used to improve the binding between SiCdDs and QDs. Singlet oxygen production using QDs coated with SiCdDs through sol-gel GA was enhanced by about 80 % compared to that achieved using QDs only. The single oxygen produced by the QDs, the QDs/GA-SiCdDs complexes and the SiCdDs/GA-QDs complexes in this study could be used in the treatment of HeLa cells.

  5. Enhanced photocatalytic performance of N-nitrosodimethylamine on TiO2 nanotube based on the role of singlet oxygen.

    PubMed

    Guo, Xiaoyan; Li, Qilin; Zhang, Man; Long, Mingce; Kong, Lulu; Zhou, Qixing; Shao, Huaiqi; Hu, Wanli; Wei, Tingting

    2015-02-01

    N-nitrosodimethylamine (NDMA) photocatalytic degradation performance and mechanism were investigated on the TiO2 nanotube prepared from anatase TiO2 nanopowder in terms of the production of reactive oxygen species including hydroxyl radical, singlet oxygen and superoxide radical. Significantly higher NDMA degradation efficiency was obtained on anatase TiO2 nanotube rather than anatase TiO2 nanopowder. The tubular morphology may be responsible for almost 100% NDMA removal on TiO2 nanotube, presumably due to its confinement effect leading to NDMA molecules within the nanotube being attacked by reactive oxygen species such as hydroxyl radical and singlet oxygen, and initiating reaction inside the nanotube. In particular, the ability of the nanotubular structure of TiO2 nanotube to promote a singlet oxygen oxidation pathway contributes much to the enhanced NDMA degradation efficiency and favors the formation of dimethylamine and NO3(-). Such function originating from nanotube morphology could bring new insights for the photocatalytic degradation of organic pollutants. PMID:25290358

  6. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene

    SciTech Connect

    Grether-Beck, S.; Olaizola-Horn, S.; Schmitt, H.; Grewe, M.

    1996-12-10

    UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing OCAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response. 38 refs., 3 figs., 3 tabs.

  7. Key players of singlet oxygen-induced cell death in plants.

    PubMed

    Laloi, Christophe; Havaux, Michel

    2015-01-01

    The production of reactive oxygen species (ROS) is an unavoidable consequence of oxygenic photosynthesis. Singlet oxygen ((1)O2) is a highly reactive species to which has been attributed a major destructive role during the execution of ROS-induced cell death in photosynthetic tissues exposed to excess light. The study of the specific biological activity of (1)O2 in plants has been hindered by its high reactivity and short lifetime, the concurrent production of other ROS under photooxidative stress, and limited in vivo detection methods. However, during the last 15 years, the isolation and characterization of two (1)O2-overproducing mutants in Arabidopsis thaliana, flu and ch1, has allowed the identification of genetically controlled (1)O2 cell death pathways and a (1)O2 acclimation pathway that are triggered at sub-cytotoxic concentrations of (1)O2. The study of flu has revealed the control of cell death by the plastid proteins EXECUTER (EX)1 and EX2. In ch1, oxidized derivatives of β-carotene, such as β-cyclocitral and dihydroactinidiolide, have been identified as important upstream messengers in the (1)O2 signaling pathway that leads to stress acclimation. In both the flu and ch1 mutants, phytohormones act as important promoters or inhibitors of cell death. In particular, jasmonate has emerged as a key player in the decision between acclimation and cell death in response to (1)O2. Although the flu and ch1 mutants show many similarities, especially regarding their gene expression profiles, key differences, such as EXECUTER-independent cell death in ch1, have also been observed and will need further investigation to be fully understood. PMID:25699067

  8. An optical boiler generating singlet oxygen O{sub 2} (a{sup 1{Delta}}{sub g})

    SciTech Connect

    Lipatov, N I; Gulyamova, E S; Biryukov, A S

    2008-12-31

    An ecologically perfect generator of singlet oxygen O{sub 2} (a{sup 1{Delta}}{sub g}) is proposed which fundamentally differs from existing singlet-oxygen generators. Excited O{sub 2} (a{sup 1{Delta}}{sub g}) molecules are generated due to interaction of the O{sub 2} (X{sup 3}{Sigma}{sup -}{sub g}) molecules with a quasi-monochromatic field, which is supplied from an external source to a closed volume - an optical boiler containing oxygen. It is shown that, by pumping continuously the optical boiler by the light field of power {approx}3x10{sup 5} W, it is possible to accumulate up to 40% of singlet oxygen (O{sub 2}(b{sup 1}{Sigma}{sup +}{sub g})) + (O{sub 2} (a{sup 1}{Delta}{sub g})) in the boiler volume during {approx}10{sup -2} s. (laser applications and other topics in quantum electronics)

  9. The effect of gold nanoparticles on exchange processes in collision complexes of triplet and singlet oxygen molecules with excited eosin molecules

    NASA Astrophysics Data System (ADS)

    Bryukhanov, V. V.; Minaev, B. M.; Tsibul'nikova, A. V.; Slezhkin, V. A.

    2015-07-01

    We have studied exchange processes in contact complexes of triplet eosin molecules with oxygen molecules in the triplet (3Σ{/g -}) and singlet (1Δ g ) states in thin polyvinylbutyral films in the presence of gold nanoparticles. Upon resonant excitation of surface plasmons in gold nanoparticles into the absorption band of eosin molecules-singlet oxygen sensitizers-we have obtained an increase in the intensity of the delayed fluorescence and an increase in the lifetime of the dye with simultaneous quenching of the luminescence of singlet oxygen. The kinetics of the delayed fluorescence of the dye as a result of singlet-triplet annihilation of triplet eosin molecules with singlet oxygen molecules has been investigated. To compare theoretical and experimental data, we have numerically simulated energy transfer processes. Rate constants of energy transfer and of singlet-triplet annihilation, as well as quenching constants of triplet states of the dye by molecular oxygen, have been calculated. Luminescence quantum yield 1Δ g of polyvinylbutyral has been estimated. We have analyzed quantum-chemically electronic mechanisms of singlet-triplet annihilation of oxygen and eosin.

  10. Regulation of singlet oxygen generation using single-walled carbon nanotubes.

    PubMed

    Zhu, Zhi; Tang, Zhiwen; Phillips, Joseph A; Yang, Ronghua; Wang, Hui; Tan, Weihong

    2008-08-20

    We have designed a novel photodynamic therapy (PDT) agent using protein binding aptamer, photosensitizer, and single-walled carbon nanotube (SWNT). The PDT is based on covalently linking a photosensitizer with an aptamer then wrapping onto the surface of SWNTs, such that the photosensitizer can only be activated by light upon target binding. We have chosen the human alpha-thrombin aptamer and covalently linked it with Chlorin e6 (Ce6), which is a second generation photosensitizer. Our results showed that SWNTs are great quenchers to singlet oxygen generation (SOG). In the presence of its target, the binding of target thrombin will disturb the DNA interaction with the SWNTs and cause the DNA aptamer to fall off the SWNT surface, resulting in the restoration of SOG. This study validated the potential of our design as a novel PDT agent with regulation by target molecules, enhanced specificity, and efficacy of therapeutic function, which directs the development of photodynamic therapy to be safer and more selective. PMID:18661988

  11. Singlet oxygen (1O2)-oxidazable lipids in the HIV membrane, new targets for AIDS therapy?

    PubMed

    Stief, Thomas W

    2003-04-01

    Human immunodeficiency virus (HIV) is a lipid enveloped virus. The lipid envelope differs significantly from the lipid membrane of normal human cells: it contains high amounts of cholesterol, that is of importance for the virus-cell interaction (for entry and exit of the virus) at so-called lipid rafts. Cholesterol, as a R-C=C-R compound possesses an oxidazable carbenic bond. The present work suggests the inactivation of HIV by oxidation of viral cholesterol and/or unsaturated fatty acids. For oxidation, the relatively mild oxidant singlet oxygen (1O(2)) might be used. 1O(2) is generated by redoxcyclers (e.g., of the quinone type, such as vitamin K) or by chloramines (e.g., taurine-chloramine). At the 1O(2) concentrations necessary to inactivate lipid enveloped virus in human blood the oxidation-sensible critical hemostasis parameters such as thrombocytes and fibrinogen are only partly inactivated. Therefore, it is proposed to consider generators of 1O(2) as a new form of AIDS therapy. PMID:12615526

  12. Photogeneration of singlet oxygen by humic substances: comparison of humic substances of aquatic and terrestrial origin.

    PubMed

    Paul, Andrea; Hackbarth, Steffen; Vogt, Rolf D; Röder, Beate; Burnison, B Kent; Steinberg, Christian E W

    2004-03-01

    The singlet oxygen (1(O2)) luminescence of 27 isolated humic substances (HS), natural organic matter, ultrafiltrates, and the synthetic fulvic acid HS1500 has been investigated by time-resolved spectroscopy in buffered D(2)O. The samples include both reverse osmosis isolates from lakes in Scandinavia, Canada, and Germany, and IHSS fulvic and humic acids of aquatic and terrestrial origin. The quantum yields of 1(O2) formation (PhiDelta) obtained on laser excitation at 480 nm ranged between 0.06 (HS1500) and 2.7%(fulvic acid from soil, IHSS). In our study, a general trend towards higher PhiDelta in terrestrial HS was observed. The comparison of reverse osmosis isolates from surface waters collected during fall 1999 and spring 2000 from five Scandinavian sites yielded, in all cases, higher PhiDelta for the spring samples. For the aquatic sampling sites Hietajarvi and Birkenes, PhiDelta even exceeded values of 0.6%, which were found to be typical for terrestrial or soil water material. Investigation of the excitation wavelength dependence of PhiDelta in the spectral range 355-550 nm yielded different spectral shapes for aquatic HS and "non-aquatic" HS, respectively. On the basis of these excitation spectra, 1(O2) production rates were calculated for eight representative HS. PMID:14993944

  13. Chemical Quenching of Singlet Oxygen by Carotenoids in Plants1[C][W

    PubMed Central

    Ramel, Fanny; Birtic, Simona; Cuiné, Stéphan; Triantaphylidès, Christian; Ravanat, Jean-Luc; Havaux, Michel

    2012-01-01

    Carotenoids are considered to be the first line of defense of plants against singlet oxygen (1O2) toxicity because of their capacity to quench 1O2 as well as triplet chlorophylls through a physical mechanism involving transfer of excitation energy followed by thermal deactivation. Here, we show that leaf carotenoids are also able to quench 1O2 by a chemical mechanism involving their oxidation. In vitro oxidation of β-carotene, lutein, and zeaxanthin by 1O2 generated various aldehydes and endoperoxides. A search for those molecules in Arabidopsis (Arabidopsis thaliana) leaves revealed the presence of 1O2-specific endoperoxides in low-light-grown plants, indicating chronic oxidation of carotenoids by 1O2. β-Carotene endoperoxide, but not xanthophyll endoperoxide, rapidly accumulated during high-light stress, and this accumulation was correlated with the extent of photosystem (PS) II photoinhibition and the expression of various 1O2 marker genes. The selective accumulation of β-carotene endoperoxide points at the PSII reaction centers, rather than the PSII chlorophyll antennae, as a major site of 1O2 accumulation in plants under high-light stress. β-Carotene endoperoxide was found to have a relatively fast turnover, decaying in the dark with a half time of about 6 h. This carotenoid metabolite provides an early index of 1O2 production in leaves, the occurrence of which precedes the accumulation of fatty acid oxidation products. PMID:22234998

  14. Singlet Oxygen Attack on Guanine: Reactivity and Structural Signature within the B-DNA Helix.

    PubMed

    Dumont, Elise; Grüber, Raymond; Bignon, Emmanuelle; Morell, Christophe; Aranda, Juan; Ravanat, Jean-Luc; Tuñón, Iñaki

    2016-08-22

    Oxidatively generated DNA lesions are numerous and versatile, and have been the subject of intensive research since the discovery of 8-oxoguanine in 1984. Even for this prototypical lesion, the precise mechanism of formation remains elusive due to the inherent difficulties in characterizing high-energy intermediates. We have probed the stability of the guanine endoperoxide in B-DNA as a key intermediate and determined a unique activation free energy of around 6 kcal mol(-1) for the formation of the first C-O covalent bond upon the attack of singlet molecular oxygen ((1) O2 ) on the central guanine of a solvated 13 base-pair poly(dG-dC), described by means of quantum mechanics/molecular mechanics (QM/MM) simulations. The B-helix remains stable upon oxidation in spite of the bulky character of the guanine endoperoxide. Our modeling study has revealed the nature of the versatile (1) O2 attack in terms of free energy and shows a sensitivity to electrostatics and solvation as it involves a charge-separated intermediate. PMID:27440482

  15. Development of Singlet Oxygen Absorption Capacity (SOAC) Assay Method Using a Microplate Reader.

    PubMed

    Takahashi, Shingo; Iwasaki-Kino, Yuko; Aizawa, Koichi; Terao, Junji; Mukai, Kazuo

    2016-01-01

    Recently, a new assay method that can quantify the singlet oxygen absorption capacity (SOAC) of natural antioxidants and food extracts was developed. The SOAC values were measured in ethanol-chloroform-D2O (50 + 50 + 1, v/v/v) solution at 35°C using a UV-Vis spectrophotometer equipped with a six-channel cell positioner and an electron-temperature control unit. In the present study, measurement of the SOAC values was performed for eight representative carotenoids and three vegetable extracts (tomato, carrot, and red paprika) using a versatile instrument, the microplate reader. A 24-well glass microplate was used for measurements because a plastic microplate, commonly used in the laboratory, dissolves in the ethanol-chloroform-D2O solution. The SOAC values of eight carotenoids and three vegetable extracts measured using a microplate reader were in good agreement with the corresponding values measured using a UV-Vis spectrophotometer, suggesting that the microplate reader is an applicable instrument for the measurement of reliable SOAC values for general antioxidants and food extracts in solution. PMID:26822807

  16. Spectroscopic insights on imidazole substituted phthalocyanine photosensitizers: fluorescence properties, triplet state and singlet oxygen generation.

    PubMed

    Zhang, Xian-Fu; Lin, Yong; Guo, Wenfeng; Zhu, Jingzhong

    2014-12-10

    Imidazole substituted metal phthalocyanine (Pc) complexes were synthesized. UV-vis absorption, steady state and time-resolved fluorescence, as well as laser flash photolysis were used to measure the photophysical and photosensitizing properties. All the imidazole-phthalocyanine conjugates show high ΦT (quantum yield of excited triplet formation), high ΦΔ (singlet oxygen formation yield, >0.50) and good fluorescence properties (quantum yield Φf>0.20 and lifetime τf>3.0 ns). Compared to the unsubstituted Pc, both α- and β-imidazole substitutions result in the remarkable decrease in Φf and τf, but the α-substitution is stronger. The imidazole substitution, on the other hand, causes the increase of ΦT, τT, and ΦΔ values. Magnesium phthalocyanine (MgPc) is more susceptible to the substitution than zinc phthalocyanine (ZnPc). The mechanism responsible for the result is suggested based on the involvement of intramolecular photoinduced electron transfer. The high ΦΔ and appropriate fluorescence properties make the Pcs good candidate for PDT photosensitizers. PMID:24997445

  17. Spectroscopic insights on imidazole substituted phthalocyanine photosensitizers: Fluorescence properties, triplet state and singlet oxygen generation

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Fu; Lin, Yong; Guo, Wenfeng; Zhu, Jingzhong

    2014-12-01

    Imidazole substituted metal phthalocyanine (Pc) complexes were synthesized. UV-vis absorption, steady state and time-resolved fluorescence, as well as laser flash photolysis were used to measure the photophysical and photosensitizing properties. All the imidazole-phthalocyanine conjugates show high ΦT (quantum yield of excited triplet formation), high ΦΔ (singlet oxygen formation yield, >0.50) and good fluorescence properties (quantum yield Φf > 0.20 and lifetime τf > 3.0 ns). Compared to the unsubstituted Pc, both α- and β-imidazole substitutions result in the remarkable decrease in Φf and τf, but the α-substitution is stronger. The imidazole substitution, on the other hand, causes the increase of ΦT, τT, and ΦΔ values. Magnesium phthalocyanine (MgPc) is more susceptible to the substitution than zinc phthalocyanine (ZnPc). The mechanism responsible for the result is suggested based on the involvement of intramolecular photoinduced electron transfer. The high ΦΔ and appropriate fluorescence properties make the Pcs good candidate for PDT photosensitizers.

  18. Flavonoids in Microheterogeneous Media, Relationship between Their Relative Location and Their Reactivity towards Singlet Oxygen

    PubMed Central

    Günther, Germán; Berríos, Eduardo; Pizarro, Nancy; Valdés, Karina; Montero, Guillermo; Arriagada, Francisco; Morales, Javier

    2015-01-01

    In this work, the relationship between the molecular structure of three flavonoids (kaempferol, quercetin and morin), their relative location in microheterogeneous media (liposomes and erythrocyte membranes) and their reactivity against singlet oxygen was studied. The changes observed in membrane fluidity induced by the presence of these flavonoids and the influence of their lipophilicity/hydrophilicity on the antioxidant activity in lipid membranes were evaluated by means of fluorescent probes such as Laurdan and diphenylhexatriene (DPH). The small differences observed for the value of generalized polarization of Laurdan (GP) curves in function of the concentration of flavonoids, indicate that these three compounds promote similar alterations in liposomes and erythrocyte membranes. In addition, these compounds do not produce changes in fluorescence anisotropy of DPH, discarding their location in deeper regions of the lipid bilayer. The determined chemical reactivity sequence is similar in all the studied media (kaempferol < quercetin < morin). Morin is approximately 10 times more reactive than quercetin and 20 to 30 times greater than kaempferol, depending on the medium. PMID:26098745

  19. On the formation and annihilation of the singlet molecular metastables in an oxygen discharge

    NASA Astrophysics Data System (ADS)

    Toneli, D. A.; Pessoa, R. S.; Roberto, M.; Gudmundsson, J. T.

    2015-08-01

    We describe a volume averaged global model for an inductively coupled RF oxygen discharge that considers an extensive reaction set that includes the species: O2(X3Σ\\text{g}- ), O2({{a}1}{Δ\\text{g}} ), O2({{b}1}Σ\\text{g}+ ), O2(A3Σ\\text{u}+ , A’3{Δ\\text{u}} , {{c}1}Σ\\text{u}- ), O2+ , O2- , O(3P), O(1D), O+, O-, O3, O3+ , O3- , and electrons. We propose revised rate coefficients for some of the reactions and explore the densities of various species as a function of discharge pressure, in the pressure range 1-100 mTorr. We find that the O2({{a}1}{Δ\\text{g}} ) density can be lower than the O2({{b}1}Σ\\text{g}+ ) density in the pressure range from 2.5 to 80 mTorr. The relative reaction rates for formation and annihilation of O2({{a}1}{Δ\\text{g}} ) and O2({{b}1}Σ\\text{g}+ ) are evaluated and the most important reactions are indicated. The O- loss process is also studied. The results show that O2({{a}1}{Δ\\text{g}} ) has only a small contribution to the loss of the negative ion O-, while electron impact detachment is a very effective loss process at low pressure (<2 mTorr) and detachment by the oxygen atom O(3P) and the metastable singlet O2({{b}1}Σ\\text{g}+ ) are the most effective loss process up to roughly 50 mTorr where charge exchange becomes the most effective process for O- loss.

  20. Gadolinium(III) Porpholactones as Efficient and Robust Singlet Oxygen Photosensitizers.

    PubMed

    Ke, Xian-Sheng; Ning, Yingying; Tang, Juan; Hu, Ji-Yun; Yin, Hao-Yan; Wang, Gao-Xiang; Yang, Zi-Shu; Jie, Jialong; Liu, Kunhui; Meng, Zhao-Sha; Zhang, Zongyao; Su, Hongmei; Shu, Chunying; Zhang, Jun-Long

    2016-07-01

    Construction of Gd(III) photosensitizers is important for designing theranostic agents owing to the unique properties arising from seven unpaired f electrons of the Gd(3+) ion. Combining these with the advantages of porpholactones with tunable NIR absorption, we herein report the synthesis of Gd(III) complexes Gd-1-4 (1, porphyrin; 2, porpholactone; 3 and 4, cis- and trans-porphodilactone, respectively) and investigated their function as singlet oxygen ((1) O2 ) photosensitizers. These Gd complexes displayed (1) O2 quantum yields (ΦΔ s) from 0.64-0.99 with the order Gd-1oxygenation of the natural product cholesterol. Finally, after glycosylation, these water-soluble Gd complexes showed potential applications in photodynamic therapy (PDT) in HeLa cells. This work revealed that Gd(III) complexes of "bioinspired" β-modified porpholactones are efficient NIR photosensitizers and form a chemical basis to construct appealing photocatalysts and theranostic agents based on lanthanides. PMID:27249665

  1. Photochemical Production of Singlet Oxygen from Dissolved Organic Matter in Ice.

    PubMed

    Fede, Alexis; Grannas, Amanda M

    2015-11-01

    Dissolved natural organic matter (DOM) is a ubiquitous component of natural waters and an important photosensitizer. A variety of reactive oxygen species (ROS) are known to be produced from DOM photochemistry, including singlet oxygen, 1O2. Recently, it has been determined that humic-like substances and unknown organic chromophores are significant contributors to sunlight absorption in snowpack; however, DOM photochemistry in snow/ice has received little attention in the literature. We recently showed that DOM plays an important role in indirect photolysis processes in ice, producing ROS and leading to the efficient photodegradation of a probe hydrophobic organic pollutant, aldrin.1 ROS scavenger experiments indicated that 1O2 played a significant role in the indirect photodegradation of aldrin. Here we quantitatively examine 1O2 photochemically produced from DOM in frozen and liquid aqueous solutions. Steady-state 1O2 production is enhanced up to nearly 1000 times in frozen DOM samples compared to liquid samples. 1O2 production is dependent on the concentration of DOM, but the nature of the DOM source (terrestrial vs microbial) does not have a significant effect on 1O2 production in liquid or frozen samples, with different source types producing similar steady-state concentrations of 1O2. The temperature of frozen samples also has a significant effect on steady-state 1O2 production in the range of 228-262 K, with colder samples producing more steady-state 1O2. The large enhancement in 1O2 in frozen samples suggests that it may play a significant role in the photochemical processes that occur in snow and ice, and DOM could be a significant, but to date poorly understood, oxidant source in snow and ice. PMID:26460930

  2. Time-resolved singlet-oxygen luminescence detection with an efficient and practical semiconductor single-photon detector.

    PubMed

    Boso, Gianluca; Ke, Damei; Korzh, Boris; Bouilloux, Jordan; Lange, Norbert; Zbinden, Hugo

    2016-01-01

    In clinical applications, such as PhotoDynamic Therapy, direct singlet-oxygen detection through its luminescence in the near-infrared range (1270 nm) has been a challenging task due to its low emission probability and the lack of suitable single-photon detectors. Here, we propose a practical setup based on a negative-feedback avalanche diode detector that is a viable alternative to the current state-of-the art for different clinical scenarios, especially where geometric collection efficiency is limited (e.g. fiber-based systems, confocal microscopy, scanning systems etc.). The proposed setup is characterized with Rose Bengal as a standard photosensitizer and it is used to measure the singlet-oxygen quantum yield of a new set of photosensitizers for site-selective photodynamic therapy. PMID:26819830

  3. Photogeneration of singlet oxygen by the phenothiazine derivatives covalently bound to the surface-modified glassy carbon

    NASA Astrophysics Data System (ADS)

    Blacha-Grzechnik, Agata; Piwowar, Katarzyna; Krukiewicz, Katarzyna; Koscielniak, Piotr; Szuber, Jacek; Zak, Jerzy K.

    2016-05-01

    The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate 1O2 when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals' synthesis or in the wastewater treatment.

  4. Time-resolved singlet-oxygen luminescence detection with an efficient and practical semiconductor single-photon detector

    PubMed Central

    Boso, Gianluca; Ke, Damei; Korzh, Boris; Bouilloux, Jordan; Lange, Norbert; Zbinden, Hugo

    2015-01-01

    In clinical applications, such as PhotoDynamic Therapy, direct singlet-oxygen detection through its luminescence in the near-infrared range (1270 nm) has been a challenging task due to its low emission probability and the lack of suitable single-photon detectors. Here, we propose a practical setup based on a negative-feedback avalanche diode detector that is a viable alternative to the current state-of-the art for different clinical scenarios, especially where geometric collection efficiency is limited (e.g. fiber-based systems, confocal microscopy, scanning systems etc.). The proposed setup is characterized with Rose Bengal as a standard photosensitizer and it is used to measure the singlet-oxygen quantum yield of a new set of photosensitizers for site-selective photodynamic therapy. PMID:26819830

  5. “Pointsource” Delivery of a Photosensitizer Drug and Singlet Oxygen: Eradication of Glioma Cells In Vitro

    PubMed Central

    Ghogare, Ashwini A.; Rizvi, Imran; Hasan, Tayyaba; Greer, Alexander

    2014-01-01

    We describe a pointsource sensitizer-tipped microoptic device for the eradication of glioma U87 cells. The device has a mesoporous fluorinated silica tip which emits singlet oxygen molecules and small quantities of pheophorbide sensitizer for additional production of singlet oxygen in the immediate vicinity. The results show that the device surges in sensitizer release and photokilling with higher rates about midway through the reaction. This was attributed to a self-amplified autocatalytic reaction where released sensitizer in the extra-cellular matrix provides positive feedback to assist in the release of additional sensitizer. The photokilling of the glioma cells was analyzed by global toxicity and live/dead assays, where a killing radius around the tip with ~0.3 mm precision was achieved. The implication of these results for a new PDT tool of hard-to-resect tumors, e.g. in the brain, is discussed. PMID:24673689

  6. Quantum yield of photosensitized singlet oxygen (a[sup 1][Delta][sub g]) production in solid polystyrene

    SciTech Connect

    Scurlock, R.D.; Martire, D.O.; Ogilby, P.R. . Dept. of Chemistry); Taylor, V.L.; Clough, R.L. )

    1994-08-15

    The quantum yield of singlet oxygen (a[sup 1][Delta][sub g]), produced by energy transfer from the photosensitizer acridine, has been determined by two independent spectroscopic methods in solid polystyrene. Upon 355-nm pulsed-laser irradiation of acridine at 1.3 mJ/pulse, the O[sub 2](a[sup 1][Delta][sub g]) quantum yield in polystyrene [[phi][sub [Delta

  7. Charge separated states and singlet oxygen generation of mono and bis adducts of C60 and C70

    NASA Astrophysics Data System (ADS)

    Dallas, Panagiotis; Rogers, Gregory; Reid, Ben; Taylor, Robert A.; Shinohara, Hisanori; Briggs, G. Andrew D.; Porfyrakis, Kyriakos

    2016-02-01

    We present a series of fullerene derivatives and a study on their photoluminescence properties, complete with their efficiency as singlet oxygen generation photosensitizers. We demonstrate the intramolecular charge transfer between pyrene donor and fullerene acceptor. The opposite effect in decay lifetime measurements is observed for the mono and bis adducts of C60 and C70 for the first time, indicating an interplay between charge-separation and locally excited states. A monoexponential decay was observed for the mono adduct of C60 and the bis adduct of C70, while a biexponential decay was observed for the bis adduct of C60 and the mono adduct of C70. The effect of these molecules as sensitizers of the singlet oxygen radical was tested using detailed 3D excitation photoluminescence maps. A quenching of the singlet oxygen for the C60-mono and C70-bis adducts was observed while a strong photosensitizing effect was observed for the C60-bis and C70-mono adducts.

  8. Apogossypolone targets mitochondria and light enhances its anticancer activity by stimulating generation of singlet oxygen and reactive oxygen species

    PubMed Central

    Hu, Zhe-Yu; Wang, Jing; Cheng, Gang; Zhu, Xiao-Feng; Huang, Peng; Yang, Dajun; Zeng, Yi-Xin

    2011-01-01

    Apogossypolone (ApoG2), a novel derivative of gossypol, has been shown to be a potent inhibitor of antiapoptotic Bcl-2 family proteins and to have antitumor activity in multiple types of cancer cells. Recent reports suggest that gossypol stimulates the generation of cellular reactive oxygen species (ROS) in leukemia and colorectal carcinoma cells; however, gossypol-mediated cell death in leukemia cells was reported to be ROS-independent. This study was conducted to clarify the effect of ApoG2-induced ROS on mitochondria and cell viability, and to further evaluate its utility as a treatment for nasopharyngeal carcinoma (NPC). We tested the photocytotoxicity of ApoG2 to the poorly differentiated NPC cell line CNE-2 using the ROS-generating TL/10 illumination system. The rapid ApoG2-induced cell death was partially reversed by the antioxidant N-acetyl-L-cysteine (NAC), but the ApoG2-induced reduction of mitochondrial membrane potential (MMP) was not reversed by NAC. In the presence of TL/10 illumination, ApoG2 generated massive amounts of singlet oxygen and was more effective in inhibiting cell growth than in the absence of illumination. We also determined the influence of light on the anti-proliferative activity of ApoG2 using a CNE-2–xenograft mouse model. ApoG2 under TL/10 illumination healed tumor wounds and suppressed tumor growth more effectively than ApoG2 treatment alone. These results indicate that the ApoG2-induced CNE-2 cell death is partly ROS-dependent. ApoG2 may be used with photodynamic therapy (PDT) to treat NPC. PMID:21192843

  9. Determining the kinetics and concentrations of singlet molecular oxygen on natural snow

    NASA Astrophysics Data System (ADS)

    Bower, J. P.; Anastasio, C.

    2008-12-01

    Singlet molecular oxygen (1O2*), the first electronically excited state of molecular oxygen, reacts rapidly with several classes of environmental pollutants such as furans, phenols, and polycyclic aromatic hydrocarbons (PAHs). Its formation requires the absorption of light by a chromophore (a.k.a. sensitizer), which subsequently transfers energy to ground state molecular oxygen. In prior work, we have shown that the rate of formation (Rf) and steady state concentration ([1O2*]) of 1O2* can be orders of magnitude higher in frozen ice relative to the same laboratory solution studied as a liquid. Here we discuss how we have modified our method to determine Rf and [1O2*] on natural snow, which required overcoming several difficulties: the total solute concentrations are low, the 1O2* sensitizing species are unknown, and other oxidants could be interfering with the measured loss of our chemical probe. The new method is similar to the one used previously, as both use furfuryl alcohol (FFA) as a probe for photoformed 1O2*. The total rate of FFA decay is the sum of its direct photolysis and the rate of all its reactions with other species. Introducing a sink for other oxidants and taking the difference between this measured decay rate and the rate of direct photolysis yields the rate of decay due specifically 1O2*. As a second validation, experiments were also conducted in D2O. In liquid solution, water is the dominant sink for 1O2* where physical quenching controls the lifetime, and thus the steady state concentration, of 1O2*. D2O has a rate constant for quenching of 1O2* much lower than for water. This difference in rate constants is then used to derive [1O2*] in a manner independent of other reactions that may occur. Results from these experiments allowed us to measure Rf and [1O2*] in snow from polar regions and from a mid-latitude site in the Sierra Nevada mountains of California. In addition to describing the technique and its results, we will also give a

  10. Solvent-dependent singlet oxygen lifetimes: temperature effects implicate tunneling and charge-transfer interactions.

    PubMed

    Bregnhøj, Mikkel; Westberg, Michael; Jensen, Frank; Ogilby, Peter R

    2016-08-17

    The effect of solvent on the lifetime of singlet oxygen, O2(a(1)Δg), particularly the pronounced H/D solvent isotope effect, has drawn the attention of chemists for almost 50 years. The currently accepted model for this phenomenon is built on a foundation in which the electronic excitation energy of O2(a(1)Δg) is transferred to vibrational modes in a solvent molecule, with oxygen returning to its ground electronic state, O2(X(3)Σg(-)). This model of electronic-to-vibrational (e-to-v) energy transfer specifically focusses on the solvent as a "sink" for the excitation energy of O2(a(1)Δg). On the basis of temperature-dependent changes in the solvent-mediated O2(a(1)Δg) lifetime, we demonstrate that this energy-sink-based model has limitations and needs to be re-formulated. We now show that the effect of solvent on the O2(a(1)Δg) lifetime is more reasonably interpreted by considering an activation barrier that reflects the extent to which a solvent molecule perturbs the forbidden O2(a(1)Δg) → O2(X(3)Σg(-)) transition. For a given solvent molecule, this barrier reflects contributions from (a) the oxygen-solvent charge transfer state that mediates nonradiative coupling between the O2(a(1)Δg) and O2(X(3)Σg(-)) states, and (b) vibrations of specific bonds in the solvent molecule. The latter establishes connectivity to the desirable features of the energy-sink-based model. Moreover, temperature-dependent H/D solvent isotope effects imply that tunneling through this barrier plays a role in the mechanism for O2(a(1)Δg) deactivation, even at room temperature. Although we focus on a long-standing problem involving O2(a(1)Δg), our results and interpretation touch fundamental issues of interest to chemists at large. PMID:27484979

  11. Rational design of an efficient, genetically encodable, protein-encased singlet oxygen photosensitizer.

    PubMed

    Westberg, Michael; Holmegaard, Lotte; Pimenta, Frederico M; Etzerodt, Michael; Ogilby, Peter R

    2015-02-01

    Singlet oxygen, O(2)(a(1)Δ(g)), plays a key role in many processes of cell signaling. Limitations in mechanistic studies of such processes are generally associated with the difficulty of controlling the amount and location of O(2)(a(1)Δ(g)) production in or on a cell. As such, there is great need for a system that (a) selectively produces O(2)(a(1)Δ(g)) in appreciable and accurately quantifiable yields and (b) can be localized in a specific place at the suborganelle level. A genetically encodable, protein-encased photosensitizer is one way to achieve this goal. Through a systematic and rational approach involving mutations to a LOV2 protein that binds the chromophore flavin mononucleotide (FMN), we have developed a promising photosensitizer that overcomes many of the problems that affect related systems currently in use. Specifically, by decreasing the extent of hydrogen bonding between FMN and a specific amino acid residue in the local protein environment, we decrease the susceptibility of FMN to undesired photoinitiated electron-transfer reactions that kinetically compete with O(2)(a(1)Δ(g)) production. As a consequence, our protein-encased FMN system produces O(2)(a(1)Δ(g)) with the uniquely large quantum efficiency of 0.25 ± 0.03. We have also quantified other key photophysical parameters that characterize this sensitizer system, including unprecedented H(2)O/D(2)O solvent isotope effects on the O(2)(a(1)Δ(g)) formation kinetics and yields. As such, our results facilitate future systematic developments in this field. PMID:25575190

  12. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation.

    PubMed

    Carmody, Melanie; Crisp, Peter A; d'Alessandro, Stefano; Ganguly, Diep; Gordon, Matthew; Havaux, Michel; Albrecht-Borth, Verónica; Pogson, Barry J

    2016-07-01

    Distinct ROS signaling pathways initiated by singlet oxygen ((1)O2) or superoxide and hydrogen peroxide have been attributed to either cell death or acclimation, respectively. Recent studies have revealed that more complex antagonistic and synergistic relationships exist within and between these pathways. As specific chloroplastic ROS signals are difficult to study, rapid systemic signaling experiments using localized high light (HL) stress or ROS treatments were used in this study to uncouple signals required for direct HL and ROS perception and distal systemic acquired acclimation (SAA). A qPCR approach was chosen to determine local perception and distal signal reception. Analysis of a thylakoidal ascorbate peroxidase mutant (tapx), the (1)O2-retrograde signaling double mutant (ex1/ex2), and an apoplastic signaling double mutant (rbohD/F) revealed that tAPX and EXECUTER 1 are required for both HL and systemic acclimation stress perception. Apoplastic membrane-localized RBOHs were required for systemic spread of the signal but not for local signal induction in directly stressed tissues. Endogenous ROS treatments revealed a very strong systemic response induced by a localized 1 h induction of (1)O2 using the conditional flu mutant. A qPCR time course of (1)O2 induced systemic marker genes in directly and indirectly connected leaves revealed a direct vascular connection component of both immediate and longer term SAA signaling responses. These results reveal the importance of an EXECUTER-dependent (1)O2 retrograde signal for both local and long distance RBOH-dependent acclimation signaling that is distinct from other HL signaling pathways, and that direct vascular connections have a role in spatial-temporal SAA induction. PMID:27288360

  13. Singlet oxygen phosphorescence lifetime imaging based on a fluorescence lifetime imaging microscope.

    PubMed

    Tian, Wenming; Deng, Liezheng; Jin, Shengye; Yang, Heping; Cui, Rongrong; Zhang, Qing; Shi, Wenbo; Zhang, Chunlei; Yuan, Xiaolin; Sha, Guohe

    2015-04-01

    The feasibility of singlet oxygen phosphorescence (SOP) lifetime imaging microscope was studied on a modified fluorescence lifetime imaging microscope (FLIM). SOP results from the infrared radiative transition of O2(a(1)Δg → X(3)Σg(-)) and O2(a(1)Δg) was produced in a C60 powder sample via photosensitization process. To capture the very weak SOP signal, a dichroic mirror was placed between the objective and tube lens of the FLIM and used to divide the luminescence returning from the sample into two beams: the reflected SOP beam and the transmitted photoluminescence of C60 (C60-PL) beam. The C60-PL beam entered the scanner of the FLIM and followed the normal optical path of the FLIM, while the SOP steered clear of the scanner and directly entered a finely designed SOP detection channel. Confocal C60-PL images and nonconfocal SOP images were then simultaneously obtained by using laser-scanning mode. Experimental results show that (1) under laser-scanning mode, the obstacle to confocal SOP imaging is the infrared-incompatible scanner, which can be solved by using an infrared-compatible scanner. Confocal SOP imaging is also expected to be realized under stage-scanning mode when the laser beam is parked and meanwhile a pinhole is added into the SOP detection channel. (2) A great challenge to SOP imaging is its extraordinarily long imaging time, and selecting only a few interesting points from fluorescence images to measure their SOP time-dependent traces may be a correct compromise. PMID:25781060

  14. Quenching of singlet molecular oxygen ( sup 1. Delta. sub g O sub 2 ) in silica gel/cyclohexane heterogeneous systems. A direct time-resolved study

    SciTech Connect

    Iu, Kaikong; Thomas, J.K. )

    1990-04-25

    Direct time-resolved studies of singlet molecular oxygen ({sup 1}{Delta}{sub g}O{sub 2}) phosphorescence ({sup 3}{Sigma}{sub g} {sup {minus}}O{sub 2} ({nu} = 0) {l arrow} {sup 1}{Delta}{sub g}O{sub 2} ({nu} = 0); 1,270 nm) in heterogeneous silica gel/cyclohexane systems are presented. Singlet molecular oxygen ({sup 1}{Delta}{sub g}O{sub 2}) is created through a photosensitization process on silica gel surfaces. The experimental results show that the lifetimes of singlet molecular oxygen ({sup 1}{Delta}{sub g}O{sub 2}) in both porous and compressed fumed silica/gel cyclohexane systems are significantly less than that in liquid cyclohexane. The shortened singlet molecular oxygen lifetime is due mainly to quenching by adsorbed water and silanol groups on the silica gel surface. In addition, monoamines coadsorbed on the silica gel surface do not quench singlet molecular oxygen ({sup 1}{Delta}{sub g}O{sub 2}); however, diamines such as DABCO or piperazine maintain their quenching activity, but the quenching kinetics are not of the Stern-Volmer type. The singlet molecular oxygen lifetime increases on loading the porous silica gel/cyclohexane system with monoamine. Coadsorption of piperazine increases quenching of {sup 1}{Delta}{sub g} O{sub 2} by DABCO.

  15. Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. [Salmonella typhimurium; Escherichia coli; Sarcina lutea; Staphylococcus aureus; Streptococcus lactis; Streptococcus faecalis

    SciTech Connect

    Dahl, T.A.; Midden, W.R. ); Hartman, P.E. )

    1989-04-01

    Gram-negative and gram-positive bacteria were found to display different sensitivities to pure singlet oxygen generated outside of cells. Killing curves for Salmonella typhimurium and Escherichia coli strains were indicative of multihit killing, whereas curves for Sarcina lutea, Staphylococcus aureus, Streptococcus lactis, and Streptococcus faecalis exhibited single-hit kinetics. The S. typhimurium deep rough strain TA1975, which lacks nearly all of the cell wall lipopolysaccharide coat and manifests concomitant enhancement of penetration by some exogenous substances, responded to singlet oxygen with initially faster inactivation than did the S. typhimurium wild-type strain, although the maximum rates of killing appeared to be quite similar. The structure of the cell wall thus plays an important role in susceptibility to singlet oxygen. The outer membrane-lipopolysaccharide portion of the gram-negative cell wall initially protects the bacteria from extracellular singlet oxygen, although it may also serve as a source for secondary reaction products which accentuate the rates of cell killing. S. typhimurium and E. coli strains lacking the cellular antioxidant, glutathione, showed no difference from strains containing glutathione in response to the toxic effects of singlet oxygen. Strains of Sarcina lutea and Staphylococcus aureus that contained carotenoids, however, were far more resistant to singlet oxygen lethality than were both carotenoidless mutants of the same species and other gram-positive species lacking high levels of protective carotenoids.

  16. The antithrombotic factor singlet oxygen/light (1O2/h nu).

    PubMed

    Stief, T W; Fareed, J

    2000-01-01

    Activated phagocytes (especially polymorphonuclear granulocytes (PMNs)) by respiratory oxidative/photonic burst (activation of NADPH-oxidase and myeloper-oxidase) generate large amounts of oxidants of the hypochlorite-/chloramine-type, which are physiologic sources for singlet oxygen (1O2), a nonradical-excited (photon (h nu) emitting) oxygen species [Weiss SJ, NEJM 1989;320:365-376]. In vitro experiments show that 1O2 (1) inhibits coagulation by inactivation of thrombocytes, fibrinogen, factor V, factor VIII, and factor X and (2) activates fibrinolysis by inactivation of the main fibrinolysis inhibitors plasminogen activator inhibitor (PAI)-1 and alpha-2-antiplasmin, and by activation of single-chain urokinase by plasmin and oxidized fibrin. Additionally, this work suggests that 1O2/h nu acts antithrombotically, inducing selective thrombolysis in vivo (i.e., thrombolysis induced by 0.1 to 0.5 mmol/l chloramine within 30 to 60 minutes without changes of the plasmatic hemostasis system). 1O2 might activate flowing to (on the endothelium) rolling PMN, increasing their chance to get in contact with fibrin/platelet aggregates deposited on the endothelial layer. Via 1O2 generation, the thrombus-activated phagocytes might call for (acute, physiologic) inflammation/fibrinolysis amplification, resulting in the "moving front" of PMN, which infiltrates and destroys the thrombus. 1O2 seems to (partially) participate in the reactivity of nitric oxide, another prooxidative agent. The inhibition of physiologic amounts of 1O2 by blood cholesterol might be involved in the pathogenesis of atherothrombosis. Consequently, it is suggested that activated PMNs modulate hemostasis, shifting it into an antithrombotic state; this cellular part of fibrinolysis seems to be of greater physiologic importance than the plasmatic one. Impaired PMN function (e.g., as occurring in patients with antineutrophil cytoplasmic antibodies or under cytostatic treatments) often results in serious thrombotic

  17. Contrasting Effects of Singlet Oxygen and Hydrogen Peroxide on Bacterial Community Composition in a Humic Lake

    PubMed Central

    Glaeser, Stefanie P.; Berghoff, Bork A.; Stratmann, Verena; Grossart, Hans-Peter; Glaeser, Jens

    2014-01-01

    Light excitation of humic matter generates reactive oxygen species (ROS) in surface waters of aquatic ecosystems. Abundant ROS generated in humic matter rich lakes include singlet oxygen (1O2) and hydrogen peroxide (H2O2). Because these ROS differ in half-life time and toxicity, we compared their effects on microbial activity (14C-Leucine incorporation) and bacterial community composition (BCC) in surface waters of humic Lake Grosse Fuchskuhle (North-eastern Germany). For this purpose, experiments with water samples collected from the lake were conducted in July 2006, September 2008 and August 2009. Artificially increased 1O2 and H2O2 concentrations inhibited microbial activity in water samples to a similar extent, but the effect of the respective ROS on BCC varied strongly. BCC analysis by 16S rRNA gene clone libraries and RT-PCR DGGE revealed ROS specific changes in relative abundance and activity of major bacterial groups and composition of dominating phylotypes. These changes were consistent in the three experiments performed in different years. The relative abundance of Polynucleobacter necessarius, Limnohabitans-related phylotypes (Betaproteobacteria), and Novosphingobium acidiphilum (Alphaproteobacteria) increased or was not affected by photo-sensitized 1O2 exposure, but decreased after H2O2 exposure. The opposite pattern was found for Actinobacteria of the freshwater AcI-B cluster which were highly sensitive to 1O2 but not to H2O2 exposure. Furthermore, group-specific RT-PCR DGGE analysis revealed that particle-attached P. necessarius and Limnohabitans-related phylotypes exhibit higher resistance to 1O2 exposure compared to free-living populations. These results imply that 1O2 acts as a factor in niche separation of closely affiliated Polynucleobacter and Limnohabitans-related phylotypes. Consequently, oxidative stress caused by photochemical ROS generation should be regarded as an environmental variable determining abundance, activity, and phylotype

  18. Copper(II) as an efficient scavenger of singlet molecular oxygen.

    PubMed

    Joshi, P C

    1998-08-01

    Reactive oxygen species (ROS) are considered to play an important role in tissue injury that damages DNA, proteins, carbohydrates and lipids. Increased production of ROS and/or decreased efficiency of antioxidant defense system has been shown to contribute to a number of degenerative processes including cancer and AIDS. Among the various forms of ROS, singlet oxygen (1O2), which is generated predominantly in photosensitization reactions, is of particular physiologic significance because of its selectively long life in aqueous solution, its ability to cross the cell membrane barrier and high reactivity towards biomolecules. In the present study, the 1O2 scavenging potential of Cu(II) has been evaluated by (i) generating 1O2 by photosensitization of rose bengal (RB), (ii) establishing 1O2 quenching with recognized 1O2 scavengers like sodium azide, DABCO and (iii) examining the effect of Cu(II) in scavenging of 1O2. The results revealed that Cu(II) inhibited the rate of 1O2 production by 88%, 68%, 40%, 21% and 10% at a concentration of 10(-2) M, 5 x 10(-3) M, 10(-3) M; 5 x 10(-4) M, and 10(-4) M, respectively. Under similar experimental condition, sodium azide or DABCO at 10(-2) M inhibited the 1O2 production by 86% and 88%, respectively. Other 1O2 generating photosensitizer like hematoporphyrin, riboflavin and methylene blue also produced identical results with Cu(II) but Fe(II), Fe(III), Zn(II) or As(III) did not produce any quenching of 1O2. Presence of a copper binding peptide (Gly-Gly-His) in the reaction system reduced the 1O2 scavenging capacity of Cu(II) by 52-66% depending upon the UV dose. The 1O2 scavenging property of metal ion appears to have an advantage to reduce the oxidative damage of photodynamic reactions in order to prevent ROS-induced toxicity reactions. PMID:9854900

  19. 2D gasdynamic simulation of the kinetics of an oxygen-iodine laser with electric-discharge generation of singlet oxygen

    SciTech Connect

    Chukalovsky, A. A.; Rakhimova, T. V.; Klopovsky, K. S.; Mankelevich, Yu. A.; Proshina, O. V.

    2011-03-15

    The kinetic processes occurring in an electric-discharge oxygen-iodine laser are analyzed with the help of a 2D (r, z) gasdynamic model taking into account transport of excited oxygen, singlet oxygen, and radicals from the electric discharge and their mixing with the iodine-containing gas. The main processes affecting the dynamics of the gas temperature and gain are revealed. The simulation results obtained using the 2D model agree well with the experimental data on the mixture gain. A subsonic oxygen-iodine laser in which singlet oxygen is generated by a 350 W transverse RF discharge excited in an oxygen flow at a pressure P = 10 Torr and the discharge tube wall is covered with mercury oxide is simulated. The simulated mixing system is optimized in terms of the flow rate and the degree of preliminary dissociation of the iodine flow. The optimal regime of continuous operation of a subsonic electric-discharge oxygen-iodine laser is found.

  20. Investigation of the generation of singlet oxygen in ensembles of photoexcited silicon nanocrystals by electron paramagnetic resonance spectroscopy

    SciTech Connect

    Konstantinova, E. A. Demin, V. A.; Timoshenko, V. Yu.

    2008-09-15

    The generation of singlet oxygen is investigated and its concentration upon photoexcitation of silicon nanocrystals in porous silicon layers is determined using electron paramagnetic resonance spectroscopy. The relaxation times of spin centers, i.e., silicon dangling bonds, in vacuum and in an oxygen atmosphere in the dark and under illumination of the samples are measured for the first time. It is revealed that the spin-lattice relaxation in porous silicon is retarded as compared to that in a single-crystal substrate. From analyzing experimental data, a microscopic model is proposed for interaction of oxygen molecules in the triplet state and spin centers at the surface of silicon nanocrystals. The results obtained have demonstrated that porous silicon holds promise for the use as a photosensitizer of molecular oxygen in biomedical applications.

  1. On the influence of singlet oxygen molecules on the speed of flame propagation in methane-air mixture

    SciTech Connect

    Starik, A.M.; Kozlov, V.E.; Titova, N.S.

    2010-02-15

    The effect of the presence of singlet oxygen molecules O{sub 2}(a{sup 1}{delta}{sub g}) in a CH{sub 4}-air mixture on the speed of laminar flame propagation is considered. The known experimental data on the laminar flame speed and ignition delay are used to validate the developed kinetic model involving electronically excited oxygen molecules O{sub 2}(a{sup 1}{delta}{sub g}) and O{sub 2}(b{sup 1}{sigma}{sub g}{sup +}). Numerical simulation shows that the presence of 10% O{sub 2}(a{sup 1}{delta}{sub g}) in molecular oxygen enables to increase significantly (by a factor of 1.7) the speed of flame propagation in a fuel-lean ({phi}=0.45) methane-air mixture. The main reason for such an acceleration of flame propagation is the intensification of chain reactions due to addition of singlet delta oxygen molecules. For a fuel-rich mixture ({phi}=1.9), the growth in the flame speed is significantly smaller and attains a factor of 1.4. (author)

  2. The photophysics of monomeric bacteriochlorophylls c and d and their derivatives: properties of the triplet state and singlet oxygen photogeneration and quenching

    NASA Technical Reports Server (NTRS)

    Krasnovsky, A. A. Jr; Cheng, P.; Blankenship, R. E.; Moore, T. A.; Gust, D.

    1993-01-01

    Measurements of pigment triplet-triplet absorption, pigment phosphorescence and photosensitized singlet oxygen luminescence were carried out on solutions containing monomeric bacteriochlorophylls (Bchl) c and d, isolated from green photosynthetic bacteria, and their magnesium-free and farnesyl-free analogs. The energies of the pigment triplet states fell in the range 1.29-1.34 eV. The triplet lifetimes in aerobic solutions were 200-250 ns; they increased to 280 +/- 70 microseconds after nitrogen purging in liquid solutions and to 0.7-2.1 ms in a solid matrix at ambient or liquid nitrogen temperatures. Rate constants for quenching of the pigment triplet state by oxygen were (2.0-2.5) x 10(9) M-1 s-1, which is close to 1/9 of the rate constant for diffusion-controlled reactions. This quenching was accompanied by singlet oxygen formation. The quantum yields for the triplet state formation and singlet oxygen production were 55-75% in air-saturated solutions. Singlet oxygen quenching by ground-state pigment molecules was observed. Quenching was the most efficient for magnesium-containing pigments, kq = (0.31-1.2) x 10(9) M-1 s-1. It is caused mainly by a physical process of singlet oxygen (1O2) deactivation. Thus, Bchl c and d and their derivatives, as well as chlorophyll and Bchl a, combine a high efficiency of singlet oxygen production with the ability to protect photochemical and photobiological systems against damage by singlet oxygen.

  3. Selective vibronic excitation of singlet oxygen--furan reactions in cryogenic matrices

    SciTech Connect

    Frei, H.; Pimentel, G.C.

    1983-10-01

    The reactions of 2,5-dimethylfuran (DMF), 2-methylfuran (MF), and furan with molecular oxygen to form endoperoxides have been induced in Ar and O/sub 2/ matrices at 12 K with selective vibronic excitation of O/sub 2/ using near infrared light. Reaction was induced through excitation of the /sup 1/..delta../sub g/(v' = 0, v' = 1) and /sup 1/..sigma../sub g//sup +/(v' = 0, v' = 1) O/sub 2/ states near 8000 and 13 100 cm/sup -1/, respectively, as well as by the (/sup 1/..delta../sub g/, /sup 1/..delta../sub g/) simultaneous transitions of (O/sub 2/)/sub 2/ at 15 900 and 17 300 cm/sup -1/. The /sup 1/..delta../sub g/ reverse arrow /sup 3/..sigma../sub g//sup -/ vibronic progression in solid O/sub 2/ was recorded by FTIR spectroscopy, whereas members of the /sup 1/..sigma../sub g//sup +/ reverse arrow /sup 3/..sigma../sub g//sup -/ and (/sup 1/..delta../sub g/, /sup 1/..delta../sub g/) reverse arrow (/sup 3/..sigma../sub g//sup -/, /sup 3/..sigma../sub g//sup -/) progressions in Ar matrices were located by ''reaction excitation'' spectroscopy. The DMF+O/sub 2/ reaction is a single photon process, apparently with unit quantum yield, for all vibronic levels excited. For MF+O/sub 2/(/sup 1/..delta../sub g/, v' = 0) and furan +O/sub 2/(/sup 1/..delta../sub g/, v' = 0), quantum yields were high, approx.0.6 and 0.4, respectively, but the reservoirs of reactive pairs were 10--20 times smaller than for DMF+O/sub 2/. The furan+O/sub 2/ reaction rate showed an /sup 18/O/sub 2/ isotope effect 0.78 +- 0.15, which can be interpreted in terms of quantum mechanical tunneling on the lowest singlet hypersurface.

  4. Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of β-carotene.

    PubMed

    Telfer, Alison

    2014-07-01

    In this review, I outline the indirect evidence for the formation of singlet oxygen ((1)O(2)) obtained from experiments with the isolated PSII reaction center complex. I also review the methods we used to measure singlet oxygen directly, including luminescence at 1,270 nm, both steady state and time resolved. Other methods we used were histidine-catalyzed molecular oxygen uptake (enabling (1)O(2) yield measurements), and dye bleaching and difference absorption spectroscopy to identify where quenchers of (1)O(2) can access this toxic species. We also demonstrated the protective behavior of carotenoids bound within Chl-protein complexes which bring about a substantial amount of (1)O(2) quenching within the reaction center complex. Finally, I describe how these techniques have been used and expanded in research on photoinhibition and on the role of (1)O(2) as a signaling molecule in instigating cellular responses to various stress factors. I also discuss the current views on the role of (1)O(2) as a signaling molecule and the distance it might be able to travel within cells. PMID:24566536

  5. Alarm points for fixed oxygen monitors

    SciTech Connect

    Miller, G.C.

    1987-05-01

    Oxygen concentration monitors were installed in a vault where numerous pipes carried inert cryogens and gases to the Mirror Fusion Test Facility (MFTF-B) experimental vessel at Lawrence Livermore National Laboratory (LLNL). The problems associated with oxygen-monitoring systems and the reasons why such monitors were installed were reviewed. As a result of this review, the MFTF-B monitors were set to sound an evacuation alarm when the oxygen concentration fell below 18%. We chose the 18% alarm criterion to minimize false alarms and to allow time for personnel to escape in an oxygen-deficient environment.

  6. A feasibility study of singlet oxygen explicit dosmietry (SOED) of PDT by intercomparison with a singlet oxygen luminescence dosimetry (SOLD) system

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Penjweini, Rozhin; Gemmell, Nathan R.; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald; Hadfield, Robert H.; Wilson, Brian C.; Zhu, Timothy C.

    2016-03-01

    An explicit dosimetry model has been developed to calculate the apparent reacted 1O2 concentration ([1O2]rx) in an in-vivo model. In the model, a macroscopic quantity, g, is introduced to account for oxygen perfusion to the medium during PDT. In this study, the SOED model is extended for PDT treatment in phantom conditions where vasculature is not present; the oxygen perfusion is achieved through the air-phantom interface instead. The solution of the SOED model is obtained by solving the coupled photochemical rate equations incorporating oxygen perfusion through the air-liquid interface. Experiments were performed for two photosensitizers (PS), Rose Bengal (RB) and Photofrin, in solution, using SOED and SOLD measurements to determine both the instantaneous [1O2] as well as cumulative [1O2]rx concentrations, where [1O2=(1/τ▵)•∫[1O2]dt. The PS concentrations varied between 10 and 100 mM for RB and ~200 mM for Photofrin. The resulting magnitudes of [1O2] were compared between SOED and SOLD.

  7. A feasibility study of singlet oxygen explicit dosmietry (SOED) of PDT by intercomparison with a singlet oxygen luminescence dosimetry (SOLD) system

    PubMed Central

    Kim, Michele M.; Penjweini, Rozhin; Gemmell, Nathan R.; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald; Hadfield, Robert H.; Wilson, Brian C.; Zhu, Timothy C.

    2016-01-01

    An explicit dosimetry model has been developed to calculate the apparent reacted 1O2 concentration ([1O2]rx) in an in-vivo model. In the model, a macroscopic quantity, g, is introduced to account for oxygen perfusion to the medium during PDT. In this study, the SOED model is extended for PDT treatment in phantom conditions where vasculature is not present; the oxygen perfusion is achieved through the air-phantom interface instead. The solution of the SOED model is obtained by solving the coupled photochemical rate equations incorporating oxygen perfusion through the air-liquid interface. Experiments were performed for two photosensitizers (PS), Rose Bengal (RB) and Photofrin (PH), in solution, using SOED and SOLD measurements to determine both the instantaneous [1O2] as well as cumulative [1O2]rx concentrations, where [1O2]rx = (1/τΔ) · ∫[1O2]dt. The PS concentrations varied between 10 and 100 mM for RB and ~200 mM for Photofrin. The resulting magnitudes of [1O2] were compared between SOED and SOLD. PMID:27064489

  8. Photodynamic inactivation of gramicidin channels in bilayer lipid membranes: protective efficacy of singlet oxygen quenchers depends on photosensitizer location.

    PubMed

    Rokitskaya, T I; Firsov, A M; Kotova, E A; Antonenko, Y N

    2015-06-01

    The impact of double bonds in fatty acyl tails of unsaturated lipids on the photodynamic inactivation of ion channels formed by the pentadecapeptide gramicidin A in a planar bilayer lipid membrane was studied. The presence of unsaturated acyl tails protected gramicidin A against photodynamic inactivation, with efficacy depending on the depth of a photosensitizer in the membrane. The protective effect of double bonds was maximal with membrane-embedded chlorin e6-monoethylenediamine monoamide dimethyl ester, and minimal - in the case of water-soluble tri-sulfonated aluminum phthalocyanine (AlPcS3) known to reside at the membrane surface. By contrast, the protective effect of the hydrophilic singlet oxygen scavenger ascorbate was maximal for AlPcS3 and minimal for amide of chlorin e6 dimethyl ester. The depth of photosensitizer position in the lipid bilayer was estimated from the quenching of photosensitizer fluorescence by iodide. Thus, the protective effect of a singlet oxygen scavenger against photodynamic inactivation of the membrane-inserted peptide is enhanced upon location of the photosensitizer and scavenger molecules in close vicinity to each other. PMID:26531019

  9. Development of singlet oxygen absorption capacity (SOAC) assay method. 2. Measurements of the SOAC values for carotenoids and food extracts.

    PubMed

    Aizawa, Koichi; Iwasaki, Yuko; Ouchi, Aya; Inakuma, Takahiro; Nagaoka, Shin-ichi; Terao, Junji; Mukai, Kazuo

    2011-04-27

    Recently a new assay method that can quantify the singlet oxygen absorption capacity (SOAC) of antioxidants was proposed. In the present work, kinetic study of the reaction of singlet oxygen ((1)O(2)) with carotenoids and vegetable extracts has been performed in ethanol/chloroform/D(2)O (50:50:1, v/v/v) solution at 35 °C. Measurements of the second-order rate constants (k(Q)(S)) and the SOAC values were performed for eight kinds of carotenoids and three kinds of vegetable extracts (red paprika, carrot, and tomato). Furthermore, measurements of the concentrations of the carotenoids included in vegetable extracts were performed, using a HPLC technique. From the results, it has been clarified that the total (1)O(2)-quenching activity (that is, the SOAC value) for vegetable extracts may be explained as the sum of the product {Σ k(Q)(Car-i)(S) [Car-i](i)} of the rate constant (k(Q)(Car-i)(S)) and the concentration ([Car (i)]) of carotenoids included in vegetable extracts. PMID:21395214

  10. Development of singlet oxygen absorption capacity (SOAC) assay method. 4. Measurements of the SOAC values for vegetable and fruit extracts.

    PubMed

    Iwasaki, Yuko; Takahashi, Shingo; Aizawa, Koichi; Mukai, Kazuo

    2015-01-01

    Measurements of the second-order rate constants and the singlet oxygen absorption capacity (SOAC) values for the reaction of singlet oxygen ((1)O2) with 23 kinds of food extracts were performed in ethanol/chloroform/D2O (50:50:1, v/v/v) solution at 35 °C. It has been clarified that the SOAC method is useful to evaluate the (1)O2-quenching activity (i.e. the SOAC value) of food extracts having two orders of magnitude different rate constants from 3.18 × 10(4) L g(-1) s(-1) for tomato to 1.55 × 10(2) for green melon. Furthermore, comparison of the observed rate constants for the above food extracts with the calculated ones based on the concentrations of seven kinds of carotenoids included in the food extracts and the rate constants reported for each carotenoids was performed, in order to ascertain the validity of the SOAC assay method developed and to clarify the ratio of the contribution of principal carotenoids to the SOAC value. PMID:25359604