Science.gov

Sample records for monkey visual behavior

  1. Monkey visual behavior falls into the uncanny valley.

    PubMed

    Steckenfinger, Shawn A; Ghazanfar, Asif A

    2009-10-27

    Very realistic human-looking robots or computer avatars tend to elicit negative feelings in human observers. This phenomenon is known as the "uncanny valley" response. It is hypothesized that this uncanny feeling is because the realistic synthetic characters elicit the concept of "human," but fail to live up to it. That is, this failure generates feelings of unease due to character traits falling outside the expected spectrum of everyday social experience. These unsettling emotions are thought to have an evolutionary origin, but tests of this hypothesis have not been forthcoming. To bridge this gap, we presented monkeys with unrealistic and realistic synthetic monkey faces, as well as real monkey faces, and measured whether they preferred looking at one type versus the others (using looking time as a measure of preference). To our surprise, monkey visual behavior fell into the uncanny valley: They looked longer at real faces and unrealistic synthetic faces than at realistic synthetic faces. PMID:19822765

  2. Mirror-induced self-directed behaviors in rhesus monkeys after visual-somatosensory training.

    PubMed

    Chang, Liangtang; Fang, Qin; Zhang, Shikun; Poo, Mu-ming; Gong, Neng

    2015-01-19

    Mirror self-recognition is a hallmark of higher intelligence in humans. Most children recognize themselves in the mirror by 2 years of age. In contrast to human and some great apes, monkeys have consistently failed the standard mark test for mirror self-recognition in all previous studies. Here, we show that rhesus monkeys could acquire mirror-induced self-directed behaviors resembling mirror self-recognition following training with visual-somatosensory association. Monkeys were trained on a monkey chair in front of a mirror to touch a light spot on their faces produced by a laser light that elicited an irritant sensation. After 2-5 weeks of training, monkeys had learned to touch a face area marked by a non-irritant light spot or odorless dye in front of a mirror and by a virtual face mark on the mirroring video image on a video screen. Furthermore, in the home cage, five out of seven trained monkeys showed typical mirror-induced self-directed behaviors, such as touching the mark on the face or ear and then looking at and/or smelling their fingers, as well as spontaneously using the mirror to explore normally unseen body parts. Four control monkeys of a similar age that went through mirror habituation but had no training of visual-somatosensory association did not pass any mark tests and did not exhibit mirror-induced self-directed behaviors. These results shed light on the origin of mirror self-recognition and suggest a new approach to studying its neural mechanism. PMID:25578908

  3. Macaque monkeys experience visual crowding

    PubMed Central

    Crowder, Erin A.; Olson, Carl R.

    2015-01-01

    In peripheral vision, objects that are easily discriminated on their own become less discriminable in the presence of surrounding clutter. This phenomenon is known as crowding.The neural mechanisms underlying crowding are not well understood. Better insight might come from single-neuron recording in nonhuman primates, provided they exhibit crowding; however, previous demonstrations of crowding have been confined to humans. In the present study, we set out to determine whether crowding occurs in rhesus macaque monkeys. We found that animals trained to identify a target letter among flankers displayed three hallmarks of crowding as established in humans. First, at a given eccentricity, increasing the spacing between the target and the flankers improved recognition accuracy. Second, the critical spacing, defined as the minimal spacing at which target discrimination was reliable, was proportional to eccentricity. Third, the critical spacing was largely unaffected by object size. We conclude that monkeys, like humans, experience crowding. These findings open the door to studies of crowding at the neuronal level in the monkey visual system. PMID:26067532

  4. Microwaves modify thermoregulatory behavior in squirrel monkey

    SciTech Connect

    Adair, E.R.; Adams, B.W.

    1980-01-01

    Squirrel monkeys (Saimiri sciureus) trained to regulate environmental temperature (Ta) behaviorally were exposed in the far field of a horn antenna to ten-minute periods of 2,450 MHz CW microwaves. Incident power density ranged from 1 to 22 mW/cm2. The corresponding specific absorption rate (SAR), derived from temperature increments in saline-filled styrofoam models, ranged from 0.15 to 3.25 W/kg. Controls included exposure to infrared radiation equivalent incident energy and no radiation exposure. Normal thermo-regulatory behavior produces tight control over environmental and body temperatures; most monkeys select a Ta of 34-36 degrees C. Ten-minute exposures to 2,450 MHz CW microwaves at an incident power density of 6-8 mW/cm2 stimulated all animals to select a lower Ta. This threshold energy represents a whole-body SAR of 1.1 W/kg, about 20% of the resting metabolic rate of the monkey. Thermoregulatory behavior was highly efficient, and skin and rectal temperatures remained stable, even at 22 mW/cm2 where the preferred Ta was lowered by as much as 4 degrees C. No comparable reduction in selected Ta below control levels occurred during exposure to infrared radiation of equal incident power density.

  5. Enhanced visual exploration for real objects compared to pictures during free viewing in the macaque monkey.

    PubMed

    Mustafar, Faiz; De Luna, Paolo; Rainer, Gregor

    2015-09-01

    The question of whether animals perceive pictures as representation of real objects remains still unsolved. Object-picture perception is generally studied requiring animals to learn some information about real objects and transfer that knowledge to the pictorial domain, or vice versa. Here, we tackle the issue of object-picture perception from a different perspective, examining visual exploration behavior of two naïve macaque monkeys during free-viewing of objects and pictures of these objects on a computer monitor. Our main finding is that monkeys looked spontaneously longer at object rather than picture stimuli. However, we find striking similarities in temporal dynamics of gaze allocation within the time course of a single stimulus presentation, as well as in habituation rates within and across behavioral sessions. We also highlight differences between stimulus types in terms of spatial gaze patterns and looking strategies. Stimulus features that attract overt attention during spontaneous visual exploration are thus better predicted for object stimuli by a visual saliency model. Moreover, we provide evidence for a consistency in stimulus preference for objects and pictures, suggesting a correspondence of in how macaques perceive objects and their pictorial stimuli. Taken together, our data suggest that macaque monkeys exhibit evidence for correspondence between objects and pictures. This validates spontaneous visual exploration as a method for studying object-picture correspondence without a need for extensive behavioral training. We discuss the potential advantages of using object over picture stimuli in the context of studies on visual cognition. PMID:26003135

  6. Lesions in posterior parietal area 5 in monkeys result in rapid behavioral and cortical plasticity

    PubMed Central

    Padberg, Jeffrey; Recanzone, Gregg; Engle, James; Cooke, Dylan; Goldring, Adam; Krubitzer, Leah

    2012-01-01

    We examined the effects of focal lesions of posterior parietal area 5 in macaque monkeys on bimanual behavior performed with and without visual guidance. The animals were trained on two reaching tasks and one tactile texture discrimination task. Task 1 simply involved reaching toward and grasping a reward from one of five well positions. Task 2 required the monkey to use both hands simultaneously to obtain a reward. The tactile texture discrimination task required the monkey to signal the roughness of a passively delivered texture using its jaw. Following lesions to area 5, the monkeys showed a decrease in hand use for tasks 1 and 2 and an inability to perform task 2 in specific locations in visual space. These deficits recovered within several days. No deficits were observed in the tactile texture discrimination task, or in an analgesic control monkey. Electrophysiological recordings made just prior to the lesion, immediately following the lesion, and 2 months following the lesion demonstrated that cortical areas just rostral to the lesioned area 5, areas 1 and 2, were topographically reorganized and that receptive fields for neurons in these fields changed location on the body surface. These cortical map changes are correlative and may, in part, contribute to the rapid behavioral recovery observed. The mechanism for such rapid changes may be the unmasking of existing divergent and convergent thalamocortical connections that are part of the normal cortical circuitry. PMID:20881111

  7. Play Initiating Behaviors and Responses in Red Colobus Monkeys

    ERIC Educational Resources Information Center

    Worch, Eric A.

    2012-01-01

    Red colobus monkeys are playful primates, making them an important species in which to study animal play. The author examines play behaviors and responses in the species for its play initiation events, age differences in initiating frequency and initiating behavior, and the types of social play that result from specific initiating behaviors. Out…

  8. Social Isolation Rearing: Species Differences in Behavior of Macaque Monkeys

    ERIC Educational Resources Information Center

    Sackett, Gene P.; And Others

    1976-01-01

    Social and nonsocial behaviors of infant rhesus (macaca mulatta) and pigtail (M. nemestrina) monkeys reared in total social isolation were compared with those of socialized controls. Results question the generality of rhesus total isolate behavior as a model for some human problems. (Author/SB)

  9. VISUAL THRESHOLDS FOR SHEARING MOTION IN MONKEY AND MAN

    PubMed Central

    Golomb, B.; Andersen, R. A.; Nakayama, K.; MacLeod, D. I. A.; Wong, A.

    2016-01-01

    A reaction-time task was used to determine the visual motion thresholds in humans and in macaque monkeys for sinusoidally modulated shearing motion of a random dot display, It was found that humans and macaques were very similar in their spatial frequency sensitivity profiles for shearing motion. These profiles were of a U-shape for all human and monkey subjects tested. Temporal frequency, varied over a wide range, did not influence the shape of the spatial frequency sensitivity curve, but only the threshold amplitudes. The above results held both for single and multiple temporal cycles of shearing motion. Previous reports for the human, using these same shearing motion stimuli, indicated no increase in threshold at the lower spatial frequencies. The reason for this discrepancy is that thresholds in the previous studies were not determined at a low enough spatial frequency to see clearly this increase in thresholds. Because of the striking similarity of the data for man and macaque, it is suggested that similar neural mechanisms underly the shearing motion sensitivity of the two species. PMID:4024479

  10. Two processes support visual recognition memory in rhesus monkeys

    PubMed Central

    Guderian, Sebastian; Brigham, Danielle; Mishkin, Mortimer

    2011-01-01

    A large body of evidence in humans suggests that recognition memory can be supported by both recollection and familiarity. Recollection-based recognition is characterized by the retrieval of contextual information about the episode in which an item was previously encountered, whereas familiarity-based recognition is characterized instead by knowledge only that the item had been encountered previously in the absence of any context. To date, it is unknown whether monkeys rely on similar mnemonic processes to perform recognition memory tasks. Here, we present evidence from the analysis of receiver operating characteristics, suggesting that visual recognition memory in rhesus monkeys also can be supported by two separate processes and that these processes have features considered to be characteristic of recollection and familiarity. Thus, the present study provides converging evidence across species for a dual process model of recognition memory and opens up the possibility of studying the neural mechanisms of recognition memory in nonhuman primates on tasks that are highly similar to the ones used in humans. PMID:22084079

  11. Two processes support visual recognition memory in rhesus monkeys.

    PubMed

    Guderian, Sebastian; Brigham, Danielle; Mishkin, Mortimer

    2011-11-29

    A large body of evidence in humans suggests that recognition memory can be supported by both recollection and familiarity. Recollection-based recognition is characterized by the retrieval of contextual information about the episode in which an item was previously encountered, whereas familiarity-based recognition is characterized instead by knowledge only that the item had been encountered previously in the absence of any context. To date, it is unknown whether monkeys rely on similar mnemonic processes to perform recognition memory tasks. Here, we present evidence from the analysis of receiver operating characteristics, suggesting that visual recognition memory in rhesus monkeys also can be supported by two separate processes and that these processes have features considered to be characteristic of recollection and familiarity. Thus, the present study provides converging evidence across species for a dual process model of recognition memory and opens up the possibility of studying the neural mechanisms of recognition memory in nonhuman primates on tasks that are highly similar to the ones used in humans. PMID:22084079

  12. Crossmodal Association of Visual and Haptic Material Properties of Objects in the Monkey Ventral Visual Cortex.

    PubMed

    Goda, Naokazu; Yokoi, Isao; Tachibana, Atsumichi; Minamimoto, Takafumi; Komatsu, Hidehiko

    2016-04-01

    Just by looking at an object, we can recognize its non-visual properties, such as hardness. The visual recognition of non-visual object properties is generally accurate [1], and influences actions toward the object [2]. Recent studies suggest that, in the primate brain, this may involve the ventral visual cortex, which represents objects in a way that reflects not only visual but also non-visual object properties, such as haptic roughness, hardness, and weight [3-7]. This new insight raises a fundamental question: how does the visual cortex come to represent non-visual properties--knowledge that cannot be acquired directly through vision? Here we addressed this unresolved question using fMRI in macaque monkeys. Specifically, we explored whether and how simple visuo-haptic experience--just seeing and touching objects made of various materials--can shape representational content in the visual cortex. We measured brain activity evoked by viewing images of objects before and after the monkeys acquired the visuo-haptic experience and decoded the representational space from the activity patterns [8]. We show that simple long-term visuo-haptic experience greatly impacts representation in the posterior inferior temporal cortex, the higher ventral visual cortex. After the experience, but not before, the activity pattern in this region well reflected the haptic material properties of the experienced objects. Our results suggest that neural representation of non-visual object properties in the visual cortex emerges through long-term crossmodal exposure to objects. This highlights the importance of unsupervised learning of crossmodal associations through everyday experience [9-12] for shaping representation in the visual cortex. PMID:26996504

  13. The same type of visual working memory limitations in humans and monkeys.

    PubMed

    Devkar, Deepna T; Wright, Anthony A; Ma, Wei Ji

    2015-01-01

    Rhesus monkeys are widely used as an animal model for human memory, including visual working memory (VWM). It is, however, unknown whether the same principles govern VWM in humans and rhesus monkeys. Here, we tested both species in nearly identical change-localization paradigms and formally compared the same set of models of VWM limitations. These models include the classic item-limit model and recent noise-based (resource) models, as well as hybrid models that combine a noise-based representation with an item limit. By varying the magnitude of the change in addition to the typical set size manipulation, we were able to show large differences in goodness of fit among the five models tested. In spite of quantitative performance differences between the species, we find that the variable-precision model--a noise-based model--best describes the behavior of both species. Adding an item limit to this model does not help to account for the data. Our results suggest evolutionary continuity of VWM across primates and help establish the rhesus monkey as a model system for studying the neural substrates of multiple-item VWM. PMID:26720277

  14. The marmoset monkey as a model for visual neuroscience

    PubMed Central

    Mitchell, Jude F.; Leopold, David A.

    2015-01-01

    The common marmoset (Callithrix jacchus) has been valuable as a primate model in biomedical research. Interest in this species has grown recently, in part due to the successful demonstration of transgenic marmosets. Here we examine the prospects of the marmoset model for visual neuroscience research, adopting a comparative framework to place the marmoset within a broader evolutionary context. The marmoset’s small brain bears most of the organizational features of other primates, and its smooth surface offers practical advantages over the macaque for areal mapping, laminar electrode penetration, and two-photon and optical imaging. Behaviorally, marmosets are more limited at performing regimented psychophysical tasks, but do readily accept the head restraint that is necessary for accurate eye tracking and neurophysiology, and can perform simple discriminations. Their natural gaze behavior closely resembles that of other primates, with a tendency to focus on objects of social interest including faces. Their immaturity at birth and routine twinning also makes them ideal for the study of postnatal visual development. These experimental factors, together with the theoretical advantages inherent in comparing anatomy, physiology, and behavior across related species, make the marmoset an excellent model for visual neuroscience. PMID:25683292

  15. Statistical Learning of Serial Visual Transitions by Neurons in Monkey Inferotemporal Cortex

    PubMed Central

    Ramachandran, Suchitra; Olson, Carl R.

    2014-01-01

    If monkeys repeatedly, over the course of weeks, view displays in which two images appear in fixed sequence, then neurons of inferotemporal cortex (ITC) come to exhibit prediction suppression. The response to the trailing image is weaker if it follows the leading image with which it was paired during training than if it follows some other leading image. Prediction suppression is a plausible neural mechanism for statistical learning of visual transitions such as has been demonstrated in behavioral studies of human infants and adults. However, in the human studies, subjects are exposed to continuous sequences in which the same image can be both predicted and predicting and statistical dependency can exist between nonadjacent items. The aim of the present study was to investigate whether prediction suppression in ITC develops under such circumstances. To resolve this issue, we exposed monkeys repeatedly to triplets of images presented in fixed order. The results indicate that prediction suppression can be induced by training not only with pairs of images but also with longer sequences. PMID:25009266

  16. Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys

    PubMed Central

    Turchi, Janita; Saunders, Richard C.; Mishkin, Mortimer

    2005-01-01

    Excitotoxic lesion studies have confirmed that the rhinal cortex is essential for visual recognition ability in monkeys. To evaluate the mnemonic role of cholinergic inputs to this cortical region, we compared the visual recognition performance of monkeys given rhinal cortex infusions of a selective cholinergic immunotoxin, ME20.4-SAP, with the performance of monkeys given control infusions into this same tissue. The immunotoxin, which leads to selective cholinergic deafferentation of the infused cortex, yielded recognition deficits of the same magnitude as those produced by excitotoxic lesions of this region, providing the most direct demonstration to date that cholinergic activation of the rhinal cortex is essential for storing the representations of new visual stimuli and thereby enabling their later recognition. PMID:15684066

  17. Genetic modulation of cognitive flexibility and socioemotional behavior in rhesus monkeys

    PubMed Central

    Izquierdo, Alicia; Newman, Timothy K.; Higley, J. Dee; Murray, Elisabeth A.

    2007-01-01

    In human and nonhuman primates, structural variants of the gene encoding the serotonin transporter [5-hydroxytryptamine transporter (5-HTT)] affect the transcription and functional efficacy of 5-HTT. Prior work has shown that structural variants differentially affect function of the amygdala and ventromedial prefrontal cortex (VMPFC), regions important for the regulation and expression of emotion. However, relatively little is known about the impact of 5-HTT allelic variants on cognition. To address this question, we tested rhesus monkeys carrying orthologous structural variants of 5-HTT on a battery of tasks that assess cognitive flexibility, reward processing, and emotion. Here we show that rhesus monkeys carrying two copies of the short allele (SS) of the rhesus 5-HTT gene-linked polymorphic region (rh5-HTTLPR) show significantly reduced cognitive flexibility as measured by two tasks in the battery: object discrimination reversal learning and instrumental extinction. Monkeys with the SS genotype also displayed alterations in socioemotional behavior. Genotype variation was not related to visual perceptual abilities, valuation of food rewards, or the ability to express a wide range of defensive responses. Although emotional alterations associated with 5-HTT variation have been described as the primary phenotype, the present study reports differences in at least one type of cognitive flexibility, which has not been described previously. Because behaviors modulated by the 5-HTTLPR are a subset of those dependent on the VMPFC, analysis of structural and functional correlates of gene variation in this region may inform the nature of the genetic modulation of cognition. PMID:17715054

  18. A neural correlate of working memory in the monkey primary visual cortex.

    PubMed

    Supèr, H; Spekreijse, H; Lamme, V A

    2001-07-01

    The brain frequently needs to store information for short periods. In vision, this means that the perceptual correlate of a stimulus has to be maintained temporally once the stimulus has been removed from the visual scene. However, it is not known how the visual system transfers sensory information into a memory component. Here, we identify a neural correlate of working memory in the monkey primary visual cortex (V1). We propose that this component may link sensory activity with memory activity. PMID:11441187

  19. Rethinking human visual attention: Spatial cueing effects and optimality of decisions by honeybees, monkeys and humans

    PubMed Central

    Eckstein, Miguel P.; Mack, Stephen C.; Liston, Dorion B.; Bogush, Lisa; Menzel, Randolf; Krauzlis, Richard J.

    2014-01-01

    Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can

  20. Rethinking human visual attention: spatial cueing effects and optimality of decisions by honeybees, monkeys and humans.

    PubMed

    Eckstein, Miguel P; Mack, Stephen C; Liston, Dorion B; Bogush, Lisa; Menzel, Randolf; Krauzlis, Richard J

    2013-06-01

    Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target and assessing the effect of the validity of the cue on perceptual performance and its neural correlates. Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged within a block of trials, for the monkey and human studies we randomized the contrast of the signal to simulate more real world conditions in which the organism is uncertain about the strength of the signal. A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the cue validity to maximize overall performance is used as a benchmark of comparison against the three animals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cueing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus strength is low. A more biologically plausible model that includes an additive bias to the sensory response from the cued location, although not mathematically equivalent to the optimal observer for the case stimulus strength uncertainty, can

  1. Visual evoked potential correlates of laser flashblindness in rhesus monkeys. I. Argon laser flashes

    SciTech Connect

    Previc, F.H.; Blankenstein, M.F.; Garcia, P.V.; Allen, R.G.

    1985-05-01

    The visual evoked potential (VEP) in three rhesus monkeys was used to assess the transient loss of visual function resulting from single 100-msec argon laser flashes (514.5 nm), at energy levels well below the Maximum Permissible Exposure (MPE). VEPs were elicited by high-contrast squarewave test gratings phase reversed at a frequency of 6 Hz, and were recorded using bipolar electrodes implanted in the foveal projection region of area 17. The parameters which were investigated included: (a) flash size (focused vs. expanded); (b) position of the electrode's receptive field relative to the position of the flash (0, 1.5, 3.0 and 4.5/sup 0/ separation); (c) flash exposure level (50, 5 and 0.5 % of the MPE); (d) peak wavelength of the test grating (454, 540 and 630 nm); and (e) spatial frequency of the test grating (1.0, 4.0, 6.0 and 12.0 c/deg). The results of the flash size experiment revealed that the expanded flash (retinal diameter approx. 700 micrometers) eliminated or severely attenuated the VEP for a longer duration than did the focused flash, and also resulted in more gradual recovery function. In general, the findings suggest that the focused and expanded Argon laser flashes produce a VEP suppression whose time-course and other characteristics correlate highly with those associated with the flashblindness observed behaviorally in humans following exposure to intense noncoherent flashes.

  2. Methylphenidate does not enhance visual working memory but benefits motivation in macaque monkeys.

    PubMed

    Oemisch, Mariann; Johnston, Kevin; Paré, Martin

    2016-10-01

    Working memory is a limited-capacity cognitive process that retains relevant information temporarily to guide thoughts and behavior. A large body of work has suggested that catecholamines exert a major modulatory influence on cognition, but there is only equivocal evidence of a direct influence on working memory ability, which would be reflected in a dependence on working memory load. Here we tested the contribution of catecholamines to working memory by administering a wide range of acute oral doses of the dopamine and norepinephrine reuptake inhibitor methylphenidate (MPH, 0.1-9 mg/kg) to three female macaque monkeys (Macaca mulatta), whose working memory ability was measured from their performance in a visual sequential comparison task. This task allows the systematic manipulation of working memory load, and we therefore tested the specific hypothesis that MPH modulates performance in a manner that depends on both dose and memory load. We found no evidence of a dose- or memory load-dependent effect of MPH on performance. In contrast, significant effects on measures of motivation were observed. These findings suggest that an acute increase in catecholamines does not seem to affect the retention of visual information per se. As such, these results help delimit the effects of MPH on cognition. PMID:27329555

  3. Chromatic detection from cone photoreceptors to V1 neurons to behavior in rhesus monkeys

    PubMed Central

    Hass, Charles A.; Angueyra, Juan M.; Lindbloom-Brown, Zachary; Rieke, Fred; Horwitz, Gregory D.

    2015-01-01

    Chromatic sensitivity cannot exceed limits set by noise in the cone photoreceptors. To determine how close neurophysiological and psychophysical chromatic sensitivity come to these limits, we developed a parameter-free model of stimulus encoding in the cone outer segments, and we compared the sensitivity of the model to the psychophysical sensitivity of monkeys performing a detection task and to the sensitivity of individual V1 neurons. Modeled cones had a temporal impulse response and a noise power spectrum that were derived from in vitro recordings of macaque cones, and V1 recordings were made during performance of the detection task. The sensitivity of the simulated cone mosaic, the V1 neurons, and the monkeys were tightly yoked for low-spatiotemporal-frequency isoluminant modulations, indicating high-fidelity signal transmission for this class of stimuli. Under the conditions of our experiments and the assumptions for our model, the signal-to-noise ratio for these stimuli dropped by a factor of ∼3 between the cones and perception. Populations of weakly correlated V1 neurons narrowly exceeded the monkeys' chromatic sensitivity but fell well short of the cones' chromatic sensitivity, suggesting that most of the behavior-limiting noise lies between the cone outer segments and the output of V1. The sensitivity gap between the cones and behavior for achromatic stimuli was larger than for chromatic stimuli, indicating greater postreceptoral noise. The cone mosaic model provides a means to compare visual sensitivity across disparate stimuli and to identify sources of noise that limit visual sensitivity. PMID:26523737

  4. Chromatic detection from cone photoreceptors to V1 neurons to behavior in rhesus monkeys.

    PubMed

    Hass, Charles A; Angueyra, Juan M; Lindbloom-Brown, Zachary; Rieke, Fred; Horwitz, Gregory D

    2015-01-01

    Chromatic sensitivity cannot exceed limits set by noise in the cone photoreceptors. To determine how close neurophysiological and psychophysical chromatic sensitivity come to these limits, we developed a parameter-free model of stimulus encoding in the cone outer segments, and we compared the sensitivity of the model to the psychophysical sensitivity of monkeys performing a detection task and to the sensitivity of individual V1 neurons. Modeled cones had a temporal impulse response and a noise power spectrum that were derived from in vitro recordings of macaque cones, and V1 recordings were made during performance of the detection task. The sensitivity of the simulated cone mosaic, the V1 neurons, and the monkeys were tightly yoked for low-spatiotemporal-frequency isoluminant modulations, indicating high-fidelity signal transmission for this class of stimuli. Under the conditions of our experiments and the assumptions for our model, the signal-to-noise ratio for these stimuli dropped by a factor of ∼3 between the cones and perception. Populations of weakly correlated V1 neurons narrowly exceeded the monkeys' chromatic sensitivity but fell well short of the cones' chromatic sensitivity, suggesting that most of the behavior-limiting noise lies between the cone outer segments and the output of V1. The sensitivity gap between the cones and behavior for achromatic stimuli was larger than for chromatic stimuli, indicating greater postreceptoral noise. The cone mosaic model provides a means to compare visual sensitivity across disparate stimuli and to identify sources of noise that limit visual sensitivity. PMID:26523737

  5. A simpler primate brain: the visual system of the marmoset monkey

    PubMed Central

    Solomon, Samuel G.; Rosa, Marcello G. P.

    2014-01-01

    Humans are diurnal primates with high visual acuity at the center of gaze. Although primates share many similarities in the organization of their visual centers with other mammals, and even other species of vertebrates, their visual pathways also show unique features, particularly with respect to the organization of the cerebral cortex. Therefore, in order to understand some aspects of human visual function, we need to study non-human primate brains. Which species is the most appropriate model? Macaque monkeys, the most widely used non-human primates, are not an optimal choice in many practical respects. For example, much of the macaque cerebral cortex is buried within sulci, and is therefore inaccessible to many imaging techniques, and the postnatal development and lifespan of macaques are prohibitively long for many studies of brain maturation, plasticity, and aging. In these and several other respects the marmoset, a small New World monkey, represents a more appropriate choice. Here we review the visual pathways of the marmoset, highlighting recent work that brings these advantages into focus, and identify where additional work needs to be done to link marmoset brain organization to that of macaques and humans. We will argue that the marmoset monkey provides a good subject for studies of a complex visual system, which will likely allow an important bridge linking experiments in animal models to humans. PMID:25152716

  6. Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey.

    PubMed

    Freeman, W J; van Dijk, B W

    1987-10-01

    A preliminary assay was made of the existence of time-space coherence patterns of fast EEG activity in the visual cortex of a Rhesus monkey. The primary intent of the present study was to evaluate the similarities and differences in relation to the olfactory bulb, where such coherences have been described and have been demonstrated to be associated with behaviour. Segments 1.5 s in duration were recorded simultaneously without averaging from 16 to 35 subdural electrodes fixed over the left occipital lobe in an array 3.6 cm X 2.8 cm. Each segment was taken during the delivery of a visual conditioned stimulus (CS) and the performance of a conditioned response (CR) by a well-trained Rhesus monkey. The EEGs appeared chaotic with irregular bursts lasting 75-200 ms, resembling those in the olfactory EEG but with lower peak frequencies. Fourier spectra showed broad distributions of power resembling '1/f noise' with multiple peaks in the range of 20-40 Hz. Time intervals were selected where coherent activity seemed to be present at a number of electrodes. A dominant component waveform that was common to all channels was extracted by principal components analysis (PCA) of each segment. The distribution of the power of this component across the electrodes (the factor loadings) was used to describe the spatial pattern of the coherent cortical activity. Statistical analyses suggested that different patterns could be associated to the CS and the CR, as has been found in the olfactory system. These patterns remained stable over a 6 week recording interval. The patterns can be better discriminated, when the factor loadings of each channel are normalized to zero mean and unit variance, to discard a basic pattern of power distribution, which may reflect anatomical and electrode positioning factors that are related to behavioral information processing by the cortex. The wide spatial distribution of the common patterns found suggests that EEG patterns that manifest differing states

  7. Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas

    PubMed Central

    Bosman, Conrado A.; Schoffelen, Jan-Mathijs; Brunet, Nicolas; Oostenveld, Robert; Bastos, Andre M.; Womelsdorf, Thilo; Rubehn, Birthe; Stieglitz, Thomas; De Weerd, Peter; Fries, Pascal

    2012-01-01

    SUMMARY A central motif in neuronal networks is convergence, linking several input neurons to one target neuron. In visual cortex, convergence renders target neurons responsive to complex stimuli. Yet, convergence typically sends multiple stimuli to a target, and the behaviorally relevant stimulus must be selected. We used two stimuli, activating separate electrocorticographic V1 sites, and both activating an electrocorticographic V4 site equally strongly. When one of those stimuli activated one V1 site, it gamma-synchronized (60–80 Hz) to V4. When the two stimuli activated two V1 sites, primarily the relevant one gamma-synchronized to V4. Frequency bands of gamma activities showed substantial overlap containing the band of inter-areal coherence. The relevant V1 site had its gamma peak frequency 2–3 Hz higher than the irrelevant V1 site, and 4–6 Hz higher than V4. Gamma-mediated inter-areal influences were predominantly directed from V1 to V4. We propose that selective synchronization renders relevant input effective, thereby modulating effective connectivity. PMID:22958827

  8. Selection of behavioral tasks and development of software for evaluation of Rhesus Monkey behavior during spaceflight

    NASA Technical Reports Server (NTRS)

    Rumbaugh, Duane M.; Washburn, David A.; Richardson, W. K.

    1995-01-01

    The results of several experiments were disseminated during this semiannual period. This publication and each of these presented papers represent investigations of the continuity in psychological processes between monkeys and humans. Thus, each serves to support the animal model of behavior and performance research.

  9. Selection of behavioral tasks and development of software for evaluation of Rhesus Monkey behavior during spaceflight

    NASA Technical Reports Server (NTRS)

    Rumbaugh, Duane M.; Washburn, David A.; Richardson, W. K.

    1996-01-01

    The results of several experiments were disseminated during this semiannual period. These publications and presented papers represent investigations of the continuity in psychological processes between monkeys and humans. Thus, each serves to support the animal model of behavior and performance research.

  10. Visual categorization of surface qualities of materials by capuchin monkeys and humans.

    PubMed

    Hiramatsu, Chihiro; Fujita, Kazuo

    2015-10-01

    Visually identifying and categorizing the material composition of objects before actually interacting with them is an important skill for operating smoothly and safely in the world. This ability is assumed to have been shaped by evolution; therefore, non-human animals should share similar categorization abilities. Little is known, however, about how non-human animals do this. We tested whether tufted capuchin monkeys (Cebus apella) were able to visually categorize images that represented nine different materials (metal, ceramic, glass, stone, bark, wood, leather, fabric, and fur), and we compared their performance with that of humans. Capuchins showed excellent categorization abilities for images of fur, which is a familiar material to captive monkeys. Humans showed a tendency to confuse material categories that resembled each other visually and/or semantically. Correlation analyses on reaction time showed that both species made correct choices rapidly in selecting glossy categories like metal and ceramic compared with matte categories like fabric and stone, which contain minute patterns. Overall, our results suggest that monkeys share similar perceptual tendencies with humans in visual categorization of material images to some extent and the potential to categorize materials frequently encountered in their daily lives by visual observation. PMID:26325391

  11. Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum

    PubMed Central

    Fernandez-Ruiz, Juan; Wang, Jin; Aigner, Thomas G.; Mishkin, Mortimer

    2001-01-01

    Visual habit formation in monkeys, assessed by concurrent visual discrimination learning with 24-h intertrial intervals (ITI), was found earlier to be impaired by removal of the inferior temporal visual area (TE) but not by removal of either the medial temporal lobe or inferior prefrontal convexity, two of TE's major projection targets. To assess the role in this form of learning of another pair of structures to which TE projects, namely the rostral portion of the tail of the caudate nucleus and the overlying ventrocaudal putamen, we injected a neurotoxin into this neostriatal region of several monkeys and tested them on the 24-h ITI task as well as on a test of visual recognition memory. Compared with unoperated monkeys, the experimental animals were unaffected on the recognition test but showed an impairment on the 24-h ITI task that was highly correlated with the extent of their neostriatal damage. The findings suggest that TE and its projection areas in the ventrocaudal neostriatum form part of a circuit that selectively mediates visual habit formation. PMID:11274442

  12. Universal Behaviors as Candidate Traditions in Wild Spider Monkeys

    PubMed Central

    Santorelli, Claire J.; Schaffner, Colleen M.; Aureli, Filippo

    2011-01-01

    Candidate traditions were documented across three communities of wild spider monkeys (Ateles geoffroyi) using an a priori approach to identify behavioral variants and a statistical approach to examine differences in their proportional use. This methodology differs from previous studies of animal traditions, which used retrospective data and relied on the ‘exclusion method’ to identify candidate traditions. Our a priori approach increased the likelihood that behavior variants with equivalent functions were considered and our statistical approach enabled the proportional use of ‘universal’ behaviors, i.e., used across all communities, to be examined for the first time in any animal species as candidate traditions. Among universal behaviors we found 14 ‘community preferred’ variants. After considering the extent to which community preferred variants were due to ecological and, to a lesser degree, genetic differences, we concluded that at least six were likely maintained through social learning. Our findings have two main implications: (i) tradition repertoires could be larger than assumed from previous studies using the exclusion method; (ii) the relative use of universal behavior variants can reinforce community membership. PMID:21949715

  13. Hypothalamic-Pituitary-Adrenal Axis Physiology and Cognitive Control of Behavior in Stress Inoculated Monkeys

    ERIC Educational Resources Information Center

    Parker, Karen J.; Buckmaster, Christine L.; Lindley, Steven E.; Schatzberg, Alan F.; Lyons, David M.

    2012-01-01

    Monkeys exposed to stress inoculation protocols early in life subsequently exhibit diminished neurobiological responses to moderate psychological stressors and enhanced cognitive control of behavior during juvenile development compared to non-inoculated monkeys. The present experiments extended these findings and revealed that stress inoculated…

  14. Dynamic Response-by-Response Models of Matching Behavior in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Lau, Brian; Glimcher, Paul W.

    2005-01-01

    We studied the choice behavior of 2 monkeys in a discrete-trial task with reinforcement contingencies similar to those Herrnstein (1961) used when he described the matching law. In each session, the monkeys experienced blocks of discrete trials at different relative-reinforcer frequencies or magnitudes with unsignalled transitions between the…

  15. Influence of monkey dorsolateral prefrontal and posterior parietal activity on behavioral choice during attention tasks.

    PubMed

    Katsuki, Fumi; Saito, Mizuki; Constantinidis, Christos

    2014-09-01

    The dorsolateral prefrontal and the posterior parietal cortex have both been implicated in the guidance of visual attention. Traditionally, posterior parietal cortex has been thought to guide visual bottom-up attention and prefrontal cortex to bias attention through top-down information. More recent studies suggest a parallel time course of activation of the two areas in bottom-up attention tasks, suggesting a common involvement, though these results do not necessarily imply identical roles. To address the specific roles of the two areas, we examined the influence of neuronal activity recorded from the prefrontal and parietal cortex of monkeys as they performed attention tasks based on choice probability and on correlation between reaction time and neuronal activity. The results revealed that posterior parietal but not dorsolateral prefrontal activity correlated with behavioral choice during the fixation period, prior to the appearance of the stimulus, resembling a bias factor. This preferential influence of posterior parietal activity on behavior was transient, so that dorsolateral prefrontal activity predicted choice after the appearance of the stimulus. Additionally, reaction time was better predicted by posterior parietal activity. These findings confirm the involvement of both dorsolateral prefrontal and posterior parietal cortex in the bottom-up guidance of visual attention, but indicate different roles of the two areas in the guidance of attention and a dynamic time course of their effects, influencing behavior at different stages of the task. PMID:24964224

  16. Vestibular-visual conflict in pitch and yaw planes in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Igarashi, Makoto; Kulecz, Walter B.; Kobayashi, Kazutoyo; Isago, Hidemitsu

    1986-01-01

    Direction conflicting vestibular and visual (optokinetic) stimuli either in the pitch or yaw plane were given to squirrel monkey subjects. The conflict sickness symptom score in the pitch plane was significantly higher than that in the yaw plane for the initial exposure session (p less than 0.01). A significant score difference was also encountered when the exposure sessions were repeated (p less than 0.05).

  17. Persistence of the dark-background-contingent gaze upshift during visual fixations of rhesus monkeys.

    PubMed

    Spivak, Oleg; Thier, Peter; Barash, Shabtai

    2014-10-15

    During visual fixations, the eyes are directed so that the image of the target (object of interest) falls on the fovea. An exception to this rule was described in macaque monkeys (though not in humans): dark background induces a gaze shift upwards, sometimes large enough to shift the target's image off the fovea. In this article we address an aspect not previously rigorously studied, the time course of the upshift. The time course is critical for determining whether the upshift is indeed an attribute of visual fixation or, alternatively, of saccades that precede the fixation. These alternatives lead to contrasting predictions regarding the time course of the upshift (durable if the upshift is an attribute of fixation, transient if caused by saccades). We studied visual fixations with dark and bright background in three monkeys. We confined ourselves to a single upshift-inducing session in each monkey so as not to study changes in the upshift caused by training. Already at their first sessions, all monkeys showed clear upshift. During the first 0.5 s after the eye reached the vicinity of the target, the upshift was on average larger, but also more variable, than later in the trial; this initial high value 1) strongly depended on target location and was maximal at locations high on the screen, and 2) appears to reflect mostly the intervals between the primary and correction saccades. Subsequently, the upshift stabilized and remained constant, well above zero, throughout the 2-s fixation interval. Thus there is a persistent background-contingent upshift genuinely of visual fixation. PMID:25057145

  18. Locomotor Anatomy and Behavior of Patas Monkeys (Erythrocebus patas) with Comparison to Vervet Monkeys (Cercopithecus aethiops)

    PubMed Central

    Zihlman, Adrienne L.; Underwood, Carol E.

    2013-01-01

    Patas monkeys (Erythrocebus patas) living in African savanna woodlands and grassland habitats have a locomotor system that allows them to run fast, presumably to avoid predators. Long fore- and hindlimbs, long foot bones, short toes, and a digitigrade foot posture were proposed as anatomical correlates with speed. In addition to skeletal proportions, soft tissue and whole body proportions are important components of the locomotor system. To further distinguish patas anatomy from other Old World monkeys, a comparative study based on dissection of skin, muscle, and bone from complete individuals of patas and vervet monkeys (Cercopithecus aethiops) was undertaken. Analysis reveals that small adjustments in patas skeletal proportions, relative mass of limbs and tail, and specific muscle groups promote efficient sagittal limb motion. The ability to run fast is based on a locomotor system adapted for long distance walking. The patas' larger home range and longer daily range than those of vervets give them access to highly dispersed, nutritious foods, water, and sleeping trees. Furthermore, patas monkeys have physiological adaptations that enable them to tolerate and dissipate heat. These features all contribute to the distinct adaptation that is the patas monkeys' basis for survival in grassland and savanna woodland areas. PMID:24187623

  19. Behavioral measurement of laser flashblindness in rhesus monkeys

    SciTech Connect

    Rhodes, J.W.; Garcia, P.V.; Cosgrove, D.J.

    1989-01-01

    Flashblindness was measured in rhesus monkeys performing a visual detection task. Stimulus field subtense was 3.5 degrees, and mean luminance was 10 cd.m-2. Single-pulse laser exposures (doubled Nd:glass, 530-nm wavelength, 20-ns pulsewidth) were presented in Maxwellian-view and formed a 12.5 degrees diameter spot centered on the fovea. The independent variables were: test grating contrast (10% and maximum contrast); test grating spatial frequency (1, 4, 12 c.deg-1); and averaged laser exposure energy (1-94% retinal maximum permissible exposure). The dependent variable was flashblindness, operationally defined as the time between a laser exposure and the first response in a pair of consecutive correct responses (referred to as time to criterion). Time to criterion decreased as the contrast of the grating increased. The longest times to criterion were at a spatial frequency of 12 c.deg-1, next longest at 1 c.deg-1, and shortest at 4 c.deg-1. Both the mean and S.E.M. of times to criterion increased with the laser exposure energy.

  20. Mapping visual cortex in monkeys and humans using surface-based atlases

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  1. Stimulation of the nucleus accumbens as behavioral reward in awake behaving monkeys.

    PubMed

    Bichot, Narcisse P; Heard, Matthew T; Desimone, Robert

    2011-08-15

    It has been known that monkeys will repeatedly press a bar for electrical stimulation in several different brain structures. We explored the possibility of using electrical stimulation in one such structure, the nucleus accumbens, as a substitute for liquid reward in animals performing a complex task, namely visual search. The animals had full access to water in the cage at all times on days when stimulation was used to motivate them. Electrical stimulation was delivered bilaterally at mirror locations in and around the accumbens, and the animals' motivation to work for electrical stimulation was quantified by the number of trials they performed correctly per unit of time. Acute mapping revealed that stimulation over a large area successfully supported behavioral performance during the task. Performance improved with increasing currents until it reached an asymptotic, theoretically maximal level. Moreover, stimulation with chronically implanted electrodes showed that an animal's motivation to work for electrical stimulation was at least equivalent to, and often better than, when it worked for liquid reward while on water control. These results suggest that electrical stimulation in the accumbens is a viable method of reward in complex tasks. Because this method of reward does not necessitate control over water or food intake, it may offer an alternative to the traditional liquid or food rewards in monkeys, depending on the goals and requirements of the particular research project. PMID:21704383

  2. Peripheral correlates of serotonergically-influenced behaviors in vervet monkeys (Cercopithecus aethiops sabaeus).

    PubMed

    Raleigh, M J; Yuwiler, A; Brammer, G L; McGuire, M T; Geller, E; Flannery, J W

    1981-01-01

    The associations among twelve behaviors and three potential peripheral markers of central serotonergic activity were investigated in vervet monkeys (Cercopithecus aethiops sabaeus). The behaviors monitored included approach, heterogroom, rest, eat, avoid, be solitary, be vigilant, huddle, initiate aggress, receive aggress, and engage in sexual behavior. The biochemical parameters measured were whole blood serotonin, plasma free tryptophan, and plasma total tryptophan. Throughout the study period, intraindividual variability in both the behavioral and the biochemical measures was small, although there was substantial interindividual variability in both sets of measures. Free and total tryptophan correlated positively with approach, heterogroom, and eat, and inversely with avoid and be solitary. Whole blood serotonin correlated inversely with avoid and be solitary. These data are compatible with previously reported observations on the behavioral consequences of manipulating serotonergic systems in vervet monkeys and suggest that in normal, drug naive monkeys, free and total tryptophan are better correlates of the central serotonergic activity influencing behavior than is whole blood serotonin. PMID:6784141

  3. Visual transduction in cones of the monkey Macaca fascicularis.

    PubMed Central

    Schnapf, J L; Nunn, B J; Meister, M; Baylor, D A

    1990-01-01

    1. Visual transduction in macaque cones was studied by measuring the membrane current of single outer segments projecting from small pieces of retina. 2. The response to a brief flash of light was diphasic and resembled the output of a bandpass filter with a peak frequency near 5 Hz. After the initial reduction in dark current there was a rebound increase which resulted from an increase in the number of open light-sensitive channels. The response to a step of light consisted of a prominent initial peak followed by a steady phase of smaller amplitude. 3. Responses to dim light were linear and time-invariant, suggesting that responses to single photons were linearly additive. From the flash sensitivity and the effective collecting area the peak amplitude of the single photon response was estimated as about 30 fA. 4. With flashes of increasing strength the photocurrent amplitude usually saturated along a curve that was gentler than an exponential but steeper than a Michaelis relation. The response reached the half-saturating amplitude at roughly 650 photoisomerizations. 5. The response-intensity relation was flatter in the steady state than shortly after a light step was turned on, indicating that bright light desensitized the transduction with a delay. This desensitization was not due to a reduction in pigment content. In the steady state, a background of intensity I lowered the sensitivity to a weak incremental test flash by a factor 1/(1 + I/IO), where IO was about 2.6 x 10(4) photoisomerizations s-1, or about 3.3 log trolands for the red- and green-sensitive cones. 6. Bleaching exposures produced permanent reductions in flash sensitivity but had little effect on the kinetics or saturating amplitude of subsequent flash responses. The sensitivity reductions were consistent with the expected reductions in visual pigment content and gave photosensitivities of about 8 x 10(-9) microns2 (free solution value) for the red- and green-sensitive pigments. During a steady

  4. Effect of distracting faces on visual selective attention in the monkey.

    PubMed

    Landman, Rogier; Sharma, Jitendra; Sur, Mriganka; Desimone, Robert

    2014-12-16

    In primates, visual stimuli with social and emotional content tend to attract attention. Attention might be captured through rapid, automatic, subcortical processing or guided by slower, more voluntary cortical processing. Here we examined whether irrelevant faces with varied emotional expressions interfere with a covert attention task in macaque monkeys. In the task, the monkeys monitored a target grating in the periphery for a subtle color change while ignoring distracters that included faces appearing elsewhere on the screen. The onset time of distracter faces before the target change, as well as their spatial proximity to the target, was varied from trial to trial. The presence of faces, especially faces with emotional expressions interfered with the task, indicating a competition for attentional resources between the task and the face stimuli. However, this interference was significant only when faces were presented for greater than 200 ms. Emotional faces also affected saccade velocity and reduced pupillary reflex. Our results indicate that the attraction of attention by emotional faces in the monkey takes a considerable amount of processing time, possibly involving cortical-subcortical interactions. Intranasal application of the hormone oxytocin ameliorated the interfering effects of faces. Together these results provide evidence for slow modulation of attention by emotional distracters, which likely involves oxytocinergic brain circuits. PMID:25472846

  5. Characteristics of Spontaneous Square-Wave Jerks in the Healthy Macaque Monkey during Visual Fixation

    PubMed Central

    Costela, Francisco M.; Otero-Millan, Jorge; McCamy, Michael B.; Macknik, Stephen L.; Di Stasi, Leandro L.; Rieiro, Héctor; Leigh, John R.; Troncoso, Xoana G.; Najafian Jazi, Ali; Martinez-Conde, Susana

    2015-01-01

    Saccadic intrusions (SIs), predominantly horizontal saccades that interrupt accurate fixation, include square-wave jerks (SWJs; the most common type of SI), which consist of an initial saccade away from the fixation target followed, after a short delay, by a return saccade that brings the eye back onto target. SWJs are present in most human subjects, but are prominent by their increased frequency and size in certain parkinsonian disorders and in recessive, hereditary spinocerebellar ataxias. SWJs have been also documented in monkeys with tectal and cerebellar etiologies, but no studies to date have investigated the occurrence of SWJs in healthy nonhuman primates. Here we set out to determine the characteristics of SWJs in healthy rhesus macaques (Macaca mulatta) during attempted fixation of a small visual target. Our results indicate that SWJs are common in healthy nonhuman primates. We moreover found primate SWJs to share many characteristics with human SWJs, including the relationship between the size of a saccade and its likelihood to be part of a SWJ. One main discrepancy between monkey and human SWJs was that monkey SWJs tended to be more vertical than horizontal, whereas human SWJs have a strong horizontal preference. Yet, our combined data indicate that primate and human SWJs play a similar role in fixation correction, suggesting that they share a comparable coupling mechanism at the oculomotor generation level. These findings constrain the potential brain areas and mechanisms underlying the generation of fixational saccades in human and nonhuman primates. PMID:26067994

  6. Does Presentation Format Influence Visual Size Discrimination in Tufted Capuchin Monkeys (Sapajus spp.)?

    PubMed Central

    Truppa, Valentina; Carducci, Paola; Trapanese, Cinzia; Hanus, Daniel

    2015-01-01

    Most experimental paradigms to study visual cognition in humans and non-human species are based on discrimination tasks involving the choice between two or more visual stimuli. To this end, different types of stimuli and procedures for stimuli presentation are used, which highlights the necessity to compare data obtained with different methods. The present study assessed whether, and to what extent, capuchin monkeys’ ability to solve a size discrimination problem is influenced by the type of procedure used to present the problem. Capuchins’ ability to generalise knowledge across different tasks was also evaluated. We trained eight adult tufted capuchin monkeys to select the larger of two stimuli of the same shape and different sizes by using pairs of food items (Experiment 1), computer images (Experiment 1) and objects (Experiment 2). Our results indicated that monkeys achieved the learning criterion faster with food stimuli compared to both images and objects. They also required consistently fewer trials with objects than with images. Moreover, female capuchins had higher levels of acquisition accuracy with food stimuli than with images. Finally, capuchins did not immediately transfer the solution of the problem acquired in one task condition to the other conditions. Overall, these findings suggest that – even in relatively simple visual discrimination problems where a single perceptual dimension (i.e., size) has to be judged – learning speed strongly depends on the mode of presentation. PMID:25927363

  7. Effects of ethiofos (WR-2721) and radiation on monkey visual-discrimination performance

    SciTech Connect

    Bogo, V.; Franz, C.G.; Jacobs, A.J.; Weiss, J.F.; Young, R.W.

    1988-01-01

    WR-2721 (ethiofos) is a promising protector against radiation-induced lethality and may be useful in cancer radiotherapy (Davidson et al., 1980). However, ethiofos also produces nausea, vomiting, diarrhea, and hypotension, which implies severe behavioral consequences (Bogo et al., 1985). The effects of ethiofos on behavior in monkeys and its ability to mitigate early transient incapacitation (ETI) were studied. ETI is the abrupt cessation of performance (for at least 1/min) following rapidly delivered, high doses of radiation and usually occurs 5-10 min after irradiation and lasts for 1-5 min (Bogo, 1988a).

  8. Behavioral efficacy of diazepam against nerve agent exposure in rhesus monkeys. (Reannouncement with new availability information)

    SciTech Connect

    Castro, C.A.; Larsen, T.; Finger, A.V.; Solana, R.P.; McMaster, S.B.

    1991-12-31

    The possibility that nerve agents will be used on the battlefield is real. The traditional therapy against nerve agent exposure consists of pyridostigmine pretreatment and atropine-pralidoxime chloride therapy administered after nerve agent exposure. This therapy regimen is extremely effective in preventing mortality in laboratory animals exposed to multilethal concentrations of nerve agent, yet these animals often display convulsions, brain damage, and behavioral incapacitation. We report here that the addition of diazepam to the traditional therapy for nerve agent (soman) exposure not only decreases the incidence of convulsions, but also attenuates the cognitive impairments of rhesus monkeys trained on a Serial Probe Recognition (SPR) task. Monkeys which received diazepam treatment required only 6 days before their performance on the SPR task returned to presoman exposure levels, compared to nondiazepamtreated monkeys which required 15 days. Moreover, only 1 out of the 5 monkeys which received diazepain treatment suffered tonic-clonic convulsions; in contrast all 5 monkeys which did not receive diazepam treatment experienced severe convulsive episodes. These results suggest that diazepam would be an excellent adjunct to traditional nerve agent therapy to facilitate behavioral recovery from nerve agent intoxication that might be encountered by US military personnel on the battlefield or accidental organophosphate poisoning encountered in industrial or agricultural accidents. Serial probe recognition task, diazepam, nerve agents, soman convulsions, rhesus monkeys, cognition, organophosphate.

  9. Bursting thalamic responses in awake monkey contribute to visual detection and are modulated by corticofugal feedback

    PubMed Central

    Ortuño, Tania; Grieve, Kenneth L.; Cao, Ricardo; Cudeiro, Javier; Rivadulla, Casto

    2014-01-01

    The lateral geniculate nucleus is the gateway for visual information en route to the visual cortex. Neural activity is characterized by the existence of two firing modes: burst and tonic. Originally associated with sleep, bursts have now been postulated to be a part of the normal visual response, structured to increase the probability of cortical activation, able to act as a “wake-up” call to the cortex. We investigated a potential role for burst in the detection of novel stimuli by recording neuronal activity in the lateral geniculate nucleus (LGN) of behaving monkeys during a visual detection task. Our results show that bursts are often the neuron’s first response, and are more numerous in the response to attended target stimuli than to unattended distractor stimuli. Bursts are indicators of the task novelty, as repetition decreased bursting. Because the primary visual cortex is the major modulatory input to the LGN, we compared the results obtained in control conditions with those observed when cortical activity was reduced by TMS. This cortical deactivation reduced visual response related bursting by 90%. These results highlight a novel role for the thalamus, able to code higher order image attributes as important as novelty early in the thalamo-cortical conversation. PMID:24910601

  10. Dynamic Response-by-Response Models of Matching Behavior in Rhesus Monkeys

    PubMed Central

    Lau, Brian; Glimcher, Paul W

    2005-01-01

    We studied the choice behavior of 2 monkeys in a discrete-trial task with reinforcement contingencies similar to those Herrnstein (1961) used when he described the matching law. In each session, the monkeys experienced blocks of discrete trials at different relative-reinforcer frequencies or magnitudes with unsignalled transitions between the blocks. Steady-state data following adjustment to each transition were well characterized by the generalized matching law; response ratios undermatched reinforcer frequency ratios but matched reinforcer magnitude ratios. We modelled response-by-response behavior with linear models that used past reinforcers as well as past choices to predict the monkeys' choices on each trial. We found that more recently obtained reinforcers more strongly influenced choice behavior. Perhaps surprisingly, we also found that the monkeys' actions were influenced by the pattern of their own past choices. It was necessary to incorporate both past reinforcers and past choices in order to accurately capture steady-state behavior as well as the fluctuations during block transitions and the response-by-response patterns of behavior. Our results suggest that simple reinforcement learning models must account for the effects of past choices to accurately characterize behavior in this task, and that models with these properties provide a conceptual tool for studying how both past reinforcers and past choices are integrated by the neural systems that generate behavior. PMID:16596980

  11. Laminar and regional distribution of galanin binding sites in cat and monkey visual cortex determined by in vitro receptor autoradiography

    SciTech Connect

    Rosier, A.M.; Vandesande, F.; Orban, G.A. )

    1991-03-08

    The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of ({sup 125}I)-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites, while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed.

  12. Differential Expression Patterns of occ1-Related Genes in Adult Monkey Visual Cortex

    PubMed Central

    Takahata, Toru; Komatsu, Yusuke; Watakabe, Akiya; Hashikawa, Tsutomu; Tochitani, Shiro

    2009-01-01

    We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins. PMID:19073625

  13. Social Recovery of Monkeys Isolated for the First Year of Life: 1. Rehabilitation and Therapy

    ERIC Educational Resources Information Center

    Novak, M. A.; Harlow, H. F.

    1975-01-01

    This experiment demonstrated that 12-month-old monkeys reared in social isolation developed appropriate species-typical behavior through the use of adaptation, self pacing of visual input and exposure to younger "therapist" monkeys. A critical period of socialization is not indicated in the rhesus monkey. (GO)

  14. Spatial structure of neuronal receptive field in awake monkey secondary visual cortex (V2).

    PubMed

    Liu, Lu; She, Liang; Chen, Ming; Liu, Tianyi; Lu, Haidong D; Dan, Yang; Poo, Mu-ming

    2016-02-16

    Visual processing depends critically on the receptive field (RF) properties of visual neurons. However, comprehensive characterization of RFs beyond the primary visual cortex (V1) remains a challenge. Here we report fine RF structures in secondary visual cortex (V2) of awake macaque monkeys, identified through a projection pursuit regression analysis of neuronal responses to natural images. We found that V2 RFs could be broadly classified as V1-like (typical Gabor-shaped subunits), ultralong (subunits with high aspect ratios), or complex-shaped (subunits with multiple oriented components). Furthermore, single-unit recordings from functional domains identified by intrinsic optical imaging showed that neurons with ultralong RFs were primarily localized within pale stripes, whereas neurons with complex-shaped RFs were more concentrated in thin stripes. Thus, by combining single-unit recording with optical imaging and a computational approach, we identified RF subunits underlying spatial feature selectivity of V2 neurons and demonstrated the functional organization of these RF properties. PMID:26839410

  15. Similar stimulus features control visual classification in orangutans and rhesus monkeys.

    PubMed

    Diamond, Rachel F L; Stoinski, Tara S; Mickelberg, Jennifer L; Basile, Benjamin M; Gazes, Regina Paxton; Templer, Victoria L; Hampton, Robert R

    2016-01-01

    Many species classify images according to visual attributes. In pigeons, local features may disproportionately control classification, whereas in primates global features may exert greater control. In the absence of explicitly comparative studies, in which different species are tested with the same stimuli under similar conditions, it is not possible to determine how much of the variation in the control of classification is due to species differences and how much is due to differences in the stimuli, training, or testing conditions. We tested rhesus monkeys (Macaca mulatta) and orangutans (Pongo pygmaeus and Pongo abelii) in identical tests in which images were modified to determine which stimulus features controlled classification. Monkeys and orangutans were trained to classify full color images of birds, fish, flowers, and people; they were later given generalization tests in which images were novel, black and white, black and white line drawings, or scrambled. Classification in these primate species was controlled by multiple stimulus attributes, both global and local, and the species behaved similarly. PMID:26615515

  16. Social Behavior in Interacting Squirrel Monkeys with Differential Nutritional and Environmental Histories.

    ERIC Educational Resources Information Center

    Chappell, Patricia F.

    This paper reports an observational study of the effects of handling on the social behavior of squirrel monkeys who received a protein deficient diet. After birth, experimental animals received a low-protein diet for a 6-week period. A subgroup of these animals were handled between 3 and 12 weeks of age. All of the animals interacted (in four…

  17. Rabbit and monkey visual cortex: more than a year of recording with up to 64 microelectrodes.

    PubMed

    Porada, I; Bondar, I; Spatz, W B; Krüger, J

    2000-01-31

    In the visual cortex of rabbits and a marmoset monkey, 32 and 64 microwires, respectively, were chronically implanted by an indirect insertion method so that the cortex was penetrated from the white matter. For more than 1 year recordings of action potentials of good quality were obtained at most electrodes. Recording stability was judged by spike shape, spike train autocorrelograms, and spike rates: within recording sessions, stability was essentially perfect. Periods in which the signals of several electrodes were stable could last for several days. A method of in vivo reconstruction of the electrode locations by micro-X-rays and subsequent stereophotogrammetry is presented. The aspect of animal welfare is considered. PMID:10776811

  18. Visual Responsiveness of Neurons in the Secondary Somatosensory Area and its Surrounding Parietal Operculum Regions in Awake Macaque Monkeys

    PubMed Central

    Hihara, Sayaka; Taoka, Miki; Tanaka, Michio; Iriki, Atsushi

    2015-01-01

    Previous neurophysiological studies performed in macaque monkeys have shown that the secondary somatosensory cortex (SII) is essentially engaged in the processing of somatosensory information and no other sensory input has been reported. In contrast, recent human brain-imaging studies have revealed the effects of visual and auditory stimuli on SII activity, which suggest multisensory integration in the human SII. To determine whether multisensory responses of the SII also exist in nonhuman primates, we recorded single-unit activity in response to visual and auditory stimuli from the SII and surrounding regions in 8 hemispheres from 6 awake monkeys. Among 1157 recorded neurons, 306 neurons responded to visual stimuli. These visual neurons usually responded to rather complex stimuli, such as stimulation of the peripersonal space (40.5%), observation of human action (29.1%), and moving-object stimulation outside the monkey's reach (23.9%). We occasionally applied auditory stimuli to visual neurons and found 10 auditory-responsive neurons that exhibited somatosensory responses. The visual neurons were distributed continuously along the lateral sulcus covering the entire SII, along with other somatosensory neurons. These results highlight the need to investigate novel functional roles—other than somesthetic sensory processing—of the SII. PMID:25962920

  19. The Frontal Eye Fields Limit the Capacity of Visual Short-Term Memory in Rhesus Monkeys

    PubMed Central

    Lee, Kyoung-Min; Ahn, Kyung-Ha

    2013-01-01

    The frontal eye fields (FEF) in rhesus monkeys have been implicated in visual short-term memory (VSTM) as well as control of visual attention. Here we examined the importance of the area in the VSTM capacity and the relationship between VSTM and attention, using the chemical inactivation technique and multi-target saccade tasks with or without the need of target-location memory. During FEF inactivation, serial saccades to targets defined by color contrast were unaffected, but saccades relying on short-term memory were impaired when the target count was at the capacity limit of VSTM. The memory impairment was specific to the FEF-coded retinotopic locations, and subject to competition among targets distributed across visual fields. These results together suggest that the FEF plays a crucial role during the entry of information into VSTM, by enabling attention deployment on targets to be remembered. In this view, the memory capacity results from the limited availability of attentional resources provided by FEF: The FEF can concurrently maintain only a limited number of activations to register the targets into memory. When lesions render part of the area unavailable for activation, the number would decrease, further reducing the capacity of VSTM. PMID:23555049

  20. A novel visual hardware behavioral language

    NASA Technical Reports Server (NTRS)

    Li, Xueqin; Cheng, H. D.

    1992-01-01

    Most hardware behavioral languages just use texts to describe the behavior of the desired hardware design. This is inconvenient for VLSI designers who enjoy using the schematic approach. The proposed visual hardware behavioral language has the ability to graphically express design information using visual parallel models (blocks), visual sequential models (processes) and visual data flow graphs (which consist of primitive operational icons, control icons, and Data and Synchro links). Thus, the proposed visual hardware behavioral language can not only specify hardware concurrent and sequential functionality, but can also visually expose parallelism, sequentiality, and disjointness (mutually exclusive operations) for the hardware designers. That would make the hardware designers capture the design ideas easily and explicitly using this visual hardware behavioral language.

  1. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex.

    PubMed

    van Kerkoerle, Timo; Self, Matthew W; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R

    2014-10-01

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition. PMID:25205811

  2. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex

    PubMed Central

    van Kerkoerle, Timo; Self, Matthew W.; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R.

    2014-01-01

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition. PMID:25205811

  3. Abnormal Behavior in Relation to Cage Size in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Paulk, H. H.; And Others

    1977-01-01

    Examines the effects of cage size on stereotyped and normal locomotion and on other abnormal behaviors in singly caged animals, whether observed abnormal behaviors tend to co-occur, and if the development of an abnormal behavior repertoire leads to reduction in the number of normal behavior categories. (Author/RK)

  4. Long-term effects of neonatal medial temporal ablations on socioemotional behavior in monkeys

    PubMed Central

    Málková, Ludise; Mishkin, Mortimer; Suomi, Stephen J.; Bachevalier, Jocelyne

    2010-01-01

    Socioemotional abnormalities, including low levels of social interaction and high levels of self-directed activity, were reported when rhesus monkeys with neonatal ablations of either the medial temporal lobe (AH) or the inferior temporal cortex (TE) were paired with unoperated peers at two and six months of age, though these abnormalities were more severe in the AH group (Bachevalier et al., 2001). As they reached adulthood (Experiment 1), the same monkeys were re-evaluated in the same dyads and their reactivity to novel toys, social status, and reactions to separation from age-matched peers were also assessed. Group TE now showed few if any of the abnormal behaviors observed when they were infants. By contrast, Group AH continued to display low levels of social interaction, high levels of self-directed activity and submissive behavior, and reduced responses to separation, although they reacted normally to novel toys. To determine whether this degree of socioemotional impairment was less severe than that produced by the same damage in adulthood, we assessed dyadic social interactions of monkeys raised until adulthood in laboratory conditions similar to those of the earlier groups and then given the AH ablation (Experiment 2). Two months postoperatively these adult-lesioned monkeys showed a small reduction in social interactions that became more pronounced six months postoperatively, yet remained less severe than that seen in the infant-lesioned monkeys. Also, except for an increase in food and water consumption throughout this 6-month period, they showed no other socioemotional effects. The finding that neonatal AH lesions produce more severe socioemotional disturbances than the same lesion in adulthood is the reverse of the effect commonly reported for other cognitive functions after cerebral damage. PMID:21133531

  5. Rhesus Monkeys See Who They Hear: Spontaneous Cross-Modal Memory for Familiar Conspecifics

    PubMed Central

    Adachi, Ikuma; Hampton, Robert R.

    2011-01-01

    Rhesus monkeys gather much of their knowledge of the social world through visual input and may preferentially represent this knowledge in the visual modality. Recognition of familiar faces is clearly advantageous, and the flexibility and utility of primate social memory would be greatly enhanced if visual memories could be accessed cross-modally either by visual or auditory stimulation. Such cross-modal access to visual memory would facilitate flexible retrieval of the knowledge necessary for adaptive social behavior. We tested whether rhesus monkeys have cross-modal access to visual memory for familiar conspecifics using a delayed matching-to-sample procedure. Monkeys learned visual matching of video clips of familiar individuals to photographs of those individuals, and generalized performance to novel videos. In crossmodal probe trials, coo-calls were played during the memory interval. The calls were either from the monkey just seen in the sample video clip or from a different familiar monkey. Even though the monkeys were trained exclusively in visual matching, the calls influenced choice by causing an increase in the proportion of errors to the picture of the monkey whose voice was heard on incongruent trials. This result demonstrates spontaneous cross-modal recognition. It also shows that viewing videos of familiar monkeys activates naturally formed memories of real monkeys, validating the use of video stimuli in studies of social cognition in monkeys. PMID:21887244

  6. Altered Expression of Glial and Synaptic Markers in the Anterior Hippocampus of Behaviorally Depressed Female Monkeys

    PubMed Central

    Willard, Stephanie L.; Hemby, Scott E.; Register, Thomas C.; McIntosh, Scot; Shively, Carol A.

    2014-01-01

    The anterior hippocampus is associated with emotional functioning and hippocampal volume is reduced in depression. We reported reduced neuropil volume and number of glia in the dentate gyrus (DG) and cornu ammonis (CA)1 of the anterior hippocampus in behaviorally depressed adult female cynomolgus macaques. To determine the biochemical correlates of morphometric and behavioral differences between behaviorally depressed and nondepressed adult female monkeys, glial and synaptic transcripts and protein levels were assessed in the DG, CA3 and CA1 of the anterior hippocampus. Glial fibrillary acidic protein (GFAP) was increased whereas spinophilin and postsynaptic density (PSD)-95 protein were decreased in the CA1 of depressed monkeys. GFAP was reciprocally related to spinophilin and PSD-95 protein in the CA1. Gene expression of GFAP paralleled the protein changes observed in the CA1 and was inversely related to serum estradiol levels in depressed monkeys. These results suggest that behavioral depression in female primates is accompanied by astrocytic and synaptic protein alterations in the CA1. Moreover, these findings indicate a potential role for estrogen in modulating astrocyte-mediated impairments in synaptic plasticity. PMID:24440617

  7. Visual Behavior in Teacher-Pupil Dyads

    ERIC Educational Resources Information Center

    Hore, Terry

    1976-01-01

    The visual behavior of teacher-pupil pairs during a cooperative learning task is studied by describing teacher-pupil visual behavior; checking whether cultural variations in gaze or differences attributable to sex could be observed; checking whether variations in gaze were a function of linguistic competence, rather than cultural mores; and…

  8. Behavioral and physiological responses of mother and infant squirrel monkeys to fearful stimuli.

    PubMed

    Wiener, S G; Levine, S

    1992-03-01

    The behavioral and adrenocortical responses of feral squirrel monkey mothers and their laboratory-born infants were measured following exposure to a live snake and to a flying predator model (hawk). The dyads were either socially or individually housed. The different stimuli were presented above the home cage for 1 hr; behaviors were observed during this period. Blood samples were obtained at the end of the test session and assayed for cortisol. The results indicated that individually housed dyads markedly increased their time spent in contact and their avoidance of the stimuli, and showed increased levels of cortisol when exposed to the snake or hawk model. Socially reared monkeys responded only to the snake. Thus, the presence of social partners ameliorated the response to the hawk model. The marked increase in contact during the presentation of the fear-eliciting stimuli may be partly responsible for the infants' response. PMID:1577203

  9. Long-term effects of neonatal medial temporal ablations on socioemotional behavior in monkeys (Macaca mulatta).

    PubMed

    Malkova, Ludise; Mishkin, Mortimer; Suomi, Stephen J; Bachevalier, Jocelyne

    2010-12-01

    Socioemotional abnormalities, including decreased social interactions and increased self-directed activity, were reported when rhesus monkeys with neonatal ablations of either the medial temporal lobe (AH) or the inferior temporal cortex (TE) were paired with unoperated peers at two and six months of age, though these abnormalities were more severe in Group AH (Bachevalier et al., 2001). As adults (Experiment 1), the monkeys were re-evaluated in the same dyads and their reactivity to novel toys, social status, and reactions to separation were also assessed. Group TE now showed only few if any of the abnormal behaviors observed in infancy. In contrast, Group AH continued to display decreased social interactions and increased self-directed activity and showed also increased submission and reduced responses to separation, but normal reactivity to novel toys. To determine whether this degree of socioemotional impairment was less severe than that produced by the same damage in adulthood, we assessed dyadic social interactions of monkeys raised until adulthood in laboratory conditions similar to those in Experiment 1 and then given the AH ablations (Experiment 2). Two months postoperatively these monkeys showed a small reduction in social interactions that became more pronounced six months postoperatively, yet remained less severe than that seen in the infant-lesioned monkeys. No other socioemotional effects, except for an increase in food/water consumption, were observed. The finding that neonatal AH lesions produce more severe socioemotional disturbances than the same lesion in adulthood is the reverse of the effect commonly reported for other cognitive functions after cerebral damage. PMID:21133531

  10. Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys.

    PubMed

    Chen, Chi-Ming; Lakatos, Peter; Shah, Ankoor S; Mehta, Ashesh D; Givre, Syndee J; Javitt, Daniel C; Schroeder, Charles E

    2007-07-01

    We measured the timing, areal distribution, and laminar profile of fast, wavelength-insensitive and slower, wavelength-sensitive responses in V1 and extrastriate areas, using laminar current-source density analysis in awake macaque monkeys. There were 3 main findings. 1) We confirmed previously reported significant ventral-dorsal stream latency lags at the level of V4 (V4 mean = 38.7 ms vs. middle temporal mean = 26.9 ms) and inferotemporal cortex (IT mean = 43.4 ms vs. dorsal bank of the superior temporal sulcus mean = 33.9 ms). 2) We found that wavelength-sensitive inputs in areas V1, V4, and IT lagged the wavelength-insensitive responses by significant margins; this lag increased over successive levels of the system. 3) We found that laminar activation profiles in V4 and IT were inconsistent with "feedforward" input through the ascending ventral cortical pathway; the likely alternative input routes include both lateral inputs from the dorsal stream and direct inputs from nonspecific thalamic neurons. These findings support a "Framing" Model of ventral stream visual processing in which rapidly conducted inputs, mediated by one or more accessory pathways, modulate the processing of more slowly conducted feedforward inputs. PMID:16950866

  11. Layer-Specific Input to Distinct Cell Types in Layer 6 of Monkey Primary Visual Cortex

    PubMed Central

    Briggs, Farran; Callaway, Edward M.

    2007-01-01

    Layer 6 of monkey V1 contains a physiologically and anatomically diverse population of excitatory pyramidal neurons. Distinctive arborization patterns of axons and dendrites within the functionally specialized cortical layers define eight types of layer 6 pyramidal neurons and suggest unique information processing roles for each cell type. To address how input sources contribute to cellular function, we examined the laminar sources of functional excitatory input onto individual layer 6 pyramidal neurons using scanning laser photostimulation. We find that excitatory input sources correlate with cell type. Class I neurons with axonal arbors selectively targeting magnocellular (M) recipient layer 4Cα receive input from M-dominated layer 4B, whereas class I neurons whose axonal arbors target parvocellular (P) recipient layer 4Cβ receive input from P-dominated layer 2/3. Surprisingly, these neuronal types do not differ significantly in the inputs they receive directly from layers 4Cα or 4Cβ. Class II cells, which lack dense axonal arbors within layer 4C, receive excitatory input from layers targeted by their local axons. Specifically, type IIA cells project axons to and receive input from the deep but not superficial layers. Type IIB neurons project to and receive input from the deepest and most superficial, but not middle layers. Type IIC neurons arborize throughout the cortical layers and tend to receive inputs from all cortical layers. These observations have implications for the functional roles of different layer 6 cell types in visual information processing. PMID:11331389

  12. Collinear Stimuli Induce Local and Cross-Areal Coherence in the Visual Cortex of Behaving Monkeys

    PubMed Central

    Gilad, Ariel; Meirovithz, Elhanan; Leshem, Amir; Arieli, Amos; Slovin, Hamutal

    2012-01-01

    Background Collinear patterns of local visual stimuli are used to study contextual effects in the visual system. Previous studies have shown that proximal collinear flankers, unlike orthogonal, can enhance the detection of a low contrast central element. However, the direct neural interactions between cortical populations processing the individual flanker elements and the central element are largely unknown. Methodology/Principal Findings Using voltage-sensitive dye imaging (VSDI) we imaged neural population responses in V1 and V2 areas in fixating monkeys while they were presented with collinear or orthogonal arrays of Gabor patches. We then studied the spatio-temporal interactions between neuronal populations processing individual Gabor patches in the two conditions. Time-frequency analysis of the stimulus-evoked VSDI signal showed power increase mainly in low frequencies, i.e., the alpha band (α; 7–14 Hz). Power in the α-band was more discriminative at a single trial level than other neuronal population measures. Importantly, the collinear condition showed an increased intra-areal (V1-V1 and V2-V2) and inter-areal (V1-V2) α-coherence with shorter latencies than the orthogonal condition, both before and after the removal of the stimulus contribution. α-coherence appeared between discrete neural populations processing the individual Gabor patches: the central element and the flankers. Conclusions/Significance Our findings suggest that collinear effects are mediated by synchronization in a distributed network of proximal and distant neuronal populations within and across V1 and V2. PMID:23185325

  13. A Golgi deimpregnation study of neurons in the rhesus monkey visual cortex (areas 17 and 18).

    PubMed

    Werner, L; Winkelmann, E; Koglin, A; Neser, J; Rodewohl, H

    1989-01-01

    The morphological features of 298 neurons impregnated according to Golgi-Kopsch in areas 17 and 18 of Macaca mulatta were analyzed, and the same neurons were deimpregnated to visualize structural details of the somata in different types of neurons. The following cell types were investigated: Pyramidal and pyramid-like cells, spiny stellate cells, double bouquet cells, bipolar cells, chandelier cells, neurogliaform cells, basket and related cells. This procedure allows the evaluation of the nuclear-cytoplasmic proportion and the position of the nucleus besides shape and size of the cell body. Pyramidal and pyramid-like cells (N = 43), spiny stellate cells (N = 26), basket and related cells (N = 126) are variable in these features. A positive correlation between soma size and width of the cytoplasm is found in pyramidal, pyramid-like cells and spiny stellate cells. With the exception of some large somata in both these types of neurons the nucleus is found in a central position. Double bouquet cells (N = 6), bipolar cells (N = 13) and chandelier cells (N = 11) exhibit small cytoplasmic rims and centrally located nuclei. The small somata of neurogliaform cells (N = 37), however, and the small to very large somata of basket and related cells show broad cytoplasmic portions surrounding the eccentrically located nuclei. These findings allow the identification of different neuronal types in Nissl-stained sections on the basis of these soma features. This is a prerequisite for further detailed quantitative studies on the laminar distribution of different neuronal types in the visual cortex of the monkey. PMID:2610391

  14. Effect of environmental enrichment devices on behaviors of single- and group-housed squirrel monkeys (Saimiri sciureus)

    NASA Technical Reports Server (NTRS)

    Spring, S. E.; Clifford, J. O.; Tomko, D. L.

    1997-01-01

    Squirrel monkeys display an interest in novel places, habituate to new situations, and spend most of their daily activity in the wild in large groups engaging in feeding behaviors over a broad area. Captivity limits these behaviors and consequently may disrupt normal social organizations. In captivity, squirrel monkeys may exhibit stereotypical behaviors that are believed to indicate decreased psychologic well-being. When a monkey's behavior can be made to approach that seen in the wild, and stereotypical behaviors are minimal, it is assumed that psychologic well-being is adequate. Environmental enrichment devices have been used to address the Animal Welfare Act requirement that psychologic well-being of captive nonhuman primates be considered. The purpose of the study reported here was to examine whether various environmental enrichment devices improve the psychologic well-being of captive squirrel monkeys. In the study, we used behavioral observation to quantify the effectiveness of several environmental enrichment devices for reducing stereotypical behaviors in squirrel monkeys housed alone or in groups. Analysis of our results revealed that the environmental enrichment devices did not affect the expression of normal or stereotypical behaviors, but that the type of housing did.

  15. Early adversity contributes to chronic stress induced depression-like behavior in adolescent male rhesus monkeys.

    PubMed

    Zhang, Zhi-Yi; Mao, Yu; Feng, Xiao-Li; Zheng, Na; Lü, Long-Bao; Ma, Yuan-Ye; Qin, Dong-Dong; Hu, Xin-Tian

    2016-06-01

    Chronic stress is an important cause for depression. However, not everyone who is exposed to chronic stress will develop depression. Our previous studies demonstrated that early adversity can cause lasting changes in adolescent rhesus monkeys, but depressive symptoms have not been observed. Compared to adults, it is still unknown that whether adolescent rhesus monkeys experiencing early adversity are more likely to develop depressive symptoms. In this study, we investigated the long term relationship between early adversity, chronic stress and adolescent depression for the first time. Eight male rhesus monkeys were reared in maternal separation (MS) or mother-reared (MR) conditions. All of them went through unpredictable chronic stress for two months at their age four. The stressors included space restriction, intimidation, long illumination and fasting. Behavioral and physiological data were collected during the experiment. The results showed that, compared with the MR group, the locomotor activity of MS group was significantly decreased after one month of chronic stress while huddling up and stereotypical behaviors were significantly increased. Moreover, this trend continued and even worsened at the second month. Significantly higher hair cortisol levels and lower body weight were observed in MS group after two months of stress. These results indicate that early adversity is one of the environmental factors which can increase the susceptibility of depression when experiencing chronic stress in the later life. This will further clarify the important roles of early environmental factors in the development of adolescent depression and children rearing conditions should receive more attention. PMID:27025444

  16. Tufted capuchin monkeys (Cebus apella) spontaneously use visual, but not acoustic information to find hidden food items

    PubMed Central

    Paukner, Annika; Huntsberry, Mary E; Suomi, Stephen J

    2008-01-01

    Foraging choices in tufted capuchins monkeys are guided by perceptual, cognitive, and motivational factors, but only little is known about how these factors might interact. The present study investigates how different types of sensory information affect capuchins’ ability to locate hidden food. In two experiments, capuchins were presented with two cups, one baited and one empty. Monkeys were given visual, acoustic, or acoustic-visual information related to the baited cup, the empty cup, or both baited and empty cup. Results show that capuchins spontaneously used visual information to locate food, and that information indicating presence and absence of food led to higher success rates than information indicating only absence of food. In contrast, acoustic information did not lead to success rates above chance levels and failed to enhance performance in combination with visual information. Capuchins spontaneously avoided a visually empty cup, but they did not appear to associate sounds with either the presence or absence of food. Being able to locate food items with the aid of acoustic cues might be a learned process that requires interactive experiences with the task’s contingencies. PMID:19236142

  17. Temperature and behavioral responses of squirrel monkeys to 2Gz acceleration

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Tremor, J.; Connolly, J. P.; Williams, B. A.

    1982-01-01

    This study examines the responses of squirrel monkeys to acute +2Gz exposure. Body temperature responses of loosely restrained animals were recorded via a thermistor in the colon. Behavioral responses were recorded by video monitoring. After baseline recording at 1G, monkeys were exposed to 2G for 60 min. The body temperature started to fall within 10 min of the onset of centrifugation and declined an average of 1.4 C in 60 min. This is in contrast to a stable body temperature during the control period. Further, after a few minutes at 2G, the animals became drowsy and appeared to fall asleep. During the control period, however, they were alert and continually shifting their gaze about the cage. Thus, primates are susceptible to hypergravic fields in the +Gz orientation. The depression in primate body temperature was consistent and significant. Further, the observed drowsiness in this study has significant ramifications regarding alertness and performance in man.

  18. Visual cortical input alters spatial tuning in monkey lateral geniculate nucleus cells.

    PubMed Central

    McClurkin, J W; Marrocco, R T

    1984-01-01

    The response of monkey lateral geniculate nucleus (l.g.n.) cells to flashing spots, annuli, and drifting sine-wave gratings were recorded with tungsten micro-electrodes. These stimuli were presented (a) monocularly, through an aperture in the centre of a radial grating, or (b) dichoptically, in which the spots or drifting gratings were presented to the dominant eye's receptive field, while the centre of the radial grating was positioned on the corresponding retinal location of the other eye. Movement of the radial grating produced changes in the l.g.n. cell responses evoked by the spots and sine-wave gratings. These changes were reversed by cryogenic blockade of the striate cortex. Therefore, radial grating movement altered the responses of l.g.n. cells by activating the corticogeniculate (c.g.) pathway. In about half of all cells, radial grating-induced alterations of centre, or surround, or both responses to spots and annuli were produced. By adopting a simple spatial filtering model of the centre and surround mechanisms, it was possible to predict how these alterations in centre/surround balance would affect the cell's responses to sine-wave gratings. Alterations were observed in the peak and band width of the spatial and/or temporal tuning curves. The radial gratings did not alter the spatial summation properties of cells. Minor alterations in the spectral neutral points of chromatically opponent neurones were occasionally found. These results are interpreted as support for the view that spatial and temporal tuning are dynamic properties of some l.g.n. neurones by virtue of descending input from the visual cortex. PMID:6716281

  19. Diversity of Glutamatergic Synaptic Strength in Lateral Prefrontal versus Primary Visual Cortices in the Rhesus Monkey

    PubMed Central

    Luebke, Jennifer I.

    2015-01-01

    Understanding commonalities and differences in glutamatergic synaptic signaling is essential for understanding cortical functional diversity, especially in the highly complex primate brain. Previously, we have shown that spontaneous EPSCs differed markedly in layer 3 pyramidal neurons of two specialized cortical areas in the rhesus monkey, the high-order lateral prefrontal cortex (LPFC) and the primary visual cortex (V1). Here, we used patch-clamp recordings and confocal and electron microscopy to determine whether these distinct synaptic responses are due to differences in firing rates of presynaptic neurons and/or in the features of presynaptic or postsynaptic entities. As with spontaneous EPSCs, TTX-insensitive (action potential-independent) miniature EPSCs exhibited significantly higher frequency, greater amplitude, and slower kinetics in LPFC compared with V1 neurons. Consistent with these physiological differences, LPFC neurons possessed higher densities of spines, and the mean width of large spines was greater compared with those on V1 neurons. Axospinous synapses in layers 2–3 of LPFC had larger postsynaptic density surface areas and a higher proportion of large perforated synapses compared with V1. Axonal boutons in LPFC were also larger in volume and contained ∼1.6× more vesicles than did those in V1. Further, LPFC had a higher density of AMPA GluR2 receptor labeling than V1. The properties of spines and synaptic currents of individual layer 3 pyramidal neurons measured here were significantly correlated, consistent with the idea that significantly more frequent and larger synaptic currents are likely due to more numerous, larger, and more powerful synapses in LPFC compared with V1. PMID:25568107

  20. Lack of behavioral effects in the rhesus monkey: High peak microwave pulses at 1. 3 GHz

    SciTech Connect

    D'Andrea, J.A.; Cobb, B.L.; de Lorge, J.O.

    1989-01-01

    The current safety standards for radiofrequency and microwave exposure do not limit the peak power of microwave pulses for general or occupational exposures. While some biological effects, primarily the auditory effect, depend on pulsed microwaves, hazards associated with very high peak-power microwave pulses in the absence of whole-body heating are unknown. Five rhesus monkeys, Macaca mulatta, were exposed to peak-power densitites of 131.8 W/sq cm (RMS) while performing a time-related behavioral task. The task was composed of a multiple schedule of reinforcement consisting of three distinct behavioral components: inter-response time, time discrimination, and fixed interval. Trained monkeys performed the multiple schedule during exposure to 1.3-GHz pulses at low pulse-repetition rates (2-32 Hz). No significant change was observed in any behavior during irradiation as compared to sham-irradiation sessions. Generalization of these findings to experimental results with higher peak-power densities, other pulse rates, different carrier frequencies, or other behaviors is limited.

  1. Lack of behavioral effects in the rhesus monkey: high peak microwave pulses at 1. 3 GHz

    SciTech Connect

    D'Andrea, J.A.; Cobb, B.L.; de Lorge, J.O.

    1989-01-01

    The current safety standards for radiofrequency and microwave exposure do not limit the peak power of microwave pulses for general or occupational exposures. While some biological effects, primarily the auditory effect, depend on pulsed microwaves, hazards associated with very high peak-power microwave pulses in the absence of whole-body heating are unknown. Five rhesus monkeys, Macaca mulatta, were exposed to peak-power densities of 131.8 W/cm2 (RMS) while performing a time-related behavioral task. The task was composed of a multiple schedule of reinforcement consisting of three distinct behavioral components: inter-response time, time discrimination, and fixed interval. Trained monkeys performed the multiple schedule during exposure to 1.3-GHz pulses at low pulse-repetition rates (2-32 Hz). No significant change was observed in any behavior during irradiation as compared to sham-irradiation sessions. Generalization of these findings to experimental results with higher peak-power densities, other pulse rates, different carrier frequencies, or other behaviors is limited.

  2. behaviorism: a framework for dynamic data visualization.

    PubMed

    Forbes, Angus Graeme; Höllerer, Tobias; Legrady, George

    2010-01-01

    While a number of information visualization software frameworks exist, creating new visualizations, especially those that involve novel visualization metaphors, interaction techniques, data analysis strategies, and specialized rendering algorithms, is still often a difficult process. To facilitate the creation of novel visualizations we present a new software framework, behaviorism, which provides a wide range of flexibility when working with dynamic information on visual, temporal, and ontological levels, but at the same time providing appropriate abstractions which allow developers to create prototypes quickly which can then easily be turned into robust systems. The core of the framework is a set of three interconnected graphs, each with associated operators: a scene graph for high-performance 3D rendering, a data graph for different layers of semantically linked heterogeneous data, and a timing graph for sophisticated control of scheduling, interaction, and animation. In particular, the timing graph provides a unified system to add behaviors to both data and visual elements, as well as to the behaviors themselves. To evaluate the framework we look briefly at three different projects all of which required novel visualizations in different domains, and all of which worked with dynamic data in different ways: an interactive ecological simulation, an information art installation, and an information visualization technique. PMID:20975155

  3. Behavioral and physiological responses to fruit availability of spider monkeys ranging in a small forest fragment

    PubMed Central

    Rimbach, Rebecca; Link, Andrés; Montes-Rojas, Andrés; Di Fiore, Anthony; Heistermann, Michael; Heymann, Eckhard W

    2014-01-01

    Numerous animal species currently experience habitat loss and fragmentation. This might result in behavioral and dietary adjustments, especially because fruit availability is frequently reduced in fragments. Food scarcity can result in elevated physiological stress levels, and chronic stress often has detrimental effects on individuals. Some animal species exhibit a high degree of fission–fusion dynamics, and theory predicts that these species reduce intragroup feeding competition by modifying their subgroup size according to resource availability. Until now, however, there have been few studies on how species with such fission–fission dynamics adjust their grouping patterns and social behavior in small fragments or on how food availability influences their stress levels. We collected data on fruit availability, feeding behavior, stress hormone levels (measured through fecal glucocorticoid metabolites (FGCM)), subgroup size, and aggression for two groups of brown spider monkeys (Ateles hybridus) in a small forest fragment in Colombia and examined whether fruit availability influences these variables. Contrary to our predictions, spider monkeys ranged in smaller subgroups, had higher FGCM levels and higher aggression rates when fruit availability was high compared to when it was low. The atypical grouping pattern of the study groups seems to be less effective at mitigating contest competition over food resources than more typical fission–fusion patterns. Overall, our findings illustrate that the relationship between resource availability, grouping patterns, aggression rates, and stress levels can be more complex than assumed thus far. Additional studies are needed to investigate the long-term consequences on the health and persistence of spider monkeys in fragmented habitats. PMID:24820229

  4. Behavioral and physiological responses to fruit availability of spider monkeys ranging in a small forest fragment.

    PubMed

    Rimbach, Rebecca; Link, Andrés; Montes-Rojas, Andrés; Di Fiore, Anthony; Heistermann, Michael; Heymann, Eckhard W

    2014-11-01

    Numerous animal species currently experience habitat loss and fragmentation. This might result in behavioral and dietary adjustments, especially because fruit availability is frequently reduced in fragments. Food scarcity can result in elevated physiological stress levels, and chronic stress often has detrimental effects on individuals. Some animal species exhibit a high degree of fission-fusion dynamics, and theory predicts that these species reduce intragroup feeding competition by modifying their subgroup size according to resource availability. Until now, however, there have been few studies on how species with such fission-fission dynamics adjust their grouping patterns and social behavior in small fragments or on how food availability influences their stress levels. We collected data on fruit availability, feeding behavior, stress hormone levels (measured through fecal glucocorticoid metabolites (FGCM)), subgroup size, and aggression for two groups of brown spider monkeys (Ateles hybridus) in a small forest fragment in Colombia and examined whether fruit availability influences these variables. Contrary to our predictions, spider monkeys ranged in smaller subgroups, had higher FGCM levels and higher aggression rates when fruit availability was high compared to when it was low. The atypical grouping pattern of the study groups seems to be less effective at mitigating contest competition over food resources than more typical fission-fusion patterns. Overall, our findings illustrate that the relationship between resource availability, grouping patterns, aggression rates, and stress levels can be more complex than assumed thus far. Additional studies are needed to investigate the long-term consequences on the health and persistence of spider monkeys in fragmented habitats. PMID:24820229

  5. Role of otolith endorgans in the genesis of vestibular-visual conflict sickness (pitch) in the squirrel monkey (First report)

    NASA Technical Reports Server (NTRS)

    Igarashi, Makoto; Himi, Tetsuo; Kulecz, Walter B.; Kobayashi, Kazutoyo

    1987-01-01

    The effects of ablation of the macula utriculi and macula sacculi on vestibular-visual conflict emesis in squirrel monkeys are investigated. An optokinetic drum and a turntable were used for the direction conflict experiment. A significant difference between the preoperative condition and postunilateral and postbilateral utriculo-sacculectomy conditions is observed. It is detected that after unilateral sacculectomy the conflict sickness decreases and no emesis occurs; however, 4.5 months after sacculectomy, the animals regain their conflict sickness. The data reveal that macular afferents are important in the genesis of sensory conflict emesis and two submodalities may be needed to cause conflict sickness onset.

  6. Which senses play a role in nonhuman primate food selection? A comparison between squirrel monkeys and spider monkeys.

    PubMed

    Laska, Matthias; Freist, Pamela; Krause, Stephanie

    2007-03-01

    In order to optimize foraging efficiency and avoid toxicosis, animals must be able to detect, discriminate, and learn about the predictive signals of potential food. Primates are typically regarded as animals that rely mainly on their highly developed visual systems, and little is known about the role that the other senses may play in food selection. It was therefore the aim of the present study to assess which senses are involved in the evaluation of food by two species of New World primates: the squirrel monkey and the spider monkey. To this end, six animals per species were repeatedly presented with both familiar and novel food items, and their behavior was videotaped and analyzed. To obtain a further indication of the relative importance of visual and chemosensory cues, the animals were also presented with familiar food items that were experimentally modified in color, odor, or both color and odor. The results demonstrate that squirrel monkeys and spider monkeys use olfactory, gustatory, and tactile cues in addition to visual information to evaluate novel food, whereas they mainly inspect familiar food items visually prior to consumption. Our findings also show that in both species the use of nonvisual cues decreased rapidly with repeated presentations of novel food, suggesting a fast multimodal learning process. Further, the two species clearly differ in their relative use of nonvisual cues when evaluating novel or modified food, with spider monkeys relying more on olfactory cues than squirrel monkeys, and squirrel monkeys relying more on tactile cues compared to spider monkeys. PMID:17146790

  7. A Novel Touch-Sensitive Apparatus for Behavioral Studies in Unrestrained Squirrel Monkeys

    PubMed Central

    Kangas, Brian D.; Bergman, Jack

    2012-01-01

    Despite the increasing sophistication and affordability of touch-sensitive technology, its use in the behavioral sciences has been limited. The present paper describes the design and empirical validation of a novel touch-sensitive operant conditioning chamber for use with unrestrained squirrel monkeys. In addition, results from a variant of a commonly employed animal model of learning, the repeated acquisition task, demonstrated the effectiveness of this chamber in programming an assay of complex behavior. Finally, results from a study with Δ9-tetrahyrdrocannabinol, the active ingredient in marijuana, showed that its effects in this novel touchscreen chamber were consistent with its dose-related effects on learning using more conventional approaches. Overall, these studies indicate the touchscreen apparatus provides effective means for programming complex behavioral tasks to assess the effects of pharmacological agents on cognitive function. PMID:22790109

  8. Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Visual function in monkeys is subserved at the cortical level by a large number of areas defined by their specific physiological properties and connectivity patterns. For most of these cortical fields, a precise index of their degree of anatomical specialization has not yet been defined, although many regional patterns have been described using Nissl or myelin stains. In the present study, an attempt has been made to elucidate the regional characteristics, and to varying degrees boundaries, of several visual cortical areas in the macaque monkey using an antibody to neurofilament protein (SMI32). This antibody labels a subset of pyramidal neurons with highly specific regional and laminar distribution patterns in the cerebral cortex. Based on the staining patterns and regional quantitative analysis, as many as 28 cortical fields were reliably identified. Each field had a homogeneous distribution of labeled neurons, except area V1, where increases in layer IVB cell and in Meynert cell counts paralleled the increase in the degree of eccentricity in the visual field representation. Within the occipitotemporal pathway, areas V3 and V4 and fields in the inferior temporal cortex were characterized by a distinct population of neurofilament-rich neurons in layers II-IIIa, whereas areas located in the parietal cortex and part of the occipitoparietal pathway had a consistent population of large labeled neurons in layer Va. The mediotemporal areas MT and MST displayed a distinct population of densely labeled neurons in layer VI. Quantitative analysis of the laminar distribution of the labeled neurons demonstrated that the visual cortical areas could be grouped in four hierarchical levels based on the ratio of neuron counts between infragranular and supragranular layers, with the first (areas V1, V2, V3, and V3A) and third (temporal and parietal regions) levels characterized by low ratios and the second (areas MT, MST, and V4) and fourth (frontal regions) levels characterized by

  9. Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: anatomy of interlaminar projections.

    PubMed

    Yoshioka, T; Levitt, J B; Lund, J S

    1994-01-01

    An important issue in understanding the function of primary visual cortex in the macaque monkey is how the several efferent neuron groups projecting to extrastriate cortex acquire their different response properties. To assist our understanding of this issue, we have compared the anatomical distribution of V1 intrinsic relays that carry information derived from magno- (M) and parvocellular (P) divisions of the dorsal lateral geniculate nucleus between thalamic recipient neurons and interareal efferent neuron groups within area V1. We used small, iontophoretic injections of biocytin placed in individual cortical laminae of area V1 to trace orthograde and retrograde inter- and intralaminar projections. In either the same or adjacent sections, the tissue was reacted for cytochrome oxidase (CO), which provides important landmarks for different efferent neuron populations located in CO rich blobs and CO poor interblobs in laminae 2/3, as well as defining clear boundaries for the populations of efferent neurons in laminae 4A and 4B. This study shows that the interblobs, but not the blobs, receive direct input from thalamic recipient 4C neurons; the interblobs receive relays from mid 4C neurons (believed to receive convergent M and P inputs), while blobs receive indirect inputs from either M or P (or both) pathways through layers 4B (which receives M relays from layer 4C alpha) and 4A (which receives P relays directly from the thalamus as well as from layer 4C beta). The property of orientation selectivity, most prominent in the interblob regions and in layer 4B, may have a common origin from oriented lateral projections made by mid 4C spiny stellate neurons. While layer 4B efferents may emphasize M characteristics and layer 4A efferents emphasize P characteristics, the dendrites of their constituent pyramidal neurons may provide anatomical access to the other channel since both blob and interblob regions in layers 2/3 have anatomical access to M and P driven relays

  10. Reunion behavior after social separation is associated with enhanced HPA recovery in young marmoset monkeys.

    PubMed

    Taylor, Jack H; Mustoe, Aaryn C; Hochfelder, Benjamin; French, Jeffrey A

    2015-07-01

    The relationships that offspring develop with caregivers can exert a powerful influence on behavior and physiology, including the hypothalamic-pituitary-adrenal (HPA) axis. In many mammalian species, offspring-caregiver relationships are largely limited to interactions with mother. Marmoset monkeys receive care in early life from multiple classes of caregivers in addition to the mother, including fathers and siblings. We evaluated whether affiliative social interactions with family members in marmosets were associated with differences in cortisol reactivity to a short-term social separation stressor, and whether these variations in affiliative interactions upon reunion predicted how well marmosets subsequently regulated HPA axis function after cessation of the stressor. Marmosets were separated from the family for 8h at three developmental time points (6-, 12-, and 18-months of age), and interactions of the separated marmoset with the family group were recorded during reunion. Urinary cortisol was measured prior to social separation, every 2h during the separation, and on the morning after separation. Heightened cortisol reactivity during social separation did not predict affiliative social behavior upon reunion but higher rates of grooming and play behavior predicted enhanced HPA regulation. Marmosets with higher rates of grooming and play with family members upon reunion had post-stress cortisol levels closer to preseparation baseline than marmosets with lower rates of affiliative reunion behavior. Combined with previous research showing the early programming effects of social interactions with caregivers, as well as the buffering effect of a close social partner during stress, the current study highlights the high degree of behavioral and HPA adaptability to social stressors across development in marmoset monkeys. PMID:25900596

  11. Visualization techniques for malware behavior analysis

    NASA Astrophysics Data System (ADS)

    Grégio, André R. A.; Santos, Rafael D. C.

    2011-06-01

    Malware spread via Internet is a great security threat, so studying their behavior is important to identify and classify them. Using SSDT hooking we can obtain malware behavior by running it in a controlled environment and capturing interactions with the target operating system regarding file, process, registry, network and mutex activities. This generates a chain of events that can be used to compare them with other known malware. In this paper we present a simple approach to convert malware behavior into activity graphs and show some visualization techniques that can be used to analyze malware behavior, individually or grouped.

  12. Separate visual representations for perception and for visually guided behavior

    NASA Technical Reports Server (NTRS)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  13. Environmental Control, Social Context, and Individual Differences in Behavioral and Cortisol Responses to Novelty in Infant Rhesus Monkeys

    ERIC Educational Resources Information Center

    Roma, Peter G.; Champoux, Maribeth; Suomi, Stephen J.

    2006-01-01

    The effects of appetitive controllability on behavioral and cortisol reactivity to novelty in 12 infant rhesus monkeys were studied. Surrogate-peer-reared infants had homecage access to food treats contingently via lever pressing ("master") or noncontingently ("yoked") for 12 weeks from postnatal month 2. Masters lever-pressed more, but did not…

  14. Behavioral Objectives for Classroom Experiences in Visual Literacy.

    ERIC Educational Resources Information Center

    Barley, Steven D.

    Behavioral objectives for visual literacy experiences are briefly delineated. The objectives concern skills related to: informative visual communication, persuasive and/or visual communication, general visual communication, visual concepts, and reading visual materials, as well as aesthetic and/or recreational skills. For example, the behavioral…

  15. Behavioral effects of a synthetic agonist selective for nociceptin/orphanin FQ peptide receptors in monkeys.

    PubMed

    Ko, Mei-Chuan; Woods, James H; Fantegrossi, William E; Galuska, Chad M; Wichmann, Jürgen; Prinssen, Eric P

    2009-08-01

    Behavioral effects of a nonpeptidic NOP (nociceptin/orphanin FQ Peptide) receptor agonist, Ro 64-6198, have not been studied in primate species. The aim of the study was to verify the receptor mechanism underlying the behavioral effects of Ro 64-6198 and to systematically compare behavioral effects of Ro 64-6198 with those of a mu-opioid receptor agonist, alfentanil, in monkeys. Both Ro 64-6198 (0.001-0.06 mg/kg, s.c.) and alfentanil (0.001-0.06 mg/kg, s.c.) produced antinociception against an acute noxious stimulus (50 degrees C water) and capsaicin-induced allodynia. An NOP receptor antagonist, J-113397 (0.01-0.1 mg/kg, s.c.), dose-dependently produced rightward shifts of the dose-response curve of Ro 64-6198-induced antinociception. The apparent pA(2) value of J-113397 was 8.0. Antagonist studies using J-113397 and naltrexone revealed that Ro 64-6198 produced NOP receptor-mediated antinociception independent of mu-opioid receptors. In addition, alfentanil dose-dependently produced respiratory depression and itch/scratching responses, but antinociceptive doses of Ro 64-6198 did not produce such effects. More important, Ro 64-6198 did not produce reinforcing effects comparable with those of alfentanil, cocaine, or methohexital under self-administration procedures in monkeys. These results provide the first functional evidence that the activation of NOP receptors produces antinociception without reinforcing effects in primates. Non-peptidic NOP receptor agonists may have therapeutic value as novel analgesics without abuse liability in humans. PMID:19279568

  16. Behavioral evaluation of modafinil and the abuse-related effects of cocaine in rhesus monkeys.

    PubMed

    Newman, Jennifer L; Negus, S Stevens; Lozama, Anthony; Prisinzano, Thomas E; Mello, Nancy K

    2010-10-01

    Modafinil is a central nervous system stimulant used to promote wakefulness, and it is being evaluated clinically as an agonist medication for treating stimulant abuse. This is the first report of the effects of modafinil on the abuse-related effects of cocaine in nonhuman primates. The behavioral effects of modafinil were examined in three studies. First, the discriminative stimulus effects of modafinil (3.2-32 mg/kg) were evaluated in rhesus monkeys (Macaca mulatta) trained to discriminate either low (0.18 mg/kg, IM) or high (0.4 mg/kg, IM) doses of cocaine from saline. Modafinil dose-dependently substituted for cocaine in 6 of 7 monkeys. In the second study, the effects of chronically administered modafinil (32-56 mg/kg/day, IV) on food- and cocaine-maintained (0.001-0.1 mg/kg/inj) operant responding were examined. Modafinil was administered 3 times/hr for 23 hr/day to ensure stable drug levels. Chronic treatment with 32 mg/kg/day modafinil selectively reduced responding maintained by intermediate and peak reinforcing doses of cocaine, but responding maintained by higher doses of cocaine was unaffected. Food-maintained behavior did not change during chronic modafinil treatment. In a third study, modafinil (32 and 56 mg/kg/day, IV) was examined in a reinstatement model. Modafinil transiently increased responding during extinction. These findings indicate that modafinil shares discriminative stimulus effects with cocaine and selectively reduces responding maintained by reinforcing doses of cocaine. In addition, modafinil reinstated cocaine-seeking behavior, which may reflect its cocaine-like discriminative stimulus effects. These data support clinical findings and indicate that these preclinical models may be useful for predicting the effectiveness of agonist medications for drug abuse treatment. PMID:20939643

  17. Visualizing Collagen Network Within Human and Rhesus Monkey Vocal Folds Using Polarized Light Microscopy

    PubMed Central

    Julias, Margaret; Riede, Tobias; Cook, Douglas

    2014-01-01

    Objectives Collagen fiber content and orientation affect the viscoelastic properties of the vocal folds, determining oscillation characteristics during speech and other vocalization. The investigation and reconstruction of the collagen network in vocal folds remains a challenge, because the collagen network requires at least micron-scale resolution. In this study, we used polarized light microscopy to investigate the distribution and alignment of collagen fibers within the vocal folds. Methods Data were collected in sections of human and rhesus monkey (Macaca mulatta) vocal folds cut at 3 different angles and stained with picrosirius red. Results Statistically significant differences were found between different section angles, implying that more than one section angle is required to capture the network’s complexity. In the human vocal folds, the collagen fiber distribution continuously varied across the lamina propria (medial to lateral). Distinct differences in birefringence distribution were observed between the species. For the human vocal folds, high birefringence was observed near the thyroarytenoid muscle and near the epithelium. However, in the rhesus monkey vocal folds, high birefringence was observed near the epithelium, and lower birefringence was seen near the thyroarytenoid muscle. Conclusions The differences between the collagen networks in human and rhesus monkey vocal folds provide a morphological basis for differences in viscoelastic properties between species. PMID:23534129

  18. Behavioral and neurochemical effects of amphetamine analogs that release monoamines in the squirrel monkey.

    PubMed

    Kimmel, Heather L; Manvich, Daniel F; Blough, Bruce E; Negus, S Stevens; Howell, Leonard L

    2009-12-01

    To date, there are no effective pharmacotherapies for treating psychostimulant abuse. Previous preclinical and clinical studies have shown that continuous treatment with the monoamine releaser amphetamine reduces cocaine self-administration, but amphetamine selectively targets the dopamine system and is reinforcing. In the present study, we examined the consequences of administration of amphetamine and three structurally related analogs that vary in their potencies for releasing dopamine and serotonin on behavioral-stimulant effects and nucleus accumbens dopamine levels in squirrel monkeys. Amphetamine and PAL-353, which have relatively high selectivity for releasing dopamine vs. serotonin, increased accumbens dopamine levels and induced stimulant effects on behavior maintained by a fixed-interval schedule of reinforcement. PAL-313, which has a relatively low selectivity for releasing dopamine vs. serotonin, increased dopamine levels, but did not induce behavioral-stimulant effects. PAL-287, which is relatively nonselective in releasing dopamine and serotonin, did not increase dopamine levels or induce behavioral-stimulant effects. These results demonstrate that increasing serotonergic activity attenuates dopamine release and dopamine-mediated behavioral effects of monoamine releasers. In addition, these results support further investigation of PAL-313 and similar compounds as a potential medication for treating psychostimulant abuse. PMID:19766133

  19. Maternal Behavior and Infant Security in Old World Monkeys: Conceptual Issues and a Methodological Bridge between Human and Nonhuman Primate Research.

    ERIC Educational Resources Information Center

    Kondo-Ikemura, Kiyomi; Waters, Everett

    1995-01-01

    Used adaptation of Attachment Q-Set (AQS) with 24 infant-mother monkey dyads to clarify the secure-base concept. Found that infants of high-ranking monkeys scored higher than those of low-ranking ones, suggesting the origins of the secure-base phenomenon, as well as the importance of exploring infant secure-base behaviors in families of different…

  20. Depressive-like behavioral response of adult male rhesus monkeys during routine animal husbandry procedure.

    PubMed

    Hennessy, Michael B; McCowan, Brenda; Jiang, Jing; Capitanio, John P

    2014-01-01

    Social isolation is a major risk factor for the development of depressive illness; yet, no practical nonhuman primate model is available for studying processes involved in this effect. In a first study, we noted that adult male rhesus monkeys housed individually indoors occasionally exhibited a hunched, depressive-like posture. Therefore, Study 2 investigated the occurrence of a hunched posture by adult males brought from outdoor social groups to indoor individual housing. We also scored two other behaviors-lying on the substrate and day time sleeping-that convey an impression of depression. During the first week of observation following individual housing, 18 of 26 adult males exhibited the hunched posture and 21 of 26 displayed at least one depressive-like behavior. Over 2 weeks, 23 of 26 males showed depressive-like behavior during a total of only 20 min observation. Further, the behavior during the first week was positively related to the level of initial response to a maternal separation procedure experienced in infancy. In Study 3, more than half of 23 adult males of a new sample displayed depressive-like behavior during 10 min of observation each of Weeks 7-14 of individual housing. The surprisingly high frequency of depressive-like behavior in Studies 2 and 3 may have been due to recording behavior via camera with no human in the room to elicit competing responses. These results suggest that a common animal husbandry procedure might provide a practical means for examining effects of social isolation on depression-related endpoints in a nonhuman primate. The findings also suggest that trait-like differences in emotional responsiveness during separation in infancy may predict differences in responsiveness during social isolation in adulthood. PMID:25249954

  1. Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Ungerleider, L. G.; Webster, M. J.; Gattass, R.; Adams, M. M.; Sailstad, C. A.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    Previous studies of the primate cerebral cortex have shown that neurofilament protein is present in pyramidal neuron subpopulations displaying specific regional and laminar distribution patterns. In order to characterize further the neurochemical phenotype of the neurons furnishing feedforward and feedback pathways in the visual cortex of the macaque monkey, we performed an analysis of the distribution of neurofilament protein in corticocortical projection neurons in areas V1, V2, V3, V3A, V4, and MT. Injections of the retrogradely transported dyes Fast Blue and Diamidino Yellow were placed within areas V4 and MT, or in areas V1 and V2, in 14 adult rhesus monkeys, and the brains of these animals were processed for immunohistochemistry with an antibody to nonphosphorylated epitopes of the medium and heavy molecular weight subunits of the neurofilament protein. Overall, there was a higher proportion of neurons projecting from areas V1, V2, V3, and V3A to area MT that were neurofilament protein-immunoreactive (57-100%), than to area V4 (25-36%). In contrast, feedback projections from areas MT, V4, and V3 exhibited a more consistent proportion of neurofilament protein-containing neurons (70-80%), regardless of their target areas (V1 or V2). In addition, the vast majority of feedback neurons projecting to areas V1 and V2 were located in layers V and VI in areas V4 and MT, while they were observed in both supragranular and infragranular layers in area V3. The laminar distribution of feedforward projecting neurons was heterogeneous. In area V1, Meynert and layer IVB cells were found to project to area MT, while neurons projecting to area V4 were particularly dense in layer III within the foveal representation. In area V2, almost all neurons projecting to areas MT or V4 were located in layer III, whereas they were found in both layers II-III and V-VI in areas V3 and V3A. These results suggest that neurofilament protein identifies particular subpopulations of

  2. One month in the life of a neuron: longitudinal single-unit electrophysiology in the monkey visual system

    PubMed Central

    Bondar, Igor V.; Afuwape, Olusoji A. T.; Ide, David C.; Leopold, David A.

    2014-01-01

    Conventional recording methods generally preclude following the activity of the same neurons in awake animals across days. This limits our ability to systematically investigate the principles of neuronal specialization, or to study phenomena that evolve over multiple days such as experience-dependent plasticity. To redress this shortcoming, we developed a drivable, chronically implanted microwire recording preparation that allowed us to follow visual responses in inferotemporal (IT) cortex in awake behaving monkeys across multiple days, and in many cases across months. The microwire bundle and other implanted components were MRI compatible and thus permitted in the same animals both functional imaging and long-term recording from multiple neurons in deep structures within a region the approximate size of one voxel (<1 mm). The distinct patterns of stimulus selectivity observed in IT neurons, together with stable features in spike waveforms and interspike interval distributions, allowed us to track individual neurons across weeks and sometimes months. The long-term consistency of visual responses shown here permits large-scale mappings of neuronal properties using massive image libraries presented over the course of days. We demonstrate this possibility by screening the visual responses of single neurons to a set of 10,000 stimuli. PMID:24966298

  3. "Anxiolytic" and "anxiogenic" benzodiazepines and beta-carbolines: effects on aggressive and social behavior in rats and squirrel monkeys.

    PubMed

    Weerts, E M; Tornatzky, W; Miczek, K A

    1993-01-01

    Ethopharmacological studies on the behavior of socially housed rats and squirrel monkeys were conducted to explore the role of the benzodiazepine GABAA-coupled ionophore receptor complex in aggressive and social interactions. Benzodiazepine receptor (BZR) antagonists, ZK 93426 (1-10 mg/kg) and flumazenil (3-10 mg/kg), the partial agonist, ZK 91296 (1-10 mg/kg) and the partial inverse agonists Ro 15-4513 (0.3-10 mg/kg), were administered to (1) squirrel monkeys prior to 1 h focal observations within established social groups or to (2) resident male rats before confrontations with a naive male intruder in their home cage for 5 min. Aggression was modified in a similar manner in both species, although squirrel monkeys were more sensitive to BZR challenges. Specifically, resident male rats showed dose dependent reductions in attack bites directed at intruder males that were significant at the highest dose of ZK 93426 (10 mg/kg). In squirrel monkeys, ZK 93426 (3 and 10 mg/kg) reduced aggressive grasps, threats and displays, as well as reducing the duration of being the target of aggression from untreated group members (1-10 mg/kg). The BZR partial agonist, ZK 91296 and the antagonist, flumazenil produced few effects on social behavior, low and high intensity aggression and motor activity in both species. Flumazenil (10-30 mg/kg) and ZK 91296 (10 mg/kg), but not ZK 93426, produced significant increases in foraging and feeding behaviors in squirrel monkeys. The hyperphagic effects of ZK 91296 and flumazenil, that are typical of BZR agonists compounds, were not observed in rats.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7870916

  4. Memory and socioemotional behavior in monkeys after hippocampal damage incurred in infancy or in adulthood.

    PubMed

    Bachevalier, J; Alvarado, M C; Malkova, L

    1999-08-01

    The present study reviews the long-term effects of neonatal hippocampal damage in monkeys on the development of memory functions and socioemotional behavior. The results showed that neonatal damage to the hippocampal formation impairs specific memory processes, such as those subserving automatic (as opposed to effortful) recognition memory and relational learning, while sparing the abilities to acquire skills, such as object discriminations. Furthermore, the neonatal hippocampectomy led to a progressive loss of social affiliation and a protracted emergence of locomotor stereotypies. While the memory losses following neonatal hippocampal lesions resemble those found after similar lesions acquired in adulthood, only the neonatal lesions resulted in a protracted emergence of abnormal behaviors. These later findings suggested that, presumably, the neonatal lesions impacted on neural systems remote from the site of damage. This was confirmed by our more recent neurobiological studies, demonstrating that neonatal, but not late, lesions of the medial temporal lobe region, disrupt the normal behavioral and cognitive processes subserved by the prefrontal cortex and the caudate nucleus. All together the data support the neurodevelopmental hypothesis viewing early insult to the medial temporal region as the origin of developmental psychosis in humans, such as schizophrenia. PMID:10435198

  5. Interaction between behavioral and pharmacological treatment strategies to decrease cocaine choice in rhesus monkeys.

    PubMed

    Banks, Matthew L; Blough, Bruce E; Negus, S Stevens

    2013-02-01

    Behavioral and pharmacotherapeutic approaches constitute two prominent strategies for treating cocaine dependence. This study investigated interactions between behavioral and pharmacological strategies in a preclinical model of cocaine vs food choice. Six rhesus monkeys, implanted with a chronic indwelling double-lumen venous catheter, initially responded under a concurrent schedule of food delivery (1-g pellets, fixed-ratio (FR) 100 schedule) and cocaine injections (0-0.1 mg/kg/injection, FR 10 schedule) during continuous 7-day treatment periods with saline or the agonist medication phenmetrazine (0.032-0.1 mg/kg/h). Subsequently, the FR response requirement for cocaine or food was varied (food, FR 100; cocaine, FR 1-100; cocaine, FR 10; food, FR 10-300), and effects of phenmetrazine on cocaine vs food choice were redetermined. Decreases in the cocaine FR or increases in the food FR resulted in leftward shifts in the cocaine choice dose-effect curve, whereas increases in the cocaine FR or decreases in the food FR resulted in rightward shifts in the cocaine choice dose-effect curve. The efficacy of phenmetrazine to decrease cocaine choice varied systematically as a function of the prevailing response requirements, such that phenmetrazine efficacy was greatest when cocaine choice was maintained by relatively low unit cocaine doses. These results suggest that efficacy of pharmacotherapies to modulate cocaine use can be influenced by behavioral contingencies of cocaine availability. Agonist medications may be most effective under contingencies that engender choice of relatively low cocaine doses. PMID:22968813

  6. Stress-relevant social behaviors of middle-class male cynomolgus monkeys (Macaca fascicularis)

    PubMed Central

    CUI, Ding; ZHOU, Yuan

    2015-01-01

    Stress from dominance ranks in human societies, or that of other social animals, especially nonhuman primates, can have negative influences on health. Individuals holding different social status may be burdened with various stress levels. The middle class experiences a special stress situation within the dominance hierarchy due to its position between the higher and lower classes. Behaviorally, questions about where middle-class stress comes from and how individuals adapt to middle-class stress remain poorly understood in nonhuman primates. In the present study, social interactions, including aggression, avoidance, grooming and mounting behaviors, between beta males, as well as among group members holding higher or lower social status, were analyzed in captive male-only cynomolgus monkey groups. We found that aggressive tension from the higher hierarchy members was the main origin of stress for middle-class individuals. However, behaviors such as attacking lower hierarchy members immediately after being the recipient of aggression, as well as increased avoidance, grooming and mounting toward both higher and lower hierarchy members helped alleviate middle-class stress and were particular adaptations to middle-class social status. PMID:26646570

  7. Stress-relevant social behaviors of middle-class male cynomolgus monkeys (Macaca fascicularis).

    PubMed

    Cui, Ding; Zhou, Yuan

    2015-11-18

    Stress from dominance ranks in human societies, or that of other social animals, especially nonhuman primates, can have negative influences on health. Individuals holding different social status may be burdened with various stress levels. The middle class experiences a special stress situation within the dominance hierarchy due to its position between the higher and lower classes. Behaviorally, questions about where middle-class stress comes from and how individuals adapt to middle-class stress remain poorly understood in nonhuman primates. In the present study, social interactions, including aggression, avoidance, grooming and mounting behaviors, between beta males, as well as among group members holding higher or lower social status, were analyzed in captive male-only cynomolgus monkey groups. We found that aggressive tension from the higher hierarchy members was the main origin of stress for middle-class individuals. However, behaviors such as attacking lower hierarchy members immediately after being the recipient of aggression, as well as increased avoidance, grooming and mounting toward both higher and lower hierarchy members helped alleviate middle-class stress and were particular adaptations to middle-class social status. PMID:26646570

  8. A Behavioral Taxonomy of Loneliness in Humans and Rhesus Monkeys (Macaca mulatta)

    PubMed Central

    Capitanio, John P.; Hawkley, Louise C.; Cole, Steven W.; Cacioppo, John T.

    2014-01-01

    Social relationships endow health and fitness benefits, but considerable variation exists in the extent to which individuals form and maintain salutary social relationships. The mental and physical health effects of social bonds are more strongly related to perceived isolation (loneliness) than to objective social network characteristics. We sought to develop an animal model to facilitate the experimental analysis of the development of, and the behavioral and biological consequences of, loneliness. In Study 1, using a population-based sample of older adults, we examined how loneliness was influenced both by social network size and by the extent to which individuals believed that their daily social interactions reflected their own choice. Results revealed three distinct clusters of individuals: (i) individuals with large networks who believed they had high choice were lowest in loneliness, (ii) individuals with small social networks who believed they had low choice were highest in loneliness, and (iii) the remaining two groups were intermediate and equivalent in loneliness. In Study 2, a similar three-group structure was identified in two separate samples of adult male rhesus monkeys (Macaca mulatta) living in large social groups: (i) those high in sociability who had complex social interaction with a broad range of social partners (putatively low in loneliness), (ii) those low in sociability who showed tentative interactions with certain classes of social partners (putatively high in loneliness), and (iii) those low in sociability who interacted overall at low levels with a broad range of social partners (putatively low or intermediate in loneliness). This taxonomy in monkeys was validated in subsequent experimental social probe studies. These results suggest that, in highly social nonhuman primate species, some animals may show a mismatch between social interest and social attainment that could serve as a useful animal model for experimental and mechanistic

  9. Antagonism of Metabotropic Glutamate 1 Receptors Attenuates Behavioral Effects of Cocaine and Methamphetamine in Squirrel Monkeys

    PubMed Central

    Platt, Donna M.; Spealman, Roger D.

    2012-01-01

    Within the group I family of metabotropic glutamate receptors (mGluRs), substantial evidence points to a role for mGluR5 mechanisms in cocaine's abuse-related behavioral effects, but less is understood about the contribution of mGluR1, which also belongs to the group I mGluR family. The selective mGluR1 antagonist JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone] was used to investigate the role of mGluR1 in the behavioral effects of cocaine and methamphetamine. In drug discrimination experiments, squirrel monkeys were trained to discriminate cocaine from saline by using a two-lever, food-reinforced operant procedure. JNJ16259685 (0.56 mg/kg) pretreatments significantly attenuated cocaine's discriminative stimulus effects and the cocaine-like discriminative stimulus effects of methamphetamine. In monkeys trained to self-administer cocaine or methamphetamine under a second-order schedule of intravenous drug injection, JNJ16259685 (0.56 mg/kg) significantly reduced drug-reinforced responding, resulting in a downward displacement of dose-response functions. In reinstatement studies, intravenous priming with cocaine accompanied by restoration of a cocaine-paired stimulus reinstated extinguished cocaine-seeking behavior, which was significantly attenuated by JNJ16259685 (0.56 mg/kg). Finally, in experiments involving food rather than drug self-administration, cocaine and methamphetamine increased the rate of responding, and the rate-increasing effects of both psychostimulants were significantly attenuated by JNJ16259685 (0.3 mg/kg). At the doses tested, JNJ16259685 did not significantly suppress food-reinforced behavior (drug discrimination or fixed-interval schedule of food delivery), but did significantly reduce species-typical locomotor activity in observational studies. To the extent that the psychostimulant-antagonist effects of JNJ16259685 are independent of motor function suppression, further research is warranted to

  10. Antagonism of metabotropic glutamate 1 receptors attenuates behavioral effects of cocaine and methamphetamine in squirrel monkeys.

    PubMed

    Achat-Mendes, Cindy; Platt, Donna M; Spealman, Roger D

    2012-10-01

    Within the group I family of metabotropic glutamate receptors (mGluRs), substantial evidence points to a role for mGluR5 mechanisms in cocaine's abuse-related behavioral effects, but less is understood about the contribution of mGluR1, which also belongs to the group I mGluR family. The selective mGluR1 antagonist JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone] was used to investigate the role of mGluR1 in the behavioral effects of cocaine and methamphetamine. In drug discrimination experiments, squirrel monkeys were trained to discriminate cocaine from saline by using a two-lever, food-reinforced operant procedure. JNJ16259685 (0.56 mg/kg) pretreatments significantly attenuated cocaine's discriminative stimulus effects and the cocaine-like discriminative stimulus effects of methamphetamine. In monkeys trained to self-administer cocaine or methamphetamine under a second-order schedule of intravenous drug injection, JNJ16259685 (0.56 mg/kg) significantly reduced drug-reinforced responding, resulting in a downward displacement of dose-response functions. In reinstatement studies, intravenous priming with cocaine accompanied by restoration of a cocaine-paired stimulus reinstated extinguished cocaine-seeking behavior, which was significantly attenuated by JNJ16259685 (0.56 mg/kg). Finally, in experiments involving food rather than drug self-administration, cocaine and methamphetamine increased the rate of responding, and the rate-increasing effects of both psychostimulants were significantly attenuated by JNJ16259685 (0.3 mg/kg). At the doses tested, JNJ16259685 did not significantly suppress food-reinforced behavior (drug discrimination or fixed-interval schedule of food delivery), but did significantly reduce species-typical locomotor activity in observational studies. To the extent that the psychostimulant-antagonist effects of JNJ16259685 are independent of motor function suppression, further research is warranted to

  11. Visual responses of ganglion cells of a New-World primate, the capuchin monkey, Cebus apella

    PubMed Central

    Lee, Barry B; Silveira, Luiz Carlos L; Yamada, Elizabeth S; Hunt, David M; Kremers, Jan; Martin, Paul R; Troy, John B; da Silva-Filho, Manoel

    2000-01-01

    The genetic basis of colour vision in New-World primates differs from that in humans and other Old-World primates. Most New-World primate species show a polymorphism; all males are dichromats and most females trichromats. In the retina of Old-World primates such as the macaque, the physiological correlates of trichromacy are well established. Comparison of the retinae in New- and Old-World species may help constrain hypotheses as to the evolution of colour vision and the pathways associated with it. Ganglion cell behaviour was recorded from trichromatic and dichromatic members of a New-World species (the capuchin monkey, Cebus apella) and compared with macaque data. Despite some differences in quantitative detail (such as a temporal response extended to higher frequencies), results from trichromatic animals strongly resembled those from the macaque. In particular, cells of the parvocellular (PC) pathway showed characteristic frequency-dependent changes in responsivity to luminance and chromatic modulation, cells of the magnocellular (MC) pathway showed frequency-doubled responses to chromatic modulation, and the surround of MC cells received a chromatic input revealed on changing the phase of heterochromatically modulated lights. Ganglion cells of dichromats were colour-blind versions of those of trichromats. This strong physiological homology is consistent with a common origin of trichromacy in New- and Old-World monkeys; in the New-World primate the presence of two pigments in the middle-to-long wavelength range permits full expression of the retinal mechanisms of trichromatic vision. PMID:11432364

  12. Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey

    SciTech Connect

    Humphrey, A.L.; Hendrickson, A.E.

    1983-02-01

    The authors have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided with the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in the cortex, while the cytochrome label in these animals remained patchy. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.

  13. Behavioral effects of sertindole, risperidone, clozapine and haloperidol in Cebus monkeys.

    PubMed

    Casey, D E

    1996-03-01

    Extrapyramidal side effects (EPS) are major limitations to neuroleptic treatment of psychoses. To evaluate further the behavioral characteristics of the novel antipsychotic agents, a wide range of single intramuscular doses of sertindole (0.1-2.5 mg/kg IM), risperidone (0.01-0.25 mg/kg IM), clozapine (1.0-25.0 mg/kg IM), and haloperidol (0.01-0.25 mg/kg IM) were blindly evaluated at weekly intervals in Cebus monkeys previously sensitized to neuroleptics. All drugs except clozapine produced dystonia and parkinsonian symptoms, but haloperidol and risperidone were 50-100 times more potent than sertindole in producing EPS. Sertindole, risperidone and haloperidol had no significant sedative effects, whereas clozapine produced dose related sedation. Risperidone, clozapine and haloperidol but not sertindole decreased locomotor activity. Sertindole, risperidone and clozapine had a calming effect at doses below the EPS threshold, unlike haloperidol. Sertindole has many behavioral effects in nonhuman primates that are similar to those seen with the new antipsychotics, risperidone and clozapine, which suggests a favorable antipsychotic benefit/risk ratio in the clinic, especially regarding EPS. PMID:8935808

  14. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    PubMed Central

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (<8 Hz) oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  15. Impact of early life stress on the reinforcing and behavioral-stimulant effects of psychostimulants in rhesus monkeys.

    PubMed

    Ewing Corcoran, Sarah B; Howell, Leonard L

    2010-02-01

    Early life stress has effects on behavior and stress reactivity, which are linked to enhanced sensitivity to stimulants in rodents. This study investigated whether rhesus monkeys that experienced early life stress would show altered sensitivity to the reinforcing effects of stimulants as compared with controls. Control (n=5) and maternally separated (n=4) monkeys were trained to self-administer cocaine (0.1 mg/kg/injection) under a second-order schedule of intravenous drug delivery. The rate of acquisition and subsequent dose-effect determinations for cocaine (0.01-1.0 mg/kg/injection) and amphetamine (0.003-0.3 mg/kg/injection) provided complementary measures of reinforcing effectiveness. In addition, stimulant-induced increases in home cage activity and dopamine D2 receptor binding potential were quantified with positron emission tomography neuroimaging. Compared with controls, maternally separated monkeys showed lower responding during the acquisition of self-administration and in the dose-response curves for both stimulants, and significantly lower response rates during maintenance of cocaine self-administration. Maternally separated monkeys also failed to exhibit stimulant-induced increases in motor activity. Groups did not differ in dopamine D2 receptor binding potential in the caudate nucleus or the putamen. Taken together, the results of this study do not provide support for early life stress leading to enhanced vulnerability to stimulant use in the nonhuman primate model employed. PMID:20016373

  16. Biological and behavioral effects of prenatal and postnatal exposure to 2450-MHz electromagnetic radiation in the squirrel monkey

    NASA Astrophysics Data System (ADS)

    Kaplan, J.; Polson, P.; Rebert, C.; Lunan, K.; Gage, M.

    1982-01-01

    Near the beginning of the second trimester of pregnancy, 33 squirrel monkeys were exposed to 2450-MHz irradiation in a multimode cavity at whole-body average specific absorption rates equivalent to those resulting from exposure to plane wave irradiation at 0.034, 0.34, and 3.4 W/kg; exposed monkeys were compared with eight pregnant sham-exposed monkeys. Eighteen of the irradiated mothers and their offspring were exposed for an additional 6 months after parturition, and then their offspring were exposed for another 6 months. No differences were found between irradiated and control adults with respect to the number of live births produced or to measures of locomotor activity, maternal care, urinary catecholamines, plasma cortisol, 3H-thymidine and 14C-uridine uptake by phytohemagglutininstimulated blood lymphocytes, or electroencephalographic (EEG) activity. Similarly, no differences were found between exposed and nonexposed offspring on the same blood, urine, and EEG parameters. Growth rate and most aspects of behavioral development were not altered by exposure. The major difference between irradiated and control offspring was the high mortality rate (4/5) before 6 months of age in those exposed at 3.4 W/kg both before and after birth. These results indicate that microwaves at power densities to 3.4 W/kg might have little direct effect on the monkey fetus when exposures occur in utero during the latter half to two-thirds of pregnancy, but that continued exposure after birth might be harmful.

  17. Representation of Functional Category in the Monkey Prefrontal Cortex and Its Rule-Dependent Use for Behavioral Selection.

    PubMed

    Tsutsui, Ken-Ichiro; Hosokawa, Takayuki; Yamada, Munekazu; Iijima, Toshio

    2016-03-01

    Humans, monkeys, and other animals are considered to have the cognitive ability to use functional categories--that is, stimulus groups based on functional equivalence independent of physical properties. To investigate the underlying neural mechanisms of the use of functional categories, we recorded single-unit activity in the prefrontal cortex of monkeys performing a behavioral task in which the rule-dependent usage of functional category was needed to select an appropriate response. We found a neural correlate of functional categories on the single-neuron level and found that category information is coded independently of other task-relevant information such as rule and contingency information. Analysis of the time course of the information activation suggested that contingency information used for action selection is derived by integrating incoming category information with rule information maintained throughout a session. Such neural computation can be considered as the neural background of flexible behavioral control based on category and rule. PMID:26961957

  18. Innovative coconut-opening in a semi free-ranging rhesus monkey (Macaca mulatta): A case report on behavioral propensities

    PubMed Central

    Comins, Jordan A.; Russ, Brian E.; Humbert, Kelley A.; Hauser, Marc D.

    2012-01-01

    The present case report provides a description of the emergence of an innovative, highly beneficial for- aging behavior in a single rhesus monkey (Macaca mulatta) on the island of Cayo Santiago, Puerto Rico. Selectively choosing the island’s cement dock and nearby surrounding rocky terrain, our focal subject (ID: 84 J) opens coconuts using two types of underhand tosses: (1) a rolling motion to move it, and (2) a throwing motion up in the air to crack the shell. We discuss this innovative behavior in light of species-specific behavioral propensities. PMID:23280047

  19. Innovative coconut-opening in a semi free-ranging rhesus monkey (Macaca mulatta): A case report on behavioral propensities.

    PubMed

    Comins, Jordan A; Russ, Brian E; Humbert, Kelley A; Hauser, Marc D

    2011-01-01

    The present case report provides a description of the emergence of an innovative, highly beneficial for- aging behavior in a single rhesus monkey (Macaca mulatta) on the island of Cayo Santiago, Puerto Rico. Selectively choosing the island's cement dock and nearby surrounding rocky terrain, our focal subject (ID: 84 J) opens coconuts using two types of underhand tosses: (1) a rolling motion to move it, and (2) a throwing motion up in the air to crack the shell. We discuss this innovative behavior in light of species-specific behavioral propensities. PMID:23280047

  20. Population variation in neuroendocrine activity is associated with behavioral inhibition and hemispheric brain structure in young rhesus monkeys

    PubMed Central

    Short, Sarah J.; Lubach, Gabriele R.; Shirtcliff, Elizabeth A.; Styner, Martin A.; Gilmore, John H.; Coe, Christopher L.

    2014-01-01

    Summary Population variation in hypothalamic-pituitary-adrenal (HPA) activity and reactivity was assessed in a healthy sample of 48 juvenile rhesus monkeys. Cluster analysis of the HPA profiles revealed four distinct neuroendocrine phenotypes based on six indices of HPA functioning. Behavioral reactivity was also evaluated in response to novel stimuli, and revealed marked differences between animals in the highest- and lowest-cortisol clusters. Specifically, animals in the high-cortisol cluster showed larger stress-induced cortisol responses and blunted feedback sensitivity to dexamethasone. They were also emotionally reactive, displayed more aggressive behaviors, and were less likely to approach novel objects. In contrast, monkeys in the low-cortisol cluster were more likely to approach and explore novel objects. Representative animals with high or low cortisol profiles were scanned with Magnetic Resonance Imaging to evaluate structural differences in global and regional gray matter (GM) and white matter (WM) volumes. Monkeys with higher cortisol reactivity evinced less hemispheric brain asymmetry, due to decreased GM in the right hemisphere. Stress reactivity was inversely related to global GM and positively related to total cerebrospinal fluid volume. This inverse relationship was also observed in several stress-sensitive regions, including prefrontal and frontal cortices. Our study demonstrates that population variation in pituitary-adrenal activity is related to behavioral disposition and cerebral structure in this nonhuman primate species. PMID:24954302

  1. μ and κ Opioid receptor distribution in the monogamous titi monkey (Callicebus cupreus): Implications for social behavior and endocrine functioning

    PubMed Central

    Ragen, Benjamin J.; Freeman, Sara M.; Laredo, Sarah A.; Mendoza, Sally P.; Bales, Karen L.

    2015-01-01

    The opioid system is involved in infant-mother bonds and adult-adult bonds in many species. We have previously shown that μ opioid receptors (MOR) and κ opioid receptors (KOR) are involved in regulating the adult attachment of the monogamous titi monkey. The present study sought to determine the distribution of MOR and KOR in the titi monkey brain using receptor autoradiography. We used [3H]DAMGO to label MORs and [3H]U69,593 to label KORs. MOR binding was heterogeneous throughout the titi monkey brain. Specifically, MOR binding was observed in the cingulate gyrus, striatum, septal regions, diagonal band, amygdala, hypothalamus, hippocampus, and thalamus. Binding was particularly dense in the septum, medial amygdala, paraventricular nucleus of the hypothalamus, mediodorsal thalamus with moderate binding in the nucleus accumbens. Consistent with other primate species, MOR were also observed in “neurochemically unique domains of the accumbens and putamen” (NUDAPs). In general KOR binding was more homogenous. KORs were primarily found in the cingulate gyrus, striatum, amygdala and hippocampus. Dense KOR binding was observed in the claustrum. Relative MOR and KOR binding in the titi monkey striatum was similar to other humans and primates, but was much lower compared to rodents. Relative MOR binding in the titi monkey hypothalamus was much greater than that found in rodents. This study was the first to examine MOR and KOR binding in a monogamous primate. The location of these receptors gives insight into where ligands may be acting to regulate social behavior and endocrine function. PMID:25637809

  2. Factors of Problem Behavior in Visually Impaired Children.

    ERIC Educational Resources Information Center

    Schnittjer, Carl J.; Hirshoren, Alfred

    1981-01-01

    The Behavior Problem Checklist was completed by teachers of 104 students in a residential school for the visually impaired. Overall, the visually impaired children tended to have problem-behavior patterns similar to other populations and these patterns were largely independent of the visual handicap. (Author)

  3. Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey

    SciTech Connect

    Humphrey, A.L.; Hendrickson, A.E.

    1983-02-01

    We have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The zones extended through all laminae except IVc beta and, when viewed tangentially, formed separate patches 500 microns apart. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided with the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in the cortex, while the cytochrome label in these animals remained patchy. When monkeys were kept in the dark during 2-DG exposure, 2-DG-labeled patches were not seen but cytochrome oxidase-positive patches remained. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake in layers I to IVa and VI. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.

  4. Influence of cocaine history on the behavioral effects of Dopamine D(3) receptor-selective compounds in monkeys.

    PubMed

    Blaylock, B L; Gould, R W; Banala, A; Grundt, P; Luedtke, R R; Newman, A H; Nader, M A

    2011-04-01

    Although dopamine D(3) receptors have been associated with cocaine abuse, little is known about the consequences of chronic cocaine on functional activity of D(3) receptor-preferring compounds. This study examined the behavioral effects of D(3) receptor-selective 4-phenylpiperazines with differing in vitro functional profiles in adult male rhesus monkeys with a history of cocaine self-administration and controls. In vitro assays found that PG 619 (N-(3-hydroxy-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-(pyridin-2-yl)benzamide HCl) was a potent D(3) antagonist in the mitogenesis assay, but a fully efficacious agonist in the adenylyl cyclase assay, NGB 2904 (N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-9H-fluorene-2-carboxamide HCl) was a selective D(3) antagonist, whereas CJB 090 (N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-4-(pyridin-2-yl)benzamide HCl) exhibited a partial agonist profile in both in vitro assays. In behavioral studies, the D(3) preferential agonist quinpirole (0.03-1.0 mg/kg, i.v.) dose-dependently elicited yawns in both groups of monkeys. PG 619 and CJB 090 elicited yawns only in monkeys with an extensive history of cocaine, whereas NGB 2904 did not elicit yawns, but did antagonize quinpirole and PG 619-elicited yawning in cocaine-history monkeys. In another experiment, doses of PG 619 that elicited yawns did not alter response rates in monkeys self-administering cocaine (0.03-0.3 mg/kg per injection). Following saline extinction, cocaine (0.1 mg/kg) and quinpirole (0.1 mg/kg), but not PG 619 (0.1 mg/kg), reinstated cocaine-seeking behavior. When given before a cocaine prime, PG 619 decreased cocaine-elicited reinstatement. These findings suggest that (1) an incongruence between in vitro and in vivo assays, and (2) a history of cocaine self-administration can affect in vivo efficacy of D(3) receptor-preferring compounds PG 619 and CJB 090, which appear to be dependent on the behavioral assay. PMID:21289600

  5. Effects of Quetiapine Treatment on Cocaine Self-Administration and Behavioral Indices of Sleep in Adult Rhesus Monkeys

    PubMed Central

    Brutcher, Robert E.; Nader, Michael A.

    2014-01-01

    Rationale Clinical literature suggests a link between substance abuse and sleep disturbances. Quetiapine, an atypical antipsychotic has shown efficacy in treating sleep disturbances, with clinical studies showing promise for quetiapine as a treatment for cocaine abuse. Objective The goal of this study was to examine the effects of quetiapine on cocaine self-administration and behavioral indices of sleep in monkeys. Methods Seven adult male rhesus monkeys, fitted with Actical® activity monitors, were trained to respond under a choice paradigm of food (1.0-g pellets) and cocaine (0.003–0.3 mg/kg per injection) presentation. First, monkeys received acute pretreatment (45 min) with quetiapine (25–75 mg, p.o.) prior to choice sessions; three cocaine doses were studied in combination with quetiapine. Next, the effect of chronic (14–16 days) quetiapine treatment (25–250 mg, p.o., BID) was examined in combination with the lowest preferred cocaine dose (≥ 80% cocaine choice). Behavioral indices of sleep, based on activity measures obtained during lights-out, were recorded throughout the study. Results Acute quetiapine decreased cocaine choice in four of the seven monkeys. Chronic quetiapine treatment resulted in initial decreases, but tolerance developed to these effects. Acute doses of quetiapine did not improve sleep efficiency the following night, nor did chronic quetiapine. The first night after discontinuing quetiapine treatment resulted in significant decreases in sleep efficiency and increases in nighttime activity. Conclusions These findings do not offer support for the use of quetiapine as a monotherapy for treatment of cocaine abuse nor as an adjunct therapy to treat sleep disturbances associated with stimulant abuse. PMID:25030802

  6. Binocular Stereoscopy in Visual Areas V-2, V-3, and V-3A of the Macaque Monkey

    PubMed Central

    Hubel, David H.; Wiesel, Torsten N.; Yeagle, Erin M.; Lafer-Sousa, Rosa; Conway, Bevil R.

    2015-01-01

    Over 40 years ago, Hubel and Wiesel gave a preliminary report of the first account of cells in monkey cerebral cortex selective for binocular disparity. The cells were located outside of V-1 within a region referred to then as “area 18.” A full-length manuscript never followed, because the demarcation of the visual areas within this region had not been fully worked out. Here, we provide a full description of the physiological experiments and identify the locations of the recorded neurons using a contemporary atlas generated by functional magnetic resonance imaging; we also perform an independent analysis of the location of the neurons relative to an anatomical landmark (the base of the lunate sulcus) that is often coincident with the border between V-2 and V-3. Disparity-tuned cells resided not only in V-2, the area now synonymous with area 18, but also in V-3 and probably within V-3A. The recordings showed that the disparity-tuned cells were biased for near disparities, tended to prefer vertical orientations, clustered by disparity preference, and often required stimulation of both eyes to elicit responses, features strongly suggesting a role in stereoscopic depth perception. PMID:24122139

  7. Binocular stereoscopy in visual areas V-2, V-3, and V-3A of the macaque monkey.

    PubMed

    Hubel, David H; Wiesel, Torsten N; Yeagle, Erin M; Lafer-Sousa, Rosa; Conway, Bevil R

    2015-04-01

    Over 40 years ago, Hubel and Wiesel gave a preliminary report of the first account of cells in monkey cerebral cortex selective for binocular disparity. The cells were located outside of V-1 within a region referred to then as "area 18." A full-length manuscript never followed, because the demarcation of the visual areas within this region had not been fully worked out. Here, we provide a full description of the physiological experiments and identify the locations of the recorded neurons using a contemporary atlas generated by functional magnetic resonance imaging; we also perform an independent analysis of the location of the neurons relative to an anatomical landmark (the base of the lunate sulcus) that is often coincident with the border between V-2 and V-3. Disparity-tuned cells resided not only in V-2, the area now synonymous with area 18, but also in V-3 and probably within V-3A. The recordings showed that the disparity-tuned cells were biased for near disparities, tended to prefer vertical orientations, clustered by disparity preference, and often required stimulation of both eyes to elicit responses, features strongly suggesting a role in stereoscopic depth perception. PMID:24122139

  8. Oxytocin modulates behavioral and physiological responses to a stressor in marmoset monkeys.

    PubMed

    Cavanaugh, Jon; Carp, Sarah B; Rock, Chelsea M; French, Jeffrey A

    2016-04-01

    Social isolation is a major source of stress and can lead to activation of the hypothalamic-pituitary-adrenal (HPA) axis. The presence of a close social partner can reduce the magnitude of the HPA-axis response during a stressor, a phenomenon known as social buffering. The oxytocin (OXT) system has been identified as one candidate for mediating social buffering due to its role in the facilitation of social bonding and the expression of prosocial behavior. The goal of the present study was to determine whether the OXT system contributes to social buffering of HPA-axis activity in response to stressor exposure in marmoset monkeys (Callithrix jacchus). Male and female marmosets experienced a standardized psychogenic stressor with and without their long-term mate under OXT-treatments (Pro(8)-OXT, Leu(8)-OXT, OXT antagonist, and saline); we assessed HPA-axis activity by measuring urinary cortisol across the stressor. We found that blocking, but not augmenting, the OXT system altered patterns of cortisol and proximity behavior in response to a stressor. We demonstrated that (1) the presence of a mate during a stressor significantly attenuated HPA-axis activity in female, but not male, marmosets; (2) male, but not female, marmosets treated with an OXT antagonist had significantly higher HPA-axis activity across the stressor than when they were treated with saline, suggesting that the OXT system may reduce the stressor-induced rise in cortisol levels; (3) male and female marmosets treated with an OXT antagonist spent significantly less time in close proximity to their mate during the first 30min of the stressor than when they were treated with saline, suggesting that the OXT system may be important for the expression of partner-seeking behavior during a stressor. Thus, the OXT system and social context differentially influenced how the HPA-axis responded to a stressor in male and female marmosets, and may modulate HPA-axis activity by promoting the expression of proximity

  9. Behavioral model of visual perception and recognition

    NASA Astrophysics Data System (ADS)

    Rybak, Ilya A.; Golovan, Alexander V.; Gusakova, Valentina I.

    1993-09-01

    In the processes of visual perception and recognition human eyes actively select essential information by way of successive fixations at the most informative points of the image. A behavioral program defining a scanpath of the image is formed at the stage of learning (object memorizing) and consists of sequential motor actions, which are shifts of attention from one to another point of fixation, and sensory signals expected to arrive in response to each shift of attention. In the modern view of the problem, invariant object recognition is provided by the following: (1) separated processing of `what' (object features) and `where' (spatial features) information at high levels of the visual system; (2) mechanisms of visual attention using `where' information; (3) representation of `what' information in an object-based frame of reference (OFR). However, most recent models of vision based on OFR have demonstrated the ability of invariant recognition of only simple objects like letters or binary objects without background, i.e. objects to which a frame of reference is easily attached. In contrast, we use not OFR, but a feature-based frame of reference (FFR), connected with the basic feature (edge) at the fixation point. This has provided for our model, the ability for invariant representation of complex objects in gray-level images, but demands realization of behavioral aspects of vision described above. The developed model contains a neural network subsystem of low-level vision which extracts a set of primary features (edges) in each fixation, and high- level subsystem consisting of `what' (Sensory Memory) and `where' (Motor Memory) modules. The resolution of primary features extraction decreases with distances from the point of fixation. FFR provides both the invariant representation of object features in Sensor Memory and shifts of attention in Motor Memory. Object recognition consists in successive recall (from Motor Memory) and execution of shifts of attention and

  10. The physiological effects of monocular deprivation and their reversal in the monkey's visual cortex.

    PubMed Central

    Blakemore, C; Garey, L J; Vital-Durand, F

    1978-01-01

    1. 1127 single units were recorded during oblique penetrations in area 17 of one normal, three monocularly deprived and four reverse sutured monkeys. 2. In all animals most cells outside layer IV c were orientation-selective, and preferred orientation usually shifted from cell to cell in a regular progressive sequence. 3. The presence in layer IV c of non-oriented, monocularly driven units, organized in alternating right-eye and left-eye 'stripes' (LeVay, Hubel & Wiesel, 1975) was confirmed. 4. Early monocular deprivation (2--5 1/2 weeks) caused a strong shift of ocular dominance towards the non-deprived eye. However, even outside layer IV c, neural background and some isolated cells could still be driven from the deprived eye in regularly spaced, narrow columnar regions. In layer IV c the non-deprived eye's stripes were almost three times wider, on average, than the deprived. 5. Later monocular deprivation (11--16 months) had no detectable influence on layer IV c but seemed to cause a small shift in ocular dominance outside IV c. Deprivation for 6 1/4 months in an adult had no such effect. 6. After early reverse suturing (at 5 1/2 weeks) the originally deprived eye gained dominance over cells outside layer IV c just as complete as that originally exercised by the eye that was first non-deprived. 7. The later reverse suturing was delayed, the less effective was recapture by the originally deprived eye. Reversal at 8 weeks led to roughly equal numbers of cells being dominated by each eye; fewer cells became dominated by the newly open eye after reverse suturing at 9 weeks and most of them were non-oriented; reversal at 38 1/2 weeks had no effect. 8. Binocular cells, though rare in reverse sutured animals, always had very similar preferred orientations in the two eyes. The columnar sequences of preferred orientation were not interrupted at the borders of ocular dominance columns. 9. Even within layer IV c there was evidence for re-expansion of physiologically

  11. "Global" visual training and extent of transfer in amblyopic macaque monkeys.

    PubMed

    Kiorpes, Lynne; Mangal, Paul

    2015-01-01

    Perceptual learning is gaining acceptance as a potential treatment for amblyopia in adults and children beyond the critical period. Many perceptual learning paradigms result in very specific improvement that does not generalize beyond the training stimulus, closely related stimuli, or visual field location. To be of use in amblyopia, a less specific effect is needed. To address this problem, we designed a more general training paradigm intended to effect improvement in visual sensitivity across tasks and domains. We used a "global" visual stimulus, random dot motion direction discrimination with 6 training conditions, and tested for posttraining improvement on a motion detection task and 3 spatial domain tasks (contrast sensitivity, Vernier acuity, Glass pattern detection). Four amblyopic macaques practiced the motion discrimination with their amblyopic eye for at least 20,000 trials. All showed improvement, defined as a change of at least a factor of 2, on the trained task. In addition, all animals showed improvements in sensitivity on at least some of the transfer test conditions, mainly the motion detection task; transfer to the spatial domain was inconsistent but best at fine spatial scales. However, the improvement on the transfer tasks was largely not retained at long-term follow-up. Our generalized training approach is promising for amblyopia treatment, but sustaining improved performance may require additional intervention. PMID:26505868

  12. Visual scanning behavior and pilot workload

    NASA Technical Reports Server (NTRS)

    Tole, J. R.; Stephens, A. T.; Vivaudou, M.; Ephrath, A. R.; Young, L. R.

    1983-01-01

    Sophisticated man machine interaction often requires the human operator to perform a stereotyped scan of various instruments in order to monitor and/or control a system. For situations in which this type of stereotyped behavior exists, such as certain phases of instrument flight, scan pattern was shown to be altered by the imposition of simultaneous verbal tasks. A study designed to examine the relationship between pilot visual scan of instruments and mental workload is described. It was found that a verbal loading task of varying difficulty causes pilots to stare at the primary instrument as the difficulty increases and to shed looks at instruments of less importance. The verbal loading task also affected the rank ordering of scanning sequences. By examining the behavior of pilots with widely varying skill levels, it was suggested that these effects occur most strongly at lower skill levels and are less apparent at high skill levels. A graphical interpretation of the hypothetical relationship between skill, workload, and performance is introduced and modelling results are presented to support this interpretation.

  13. Sequential organization and optimization of the nut-cracking behavior of semi-free tufted capuchin monkeys (Sapajus sp.).

    PubMed

    Corat, Clara; Siqueira, José; Ottoni, Eduardo B

    2016-01-01

    Stone-aided nut-cracking requires the coordination of three elements: the agent must assemble nuts, a "hammer" stone and an "anvil." Under naturalistic settings, nut-cracking sites, constituted of anvil-like surfaces and already containing a hammer stone, can be fairly stable, lasting as long as the "hammer" stays in place. In an experiment with a semi-free-ranging group of tufted capuchin monkeys (Sapajus sp.) we observed the behavioral sequences leading to nut-cracking. We positioned nuts, hammer, and anvil at the vertices of a 10-m-sided equilateral triangle. Thus, to crack a nut the individuals had to visit the vertices and gather the movable elements (nut and hammer) at the anvil. Under such conditions, the monkeys systematically employed a nut-hammer-anvil vertex visit sequence, one of the shortest and more cost-effective possible routes. In the following experiment, we examined whether the gathering of the hammer after the nuts resulted solely from a "nut first" strategy or if the monkeys were also minimizing hammer transport costs. We positioned two hammers, of the same weight, at different distances from the nuts and anvil, so the cost of hammer transportation (energy and risk of injury) would be higher or lower depending on the choice of hammer (the hammer closer to the nuts being farther from the anvil). We found that, instead of collecting the closest hammer, after collecting the nut, the monkeys systematically chose the hammer closer to (and beyond) the anvil, thus minimizing transport costs. PMID:26411435

  14. Metabotropic glutamate receptor 5 shows different patterns of localization within the parallel visual pathways in macaque and squirrel monkeys

    PubMed Central

    Shostak, Yuri; Wenger, Ashley; Mavity-Hudson, Julia; Casagrande, Vivien A

    2015-01-01

    Glutamate is used as an excitatory neurotransmitter by the koniocellular (K), magnocellular (M), and parvocellular (P) pathways to transfer signals from the primate lateral geniculate nucleus (LGN) to primary visual cortex (V1). Glutamate acts through both fast ionotropic receptors, which appear to carry the main sensory message, and slower, modulatory metabotropic receptors (mGluRs). In this study, we asked whether mGluR5 relates in distinct ways to the K, M, and P LGN axons in V1. To answer this question, we used light microscopic immunocytochemistry and preembedding electron microscopic immunogold labeling to determine the localization of mGluR5 within the layers of V1 in relation to the K, M, and P pathways in macaque and squirrel monkeys. These pathways were labeled separately via wheat germ agglutinin–horseradish peroxidase (WGA–HRP) injections targeting the LGN layers. mGluR5 is of interest because it: 1) has been shown to be expressed in the thalamic input layers; 2) appears to be responsible for some types of oscillatory firing, which could be important in the binding of visual features; and 3) has been associated with a number of sensory-motor gating-related pathologies, including schizophrenia and autism. Our results demonstrated the presence of mGluR5 in the neuropil of all V1 layers. This protein was lowest in IVCα (M input) and the infragranular layers. In layer IVC, mGluR5 also was found postsynaptic to about 30% of labeled axons, but the distribution was uneven, such that postsynaptic mGluR5 label tended to occur opposite smaller (presumed P), and not larger (presumed M) axon terminals. Only in the K pathway in layer IIIB, however, was mGluR5 always found in the axon terminals themselves. The presence of mGluR5 in K axons and not in M and P axons, and the presence of mGluR5 postsynaptic mainly to smaller P and not larger M axons suggest that the response to the release of glutamate is modulated in distinct ways within and between the parallel

  15. Computational modeling of orientation tuning dynamics in monkey primary visual cortex.

    PubMed

    Pugh, M C; Ringach, D L; Shapley, R; Shelley, M J

    2000-01-01

    In the primate visual pathway, orientation tuning of neurons is first observed in the primary visual cortex. The LGN cells that comprise the thalamic input to V1 are not orientation tuned, but some V1 neurons are quite selective. Two main classes of theoretical models have been offered to explain orientation selectivity: feedforward models, in which inputs from spatially aligned LGN cells are summed together by one cortical neuron; and feedback models, in which an initial weak orientation bias due to convergent LGN input is sharpened and amplified by intracortical feedback. Recent data on the dynamics of orientation tuning, obtained by a cross-correlation technique, may help to distinguish between these classes of models. To test this possibility, we simulated the measurement of orientation tuning dynamics on various receptive field models, including a simple Hubel-Wiesel type feedforward model: a linear spatiotemporal filter followed by an integrate-and-fire spike generator. The computational study reveals that simple feedforward models may account for some aspects of the experimental data but fail to explain many salient features of orientation tuning dynamics in V1 cells. A simple feedback model of interacting cells is also considered. This model is successful in explaining the appearance of Mexican-hat orientation profiles, but other features of the data continue to be unexplained. PMID:10798599

  16. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1.

    PubMed

    Shmuel, Amir; Augath, Mark; Oeltermann, Axel; Logothetis, Nikos K

    2006-04-01

    Most functional brain imaging studies use task-induced hemodynamic responses to infer underlying changes in neuronal activity. In addition to increases in cerebral blood flow and blood oxygenation level-dependent (BOLD) signals, sustained negative responses are pervasive in functional imaging. The origin of negative responses and their relationship to neural activity remain poorly understood. Through simultaneous functional magnetic resonance imaging and electrophysiological recording, we demonstrate a negative BOLD response (NBR) beyond the stimulated regions of visual cortex, associated with local decreases in neuronal activity below spontaneous activity, detected 7.15 +/- 3.14 mm away from the closest positively responding region in V1. Trial-by-trial amplitude fluctuations revealed tight coupling between the NBR and neuronal activity decreases. The NBR was associated with comparable decreases in local field potentials and multiunit activity. Our findings indicate that a significant component of the NBR originates in neuronal activity decreases. PMID:16547508

  17. Reward expectation differentially modulates attentional behavior and activity in visual area V4

    PubMed Central

    Baruni, Jalal K.; Lau, Brian; Salzman, C. Daniel

    2015-01-01

    Neural activity in visual area V4 is enhanced when attention is directed into neuronal receptive fields. However, the source of this enhancement is unclear since most physiological studies have manipulated attention by changing the absolute reward associated with a particular location as well as its value relative to other locations. We trained monkeys to discriminate the orientation of two stimuli presented simultaneously in different hemifields while independently varying the reward magnitude associated with correct discrimination at each location. Behavioral measures of attention were controlled by the relative value of each location. By contrast, neurons in V4 were consistently modulated by absolute reward value, exhibiting increased activity, increased gamma-band power, and decreased trial-to-trial variability whenever receptive field locations were associated with large rewards. These data challenge the notion that the perceptual benefits of spatial attention rely on increased signal-to-noise in V4. Instead, these benefits likely derive from downstream selection mechanisms. PMID:26479590

  18. Reward expectation differentially modulates attentional behavior and activity in visual area V4.

    PubMed

    Baruni, Jalal K; Lau, Brian; Salzman, C Daniel

    2015-11-01

    Neural activity in visual area V4 is enhanced when attention is directed into neuronal receptive fields. However, the source of this enhancement is unclear, as most physiological studies have manipulated attention by changing the absolute reward associated with a particular location as well as its value relative to other locations. We trained monkeys to discriminate the orientation of two stimuli presented simultaneously in different hemifields while we independently varied the reward magnitude associated with correct discrimination at each location. Behavioral measures of attention were controlled by the relative value of each location. By contrast, neurons in V4 were consistently modulated by absolute reward value, exhibiting increased activity, increased gamma-band power and decreased trial-to-trial variability whenever receptive field locations were associated with large rewards. These data challenge the notion that the perceptual benefits of spatial attention rely on increased signal-to-noise in V4. Instead, these benefits likely derive from downstream selection mechanisms. PMID:26479590

  19. Topography of excitatory and inhibitory connectional anatomy in monkey visual cortex

    NASA Astrophysics Data System (ADS)

    Lund, Jennifer S.; Levitt, J. B.; Wu, Quanfeng

    1994-03-01

    It is chiefly within the superficial layers of 1 - 3 of the cerebral cortex that new properties are developed from relayed afferent information. The intrinsic circuitry of these layers is uniquely structured compared to the deeper layers; each pyramidal neuron connects laterally to other pyramids at a series of offset points spaced at regular intervals around it. As seen in tangential sections of layers 1 - 3, the pyramidal neuron axon terminal fields are roughly circular in cross section, forming a `polka dot' overall pattern of terminal distribution. In regions of peak density, the diameter of the circular fields matches the width of the uninnervated regions between the terminal fields. This dimension is also that of the average lateral spread of the dendrites of single pyramidal neurons making up the connections in each visual cortical area, a dimension which varies considerably between different cortical regions. Since every point across each cortical area shows similar laterally spreading patterns of connectivity, the overall array is believed to be a continuum of offset connectional lattices. It is also presumed that each pyramidal neuron, as well as projecting to separate points, receives convergent inputs from similar arrays of offset neurons. The geometry of local circuit inhibitory neurons matches elements of these lattices; basket neuron axons in these layers spread three times the diameter of the local pyramidal neuron dendritic fields while the basket neuron dendritic field matches that of the pyramidal cell. If both basket cell and pyramidal neuron at single points are coactivated by afferent relays, the basket axon might create a surround zone of inhibition preventing other pyramidal cells in the surrounding region being active simultaneously. As the pyramid develops its connections in this inhibitory field may fore each pyramidal neuron to send its axon out beyond the local inhibitory zone to find other pyramidal cells activated by the same stimulus

  20. Transient activity in monkey area MT represents speed changes and is correlated with human behavioral performance.

    PubMed

    Traschütz, Andreas; Kreiter, Andreas K; Wegener, Detlef

    2015-02-01

    Neurons in the middle temporal area (MT) respond to motion onsets and speed changes with a transient-sustained firing pattern. The latency of the transient response has recently been shown to correlate with reaction time in a speed change detection task, but it is not known how the sign, the amplitude, and the latency of this response depend on the sign and the magnitude of a speed change, and whether these transients can be decoded to explain speed change detection behavior. To investigate this issue, we measured the neuronal representation of a wide range of positive and negative speed changes in area MT of fixating macaques and obtained three major findings. First, speed change transients not only reflect a neuron's absolute speed tuning but are shaped by an additional gain that scales the tuned response according to the magnitude of a relative speed change. Second, by means of a threshold model positive and negative population transients of a moderate number of MT neurons explain detection of both positive and negative speed changes, respectively, at a level comparable to human detection rates under identical visual stimulation. Third, like reaction times in a psychophysical model of velocity detection, speed change response latencies follow a power-law function of the absolute difference of a speed change. Both this neuronal representation and its close correlation with behavioral measures of speed change detection suggest that neuronal transients in area MT facilitate the detection of rapid changes in visual input. PMID:25392161

  1. Evaluation of seven hypotheses for metamemory performance in rhesus monkeys

    PubMed Central

    Basile, Benjamin M.; Schroeder, Gabriel R.; Brown, Emily Kathryn; Templer, Victoria L.; Hampton, Robert R.

    2014-01-01

    Knowing the extent to which nonhumans and humans share mechanisms for metacognition will advance our understanding of cognitive evolution and will improve selection of model systems for biomedical research. Some nonhuman species avoid difficult cognitive tests, seek information when ignorant, or otherwise behave in ways consistent with metacognition. There is agreement that some nonhuman animals “succeed” in these metacognitive tasks, but little consensus about the cognitive mechanisms underlying performance. In one paradigm, rhesus monkeys visually searched for hidden food when ignorant of the location of the food, but acted immediately when knowledgeable. This result has been interpreted as evidence that monkeys introspectively monitored their memory to adaptively control information seeking. However, convincing alternative hypotheses have been advanced that might also account for the adaptive pattern of visual searching. We evaluated seven hypotheses using a computerized task in which monkeys chose either to take memory tests immediately or to see the answer again before proceeding to the test. We found no evidence to support the hypotheses of behavioral cue association, rote response learning, expectancy violation, response competition, generalized search strategy, or postural mediation. In contrast, we repeatedly found evidence to support the memory monitoring hypothesis. Monkeys chose to see the answer when memory was poor, either from natural variation or experimental manipulation. We found limited evidence that monkeys also monitored the fluency of memory access. Overall, the evidence indicates that rhesus monkeys can use memory strength as a discriminative cue for information seeking, consistent with introspective monitoring of explicit memory. PMID:25365530

  2. Behavioral and physiological responses to subgroup size and number of people in howler monkeys inhabiting a forest fragment used for nature-based tourism.

    PubMed

    Aguilar-Melo, Adriana R; Andresen, Ellen; Cristóbal-Azkarate, Jurgi; Arroyo-Rodríguez, Victor; Chavira, Roberto; Schondube, Jorge; Serio-Silva, Juan Carlos; Cuarón, Alfredo D

    2013-11-01

    Animals' responses to potentially threatening factors can provide important information for their conservation. Group size and human presence are potentially threatening factors to primates inhabiting small reserves used for recreation. We tested these hypotheses by evaluating behavioral and physiological responses in two groups of mantled howler monkeys (Alouatta palliata mexicana) at the "Centro Ecológico y Recreativo El Zapotal", a recreational forest reserve and zoo located in the Mexican state of Chiapas. Both groups presented fission-fusion dynamics, splitting into foraging subgroups which varied in size among, but not within days. Neither subgroup size nor number of people had an effect on fecal cortisol. Out of 16 behavioral response variables tested, the studied factors had effects on six: four were affected by subgroup size and two were affected by number of people. With increasing subgroup size, monkeys increased daily path lengths, rested less, increased foraging effort, and used more plant individuals for feeding. As the number of people increased, monkeys spent more time in lower-quality habitat, and less time engaged in social interactions. Although fecal cortisol levels were not affected by the factors studied, one of the monkey groups had almost twice the level of cortisol compared to the other group. The group with higher cortisol levels also spent significantly more time in the lower-quality habitat, compared to the other group. Our results suggest that particular behavioral adjustments might allow howler monkeys at El Zapotal to avoid physiological stress due to subgroup size and number of people. However, the fact that one of the monkey groups is showing increased cortisol levels may be interpreted as a warning sign, indicating that an adjustment threshold is being reached, at least for part of the howler monkey population in this forest fragment. PMID:23801542

  3. Long-term methamphetamine administration in the vervet monkey models aspects of a human exposure: brain neurotoxicity and behavioral profiles.

    PubMed

    Melega, William P; Jorgensen, Matthew J; Laćan, Goran; Way, Baldwin M; Pham, Jamie; Morton, Grenvill; Cho, Arthur K; Fairbanks, Lynn A

    2008-05-01

    Methamphetamine (METH)-associated alterations in the human striatal dopamine (DA) system have been identified with positron emission tomography (PET) imaging and post-mortem studies but have not been well correlated with behavioral changes or cumulative METH intake. Animal studies that model some aspects of human long-term METH abuse can establish dose-dependency profiles of both behavioral changes and potential brain neurotoxicities for identifying consequences of particular cumulative exposures. Based on parameters from human and our monkey pharmacokinetic studies, we modeled a prevalent human METH exposure of daily multiple doses in socially housed vervet monkeys. METH doses were escalated over 33 weeks, with final dosages resulting in estimated peak plasma METH concentrations of 1-3 microM, a range measured in human abusers. With larger METH doses, progressive increases in abnormal behavior and decreases in social behavior were observed on 'injection' days. Anxiety increased on 'no injection' days while aggression decreased throughout the study. Thereafter, during 3 weeks abstinence, differences in baseline vs post-METH behaviors were not observed. Post-mortem analysis of METH brains showed 20% lower striatal DA content while autoradiography studies of precommissural striatum showed 35% lower [3H]WIN35428 binding to the DA transporter. No statistically significant changes were detected for [3H]dihydrotetrabenazine binding to the vesicular monoamine transporter (METH-lower by 10%) or for [3H]SCH 23390 and [3H]raclopride binding to DA D1 and D2 receptors, respectively. Collectively, this long-term, escalating dose METH exposure modeling a human abuse pattern, not associated with high-dose binges, resulted in dose-dependent behavioral effects and caused persistent changes in presynaptic striatal DA system integrity. PMID:17625500

  4. Visual expertise does not predict the composite effect across species: A comparison between spider (Ateles geoffroyi) and rhesus (Macaca mulatta) monkeys

    PubMed Central

    Taubert, Jessica; Parr, Lisa A.

    2009-01-01

    Humans are subject to the composite illusion: two identical top halves of a face are perceived as “different” when they are presented with different bottom halves. This observation suggests that when building a mental representation of a face, the underlying system perceives the whole face, and has difficulty decomposing facial features. We adapted a behavioural task that measures the composite illusion to examine the perception of faces in two nonhuman species. Specifically we had spider (Ateles geoffroyi) and rhesus monkeys (Macaca mulatta) perform a two-forced choice, match-to-sample task where only the top half of sample was relevant to the task. The results of Experiment 1 show that spider monkeys (N = 2) process the faces of familiar species (conspecifics and humans, but not chimpanzees, sheep, or sticks), holistically. The second experiment tested rhesus monkeys (N = 7) with the faces of humans, chimpanzees, gorillas, sheep and sticks. Contrary to prediction, there was no evidence of a composite effect in the human (or familiar primate) condition. Instead, we present evidence of a composite illusion in the chimpanzee condition (an unfamiliar primate). Together, these experiments show that visual expertise does not predict the composite effect across the primate order. PMID:19815323

  5. Adaptive Behavior of Children and Adolescents with Visual Impairments

    ERIC Educational Resources Information Center

    Papadopoulos, Konstantinos; Metsiou, Katerina; Agaliotis, Ioannis

    2011-01-01

    The present study explored the total adaptive behavior of children and adolescents with visual impairments, as well as their adaptive behavior in each of the domains of Communication, Daily Living Skills, and Socialization. Moreover, the predictors of the performance and developmental delay in adaptive behavior were investigated. Instrumentation…

  6. Living together: behavior and welfare in single and mixed species groups of capuchin (Cebus apella) and squirrel monkeys (Saimiri sciureus).

    PubMed

    Leonardi, Rebecca; Buchanan-Smith, Hannah M; Dufour, Valérie; MacDonald, Charlotte; Whiten, Andrew

    2010-01-01

    There are potential advantages of housing primates in mixed species exhibits for both the visiting public and the primates themselves. If the primates naturally associate in the wild, it may be more educational and enjoyable for the public to view. Increases in social complexity and stimulation may be enriching for the primates. However, mixed species exhibits might also create welfare problems such as stress from interspecific aggression. We present data on the behavior of single and mixed species groups of capuchin monkeys (Cebus apella) and squirrel monkeys (Saimiri sciureus) housed at the Living Links to Human Evolution Research Centre in the Royal Zoological Society of Scotland's Edinburgh Zoo. These species associate in the wild, gaining foraging benefits and decreased predation. But Cebus are also predators themselves with potential risks for the smaller Saimiri. To study their living together we took scan samples at > or =15 min intervals on single (n=109) and mixed species groups (n=152), and all occurrences of intraspecific aggression and interspecific interactions were recorded. We found no evidence of chronic stress and Saimiri actively chose to associate with Cebus. On 79% of scans, the two species simultaneously occupied the same part of their enclosure. No vertical displacement was observed. Interspecific interactions were common (>2.5/hr), and equally divided among mildly aggressive, neutral, and affiliative interactions such as play. Only one aggressive interaction involved physical contact and was non-injurious. Aggressive interactions were mostly (65%) displacements and vocal exchanges, initiated almost equally by Cebus and Saimiri. Modifications to the enclosure were successful in reducing these mildly aggressive interactions with affiliative interactions increasing in frequency and diversity. Our data suggest that in carefully designed, large enclosures, naturally associating monkeys are able to live harmoniously and are enriched by each other

  7. Selective changes in foraging behavior following bilateral neurotoxic amygdala lesions in rhesus monkeys

    PubMed Central

    Machado, Christopher J.; Emery, Nathan J.; Mason, William A.; Amaral, David G.

    2010-01-01

    Across a variety of species, the amygdala appears to play a key role in the detection and avoidance of potential dangers (e.g., unfamiliar social partners, novel objects or contexts, potential predators, etc.). For many species, seeking out appropriate food sources and avoiding novel, distasteful or potentially tainted food is also a daily concern. Amygdala damage in nonhuman primates has been linked to increased willingness to select unfamiliar or unpalatable foods, as well as inedible items that intact animals typically reject. However, such findings have not always been consistent and have typically been observed in relatively restrictive, laboratory-based testing contexts. We evaluated the food choices of six adult male rhesus monkeys (Macaca mulatta) with bilateral, neurotoxic amygdala lesions and six age- and experienced-matched unoperated control animals. Each animal was able to forage freely in a large enclosure stocked with five preferred and five nonpreferred foods that changed locations each day. While both groups quickly selected palatable foods, monkeys with amygdala lesions consistently selected unpalatable foods that the unoperated control animals generally avoided. Even after repeated presentations of the unpalatable foods, the amygdala-lesioned monkeys failed to change their initial pattern of diminished avoidance. These results are consistent with a general role for the amygdala in danger detection and prevention of harm in the presence of novel or noxious stimuli, regardless of whether such stimuli are conspecifics, predators, objects or foods. PMID:21133532

  8. Allelic variation in the squirrel monkey x-linked color vision gene: biogeographical and behavioral correlates.

    PubMed

    Cropp, Susan; Boinski, Sue; Li, Wen-Hsiung

    2002-06-01

    Most Neotropical primate species possess a polymorphic X-linked and a monomorphic autosomal color vision gene. Consequently, populations are composed of both dichromatics and trichromatics. Most theories on the maintenance of this genetic system revolve around possible advantages for foraging ecology. To examine the issue from a different angle, we compared the numbers and relative frequencies of alleles at the X-linked locus among three species of Saimiri representing a wide range of geographical and behavioral variation in the genus. Exons 3, 4, and 5 of the X-linked opsin gene were sequenced for a large number of X chromosomes for all three species. Several synonymous mutations were detected in exons 4 and 5 for the originally reported alleles but only a single nonsynonymous change was detected. Two alleles were found that appeared to be the result of recombination events. The low occurrence of recombinant alleles and absence of mutations in the amino acids critical for spectral tuning indicates that stabilizing selection acts to maintain the combinations of critical sites specific to each allele. Allele frequencies were approximately the same for all Saimiri species, with a slight but significant difference between S. boliviensis and S. oerstedii. No apparent correlation exists between allele frequencies and behavioral or biogeographical differences between species, casting doubt on the speculation that the spectral sensitivities of the alleles have been maintained because they are specifically well-tuned to Saimiri visual ecology. Rather, the spectral tuning peaks might have been maintained because they are as widely spaced as possible within the limited range of middlewave to longwave spectra useful to all primates. This arrangement creates a balance between maximizing the distance between spectral tuning peaks (allowing the color opponency of the visual system to distinguish between peaks) and maximizing the number of alleles within a limited range (yielding

  9. The effects of carbon dioxide inhalation of plasma MHPG, plasma hormones respiratory rate, and behavior in the Rhesus monkey

    SciTech Connect

    Krystal, J.H.; Woods, S.W.; Levesque, M.; Heninger, C.; Heninger, G.R. )

    1989-01-01

    The effects of inhalation of air and 3 concentrations of carbon dioxide (CO{sub 2}) on plasma levels of the norepinephrine metabolite, MHPG, plasma hormones, and behavioral activation were assessed in eight chair-adapted Rhesus monkeys (Macaca mulatta). In comparison to air, inhalation of 5%, 7.5% and 10% CO{sub 2} for 180 minutes produced significant dose-dependent increases in respiratory rate, plasma MHPG, cortisol, growth hormone and prolactin. CO{sub 2} at the 7.5% concentration produced peak changes in behavior at 15, growth hormone at 30, and cortisol and MHPG at 180 minutes without producing changes in prolactin. The lack of previously reported CO{sub 2} induced changes in MHPG, growth hormone and prolactin in humans exposed to 7.5% CO{sub 2} for only 15 minutes, may therefore relate to the relatively short duration of CO{sub 2} exposure.

  10. Effects of Local Habitat Variation on the Behavioral Ecology of Two Sympatric Groups of Brown Howler Monkey (Alouatta clamitans)

    PubMed Central

    Grelle, Carlos E. V.; Strier, Karen B.; Boubli, Jean P.

    2015-01-01

    Although the brown howler monkey (Alouatta clamitans) is a relatively well-studied Neotropical primate, its behavioral and dietary flexibility at the intra-population level remains poorly documented. This study presents data collected on the behavior and ecology of two closely located groups of brown howlers during the same period at the RPPN Feliciano Miguel Abdala in southeastern Brazil. One group occupied a primary valley habitat, henceforth the Valley Group (VG), and the other group occupied a regenerating hillside habitat, the Hill Group (HG). We hypothesized differences in the behavior and ecological parameters between these sympatric groups due to the predicted harsher conditions on the hillside, compared to the valley. We measured several habitat parameters within the home range of both groups and collected data on the activity budget, diet and day range lengths, from August to November 2005, between dawn and dusk. In total, behavioral data were collected for 26 (318 h) and 28 (308 h) sampling days for VG and HG, respectively. As we predicted, HG spent significantly more time feeding and consumed less fruit and more leaves than VG, consistent with our finding that the hillside habitat was of lower quality. However, HG also spent less time resting and more time travelling than VG, suggesting that the monkeys had to expend more time and energy to obtain high-energy foods, such as fruits and flowers that were more widely spaced in their hill habitat. Our results revealed that different locations in this forest vary in quality and raise the question of how different groups secure their home ranges. Fine-grained comparisons such as this are important to prioritize conservation and management areas within a reserve. PMID:26147203

  11. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey.

    PubMed

    Bauman, M D; Iosif, A-M; Ashwood, P; Braunschweig, D; Lee, A; Schumann, C M; Van de Water, J; Amaral, D G

    2013-01-01

    Antibodies directed against fetal brain proteins of 37 and 73 kDa molecular weight are found in approximately 12% of mothers who have children with autism spectrum disorder (ASD), but not in mothers of typically developing children. This finding has raised the possibility that these immunoglobulin G (IgG) class antibodies cross the placenta during pregnancy and impact brain development, leading to one form of ASD. We evaluated the pathogenic potential of these antibodies by using a nonhuman primate model. IgG was isolated from mothers of children with ASD (IgG-ASD) and of typically developing children (IgG-CON). The purified IgG was administered to two groups of female rhesus monkeys (IgG-ASD; n=8 and IgG-CON; n=8) during the first and second trimesters of pregnancy. Another control group of pregnant monkeys (n=8) was untreated. Brain and behavioral development of the offspring were assessed for 2 years. Behavioral differences were first detected when the macaque mothers responded to their IgG-ASD offspring with heightened protectiveness during early development. As they matured, IgG-ASD offspring consistently deviated from species-typical social norms by more frequently approaching familiar peers. The increased approach was not reciprocated and did not lead to sustained social interactions. Even more striking, IgG-ASD offspring displayed inappropriate approach behavior to unfamiliar peers, clearly deviating from normal macaque social behavior. Longitudinal magnetic resonance imaging analyses revealed that male IgG-ASD offspring had enlarged brain volume compared with controls. White matter volume increases appeared to be driving the brain differences in the IgG-ASD offspring and these differences were most pronounced in the frontal lobes. PMID:23838889

  12. Oxytocin enhances gaze-following responses to videos of natural social behavior in adult male rhesus monkeys.

    PubMed

    Putnam, P T; Roman, J M; Zimmerman, P E; Gothard, K M

    2016-10-01

    Gaze following is a basic building block of social behavior that has been observed in multiple species, including primates. The absence of gaze following is associated with abnormal development of social cognition, such as in autism spectrum disorders (ASD). Some social deficits in ASD, including the failure to look at eyes and the inability to recognize facial expressions, are ameliorated by intranasal administration of oxytocin (IN-OT). Here we tested the hypothesis that IN-OT might enhance social processes that require active engagement with a social partner, such as gaze following. Alternatively, IN-OT may only enhance the perceptual salience of the eyes, and may not modify behavioral responses to social signals. To test this hypothesis, we presented four monkeys with videos of conspecifics displaying natural behaviors. Each video was viewed multiple times before and after the monkeys received intranasally either 50 IU of OT or saline. We found that despite a gradual decrease in attention to the repeated viewing of the same videos (habituation), IN-OT consistently increased the frequency of gaze following saccades. Further analysis confirmed that these behaviors did not occur randomly, but rather predictably in response to the same segments of the videos. These findings suggest that in response to more naturalistic social stimuli IN-OT enhances the propensity to interact with a social partner rather than merely elevating the perceptual salience of the eyes. In light of these findings, gaze following may serve as a metric for pro-social effects of oxytocin that target social action more than social perception. PMID:27343726

  13. Visual screening: an alternative method for reducing stereotypic behaviors.

    PubMed

    McGonigle, J J; Duncan, D; Cordisco, L; Barrett, R P

    1982-01-01

    Visual screening, a mildly aversive response suppression procedure, was evaluated across two studies for its effectiveness in reducing topographically similar and dissimilar stereotypic behaviors of four developmentally disabled children. In the first study, a multiple baseline design across subjects and behaviors was used to assess the effectiveness of the procedure as a treatment for reducing the visual and auditory self-stimulatory responses of two 9-yr-old mentally retarded and behaviorally disturbed children. A multiple baseline design across subjects was used in the second study to evaluate the effectiveness of visual screening as a treatment for reducing stereotypic fabric pulling and self-mutilative ear bending, respectively, of two 13-yr-old mentally retarded, autisticlike adolescents. Long-term follow-up data for both studies were reported. The results suggested that visual screening was an easily administered, effective, and exceptionally durable treatment procedure for controlling a variety of stereotypic behaviors commonly associated with the developmentally disabled. PMID:7142063

  14. Posture as a Determinant of Visual Behavior in Newborns

    ERIC Educational Resources Information Center

    Fredrickson, W. Timm; Brown, Josephine V.

    1975-01-01

    The effects of posture on the visual behavior of 15 3-day-old healthy, black, newborn infants were assessed. Findings suggest that the vestibular, proprioceptive, and contact stimulation provided by the on-shoulder position affects the newborn's ability to follow and process visual stimuli. (Author/CS)

  15. Behavioral and hormonal reactivity to threat: Effects of selective amygdala, hippocampal or orbital frontal lesions in monkeys

    PubMed Central

    Machado, Christopher J.; Bachevalier, Jocelyne

    2008-01-01

    Summary We compared the effects of bilateral amygdala, hippocampal or orbital frontal cortex lesions on emotional and hormonal reactivity in rhesus monkeys (Macaca mulatta). Experiment 1 measured behavioral reactivity to an unfamiliar human intruder before and after surgery. Animals with amygdala lesions demonstrated decreases in one passive defensive behavior (freezing), whereas animals with hippocampal lesions showed decreases in a more stimulus-directed defensive behavior (tooth grinding). Orbital frontal cortex lesions also reduced these two defensive behaviors, as well as decreased cage-shaking dominance displays. Animals with amygdala, hippocampal or sham lesions also demonstrated increased tension-related behaviors after surgery, but those with orbital frontal lesions did not. Finally, all three lesions diminished the operated animals' ability to modulate tension-related behaviors depending on the magnitude of threat posed by the human intruder. Experiment 2 measured circulating levels of cortisol and testosterone when a subset of these same animals were at rest and following physical restraint, temporary isolation, exposure to threatening objects and social interactions with an unfamiliar conspecific. None of the lesions impacted on testosterone levels in any condition. Amygdala or orbital frontal lesions blunted cortisol reactivity during isolation from peers, but not during any other condition. Hippocampal lesions did not alter circulating levels of cortisol under any conditions. These results indicate that the amygdala, hippocampus and orbital frontal cortex play distinct, yet complimentary roles in coordinating emotional and hormonal reactivity to threat. PMID:18650022

  16. Visual behavior and perception of trajectories of moving objects with visual occlusion.

    PubMed

    Moreno, Francisco J; Luis, Vicente; Salgado, Francisco; García, Juan A; Reina, Raúl

    2005-08-01

    Experienced athletes in sports with moving objects have shown greater skill when using visual information to anticipate the direction of a moving object than nonexperienced athletes of those sports. Studies have shown that expert athletes are more effective than novices in occlusion situations in the first stages of the sports sequence. In this study, 12 athletes with different competitive experience in sports with moving objects viewed a sequence of tennis ball launches with and without visual occlusion, launched by a ball-shooting machine toward different areas with respect to the participant's position. The relation among visual behavior, occlusion time, and the precision of the task is reviewed. The spot where the balls bounced was analysed by a digital camera and visual behavior by an Eye Tracking System. Analysis showed that the nonexperienced athletes made significantly more errors and were more variable in visual occlusion conditions. Participants had a stable visual search strategy. PMID:16350604

  17. Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys

    PubMed Central

    Plautz, Erik J.; Friel, Kathleen M.; Frost, Shawn B.; Dancause, Numa; Stowe, Ann M.; Nudo, Randolph J.

    2009-01-01

    A focal injury within the cerebral cortex results in functional reorganization within the spared cortex through time-dependent metabolic and physiological reactions. Physiological changes are also associated with specific post-injury behavioral experiences. Knowing how these factors interact can be beneficial in planning rehabilitative intervention after a stroke. The purpose of this study was to assess the functional impact of delaying the rehabilitative behavioral experience upon movement representations within the primary motor cortex (M1) in an established nonhuman primate, ischemic infarct model. Five adult squirrel monkeys were trained on a motor-skill task prior to and 1 month after an experimental ischemic infarct was induced in M1. Movement representations of the hand were derived within M1 using standard electrophysiological procedures prior to the infarct and again one and two months after the infarct. The results of this study show that even though recovery of motor skills was similar to that of a previous study in squirrel monkeys after early training, unlike early training, delayed training did not result in maintenance of the spared hand representation within the M1 peri-infarct hand area. Instead, delaying training resulted in a large decrease in spared hand representation during the spontaneous recovery period that persisted following the delayed training. In addition, delayed training resulted in an increase of simultaneously evoked movements that are typically independent. These results indicate that post-injury behavioral experience, such as motor skill training, may modulate peri-infarct cortical plasticity in different ways in the acute versus chronic stages following stroke. PMID:16273404

  18. Visual scanning behavior and pilot workload

    NASA Technical Reports Server (NTRS)

    Harris, R. L., Sr.; Tole, J. R.; Stephens, A. T.; Ephrath, A. R.

    1981-01-01

    An experimental paradigm and a set of results which demonstrate a relationship between the level of performance on a skilled man-machine control task, the skill of the operator, the level of mental difficulty induced by an additional task imposed on the basic control task, and visual scanning performance. During a constant, simulated piloting task, visual scanning of instruments was found to vary as a function of the level of difficulty of a verbal mental loading task. The average dwell time of each fixation on the pilot's primary instrument increased as a function of the estimated skill level of the pilots, with novices being affected by the loading task much more than the experts. The results suggest that visual scanning of instruments in a controlled task may be an indicator of both workload and skill.

  19. Visual scanning behavior and pilot workload

    NASA Technical Reports Server (NTRS)

    Harris, R. L., Sr.; Tole, J. R.; Stephens, A. T.; Ephrath, A. R.

    1982-01-01

    This paper describes an experimental paradigm and a set of results which demonstrate a relationship between the level of performance on a skilled man-machine control task, the skill of the operator, the level of mental difficulty induced by an additional task imposed on the basic control task, and visual scanning performance. During a constant, simulated piloting task, visual scanning of instruments was found to vary with the difficulty of a verbal mental loading task. The average dwell time of each fixation on the pilot's primary instrument increased with the estimated skill level of the pilots, with novices being affected by the loading task much more than experts. The results suggest that visual scanning of instruments in a controlled task may be an indicator of both workload and skill.

  20. Visual-vestibular interactions during vestibular compensation: role of the pretectal not in horizontal VOR recovery after hemilabyrinthectomy in rhesus monkey.

    PubMed

    Stewart, C Matthew; Mustari, Michael J; Perachio, Adrian A

    2005-10-01

    Damage to the vestibular labyrinth leads to profound nystagmus and vertigo. Over time, the vestibular-ocular system recovers in a process called vestibular compensation leading to reduced nystagmus and vertigo provided visual signals are available. Our study was directed at identifying sources of visual information that could play a role in vestibular compensation. Specifically, we investigated the role of the pretectal nucleus of the optic tract (NOT) in vestibular compensation after hemilabyrinthectomy (HL) in rhesus monkeys. We chose the NOT because this structure provides critical visual motion information for adaptive modification of the vestibular ocular reflex (VOR). We produced bilateral NOT lesions by injecting the excitotoxin ibotenic acid. We compared vestibular compensation after HL in NOT-lesioned and control animals with intact NOTs. We measured eye movements with an electromagnetic method employing scleral search coils. Measurements included slow-phase eye velocity during spontaneous nystagmus, per- and postrotatory nystagmus and the horizontal VOR (hVOR) gain (eye-velocity/head velocity) associated with per- and postrotatory and sinusoidal (0.2-2.0 Hz; 30-90 degrees/s) whole body oscillation around the earth-vertical axis. VOR gain was low (<0.5) for rotation toward the HL side. Our control animal evinced significant vestibular compensation with VOR gains approaching unity by 100 days post HL. In contrast, monkeys with bilateral lesions of the NOT never obtained this significant recovery with hVOR gains well below unity at 100 days and beyond. Therefore our studies demonstrate that the NOT is an essential source of visual signals for the process of vestibular compensation after HL. PMID:15758055

  1. Behavioral measurement of temporal contrast sensitivity development in macaque monkeys (Macaca nemestrina)

    PubMed Central

    Stavros, Kara A.; Kiorpes, Lynne

    2009-01-01

    We measured the developmental time course for temporal contrast sensitivity in macaque monkeys. The animals, aged 5 wks to 4 yrs, detected an unpatterned field of light sinusoidally modulated over time at frequencies ranging from 1 to 40 Hz. Young infants showed reduced sensitivity for all frequencies, and a reduced range of detectable frequencies. Sensitivity to high and low frequencies developed at different rates, but the shape of the temporal contrast sensitivity function did not change significantly with age. Temporal contrast sensitivity matures earlier than spatial contrast sensitivity. The development of high, but not low, frequency sensitivity may be limited by maturation of the magnocellular pathway. PMID:18406441

  2. Bilateral neurotoxic amygdala lesions in rhesus monkeys (Macaca mulatta): Consistent pattern of behavior across different social contexts

    PubMed Central

    Machado, Christopher J.; Emery, Nathan J.; Capitanio, John P.; Mason, William A.; Mendoza, Sally P.; Amaral, David G.

    2010-01-01

    Although the amygdala has been repeatedly implicated in normal primate social behavior, great variability exists in the specific social and nonsocial behavioral changes observed after bilateral amygdala lesions in nonhuman primates. One plausible explanation pertains to differences in social context. To investigate this idea, we measured the social behavior of amygdala-lesioned and unoperated rhesus monkeys (Macaca mulatta) in two contexts. Animals interacted in four-member social groups over 32 test days. These animals were previously assessed in pairs (Emery et al., 2001), and were, therefore, familiar with each other at the beginning of this study. Across the two contexts, amygdala lesions produced a highly consistent pattern of social behavior. Operated animals engaged in more affiliative social interactions with control group partners than did control animals. In the course of their interactions, amygdala-lesioned animals also displayed an earlier decrease in nervous and fearful personality qualities than controls. The increased exploration and sexual behavior recorded for amygdala-lesioned animals in pairs was not found in the four-member groups. We conclude that the amygdala contributes to social inhibition and this function transcends various social contexts. PMID:18410164

  3. The effects of individual cubicle research on the social interactions and individual behavior of brown capuchin monkeys (Sapajus apella).

    PubMed

    Ruby, Suzanne; Buchanan-Smith, Hannah M

    2015-10-01

    Primates are increasingly being tested individually in purpose-built research centers within zoos. The voluntary nature of research testing indicates that participation is enriching for the primate subjects, but previous studies have generally focused only on stress-related behavior, indicating that the research does not have a negative effect. Few data are available on the effects that individual research may have on social behavior, yet given primates' complex social lives and their responses to how conspecifics are treated, it is important to determine whether individual testing impacts upon their social interactions. The current study compared the social and individual behavior of 11 brown capuchin monkeys (Sapajus apella) between three conditions: (1) directly after undergoing individual testing, (2) a control, and (3) upon returning to the group having voluntarily left. The results indicate that individual and stress-related behaviors were affected very little by individual research testing and that social behaviors increased. However, although affiliative interactions were enhanced, aggressive interactions were also seen to increase in the condition following individual testing compared with the return to group condition. Suggestions for minimizing the negative interactions are given. Provided that these suggestions are taken into account by researchers, our results provide support for developing research centers within zoos given the important findings emerging on our closest living relatives, combined with the potentially positive effects the research has on their welfare. PMID:26173706

  4. Visualization of Sedentary Behavior Using an Event-Based Approach

    ERIC Educational Resources Information Center

    Loudon, David; Granat, Malcolm H.

    2015-01-01

    Visualization is commonly used in the interpretation of physical behavior (PB) data, either in conjunction with or as precursor to formal analysis. Effective representations of the data can enable the identification of patterns of behavior, and how they relate to the temporal context in a single day, or across multiple days. An understanding of…

  5. Development of snake-directed antipredator behavior by wild white-faced capuchin monkeys: I. Snake-species discrimination.

    PubMed

    Meno, Whitney; Coss, Richard G; Perry, Susan

    2013-03-01

    Young animals are known to direct alarm calls at a wider range of species than adults. Our field study examined age-related differences in the snake-directed antipredator behavior of infant, juvenile, and adult white-faced capuchin monkeys (Cebus capucinus) in terms of alarm calling, looking behavior, and aggressive behavior. In the first experiment, we exposed infant and juvenile white-faced capuchins to realistic-looking inflatable models of their two snake predators, the boa constrictior (Boa constrictor) and neotropical rattlesnake (Crotalus durissus) and a white airplane as a novel control. In the second experiment, infants, juveniles, and adults were presented photographic models of a coiled boa constrictor, rattlesnake, indigo snake (Drymarchon corais), a noncapuchin predator, and a white snake-like model. We found that antipredator behavior changed during the immature stage. Infants as young as 4 months old were able to recognize snakes and display antipredator behavior, but engaged in less snake-model discrimination than juveniles. All age classes exhibited a lower response to the white snake-like model, indicating that the absence of color and snake-scale patterns affected snake recognition. Infants also showed a higher level of vigilance after snake-model detection as exhibited by a higher proportion of time spent looking and head cocking at the models. Aggressive antipredator behavior was found in all age classes, but was more prevalent in juveniles and adults than infants. This study adds to the knowledge of development of antipredator behavior in primates by showing that, although alarm calling behavior and predator recognition appear at a very young age in capuchins, snake-species discrimination does not become apparent until the juvenile stage. PMID:23229464

  6. Sexual selection and the evolution of visually conspicuous sexually dimorphic traits in male monkeys, apes, and human beings.

    PubMed

    Dixson, Alan; Dixson, Barnaby; Anderson, Matthew

    2005-01-01

    Striking secondary sexual traits, such as brightly colored "sexual skin," capes of hair, beards, and other facial adornments occur in adult males of many anthropoid primate species. This review focuses upon the role of sexual selection in the evolution of these traits. A quantitative approach is used to measure sexually dimorphic characters and to compare their development in the monogamous, polygynous, and multimale-multifemale mating systems of monkeys, apes, and human beings. PMID:16913285

  7. Metacognition in Monkeys during an Oculomotor Task

    ERIC Educational Resources Information Center

    Middlebrooks, Paul G.; Sommer, Marc A.

    2011-01-01

    This study investigated whether rhesus monkeys show evidence of metacognition in a reduced, visual oculomotor task that is particularly suitable for use in fMRI and electrophysiology. The 2-stage task involved punctate visual stimulation and saccadic eye movement responses. In each trial, monkeys made a decision and then made a bet. To earn…

  8. Cortical integration in the visual system of the macaque monkey: large-scale morphological differences in the pyramidal neurons in the occipital, parietal and temporal lobes.

    PubMed Central

    Elston, G N; Tweedale, R; Rosa, M G

    1999-01-01

    Layer III pyramidal neurons were injected with Lucifer yellow in tangential cortical slices taken from the inferior temporal cortex (area TE) and the superior temporal polysensory (STP) area of the macaque monkey. Basal dendritic field areas of layer III pyramidal neurons in area STP are significantly larger, and their dendritic arborizations more complex, than those of cells in area TE. Moreover, the dendritic fields of layer III pyramidal neurons in both STP and TE are many times larger and more complex than those in areas forming 'lower' stages in cortical visual processing, such as the first (V1), second (V2), fourth (V4) and middle temporal (MT) visual areas. By combining data on spine density with those of Sholl analyses, we were able to estimate the average number of spines in the basal dendritic field of layer III pyramidal neurons in each area. These calculations revealed a 13-fold difference in the number of spines in the basal dendritic field between areas STP and V1 in animals of similar age. The large differences in complexity of the same kind of neuron in different visual areas go against arguments for isopotentiality of different cortical regions and provide a basis that allows pyramidal neurons in temporal areas TE and STP to integrate more inputs than neurons in more caudal visual areas. PMID:10445291

  9. Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of great apes and Old World monkeys.

    PubMed

    Dulai, K S; Bowmaker, J K; Mollon, J D; Hunt, D M

    1994-10-01

    In man, the spectral shift between the middle-wave (MW) and long-wave (LW) visual pigments is largely achieved by amino acid substitution at two codons, both located in exon 5. A third amino acid site coded by exon 3 is polymorphic between pigments. We have studied the equivalent regions of the cone opsin genes in two members of the Hominidea (the gorilla, Gorilla gorilla and the chimpanzee, Pan troglodytes) and in three members of the Cercopithecoidea family of Old World primates (the diana monkey, Cercopithecus diana, the talapoin monkey, Miopithecus talapoin, and the crab-eating macaque, Macaca fascicularis). No variation in the codons that specify the amino acids involved in spectral tuning were found. We predict therefore that the MW and LW pigments of gorilla and chimpanzee have similar spectral characteristics to those of man. Multiple copies of the same opsin gene sequence were identified in the chimpanzee, talapoin and macaque and we also show that non-human Old World primates are similar to man in showing a bunching of polymorphic sites in exon 3. We discuss the ancestry of the separate MW and LW genes of Old World primates and the equivalent polymorphic gene of the marmoset, a New World primate. PMID:7975287

  10. AVPR1A sequence variation in monogamous owl monkeys (Aotus azarai) and its implications for the evolution of platyrrhine social behavior.

    PubMed

    Babb, Paul L; Fernandez-Duque, Eduardo; Schurr, Theodore G

    2010-10-01

    The arginine vasopressin V1a receptor gene (AVPR1A) has been implicated in increased partner preference and pair bonding behavior in mammalian lineages. This observation is of considerable importance for studies of social monogamy, which only appears in a small subset of primate taxa, including the Argentinean owl monkey (Aotus azarai). Thus, to investigate the possible influence of AVPR1A on the evolution of social behavior in owl monkeys, we sequenced this locus in a wild population from the Gran Chaco. We also assessed the interspecific variation of AVPR1A in platyrrhine species that represent a set of phylogenetically and behaviorally disparate taxa. The resulting data revealed A. azarai to have a unique genic structure for AVPR1A that varies in coding sequence and microsatellite repeat content relative to other primate and mammalian species. Specifically, one repetitive region that has been the focus in studies of human AVPR1A diversity, "RS3," is completely absent in A. azarai and all other platyrrhines examined. This finding suggests that, if AVPR1A modulates behavior in owl monkeys and other neotropical primates, it does so independent of this region. These observations have also provided clues about the process by which the range of social behavior in the Order Primates evolved through lineage-specific neurogenetic variation. PMID:20838784

  11. Locomotion and visually guided behavior in salamander: a neuromechanical study

    NASA Astrophysics Data System (ADS)

    Ijspeert, Auke J.; Arbib, Michael A.

    2000-10-01

    This article investigates the neural mechanisms underlying locomotion and visually-guided behavior in a lower vertebrate: the salamander. We develop connectionist models of the salamander's locomotor circuitry and visual system, and analyze their functioning by embedding them into a biomechanical simulation of the salamander's body. This work is therefore an experiment in computational neuroethology which aims at investigating how behavior results from the coupling of a central nervous system (CNS) and a body, and from the interactions of the CNS-body pair with the environment. We believe that understanding these mechanisms is not only relevant for neurobiology but also for potential applications in robotics.

  12. Alterations in Energy Metabolism, Neuroprotection and Visual Signal Transduction in the Retina of Parkinsonian, MPTP-Treated Monkeys

    PubMed Central

    Bru-Martínez, Roque; Herrero, María Trinidad; Fernández-Villalba, Emiliano; Cuenca, Nicolás; Martín-Nieto, José

    2013-01-01

    Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ±1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to mechanisms thought to

  13. [Social behavior of the Wedge-capped Capuchin monkey Cebus olivaceus (Primates: Cebidae) in three zoological exhibits of Caracas, Venezuela].

    PubMed

    López, Marie Charlotte; Zaida, Tárano

    2008-09-01

    Captivity represents an extreme situation for primates, especially for those with large home ranges, and its effect on their behavior might be considerable. The Wedge-capped Capuchin Monkey Cebus olivaceus is the most common primate in Venezuelan zoos. To estimate the effect of confinement on C. olivaceus behavior, we analyzed the social behavior of three groups that differed in captivity conditions, in zoological exhibits in Caracas (Caricuao, Parque del Este, El Pinar). Caricuao's group moved freely over a non-fenced area of 15 ha, Parque del Este's and El Pinar's groups lived in relatively small outdoor enclosures. Social behaviors were described using focal-animal sampling, group scans and ad libitum sampling. The frequency, duration and time devoted to each behavior (per focal period per individual) were estimated. Relative dominance between pairs of individuals was established as well as affiliative associations. The repertory of social behaviors was similar between groups and to which has been observed in nature, but the duration and frequency of affiliative and agonistic interactions differed between groups. Affiliative behaviors were less frequent but longer in Caricuao than in the other two groups, while agonistic behaviors were more frequent in El Pinar and Parque del Este. Differences between groups are explained by variation in captivity conditions. We suggest that confinement generates social tension and favors agonism, while affiliative encounters help reduce this tension. On the other hand, differences in agonism between captive and natural groups may result form prolonged association, restrictions to keep optimal spacing or leave the group. All groups had some social structure (e.g., dominance ranks, association and repulsion between individuals) but the social dynamic was partly disrupted. Dominance ranks were not clear throughout the group, the top male was not dominant over the top female, dominant individuals did not interact affiliatively more

  14. Avian Visual Behavior and the Organization of the Telencephalon

    PubMed Central

    Shimizu, Toru; Patton, Tadd B.; Husband, Scott A.

    2010-01-01

    Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. PMID:20733296

  15. Degree of terrestrial activity of the elusive sun-tailed monkey (Cercopithecus solatus) in Gabon: Comparative study of behavior and postcranial morphometric data.

    PubMed

    Motsch, Peggy; Le Flohic, Guillaume; Dilger, Carole; Delahaye, Alexia; Chateau-Smith, Carmela; Couette, Sebastien

    2015-10-01

    We carried out a multidisciplinary study linking behavioral and morphological data from a little-known guenon species, Cercopithecus solatus, endemic to Gabon. Over a period of 9 months, we documented the pattern of stratum use associated with postural and locomotor behavior by direct observation (650 hrs) of a semi-free-ranging breeding colony. We also conducted a morphometric analysis of the humerus and limb proportions of 90 adult specimens from 16 guenon species, including C. solatus. Field observations indicated that C. solatus monkeys spent a third of their time on the ground, similar to semi-terrestrial guenon species. We detected two patterns of stratum use: at ground level, and in trees, at a height of 3-10 m. The monkeys spent more time on the ground during the dry season than the wet season, feeding mainly at ground level, while resting, and social behaviors occurred more frequently in the tree strata. Our study of humerus size and shape, together with the analysis of limb proportions, indicated morphofunctional adaptation of C. solatus to greater terrestriality than previously thought. We therefore characterize C. solatus as a semi-terrestrial guenon, and propose a new hypothesis for the ancestral condition. By combining behavioral and morphological results, we provide new information about the adaptive strategies of the species, and the evolutionary history of guenons, thus contributing to the conservation of the sun-tailed monkey in the wild. PMID:26148774

  16. Relationship between rate of drug uptake in brain and behavioral pharmacology of monoamine transporter inhibitors in rhesus monkeys.

    PubMed

    Kimmel, Heather L; Negus, S Stevens; Wilcox, Kristin M; Ewing, Sarah B; Stehouwer, Jeffrey; Goodman, Mark M; Votaw, John R; Mello, Nancy K; Carroll, F Ivy; Howell, Leonard L

    2008-09-01

    Although inhibition of dopamine transporters (DAT) and the subsequent increase in dopamine clearly play a role in the effects of psychomotor stimulants, the reinforcing effectiveness of DAT inhibitors varies. Previous studies suggest that pharmacokinetic and pharmacodynamic properties of these drugs account for this variability. The present studies compared the time course and behavioral effects of five phenyltropane analogs of cocaine with high affinity for DAT and varying time courses of action in rhesus monkeys. The rate of drug uptake in putamen was measured using positron emission tomography neuroimaging. The rank order of the time to peak drug uptake was cocainebehavioral pharmacology of psychomotor stimulants. PMID:18468667

  17. Alternative response training, differential reinforcement of other behavior, and extinction in squirrel monkeys (Saimiri sciureus)1

    PubMed Central

    Mulick, J. A.; Leitenberg, H.; Rawson, R. A.

    1976-01-01

    In Experiment I, (a) extinction, (b) extinction plus reinforcement of a discrete alternative response, and (c) differential reinforcement of other behavior were each correlated with a different stimulus in a three-component multiple schedule. The alternative-response procedure more rapidly and completely suppressed behavior than did differential reinforcement of other behavior. Differential reinforcement of other behavior was slightly more effective than extinction alone. In Experiment II, reinforcement of specific alternative behavior during extinction and differential reinforcement of other behavior were used in two components, while one component continued to provide reinforcement for the original response. Once again, the alternative-response procedure was most effective in reducing responding as long as it remained in effect. However, the responding partially recovered when reinforcement for competing behavior was discontinued. In general, responding was less readily reduced by differential reinforcement of other behavior than by the specific alternative-response procedure. PMID:16811914

  18. Comparative studies of squirrel monkeys (Saimiri) and titi monkeys (Callicebus) in travel tasks.

    PubMed

    Fragaszy, D M

    1980-01-01

    Squirrel and titi monkeys were observed in a series of experiments in which the subjects' task was to move to a distant goal along above-ground pathways. The pathways were entirely visible to the subjects in all experiments. However, visual cues along the pathways (in Experiment I) and physical and spatial properties of the pathways (in Experiments II and III) were varied systematically in order to determine what effect features had upon selection of travel paths for monkeys of each species. Marked performance differences between the species were evident in these experiments, including differences in latency to move past the choice point, proportion of trials in which the shortest route was chosen first, and changes over test sessions in frequency of initial choice of the shortest route. In particular, titis tended to move past the choice point more slowly than squirrel monkeys; to pay more attention to distant properties of the pathways prior to making a decision, especially after experience in the test setting; and to prefer habitual pathways when these were available, whereas squirrel monkeys preferred novel routes when these were available. The relative "optimality" of decision making in these tasks in relation to species-typical modes of traveling and foraging in natural habitats is discussed. An alternative view of decision making, in which optimality is not assumed to be the only decision-making strategy, is suggested as an appropriate vehicle for further investigation into the sources of short-term variability in choice behavior. PMID:7223106

  19. Covariation between Spike and LFP Modulations Revealed with Focal and Asynchronous Stimulation of Receptive Field Surround in Monkey Primary Visual Cortex

    PubMed Central

    Kim, Kayeon; Kim, Taekjun; Yoon, Taehwan; Lee, Choongkil

    2015-01-01

    A focal visual stimulus outside the classical receptive field (RF) of a V1 neuron does not evoke a spike response by itself, and yet evokes robust changes in the local field potential (LFP). This subthreshold LFP provides a unique opportunity to investigate how changes induced by surround stimulation leads to modulation of spike activity. In the current study, two identical Gabor stimuli were sequentially presented with a variable stimulus onset asynchrony (SOA) ranging from 0 to 100 ms: the first (S1) outside the RF and the second (S2) over the RF of primary visual cortex neurons, while trained monkeys performed a fixation task. This focal and asynchronous stimulation of the RF surround enabled us to analyze the modulation of S2-evoked spike activity and covariation between spike and LFP modulation across SOA. In this condition, the modulation of S2-evoked spike response was dominantly facilitative and was correlated with the change in LFP amplitude, which was pronounced for the cells recorded in the upper cortical layers. The time course of covariation between the SOA-dependent spike modulation and LFP amplitude suggested that the subthreshold LFP evoked by the S1 can predict the magnitude of upcoming spike modulation. PMID:26670337

  20. Head Rotation Detection in Marmoset Monkeys

    NASA Astrophysics Data System (ADS)

    Simhadri, Sravanthi

    Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys. Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection. The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per

  1. An Olfactory Circuit Increases the Fidelity of Visual Behavior

    PubMed Central

    Chow, Dawnis M.; Theobald, Jamie C.; Frye, Mark A.

    2013-01-01

    Multimodal integration allows neural circuits to be activated in a behaviorally context-specific manner. In the case of odor plume tracking by Drosophila, an attractive odorant increases the influence of yaw-optic flow on steering behavior in flight, which enhances visual stability reflexes, resulting in straighter flight trajectories within an odor plume. However, it is not well understood whether context-specific changes in optomotor behavior are the result of an increased sensitivity to motion inputs (e.g., through increased visual attention) or direct scaling of motor outputs (i.e., increased steering gain). We address this question by examining the optomotor behavior of Drosophila melanogaster in a tethered flight assay and demonstrate that whereas olfactory cues decrease the gain of the optomotor response to sideslip optic flow, they concomitantly increase the gain of the yaw optomotor response by enhancing the animal's ability to follow transient visual perturbations. Furthermore, ablating the mushroom bodies (MBs) of the fly brain via larval hydroxyurea (HU) treatment results in a loss of olfaction-dependent increase in yaw optomotor fidelity. By expressing either tetanus toxin light chain or diphtheria toxin in gal4-defined neural circuits, we were able to replicate the loss of function observed in the HU treatment within the lines expressing broadly in the mushroom bodies, but not within specific mushroom body lobes. Finally, we were able to genetically separate the yaw responses and sideslip responses in our behavioral assay. Together, our results implicate the MBs in a fast-acting, memory-independent olfactory modification of a visual reflex that is critical for flight control. PMID:22016537

  2. Age- and sex-based patterns of positional behavior and substrate utilization in the golden snub-nosed monkey (Rhinopithecus roxellana).

    PubMed

    Zhu, Wen-Wen; Garber, Paul A; Bezanson, Michelle; Qi, Xiao-Guang; Li, Bao-Guo

    2015-01-01

    Body mass plays an important role in primate positional behavior and in sexually dimorphic arboreal primate species may influence how immature and adult individuals travel through the forest canopy and access food resources. In this study, we examined age- and sex-based patterns of positional behavior and substrate utilization in wild golden snub-nosed monkeys (Rhinopithecus roxellana), an endangered species of Asian colobine. Our results indicated that among all age and sex classes, sitting was the most common feeding and resting posture and during travel, quadrupedal walking was the dominant locomotor behavior. Despite the fact that adult male R. roxellana are reported to exhibit a body mass nearly two times that of adult females, we found no significant sex differences in the positional repertoire during feeding and traveling. In addition, we found that while infants and juveniles used similar postural and locomotor behaviors as their adult counterparts, younger golden snub-nosed monkeys more frequently engaged in risky or escape-oriented behaviors such as climbing, running, leaping, and forelimb suspension. With increasing age, the use of quadrupedal walking and dropping (downward in-air displacement of body mass that does not require hindlimb propulsion) increased and the use of leaping, suspensory postures, and bridging decreased. Finally, given differences in the positional repertoire of adult and immature golden snub-nosed monkeys, we argue that studies of ontogenetic patterns of positional behavior should emphasize what it takes to survive at each life stage rather than what it takes to match an adult repertoire. PMID:25219793

  3. Visual scanning behavior and mental workload in aircraft pilots

    NASA Technical Reports Server (NTRS)

    Tole, J. R.; Harris, R. L., Sr.; Stephens, A. T.; Ephrath, A. R.

    1982-01-01

    This paper describes an experimental paradigm and a set of preliminary results which demonstrate a relationship between the level of performance on a skilled man-machine control task, the skill of the operator, the level of mental difficulty induced by an additional task imposed on the basic control task, and visual scanning performance. During a constant, simulated piloting task, visual scanning of instruments was found to vary as a function of the level of difficulty of a verbal loading task. The average dwell time of each fixation on the pilot's primary instrument increased as a function of the loading. The scanning behavior was also a function of the estimated skill level of the pilots, with novices being affected by the loading task much more than experts. The results suggest that visual scanning of instruments in a controlled task may be an indicator of both workload and skill.

  4. Dense sampling reveals behavioral oscillations in rapid visual categorization.

    PubMed

    Drewes, Jan; Zhu, Weina; Wutz, Andreas; Melcher, David

    2015-01-01

    Perceptual systems must create discrete objects and events out of a continuous flow of sensory information. Previous studies have demonstrated oscillatory effects in the behavioral outcome of low-level visual tasks, suggesting a cyclic nature of visual processing as the solution. To investigate whether these effects extend to more complex tasks, a stream of "neutral" photographic images (not containing targets) was rapidly presented (20 ms/image). Embedded were one or two presentations of a randomly selected target image (vehicles and animals). Subjects reported the perceived target category. On dual-presentation trials, the ISI varied systematically from 0 to 600 ms. At randomized timing before first target presentation, the screen was flashed with the intent of creating a phase reset in the visual system. Sorting trials by temporal distance between flash and first target presentation revealed strong oscillations in behavioral performance, peaking at 5 Hz. On dual-target trials, longer ISIs led to reduced performance, implying a temporal integration window for object category discrimination. The "animal" trials exhibited a significant oscillatory component around 5 Hz. Our results indicate that oscillatory effects are not mere fringe effects relevant only with simple stimuli, but are resultant from the core mechanisms of visual processing and may well extend into real-life scenarios. PMID:26542183

  5. Altered social interactions in male juvenile cynomolgus monkeys prenatally exposed to bisphenol A.

    PubMed

    Negishi, Takayuki; Nakagami, Akiko; Kawasaki, Katsuyoshi; Nishida, Yoshiro; Ihara, Toshio; Kuroda, Yoichiro; Tashiro, Tomoko; Koyama, Takamasa; Yoshikawa, Yasuhiro

    2014-01-01

    Bisphenol A (BPA) is a widespread environmental contaminant, and humans are routinely exposed to BPA. We investigated whether prenatal exposure to BPA influences behavioral development in juvenile cynomolgus monkeys (Macaca fascicularis). Pregnant cynomolgus monkeys were implanted with subcutaneous pumps and exposed to 10μg/kg/day BPA or vehicle (control) from gestational day 20 to 132. Both BPA-exposed and control juvenile monkeys (aged 1-2years) were assessed using the peer-encounter test that was conducted to evaluate behaviors in social interaction with a same-sex, same-treatment peer. In the encounter test, prenatal BPA exposure significantly reduced environmental exploration and presenting, a gesture related to sexual reproduction, and increased visual exploration, but only in males; furthermore, it significantly reduced the typical sexual dimorphism of the aforementioned behaviors normally observed between male and female juvenile cynomolgus monkeys. This study demonstrates that prenatal BPA exposure affects behavioral development during adolescence and results in the demasculinization of key sexually dimorphic behaviors in male juvenile monkeys. PMID:24882564

  6. Modeling of pilot's visual behavior for low-level flight

    NASA Astrophysics Data System (ADS)

    Schulte, Axel; Onken, Reiner

    1995-06-01

    Developers of synthetic vision systems for low-level flight simulators deal with the problem to decide which features to incorporate in order to achieve most realistic training conditions. This paper supports an approach to this problem on the basis of modeling the pilot's visual behavior. This approach is founded upon the basic requirement that the pilot's mechanisms of visual perception should be identical in simulated and real low-level flight. Flight simulator experiments with pilots were conducted for knowledge acquisition. During the experiments video material of a real low-level flight mission containing different situations was displayed to the pilot who was acting under a realistic mission assignment in a laboratory environment. Pilot's eye movements could be measured during the replay. The visual mechanisms were divided into rule based strategies for visual navigation, based on the preflight planning process, as opposed to skill based processes. The paper results in a model of the pilot's planning strategy of a visual fixing routine as part of the navigation task. The model is a knowledge based system based upon the fuzzy evaluation of terrain features in order to determine the landmarks used by pilots. It can be shown that a computer implementation of the model selects those features, which were preferred by trained pilots, too.

  7. Social behavioral changes in MPTP-treated monkey model of Parkinson's disease

    PubMed Central

    Durand, Elodie; Petit, Odile; Tremblay, Léon; Zimmer, Cédric; Sgambato-Faure, Véronique; Chassain, Carine; Laurent, Marlène; Pereira, Bruno; Silberberg, Céline; Durif, Franck

    2015-01-01

    Parkinsonian patients experience not only the physical discomfort of motor disorders but also the considerable psychological distress caused by cognitive deficits and behavioral disorders. These two factors can result in a disruption of social relationships during the symptomatic and even the presymptomatic motor states of the disease. However, it remains difficult, if not impossible, to evaluate social relationships in presymptomatic patients. The present study focused on the evaluation of social relationships within a group of female long-tailed macaques during presymptomatic and symptomatic motor states induced by Chronic Low-Dose (CLD) and then Chronic High-Dose (CHD) systemic administration of 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). Dopaminergic denervation within basal ganglia and cortical areas was evaluated using Positron Emission Tomography (PET) scans with 18F-DOPA (6-[18F]-fluoro-L-3,4-dihydroxyphenylalanine) radiotracer. Interestingly, social behavioral changes could be identified in the presymptomatic motor state before any motor and/or cognitive impairment occurred. Stronger effects were observed in subordinate animals compared to dominant animals. From baseline state to CLD-presymptomatic motor state, the frequency of emitted affiliative and aggressive behaviors increased. From CLD-presymptomatic to CHD-presymptomatic motor states, the frequency of the three categories of social behaviors (aggressive, submissive and affiliative) decreased. At this time, quantitative data analysis in PET scans highlighted a dopaminergic denervation in the insula and the posterior caudate nucleus. Finally, the frequency of the three categories of social behaviors decreased during the stable-symptomatic motor state compared to baseline and presymptomatic motor states; this was also associated with motor and cognitive disorders and a dopaminergic denervation in all the evaluated cortical and subcortical structures. PMID:25767440

  8. Spatial Attention and Temporal Expectation Under Timed Uncertainty Predictably Modulate Neuronal Responses in Monkey V1.

    PubMed

    Sharma, Jitendra; Sugihara, Hiroki; Katz, Yarden; Schummers, James; Tenenbaum, Joshua; Sur, Mriganka

    2015-09-01

    The brain uses attention and expectation as flexible devices for optimizing behavioral responses associated with expected but unpredictably timed events. The neural bases of attention and expectation are thought to engage higher cognitive loci; however, their influence at the level of primary visual cortex (V1) remains unknown. Here, we asked whether single-neuron responses in monkey V1 were influenced by an attention task of unpredictable duration. Monkeys covertly attended to a spot that remained unchanged for a fixed period and then abruptly disappeared at variable times, prompting a lever release for reward. We show that monkeys responded progressively faster and performed better as the trial duration increased. Neural responses also followed monkey's task engagement-there was an early, but short duration, response facilitation, followed by a late but sustained increase during the time monkeys expected the attention spot to disappear. This late attentional modulation was significantly and negatively correlated with the reaction time and was well explained by a modified hazard function. Such bimodal, time-dependent changes were, however, absent in a task that did not require explicit attentional engagement. Thus, V1 neurons carry reliable signals of attention and temporal expectation that correlate with predictable influences on monkeys' behavioral responses. PMID:24836689

  9. Oxytocin is associated with infant-care behavior and motivation in cooperatively breeding marmoset monkeys.

    PubMed

    Finkenwirth, Christa; Martins, Eloisa; Deschner, Tobias; Burkart, Judith M

    2016-04-01

    The neurohormone oxytocin (OT) is positively involved in the regulation of parenting and social bonding in mammals, and may thus also be important for the mediation of alloparental care. In cooperatively breeding marmosets, infants are raised in teamwork by parents and adult and sub-adult non-reproductive helpers (usually older siblings). Despite high intrinsic motivation, which may be mediated by hormonal priming, not all individuals are always equally able to contribute to infant-care due to competition among care-takers. Among the various care-taking behaviors, proactive food sharing may reflect motivational levels best, since it can be performed ad libitum by several individuals even if competition among surplus care-takers constrains access to infants. Our aim was to study the link between urinary OT levels and care-taking behaviors in group-living marmosets, while taking affiliation with other adults and infant age into account. Over eight reproductive cycles, 26 individuals were monitored for urinary baseline OT, care-taking behaviors (baby-licking, -grooming, -carrying, and proactive food sharing), and adult-directed affiliation. Mean OT levels were generally highest in female breeders and OT increased significantly in all individuals after birth. During early infancy, high urinary OT levels were associated with increased infant-licking but low levels of adult-affiliation, and during late infancy, with increased proactive food sharing. Our results show that, in marmoset parents and alloparents, OT is positively involved in the regulation of care-taking, thereby reflecting the changing needs during infant development. This particularly included behaviors that are more likely to reflect intrinsic care motivation, suggesting a positive link between OT and motivational regulation of infant-care. PMID:26836769

  10. Estrogenic plant consumption predicts red colobus monkey (Procolobus rufomitratus) hormonal state and behavior

    PubMed Central

    Wasserman, Michael D.; Chapman, Colin A.; Milton, Katharine; Gogarten, Jan F.; Wittwer, Dan J.; Ziegler, Toni E.

    2012-01-01

    Numerous studies have examined the effects of anthropogenic endocrine disrupting compounds; however, very little is known about the effects of naturally occurring plant-produced estrogenic compounds (i.e., phytoestrogens) on vertebrates. To examine the seasonal pattern of phytoestrogen consumption and its relationship to hormone levels (407 fecal samples analyzed for estradiol and cortisol) and social behavior (aggression, mating, and grooming) in a primate, we conducted an 11-month field study of red colobus (Procolobus rufomitratus) in Kibale National Park, Uganda. The percent of diet from estrogenic plants averaged 10.7% (n = 45 weeks; range: 0.7 – 32.4%). Red colobus fed more heavily on estrogenic Millettia dura young leaves during weeks of higher rainfall, and the consumption of this estrogenic item was positively correlated to both their fecal estradiol and cortisol levels. Social behaviors were related to estradiol and cortisol levels, as well as the consumption of estrogenic plants and rainfall. The more the red colobus consumed estrogenic plants the higher their rates of aggression and copulation and the lower their time spent grooming. Our results suggest that the consumption of estrogenic plants has important implications for primate health and fitness through interactions with the endocrine system and changes in hormone levels and social behaviors. PMID:23010620

  11. Blood levels do not predict behavioral or physiological effects of Δ9-tetrahydrocannabinol in rhesus monkeys with different patterns of exposure

    PubMed Central

    Ginsburg, Brett C.; Hruba, Lenka; Zaki, Armia; Javors, Martin; McMahon, Lance R.

    2014-01-01

    Background Recent changes in the legality of cannabis have prompted evaluation of whether blood levels of Δ9-tetrahydrocannabinol (THC) or its metabolites could be used to substantiate impairment, particularly related to behavioral tasks such as driving. However, because marked tolerance develops to behavioral effects of THC, the applicability of a particular threshold of blood THC as an index of impairment in people with different patterns of use remains unclear. Studies relevant to this issue are difficult to accomplish in humans, as prior drug exposure is difficult to control. Methods Here, effects of THC to decrease rectal temperature and operant response rate compared to levels of THC and its metabolites were studied in blood in two groups of monkeys: one received intermittent treatment with THC (0.1 mg/kg i.v.) and another received chronic THC (1 mg/kg/12 h s.c.) for several years. Results In monkeys with intermittent THC exposure, a single dose of THC (3.2 mg/kg s.c.) decreased rectal temperature and response rate. The same dose did not affect response rate or rectal temperature in chronically exposed monkeys, indicative of greater tolerance. In both groups, blood levels of THC peaked 20–60 min post-injection and had a similar half life of elimination, indicating no tolerance to the pharmacokinetics of THC. Notably, in both groups, the behavioral effects of THC were not apparent when blood levels were maximal (20-min post-administration). Conclusion These data indicate that thresholds for blood levels of THC do not provide a consistent index of behavioral impairment across individuals with different patterns of THC exposure. PMID:24703610

  12. Positional behavior and limb bone adaptations in red howling monkeys (Alouatta seniculus).

    PubMed

    Schön Ybarra, M A; Schön, M A

    1987-01-01

    Morphological adaptations to climbing (a scansorial mode of quadrupedal, arboreal locomotion practised on twigs and small branches) are identified by relating anatomical details of limb bones to a sample of 6,136 instantaneous observational recordings on the positional behavior and support uses of 20 different free-ranging, adult red howlers. Our findings are used to infer the original habitat in which proto-red howlers may have acquired such adaptations and to hypothesize that climbing and its related anatomy are a primitive condition for anthropoids. PMID:3454342

  13. Slow wave changes in amygdala to visual, auditory, and social stimuli following lesions of the inferior temporal cortex in squirrel monkey (Saimiri sciureus).

    PubMed

    Kling, A S; Lloyd, R L; Perryman, K M

    1987-01-01

    Radiotelemetry of slow wave activity of the amygdala was recorded under a variety of conditions. Power, and the percentage of power in the delta band, increased in response to stimulation. Recordings of monkey vocalizations and slides of ethologically relevant, natural objects produced a greater increase in power than did control stimuli. The responses to auditory stimuli increased when these stimuli were presented in an unrestrained, group setting, yet the responses to the vocalizations remained greater than those following control stimuli. Both the natural auditory and visual stimuli produced a reliable hierarchy with regard to the magnitude of response. Following lesions of inferior temporal cortex, these two hierarchies are disrupted, especially in the auditory domain. Further, these same stimuli, when presented after the lesion, produced a decrease, rather than an increase, in power. Nevertheless, the power recorded from the natural stimuli was still greater than that recorded from control stimuli in that the former produced less of a decrease in power, following the lesion, than did the latter. These data, in conjunction with a parallel report on evoked potentials in the amygdala, before and after cortical lesions, lead us to conclude that sensory information, particularly auditory, available to the amygdala, following the lesion, is substantially the same, and that it is the interpretation of this information, by the amygdala, which is altered by the cortical lesion. PMID:3566692

  14. Visual perception of texture in aggressive behavior of Betta splendens.

    PubMed

    Bando, T

    1991-07-01

    In order to elucidate the role of texture in fish vision, the agonistic behavior of male Siamese fighting fish (Betta splendens) was tested in a response to models composed by means of image processing techniques. Using the models with the contour shape of a side view of Betta splendens in an aggressive state, the responses were vigorous when there was a fine distribution of brightness and naturalistic color, producing textures like a scale pattern. Reactions became weaker as the brightness and color distribution reverted to more homogeneous levels and the scale pattern disappeared. When the artificial models with the circular contour shape were used, models with the scale pattern evoked more aggressive behaviors than those without it, while the existence of spherical gradation affected the behavior slightly. These results suggest that texture plays an important role in fish visual perception. PMID:1941718

  15. Monkey Business

    ERIC Educational Resources Information Center

    Blackwood, Christine Horvatis

    2012-01-01

    A ballerina, a gladiator, a camper, a baseball player, a surfer, and a shopper; these are just a few of the amazing monkeys that the author's seventh graders created from papier-mache. This project provided an opportunity for students to express themselves through the creation of sculptural characters based on their own interests, hobbies, and…

  16. Visualization of thermal behavior of fluid by laser holographic interferometry

    NASA Astrophysics Data System (ADS)

    Kurosaki, Y.; Kashiwagi, T.

    1990-01-01

    Visualization of four phenomena associated with thermal and fluid flow fields effectively using laser holographic interferometry are reviewed: airflow in a narrow passage between louver arrays, steam absorption into an aqueous solution of LiBr, Marangoni convection effect of steam absorption into a solution with the addition of high molecular weight alcohol, and pressure distribution on a plate induced by air-jet impingement. The observation result obtained in the first case is useful for designing louvered fins used in a heat exchanger. In the second case, the mass diffusivity of water into a solution of LiBr is shown to be measurable. In the third case, the effect of Marangoni convection on steam absorption is both qualitatively and quantitatively elucidated. The last case is a new visualization method of fluctuating pressure on a wall that can be used to resolve eddy-motion behavior near a wall.

  17. Saccades, salience and attention: the role of the lateral intraparietal area in visual behavior.

    PubMed

    Goldberg, Michael E; Bisley, James W; Powell, Keith D; Gottlieb, Jacqueline

    2006-01-01

    Neural activity in the lateral intraparietal area (LIP) has been associated with attention to a location in visual space, and with the intention to make saccadic eye movement. In this study we show that neurons in LIP respond to recently flashed task-irrelevant stimuli and saccade targets brought into the receptive field by a saccade, although they respond much to the same stimuli when they are stable in the environment. LIP neurons respond to the appearance of a flashed distractor even when a monkey is planning a memory-guided delayed saccade elsewhere. We then show that a monkey's attention, as defined by an increase in contrast sensitivity, is pinned to the goal of a memory-guided saccade throughout the delay period, unless a distractor appears, in which case attention transiently moves to the site of the distractor and then returns to the goal of the saccade. LIP neurons respond to both the saccade goal and the distractor, and this activity correlates with the monkey's locus of attention. In particular, the activity of LIP neurons predicts when attention migrates from the distractor back to the saccade goal. We suggest that the activity in LIP provides a salience map that is interpreted by the oculomotor system as a saccade goal when a saccade is appropriate, and simultaneously is used by the visual system to determine the locus of attention. PMID:17027387

  18. Visual behavior characterization for intrusion and misuse detection

    NASA Astrophysics Data System (ADS)

    Erbacher, Robert F.; Frincke, Deborah

    2001-05-01

    As computer and network intrusions become more and more of a concern, the need for better capabilities, to assist in the detection and analysis of intrusions also increase. System administrators typically rely on log files to analyze usage and detect misuse. However, as a consequence of the amount of data collected by each machine, multiplied by the tens or hundreds of machines under the system administrator's auspices, the entirety of the data available is neither collected nor analyzed. This is compounded by the need to analyze network traffic data as well. We propose a methodology for analyzing network and computer log information visually based on the analysis of the behavior of the users. Each user's behavior is the key to determining their intent and overriding activity, whether they attempt to hide their actions or not. Proficient hackers will attempt to hide their ultimate activities, which hinders the reliability of log file analysis. Visually analyzing the users''s behavior however, is much more adaptable and difficult to counteract.

  19. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys.

    PubMed

    Wu, Wei; Saunders, Richard C; Mishkin, Mortimer; Turchi, Janita

    2012-07-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. PMID:22561485

  20. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys

    PubMed Central

    Wu, Wei; Saunders, Richard C.; Mishkin, Mortimer; Turchi, Janita

    2012-01-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. PMID:22561485

  1. Quantitative assessment of visual behavior in disorders of consciousness.

    PubMed

    Trojano, L; Moretta, P; Loreto, V; Cozzolino, A; Santoro, L; Estraneo, A

    2012-09-01

    The study of eye behavior is of paramount importance in the differential diagnosis of disorders of consciousness (DoC). In spite of this, assessment of eye movement patterns in patients with vegetative state (VS) or minimally conscious state (MCS) only relies on clinical evaluation. In this study we aimed to provide a quantitative assessment of visual tracking behavior in response to moving stimuli in DoC patients. Nine VS patients and nine MCS patients were recruited in a Neurorehabilitation Unit for patients with chronic DoC; 11 matched healthy subjects were tested as the control group. All participants under went a quantitative evaluation of eye-tracking pattern by means of a computerized infrared eye-tracker system; stimuli were represented by a red circle or a small color picture slowly moving on a PC monitor. The proportion of on- or off-target fixations differed significantly between MCS and VS. Most importantly, the distribution of fixations on or off the target in all VS patients was at or below the chance level, whereas in the MCS group seven out of nine patients showed a proportion of on-target fixations significantly higher than the chance level. Fixation length did not differ among the three groups significantly. The present quantitative assessment of visual behaviour in a tracking task demonstrated that MCS and VS patients differ in the proportion of on-target fixations. These results could have important clinical implications since the quantitative analysis of visual behavior might provide additional elements in the differential diagnosis of DoC. PMID:22302277

  2. Vestibular and Visual Contribution to Fish Behavior Under Microgravity

    NASA Astrophysics Data System (ADS)

    Ijiri, K.

    Vestibular and visual information are two major factors fish use for controlling their posture under 1 G conditions. Parabolic flight experiments were carried out to observe the fish behavior under microgravity for several different strains of Medaka fish (Oryzias latipes). There existed a clear strain-difference in the behavioral response of the fish under microgravity: Some strains looped, while other strains did not loop at all. However, even the latter strains looped under microgravity conditions when kept in complete darkness, suggesting the contribution of visual information to the posture control under microgravity. In the laboratory, eyesight (visual acuity) was checked for each strain, using a rotating striped-drum apparatus. The results also showed a strain-difference, which gave a clue to the different degree of adaptability to microgravity among different strains. Beside loopings, some fish exhibited rolling movement around their body axis. Tracing each fish during and between parabolas, it was shown that to which side each fish rolls was determined specifically to each individual fish, and not to each strain. Thus, rolling direction is not genetically determined. This may support the otolith asymmetry hypothesis. Fish of a mutant strain (ha strain, having homozygous recessive of one gene ha) have some malfunction in otolith-vestibular system, and their behavior showed they are not dependent on gravity. Morphological abnormalities of their ear vesicles during the embryonic and baby stages were noted. Their eyesight and dorsal light responses were also studied. Progress in the project of establishing a new strain which has good eyesight and, at the same time, being deficient in otolith-vestibular system was reported. Crosses between the strain of good eyesight and ha strain were made, and to some extent, F2 fish have already shown such characteristics suited for living under microgravity conditions

  3. Ontogeny of Manipulative Behavior and Nut-Cracking in Young Tufted Capuchin Monkeys ("Cebus Apella"): A Perception-Action Perspective

    ERIC Educational Resources Information Center

    de Resende, Briseida Dogo; Ottoni, Eduardo B.; Fragaszy, Dorothy M.

    2008-01-01

    How do capuchin monkeys learn to use stones to crack open nuts? Perception-action theory posits that individuals explore producing varying spatial and force relations among objects and surfaces, thereby learning about affordances of such relations and how to produce them. Such learning supports the discovery of tool use. We present longitudinal…

  4. Monkeys are perceptually tuned to facial expressions that exhibit a theta-like speech rhythm

    PubMed Central

    Ghazanfar, Asif A.; Morrill, Ryan J.; Kayser, Christoph

    2013-01-01

    Human speech universally exhibits a 3- to 8-Hz rhythm, corresponding to the rate of syllable production, which is reflected in both the sound envelope and the visual mouth movements. Artificial perturbation of the speech rhythm outside the natural range reduces speech intelligibility, demonstrating a perceptual tuning to this frequency band. One theory posits that the mouth movements at the core of this speech rhythm evolved through modification of ancestral primate facial expressions. Recent evidence shows that one such communicative gesture in macaque monkeys, lip-smacking, has motor parallels with speech in its rhythmicity, its developmental trajectory, and the coordination of vocal tract structures. Whether monkeys also exhibit a perceptual tuning to the natural rhythms of lip-smacking is unknown. To investigate this, we tested rhesus monkeys in a preferential-looking procedure, measuring the time spent looking at each of two side-by-side computer-generated monkey avatars lip-smacking at natural versus sped-up or slowed-down rhythms. Monkeys showed an overall preference for the natural rhythm compared with the perturbed rhythms. This lends behavioral support for the hypothesis that perceptual processes in monkeys are similarly tuned to the natural frequencies of communication signals as they are in humans. Our data provide perceptual evidence for the theory that speech may have evolved from ancestral primate rhythmic facial expressions. PMID:23319616

  5. Primate adult brain cell autotransplantation produces behavioral and biological recovery in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian St. Kitts monkeys.

    PubMed

    Bloch, Jocelyne; Brunet, Jean-François; McEntire, Caleb R S; Redmond, D Eugene

    2014-08-15

    The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts. PMID:24610674

  6. Long-Term Exposure to Oral Methylphenidate or dl-Amphetamine Mixture in Peri-Adolescent Rhesus Monkeys: Effects on Physiology, Behavior, and Dopamine System Development

    PubMed Central

    Soto, Paul L; Wilcox, Kristin M; Zhou, Yun; Ator, Nancy A; Riddle, Mark A; Wong, Dean F; Weed, Michael R

    2012-01-01

    The stimulants methylphenidate and amphetamine are used to treat children with attention deficit/hyperactivity disorder over important developmental periods, prompting concerns regarding possible long-term health impact. This study assessed the effects of such a regimen in male, peri-adolescent rhesus monkeys on a variety of cognitive/behavioral, physiological, and in vivo neurochemical imaging parameters. Twice daily (0900 and 1200 hours), for a total of 18 months, juvenile male monkeys (8 per group) consumed either an unadulterated orange-flavored solution, a methylphenidate solution, or a dl-amphetamine mixture. Doses were titrated to reach blood/plasma levels comparable to therapeutic levels in children. [11C]MPH and [11C]raclopride dynamic PET scans were performed to image dopamine transporter and D2-like receptors, respectively. Binding potential (BPND), an index of tracer-specific binding, and amphetamine-induced changes in BPND of [11C]raclopride were estimated by kinetic modeling. There were no consistent differences among groups on the vast majority of measures, including cognitive (psychomotor speed, timing, inhibitory control, cognitive flexibility), general activity, physiological (body weight, head circumference, crown-to-rump length), and neurochemical (ie, developmental changes in dopamine transporter, dopamine D2 receptor density, and amphetamine-stimulated dopamine release were as expected). Cytogenetic studies indicated that neither drug was a clastogen in rhesus monkeys. Thus, methylphenidate and amphetamine at therapeutic blood/plasma levels during peri-adolescence in non-human primates have little effect on physiological or behavioral/cognitive development. PMID:22805599

  7. Use of space, activity patterns, and foraging behavior of red howler monkeys (Alouatta seniculus) in an Andean forest fragment in Colombia.

    PubMed

    Palma, Ana Cristina; Vélez, Adriana; Gómez-Posada, Carolina; López, Harrison; Zárate, Diego A; Stevenson, Pablo R

    2011-10-01

    Howler monkeys are among the most studied primates in the Neotropics, however, behavioral studies including estimation of food availability in Andean forests are scarce. During 12 months we studied habitat use, behavior, and feeding ecology of two groups of red howler monkeys (Alouatta seniculus) in an isolated fragment in the Colombian Andes. We used a combination of focal animal and instantaneous sampling. We estimated fruit production (FP) using phenology transects, and calculated young leaf abundance by observing marked trees. The home range area used by each group was 10.5 and 16.7 ha and daily distances traveled were 431 ± 228 and 458 ± 259 m, respectively. We found that both groups spent most of their time resting (62-64%). Resting time did not increase with leaf consumption as expected using a strategy of energy minimization. We did not find a relationship between daily distances traveled and leaf consumption. However, howlers consumed fruits according to their availability, and the production of young leaves did not predict feeding time on this resource. Overall, our results are similar to those found on other forest types. We found that despite limited FP in Andean forests, this did not lead to a higher intake of leaves, longer resting periods, or shorter traveling distances for red howlers. PMID:21710630

  8. Frequency-dependent spatiotemporal profiles of visual responses recorded with subdural ECoG electrodes in awake monkeys: Differences between high- and low-frequency activity.

    PubMed

    Takaura, Kana; Tsuchiya, Naotsugu; Fujii, Naotaka

    2016-01-01

    Electrocorticography (ECoG) constitutes a powerful and promising neural recording modality in humans and animals. ECoG signals are often decomposed into several frequency bands, among which the so-called high-gamma band (80-250Hz) has been proposed to reflect local cortical functions near the cortical surface below the ECoG electrodes. It is typically assumed that the lower the frequency bands, the lower the spatial resolution of the signals; thus, there is not much to gain by analyzing the event-related changes of the ECoG signals in the lower-frequency bands. However, differences across frequency bands have not been systematically investigated. To address this issue, we recorded ECoG activity from two awake monkeys performing a retinotopic mapping task. We characterized the spatiotemporal profiles of the visual responses in the time-frequency domain. We defined the preferred spatial position, receptive field (RF), and response latencies of band-limited power (BLP) (i.e., alpha [3.9-11.7Hz], beta [15.6-23.4Hz], low [30-80Hz] and high [80-250Hz] gamma) for each electrode and compared them across bands and time-domain visual evoked potentials (VEPs). At the population level, we found that the spatial preferences were comparable across bands and VEPs. The high-gamma power showed a smaller RF than the other bands and VEPs. The response latencies for the alpha band were always longer than the latencies for the other bands and fastest in VEPs. Comparing the response profiles in both space and time for each cortical region (V1, V4+, and TEO/TE) revealed regional idiosyncrasies. Although the latencies of visual responses in the beta, low-, and high-gamma bands were almost identical in V1 and V4+, beta and low-gamma BLP occurred about 17ms earlier than high-gamma power in TEO/TE. Furthermore, TEO/TE exhibited a unique pattern in the spatial response profile: the alpha and high-gamma responses tended to prefer the foveal regions, whereas the beta and low-gamma responses

  9. Behavioral asymmetries of psychomotor performance in rhesus monkeys (Macaca mulatta) - A dissociation between hand preference and skill

    NASA Technical Reports Server (NTRS)

    Hopkins, William D.; Washburn, David A.; Berke, Leslie; Williams, Mary

    1992-01-01

    Hand preferences were recorded for 35 rhesus monkeys (Macaca mulatta) as they manipulated a joystick in response to 2 computerized tasks. These preferences were then used to contrast 8 left- and 10 right-handed subjects on performance measures of hand skill. Individual hand preferences were found, but no significant population asymmetry was observed across the sample. However, the performance data reveal substantial benefits of right-handedness for joystick manipulation, as this group of monkeys mastered the 2 psychomotor tasks significantly faster than did their left-handed counterparts. The data support earlier reports of a right-hand advantage for joystick manipulation and also support the importance of distinguishing between hand preference and manual performance in research on functional asymmetries.

  10. Visual-auditory integration for visual search: a behavioral study in barn owls.

    PubMed

    Hazan, Yael; Kra, Yonatan; Yarin, Inna; Wagner, Hermann; Gutfreund, Yoram

    2015-01-01

    Barn owls are nocturnal predators that rely on both vision and hearing for survival. The optic tectum of barn owls, a midbrain structure involved in selective attention, has been used as a model for studying visual-auditory integration at the neuronal level. However, behavioral data on visual-auditory integration in barn owls are lacking. The goal of this study was to examine if the integration of visual and auditory signals contributes to the process of guiding attention toward salient stimuli. We attached miniature wireless video cameras on barn owls' heads (OwlCam) to track their target of gaze. We first provide evidence that the area centralis (a retinal area with a maximal density of photoreceptors) is used as a functional fovea in barn owls. Thus, by mapping the projection of the area centralis on the OwlCam's video frame, it is possible to extract the target of gaze. For the experiment, owls were positioned on a high perch and four food items were scattered in a large arena on the floor. In addition, a hidden loudspeaker was positioned in the arena. The positions of the food items and speaker were changed every session. Video sequences from the OwlCam were saved for offline analysis while the owls spontaneously scanned the room and the food items with abrupt gaze shifts (head saccades). From time to time during the experiment, a brief sound was emitted from the speaker. The fixation points immediately following the sounds were extracted and the distances between the gaze position and the nearest items and loudspeaker were measured. The head saccades were rarely toward the location of the sound source but to salient visual features in the room, such as the door knob or the food items. However, among the food items, the one closest to the loudspeaker had the highest probability of attracting a gaze shift. This result supports the notion that auditory signals are integrated with visual information for the selection of the next visual search target. PMID

  11. The behavior of fatty acids in the blood plasma of monkeys following exposure to short term stresses

    NASA Technical Reports Server (NTRS)

    Michailov, M. L.; Gnuechtel, U.; Nitschkoff, S.; Baumann, R.; Gnauck, G.

    1980-01-01

    Monkeys exposed to short term stresses (immobilization, jealousy) were found to develop hyperlipacidemia with a rise in concentration of unsaturated fatty acids in blood plasma, especially of oleic acid, and a relative decrease of saturated free fatty acids, chiefly of palmitinic acid. This finding was more pronounced under immobilization stress than in the jealousy situation. Meanwhile, the composition of triglycerides did not change essentially under the conditions used.

  12. Breeding monkeys for biomedical research

    NASA Technical Reports Server (NTRS)

    Bourne, G. H.; Golarzdebourne, M. N.; Keeling, M. E.

    1973-01-01

    Captive bred rhesus monkeys show much less pathology than wild born animals. The monkeys may be bred in cages or in an outdoor compound. Cage bred animals are not psychologically normal which makes then unsuited for some types of space related research. Compound breeding provides contact between mother and infant and an opportunity for the infants to play with their peers which are important requirements to help maintain their behavioral integrity. Offspring harvested after a year in the compound appear behaviorally normal and show little histopathology. Compound breeding is also an economical method for the rapid production of young animals. The colony can double its size about every two and a half years.

  13. Adaptive Behavior of Primary School Students with Visual Impairments: The Impact of Educational Settings

    ERIC Educational Resources Information Center

    Metsiou, Katerina; Papadopoulos, Konstantinos; Agaliotis, Ioannis

    2011-01-01

    This study explored the adaptive behavior of primary school students with visual impairments, as well as the impact of educational setting on their adaptive behavior. Instrumentation included an informal questionnaire and the Vineland Adaptive Behavior Scales. Participants were 36 primary school students with visual impairments. The educational…

  14. Learning by observation in the macaque monkey under high experimental constraints.

    PubMed

    Isbaine, Faiçal; Demolliens, Marie; Belmalih, Abdelouahed; Brovelli, Andrea; Boussaoud, Driss

    2015-08-01

    While neuroscience research has tremendously advanced our knowledge about the neural mechanisms of individual learning, i.e. through trial-and-error, it is only recently that neuroscientists have begun to study observational learning, and thus little is known about its neural mechanisms. One limitation is that observational learning has been addressed under unconstrained experimental conditions, not compatible with neuronal recordings. This study examined observational learning in macaque monkeys under the constraining conditions of behavioral neurophysiology. Two animals sat in primate chairs facing each other, with their head fixed. A touch screen was placed face up between the chairs at arm's reach, and the monkeys were trained on an abstract visuomotor associative task. In one experiment, the monkeys alternated the roles of "actor" and "observer". The actor learned to associate visual cues with reaching targets, while the observer "watched" freely. Then, the observer was given the same cue-target associations just performed by the actor, or had to learn new, not previously observed ones. The results show that learning performance is better after observation. In experiment 2, one monkey learned from a human actor who performed the task with errors only, or with successes only in separate blocks. The monkey's gain in performance was higher after observation of errors than after successes. The findings suggest that observational learning can occur even under highly constraining conditions, and open the way for investigating the neuronal correlates of social learning using the methods of behavioral neurophysiology. PMID:25934491

  15. Early adaptation to altered gravitational environments in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.

    1985-01-01

    The feeding behavior of two squirrel monkeys flown in Spacelab 3 is compared to that of six monkeys exposed to 1.5 G through centrifugation. The monkeys in the centrifugation study were housed unrestrained in cages, maintained at 25 C + or - 1 C, exposed to a 12:12 light/dark cycle, and had unrestrained access to food and water. The Spacelab monkeys were maintained at 26 C, exposed to a 12:12 light/dark cycle and had unlimited food and water. It is observed that the centrifuge rats displayed a change in feeding behavior for 4 days prior to resuming a normal pattern; one Spacelab monkey exhibited a 6 day depression before recover to control levels, and the feeding pattern of the second monkey was not influenced by the environment. It is noted that the effect of an altered dynamic environment is variable on the feeding behavior of individual monkeys.

  16. Effects of the menstrual cycle on looking preferences for faces in female rhesus monkeys.

    PubMed

    Lacreuse, Agnès; Martin-Malivel, Julie; Lange, Henry S; Herndon, James G

    2007-04-01

    Fluctuations of ovarian hormones across the menstrual cycle influence a variety of social and cognitive behaviors in primates. For example, female rhesus monkeys exhibit heightened interest for males and increased agonistic interactions with other females during periods of high estrogen levels. In the present study, we hypothesized that females' preference for males during periods of high estrogen levels is also expressed at the level of face perception. We tested four intact females on two face-tasks involving neutral portraits of male and female rhesus monkeys, chimpanzees and humans. In the visual preference task (VP), monkeys had to touch a button to view a face image. The image remained on the screen as long as the button was touched, and the duration of pressing was taken as an index of the monkey's looking time for the face stimulus. In the Face-Delayed Recognition Span Test (Face-DRST), monkeys were rewarded for touching the new face in an increasing number of serially presented faces. Monkeys were tested 5 days a week across one menstrual cycle. Blood was collected every other day for analysis of estradiol and progesterone. Two of the four females were cycling at the time of testing. We did not find an influence of the cycle on Face-DRST, likely due to a floor effect. In the VP however, the two cycling individuals looked longer at conspecific male faces than female faces during the peri-ovulatory period of the cycle. Such effects were absent for human and chimpanzee faces and for the two noncycling subjects. These data suggest that ovarian hormones may influence females' preferences for specific faces, with heightened preference for male faces during the peri-ovulatory period of the cycle. Heightened interest for stimuli of significant reproductive relevance during periods of high conception risk may help guide social and sexual behavior in the rhesus monkey. PMID:16909232

  17. Cross-Taxa Similarities in Affect-Induced Changes of Vocal Behavior and Voice in Arboreal Monkeys

    PubMed Central

    Lemasson, Alban; Remeuf, Kevin; Rossard, Arnaud; Zimmermann, Elke

    2012-01-01

    Measuring the affective state of an individual across species with comparable non-invasive methods is a current challenge in animal communication research. This study aims to explore to which extent affect intensity is conveyed in the vocal behaviours of three nonhuman primate species (Campbell's monkeys, De Brazza's monkeys, red-capped mangabeys), which vary in body size, ecological niche and social system. Similarly in the three species, we experimentally induced a change in captive social groups' affect by locking all group members together in their outside enclosure. The two experimental conditions which varied in affect intensity consisted in imposing a pre-reunion 90 mn-separation by splitting up the respective group into two subgroups (High affect condition) or not (Low affect condition). We measured call rates as well as voice features at the time of reunion in both conditions. The three studied species reacted in a very similar way. Across species, call rates changed significantly between the behaviourally defined states. Furthermore, contact call duration and, to some extent, voice pitch increased. Our results suggest, for the first time in arboreal Old World monkeys, that affect intensity is conveyed reliably in vocal behaviour and specific acoustic characteristics of voice, irrespective of body size and ecological niche differences between species. Cross-taxa similarities in acoustic cues of affect intensity point to phylogenetic constraints and inheritance from a common ancestor, whereas variations in vocal behaviour and affect intensity-related acoustic cues between species may be an adaptation to specific social requirements and depend on social systems. Our findings as well as a comparison with published works on acoustic communication in other vertebrate groups support the hypothesis that affect intensity in human voice originates from precursors already found deep inside the vertebrate phylogeny. PMID:22984618

  18. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  19. Timing of Visual Bodily Behavior in Repair Sequences: Evidence from Three Languages

    ERIC Educational Resources Information Center

    Floyd, Simeon; Manrique, Elizabeth; Rossi, Giovanni; Torreira, Francisco

    2016-01-01

    This article expands the study of other-initiated repair in conversation--when one party signals a problem with producing or perceiving another's turn at talk--into the domain of visual bodily behavior. It presents one primary cross-linguistic finding about the timing of visual bodily behavior in repair sequences: if the party who initiates repair…

  20. Modulation of prism adaptation by a shift of background in the monkey.

    PubMed

    Inoue, Masato; Harada, Hiroyuki; Fujisawa, Masahiro; Uchimura, Motoaki; Kitazawa, Shigeru

    2016-01-15

    Recent human behavioral studies have shown that the position of a visual target is instantly represented relative to the background (e.g., a large square) and used for evaluating the error in reaching the target. In the present study, we examined whether the same allocentric mechanism is shared by the monkey. We trained two monkeys to perform a fast and accurate reaching movement toward a visual target with a square in the background. Then, a visual shift (20mm or 4.1°) was introduced by wedge prisms to examine the process of decreasing the error during an exposure period (30 trials) and the size of the error upon removal of the prisms (aftereffect). The square was shifted during each movement, either in the direction of the visual displacement or in the opposite direction, by an amount equal to the size of the visual shift. The ipsilateral shift of the background increased the asymptote during the exposure period and decreased the aftereffect, i.e., prism adaptation was attenuated by the ipsilateral shift. By contrast, a contralateral shift enhanced adaptation. We further tested whether the shift of the square alone could cause an increase in the motor error. Although the target did not move, the shift of the square increased the motor error in the direction of the shift. These results were generally consistent with the results reported in human subjects, suggesting that the monkey and the human share the same neural mechanisms for representing a target relative to the background. PMID:26431765

  1. [Squirrel monkey--an ideal primate (correction of prmate) model of space physiology].

    PubMed

    Matsunami, K

    1997-06-01

    to elucidate functions of the peripheral vestibular system. A transfer function was proposed to explain the behaviors of regular and irregular unit activity of vestibular nerve fibers. The physiologic characteristics of the second order vestibular neuron was investigated in combination of electrophysiological and micro-morphological way, with using WGA-HRP methods, in relation to somato-motor and eye movements. Interconnections between vestibular neurons and cerebellum, interstitial nucleus of Cajal, oculomotor nuclear complex, superior colliculus and cervical spinal cord were elucidated. In physiological field of the vestibular system, the vestibulo-ocular reflex is well studied and results obtained from the squirrel monkey experiments were reviewed. The squirrel monkey, particularly the Bolivian, is a unique animal in that it is vulnerable to motion sickness induced by visual-motion stimulation with phase mismatch of the two stimuli. Experimental results of labyrinthectomy or bilateral ablation of the maculae staticae led to the conclusion that both semicircular and otolith organs are involved in the genesis of space motion sickness. On the other hand, destruction of the area postrema, acknowledged as the vomiting center to chemical stimulants, produced controversial results. However, it must be pointed out that the a human subject underwent to resection of the area postrema, became insensitive to administration of apomorphine, a well known chemical stimulant of vomiting. Finally the experiments in space revealed the presence of at least two origins of caloric nystagmus, that is, attributable to convection and non-convection current of the endolymphatic fluid. PMID:11540548

  2. The Effect of Heterogeneity on Numerical Ordering in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Cantlon, Jessica F.; Brannon, Elizabeth M.

    2006-01-01

    We investigated how within-stimulus heterogeneity affects the ability of rhesus monkeys to order pairs of the numerosities 1 through 9. Two rhesus monkeys were tested in a touch screen task where the variability of elements within each visual array was systematically varied by allowing elements to vary in color, size, shape, or any combination of…

  3. Lateralized visual behavior in bottlenose dolphins (Tursiops truncatus) performing audio-visual tasks: the right visual field advantage.

    PubMed

    Delfour, F; Marten, K

    2006-01-10

    Analyzing cerebral asymmetries in various species helps in understanding brain organization. The left and right sides of the brain (lateralization) are involved in different cognitive and sensory functions. This study focuses on dolphin visual lateralization as expressed by spontaneous eye preference when performing a complex cognitive task; we examine lateralization when processing different visual stimuli displayed on an underwater touch-screen (two-dimensional figures, three-dimensional figures and dolphin/human video sequences). Three female bottlenose dolphins (Tursiops truncatus) were submitted to a 2-, 3- or 4-, choice visual/auditory discrimination problem, without any food reward: the subjects had to correctly match visual and acoustic stimuli together. In order to visualize and to touch the underwater target, the dolphins had to come close to the touch-screen and to position themselves using monocular vision (left or right eye) and/or binocular naso-ventral vision. The results showed an ability to associate simple visual forms and auditory information using an underwater touch-screen. Moreover, the subjects showed a spontaneous tendency to use monocular vision. Contrary to previous findings, our results did not clearly demonstrate right eye preference in spontaneous choice. However, the individuals' scores of correct answers were correlated with right eye vision, demonstrating the advantage of this visual field in visual information processing and suggesting a left hemispheric dominance. We also demonstrated that the nature of the presented visual stimulus does not seem to have any influence on the animals' monocular vision choice. PMID:16246503

  4. TPH2 5'- and 3'-regulatory polymorphisms are differentially associated with HPA axis function and self-injurious behavior in rhesus monkeys.

    PubMed

    Chen, G-L; Novak, M A; Meyer, J S; Kelly, B J; Vallender, E J; Miller, G M

    2010-04-01

    Tryptophan hydroxylase-2 (TPH2) synthesizes neuronal serotonin and is linked to numerous behavioral traits. We have previously characterized the functionality of polymorphisms (especially 2051A>C) in 3'-untranslated region (3'-UTR) of rhesus monkey TPH2 (rhTPH2). This study further assessed the functionality of additional polymorphisms (-1605T>C, -1491Tn, -1485(AT)n, -1454A>G, -1325In>Del and -363T>G) in rhTPH2 5'-flanking region (5'-FR), and evaluated the effects of rhTPH2 5' and 3' genotypes on central serotonin turnover, hypothalamic-pituitary-adrenal (HPA) axis function and self-injurious behavior (SIB) in 32 unrelated adult male monkeys of Indian origin. Haplotypes of the rhTPH2 5'-FR polymorphisms exert a significant, cell-dependent effect on reporter gene expression, primarily conferred by -1485(AT)n. The -1485(AT)n and 2051A>C polymorphisms interact to influence cerebrospinal fluid (CSF) 5-HIAA and plasma adrenocorticotropic hormone (ACTH) in the afternoon. While -1485(AT)n exerts significant main effects on the afternoon cortisol level and nocturnal HPA negative feedback, 2051A>C has significant main effects on the morning cortisol level and cortisol response to ACTH challenge, as well as marginally significant main effects on the daytime HPA negative feedback and self-biting rate. In addition, the genotype/allele frequency of the 5'-FR -1325Ins>Del differed significantly between the self-wounders and non-wounders, whereas 3'-UTR 2128S>L polymorphism differed significantly in genotype/allele frequency between the high- and low-frequency biters. This study shows the functionality of rhTPH2 5'-FR polymorphisms, and provides evidence for the differential association of rhTPH2 5'-FR and 3'-UTR polymorphisms with HPA axis function and SIB. Our findings shed light on the role of TPH2 gene variance in physiology and behavioral traits, and also contribute to the understanding of the pathophysiology and genetics of SIB. PMID:20059554

  5. High versus low fat/sugar food affects the behavioral, but not the cortisol response of marmoset monkeys in a conditioned-place-preference task.

    PubMed

    Duarte, R B M; Patrono, E; Borges, A C; Tomaz, C; Ventura, R; Gasbarri, A; Puglisi-Allegra, S; Barros, M

    2015-02-01

    The effect of a high (chocolate) versus low fat/sugar (chow) food on a conditioned-place-preference (CPP) task was evaluated in marmoset monkeys. Anxiety-related behaviors and cortisol levels before and after the CPP task were also measured. Subjects were habituated to a two-compartment CPP box and then, on alternate days, had access to only one compartment during daily 15-min conditionings, for a total of 14 trials. Marmosets were provisioned with chocolate chips in the CC-paired compartment on odd-numbered trials and standard chow in the CW-paired compartment on even-numbered trials. They were then tested for preferring the CC-paired context after a 24-h interval. During the conditioning, a significantly greater amount (in kcal/trial) of chocolate was consumed than chow, yet the foraging pattern of both food types was similar. On the test trial, the time spent in the CC-paired context increased significantly compared to pre-CPP levels, yet this response was not readily predicted by baseline behavioral or cortisol levels. Also, the chocolate CPP response was positively correlated with foraging time, rather than the amount of calories consumed. The sudden absence of the food increased exploration, while the chocolate CPP effect was associated with vigilance - both anxiety-related behaviors in marmosets. This behavioral profile occurred regardless of any concomitant change or correlation with cortisol. Therefore, the high fat/sugar food was more prone to be overly consumed by the marmosets, to induce a CPP response and to lead to anxiety-related behavior in its absence. PMID:25447426

  6. Visualization and Rule Validation in Human-Behavior Representation

    ERIC Educational Resources Information Center

    Moya, Lisa Jean; McKenzie, Frederic D.; Nguyen, Quynh-Anh H.

    2008-01-01

    Human behavior representation (HBR) models simulate human behaviors and responses. The Joint Crowd Federate [TM] cognitive model developed by the Virginia Modeling, Analysis, and Simulation Center (VMASC) and licensed by WernerAnderson, Inc., models the cognitive behavior of crowds to provide credible crowd behavior in support of military…

  7. Individual differences in visual behavior in simulated flight

    NASA Astrophysics Data System (ADS)

    Alfredson, Jens

    2002-06-01

    Flying an aircraft is highly visually demanding. It is very important to map pilot visual behaviour, both for the purpose of evaluating the cockpit interface and to effectively integrate it with future adaptive interfaces and decision support systems. Pilots' visual behaviour was studied in two experiments. In the first experiment commercial aviation pilots were flying a commercial aviation scenario and eye point of gaze, and eye blinks were collected. In the second experiment military pilots were flying an air-to-air combat scenario and the visual behaviour was video recorded. In both of the experiments the results show individual differences in the pilots' visual behaviour. In the second experiment two different categories of eye blinks were found that might help explain the individual differences in visual behaviour. One category can be related to the systematic eye blinks found to occur when the eye point of gaze was changed between head-up/head-down and head-down/head-up. The other category could be related to other reasons, such as mental workload or visual demands.

  8. Lesions of either anterior orbitofrontal cortex or ventrolateral prefrontal cortex in marmoset monkeys heighten innate fear and attenuate active coping behaviors to predator threat

    PubMed Central

    Shiba, Yoshiro; Kim, Charissa; Santangelo, Andrea M.; Roberts, Angela C.

    2015-01-01

    The ventral prefrontal cortex is an integral part of the neural circuitry that is dysregulated in mood and anxiety disorders. However, the contribution of its distinct sub-regions to the regulation of negative emotion are poorly understood. Recently we implicated both the ventrolateral prefrontal cortex (vlPFC) and anterior orbitofrontal cortex (antOFC) in the regulation of conditioned fear and anxiety responses to a social stimulus, i.e., human intruder, in the marmoset monkey. In the present study we extend our investigations to determine the role of these two regions in regulating innate responses and coping strategies to a predator stimulus, i.e., a model snake. Both the vlPFC and antOFC lesioned groups exhibited enhanced anxiety-related responses to the snake in comparison to controls. Both groups also showed a reduction in active coping behavior. These results indicate that the vlPFC and antOFC contribute independently to the regulation of both innate fear and, as previously reported, conditioned fear, and highlight the importance of these regions in producing stimulus-appropriate coping responses. The finding that dysregulation in two distinct prefrontal regions produces the apparently similar behavioral phenotype of heightened negative emotion provides insight into the varied etiology that may underlie this symptom across a wide variety of neuropsychiatric conditions with implications for personalized treatment strategies. PMID:25653599

  9. Influence of chronic dopamine transporter inhibition by RTI-336 on motor behavior, sleep, and hormone levels in rhesus monkeys.

    PubMed

    Andersen, Monica L; Sawyer, Eileen K; Carroll, F Ivy; Howell, Leonard L

    2012-04-01

    Dopamine transporter (DAT) inhibitors have been developed as a promising treatment approach for cocaine dependence. However, the stimulant effects of DAT inhibitors have the potential to disrupt sleep patterns, and the influence of long-term treatment on dopamine neurochemistry is still unknown. The objectives of this study were to (1) explore the stimulant-related effects of chronic DAT inhibitor (RTI-336) treatment on motor activity and sleep-like measures in male rhesus monkeys (Macaca mulatta; n = 4) and (2) to determine the effect of drug treatment on prolactin and cortisol levels. Subjects were fitted with a collar-mounted activity monitor to evaluate their motor activity, with 4 days of baseline recording preceding 21 days of daily saline or RTI-336 (1 mg/kg/day; intramuscular) injections. Blood samples were collected immediately prior to and following chronic treatment to assess hormone levels. RTI-336 produced a significant increase in locomotor activity at the end of the daytime period compared to saline administration. During the 3-week treatment period, sleep efficiency was decreased and the fragmentation index and latency to sleep onset were significantly increased. Hormone levels were not changed throughout the study. Chronic treatment with RTI-336 has a mild but significant stimulant effect, as evidenced by the significant increase in activity during the evening period which may cause minor disruptions in sleep measures. PMID:22023668

  10. Gender differences in adapting driving behavior to accommodate visual health limitations.

    PubMed

    Sarkin, Andrew J; Tally, Steven R; Wooldridge, Jennalee S; Choi, Kyle; Shieh, Marian; Kaplan, Robert M

    2013-12-01

    This study investigated whether men and women are equally likely to adapt their driving behaviors in response to visual limitations. Participants were 376 (222 women and 154 men) pre-surgical cataract patients from the Shiley Eye Center in La Jolla, California. All participants completed the National Eye Institute Visual Functioning Questionnaire, which assesses self-reported visual symptoms, functional limitations, and behaviors including driving during the day, at night, or in difficult conditions. Visual acuity was assessed using the log of the minimal angle of resolution (LogMAR) scale. There were no significant differences in LogMAR visual acuity between men and women who reported either that they stopped driving at night because of visual impairment or reported having no difficulty driving at night. Of participants who reported having difficulty driving at night, mean weighted LogMAR scores indicated significantly better visual acuity for women than men. There were no significant differences in LogMAR visual acuity between women and men in any of the difficult driving condition categories. Significantly more women than men reported that they stopped driving in difficult conditions because of eyesight, despite the lack of gender differences in visual acuity for this sample. We found no evidence that cataract disease had different effects on the visual acuity of older adult men and women. However, there was a significant difference between genders in self-reported driving behavior. It is possible that some women are more cautious or have less need to drive. However, failing to adapt driving behaviors to accommodate visual limitations may represent a potential behavioral public health risk for men. PMID:23852327

  11. Dopamine D3 and D2 Receptor Mechanisms in the Abuse-Related Behavioral Effects of Cocaine: Studies with Preferential Antagonists in Squirrel Monkeys

    PubMed Central

    Grundt, Peter; Cao, Jianjing; Platt, Donna M.; Newman, Amy Hauck; Spealman, Roger D.

    2010-01-01

    Dopamine (DA) D3 and D2 receptor mechanisms are implicated in cocaine's abuse-related behavioral effects, but the relative contribution of the two receptor subtypes is only partially characterized. This study investigated the role of D3 and D2 subtype mechanisms by determining the degree to which the D3-preferring antagonist PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin- 1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl] and the D2-preferring antagonist L-741626 [3-[4-(4-chlorophenyl)-4- hydroxypiperidin-1-yl]methyl-1H-indole] attenuated several behavioral effects of cocaine in squirrel monkeys. Quantitative observational studies established doses of each antagonist that did not produce untoward effects, which were used in subsequent comparisons. In addition, the ability of the D3-preferring agonist PD128907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol)] and the D2-preferring agonist sumanirole [(R)-5,6-dihydro-5-(methylamino)-4H- imidazo[4,5,1-ij]quinolin-2(1H)-one(Z)-2-butenedioate] to reproduce cocaine's discriminative stimulus (DS) and priming effects were compared. In monkeys trained to discriminate cocaine from vehicle, both DA antagonists attenuated and both DA agonists partially reproduced cocaine's DS effects. PG01037 also selectively attenuated the cocaine-like DS effects of PD128907, whereas L-741626 attenuated the cocaine-like DS effects of both agonists. In self-administration studies, L-741626 nonselectively reduced cocaine- and food-maintained responding, whereas PG01037 was ineffective against either reinforcer. In studies involving reinstatement of extinguished cocaine seeking, both antagonists attenuated cocaine-induced reinstatement of responding, and both agonists induced at least partial reinstatement of cocaine seeking. L-741626 also attenuated sumanirole-induced, but not PD128907-induced, reinstatement of responding, whereas PG01037 was ineffective against either DA agonist. The results are

  12. Dopamine D3 and D2 receptor mechanisms in the abuse-related behavioral effects of cocaine: studies with preferential antagonists in squirrel monkeys.

    PubMed

    Achat-Mendes, Cindy; Grundt, Peter; Cao, Jianjing; Platt, Donna M; Newman, Amy Hauck; Spealman, Roger D

    2010-08-01

    Dopamine (DA) D3 and D2 receptor mechanisms are implicated in cocaine's abuse-related behavioral effects, but the relative contribution of the two receptor subtypes is only partially characterized. This study investigated the role of D3 and D2 subtype mechanisms by determining the degree to which the D3-preferring antagonist PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin- 1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl] and the D2-preferring antagonist L-741626 [3-[4-(4-chlorophenyl)-4- hydroxypiperidin-1-yl]methyl-1H-indole] attenuated several behavioral effects of cocaine in squirrel monkeys. Quantitative observational studies established doses of each antagonist that did not produce untoward effects, which were used in subsequent comparisons. In addition, the ability of the D3-preferring agonist PD128907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol)] and the D2-preferring agonist sumanirole [(R)-5,6-dihydro-5-(methylamino)-4H- imidazo[4,5,1-ij]quinolin-2(1H)-one(Z)-2-butenedioate] to reproduce cocaine's discriminative stimulus (DS) and priming effects were compared. In monkeys trained to discriminate cocaine from vehicle, both DA antagonists attenuated and both DA agonists partially reproduced cocaine's DS effects. PG01037 also selectively attenuated the cocaine-like DS effects of PD128907, whereas L-741626 attenuated the cocaine-like DS effects of both agonists. In self-administration studies, L-741626 nonselectively reduced cocaine- and food-maintained responding, whereas PG01037 was ineffective against either reinforcer. In studies involving reinstatement of extinguished cocaine seeking, both antagonists attenuated cocaine-induced reinstatement of responding, and both agonists induced at least partial reinstatement of cocaine seeking. L-741626 also attenuated sumanirole-induced, but not PD128907-induced, reinstatement of responding, whereas PG01037 was ineffective against either DA agonist. The results are

  13. Approaches to Increasing Assertive Behavior and Communication Skills in Blind and Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Harrell, Rona L.; Strauss, Felice A.

    1986-01-01

    Components of assertive behavior are described with suggestions for enabling the visually impaired person to develop these skills. The underlying concepts of assertion training are explained along with specific techniques for use in schools or rehabilitative settings. (Author/CL)

  14. Navajo and Caucasian Children's Verbal and Nonverbal-Visual Behavior in the Urban Classroom

    ERIC Educational Resources Information Center

    Guilmet, George M.

    1978-01-01

    A formal observation technique was used in an urban classroom context to assess the verbal and nonverbal-visual behavior of 17 Navajo and 7 Caucasian children. Two statistical techniques revealed significant intergroup differences in verbal and nonverbal-visual style. ( Author)

  15. Factors Related to Impaired Visual Orienting Behavior in Children with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Boot, F. H.; Pel, J .J. M.; Evenhuis, H. M.; van der Steen, J.

    2012-01-01

    It is generally assumed that children with intellectual disabilities (ID) have an increased risk of impaired visual information processing due to brain damage or brain development disorder. So far little evidence has been presented to support this assumption. Abnormal visual orienting behavior is a sensitive tool to evaluate impaired visual…

  16. Visual Cue-Discriminative Dopaminergic Control of Visuomotor Transformation and Behavior Selection.

    PubMed

    Yao, Yuanyuan; Li, Xiaoquan; Zhang, Baibing; Yin, Chen; Liu, Yafeng; Chen, Weiyu; Zeng, Shaoqun; Du, Jiulin

    2016-02-01

    Animals behave differently in response to visual cues with distinct ethological meaning, a process usually thought to be achieved through differential visual processing. Using a defined zebrafish escape circuit as a model, we found that behavior selection can be implemented at the visuomotor transformation stage through a visually responsive dopaminergic-inhibitory circuit module. In response to non-threatening visual stimuli, hypothalamic dopaminergic neurons and their positively regulated hindbrain inhibitory interneurons increase activity, suppressing synaptic transmission from the visual center to the escape circuit. By contrast, threatening visual stimuli inactivate some of these neurons, resulting in dis-inhibition of the visuomotor transformation and escape generation. The distinct patterns of dopaminergic-inhibitory neural module's visual responses account for this stimulus-specific visuomotor transformation and behavioral control. Thus, our study identifies a behavioral relevance-dependent mechanism that controls visuomotor transformation and behavior selection and reveals that neuromodulation can be tuned by visual cues to help animals generate appropriate responses. PMID:26804989

  17. Neuroanatomical distribution of oxytocin and vasopressin 1a receptors in the socially monogamous coppery titi monkey (Callicebus cupreus)

    PubMed Central

    Freeman, Sara M.; Walum, Hasse; Inoue, Kiyoshi; Smith, Aaron L.; Goodman, Mark M.; Bales, Karen L.; Young, Larry J.

    2014-01-01

    The coppery titi monkey (Callicebus cupreus) is a socially monogamous New World primate that has been studied in the field and the laboratory to investigate the behavioral neuroendocrinology of primate pair bonding and parental care. Arginine vasopressin has been shown to influence male titi monkey pair-bonding behavior, and studies are currently underway to examine the effects of oxytocin on titi monkey behavior and physiology. Here, we use receptor autoradiography to identify the distribution of arginine vasopressin 1a (AVPR1a) and oxytocin receptors (OXTR) in hemispheres of titi monkey brain (n=5). AVPR1a are diffuse and widespread throughout the brain, but the OXTR distribution is much more limited, with the densest binding being in the hippocampal formation (dentate gyrus, CA1 field) and the presubiculum (layers I and III). Moderate OXTR binding was detected in the nucleus basalis of Meynert, pulvinar, superior colliculus, layer 4C of primary visual cortex, periaqueductal gray, pontine gray, nucleus prepositus, and spinal trigeminal nucleus. OXTR mRNA overlapped with OXTR radioligand binding, confirming that the radioligand was detecting OXTR protein. AVPR1a binding is present throughout the cortex, especially in cingulate, insular, and occipital cortices, as well as in the caudate, putamen, nucleus accumbens, central amygdala, endopiriform nucleus, hippocampus (CA4 field), globus pallidus, lateral geniculate nucleus, infundibulum, habenula, periaqueductal gray, substantia nigra, olivary nucleus, hypoglossal nucleus, and cerebellum. Furthermore, we show that, in titi monkey brain, the OXTR antagonist ALS-II-69 is highly selective for OXTR and that the AVPR1a antagonist SR49059 is highly selective for AVPR1a. Based on these results and the fact that both ALS-II-69 and SR49059 are non-peptide, small-molecule antagonists that should be capable of crossing the blood brain barrier, these two compounds emerge as excellent candidates for the pharmacological

  18. Comparison between adrenal, gonadal, and pituitary hormones on the behavior of rhesus monkey kidney cells in culture.

    PubMed

    Hull, S; Benghuzzi, H; Tucci, M; Hughes, J

    1999-01-01

    Recently, several studies have indicated that the use of Rhesus Monkey Kidney epithelial cells (RMKEC) in culture could provide significant knowledge regarding the alteration or dysfunction of kidney tissues that often resulted into kidney failure. The interrelationship between various steroid hormones, as well as, growth-promoting hormones such as growth hormone (GH) and RMKEC has not been fully investigated. The specific objective of this study was to investigate the effects of cortisol (C), testosterone (T), dehydroepiandrosterone (DHEA), estradiol (E), and GH on the proliferation and viability of RMKEC in culture. The cell line was adapted to grow in Morgan, Morton, and Parker's medium 199 (with 1.68 g/L sodium bicarbonate) supplemented with 1% horse serum. A total of 30 tubes were plated with RMKEC and divided into six equal groups. In-groups 1-5, each well (n = 5) were treated with a physiological dose of C, T, DHEA, E, and GH, respectively. At 24, 48, and 96 hours the cells and supernatants were collected and stored for further analysis. The biochemical markers were assessed using lactate dehydrogenase (LDH), catalase, and malinodialdehyde (MDA). Data obtained suggest that: (I) treatment of RMKEC with C and DHEA resulted in an increase in MDA levels compared to the control and other experimental groups, (II) no significant increase was observed in LDH levels in all treated tubes compared to the control group, (III) higher proliferation rate was observed in cells treated with T compared to the control group. However, treatment with C showed suppression to the proliferation rate and no significant difference was observed between DHEA, GH and the control groups. In conclusion this study suggests that steroid hormones regardless of the source of secretion (gonads or adrenals) can influence the functional capacity of RMKEC in culture. PMID:11143395

  19. Driving simulation in the clinic: testing visual exploratory behavior in daily life activities in patients with visual field defects.

    PubMed

    Hamel, Johanna; Kraft, Antje; Ohl, Sven; De Beukelaer, Sophie; Audebert, Heinrich J; Brandt, Stephan A

    2012-01-01

    Patients suffering from homonymous hemianopia after infarction of the posterior cerebral artery (PCA) report different degrees of constraint in daily life, despite similar visual deficits. We assume this could be due to variable development of compensatory strategies such as altered visual scanning behavior. Scanning compensatory therapy (SCT) is studied as part of the visual training after infarction next to vision restoration therapy. SCT consists of learning to make larger eye movements into the blind field enlarging the visual field of search, which has been proven to be the most useful strategy(1), not only in natural search tasks but also in mastering daily life activities(2). Nevertheless, in clinical routine it is difficult to identify individual levels and training effects of compensatory behavior, since it requires measurement of eye movements in a head unrestrained condition. Studies demonstrated that unrestrained head movements alter the visual exploratory behavior compared to a head-restrained laboratory condition(3). Martin et al.(4) and Hayhoe et al.(5) showed that behavior demonstrated in a laboratory setting cannot be assigned easily to a natural condition. Hence, our goal was to develop a study set-up which uncovers different compensatory oculomotor strategies quickly in a realistic testing situation: Patients are tested in the clinical environment in a driving simulator. SILAB software (Wuerzburg Institute for Traffic Sciences GmbH (WIVW)) was used to program driving scenarios of varying complexity and recording the driver's performance. The software was combined with a head mounted infrared video pupil tracker, recording head- and eye-movements (EyeSeeCam, University of Munich Hospital, Clinical Neurosciences). The positioning of the patient in the driving simulator and the positioning, adjustment and calibration of the camera is demonstrated. Typical performances of a patient with and without compensatory strategy and a healthy control are

  20. Driving Simulation in the Clinic: Testing Visual Exploratory Behavior in Daily Life Activities in Patients with Visual Field Defects

    PubMed Central

    Hamel, Johanna; Kraft, Antje; Ohl, Sven; De Beukelaer, Sophie; Audebert, Heinrich J.; Brandt, Stephan A.

    2012-01-01

    Patients suffering from homonymous hemianopia after infarction of the posterior cerebral artery (PCA) report different degrees of constraint in daily life, despite similar visual deficits. We assume this could be due to variable development of compensatory strategies such as altered visual scanning behavior. Scanning compensatory therapy (SCT) is studied as part of the visual training after infarction next to vision restoration therapy. SCT consists of learning to make larger eye movements into the blind field enlarging the visual field of search, which has been proven to be the most useful strategy1, not only in natural search tasks but also in mastering daily life activities2. Nevertheless, in clinical routine it is difficult to identify individual levels and training effects of compensatory behavior, since it requires measurement of eye movements in a head unrestrained condition. Studies demonstrated that unrestrained head movements alter the visual exploratory behavior compared to a head-restrained laboratory condition3. Martin et al.4 and Hayhoe et al.5 showed that behavior demonstrated in a laboratory setting cannot be assigned easily to a natural condition. Hence, our goal was to develop a study set-up which uncovers different compensatory oculomotor strategies quickly in a realistic testing situation: Patients are tested in the clinical environment in a driving simulator. SILAB software (Wuerzburg Institute for Traffic Sciences GmbH (WIVW)) was used to program driving scenarios of varying complexity and recording the driver's performance. The software was combined with a head mounted infrared video pupil tracker, recording head- and eye-movements (EyeSeeCam, University of Munich Hospital, Clinical Neurosciences). The positioning of the patient in the driving simulator and the positioning, adjustment and calibration of the camera is demonstrated. Typical performances of a patient with and without compensatory strategy and a healthy control are illustrated in

  1. Behavioral Evaluation of Visual Function of Rats Using a Visual Discrimination Apparatus

    PubMed Central

    Thomas, Biju B.; Samant, Deedar M.; Seiler, Magdalene J.; Aramant, Robert B.; Sheikholeslami, Sharzad; Zhang, Kevin; Chen, Zhenhai; Sadda, SriniVas R.

    2011-01-01

    A visual discrimination apparatus was developed to evaluate the visual sensitivity of normal pigmented rats (n=13) and S334ter-line-3 retinal degenerate (RD) rats (n=15). The apparatus is a modified Y maze consisting of two chambers leading to the rats' home cage. Rats were trained to find a one-way exit door leading into their home cage, based on distinguishing between two different visual alternatives (either a dark background or black and white stripes at varying luminance levels) which were randomly displayed on the back of each chamber. Within two weeks of training, all rats were able to distinguish between these two visual patterns. The discrimination threshold of normal pigmented rats was a luminance level of -5.37 ± 0.05 log cd/m2; whereas the threshold level of 100 day old RD rats was -1.14± 0.09 log cd/m2 with considerable variability in performance. When tested at a later age (about 150 days), the threshold level of RD rats was significantly increased (-0.82±0.09 log cd/m2, p<0.03, paired t-test). This apparatus could be useful to train rats at a very early age to distinguish between two different visual stimuli and may be effective for visual functional evaluations following therapeutic interventions. PMID:17289151

  2. Visual stimuli that elicit visual tracking, approaching and striking behavior from an unusual praying mantis, Euchomenella macrops (Insecta: Mantodea).

    PubMed

    Prete, Frederick R; Theis, Robert; Komito, Justin L; Dominguez, Jessica; Dominguez, Salina; Svenson, Gavin; Wieland, Frank

    2012-05-01

    In comparison to other similarly sized mantis species examined in previous studies, Euchomenella macrops has a significantly smaller head, shorter foreleg tibia, but longer prothorax which have been interpreted as specializations for the capture of smaller, slower prey. We tested this conjecture by assessing the rates at which computer generated stimuli elicit visual tracking, approaching, and striking behaviors by adult females. When presented with black disks moving erratically against a white background, strike rate rose progressively as disks enlarged up to 44 deg (visual angle) if the disks moved rapidly (e.g., 143 deg/s); at slower speeds (113, 127 deg/s), smaller disks (<27 deg) were preferred. When black moved linearly from the visual periphery to visual field center (at 73 or 143 deg/s) and then stopped, E. macrops struck consistently at disks as small as 5 deg after movement ceased. E. macrops also struck at higher rates in response to 23 deg erratically moving (subjective) red (versus subjective blue or green) disks that were luminance matched to a grey background although they tracked all colors at equally high rates. Unlike some other species, E. macrops did not strike at higher rates in response to elongated rectangular stimuli moving parallel (versus perpendicular) to their long axis, although the former elicited higher rates of approaching. An analysis of tracking behavior revealed that virtually all tracking movements were a result of head (versus) prothorax rotation. PMID:22342660

  3. Using Social Stories and Visual Schedules to Improve Socially Appropriate Behaviors in Children with Autism

    ERIC Educational Resources Information Center

    Schneider, Naomi; Goldstein, Howard

    2010-01-01

    The current study investigated the effects of Social Stories written according to Gray's specifications on on-task behavior in inclusive classroom settings in three children with autism. Using a multiple-baseline design across participants, modest improvements in on-task behavior were associated with implementation of an auditory-visual Social…

  4. Procedures Used to Modify Self-Injurious Behaviors in Visually Impaired, Mentally Retarded Individuals.

    ERIC Educational Resources Information Center

    Longo, Julie; And Others

    1981-01-01

    The article reviews the use and limitations of medical and behavioral approaches (restraints, shock, drugs, punishment and aversive stimulation, reinforcement of incompatible behaviors, and overcorrection) to reduce self injury in visually impaired, mentally retarded persons. Legal and ethical considerations are pointed out. (Author/CL)

  5. Motor impairments and neurochemical changes after unilateral 6-hydroxydopamine lesion of the nigrostriatal dopaminergic system in monkeys.

    PubMed

    Apicella, P; Trouche, E; Nieoullon, A; Legallet, E; Dusticier, N

    1990-01-01

    Unilateral lesions of the nigrostriatal dopaminergic system were induced in five monkeys by intranigral injections of the neurotoxin 6-hydroxydopamine. Following the lesion, all monkeys showed a transient reluctance in using the contralateral forelimb, accompanied, in two monkeys by semi-flexed posture of the disabled forelimb. Three of the monkeys that had been conditioned to perform a visually triggered goal-directed arm movement, showed an increase in latency and duration of contralateral arm movements. Task performance recovered spontaneously to preoperative levels within four months in two monkeys despite significant reductions of endogenous dopamine and dihydroxyphenylacetic acid contents in the caudate nucleus, putamen and globus pallidus ipsilateral to the neurotoxic nigral injection. The third monkey exhibited a persistent increase in movement latency associated with a near complete loss of dopamine in both the putamen and the caudate nucleus. In all cases, an increase the dihydroxyphenyl-acetic acid to dopamine ratio was detected in the striatum and pallidum suggesting a compensatory increase in dopamine turnover in remaining intact dopaminergic nerve terminals. The level of serotonin was changed in all monkeys consisting of either a decrease or an increase, depending on the striatopallidal regions studied. Changes in choline acetyltransferase and glutamic acid decarboxylase activities in the same regions were only seen in some cases. The present results show that 6-hydroxydopamine-induced partial unilateral lesion of nigral dopaminergic neurons produced predominantly contralateral hypokinesia, accompanied by reductions of dopamine content in the ipsilateral striatum and pallidum. The use of this locally applied neurotoxin appears to be a suitable method for investigating neurophysiological mechanisms underlying hypokinesia since deficits in both initiating and executing movements can be expressed independently of other behavioral symptoms. The results

  6. Sensory uncertainty decoded from visual cortex predicts behavior

    PubMed Central

    van Bergen, Ruben S; Ma, Wei Ji; Pratte, Michael S; Jehee, Janneke F M

    2015-01-01

    Bayesian theories of neural coding propose that sensory uncertainty is represented by a probability distribution encoded in neural population activity, but direct neural evidence supporting this hypothesis is currently lacking. Using fMRI in combination with a generative model-based analysis, we found that probability distributions reflecting sensory uncertainty could reliably be estimated from human visual cortex and, moreover, that observers appeared to use knowledge of this uncertainty in their perceptual decisions. PMID:26502262

  7. Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons

    PubMed Central

    DiCarlo, James J.; Zecchina, Riccardo; Zoccolan, Davide

    2013-01-01

    The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex. PMID:23950700

  8. Monkeys and Humans Share a Common Computation for Face/Voice Integration

    PubMed Central

    Chandrasekaran, Chandramouli; Lemus, Luis; Trubanova, Andrea; Gondan, Matthias; Ghazanfar, Asif A.

    2011-01-01

    Speech production involves the movement of the mouth and other regions of the face resulting in visual motion cues. These visual cues enhance intelligibility and detection of auditory speech. As such, face-to-face speech is fundamentally a multisensory phenomenon. If speech is fundamentally multisensory, it should be reflected in the evolution of vocal communication: similar behavioral effects should be observed in other primates. Old World monkeys share with humans vocal production biomechanics and communicate face-to-face with vocalizations. It is unknown, however, if they, too, combine faces and voices to enhance their perception of vocalizations. We show that they do: monkeys combine faces and voices in noisy environments to enhance their detection of vocalizations. Their behavior parallels that of humans performing an identical task. We explored what common computational mechanism(s) could explain the pattern of results we observed across species. Standard explanations or models such as the principle of inverse effectiveness and a “race” model failed to account for their behavior patterns. Conversely, a “superposition model”, positing the linear summation of activity patterns in response to visual and auditory components of vocalizations, served as a straightforward but powerful explanatory mechanism for the observed behaviors in both species. As such, it represents a putative homologous mechanism for integrating faces and voices across primates. PMID:21998576

  9. Act quickly, decide later: long-latency visual processing underlies perceptual decisions but not reflexive behavior.

    PubMed

    Jolij, Jacob; Scholte, H Steven; van Gaal, Simon; Hodgson, Timothy L; Lamme, Victor A F

    2011-12-01

    Humans largely guide their behavior by their visual representation of the world. Recent studies have shown that visual information can trigger behavior within 150 msec, suggesting that visually guided responses to external events, in fact, precede conscious awareness of those events. However, is such a view correct? By using a texture discrimination task, we show that the brain relies on long-latency visual processing in order to guide perceptual decisions. Decreasing stimulus saliency leads to selective changes in long-latency visually evoked potential components reflecting scene segmentation. These latency changes are accompanied by almost equal changes in simple RTs and points of subjective simultaneity. Furthermore, we find a strong correlation between individual RTs and the latencies of scene segmentation related components in the visually evoked potentials, showing that the processes underlying these late brain potentials are critical in triggering a response. However, using the same texture stimuli in an antisaccade task, we found that reflexive, but erroneous, prosaccades, but not antisaccades, can be triggered by earlier visual processes. In other words: The brain can act quickly, but decides late. Differences between our study and earlier findings suggesting that action precedes conscious awareness can be explained by assuming that task demands determine whether a fast and unconscious, or a slower and conscious, representation is used to initiate a visually guided response. PMID:21557644

  10. Monkeys, Apes and Other Primates. Young Discovery Library Series.

    ERIC Educational Resources Information Center

    Lucas, Andre

    This book is written for children 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume introduces the primate family, their physiology, and habits. Topics described include: (1) kinds of monkeys, including lemur, chimpanzee, gorilla, squirrel monkey, and marmoset; (2) behaviors when…

  11. Functional magnetic resonance imaging of awake monkeys: some approaches for improving imaging quality

    PubMed Central

    Chen, Gang; Wang, Feng; Dillenburger, Barbara C.; Friedman, Robert M.; Chen, Li M.; Gore, John C.; Avison, Malcolm J.; Roe, Anna W.

    2011-01-01

    artifacts and image distortion. Comparisons of images from functional runs using four segments with those using a single-shot EPI sequence revealed a roughly two-fold improvement in functional signal-to-noise-ratio and 50% decrease in distortion. These methods enabled reliable detection of neural activation and permitted blood-oxygenation-level-dependent (BOLD) based mapping of early visual areas in monkeys using a volume coil. In summary, both extensive behavioral training of monkeys and application of segmented gradient-echo EPI sequence improved signal-to-noise and image quality. Understanding the effects these factors have is important for the application of high field imaging methods to the detection of sub-millimeter functional structures in the awake monkey brain. PMID:22055855

  12. Early visual experience influences behavioral lateralization in the guppy.

    PubMed

    Dadda, Marco; Bisazza, Angelo

    2016-09-01

    Individual differences in lateralization of cognitive functions characterize both humans and non-human species. Genetic factors can account for only a fraction of the variance observed and the source of individual variation in laterality remains in large part elusive. Various environmental factors have been suggested to modulate the development of lateralization, including asymmetrical stimulation of the sensory system during ontogeny. In this study, we raised newborn guppies in an asymmetric environment to test the hypothesis that early left-right asymmetries in visual input may affect the development of cerebral asymmetries. Each fish was raised in an impoverished environment but could voluntarily observe a complex scene in a nearby compartment containing a group of conspecifics. Using asymmetric structures, we allowed some subjects to observe the complex scene with the right eye, others with the left eye, and control fish with both eyes. Among asymmetrically stimulated fish, the mirror test revealed eye dominance congruent with the direction of asymmetric stimulation, while controls showed no left-right laterality bias. Interestingly, asymmetric exposure to social stimuli also affected another aspect of visual lateralization-eye preference for scrutinizing a potential predator-but did not influence a measure of motor asymmetry. As the natural environment of guppies is fundamentally asymmetrical, we suggest that unequal left-right stimulation is a common occurrence in developing guppies and may represent a primary source of individual variation in lateralization as well as an efficient mechanism for producing laterality phenotypes that are adapted to local environmental conditions. PMID:27215573

  13. Visual and Oral Feedback to Promote Appropriate Social Behavior for a Student with Emotional and Behavioral Disorders

    ERIC Educational Resources Information Center

    Lingo, Amy S.; Jolivette, Kristine; Barton-Arwood, Sally M.

    2009-01-01

    On a routine basis, educators collect data on their students' academic and social performance to make informed decisions regarding curricular and social instruction. The authors conducted a case study for a student with emotional and behavioral disorders. The student's teacher provided oral and visual feedback during reading instruction. Data…

  14. Separate and Combined Effects of Visual Schedules and Extinction Plus Differential Reinforcement on Problem Behavior Occasioned by Transitions

    ERIC Educational Resources Information Center

    Waters, Melissa B.; Lerman, Dorothea C.; Hovanetz, Alyson N.

    2009-01-01

    The separate and combined effects of visual schedules and extinction plus differential reinforcement of other behavior (DRO) were evaluated to decrease transition-related problem behavior of 2 children diagnosed with autism. Visual schedules alone were ineffective in reducing problem behavior when transitioning from preferred to nonpreferred…

  15. Visual choice behavior by bumblebees (Bombus impatiens) confirms unsupervised neural network's predictions.

    PubMed

    Orbán, Levente L; Plowright, Catherine M S; Chartier, Sylvain; Thompson, Emma; Xu, Vicki

    2015-08-01

    The behavioral experiment herein tests the computational load hypothesis generated by an unsupervised neural network to examine bumblebee (Bombus impatiens) behavior at 2 visual properties: spatial frequency and symmetry. Untrained "flower-naïve" bumblebees were hypothesized to prefer symmetry only when the spatial frequency of artificial flowers is high and therefore places great information-processing demands on the bumblebees' visual system. Bumblebee choice behavior was recorded using high-definition motion-sensitive camcorders. The results support the computational model's prediction: 1-axis symmetry influenced bumblebees' preference behavior at low and high spatial frequency patterns. Additionally, increasing the level of symmetry from 1 axis to 4 axes amplified preference toward the symmetric patterns of both low and high spatial frequency patterns. The results are discussed in the context of the artificial neural network model and other hypotheses generated from the behavioral literature. PMID:25984936

  16. Modulation of spontaneous fMRI activity in human visual cortex by behavioral state

    PubMed Central

    Bianciardi, Marta; Fukunaga, Masaki; van Gelderen, Peter; Horovitz, Silvina G.; de Zwart, Jacco A.; Duyn, Jeff H.

    2009-01-01

    The phenomenon of spontaneous fMRI activity is increasingly being exploited to investigate the connectivity of functional networks in human brain with high spatial-resolution. Although mounting evidence points towards a neuronal contribution to this activity, its functional role and dependence on behavioral state remain unclear. In this work, we used BOLD fMRI at 7 T to study the modulation of spontaneous activity in occipital areas by various behavioral conditions, including resting with eyes closed, eyes open with visual fixation, and eyes open with fixation and focal visual stimulation. Spontaneous activity was separated from evoked activity and from signal fluctuations related to cardiac and respiratory cycles. We found that spontaneous activity in visual areas was substantially reduced (amplitude (44%) and coherence (25%)) with the fixation conditions relative to the eyes-closed condition. No significant further modulation was observed when the visual stimulus was added. The observed dependence on behavioral condition suggests that part of spontaneous fMRI signal fluctuations represents neuronal activity. Possible mechanisms for the modulation of spontaneous activity by behavioral state are discussed. The observed linear superposition of spontaneous fMRI activity with focal evoked activity related to visual processing has important implications for fMRI studies, which ideally should take into account the effect of spontaneous activity to properly define brain activations during task conditions. PMID:19028588

  17. Eye preferences in capuchin monkeys (Sapajus apella).

    PubMed

    Wilson, Duncan A; Tomonaga, Masaki; Vick, Sarah-Jane

    2016-07-01

    This study explored whether capuchin monkey eye preferences differ systematically in response to stimuli of positive and negative valence. The 'valence hypothesis' proposes that the right hemisphere is more dominant for negative emotional processing and the left hemisphere is more dominant for positive emotional processing. Visual information from each eye is thought to be transferred faster to and primarily processed by the contralateral cerebral hemisphere. Therefore, it was predicted capuchin monkeys would show greater left eye use for looking at negative stimuli and greater right eye use for looking at positive stimuli. Eleven captive capuchin monkeys were presented with four images of different emotional valence (an egg and capuchin monkey raised eyebrow face were categorised as positive, and a harpy eagle face and capuchin monkey threat face were categorised as negative) and social relevance (consisting of capuchin monkey faces or not), and eye preferences for viewing the stimuli through a monocular viewing hole were recorded. While strong preferences for using either the left or right eye were found for most individuals, there was no consensus at the population level. Furthermore, the direction of looking, number of looks and duration of looks did not differ significantly with the emotional valence of the stimuli. These results are inconsistent with the main hypotheses about the relationship between eye preferences and processing of emotional stimuli. However, the monkeys did show significantly more arousal behaviours (vocalisation, door-touching, self-scratching and hand-rubbing) when viewing the negatively valenced stimuli than the positively valenced stimuli, indicating that the stimuli were emotionally salient. These findings do not provide evidence for a relationship between eye preferences and functional hemispheric specialisations, as often proposed in humans. Additional comparative studies are required to better understand the phylogeny of lateral

  18. Monkey Retardate Learning Analysis

    ERIC Educational Resources Information Center

    Chamove, A. S.; Molinaro, T. J.

    1978-01-01

    Seven rhesus monkeys reared on diets high in phenylalanine to induce phenylketonuria (PKU--a metabolic disorder associated with mental retardation if untreated) were compared with normal, pair-fed, and younger controls; frontal brain-lesioned monkeys; and those raised on high-tryptophan diets in three object discrimination tasks. (Author)

  19. Monkey Able After Recovery

    NASA Technical Reports Server (NTRS)

    1959-01-01

    On May 28, 1959, a Jupiter Intermediate Range Ballistic Missile provided by a U.S. Army team in Redstone Arsenal, Alabama, launched a nose cone carrying Baker, A South American squirrel monkey and Able, An American-born rhesus monkey. This photograph shows Able after recovery of the nose cone of the Jupiter rocket by U.S.S. Kiowa.

  20. Visual Information Alone Changes Behavior and Physiology during Social Interactions in a Cichlid Fish (Astatotilapia burtoni)

    PubMed Central

    Chen, Chun-Chun; Fernald, Russell D.

    2011-01-01

    Social behavior can influence physiological systems dramatically yet the sensory cues responsible are not well understood. Behavior of male African cichlid fish, Astatotilapia burtoni, in their natural habitat suggests that visual cues from conspecifics contribute significantly to regulation of social behavior. Using a novel paradigm, we asked whether visual cues alone from a larger conspecific male could influence behavior, reproductive physiology and the physiological stress response of a smaller male. Here we show that just seeing a larger, threatening male through a clear barrier can suppress dominant behavior of a smaller male for up to 7 days. Smaller dominant males being “attacked” visually by larger dominant males through a clear barrier also showed physiological changes for up to 3 days, including up-regulation of reproductive- and stress-related gene expression levels and lowered plasma 11-ketotestesterone concentrations as compared to control animals. The smaller males modified their appearance to match that of non-dominant males when exposed to a larger male but they maintained a physiological phenotype similar to that of a dominant male. After 7 days, reproductive- and stress- related gene expression, circulating hormone levels, and gonad size in the smaller males showed no difference from the control group suggesting that the smaller male habituated to the visual intruder. However, the smaller male continued to display subordinate behaviors and assumed the appearance of a subordinate male for a full week despite his dominant male physiology. These data suggest that seeing a larger male alone can regulate the behavior of a smaller male but that ongoing reproductive inhibition depends on additional sensory cues. Perhaps, while experiencing visual social stressors, the smaller male uses an opportunistic strategy, acting like a subordinate male while maintaining the physiology of a dominant male. PMID:21633515

  1. Social Suppressive Behavior Is Organized by the Spatiotemporal Integration of Multiple Cortical Regions in the Japanese Macaque.

    PubMed

    Oosugi, Naoya; Yanagawa, Toru; Nagasaka, Yasuo; Fujii, Naotaka

    2016-01-01

    Under social conflict, monkeys develop hierarchical positions through social interactions. Once the hierarchy is established, the dominant monkey dominates the space around itself and the submissive monkey tries not to violate this space. Previous studies have shown the contributions of the frontal and parietal cortices in social suppression, but the contributions of other cortical areas to suppressive functions remain elusive. We recorded neural activity in large cortical areas using electrocorticographic (ECoG) arrays while monkeys performed a social food-grab task in which a target monkey was paired with either a dominant or a submissive monkey. If the paired monkey was dominant, the target monkey avoided taking food in the shared conflict space, but not in other areas. By contrast, when the paired monkey was submissive, the target monkey took the food freely without hesitation. We applied decoding analysis to the ECoG data to see when and which cortical areas contribute to social behavioral suppression. Neural information discriminating the social condition was more evident when the conflict space was set in the area contralateral to the recording hemisphere. We found that the information increased as the social pressure increased during the task. Before food presentation, when the pressure was relatively low, the parietal and somatosensory-motor cortices showed sustained discrimination of the social condition. After food presentation, when the monkey faced greater pressure to make a decision as to whether it should take the food, the prefrontal and visual cortices started to develop buildup responses. The social representation was found in a sustained form in the parietal and somatosensory-motor regions, followed by additional buildup form in the visual and prefrontal cortices. The representation was less influenced by reward expectation. These findings suggest that social adaptation is achieved by a higher-order self-regulation process (incorporating motor

  2. Social Suppressive Behavior Is Organized by the Spatiotemporal Integration of Multiple Cortical Regions in the Japanese Macaque

    PubMed Central

    Nagasaka, Yasuo; Fujii, Naotaka

    2016-01-01

    Under social conflict, monkeys develop hierarchical positions through social interactions. Once the hierarchy is established, the dominant monkey dominates the space around itself and the submissive monkey tries not to violate this space. Previous studies have shown the contributions of the frontal and parietal cortices in social suppression, but the contributions of other cortical areas to suppressive functions remain elusive. We recorded neural activity in large cortical areas using electrocorticographic (ECoG) arrays while monkeys performed a social food-grab task in which a target monkey was paired with either a dominant or a submissive monkey. If the paired monkey was dominant, the target monkey avoided taking food in the shared conflict space, but not in other areas. By contrast, when the paired monkey was submissive, the target monkey took the food freely without hesitation. We applied decoding analysis to the ECoG data to see when and which cortical areas contribute to social behavioral suppression. Neural information discriminating the social condition was more evident when the conflict space was set in the area contralateral to the recording hemisphere. We found that the information increased as the social pressure increased during the task. Before food presentation, when the pressure was relatively low, the parietal and somatosensory–motor cortices showed sustained discrimination of the social condition. After food presentation, when the monkey faced greater pressure to make a decision as to whether it should take the food, the prefrontal and visual cortices started to develop buildup responses. The social representation was found in a sustained form in the parietal and somatosensory–motor regions, followed by additional buildup form in the visual and prefrontal cortices. The representation was less influenced by reward expectation. These findings suggest that social adaptation is achieved by a higher-order self-regulation process (incorporating

  3. Behavioral and neural correlates of visual preference decision

    NASA Astrophysics Data System (ADS)

    Shimojo, Shinsuke

    2009-02-01

    Three sets of findings are reported here, all related to behavioral and neural correlates of preference decision. First, when one is engaged in a preference decision task with free observation, one's gaze is biased towards the to-be-chosen stimulus (eg. face) long before (s)he is consciously aware of the decision ("gaze cascade effect"). Second, an fMRI study suggested that implicit activity in a subcortical structure (the Nucleus Accumbens) precedes cognitive and conscious decision of preference. Finally, both novelty and familiarity causally contribute to attractiveness, but differently across object categories (such as faces and natural scenes). Taken together, these results point to dynamical and implicit processes both in short- and long-term, towards conscious preference decision. Finally, some discussion will be given on aesthetic decision (i.e. "beauty").

  4. Visual and chemical release of feeding behavior in adult rainbow trout.

    PubMed

    Valentincic, T; Caprio, J

    1997-08-01

    Feeding behavior of adult rainbow trout (Oncorhynchus mykiss) is released by visual and/or chemical stimuli. Detection of either a conditioned visual or a conditioned chemical stimulus creates an excitatory feeding state within the central nervous system which turns on feeding behavior composed of swimming, turning and biting/snapping actions. Particular amino acids that are highly effective physiological taste stimuli that are also detected through olfaction (e.g. L-proline, L-alanine, L-leucine) release the initial sequence of food searching and biting/snapping behaviors; however, an effective olfactory, but poor gustatory, stimulus (e.g. L-arginine) is rarely effective behaviorally. After bilateral removal of the paired olfactory organs, visual stimuli alone release the entire set of feeding behavior patterns. Since amino acids that are highly potent physiological taste stimuli do not release either feeding behavior or reflex biting/snapping actions in adult anosmic rainbow trout, it is postulated that the olfactory system detects potent taste stimuli and provides the afferent input for arousal and the release of all feeding activity patterns. PMID:9279460

  5. Development of Visual Motion Perception for Prospective Control: Brain and Behavioral Studies in Infants

    PubMed Central

    Agyei, Seth B.; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2016-01-01

    During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioral and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioral data when studying the neural correlates of prospective control. PMID:26903908

  6. Chronic Cellular Imaging of Mouse Visual Cortex During Operant Behavior and Passive Viewing

    PubMed Central

    Andermann, Mark L.; Kerlin, A. M.; Reid, R. C.

    2010-01-01

    Nearby neurons in mammalian neocortex demonstrate a great diversity of cell types and connectivity patterns. The importance of this diversity for computation is not understood. While extracellular recording studies in visual cortex have provided a particularly rich description of behavioral modulation of neural activity, new methods are needed to dissect the contribution of specific circuit elements in guiding visual perception. Here, we describe a method for three-dimensional cellular imaging of neural activity in the awake mouse visual cortex during active discrimination and passive viewing of visual stimuli. Head-fixed mice demonstrated robust discrimination for many hundred trials per day after initial task acquisition. To record from multiple neurons during operant behavior with single-trial resolution and minimal artifacts, we built a sensitive microscope for two-photon calcium imaging, capable of rapid tracking of neurons in three dimensions. We demonstrate stable recordings of cellular calcium activity during discrimination behavior across hours, days, and weeks, using both synthetic and genetically encoded calcium indicators. When combined with molecular and genetic technologies in mice (e.g., cell-type specific transgenic labeling), this approach allows the identification of neuronal classes in vivo. Physiological measurements from distinct classes of neighboring neurons will enrich our understanding of the coordinated roles of diverse elements of cortical microcircuits in guiding sensory perception and perceptual learning. Further, our method provides a high-throughput, chronic in vivo assay of behavioral influences on cellular activity that is applicable to a wide range of mouse models of neurologic disease. PMID:20407583

  7. Behavioral Treatment of Sleep Problems in a Child with a Visual Impairment.

    ERIC Educational Resources Information Center

    Vervloed, Mathijs P. J.; Hoevenaars, Evelien; Maas, Anneke

    2003-01-01

    In this study, treatment focused on parenting practices for a 4 1/2-year-old girl with a visual impairment caused by Leber's congenital amaurosis and problems initiating and maintaining sleep. The sleep problem was effectively treated with a behavioral intervention consisting of parental support and the use of a graduated extinction procedure.…

  8. Predictors of Job-Seeking Behavior among Persons with Visual Impairments.

    ERIC Educational Resources Information Center

    Leonard, Robin

    2002-01-01

    A follow-up study of 60 nonworking persons with visual impairments who contacted a vision rehabilitation agency for vocational placement services over a five-year period found that the absence of other health or physical conditions and being unemployed one year or less were significant predictors of job-seeking behavior. (Contains references.)…

  9. Neurological and behavioral response of Musca Domestica L. to colored visual targets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to further understand visual attraction of house flies to colors and patterns, and the relation with fly trap performances, we conducted electroretinograms (ERG) studies of house fly compound eyes and ocelli and compared the fly physiological response to the behavioral attraction to reflect...

  10. Proactive Strategies for Managing the Behavior of Children with Neurodegenerative Diseases and Visual Impairment.

    ERIC Educational Resources Information Center

    Loftin, M. M.; Koehler, W. S.

    1998-01-01

    Presents proactive strategies to help educators deal with challenging behaviors of children with visual impairments and neurodegenerative diseases. Strategies are provided for general noncompliance, difficulty with changed or novel routines, difficulty maintaining physical movement, significant variations in affect, and intense tantrums and other…

  11. Nurses' Behaviors and Visual Scanning Patterns May Reduce Patient Identification Errors

    ERIC Educational Resources Information Center

    Marquard, Jenna L.; Henneman, Philip L.; He, Ze; Jo, Junghee; Fisher, Donald L.; Henneman, Elizabeth A.

    2011-01-01

    Patient identification (ID) errors occurring during the medication administration process can be fatal. The aim of this study is to determine whether differences in nurses' behaviors and visual scanning patterns during the medication administration process influence their capacities to identify patient ID errors. Nurse participants (n = 20)…

  12. Gaze Behavior in Basketball Shooting: Further Evidence for Online Visual Control

    ERIC Educational Resources Information Center

    de Oliveira, Rita F.; Oudejans, Raoul R. D.; Beek, Peter J.

    2008-01-01

    The aim of the present study was to help resolve conflicting findings and interpretations regarding the visual control of basketball shooting by examining the looking behavior of 6 expert basketball players (3 with a low shooting style and 3 with a high shooting style) executing both free throws and jump shots. Based on previous findings, they…

  13. Prey capture behavior evoked by simple visual stimuli in larval zebrafish.

    PubMed

    Bianco, Isaac H; Kampff, Adam R; Engert, Florian

    2011-01-01

    Understanding how the nervous system recognizes salient stimuli in the environment and selects and executes the appropriate behavioral responses is a fundamental question in systems neuroscience. To facilitate the neuroethological study of visually guided behavior in larval zebrafish, we developed "virtual reality" assays in which precisely controlled visual cues can be presented to larvae whilst their behavior is automatically monitored using machine vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼20°) toward small moving spots (1°) but reacted to larger spots (10°) with high-amplitude aversive turns (∼60°). The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analyzing movie sequences of larvae hunting paramecia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behavior in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey. PMID:22203793

  14. Prey Capture Behavior Evoked by Simple Visual Stimuli in Larval Zebrafish

    PubMed Central

    Bianco, Isaac H.; Kampff, Adam R.; Engert, Florian

    2011-01-01

    Understanding how the nervous system recognizes salient stimuli in the environment and selects and executes the appropriate behavioral responses is a fundamental question in systems neuroscience. To facilitate the neuroethological study of visually guided behavior in larval zebrafish, we developed “virtual reality” assays in which precisely controlled visual cues can be presented to larvae whilst their behavior is automatically monitored using machine vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼20°) toward small moving spots (1°) but reacted to larger spots (10°) with high-amplitude aversive turns (∼60°). The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analyzing movie sequences of larvae hunting paramecia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behavior in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey. PMID:22203793

  15. Effects of Visual Information on Wind-Evoked Escape Behavior of the Cricket, Gryllus bimaculatus.

    PubMed

    Kanou, Masamichi; Matsuyama, Akane; Takuwa, Hiroyuki

    2014-09-01

    We investigated the effects of visual information on wind-evoked escape behavior in the cricket, Gryllus bimaculatus. Most agitated crickets were found to retreat into a shelter made of cardboard installed in the test arena within a short time. As this behavior was thought to be a type of escape, we confirmed how a visual image of a shelter affected wind-evoked escape behavior. Irrespective of the brightness of the visual background (black or white) or the absence or presence of a shelter, escape jumps were oriented almost 180° opposite to the source of the air puff stimulus. Therefore, the direction of wind-evoked escape depends solely depended on the direction of the stimulus air puff. In contrast, the turning direction of the crickets during the escape was affected by the position of the visual image of the shelter. During the wind-evoked escape jump, most crickets turned in the direction in which a shelter was presented. This behavioral nature is presumably necessary for crickets to retreat into a shelter within a short time after their escape jump. PMID:25186926

  16. Visualization of the intracellular behavior of HIV in living cells

    PubMed Central

    McDonald, David; Vodicka, Marie A.; Lucero, Ginger; Svitkina, Tatyana M.; Borisy, Gary G.; Emerman, Michael; Hope, Thomas J.

    2002-01-01

    To track the behavior of human immunodeficiency virus (HIV)-1 in the cytoplasm of infected cells, we have tagged virions by incorporation of HIV Vpr fused to the GFP. Observation of the GFP-labeled particles in living cells revealed that they moved in curvilinear paths in the cytoplasm and accumulated in the perinuclear region, often near the microtubule-organizing center. Further studies show that HIV uses cytoplasmic dynein and the microtubule network to migrate toward the nucleus. By combining GFP fused to the NH2 terminus of HIV-1 Vpr tagging with other labeling techniques, it was possible to determine the state of progression of individual particles through the viral life cycle. Correlation of immunofluorescent and electron micrographs allowed high resolution imaging of microtubule-associated structures that are proposed to be reverse transcription complexes. Based on these observations, we propose that HIV uses dynein and the microtubule network to facilitate the delivery of the viral genome to the nucleus of the cell during early postentry steps of the HIV life cycle. PMID:12417576

  17. Behavioral and electrophysiological evidence of opposing lateral visuospatial asymmetries in the upper and lower visual fields.

    PubMed

    Loughnane, Gerard M; Shanley, John P; Lalor, Edmund C; O'Connell, Redmond G

    2015-02-01

    Neurologically healthy individuals typically exhibit a subtle bias towards the left visual field during spatial judgments, known as "pseudoneglect". However, it has yet to be reliably established if the direction and magnitude of this lateral bias varies along the vertical plane. Here, participants were required to distribute their attention equally across a checkerboard array spanning the entire visual field in order to detect transient targets that appeared at unpredictable locations. Reaction times (RTs) were faster to left hemifield targets in the lower visual field but the opposite trend was observed for targets in the upper field. Electroencephalogram (EEG) analyses focused on the interval prior to target onset in order to identify endogenous neural correlates of these behavioral asymmetries. The relative hemispheric distribution of pre-target oscillatory alpha power was predictive of RT bias to targets in the lower visual field but not the upper field, indicating separate attentional mechanisms for the upper and lower visual fields. Analysis of multifocal visual-evoked potentials (MVEP) in the pre-target interval also indicated that the opposing upper and lower field asymmetries may impact on the magnitude of primary visual cortical responses. These results provide new evidence of a functional segregation of upper and lower field visuospatial processing. PMID:25282061

  18. Cell-Type-Specific Optogenetics in Monkeys.

    PubMed

    Namboodiri, Vijay Mohan K; Stuber, Garret D

    2016-09-01

    The recent advent of technologies enabling cell-type-specific recording and manipulation of neuronal activity spurred tremendous progress in neuroscience. However, they have been largely limited to mice, which lack the richness in behavior of primates. Stauffer et al. now present a generalizable method for achieving cell-type specificity in monkeys. PMID:27610562

  19. A neural substrate for object permanence in monkey inferotemporal cortex

    PubMed Central

    Puneeth, N. C.; Arun, S. P.

    2016-01-01

    We take it for granted that objects continue to exist after being occluded. This knowledge – known as object permanence – is present even in childhood, but its neural basis is not fully understood. Here, we show that monkey inferior temporal (IT) neurons carry potential signals of object permanence even in animals that received no explicit behavioral training. We compared two conditions with identical visual stimulation: the same object emerged from behind an occluder as expected following its occlusion, or unexpectedly after occlusion of a different object. Some neurons produced a larger (surprise) signal when the object emerged unexpectedly, whereas other neurons produced a larger (match) signal when the object reappeared as expected. Neurons carrying match signals also reinstated selective delay period activity just before the object emerged. Thus, signals related to object permanence are present in IT neurons and may arise through an interplay of memory and match computations. PMID:27484111

  20. Discrimination of Visual Categories Based on Behavioral Relevance in Widespread Regions of Frontoparietal Cortex.

    PubMed

    Erez, Yaara; Duncan, John

    2015-09-01

    Allocating attentional resources to currently relevant information in a dynamically changing environment is critical to goal-directed behavior. Previous studies in nonhuman primates (NHPs) have demonstrated modulation of neural representations of stimuli, in particular visual categorizations, by behavioral significance in the lateral prefrontal cortex. In the human brain, a network of frontal and parietal regions, the "multiple demand" (MD) system, is involved in cognitive and attentional control. To test for the effect of behavioral significance on categorical discrimination in the MD system in humans, we adapted a previously used task in the NHP and used multivoxel pattern analysis for fMRI data. In a cued-detection categorization task, participants detected whether an image from one of two target visual categories was present in a display. Our results revealed that categorical discrimination is modulated by behavioral relevance, as measured by the distributed pattern of response across the MD network. Distinctions between categories with different behavioral status (e.g., a target and a nontarget) were significantly discriminated. Category distinctions that were not behaviorally relevant (e.g., between two targets) were not discriminated. Other aspects of the task that were orthogonal to the behavioral decision did not modulate categorical discrimination. In a high visual region, the lateral occipital complex, modulation by behavioral relevance was evident in its posterior subregion but not in the anterior subregion. The results are consistent with the view of the MD system as involved in top-down attentional and cognitive control by selective coding of task-relevant discriminations. Significance statement: Control of cognitive demands fundamentally involves flexible allocation of attentional resources depending on a current behavioral context. Essential to such a mechanism is the ability to select currently relevant information and at the same time filter out

  1. Discrimination of Visual Categories Based on Behavioral Relevance in Widespread Regions of Frontoparietal Cortex

    PubMed Central

    Duncan, John

    2015-01-01

    Allocating attentional resources to currently relevant information in a dynamically changing environment is critical to goal-directed behavior. Previous studies in nonhuman primates (NHPs) have demonstrated modulation of neural representations of stimuli, in particular visual categorizations, by behavioral significance in the lateral prefrontal cortex. In the human brain, a network of frontal and parietal regions, the “multiple demand” (MD) system, is involved in cognitive and attentional control. To test for the effect of behavioral significance on categorical discrimination in the MD system in humans, we adapted a previously used task in the NHP and used multivoxel pattern analysis for fMRI data. In a cued-detection categorization task, participants detected whether an image from one of two target visual categories was present in a display. Our results revealed that categorical discrimination is modulated by behavioral relevance, as measured by the distributed pattern of response across the MD network. Distinctions between categories with different behavioral status (e.g., a target and a nontarget) were significantly discriminated. Category distinctions that were not behaviorally relevant (e.g., between two targets) were not discriminated. Other aspects of the task that were orthogonal to the behavioral decision did not modulate categorical discrimination. In a high visual region, the lateral occipital complex, modulation by behavioral relevance was evident in its posterior subregion but not in the anterior subregion. The results are consistent with the view of the MD system as involved in top-down attentional and cognitive control by selective coding of task-relevant discriminations. SIGNIFICANCE STATEMENT Control of cognitive demands fundamentally involves flexible allocation of attentional resources depending on a current behavioral context. Essential to such a mechanism is the ability to select currently relevant information and at the same time filter

  2. Effects of the delta-opioid agonist SNC80 on the abuse liability of methadone in rhesus monkeys: a behavioral economic analysis

    PubMed Central

    Banks, Matthew L.; Roma, Peter G.; Folk, John E.; Rice, Kenner C.

    2012-01-01

    Rationale Delta-opioid agonists enhance the antinociceptive efficacy of methadone and other mu-opioid agonists. However, relatively little is known about the degree to which delta agonists might enhance the abuse-related effects of mu agonists. Objective This study used a behavioral economic approach to examine effects of the delta agonist SNC80 [(+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxy-benzyl]-N,N-diethylbenzamide] on the reinforcing effects of methadone in a drug self-administration assay. Interactions between SNC80 and cocaine were also examined for comparison. Methods Rhesus monkeys (n=4), surgically implanted with indwelling intravenous catheters, were tested in two phases. In phase 1, drug self-administration dose-effect curves for methadone (0.0032–0.1 mg/kg/injection (inj)) and cocaine (0.0032–0.32 mg/kg/inj) alone were determined under a fixed-ratio 10 (FR 10) schedule of reinforcement. In phase 2, FR values were increased every 3 days (FR 1–FR 1800) during availability of methadone alone (0.032 mg/kg/inj) and in combination with varying proportions of SNC80 (0.1:1, 0.3:1, and 0.9:1 SNC80/methadone) or of cocaine alone (0.032 mg/kg/inj) and in combination with varying proportions of SNC80 (0.33:1, 1:1, and 3:1 SNC80/ cocaine). Demand curves related drug intake to FR price, and measures of reinforcement were derived. Results Methadone and cocaine alone each functioned as a reinforcer. SNC80 did not alter measures of reinforcement for either methadone or cocaine. Conclusions SNC80 at proportions previously shown to enhance methadone-induced antinociception did not enhance the abuse-related effects of methadone. These results support the proposition that delta agonists may selectively enhance mu agonist analgesic effects without enhancing mu agonist abuse liability. PMID:21369752

  3. The function of loud calls in black howler monkeys (Alouatta pigra): food, mate, or infant defense?

    PubMed

    Van Belle, Sarie; Estrada, Alejandro; Garber, Paul A

    2014-12-01

    Loud calling (i.e., howling) is the single most distinctive behavioral attribute of the social system of howler monkeys (Alouatta spp.), yet no general consensus exists regarding its main function. During a 28-month study of five groups of black howler monkeys (Alouatta pigra) at Palenque National Park, Mexico, we examined whether howling mainly functioned in the defense of food resources, mates, or infants vulnerable to infanticide. We recorded 602 howling bouts. Howling occurred more frequently when monkeys were feeding, particularly on fruits, and less frequently when they were resting than would be expected by chance. Furthermore, howling was concentrated in areas of the home range in which major feeding sites were located. Howling did not occur more frequently when vulnerable infants or potentially fertile females were present versus absent, nor did the howling rate increase with an increasing number of vulnerable infants or potentially fertile females in the group. Howling bouts lasted on average 14.4 ± SE 0.5 min, and call duration was not influenced by the presence of vulnerable infants or potentially fertile females. The duration of spontaneous calls, however, was positively correlated to the percentage of feeding time in the vicinity of howling locations. In addition, vocal displays lasted longer when neighboring groups and extragroup males were within visual contact compared with spontaneous calls and calls in response to nearby calls in which there was no visual contact between callers. Our findings suggest that loud calls in black howler monkeys are multifunctional, but most frequently occur in the defense of major feeding sites. These calls also may function in the defense of infants and mates during encounters with extragroup males. PMID:24865565

  4. Analysis of compressive creep behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of Kelvin-solid models--Part II. Rhesus monkey intervertebral joints.

    PubMed

    Kaleps, I; Kazarian, L E; Burns, M L

    1984-01-01

    The simulation of long-term creep response behavior, observed on 54 Rhesus monkey intervertebral joints subjected to a constant axial compressive stress, is attempted by two- and three-parameter-solid models utilizing the Burns- Kaleps 'exact analysis scheme'. Model parameters identified by the analysis of each specimen's experimental strain data were optimized via a computer program and the mechanical properties (Young's moduli and the viscosity coefficient) appropriate to each model were calculated for individual spinal segments. Simulation results for the two-parameter-solid (one- Kelvin -unit) model demonstrate its general ineptness in predicting the observed strain-time behavior of normal spinal sements . The three-parameter-solid model yielded excellent results in the simulation of observed spinal segment compressive creep phenomena. It produced an average error between the model predicted and experimental strain values that ranged from a low of 0.4000% to a high of 3.290% for the 54 Rhesus monkey intervertebral joints, with a collective average error for all specimens of only 1.363%. PMID:6725292

  5. Perisaccadic Updating of Visual Representations and Attentional States: Linking Behavior and Neurophysiology

    PubMed Central

    Marino, Alexandria C.; Mazer, James A.

    2016-01-01

    During natural vision, saccadic eye movements lead to frequent retinal image changes that result in different neuronal subpopulations representing the same visual feature across fixations. Despite these potentially disruptive changes to the neural representation, our visual percept is remarkably stable. Visual receptive field remapping, characterized as an anticipatory shift in the position of a neuron’s spatial receptive field immediately before saccades, has been proposed as one possible neural substrate for visual stability. Many of the specific properties of remapping, e.g., the exact direction of remapping relative to the saccade vector and the precise mechanisms by which remapping could instantiate stability, remain a matter of debate. Recent studies have also shown that visual attention, like perception itself, can be sustained across saccades, suggesting that the attentional control system can also compensate for eye movements. Classical remapping could have an attentional component, or there could be a distinct attentional analog of visual remapping. At this time we do not yet fully understand how the stability of attentional representations relates to perisaccadic receptive field shifts. In this review, we develop a vocabulary for discussing perisaccadic shifts in receptive field location and perisaccadic shifts of attentional focus, review and synthesize behavioral and neurophysiological studies of perisaccadic perception and perisaccadic attention, and identify open questions that remain to be experimentally addressed. PMID:26903820

  6. Perisaccadic Updating of Visual Representations and Attentional States: Linking Behavior and Neurophysiology.

    PubMed

    Marino, Alexandria C; Mazer, James A

    2016-01-01

    During natural vision, saccadic eye movements lead to frequent retinal image changes that result in different neuronal subpopulations representing the same visual feature across fixations. Despite these potentially disruptive changes to the neural representation, our visual percept is remarkably stable. Visual receptive field remapping, characterized as an anticipatory shift in the position of a neuron's spatial receptive field immediately before saccades, has been proposed as one possible neural substrate for visual stability. Many of the specific properties of remapping, e.g., the exact direction of remapping relative to the saccade vector and the precise mechanisms by which remapping could instantiate stability, remain a matter of debate. Recent studies have also shown that visual attention, like perception itself, can be sustained across saccades, suggesting that the attentional control system can also compensate for eye movements. Classical remapping could have an attentional component, or there could be a distinct attentional analog of visual remapping. At this time we do not yet fully understand how the stability of attentional representations relates to perisaccadic receptive field shifts. In this review, we develop a vocabulary for discussing perisaccadic shifts in receptive field location and perisaccadic shifts of attentional focus, review and synthesize behavioral and neurophysiological studies of perisaccadic perception and perisaccadic attention, and identify open questions that remain to be experimentally addressed. PMID:26903820

  7. Neuropeptides and alcohol addiction in monkeys.

    PubMed

    van Ree, J M; Kornet, M; Goosen, C

    1994-01-01

    Neuropeptides have been implicated in experimental drug addiction. Desglycinamide (Arg8) vasopressin (DGAVP) attenuates heroin and cocaine intake during initiation of drug self-administration in rats. beta-Endorphin is self-administered in rats and a role of endogenous opioids in cocaine reward has been proposed. The present studies deal with voluntary alcohol consumption in monkeys under free choice conditions. Monkeys initiated alcohol drinking within a few days and after a stable drinking pattern was acquired increased their ethanol consumption during a short period following interruption of the alcohol supply (relapse). The alcohol drinking behavior seems under the control of reinforcement principles. DGAVP reduced the acquisition of alcohol drinking in the majority of treated monkeys. Initiation of alcohol drinking induced modifications in neuroendocrine homeostasis e.g. an increased plasma beta-endorphin. Both the opioid antagonist naltrexone and the opioid agonist morphine dose-dependently decreased alcohol intake during continuous supply and after imposed abstinence. The monkeys were more sensitive to both drugs after imposed abstinence. The effects are interpreted in the context of the endorphin compensation hypothesis of addictive behavior. It is suggested that endorphins may be particularly implicated in craving for addictive drugs and in relapse of addictive behavior. PMID:8032147

  8. Sensory Cortical Control of a Visually Induced Arrest Behavior via Corticotectal Projections

    PubMed Central

    Liang, Feixue; Xiong, Xiaorui R.; Zingg, Brian; Ji, Xu-ying; Zhang, Li I.; Tao, Huizhong W.

    2015-01-01

    Summary Innate defense behaviors (IDBs) evoked by threatening sensory stimuli are essential for animal survival. Although subcortical circuits are implicated in IDBs, it remains largely unclear whether sensory cortex modulates IDBs and what are the underlying neural pathways. Here, we show that optogenetic silencing of corticotectal projections from layer 5 (L5) of the mouse primary visual cortex (V1) to the superior colliculus (SC) significantly reduces a SC-dependent innate behavior, i.e. temporary suspension of locomotion upon a sudden flash of light as short as milliseconds. Surprisingly, optogenetic activation of SC-projecting neurons in V1 or their axon terminals in SC sufficiently elicits the behavior, in contrast to other major L5 corticofugal projections. Thus, via the same corticofugal projection, visual cortex not only modulates the light-induced arrest behavior, but also can directly drive the behavior. Our results suggest that sensory cortex may play a previously unrecognized role in the top-down initiation of sensory-motor behaviors. PMID:25913860

  9. Cortical Neuron Response Properties Are Related to Lesion Extent and Behavioral Recovery after Sensory Loss from Spinal Cord Injury in Monkeys

    PubMed Central

    Reed, Jamie L.; Gharbawie, Omar A.; Burish, Mark J.; Kaas, Jon H.

    2014-01-01

    Lesions of the dorsal columns at a mid-cervical level render the hand representation of the contralateral primary somatosensory cortex (area 3b) unresponsive. Over weeks of recovery, most of this cortex becomes responsive to touch on the hand. Determining functional properties of neurons within the hand representation is critical to understanding the neural basis of this adaptive plasticity. Here, we recorded neural activity across the hand representation of area 3b with a 100-electrode array and compared results from owl monkeys and squirrel monkeys 5–10 weeks after lesions with controls. Even after extensive lesions, performance on reach-to-grasp tasks returned to prelesion levels, and hand touches activated territories mainly within expected cortical locations. However, some digit representations were abnormal, such that receptive fields of presumably reactivated neurons were larger and more often involved discontinuous parts of the hand compared with controls. Hand stimulation evoked similar neuronal firing rates in lesion and control monkeys. By assessing the same monkeys with multiple measures, we determined that properties of neurons in area 3b were highly correlated with both the lesion severity and the impairment of hand use. We propose that the reactivation of neurons with near-normal response properties and the recovery of near-normal somatotopy likely supported the recovery of hand use. Given the near-completeness of the more extensive dorsal column lesions we studied, we suggest that alternate spinal afferents, in addition to the few spared primary axon afferents in the dorsal columns, likely have a major role in the reactivation pattern and return of function. PMID:24647955

  10. Agonism and dominance in female blue monkeys.

    PubMed

    Klass, Keren; Cords, Marina

    2015-12-01

    Agonistic behavior features prominently in hypotheses that explain how social variation relates to ecological factors and phylogenetic constraints. Dominance systems vary along axes of despotism, tolerance, and nepotism, and comparative studies examine cross-species patterns in these classifications. To contribute to such studies, we present a comprehensive picture of agonistic behavior and dominance relationships in wild female blue monkeys (Cercopithecus mitis), an arboreal guenon, with data from 9 groups spanning 18 years. We assessed where blue monkeys fall along despotic, tolerant, and nepotistic spectra, how their dominance system compares to other primates, primarily cercopithecines, and whether their agonistic behavior matches socioecological model predictions. Blue monkeys showed low rates of mainly low-intensity agonism and little counter-aggression. Rates increased with rank and group size. Dominance asymmetry varied at different organizational levels, being more pronounced at the level of interactions than dyad or group. Hierarchies were quite stable, had moderate-to-high linearity and directional consistency and moderate steepness. There was clear maternal rank inheritance, but inconsistent adherence to Kawamura's rules. There was little between-group variation, although hierarchy metrics showed considerable variation across group-years. Overall, blue monkeys have moderately despotic, moderately tolerant, and nepotistic dominance hierarchies. They resemble other cercopithecines in having significantly linear and steep hierarchies with a generally stable, matriline-based structure, suggesting a phylogenetic basis to this aspect of their social system. Blue monkeys most closely match Sterck et al.'s [1997] Resident-Nepotistic-Tolerant dominance category, although they do not fully conform to predictions of any one socioecological model. Our results suggest that socioecological models might better predict variation within than across clades, thereby

  11. Prophylaxis with diphenylhydantoin and phenobarbital in alumina-gel monkey model. II. Fourth-month follow-up period: seizure, EEG, blood and behavioral data.

    PubMed

    Lockard, J S; DuCharme, L L; Congdon, W C; Franklin, S C

    1976-03-01

    This study, a 4-month follow-up period of a 12-month treatment study by the present authors, was concerned with the permanent effects of treatment with diphenylhydantoin and phenobarbital in the alumina-gel monkey model. Whereas the 8 drug animals during withdrawal increased their seizure frequency, duration, and severity, those 4 animals having received 120 mg/kg/day DPH in weeks 6-12 had one-half the number of seizures of the 4 placebo monkeys in the follow-up period. The other 4 drug animals who had continued to receive 60 mg/kg/day DPH during those weeks had two to four times the number of seizures of the placebo group during posttreatment. (All drug monkeys received 80 mg/kg/day of DPH from weeks 13-52 and 6 mg/kg/day of phenobarbital throughout the 12-month treatment period). The results reaffirm the problems of drug withdrawal and the importance of altering seizure mechanisms with sufficiently high doses of efficacious anticonvulsants rather than merely treating epileptic manifestations at lower doses. PMID:817892

  12. Perseverative Interference with Object-in-Place Scene Learning in Rhesus Monkeys with Bilateral Ablation of Ventrolateral Prefrontal Cortex

    ERIC Educational Resources Information Center

    Baxter, Mark G.; Browning, Philip G. F.; Mitchell, Anna S.

    2008-01-01

    Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with…

  13. Figure–ground discrimination behavior in Drosophila. II. Visual influences on head movement behavior

    PubMed Central

    Fox, Jessica L.; Frye, Mark A.

    2014-01-01

    Visual identification of small moving targets is a challenge for all moving animals. Their own motion generates displacement of the visual surroundings, inducing wide-field optic flow across the retina. Wide-field optic flow is used to sense perturbations in the flight course. Both ego-motion and corrective optomotor responses confound any attempt to track a salient target moving independently of the visual surroundings. What are the strategies that flying animals use to discriminate small-field figure motion from superimposed wide-field background motion? We examined how fruit flies adjust their gaze in response to a compound visual stimulus comprising a small moving figure against an independently moving wide-field ground, which they do by re-orienting their head or their flight trajectory. We found that fixing the head in place impairs object fixation in the presence of ground motion, and that head movements are necessary for stabilizing wing steering responses to wide-field ground motion when a figure is present. When a figure is moving relative to a moving ground, wing steering responses follow components of both the figure and ground trajectories, but head movements follow only the ground motion. To our knowledge, this is the first demonstration that wing responses can be uncoupled from head responses and that the two follow distinct trajectories in the case of simultaneous figure and ground motion. These results suggest that whereas figure tracking by wing kinematics is independent of head movements, head movements are important for stabilizing ground motion during active figure tracking. PMID:24198264

  14. Sensitivity and kinetics of signal transmission at the first visual synapse differentially impact visually-guided behavior

    PubMed Central

    Sarria, Ignacio; Pahlberg, Johan; Cao, Yan; Kolesnikov, Alexander V; Kefalov, Vladimir J; Sampath, Alapakkam P; Martemyanov, Kirill A

    2015-01-01

    In the retina, synaptic transmission between photoreceptors and downstream ON-bipolar neurons (ON-BCs) is mediated by a GPCR pathway, which plays an essential role in vision. However, the mechanisms that control signal transmission at this synapse and its relevance to behavior remain poorly understood. In this study we used a genetic system to titrate the rate of GPCR signaling in ON-BC dendrites by varying the concentration of key RGS proteins and measuring the impact on transmission of signal between photoreceptors and ON-BC neurons using electroretinography and single cell recordings. We found that sensitivity, onset timing, and the maximal amplitude of light-evoked responses in rod- and cone-driven ON-BCs are determined by different RGS concentrations. We further show that changes in RGS concentration differentially impact visually guided-behavior mediated by rod and cone ON pathways. These findings illustrate that neuronal circuit properties can be modulated by adjusting parameters of GPCR-based neurotransmission at individual synapses. DOI: http://dx.doi.org/10.7554/eLife.06358.001 PMID:25879270

  15. Stimulus Similarity and Encoding Time Influence Incidental Recognition Memory in Adult Monkeys with Selective Hippocampal Lesions

    ERIC Educational Resources Information Center

    Zeamer, Alyson; Meunier, Martine; Bachevalier, Jocelyne

    2011-01-01

    Recognition memory impairment after selective hippocampal lesions in monkeys is more profound when measured with visual paired-comparison (VPC) than with delayed nonmatching-to-sample (DNMS). To clarify this issue, we assessed the impact of stimuli similarity and encoding duration on the VPC performance in monkeys with hippocampal lesions and…

  16. A freely-moving monkey treadmill model

    NASA Astrophysics Data System (ADS)

    Foster, Justin D.; Nuyujukian, Paul; Freifeld, Oren; Gao, Hua; Walker, Ross; Ryu, Stephen I.; Meng, Teresa H.; Murmann, Boris; Black, Michael J.; Shenoy, Krishna V.

    2014-08-01

    Objective. Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. Approach. We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the flexibility and utility of this new monkey model, including the first recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. Main results. Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average firing rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at different speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. Significance. Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic

  17. Drivers' Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving.

    PubMed

    Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan

    2016-01-01

    This paper describes a real-time motion planner based on the drivers' visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers' visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers' visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms. PMID:26784203

  18. Behavioral and physiological response of Musca domestica to colored visual targets.

    PubMed

    Diclaro, J W; Cohnstaedt, L W; Pereira, R M; Allan, S A; Koehler, P G

    2012-01-01

    A better understanding of the visual attraction of house flies to colors and patterns is needed to improve fly trap performance. This study combined physiological responses measured with electroretinogram studies of the house fly's compound eyes and ocelli with behavioral attraction of flies to reflective colors and patterns in light tunnel assays. Compound eye and ocellar electroretinogram responses to reflected light were similar, with the largest responses to white and blue followed by yellow, red, green, and black. However, data from light tunnel behavioral assays showed that flies were attracted to white and blue light but were repelled by yellow. The addition of a black line pattern enhanced the attractiveness of blue visual targets, whereas yellow lines decreased attractiveness. Sensory input from the compound eye and the ocellus seems to be integrated to direct fly behavior. There is a direct correlation of house fly attractiveness to visual targets and the intensity of electrophysiological response, except for the yellow targets, which repel flies despite of intense electrophysiological response. PMID:22308776

  19. Drivers’ Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving

    PubMed Central

    Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan

    2016-01-01

    This paper describes a real-time motion planner based on the drivers’ visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers’ visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers’ visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms. PMID:26784203

  20. Stimulus similarity determines the prevalence of behavioral laterality in a visual discrimination task for mice.

    PubMed

    Treviño, Mario

    2014-01-01

    Animal choices depend on direct sensory information, but also on the dynamic changes in the magnitude of reward. In visual discrimination tasks, the emergence of lateral biases in the choice record from animals is often described as a behavioral artifact, because these are highly correlated with error rates affecting psychophysical measurements. Here, we hypothesized that biased choices could constitute a robust behavioral strategy to solve discrimination tasks of graded difficulty. We trained mice to swim in a two-alterative visual discrimination task with escape from water as the reward. Their prevalence of making lateral choices increased with stimulus similarity and was present in conditions of high discriminability. While lateralization occurred at the individual level, it was absent, on average, at the population level. Biased choice sequences obeyed the generalized matching law and increased task efficiency when stimulus similarity was high. A mathematical analysis revealed that strongly-biased mice used information from past rewards but not past choices to make their current choices. We also found that the amount of lateralized choices made during the first day of training predicted individual differences in the average learning behavior. This framework provides useful analysis tools to study individualized visual-learning trajectories in mice. PMID:25524257

  1. Neuronal Mechanisms of Visual Categorization: An Abstract View on Decision Making.

    PubMed

    Freedman, David J; Assad, John A

    2016-07-01

    Categorization is our ability to flexibly assign sensory stimuli into discrete, behaviorally relevant groupings. Categorical decisions can be used to study decision making more generally by dissociating category identity of stimuli from the actions subjects use to signal their decisions. Here we discuss the evidence for such abstract categorical encoding in the primate brain and consider the relationship with other perceptual decision paradigms. Recent work on visual categorization has examined neuronal activity across a hierarchically organized network of cortical areas in monkeys trained to group visual stimuli into arbitrary categories. This has revealed a transformation of visual-feature encoding in early visual cortical areas into more flexible categorical representations in downstream parietal and prefrontal areas. These neuronal category representations are encoded as abstract internal cognitive states because they are not rigidly linked with either specific sensory stimuli or the actions that the monkeys use to signal their categorical choices. PMID:27070552

  2. Rhesus monkey platelets

    SciTech Connect

    Harbury, C.B.

    1986-03-01

    The purpose of this abstract is to describe the adenine nucleotide metabolism of Rhesus monkey platelets. Nucleotides are labelled with /sup 14/C-adenine and extracted with EDTA-ethanol (EE) and perchlorate (P). Total platelet ATP and ADP (TATP, TADP) is measured in the Holmsen Luciferase assay, and expressed in nanomoles/10/sup 8/ platelets. TR=TATP/TADP. Human platelets release 70% of their TADP, with a ratio of released ATP/ADP of 0.7. Rhesus platelets release 82% of their TADP, with a ratio of released ATP/ADP of 0.33. Thus, monkey platelets contain more ADP than human platelets. Thin layer chromatography of EE gives a metabolic ratio of 11 in human platelets and 10.5 in monkey platelets. Perchlorate extracts metabolic and actin bound ADP. The human and monkey platelets ratios were 5, indicating they contain the same proportion of actin. Thus, the extra ADP contained in monkey platelets is located in the secretory granules.

  3. Age-related changes in visual exploratory behavior in a natural scene setting

    PubMed Central

    Hamel, Johanna; De Beukelaer, Sophie; Kraft, Antje; Ohl, Sven; Audebert, Heinrich J.; Brandt, Stephan A.

    2013-01-01

    Diverse cognitive functions decline with increasing age, including the ability to process central and peripheral visual information in a laboratory testing situation (useful visual field of view). To investigate whether and how this influences activities of daily life, we studied age-related changes in visual exploratory behavior in a natural scene setting: a driving simulator paradigm of variable complexity was tested in subjects of varying ages with simultaneous eye- and head-movement recordings via a head-mounted camera. Detection and reaction times were also measured by visual fixation and manual reaction. We considered video computer game experience as a possible influence on performance. Data of 73 participants of varying ages were analyzed, driving two different courses. We analyzed the influence of route difficulty level, age, and eccentricity of test stimuli on oculomotor and driving behavior parameters. No significant age effects were found regarding saccadic parameters. In the older subjects head-movements increasingly contributed to gaze amplitude. More demanding courses and more peripheral stimuli locations induced longer reaction times in all age groups. Deterioration of the functionally useful visual field of view with increasing age was not suggested in our study group. However, video game-experienced subjects revealed larger saccade amplitudes and a broader distribution of fixations on the screen. They reacted faster to peripheral objects suggesting the notion of a general detection task rather than perceiving driving as a central task. As the video game-experienced population consisted of younger subjects, our study indicates that effects due to video game experience can easily be misinterpreted as age effects if not accounted for. We therefore view it as essential to consider video game experience in all testing methods using virtual media. PMID:23801970

  4. Audiovisual integration facilitates monkeys' short-term memory.

    PubMed

    Bigelow, James; Poremba, Amy

    2016-07-01

    Many human behaviors are known to benefit from audiovisual integration, including language and communication, recognizing individuals, social decision making, and memory. Exceptionally little is known about the contributions of audiovisual integration to behavior in other primates. The current experiment investigated whether short-term memory in nonhuman primates is facilitated by the audiovisual presentation format. Three macaque monkeys that had previously learned an auditory delayed matching-to-sample (DMS) task were trained to perform a similar visual task, after which they were tested with a concurrent audiovisual DMS task with equal proportions of auditory, visual, and audiovisual trials. Parallel to outcomes in human studies, accuracy was higher and response times were faster on audiovisual trials than either unisensory trial type. Unexpectedly, two subjects exhibited superior unimodal performance on auditory trials, a finding that contrasts with previous studies, but likely reflects their training history. Our results provide the first demonstration of a bimodal memory advantage in nonhuman primates, lending further validation to their use as a model for understanding audiovisual integration and memory processing in humans. PMID:27010716

  5. Measuring Learning Styles with Questionnaires versus Direct Observation of Preferential Choice Behavior in Authentic Learning Situations: The Visualizer/Verbalizer Behavior Observation Scale (VV-BOS).

    ERIC Educational Resources Information Center

    Leutner, Detlev; Plass, Jan L.

    1998-01-01

    Describes the development of the VV-BOS (Visualizer/Verbalizer Behavior Observation Scale), a computer-based instrument for direct observation of students' preferences for visual or verbal learning material. Results of a study with second-language learners indicated a high degree of reliability as an alternative to conventional questionnaires.…

  6. Microstimulation of visual cortex to restore vision.

    PubMed

    Tehovnik, Edward J; Slocum, Warren M; Smirnakis, Stelios M; Tolias, Andreas S

    2009-01-01

    This review argues that one reason why a functional visuo-cortical prosthetic device has not been developed to restore even minimal vision to blind individuals is because there is no animal model to guide the design and development of such a device. Over the past 8 years we have been conducting electrical microstimulation experiments on alert behaving monkeys with the aim of better understanding how electrical stimulation of the striate cortex (area V1) affects oculo- and skeleto-motor behaviors. Based on this work and upon review of the literature, we arrive at several conclusions: (1) As with the development of the cochlear implant, the development of a visuo-cortical prosthesis can be accelerated by using animals to test the perceptual effects of microstimulating V1 in intact and blind monkeys. (2) Although a saccade-based paradigm is very convenient for studying the effectiveness of delivering stimulation to V1 to elicit saccadic eye movements, it is less ideal for probing the volitional state of monkeys, as they perceive electrically induced phosphenes. (3) Electrical stimulation of V1 can delay visually guided saccades generated to a punctate target positioned in the receptive field of the stimulated neurons. We call the region of visual space affected by the stimulation a delay field. The study of delay fields has proven to be an efficient way to study the size and shape of phosphenes generated by stimulation of macaque V1. (4) An alternative approach to ascertain what monkeys see during electrical stimulation of V1 is to have them signal the detection of current with a lever press. Monkeys can readily detect currents of 1-2 microA delivered to V1. In order to evoke featured phosphenes currents of under 5 microA will be necessary. (5) Partially lesioning the retinae of monkeys is superior to completely lesioning the retinae when determining how blindness affects phosphene induction. We finish by proposing a future experimental paradigm designed to determine

  7. Peripheral refraction in normal infant rhesus monkeys

    PubMed Central

    Hung, Li-Fang; Ramamirtham, Ramkumar; Huang, Juan; Qiao-Grider, Ying; Smith, Earl L.

    2008-01-01

    Purpose To characterize peripheral refractions in infant monkeys. Methods Cross-sectional data for horizontal refractions were obtained from 58 normal rhesus monkeys at 3 weeks of age. Longitudinal data were obtained for both the vertical and horizontal meridians from 17 monkeys. Refractive errors were measured by retinoscopy along the pupillary axis and at eccentricities of 15, 30, and 45 degrees. Axial dimensions and corneal power were measured by ultrasonography and keratometry, respectively. Results In infant monkeys, the degree of radial astigmatism increased symmetrically with eccentricity in all meridians. There were, however, initial nasal-temporal and superior-inferior asymmetries in the spherical-equivalent refractive errors. Specifically, the refractions in the temporal and superior fields were similar to the central ametropia, but the refractions in the nasal and inferior fields were more myopic than the central ametropia and the relative nasal field myopia increased with the degree of central hyperopia. With age, the degree of radial astigmatism decreased in all meridians and the refractions became more symmetrical along both the horizontal and vertical meridians; small degrees of relative myopia were evident in all fields. Conclusions As in adult humans, refractive error varied as a function of eccentricity in infant monkeys and the pattern of peripheral refraction varied with the central refractive error. With age, emmetropization occurred for both central and peripheral refractive errors resulting in similar refractions across the central 45 degrees of the visual field, which may reflect the actions of vision-dependent, growth-control mechanisms operating over a wide area of the posterior globe. PMID:18487366

  8. The Association of Intelligence, Visual-Motor Functioning, and Personality Characteristics With Adaptive Behavior in Individuals With Williams Syndrome.

    PubMed

    Fu, Trista J; Lincoln, Alan J; Bellugi, Ursula; Searcy, Yvonne M

    2015-07-01

    Williams syndrome (WS) is associated with deficits in adaptive behavior and an uneven adaptive profile. This study investigated the association of intelligence, visual-motor functioning, and personality characteristics with the adaptive behavior in individuals with WS. One hundred individuals with WS and 25 individuals with developmental disabilities of other etiologies were included in this study. This study found that IQ and visual-motor functioning significantly predicted adaptive behavior in individuals of WS. Visual-motor functioning especially predicted the most amount of unique variance in overall adaptive behavior and contributed to the variance above and beyond that of IQ. Present study highlights the need for interventions that address visual-motor and motor functioning in individuals with WS. PMID:26161466

  9. Rapid steroid influences on visually guided sexual behavior in male goldfish

    PubMed Central

    Lord, Louis-David; Bond, Julia; Thompson, Richmond R.

    2013-01-01

    The ability of steroid hormones to rapidly influence cell physiology through nongenomic mechanisms raises the possibility that these molecules may play a role in the dynamic regulation of social behavior, particularly in species in which social stimuli can rapidly influence circulating steroid levels. We therefore tested if testosterone (T), which increases in male goldfish in response to sexual stimuli, can rapidly influence approach responses towards females. Injections of T stimulated approach responses towards the visual cues of females 30–45 min after the injection but did not stimulate approach responses towards stimulus males or affect general activity, indicating that the effect is stimulus-specific and not a secondary consequence of increased arousal. Estradiol produced the same effect 30–45 min and even 10–25 min after administration, and treatment with the aromatase inhibitor fadrozole blocked exogenous T’s behavioral effect, indicating that T’s rapid stimulation of visual approach responses depends on aromatization. We suggest that T surges induced by sexual stimuli, including preovulatory pheromones, rapidly prime males to mate by increasing sensitivity within visual pathways that guide approach responses towards females and/or by increasing the motivation to approach potential mates through actions within traditional limbic circuits. PMID:19751737

  10. Visual stimuli that elicit appetitive behaviors in three morphologically distinct species of praying mantis.

    PubMed

    Prete, Frederick R; Komito, Justin L; Dominguez, Salina; Svenson, Gavin; López, LeoLin Y; Guillen, Alex; Bogdanivich, Nicole

    2011-09-01

    We assessed the differences in appetitive responses to visual stimuli by three species of praying mantis (Insecta: Mantodea), Tenodera aridifolia sinensis, Mantis religiosa, and Cilnia humeralis. Tethered, adult females watched computer generated stimuli (erratically moving disks or linearly moving rectangles) that varied along predetermined parameters. Three responses were scored: tracking, approaching, and striking. Threshold stimulus size (diameter) for tracking and striking at disks ranged from 3.5 deg (C. humeralis) to 7.8 deg (M. religiosa), and from 3.3 deg (C. humeralis) to 11.7 deg (M. religiosa), respectively. Unlike the other species which struck at disks as large as 44 deg, T. a. sinensis displayed a preference for 14 deg disks. Disks moving at 143 deg/s were preferred by all species. M. religiosa exhibited the most approaching behavior, and with T. a. sinensis distinguished between rectangular stimuli moving parallel versus perpendicular to their long axes. C. humeralis did not make this distinction. Stimulus sizes that elicited the target behaviors were not related to mantis size. However, differences in compound eye morphology may be related to species differences: C. humeralis' eyes are farthest apart, and it has an apparently narrower binocular visual field which may affect retinal inputs to movement-sensitive visual interneurons. PMID:21553126

  11. The Franco-American macaque experiment. [bone demineralization of monkeys on Space Shuttle

    NASA Technical Reports Server (NTRS)

    Cipriano, Leonard F.; Ballard, Rodney W.

    1988-01-01

    The details of studies to be carried out jointly by French and American teams on two rhesus monkeys prepared for future experiments aboard the Space Shuttle are discussed together with the equipment involved. Seven science discipline teams were formed, which will study the effects of flight and/or weightlessness on the bone and calcium metabolism, the behavior, the cardiovascular system, the fluid balance and electrolytes, the muscle system, the neurovestibular interactions, and the sleep/biorhythm cycles. New behavioral training techniques were developed, in which the animals were trained to respond to behavioral tasks in order to measure the parameters involving eye/hand coordination, the response time to target tracking, visual discrimination, and muscle forces used by the animals. A large data set will be obtained from different animals on the two to three Space Shuttle flights; the hardware technologies developed for these experiments will be applied for primate experiments on the Space Station.

  12. Techniques for the visualization of topological defect behavior in nematic liquid crystals.

    PubMed

    Slavin, Vadim A; Pelcovits, Robert A; Loriot, George; Callan-Jones, Andrew; Laidlaw, David H

    2006-01-01

    We present visualization tools for analyzing molecular simulations of liquid crystal (LC) behavior. The simulation data consists of terabytes of data describing the position and orientation of every molecule in the simulated system over time. Condensed matter physicists study the evolution of topological defects in these data, and our visualization tools focus on that goal. We first convert the discrete simulation data to a sampled version of a continuous second-order tensor field and then use combinations of visualization methods to simultaneously display combinations of contractions of the tensor data, providing an interactive environment for exploring these complicated data. The system, built using AVS, employs colored cutting planes, colored isosurfaces, and colored integral curves to display fields of tensor contractions including Westin's scalar cl, cp, and cs metrics and the principal eigenvector. Our approach has been in active use in the physics lab for over a year. It correctly displays structures already known; it displays the data in a spatially and temporally smoother way than earlier approaches, avoiding confusing grid effects and facilitating the study of multiple time steps; it extends the use of tools developed for visualizing diffusion tensor data, re-interpreting them in the context of molecular simulations; and it has answered long-standing questions regarding the orientation of molecules around defects and the conformational changes of the defects. PMID:17080868

  13. Computational Methods for Tracking, Quantitative Assessment, and Visualization of C. elegans Locomotory Behavior.

    PubMed

    Moy, Kyle; Li, Weiyu; Tran, Huu Phuoc; Simonis, Valerie; Story, Evan; Brandon, Christopher; Furst, Jacob; Raicu, Daniela; Kim, Hongkyun

    2015-01-01

    The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that control behaviors can be formulated based on its complete neural connection map, and easily assessed by applying advanced genetic tools that allow for modulation in the activity of specific neurons. Importantly, C. elegans exhibits several elaborate behaviors that can be empirically quantified and analyzed, thus providing a means to assess the contribution of specific neural circuits to behavioral output. Particularly, locomotory behavior can be recorded and analyzed with computational and mathematical tools. Here, we describe a robust single worm-tracking system, which is based on the open-source Python programming language, and an analysis system, which implements path-related algorithms. Our tracking system was designed to accommodate worms that explore a large area with frequent turns and reversals at high speeds. As a proof of principle, we used our tracker to record the movements of wild-type animals that were freshly removed from abundant bacterial food, and determined how wild-type animals change locomotory behavior over a long period of time. Consistent with previous findings, we observed that wild-type animals show a transition from area-restricted local search to global search over time. Intriguingly, we found that wild-type animals initially exhibit short, random movements interrupted by infrequent long trajectories. This movement pattern often coincides with local/global search behavior, and visually resembles Lévy flight search, a search behavior conserved across species. Our mathematical analysis showed that while most of the animals exhibited Brownian walks, approximately 20% of the animals exhibited Lévy flights, indicating that C. elegans can use Lévy flights for efficient food search. In summary, our tracker and analysis software will help analyze the neural basis of the

  14. Computational Methods for Tracking, Quantitative Assessment, and Visualization of C. elegans Locomotory Behavior

    PubMed Central

    Moy, Kyle; Li, Weiyu; Tran, Huu Phuoc; Simonis, Valerie; Story, Evan; Brandon, Christopher; Furst, Jacob; Raicu, Daniela; Kim, Hongkyun

    2015-01-01

    The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that control behaviors can be formulated based on its complete neural connection map, and easily assessed by applying advanced genetic tools that allow for modulation in the activity of specific neurons. Importantly, C. elegans exhibits several elaborate behaviors that can be empirically quantified and analyzed, thus providing a means to assess the contribution of specific neural circuits to behavioral output. Particularly, locomotory behavior can be recorded and analyzed with computational and mathematical tools. Here, we describe a robust single worm-tracking system, which is based on the open-source Python programming language, and an analysis system, which implements path-related algorithms. Our tracking system was designed to accommodate worms that explore a large area with frequent turns and reversals at high speeds. As a proof of principle, we used our tracker to record the movements of wild-type animals that were freshly removed from abundant bacterial food, and determined how wild-type animals change locomotory behavior over a long period of time. Consistent with previous findings, we observed that wild-type animals show a transition from area-restricted local search to global search over time. Intriguingly, we found that wild-type animals initially exhibit short, random movements interrupted by infrequent long trajectories. This movement pattern often coincides with local/global search behavior, and visually resembles Lévy flight search, a search behavior conserved across species. Our mathematical analysis showed that while most of the animals exhibited Brownian walks, approximately 20% of the animals exhibited Lévy flights, indicating that C. elegans can use Lévy flights for efficient food search. In summary, our tracker and analysis software will help analyze the neural basis of the

  15. Reacquisition deficits in prism adaptation after muscimol microinjection into the ventral premotor cortex of monkeys.

    PubMed

    Kurata, K; Hoshi, E

    1999-04-01

    A small amount of muscimol (1 microl; concentration, 5 microg/microl) was injected into the ventral and dorsal premotor cortex areas (PMv and PMd, respectively) of monkeys, which then were required to perform a visually guided reaching task. For the task, the monkeys were required to reach for a target soon after it was presented on a screen. While performing the task, the monkeys' eyes were covered with left 10 degrees, right 10 degrees, or no wedge prisms, for a block of 50-100 trials. Without the prisms, the monkeys reached the targets accurately. When the prisms were placed, the monkeys initially misreached the targets because the prisms displaced the visual field. Before the muscimol injection, the monkeys adapted to the prisms in 10-20 trials, judging from the horizontal distance between the target location and the point where the monkey touched the screen. After muscimol injection into the PMv, the monkeys lost the ability to readapt and touched the screen closer to the location of the targets as seen through the prisms. This deficit was observed at selective target locations, only when the targets were shifted contralaterally to the injected hemisphere. When muscimol was injected into the PMd, no such deficits were observed. There were no changes in the reaction and movement times induced by muscimol injections in either area. The results suggest that the PMv plays an important role in motor learning, specifically in recalibrating visual and motor coordinates. PMID:10200227

  16. Computing Arm Movements with a Monkey Brainet

    PubMed Central

    Ramakrishnan, Arjun; Ifft, Peter J.; Pais-Vieira, Miguel; Woo Byun, Yoon; Zhuang, Katie Z.; Lebedev, Mikhail A.; Nicolelis, Miguel A.L.

    2015-01-01

    Traditionally, brain-machine interfaces (BMIs) extract motor commands from a single brain to control the movements of artificial devices. Here, we introduce a Brainet that utilizes very-large-scale brain activity (VLSBA) from two (B2) or three (B3) nonhuman primates to engage in a common motor behaviour. A B2 generated 2D movements of an avatar arm where each monkey contributed equally to X and Y coordinates; or one monkey fully controlled the X-coordinate and the other controlled the Y-coordinate. A B3 produced arm movements in 3D space, while each monkey generated movements in 2D subspaces (X-Y, Y-Z, or X-Z). With long-term training we observed increased coordination of behavior, increased correlations in neuronal activity between different brains, and modifications to neuronal representation of the motor plan. Overall, performance of the Brainet improved owing to collective monkey behaviour. These results suggest that primate brains can be integrated into a Brainet, which self-adapts to achieve a common motor goal. PMID:26158523

  17. Peer passenger influences on male adolescent drivers’ visual scanning behavior during simulated driving

    PubMed Central

    Pradhan, Anuj K.; Li, Kaigang; Bingham, C. Raymond; Simons-Morton, Bruce; Ouimet, Marie Claude; Shope, Jean T.

    2014-01-01

    Purpose There is a higher likelihood of crashes and fatalities when an adolescent drives with peer passengers, especially for male drivers and male passengers. Simulated driving of male adolescent drivers with male peer passengers was studied to examine passenger influences on distraction and inattention. Methods Male adolescents drove in a high-fidelity driving simulator with a male confederate who posed either as a risk-accepting or risk-averse passenger. Drivers’ eye-movements were recorded. The visual scanning behavior of the drivers was compared when driving alone versus when driving with a passenger, and when driving with a risk-accepting versus a risk-averse passenger. Results The visual scanning of a driver significantly narrowed horizontally and vertically when driving with a peer passenger. There were no significant differences in the times the drivers’ eyes were off the forward roadway when driving with a passenger versus when driving alone. Some significant correlations were found between personality characteristics and the outcome measures. Conclusions The presence of a male peer passenger was associated with a reduction in the visual scanning range of male adolescent drivers. This reduction could be a result of potential cognitive load imposed on the driver due to the presence of a passenger and the real or perceived normative influences or expectations from the passenger. Implications and contribution The presence of male peer passengers was associated with deficient visual scanning in male adolescent drivers. Such reduced scanning behavior is evident in drivers with high cognitive load. Further investigation of passenger influences on adolescent drivers should include examination of distraction and inattention aspects of passenger influence. PMID:24759440

  18. Language-mediated visual orienting behavior in low and high literates.

    PubMed

    Huettig, Falk; Singh, Niharika; Mishra, Ramesh Kumar

    2011-01-01

    The influence of formal literacy on spoken language-mediated visual orienting was investigated by using a simple look and listen task which resembles every day behavior. In Experiment 1, high and low literates listened to spoken sentences containing a target word (e.g., "magar," crocodile) while at the same time looking at a visual display of four objects (a phonological competitor of the target word, e.g., "matar," peas; a semantic competitor, e.g., "kachuwa," turtle, and two unrelated distractors). In Experiment 2 the semantic competitor was replaced with another unrelated distractor. Both groups of participants shifted their eye gaze to the semantic competitors (Experiment 1). In both experiments high literates shifted their eye gaze toward phonological competitors as soon as phonological information became available and moved their eyes away as soon as the acoustic information mismatched. Low literates in contrast only used phonological information when semantic matches between spoken word and visual referent were not present (Experiment 2) but in contrast to high literates these phonologically mediated shifts in eye gaze were not closely time-locked to the speech input. These data provide further evidence that in high literates language-mediated shifts in overt attention are co-determined by the type of information in the visual environment, the timing of cascaded processing in the word- and object-recognition systems, and the temporal unfolding of the spoken language. Our findings indicate that low literates exhibit a similar cognitive behavior but instead of participating in a tug-of-war among multiple types of cognitive representations, word-object mapping is achieved primarily at the semantic level. If forced, for instance by a situation in which semantic matches are not present (Experiment 2), low literates may on occasion have to rely on phonological information but do so in a much less proficient manner than their highly literate counterparts. PMID

  19. Individual Differences in Newborn Visual Attention Associate with Temperament and Behavioral Difficulties in Later Childhood.

    PubMed

    Papageorgiou, Kostas A; Farroni, Teresa; Johnson, Mark H; Smith, Tim J; Ronald, Angelica

    2015-01-01

    Recently it was shown that individual differences in attention style in infants are associated with childhood effortful control, surgency, and hyperactivity-inattention. Here we investigated whether effortful control, surgency and behavioral problems in childhood can be predicted even earlier, from individual differences in newborns' average duration of gaze to stimuli. Eighty newborns participated in visual preference and habituation studies. Parents completed questionnaires at follow up (mean age = 7.5 years, SD = 1.0 year). Newborns' average dwell time was negatively associated with childhood surgency (β = -.25, R(2) = .04, p = .02) and total behavioral difficulties (β = -.28, R(2) = .05, p = .04) but not with effortful control (β = .03, R(2) = .001, p = .76). Individual differences in newborn visual attention significantly associated with individual variation in childhood surgency and behavioral problems, showing that some of the factors responsible for this variation are present at birth. PMID:26110979

  20. Individual Differences in Newborn Visual Attention Associate with Temperament and Behavioral Difficulties in Later Childhood

    PubMed Central

    Papageorgiou, Kostas A.; Farroni, Teresa; Johnson, Mark H.; Smith, Tim J.; Ronald, Angelica

    2015-01-01

    Recently it was shown that individual differences in attention style in infants are associated with childhood effortful control, surgency, and hyperactivity-inattention. Here we investigated whether effortful control, surgency and behavioral problems in childhood can be predicted even earlier, from individual differences in newborns’ average duration of gaze to stimuli. Eighty newborns participated in visual preference and habituation studies. Parents completed questionnaires at follow up (mean age = 7.5 years, SD = 1.0 year). Newborns’ average dwell time was negatively associated with childhood surgency (β = −.25, R2 = .04, p = .02) and total behavioral difficulties (β = −.28, R2 = .05, p = .04) but not with effortful control (β = .03, R2 = .001, p = .76). Individual differences in newborn visual attention significantly associated with individual variation in childhood surgency and behavioral problems, showing that some of the factors responsible for this variation are present at birth. PMID:26110979

  1. Diffusion MRI properties of the human uncinate fasciculus correlate with the ability to learn visual associations.

    PubMed

    Thomas, Cibu; Avram, Alexandru; Pierpaoli, Carlo; Baker, Chris

    2015-11-01

    The uncinate fasciculus (UF) is a cortico-cortico white matter pathway that links the anterior temporal and the orbitofrontal cortex (OFC). In the monkey, transection of the UF causes significant impairments in learning conditional visual-visual associations, while object discrimination remains intact, suggesting an important role for the UF in mediating the learning of complex visual associations. Whether this functional role extends to the human UF has not been tested directly. Here, we used diffusion tensor magnetic resonance imaging (dMRI) and behavioral experiments to examine the relation between learning visual associations and the structural properties of the human UF. In a group of healthy adults, we segmented the UF and the inferior longitudinal fasciculus (ILF) and derived dMRI measures of the structural properties of the two pathways. We also used a behavioral experiment adapted from the monkey studies to characterize the ability of these individuals to learn to associate a person's face with a group of specific scenes (conditional visual-visual association). We then tested whether the variability in the dMRI measures of the two pathways correlated with variability in the ability to rapidly learn the face-place associations. Our study suggests that in the human, the left UF may be important for mediating the rapid learning of conditional visual-visual associations whereas the right UF may play an important role in the immediate retrieval of visual-visual associations. These results provide preliminary evidence suggesting similarities and differences in the functional role of the UF in monkeys compared to humans. The findings presented here contribute to our understanding of the functional role of the UF in humans and the functional neuroanatomy of the brain networks involved in visual cognition. PMID:25742710

  2. Control of Working Memory in Rhesus Monkeys (Macaca mulatta).

    PubMed

    Tu, Hsiao-Wei; Hampton, Robert R

    2014-10-01

    Cognitive control is critical for efficiently using the limited resources in working memory. It is well established that humans use rehearsal to increase the probability of remembering needed information, but little is known in nonhumans, with some studies reporting the absence of active control and others subject to alternative explanations. We trained monkeys in a visual matching-to-sample paradigm with a post-sample memory cue. Monkeys either saw a remember cue that predicted the occurrence of a matching test that required memory for the sample, or a forget cue that predicted a discrimination test that did not require memory of the sample. Infrequent probe trials on which monkeys were given tests of the type not cued on that trial were used to assess whether memory was under cognitive control. Our procedures controlled for reward expectation and for the surprising nature of the probes. Monkeys matched less accurately after forget cues, while discrimination accuracy was equivalent in the two cue conditions. We also tested monkeys with lists of two consecutive sample images that shared the same cue. Again, memory for expected memory tests was superior to that on unexpected tests. Together these results show that monkeys cognitively control their working memory. PMID:25436219

  3. Control of working memory in rhesus monkeys (Macaca mulatta).

    PubMed

    Tu, Hsiao-Wei; Hampton, Robert R

    2014-10-01

    Cognitive control is critical for efficiently using the limited resources in working memory. It is well established that humans use rehearsal to increase the probability of remembering needed information, but little is known in nonhumans, with some studies reporting the absence of active control and others subject to alternative explanations. We trained monkeys in a visual matching-to-sample paradigm with a post-sample memory cue. Monkeys either saw a remember cue that predicted the occurrence of a matching test that required memory for the sample, or a forget cue that predicted a discrimination test that did not require memory of the sample. Infrequent probe trials on which monkeys were given tests of the type not cued on that trial were used to assess whether memory was under cognitive control. Our procedures controlled for reward expectation and for the surprising nature of the probes. Monkeys matched less accurately after forget cues, whereas discrimination accuracy was equivalent in the 2 cue conditions. We also tested monkeys with lists of 2 consecutive sample images that shared the same cue. Again, memory for expected memory tests was superior to that on unexpected tests. Together these results show that monkeys cognitively control their working memory. PMID:25546104

  4. Rhesus Monkeys (Macaca mulatta) Lack Expertise in Face Processing

    PubMed Central

    Parr, Lisa A.; Heintz, Matthew; Pradhan, Gauri

    2010-01-01

    Faces are salient stimuli for primates that rely predominantly on visual cues for recognizing conspecifics and maintaining social relationships. While previous studies have shown similar face discrimination processes in chimpanzees and humans, data from monkeys are unclear. Therefore, three studies examined face processing in rhesus monkeys using the face inversion effect, a fractured face task, and an individual recognition task. Unlike chimpanzees and humans, the monkeys showed a general face inversion effect reflected by significantly better performance on upright compared to inverted faces (conspecifics, human and chimpanzees faces) regardless of the subjects’ expertise with those categories. Fracturing faces alters first- and second-order configural manipulations whereas previous studies in chimpanzees showed selective deficits for second-order configural manipulations. Finally, when required to individuate conspecific’s faces, i.e., matching two different photographs of the same conspecific, monkeys showed poor discrimination and repeated training. These results support evolutionary differences between rhesus monkeys and Hominoids in the importance of configural cues and their ability to individuate conspecifics’ faces, suggesting a lack of face expertise in rhesus monkeys. PMID:19014263

  5. Texture discriminability in monkey inferotemporal cortex predicts human texture perception

    PubMed Central

    Zhivago, Kalathupiriyan A.

    2014-01-01

    Shape and texture are both important properties of visual objects, but texture is relatively less understood. Here, we characterized neuronal responses to discrete textures in monkey inferotemporal (IT) cortex and asked whether they can explain classic findings in human texture perception. We focused on three classic findings on texture discrimination: 1) it can be easy or hard depending on the constituent elements; 2) it can have asymmetries, and 3) it is reduced for textures with randomly oriented elements. We recorded neuronal activity from monkey inferotemporal (IT) cortex and measured texture perception in humans for a variety of textures. Our main findings are as follows: 1) IT neurons show congruent selectivity for textures across array size; 2) textures that were easy for humans to discriminate also elicited distinct patterns of neuronal activity in monkey IT; 3) texture pairs with asymmetries in humans also exhibited asymmetric variation in firing rate across monkey IT; and 4) neuronal responses to randomly oriented textures were explained by an average of responses to homogeneous textures, which rendered them less discriminable. The reduction in discriminability of monkey IT neurons predicted the reduced discriminability in humans during texture discrimination. Taken together, our results suggest that texture perception in humans is likely based on neuronal representations similar to those in monkey IT. PMID:25210165

  6. Developmental changes of cognitive vocal control in monkeys.

    PubMed

    Hage, Steffen R; Gavrilov, Natalja; Nieder, Andreas

    2016-06-01

    The evolutionary origins of human language are obscured by the scarcity of essential linguistic characteristics in non-human primate communication systems. Volitional control of vocal utterances is one such indispensable feature of language. We investigated the ability of two monkeys to volitionally utter species-specific calls over many years. Both monkeys reliably vocalized on command during juvenile periods, but discontinued this controlled vocal behavior in adulthood. This emerging disability was confined to volitional vocal production, as the monkeys continued to vocalize spontaneously. In addition, they continued to use hand movements as instructed responses during adulthood. This greater vocal flexibility of monkeys early in ontogeny supports the neoteny hypothesis in human evolution. This suggests that linguistic capabilities were enabled via an expansion of the juvenile period during the development of humans. PMID:27252457

  7. The effects of morphine, naloxone, and κ opioid manipulation on endocrine functioning and social behavior in monogamous titi monkeys (Callicebus cupreus).

    PubMed

    Ragen, B J; Maninger, N; Mendoza, S P; Bales, K L

    2015-02-26

    The μ opioid receptor (MOR) and κ opioid receptor (KOR) have been implicated in pair-bond formation and maintenance in socially monogamous species. Utilizing monogamous titi monkeys (Callicebus cupreus), the present study examined the potential role opioids play in modulating the response to separation, a potent challenge to the pair-bond. In Experiment 1, paired male titi monkeys were separated from their pair-mate for 30-min and then received saline, naloxone (1.0mg/kg), morphine (0.25mg/kg), or the KOR agonist, U50,488 (0.01, 0.03, or 0.1mg/kg) in a counter-balanced fashion, immediately prior to a 30-min reunion with their mate. Blood samples were collected immediately prior to and after the reunion. Males receiving morphine approached females less, initiated contact less, and females broke contact with the males less. The increase in cortisol in response to naloxone was greater compared to vehicle, and the increase in cortisol in response to the high dose of U50,488 compared to vehicle approached significance. In Experiment 2, paired males were treated with the KOR antagonist, GNTI (0.1, 0.3, or 1.0mg/kg), or saline 24h prior to a 60-min separation from their mate. Blood samples were collected at the time of injection and immediately before and after separation. Administration of the low dose of GNTI decreased the locomotor component of the separation response compared to vehicle. The present study found that the opioid system is involved in both the affiliative and separation distress components of a pair-bond, and these components are regulated by different opioid receptors. PMID:25485481

  8. Infant Attention and Visual Preferences: Converging Evidence from Behavior, Event-Related Potentials, and Cortical Source Localization

    ERIC Educational Resources Information Center

    Reynolds, Greg D.; Courage, Mary L.; Richards, John E.

    2010-01-01

    In this study, we had 3 major goals. The 1st goal was to establish a link between behavioral and event-related potential (ERP) measures of infant attention and recognition memory. To assess the distribution of infant visual preferences throughout ERP testing, we designed a new experimental procedure that embeds a behavioral measure (paired…

  9. A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans

    PubMed Central

    Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2016-01-01

    Converging reports indicate that face images are processed through specialized neural networks in the brain –i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches. PMID:27113635

  10. A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans.

    PubMed

    Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2016-01-01

    Converging reports indicate that face images are processed through specialized neural networks in the brain -i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches. PMID:27113635

  11. Evaluation of third-party reciprocity by squirrel monkeys (Saimiri sciureus) and the question of mechanisms.

    PubMed

    Anderson, James R; Bucher, Benoit; Kuroshima, Hika; Fujita, Kazuo

    2016-07-01

    Social evaluation during third-party interactions emerges early in human ontogeny, and it has been shown in adult capuchin monkeys who witness violations of reciprocity in object exchanges: Monkeys were less inclined to accept food from humans who refused to reciprocate with another human. A recent study reporting similar evidence in marmoset monkeys raised the possibility that such evaluations might be based on species' inherent cooperativeness. We tested a species not renowned for cooperativeness-squirrel monkeys-using the procedure used with marmosets and found a similar result. This finding rules out any crucial role for cooperative tendencies in monkeys' responses to unfair exchanges. We then tested squirrel monkeys using procedures more similar to those used in the original study with capuchins. Squirrel monkeys again accepted food less frequently from non-reciprocators, but unlike capuchins, they also strongly preferred reciprocators. We conclude that neither squirrel monkeys nor marmoset monkeys engaged in emotional bookkeeping of the type that probably underlies social evaluation in capuchin monkeys; instead, they employed one or more simple behavioral rules. Further comparative studies are required to clarify the mechanisms underlying social evaluation processes across species. PMID:27021433

  12. Statistical decision theory to relate neurons to behavior in the study of covert visual attention.

    PubMed

    Eckstein, Miguel P; Peterson, Matthew F; Pham, Binh T; Droll, Jason A

    2009-06-01

    Scrutiny of the numerous physiology and imaging studies of visual attention reveal that integration of results from neuroscience with the classic theories of visual attention based on behavioral work is not simple. The different subfields have pursued different questions, used distinct experimental paradigms and developed diverse models. The purpose of this review is to use statistical decision theory and computational modeling to relate classic theories of attention in psychological research to neural observables such as mean firing rate or functional imaging BOLD response, tuning functions, Fano factor, neuronal index of detectability and area under the receiver operating characteristic (ROC). We focus on cueing experiments and attempt to distinguish two major leading theories in the study of attention: limited resources model/increased sensitivity vs. selection/differential weighting. We use Bayesian ideal observer (BIO) modeling, in which predictive cues or prior knowledge change the differential weighting (prior) of sensory information to generate predictions of behavioral and neural observables based on Gaussian response variables and Poisson process neural based models. The ideal observer model can be modified to represent a number of classic psychological theories of visual attention by including hypothesized human attentional limited resources in the same way sequential ideal observer analysis has been used to include physiological processing components of human spatial vision (Geisler, W. S. (1989). Sequential ideal-observer analysis of visual discrimination. Psychological Review 96, 267-314.). In particular we compare new biologically plausible implementations of the BIO and variant models with limited resources. We find a close relationship between the behavioral effects of cues predicted by the models developed in the field of human psychophysics and their neuron-based analogs. Critically, we show that cue effects on experimental observables such as

  13. Visualizing minimal ingroup and outgroup faces: implications for impressions, attitudes, and behavior.

    PubMed

    Ratner, Kyle G; Dotsch, Ron; Wigboldus, Daniel H J; van Knippenberg, Ad; Amodio, David M

    2014-06-01

    More than 40 years of research have shown that people favor members of their ingroup in their impressions, attitudes, and behaviors. Here, we propose that people also form different mental images of minimal ingroup and outgroup members, and we test the hypothesis that differences in these mental images contribute to the well-established biases that arise from minimal group categorization. In Study 1, participants were assigned to 1 of 2 groups using a classic minimal group paradigm. Next, a reverse correlation image classification procedure was used to create visual renderings of ingroup and outgroup face representations. Subsequently, a 2nd sample naive to the face generation stage rated these faces on a series of trait dimensions. The results indicated that the ingroup face was significantly more likely than the outgroup face to elicit favorable impressions (e.g., trusting, caring, intelligent, attractive). Extending this finding, Study 2 revealed that ingroup face representations elicited more favorable implicitly measured attitudes than did outgroup representations, and Study 3 showed that ingroup faces were trusted more than outgroup faces during an economic game. Finally, Study 4 demonstrated that facial physiognomy associated with trustworthiness more closely resembled the facial structure of the average ingroup than outgroup face representation. Together, these studies suggest that minimal group distinctions can elicit different mental representations, and that this visual bias is sufficient to elicit ingroup favoritism in impressions, attitudes and behaviors. PMID:24841095

  14. Neural network system for purposeful behavior based on foveal visual preprocessor

    NASA Astrophysics Data System (ADS)

    Golovan, Alexander V.; Shevtsova, Natalia A.; Klepatch, Arkadi A.

    1996-10-01

    Biologically plausible model of the system with an adaptive behavior in a priori environment and resistant to impairment has been developed. The system consists of input, learning, and output subsystems. The first subsystems classifies input patterns presented as n-dimensional vectors in accordance with some associative rule. The second one being a neural network determines adaptive responses of the system to input patterns. Arranged neural groups coding possible input patterns and appropriate output responses are formed during learning by means of negative reinforcement. Output subsystem maps a neural network activity into the system behavior in the environment. The system developed has been studied by computer simulation imitating a collision-free motion of a mobile robot. After some learning period the system 'moves' along a road without collisions. It is shown that in spite of impairment of some neural network elements the system functions reliably after relearning. Foveal visual preprocessor model developed earlier has been tested to form a kind of visual input to the system.

  15. Crystallization behavior of single isotactic poly(methyl methacrylate) chains visualized by atomic force microscopy.

    PubMed

    Anzai, Takahiro; Kawauchi, Mariko; Kawauchi, Takehiro; Kumaki, Jiro

    2015-01-01

    We have, for the first time, successfully visualized the crystallization behavior of a single isolated polymer chain at the molecular level by atomic force microscopy (AFM). Previously, we found that isotactic poly(methyl methacrylate) (it-PMMA) formed two-dimensional folded chain crystals composed of double-stranded helices upon compression of its Langmuir monolayer on a water surface, and the molecular images of the crystals deposited on mica were clearly visualized by AFM (Kumaki, J.; et al. J. Am. Chem. Soc. 2005, 127, 5788). In the present study, a high-molecular-weight it-PMMA was diluted in a monolayer of an it-PMMA oligomer which cannot crystallize at the experimental temperature due to its low molecular weight. At a low surface pressure, isolated amorphous chains of the high-molecular-weight it-PMMA solubilized in the oligomer monolayer were observed. On compression, the isolated chains converted to crystals composed of a single chain, typically some small crystallites linked by an amorphous chain like a necklace. Detailed AFM observations of the crystals indicated that the crystalline nuclei preferentially formed at the ends of the chains, and the size of the nuclei was almost independent of the molecular weight of it-PMMA over a wide range. At an extremely slow compression, crystallization was promoted, resulting in crystallization of the whole chain. The crystallization behavior of a single isolated chain provides new insights in understanding the polymer crystallization process. PMID:25496047

  16. Monkeys Move Robotic Wheelchairs with Their Thoughts

    MedlinePlus

    ... gov/medlineplus/news/fullstory_157593.html Monkeys Move Robotic Wheelchairs With Their Thoughts Scientists say technology might ... made it possible for monkeys to operate a robotic wheelchair using only the monkey's thoughts say the ...

  17. Chemical and visual control of feeding and escape behaviors in the channel catfish Ictalurus punctatus.

    PubMed

    Valentincic, T B; Caprio, J

    1994-05-01

    Channel catfish, maintained individually in aquaria with dark substrate, responded to visual stimuli from above with escape behavior and to amino acid stimuli with feeding behavior. Feeding behavior was composed of a) appetitive patterns, such as barbel movements, orienting posture, and search swimming and b) consummatory patterns that included a halt in swimming, turning, snapping-biting, ingestion, mastication, and swallowing. The conditioning procedure, which consisted of 90 s presentations of a single amino acid followed by a food reward, influenced the duration and speed of the search swim. Swimming behavior was quantified by counting the number of turns greater than 90 degrees. Catfish turned 40-75 times to the conditioned stimuli, L-proline and L-arginine, but only 20-40 times to the nonconditioned stimuli. Olfaction rather than taste was involved in the conditioned response to L-proline because the highest possible contact concentration (3 x 10(-6) M) of L-proline within the stimulus eddies was at least 30 times lower than the estimated L-proline electrophysiological taste threshold (> 10(-4) M). PMID:8022904

  18. Social relevance drives viewing behavior independent of low-level salience in rhesus macaques.

    PubMed

    Solyst, James A; Buffalo, Elizabeth A

    2014-01-01

    Quantifying attention to social stimuli during the viewing of complex social scenes with eye tracking has proven to be a sensitive method in the diagnosis of autism spectrum disorders years before average clinical diagnosis. Rhesus macaques provide an ideal model for understanding the mechanisms underlying social viewing behavior, but to date no comparable behavioral task has been developed for use in monkeys. Using a novel scene-viewing task, we monitored the gaze of three rhesus macaques while they freely viewed well-controlled composed social scenes and analyzed the time spent viewing objects and monkeys. In each of six behavioral sessions, monkeys viewed a set of 90 images (540 unique scenes) with each image presented twice. In two-thirds of the repeated scenes, either a monkey or an object was replaced with a novel item (manipulated scenes). When viewing a repeated scene, monkeys made longer fixations and shorter saccades, shifting from a rapid orienting to global scene contents to a more local analysis of fewer items. In addition to this repetition effect, in manipulated scenes, monkeys demonstrated robust memory by spending more time viewing the replaced items. By analyzing attention to specific scene content, we found that monkeys strongly preferred to view conspecifics and that this was not related to their salience in terms of low-level image features. A model-free analysis of viewing statistics found that monkeys that were viewed earlier and longer had direct gaze and redder sex skin around their face and rump, two important visual social cues. These data provide a quantification of viewing strategy, memory and social preferences in rhesus macaques viewing complex social scenes, and they provide an important baseline with which to compare to the effects of therapeutics aimed at enhancing social cognition. PMID:25414633

  19. Female participation in collective group defense in black howler monkeys (Alouatta pigra).

    PubMed

    Van Belle, Sarie

    2015-06-01

    Many group-living animals actively defend a home range against neighboring groups. In many of these societies, males are the primary participants during group defense, while female participation ranges from seldom to frequent. Among howler monkeys (Alouatta spp.), loud calls (i.e., howling) are often used in the context of intergroup spacing as a form of cooperative group defense. Males initiate and lead these howling bouts, but females occasionally participate as well. During a 28-month study, I examined social and ecological factors influencing the participation of adult females in naturally occurring howling bouts of five multimale-multifemale groups of black howler monkeys (A. pigra) at Palenque National Park, Mexico. I calculated the percentage of time each female participated during howling bouts for which the participation of all resident females could be recorded ≥80% of the time (N = 287). At least one female was observed to participate in 53% of the vocal displays. Female participation was significantly greater during howling bouts that were part of visual intergroup encounters compared to spontaneous calls or calls in response to nearby calls when there was no visual contact with rival groups. Female calling behavior was not influenced by the presence of infants vulnerable to infanticide or by the proximity to food resources. Nonetheless, in four of the five study groups, one female called significantly more than the other resident female(s), suggesting that these females played a special role within the group's social dynamics, not previously recognized for this species. PMID:25704874

  20. Respiratory Pathogens in Monkeys

    PubMed Central

    Good, Robert C.; May, Bessie D.

    1971-01-01

    Respiratory disease in a dynamic colony of nonhuman primates during a 4-year period was due primarily to infections caused by Klebsiella pneumoniae, Diplococcus pneumoniae, Bordetella bronchiseptica, Pasteurella multocida, and Haemophilus influenzae. The principal secondary invaders were Escherichia coli, Staphylococcus aureus, and streptococci. A high fatality rate was associated with infections caused by each of the primary pathogens, and females appeared to be more susceptible than males. Incidence of respiratory disease was greatest in the fall and early winter; however, at all times newly colonized monkeys had a higher infection rate than conditioned monkeys. Infections were occasionally confined only to the lungs and were sometimes present without grossly observable lung lesions. The information given on susceptibility of 10 species of nonhuman primates to respiratory infections provides a basis for developing disease models. PMID:16557951

  1. A spatially nonselective baseline signal in parietal cortex reflects the probability of a monkey's success on the current trial.

    PubMed

    Zhang, Mingsha; Wang, Xiaolan; Goldberg, Michael E

    2014-06-17

    We recorded the activity of neurons in the lateral intraparietal area of two monkeys while they performed two similar visual search tasks, one difficult, one easy. Each task began with a period of fixation followed by an array consisting of a single capital T and a number of lowercase t's. The monkey had to find the capital T and report its orientation, upright or inverted, with a hand movement. In the easy task the monkey could explore the array with saccades. In the difficult task the monkey had to continue fixating and find the capital T in the visual periphery. The baseline activity measured during the fixation period, at a time in which the monkey could not know if the impending task would be difficult or easy or where the target would appear, predicted the monkey's probability of success or failure on the task. The baseline activity correlated inversely with the monkey's recent history of success and directly with the intensity of the response to the search array on the current trial. The baseline activity was unrelated to the monkey's spatial locus of attention as determined by the location of the cue in a cued visual reaction time task. We suggest that rather than merely reflecting the noise in the system, the baseline signal reflects the cortical manifestation of modulatory state, motivational, or arousal pathways, which determine the efficiency of cortical sensorimotor processing and the quality of the monkey's performance. PMID:24889623

  2. Brain tumors in irradiated monkeys.

    NASA Technical Reports Server (NTRS)

    Haymaker, W.; Miquel, J.; Rubinstein, L. J.

    1972-01-01

    A study was made of 32 monkeys which survived one to seven years after total body exposure to protons or to high-energy X rays. Among these 32 monkeys there were 21 which survived two years or longer after exposure to 200 to 800 rad. Glioblastoma multiforme developed in 3 of the 10 monkeys surviving three to five years after receiving 600 or 800 rad 55-MeV protons. Thus, the incidence of tumor development in the present series was far higher than the incidence of spontaneously developing brain tumors in monkeys cited in the literature. This suggests that the tumors in the present series may have been radiation-induced.

  3. Hot-hand bias in rhesus monkeys.

    PubMed

    Blanchard, Tommy C; Wilke, Andreas; Hayden, Benjamin Y

    2014-07-01

    Human decision-makers often exhibit the hot-hand phenomenon, a tendency to perceive positive serial autocorrelations in independent sequential events. The term is named after the observation that basketball fans and players tend to perceive streaks of high accuracy shooting when they are demonstrably absent. That is, both observing fans and participating players tend to hold the belief that a player's chance of hitting a shot are greater following a hit than following a miss. We hypothesize that this bias reflects a strong and stable tendency among primates (including humans) to perceive positive autocorrelations in temporal sequences, that this bias is an adaptation to clumpy foraging environments, and that it may even be ecologically rational. Several studies support this idea in humans, but a stronger test would be to determine whether nonhuman primates also exhibit a hot-hand bias. Here we report behavior of 3 monkeys performing a novel gambling task in which correlation between sequential gambles (i.e., temporal clumpiness) is systematically manipulated. We find that monkeys have better performance (meaning, more optimal behavior) for clumped (positively correlated) than for dispersed (negatively correlated) distributions. These results identify and quantify a new bias in monkeys' risky decisions, support accounts that specifically incorporate cognitive biases into risky choice, and support the suggestion that the hot-hand phenomenon is an evolutionary ancient bias. PMID:25545977

  4. The Impact of Billboards on Driver Visual Behavior: A Systematic Literature Review

    PubMed Central

    DECKER, JOHN S.; STANNARD, SARAH J.; McMANUS, BENJAMIN; WITTIG, SHANNON M. O.; SISIOPIKU, VIRGINIA P.; STAVRINOS, DESPINA

    2015-01-01

    Objective External distraction appears to affect at least 6–9% of distraction-affected motor vehicle collisions. Billboards may be good models for studying external distraction in general, and it is also desirable to understand billboard-related distraction per se. However, there has not yet been a clear consensus on the scope of billboard-related distraction or its dynamics with respect to characteristics of drivers, billboards, traffic, and the roadway. To narrow these knowledge gaps, a systematic literature review was conducted on billboard-related changes in driver visual behavior. Methods A systematic literature search yielded 443 results, of which 8 studies met all inclusion criteria. Five studies meeting all inclusion criteria were later identified and added. Results were analyzed in terms of 4 categories of visual behavior: (1) gaze variability (GV), glance pattern activity (GPA), and percentage of time spent glancing at the forward roadway; (2) glances at unexpected drive-relevant stimuli; (3) glances at expected drive-relevant stimuli; and (4) glances at billboards. Results There was considerable evidence that about 10–20% of all glances at billboards were ≥0.75 s, that active billboards drew more glances and more long glances (≥0.75 s, ≥2.0 s) than passive billboards but did not attract a longer average glance, and that there was large variability among individual billboards within categories (e.g., active vs. passive). The extent to which billboards attracted glances ≥ 2.0 s was uncertain. There was tentative evidence that billboards did not affect GPA, glances at expected drive-relevant stimuli, or the proportion of time drivers spent glancing at the forward roadway and that they did affect vertical GV and glances at unexpected drive-relevant stimuli. Conclusions Generally, billboard-related distraction appeared to be minor and regulated by drivers as the demands of the driving task changed. However, this review’s findings suggest that

  5. A Simple Behavioral Assay for Testing Visual Function in Xenopus laevis

    PubMed Central

    Viczian, Andrea S.; Zuber, Michael E.

    2014-01-01

    Measurement of the visual function in the tadpoles of the frog, Xenopus laevis, allows screening for blindness in live animals. The optokinetic response is a vision-based, reflexive behavior that has been observed in all vertebrates tested. Tadpole eyes are small so the tail flip response was used as alternative measure, which requires a trained technician to record the subtle response. We developed an alternative behavior assay based on the fact that tadpoles prefer to swim on the white side of a tank when placed in a tank with both black and white sides. The assay presented here is an inexpensive, simple alternative that creates a response that is easily measured. The setup consists of a tripod, webcam and nested testing tanks, readily available in most Xenopus laboratories. This article includes a movie showing the behavior of tadpoles, before and after severing the optic nerve. In order to test the function of one eye, we also include representative results of a tadpole in which each eye underwent retinal axotomy on consecutive days. Future studies could develop an automated version of this assay for testing the vision of many tadpoles at once. PMID:24962702

  6. A simple behavioral assay for testing visual function in Xenopus laevis.

    PubMed

    Viczian, Andrea S; Zuber, Michael E

    2014-01-01

    Measurement of the visual function in the tadpoles of the frog, Xenopus laevis, allows screening for blindness in live animals. The optokinetic response is a vision-based, reflexive behavior that has been observed in all vertebrates tested. Tadpole eyes are small so the tail flip response was used as alternative measure, which requires a trained technician to record the subtle response. We developed an alternative behavior assay based on the fact that tadpoles prefer to swim on the white side of a tank when placed in a tank with both black and white sides. The assay presented here is an inexpensive, simple alternative that creates a response that is easily measured. The setup consists of a tripod, webcam and nested testing tanks, readily available in most Xenopus laboratories. This article includes a movie showing the behavior of tadpoles, before and after severing the optic nerve. In order to test the function of one eye, we also include representative results of a tadpole in which each eye underwent retinal axotomy on consecutive days. Future studies could develop an automated version of this assay for testing the vision of many tadpoles at once. PMID:24962702

  7. Stereological Analysis of the Rat and Monkey Amygdala

    PubMed Central

    Chareyron, Loïc J.; Lavenex, Pamela Banta; Amaral, David G.; Lavenex, Pierre

    2015-01-01

    The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings. PMID:21618234

  8. Processing of form stimuli presented unilaterally in humans, chimpanzees (Pan troglodytes), and monkeys (Macaca mulatta)

    NASA Technical Reports Server (NTRS)

    Hopkins, William D.; Washburn, David A.; Rumbaugh, Duane M.

    1990-01-01

    Visual forms were unilaterally presented using a video-task paradigm to ten humans, chimpanzees, and two rhesus monkeys to determine whether hemispheric advantages existed in the processing of these stimuli. Both accuracy and reaction time served as dependent measures. For the chimpanzees, a significant right hemisphere advantage was found within the first three test sessions. The humans and monkeys failed to show a hemispheric advantage as determined by accuracy scores. Analysis of reaction time data revealed a significant left hemisphere advantage for the monkeys. A visual half-field x block interaction was found for the chimpanzees, with a significant left visual field advantage in block two, whereas a right visual field advantage was found in block four. In the human subjects, a left visual field advantage was found in block three when they used their right hands to respond. The results are discussed in relation to recent reports of hemispheric advantages for nonhuman primates.

  9. Tufted capuchin monkeys (Sapajus sp) learning how to crack nuts: does variability decline throughout development?

    PubMed

    Resende, Briseida Dogo; Nagy-Reis, Mariana Baldy; Lacerda, Fernanda Neves; Pagnotta, Murillo; Savalli, Carine

    2014-11-01

    We investigated the process of nut-cracking acquisition in a semi-free population of tufted capuchin monkeys (Sapajus sp) in São Paulo, Brazil. We analyzed the cracking episodes from monkeys of different ages and found that variability of actions related to cracking declined. Inept movements were more frequent in juveniles, which also showed an improvement on efficient striking. The most effective behavioral sequence for cracking was more frequently used by the most experienced monkeys, which also used non-optimal sequences. Variability in behavior sequences and actions may allow adaptive changes to behavior under changing environmental conditions. PMID:25256161

  10. Visualization on the behavior of nanoparticles in magnetic fluids under the electric field

    NASA Astrophysics Data System (ADS)

    Lee, W.-H.; Lee, J.-C.

    2013-02-01

    The dielectric breakdown characteristics of magnetic fluids can be influenced by the magnetic nanoparticles included because their properties should be affected by the applied electric field. Based on measuring the dielectric breakdown voltage of magnetic fluids, we found that it is higher than that of the pure transformer oil in the case of the specific volume concentrations of magnetic nanoparticles. It is known from a numerical simulation that the conductive nanoparticles might behavior as electron scavengers in the electrically stressed magnetic fluids and change fast electrons into slowly negative charged nanoparticles for the electrical breakdown. In this study, we focus on the motion of magnetic nanoparticles in the fluids under the electric field applied by the visualization using a microchannel and an optical microscope.

  11. PDF-modulated visual inputs and cryptochrome define diurnal behavior in Drosophila.

    PubMed

    Cusumano, Paola; Klarsfeld, André; Chélot, Elisabeth; Picot, Marie; Richier, Benjamin; Rouyer, François

    2009-11-01

    Morning and evening circadian oscillators control the bimodal activity of Drosophila in light-dark cycles. The lateral neurons evening oscillator (LN-EO) is important for promoting diurnal activity at dusk. We found that the LN-EO autonomously synchronized to light-dark cycles through either the cryptochrome (CRY) that it expressed or the visual system. In conditions in which CRY was not activated, flies depleted for pigment-dispersing factor (PDF) or its receptor lost the evening activity and displayed reversed PER oscillations in the LN-EO. Rescue experiments indicated that normal PER cycling and the presence of evening activity relied on PDF secretion from the large ventral lateral neurons and PDF receptor function in the LN-EO. The LN-EO thus integrates light inputs and PDF signaling to control Drosophila diurnal behavior, revealing a new clock-independent function for PDF. PMID:19820704

  12. Fusing visual and behavioral cues for modeling user experience in games.

    PubMed

    Shaker, Noor; Asteriadis, Stylianos; Yannakakis, Georgios N; Karpouzis, Kostas

    2013-12-01

    Estimating affective and cognitive states in conditions of rich human-computer interaction, such as in games, is a field of growing academic and commercial interest. Entertainment and serious games can benefit from recent advances in the field as, having access to predictors of the current state of the player (or learner) can provide useful information for feeding adaptation mechanisms that aim to maximize engagement or learning effects. In this paper, we introduce a large data corpus derived from 58 participants that play the popular Super Mario Bros platform game and attempt to create accurate models of player experience for this game genre. Within the view of the current research, features extracted both from player gameplay behavior and game levels, and player visual characteristics have been used as potential indicators of reported affect expressed as pairwise preferences between different game sessions. Using neuroevolutionary preference learning and automatic feature selection, highly accurate models of reported engagement, frustration, and challenge are constructed (model accuracies reach 91%, 92%, and 88% for engagement, frustration, and challenge, respectively). As a step further, the derived player experience models can be used to personalize the game level to desired levels of engagement, frustration, and challenge as game content is mapped to player experience through the behavioral and expressivity patterns of each player. PMID:24273140

  13. Visualization and quantification of deformation behavior of clopidogrel bisulfate polymorphs during tableting

    NASA Astrophysics Data System (ADS)

    Yin, Xian-Zhen; Wu, Li; Li, Ying; Guo, Tao; Li, Hai-Yan; Xiao, Ti-Qiao; York, Peter; Nangia, Ashwini; Gui, Shuang-Ying; Zhang, Ji-Wen

    2016-02-01

    The deformation behavior of particles under pressure dominates the mechanical properties of solid dosage forms. In this study, the in situ 3D deformation of two polymorphs (I and II) of clopidogrel bisulfate (CLP) was determined to illustrate pressure distribution profiles within the tablet by the deformation of the crystalline particles for the first time. Synchrotron radiation X-ray computed microtomography (SR-μCT) was utilized to visualize and quantify the morphology of thousands crystalline particles of CLP I and CLP II before and after compression. As a result, the deformation was examined across scale dimensions from microns to the size of the final dosage form. Three dimensional parameters such as volume, sphericity, oblate and prolate of individual particle and distributions were computed and analyzed for quantitative comparison to CLP I and CLP II. The different degrees of deformation under the same compression conditions of CLP I and CLP II were observed and characterized quantitatively. The map of deformation degrees within the tablet illustrated the heterogeneous pressure distribution in various regions of the compacted tablet. In conclusion, the polymorph deformation behaviors demonstrated by SR-μCT quantitative structure analysis deepen understanding of tableting across dimensions from microns to millimeters for the macrostrcuture of tablet.

  14. Visualization and quantification of deformation behavior of clopidogrel bisulfate polymorphs during tableting

    PubMed Central

    Yin, Xian-Zhen; Wu, Li; Li, Ying; Guo, Tao; Li, Hai-Yan; Xiao, Ti-Qiao; York, Peter; Nangia, Ashwini; Gui, Shuang-Ying; Zhang, Ji-Wen

    2016-01-01

    The deformation behavior of particles under pressure dominates the mechanical properties of solid dosage forms. In this study, the in situ 3D deformation of two polymorphs (I and II) of clopidogrel bisulfate (CLP) was determined to illustrate pressure distribution profiles within the tablet by the deformation of the crystalline particles for the first time. Synchrotron radiation X-ray computed microtomography (SR-μCT) was utilized to visualize and quantify the morphology of thousands crystalline particles of CLP I and CLP II before and after compression. As a result, the deformation was examined across scale dimensions from microns to the size of the final dosage form. Three dimensional parameters such as volume, sphericity, oblate and prolate of individual particle and distributions were computed and analyzed for quantitative comparison to CLP I and CLP II. The different degrees of deformation under the same compression conditions of CLP I and CLP II were observed and characterized quantitatively. The map of deformation degrees within the tablet illustrated the heterogeneous pressure distribution in various regions of the compacted tablet. In conclusion, the polymorph deformation behaviors demonstrated by SR-μCT quantitative structure analysis deepen understanding of tableting across dimensions from microns to millimeters for the macrostrcuture of tablet. PMID:26911359

  15. Patterns of mineral lick visitation by spider monkeys and howler monkeys in Amazonia: are licks perceived as risky areas?

    PubMed

    Link, Andres; Galvis, Nelson; Fleming, Erin; Di Fiore, Anthony

    2011-04-01

    Mineral licks--also known as "salados," "saladeros," or "collpas"--are specific sites in tropical and temperate ecosystems where a large diversity of mammals and birds come regularly to feed on soil. Although the reasons for vertebrate geophagy are not completely understood, animals are argued to obtain a variety of nutritional and health benefits from the ingestion of soil at mineral licks. We studied the temporal patterns of mineral lick use by white-bellied spider monkey (Ateles belzebuth) and red howler monkey (Alouatta seniculus) in a lowland rain forest in Amazonian Ecuador. Using camera and video traps at four different mineral licks, combined with behavioral follows of one group of spider monkeys, we documented rates of mineral lick visitation by both primate species and the relative frequency and intensity of mineral lick use by spider monkeys. On the basis of 1,612 days and 888 nights of mineral lick monitoring, we found that A. belzebuth and A. seniculus both visit mineral licks frequently throughout the year (on average ∼14% of days for both species), and mineral lick visitation was influenced by short-term environmental conditions (e.g. sunny and dry weather). For spider monkeys, the area surrounding the lick was also the most frequently and most intensively used region within the group's home range. The fact that spider monkeys spent long periods at the lick area before coming to the ground to obtain soil, and the fact that both species visited the lick preferentially during dry sunny conditions (when predator detectability is presumed to be relatively high) and visited simultaneously more often than expected by chance, together suggest that licks are indeed perceived as risky areas by these primates. We suggest that howler and spider monkeys employ behavioral strategies aimed at minimizing the probability of predation while visiting the forest floor at risky mineral lick sites. PMID:21328597

  16. Scleral Biomechanics in the Aging Monkey Eye

    PubMed Central

    Girard, Michaël J. A.; Suh, J-K. Francis; Bottlang, Michael; Burgoyne, Claude F.; Downs, J. Crawford

    2010-01-01

    Purpose To investigate the age-related differences in the inhomogeneous, anisotropic, nonlinear biomechanical properties of posterior sclera from old (22.9 ± 5.3 years) and young (1.5 ± 0.7 years) rhesus monkeys. Methods The posterior scleral shell of each eye was mounted on a custom-built pressurization apparatus, then intraocular pressure (IOP) was elevated from 5 to 45 mmHg while the 3D displacements of the scleral surface were measured using speckle interferometry. Each scleral shell geometry was digitally reconstructed from data generated by a 3D digitizer (topography) and 20 MHz ultrasounds (thickness). An inverse finite element (FE) method incorporating a fiber-reinforced constitutive model was used to extract a unique set of biomechanical properties for each eye. Displacements, thickness, stress, strain, tangent modulus, structural stiffness, and preferred collagen fiber orientation were mapped for each posterior sclera. Results The model yielded 3-D deformations of posterior sclera that matched well with those observed experimentally. The posterior sclera exhibited inhomogeneous, anisotropic, nonlinear mechanical behavior. The sclera was significantly thinner (p = 0.038), and tangent modulus and structural stiffness were significantly higher in old monkeys (p < 0.0001). On average, scleral collagen fibers were circumferentially oriented around the optic nerve head (ONH). We found no difference in the preferred collagen fiber orientation and fiber concentration factor between age groups. Conclusions Posterior sclera from old monkeys is significantly stiffer than that from young monkeys and is therefore subject to higher stresses but lower strains at all levels of IOP. Age-related stiffening of the sclera may significantly influence ONH biomechanics, and potentially contribute to age-related susceptibility to glaucomatous vision loss. PMID:19494203

  17. Control of the visual and tactile aspects of poultry food according to the poultry food behavior by image analysis

    NASA Astrophysics Data System (ADS)

    Hachemi, R.; Vincent, N.; Lomenie, N.

    2007-01-01

    This study tries to connect the poultry food behavior to the visual and tactile characteristics of the food. The aim of the work is to make it possible to control the visual and tactile aspects of food (food pellets), by means of image analysis. These aspects are often suspected to explain the undesirable behavior of the poultries, which can reject a food, showing however optimal nutritional characteristics. These incidents involve important negative consequences as well for the animal as for the poultry breeder, with a major degradation of the technical and economic performances. Many zootechnical studies and observations in breeding testify to the sensitivity of the poultries to the visual and tactile aspects of food, but measurements classically used to characterize them do not allow explaining this phenomenon. Color, texture and shape features extracted from images of pellets will constitute effective and practical measures to describe their visual and tactile aspects. We show that a pellets classification based on visual features and supervised by a set of poultry food behavior labels allows to select a set of discriminating features.

  18. Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior

    PubMed Central

    Otsuna, Hideo; Shinomiya, Kazunori; Ito, Kei

    2014-01-01

    Compared with connections between the retinae and primary visual centers, relatively less is known in both mammals and insects about the functional segregation of neural pathways connecting primary and higher centers of the visual processing cascade. Here, using the Drosophila visual system as a model, we demonstrate two levels of parallel computation in the pathways that connect primary visual centers of the optic lobe to computational circuits embedded within deeper centers in the central brain. We show that a seemingly simple achromatic behavior, namely phototaxis, is under the control of several independent pathways, each of which is responsible for navigation towards unique wavelengths. Silencing just one pathway is enough to disturb phototaxis towards one characteristic monochromatic source, whereas phototactic behavior towards white light is not affected. The response spectrum of each demonstrable pathway is different from that of individual photoreceptors, suggesting subtractive computations. A choice assay between two colors showed that these pathways are responsible for navigation towards, but not for the detection itself of, the monochromatic light. The present study provides novel insights about how visual information is separated and processed in parallel to achieve robust control of an innate behavior. PMID:24574974

  19. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action

    PubMed Central

    Egelhaaf, Martin; Boeddeker, Norbert; Kern, Roland; Kurtz, Rafael; Lindemann, Jens P.

    2012-01-01

    Insects such as flies or bees, with their miniature brains, are able to control highly aerobatic flight maneuvres and to solve spatial vision tasks, such as avoiding collisions with obstacles, landing on objects, or even localizing a previously learnt inconspicuous goal on the basis of environmental cues. With regard to solving such spatial tasks, these insects still outperform man-made autonomous flying systems. To accomplish their extraordinary performance, flies and bees have been shown by their characteristic behavioral actions to actively shape the dynamics of the image flow on their eyes (“optic flow”). The neural processing of information about the spatial layout of the environment is greatly facilitated by segregating the rotational from the translational optic flow component through a saccadic flight and gaze strategy. This active vision strategy thus enables the nervous system to solve apparently complex spatial vision tasks in a particularly efficient and parsimonious way. The key idea of this review is that biological agents, such as flies or bees, acquire at least part of their strength as autonomous systems through active interactions with their environment and not by simply processing passively gained information about the world. These agent-environment interactions lead to adaptive behavior in surroundings of a wide range of complexity. Animals with even tiny brains, such as insects, are capable of performing extraordinarily well in their behavioral contexts by making optimal use of the closed action–perception loop. Model simulations and robotic implementations show that the smart biological mechanisms of motion computation and visually-guided flight control might be helpful to find technical solutions, for example, when designing micro air vehicles carrying a miniaturized, low-weight on-board processor. PMID:23269913

  20. New Methodology for 3D Visualization and Modeling of the Cracking Behavior of SOil at the Field Scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crack development in the field is the result of the complex interaction of multiple processes relating to the soil’s structure, moisture condition, and stress level. Visualizing and characterizing the cracking behavior of soils across the soil depth has always been a key challenge and major barrier ...

  1. Is Visual Reference Necessary? Contributions of Facial versus Vocal Cues in 12-Month-Olds' Social Referencing Behavior

    ERIC Educational Resources Information Center

    Vaish, Amrisha; Striano, Tricia

    2004-01-01

    To examine the influences of facial versus vocal cues on infants' behavior in a potentially threatening situation, 12-month-olds on a visual cliff received positive facial-only, vocal-only, or both facial and vocal cues from mothers. Infants' crossing times and looks to mother were assessed. Infants crossed the cliff faster with multimodal and…

  2. Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks.

    PubMed

    Huang, Ying; Brosch, Michael

    2016-06-01

    Prefrontal cortex (PFC) has been documented to play critical roles in goal-directed behaviors, like representing goal-relevant events and working memory (WM). However, neurophysiological evidence for such roles of PFC has been obtained mainly with visual tasks but rarely with auditory tasks. In the present study, we tested roles of PFC in auditory goal-directed behaviors by recording local field potentials in the auditory region of left ventrolateral PFC while a monkey performed auditory WM tasks. The tasks consisted of multiple events and required the monkey to change its mental states to achieve the reward. The events were auditory and visual stimuli, as well as specific actions. Mental states were engaging in the tasks and holding task-relevant information in auditory WM. We found that, although based on recordings from one hemisphere in one monkey only, PFC represented multiple events that were important for achieving reward, including auditory and visual stimuli like turning on and off an LED, as well as bar touch. The responses to auditory events depended on the tasks and on the context of the tasks. This provides support for the idea that neuronal representations in PFC are flexible and can be related to the behavioral meaning of stimuli. We also found that engaging in the tasks and holding information in auditory WM were associated with persistent changes of slow potentials, both of which are essential for auditory goal-directed behaviors. Our study, on a single hemisphere in a single monkey, reveals roles of PFC in auditory goal-directed behaviors similar to those in visual goal-directed behaviors, suggesting that functions of PFC in goal-directed behaviors are probably common across the auditory and visual modality. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26874071

  3. Primary Visual Cortex as a Saliency Map: A Parameter-Free Prediction and Its Test by Behavioral Data

    PubMed Central

    Zhaoping, Li; Zhe, Li

    2015-01-01

    It has been hypothesized that neural activities in the primary visual cortex (V1) represent a saliency map of the visual field to exogenously guide attention. This hypothesis has so far provided only qualitative predictions and their confirmations. We report this hypothesis’ first quantitative prediction, derived without free parameters, and its confirmation by human behavioral data. The hypothesis provides a direct link between V1 neural responses to a visual location and the saliency of that location to guide attention exogenously. In a visual input containing many bars, one of them saliently different from all the other bars which are identical to each other, saliency at the singleton’s location can be measured by the shortness of the reaction time in a visual search for singletons. The hypothesis predicts quantitatively the whole distribution of the reaction times to find a singleton unique in color, orientation, and motion direction from the reaction times to find other types of singletons. The prediction matches human reaction time data. A requirement for this successful prediction is a data-motivated assumption that V1 lacks neurons tuned simultaneously to color, orientation, and motion direction of visual inputs. Since evidence suggests that extrastriate cortices do have such neurons, we discuss the possibility that the extrastriate cortices play no role in guiding exogenous attention so that they can be devoted to other functions like visual decoding and endogenous attention. PMID:26441341

  4. Primary Visual Cortex as a Saliency Map: A Parameter-Free Prediction and Its Test by Behavioral Data.

    PubMed

    Zhaoping, Li; Zhe, Li

    2015-10-01

    It has been hypothesized that neural activities in the primary visual cortex (V1) represent a saliency map of the visual field to exogenously guide attention. This hypothesis has so far provided only qualitative predictions and their confirmations. We report this hypothesis' first quantitative prediction, derived without free parameters, and its confirmation by human behavioral data. The hypothesis provides a direct link between V1 neural responses to a visual location and the saliency of that location to guide attention exogenously. In a visual input containing many bars, one of them saliently different from all the other bars which are identical to each other, saliency at the singleton's location can be measured by the shortness of the reaction time in a visual search for singletons. The hypothesis predicts quantitatively the whole distribution of the reaction times to find a singleton unique in color, orientation, and motion direction from the reaction times to find other types of singletons. The prediction matches human reaction time data. A requirement for this successful prediction is a data-motivated assumption that V1 lacks neurons tuned simultaneously to color, orientation, and motion direction of visual inputs. Since evidence suggests that extrastriate cortices do have such neurons, we discuss the possibility that the extrastriate cortices play no role in guiding exogenous attention so that they can be devoted to other functions like visual decoding and endogenous attention. PMID:26441341

  5. Invariant visual object recognition and shape processing in rats

    PubMed Central

    Zoccolan, Davide

    2015-01-01

    Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision. PMID:25561421

  6. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    NASA Astrophysics Data System (ADS)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  7. Behavioral Differences in the Upper and Lower Visual Hemifields in Shape and Motion Perception.

    PubMed

    Zito, Giuseppe A; Cazzoli, Dario; Müri, René M; Mosimann, Urs P; Nef, Tobias

    2016-01-01

    Perceptual accuracy is known to be influenced by stimuli location within the visual field. In particular, it seems to be enhanced in the lower visual hemifield (VH) for motion and space processing, and in the upper VH for object and face processing. The origins of such asymmetries are attributed to attentional biases across the visual field, and in the functional organization of the visual system. In this article, we tested content-dependent perceptual asymmetries in different regions of the visual field. Twenty-five healthy volunteers participated in this study. They performed three visual tests involving perception of shapes, orientation and motion, in the four quadrants of the visual field. The results of the visual tests showed that perceptual accuracy was better in the lower than in the upper visual field for motion perception, and better in the upper than in the lower visual field for shape perception. Orientation perception did not show any vertical bias. No difference was found when comparing right and left VHs. The functional organization of the visual system seems to indicate that the dorsal and the ventral visual streams, responsible for motion and shape perception, respectively, show a bias for the lower and upper VHs, respectively. Such a bias depends on the content of the visual information. PMID:27378876

  8. Behavioral Differences in the Upper and Lower Visual Hemifields in Shape and Motion Perception

    PubMed Central

    Zito, Giuseppe A.; Cazzoli, Dario; Müri, René M.; Mosimann, Urs P.; Nef, Tobias

    2016-01-01

    Perceptual accuracy is known to be influenced by stimuli location within the visual field. In particular, it seems to be enhanced in the lower visual hemifield (VH) for motion and space processing, and in the upper VH for object and face processing. The origins of such asymmetries are attributed to attentional biases across the visual field, and in the functional organization of the visual system. In this article, we tested content-dependent perceptual asymmetries in different regions of the visual field. Twenty-five healthy volunteers participated in this study. They performed three visual tests involving perception of shapes, orientation and motion, in the four quadrants of the visual field. The results of the visual tests showed that perceptual accuracy was better in the lower than in the upper visual field for motion perception, and better in the upper than in the lower visual field for shape perception. Orientation perception did not show any vertical bias. No difference was found when comparing right and left VHs. The functional organization of the visual system seems to indicate that the dorsal and the ventral visual streams, responsible for motion and shape perception, respectively, show a bias for the lower and upper VHs, respectively. Such a bias depends on the content of the visual information. PMID:27378876

  9. An Interval for Studying and Quantifying Social Relations in Pairs of Rhesus Monkeys

    ERIC Educational Resources Information Center

    Maxim, Peter E.

    1976-01-01

    An internal scale of 17 behavior categories was constructed from data on 120 pairs of rhesus monkeys while they were establishing a social relationship. Data were obtained by a procedure analogous to that used in human psychophysical scaling. (Editor)

  10. Physiological and behavioral reactions elicited by simulated and real-life visual and acoustic helicopter stimuli in dairy goats

    PubMed Central

    2011-01-01

    Background Anecdotal reports and a few scientific publications suggest that flyovers of helicopters at low altitude may elicit fear- or anxiety-related behavioral reactions in grazing feral and farm animals. We investigated the behavioral and physiological stress reactions of five individually housed dairy goats to different acoustic and visual stimuli from helicopters and to combinations of these stimuli under controlled environmental (indoor) conditions. The visual stimuli were helicopter animations projected on a large screen in front of the enclosures of the goats. Acoustic and visual stimuli of a tractor were also presented. On the final day of the study the goats were exposed to two flyovers (altitude 50 m and 75 m) of a Chinook helicopter while grazing in a pasture. Salivary cortisol, behavior, and heart rate of the goats were registered before, during and after stimulus presentations. Results The goats reacted alert to the visual and/or acoustic stimuli that were presented in their room. They raised their heads and turned their ears forward in the direction of the stimuli. There was no statistically reliable rise of the average velocity of moving of the goats in their enclosure and no increase of the duration of moving during presentation of the stimuli. Also there was no increase in heart rate or salivary cortisol concentration during the indoor test sessions. Surprisingly, no physiological and behavioral stress responses were observed during the flyover of a Chinook at 50 m, which produced a peak noise of 110 dB. Conclusions We conclude that the behavior and physiology of goats are unaffected by brief episodes of intense, adverse visual and acoustic stimulation such as the sight and noise of overflying helicopters. The absence of a physiological stress response and of elevated emotional reactivity of goats subjected to helicopter stimuli is discussed in relation to the design and testing schedule of this study. PMID:21496239

  11. Investigations into the low temperature behavior of jet fuels: Visualization, modeling, and viscosity studies

    NASA Astrophysics Data System (ADS)

    Atkins, Daniel L.

    Aircraft operation in arctic regions or at high altitudes exposes jet fuel to temperatures below freeze point temperature specifications. Fuel constituents may solidify and remain within tanks or block fuel system components. Military and scientific requirements have been met with costly, low freeze point specialty jet fuels. Commercial airline interest in polar routes and the use of high altitude unmanned aerial vehicles (UAVs) has spurred interest in the effects of low temperatures and low-temperature additives on jet fuel. The solidification of jet fuel due to freezing is not well understood and limited visualization of fuel freezing existed prior to the research presented in this dissertation. Consequently, computational fluid dynamics (CFD) modeling that simulates jet fuel freezing and model validation were incomplete prior to the present work. The ability to simulate jet fuel freezing is a necessary tool for fuel system designers. An additional impediment to the understanding and simulation of jet fuel freezing has been the absence of published low-temperature thermo-physical properties, including viscosity, which the present work addresses. The dissertation is subdivided into three major segments covering visualization, modeling and validation, and viscosity studies. In the first segment samples of jet fuel, JPTS, kerosene, Jet A and Jet A containing additives, were cooled below their freeze point temperatures in a rectangular, optical cell. Images and temperature data recorded during the solidification process provided information on crystal habit, crystallization behavior, and the influence of the buoyancy-driven flow on freezing. N-alkane composition of the samples was determined. The Jet A sample contained the least n-alkane mass. The cooling of JPTS resulted in the least wax formation while the cooling of kerosene yielded the greatest wax formation. The JPTS and kerosene samples exhibited similar crystallization behavior and crystal habits during

  12. Experimental Test of Spatial Updating Models for Monkey Eye-Head Gaze Shifts

    PubMed Central

    Van Grootel, Tom J.; Van der Willigen, Robert F.; Van Opstal, A. John

    2012-01-01

    How the brain maintains an accurate and stable representation of visual target locations despite the occurrence of saccadic gaze shifts is a classical problem in oculomotor research. Here we test and dissociate the predictions of different conceptual models for head-unrestrained gaze-localization behavior of macaque monkeys. We adopted the double-step paradigm with rapid eye-head gaze shifts to measure localization accuracy in response to flashed visual stimuli in darkness. We presented the second target flash either before (static), or during (dynamic) the first gaze displacement. In the dynamic case the brief visual flash induced a small retinal streak of up to about 20 deg at an unpredictable moment and retinal location during the eye-head gaze shift, which provides serious challenges for the gaze-control system. However, for both stimulus conditions, monkeys localized the flashed targets with accurate gaze shifts, which rules out several models of visuomotor control. First, these findings exclude the possibility that gaze-shift programming relies on retinal inputs only. Instead, they support the notion that accurate eye-head motor feedback updates the gaze-saccade coordinates. Second, in dynamic trials the visuomotor system cannot rely on the coordinates of the planned first eye-head saccade either, which rules out remapping on the basis of a predictive corollary gaze-displacement signal. Finally, because gaze-related head movements were also goal-directed, requiring continuous access to eye-in-head position, we propose that our results best support a dynamic feedback scheme for spatial updating in which visuomotor control incorporates accurate signals about instantaneous eye- and head positions rather than relative eye- and head displacements. PMID:23118883

  13. Activities of visual cortical and hippocampal neurons co-fluctuate in freely moving rats during spatial behavior

    PubMed Central

    Haggerty, Daniel Christopher; Ji, Daoyun

    2015-01-01

    Visual cues exert a powerful control over hippocampal place cell activities that encode external spaces. The functional interaction of visual cortical neurons and hippocampal place cells during spatial navigation behavior has yet to be elucidated. Here we show that, like hippocampal place cells, many neurons in the primary visual cortex (V1) of freely moving rats selectively fire at specific locations as animals run repeatedly on a track. The V1 location-specific activity leads hippocampal place cell activity both spatially and temporally. The precise activities of individual V1 neurons fluctuate every time the animal travels through the track, in a correlated fashion with those of hippocampal place cells firing at overlapping locations. The results suggest the existence of visual cortical neurons that are functionally coupled with hippocampal place cells for spatial processing during natural behavior. These visual neurons may also participate in the formation and storage of hippocampal-dependent memories. DOI: http://dx.doi.org/10.7554/eLife.08902.001 PMID:26349031

  14. Using neural networks to understand the information that guides behavior: a case study in visual navigation.

    PubMed

    Philippides, Andrew; Graham, Paul; Baddeley, Bart; Husbands, Philip

    2015-01-01

    To behave in a robust and adaptive way, animals must extract task-relevant sensory information efficiently. One way to understand how they achieve this is to explore regularities within the information animals perceive during natural behavior. In this chapter, we describe how we have used artificial neural networks (ANNs) to explore efficiencies in vision and memory that might underpin visually guided route navigation in complex worlds. Specifically, we use three types of neural network to learn the regularities within a series of views encountered during a single route traversal (the training route), in such a way that the networks output the familiarity of novel views presented to them. The problem of navigation is then reframed in terms of a search for familiar views, that is, views similar to those associated with the route. This approach has two major benefits. First, the ANN provides a compact holistic representation of the data and is thus an efficient way to encode a large set of views. Second, as we do not store the training views, we are not limited in the number of training views we use and the agent does not need to decide which views to learn. PMID:25502385

  15. Visual cues are relevant in behavioral control measures for Cosmopolites sordidus (Coleoptera: Curculionidae).

    PubMed

    Reddy, Gadi V P; Raman, A

    2011-04-01

    Trap designs for banana root borer, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), have been done essentially on the understanding that C. sordidus rely primarily on chemical cues. Our present results indicate that these borers also rely on visual cues. Previous studies have demonstrated that among the eight differently colored traps tested in the field, brown traps were the most effective compared with the performances of yellow, red, gray, blue, black, white, and green traps; mahogany-brown was more effective than other shades of brown.In the current study, efficiency of ground traps with different colors was evaluated in the laboratory for the capture of C. sordidius. Response of C. sordidus to pheromone-baited ground traps of several different colors (used either individually or as 1:1 mixtures of two different colors) were compared with the standardized mahogany-brown traps. Traps with mahogany-brown mixed with different colors had no significant effect. In contrast, a laboratory color-choice tests indicated C. sordidus preferred black traps over other color traps, with no specific preferences for different shades of black. Here again, traps with black mixed with other colors (1:1) had no influence on the catches. Therefore, any other color that mixes with mahogany-brown or black does not cause color-specific dilution of attractiveness. By exploiting these results, it may be possible to produce efficacious trapping systems that could be used in a behavioral approach to banana root borer control. PMID:21510190

  16. Behavioral evidence illuminating the visual abilities of the terrestrial Caribbean hermit crab Coenobita clypeatus.

    PubMed

    Ping, Xiaoge; Lee, Ji Sun; Garlick, Dennis; Jiang, Zhigang; Blaisdell, Aaron P

    2015-09-01

    Hermit crabs hide into shells when confronted with potential dangers, including images presented on a monitor. We do not know, however, what hermit crabs can see and how they perceive different objects. We examined the hiding response of the Caribbean hermit crab (Coenobita clypeatus) to various stimuli presented on a monitor in seven experiments to explore whether crabs could discriminate different properties of a threatening digital image, including color, brightness, contrast, shape and orientation. We found crabs responded differently to expanding circles presented in wavelengths of light corresponding to what humans see as red, blue, and green. "Blue" stimuli elicited the strongest hiding response (Experiments 1, 2, & 7). "Blue" was also more effective than a gray stimulus of similar brightness (Experiment 3). Hermit crabs were sensitive to the amount of contrast between a stimulus and its background rather than absolute brightness of the stimulus (Experiment 4). Moreover, we did not find evidence that crabs could discriminate orientation (Experiment 6), and mixed evidence that they could discriminate stimulus shape (Experiments 5 & 7). These results suggest that the Caribbean hermit crab is sensitive to color features, but not spatial features, of a threatening object presented on a computer screen. This is the first study to use the hiding response of the hermit crab to examine its visual ability, and demonstrates that the hiding response provides a useful behavioral approach with which to study learning and discrimination in the hermit crab. PMID:26051192

  17. Vestibular adaptation to space in monkeys

    NASA Technical Reports Server (NTRS)

    Dai, M.; Raphan, T.; Kozlovskaya, I.; Cohen, B.

    1998-01-01

    Otolith-induced eye movements of rhesus monkeys were studied before and after the 1989 COSMOS 2044 and the 1992 to 1993 COSMOS 2229 flights. Two animals flew in each mission for approximately 2 weeks. After flight, spatial orientation of the angular vestibulo-ocular reflex was altered. In one animal the time constant of postrotatory nystagmus, which had been shortened by head tilts with regard to gravity before flight, was unaffected by the same head tilts after flight. In another animal, eye velocity, which tended to align with a gravitational axis before flight, moved toward a body axis after flight. This shift of orientation disappeared by 7 days after landing. After flight, the magnitude of compensatory ocular counter-rolling was reduced by about 70% in both dynamic and static tilts. Modulation in vergence in response to naso-occipital linear acceleration during off-vertical axis rotation was reduced by more than 50%. These changes persisted for 11 days after recovery. An up and down asymmetry of vertical nystagmus was diminished for 7 days. Gains of the semicircular canal-induced horizontal and vertical angular vestibulo-ocular reflexes were unaffected in both flights, but the gain of the roll angular vestibulo-ocular reflex was decreased. These data indicate that there are short- and long-term changes in otolith-induced eye movements after adaptation to microgravity. These experiments also demonstrate the unique value of the monkey as a model for studying effects of vestibular adaptation in space. Eye movements can be measured in three dimensions in response to controlled vestibular and visual stimulation, and the results are directly applicable to human beings. Studies in monkeys to determine how otolith afferent input and central processing is altered by adaptation to microgravity should be an essential component of future space-related research.

  18. The roles of visual expertise and visual input in the face inversion effect: behavioral and neurocomputational evidence.

    PubMed

    McCleery, Joseph P; Zhang, Lingyun; Ge, Liezhong; Wang, Zhe; Christiansen, Eric M; Lee, Kang; Cottrell, Garrison W

    2008-02-01

    Research has shown that inverting faces significantly disrupts the processing of configural information, leading to a face inversion effect. We recently used a contextual priming technique to show that the presence or absence of the face inversion effect can be determined via the top-down activation of face versus non-face processing systems [Ge, L., Wang, Z., McCleery, J., & Lee, K. (2006). Activation of face expertise and the inversion effect. Psychological Science, 17(1), 12-16]. In the current study, we replicate these findings using the same technique but under different conditions. We then extend these findings through the application of a neural network model of face and Chinese character expertise systems. Results provide support for the hypothesis that a specialized face expertise system develops through extensive training of the visual system with upright faces, and that top-down mechanisms are capable of influencing when this face expertise system is engaged. PMID:18226826

  19. Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: Evolutionary origins of fear-relevant animals.

    PubMed

    Kawai, Nobuyuki; Koda, Hiroki

    2016-08-01

    Humans quickly detect the presence of evolutionary threats through visual perception. Many theorists have considered humans to be predisposed to respond to both snakes and spiders as evolutionarily fear-relevant stimuli. Evidence supports that human adults, children, and snake-naive monkeys all detect pictures of snakes among pictures of flowers more quickly than vice versa, but recent neurophysiological and behavioral studies suggest that spiders may, in fact, be processed similarly to nonthreat animals. The evidence of quick detection and rapid fear learning by primates is limited to snakes, and no such evidence exists for spiders, suggesting qualitative differences between fear of snakes and fear of spiders. Here, we show that snake-naive Japanese monkeys detect a single snake picture among 8 nonthreat animal pictures (koala) more quickly than vice versa; however, no such difference in detection was observed between spiders and pleasant animals. These robust differences between snakes and spiders are the most convincing evidence that the primate visual system is predisposed to pay attention to snakes but not spiders. These findings suggest that attentional bias toward snakes has an evolutionary basis but that bias toward spiders is more due to top-down, conceptually driven effects of emotion on attention capture. (PsycINFO Database Record PMID:27078076

  20. Capuchin monkeys display affiliation toward humans who imitate them.

    PubMed

    Paukner, Annika; Suomi, Stephen J; Visalberghi, Elisabetta; Ferrari, Pier F

    2009-08-14

    During social interactions, humans often unconsciously and unintentionally imitate the behaviors of others, which increases rapport, liking, and empathy between interaction partners. This effect is thought to be an evolutionary adaptation that facilitates group living and may be shared with other primate species. Here, we show that capuchin monkeys, a highly social primate species, prefer human imitators over non-imitators in a variety of ways: The monkeys look longer at imitators, spend more time in proximity to imitators, and choose to interact more frequently with imitators in a token exchange task. These results demonstrate that imitation can promote affiliation in nonhuman primates. Behavior matching that leads to prosocial behaviors toward others may have been one of the mechanisms at the basis of altruistic behavioral tendencies in capuchins and in other primates, including humans. PMID:19679816

  1. Neurotoxic actions of methylmercury on the primate visual system

    SciTech Connect

    Merigan, W.H.; Maurissen, J.P.J.; Weiss, B.; Eskin, T.; Lapham, L.W.

    1983-01-01

    Visual system consequences of exposure to methylmercury were studied in six adult, macaque monkeys. Visual field measures, visual thresholds, and morphological examination were used to determine the nature and possible reversibility of alterations in vision. Visual field constriction (especially in the inferior-nasal field) was an early and apparently reversible indicator of methylmercury intoxication. Such a field loss was found in the absence of either visual threeshold changes or morphologic alterations in visual cortex. More severe poisoning resulted in persistent field constriction, disruption of visual thresholds, and death. A single monkey showed a permanent, bilateral concentric constriction of visual fields. The locus of visual cortex pathology in this monkey corresponded to the projection of the peripheral visual field.

  2. Self-images in the video monitor coded by monkey intraparietal neurons.

    PubMed

    Iriki, A; Tanaka, M; Obayashi, S; Iwamura, Y

    2001-06-01

    When playing a video game, or using a teleoperator system, we feel our self-image projected into the video monitor as a part of or an extension of ourselves. Here we show that such a self image is coded by bimodal (somatosensory and visual) neurons in the monkey intraparietal cortex, which have visual receptive fields (RFs) encompassing their somatosensory RFs. We earlier showed these neurons to code the schema of the hand which can be altered in accordance with psychological modification of the body image; that is, when the monkey used a rake as a tool to extend its reach, the visual RFs of these neurons elongated along the axis of the tool, as if the monkey's self image extended to the end of the tool. In the present experiment, we trained monkeys to recognize their image in a video monitor (despite the earlier general belief that monkeys are not capable of doing so), and demonstrated that the visual RF of these bimodal neurons was now projected onto the video screen so as to code the image of the hand as an extension of the self. Further, the coding of the imaged hand could intentionally be altered to match the image artificially modified in the monitor. PMID:11377755

  3. A human homologue of monkey F5c

    PubMed Central

    Ferri, S.; Peeters, R.; Nelissen, K.; Vanduffel, W.; Rizzolatti, G.; Orban, G.A.

    2015-01-01

    Area F5c is a monkey premotor area housing mirror neurons which responds more strongly to grasping observation when the actor is visible than when only the actor's hand is visible. Here we used this characteristic fMRI signature of F5c in seven imaging experiments – one in macaque monkeys and six in humans – to identify the human homologue of monkey F5c. By presenting the two grasping actions (actor, hand) and varying the low level visual characteristics, we localized a putative human homologue of area F5c (phF5c) in the inferior part of precentral sulcus, bilaterally. In contrast to monkey F5c, phF5c is asymmetric, with a right-sided bias, and is activated more strongly during the observation of the later stages of grasping when the hand is close to the object. The latter characteristic might be related to the emergence, in humans, of the capacity to precisely copy motor acts performed by others, and thus imitation. PMID:25711137

  4. Visual Cues as a Means to Direct the Behavior of Others in Community Settings.

    ERIC Educational Resources Information Center

    Berg, Wendy K.; And Others

    1990-01-01

    Two experiments examined visual cues as a means for four severely mentally retarded secondary-age students to order in fast-food restaurants. The experiments involved training in school-based simulated environments or in community restaurants. Use of the visual cues was quite effective and easily generalized. Previous experiments with similar…

  5. Auditory and Visual Continuous Performance Tests: Relationships with Age, Gender, Cognitive Functioning, and Classroom Behavior

    ERIC Educational Resources Information Center

    Lehman, Elyse Brauch; Olson, Vanessa A.; Aquilino, Sally A.; Hall, Laura C.

    2006-01-01

    Elementary school children in three grade groups (Grades K/1, 3, and 5/6) completed either the auditory or the visual 1/9 vigilance task from the Gordon Diagnostic System (GDS) as well as subtests from the Wechsler Intelligence Scale for Children--Third Edition and auditory or visual processing subtests from the Woodcock-Johnson Tests of Cognitive…

  6. Visual Behavior in a Nonfocused Dyadic Interaction as a Function of Sex and Distance.

    ERIC Educational Resources Information Center

    Coutts, Larry M.; Schneider, Frank W.

    The visual interaction of two strangers in a nonfocused situation (waiting room) was investigated. Amount of visual interaction decreased across time and with the increasing proximity of the interactants. Neither the sex composition of the dyad nor the sex of the looker was a significant source of variance. However, females received more glances…

  7. Obstacle Avoidance, Visual Detection Performance, and Eye-Scanning Behavior of Glaucoma Patients in a Driving Simulator: A Preliminary Study

    PubMed Central

    Prado Vega, Rocío; van Leeuwen, Peter M.; Rendón Vélez, Elizabeth; Lemij, Hans G.; de Winter, Joost C. F.

    2013-01-01

    The objective of this study was to evaluate differences in driving performance, visual detection performance, and eye-scanning behavior between glaucoma patients and control participants without glaucoma. Glaucoma patients (n = 23) and control participants (n = 12) completed four 5-min driving sessions in a simulator. The participants were instructed to maintain the car in the right lane of a two-lane highway while their speed was automatically maintained at 100 km/h. Additional tasks per session were: Session 1: none, Session 2: verbalization of projected letters, Session 3: avoidance of static obstacles, and Session 4: combined letter verbalization and avoidance of static obstacles. Eye-scanning behavior was recorded with an eye-tracker. Results showed no statistically significant differences between patients and control participants for lane keeping, obstacle avoidance, and eye-scanning behavior. Steering activity, number of missed letters, and letter reaction time were significantly higher for glaucoma patients than for control participants. In conclusion, glaucoma patients were able to avoid objects and maintain a nominal lane keeping performance, but applied more steering input than control participants, and were more likely than control participants to miss peripherally projected stimuli. The eye-tracking results suggest that glaucoma patients did not use extra visual search to compensate for their visual field loss. Limitations of the study, such as small sample size, are discussed. PMID:24146975

  8. When imagining yourself in pain, visual perspective matters: the neural and behavioral correlates of simulated sensory experiences.

    PubMed

    Christian, Brittany M; Parkinson, Carolyn; Macrae, C Neil; Miles, Lynden K; Wheatley, Thalia

    2015-05-01

    Via mental simulation, imagined events faithfully reproduce the neural and behavioral activities that accompany their actual occurrence. However, little is known about how fundamental characteristics of mental imagery-notably perspectives of self-shape neurocognitive processes. To address this issue, we used fMRI to explore the impact that vantage point exerts on the neural and behavioral correlates of imaginary sensory experiences (i.e., pain). Participants imagined painful scenarios from three distinct visual perspectives: first-person self (1PS), third-person self (3PS), and third-person other (3PO). Corroborating increased ratings of pain and embodiment, 1PS (cf. 3PS) simulations elicited greater activity in the right anterior insula, a brain area that supports interoceptive and emotional awareness. Additionally, 1PS simulations evoked greater activity in brain areas associated with visual imagery and the sense of body ownership. Interestingly, no differences were observed between 3PS and 3PO imagery. Taken together, these findings reveal the neural and behavioral correlates of visual perspective during mental simulation. PMID:25390204

  9. Portable Zika Test Shows Promise in Monkeys

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_158704.html Portable Zika Test Shows Promise in Monkeys Easy-to-use ... News) -- A fast, inexpensive test that detects the Zika virus in monkeys might be useful for doctors ...

  10. Portable Zika Test Shows Promise in Monkeys

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_158704.html Portable Zika Test Shows Promise in Monkeys Easy-to-use ... News) -- A fast, inexpensive test that detects the Zika virus in monkeys might be useful for doctors ...

  11. Monkey Able Being Ready for preflight Test

    NASA Technical Reports Server (NTRS)

    1959-01-01

    A squirrel monkey, Able, is being ready for placement into a capsule for a preflight test of Jupiter, AM-18 mission. AM-18 was launched on May 28, 1959 and also carried a rhesus monkey, Baker, into suborbit.

  12. Viewing preferences of rhesus monkeys related to memory for complex pictures, colours and faces.

    PubMed

    Wilson, F A; Goldman-Rakic, P S

    1994-01-31

    In order to determine the preferences of rhesus monkeys for visual stimuli, their eye movements were measured in response to presentations of complex pictures, fields of uniform colour, and of faces using the scleral search coil technique. The monkeys (n = 4) controlled both the onset and offset of the stimuli by the direction of their gaze. Each stimulus was presented 4 times, with 0 or 2, and 36 or 38 trials between successive presentations. Several trends were apparent in their scanning behaviour: (1) all 4 monkeys spent more time looking at pictures and faces compared to colour fields. As individuals, they differed in their overall propensity in looking at visual stimuli: monkeys that spent the most (or least) time looking at pictures spent the most (or least) time looking at colour fields. (2) Although the monkeys appeared to prefer pictures and faces to colour fields as measured by gaze duration, preferences for individual pictures, faces and colour fields were not evident. (3) Memory for recently presented stimuli substantially affected gaze duration which was significantly longer for the first compared to the second presentation of the pictures and faces, and memory was estimated to influence gaze duration over as many as 38 intervening trials. These effects were not significant in the case of colour fields. (4) There were no significant differences either in the average latencies to initiate eye movements or the number of saccades on the first and second presentations of pictures, colors or faces for the 4 monkeys. However, the average latencies to the first eye movement within a trial were longer for colour fields than for pictures for all 4 monkeys. Individual monkeys differed substantially in their mean latencies for the initiation of the first eye movement within a trial, which ranged from 235 ms to 414 ms in the two extreme cases. (5) At the presentation of faces, the monkeys tended to make saccades to major facial features, and only occasionally to

  13. Raiding parties of male spider monkeys: insights into human warfare?

    PubMed

    Aureli, Filippo; Schaffner, Colleen M; Verpooten, Jan; Slater, Kathryn; Ramos-Fernandez, Gabriel

    2006-12-01

    Raids into neighboring territories may occur for different reasons, including the increase of foraging and mating opportunities directly or indirectly through the killing of neighboring rivals. Lethal raids have been mainly observed in humans and chimpanzees, with raiding males being reported to search purposefully for neighbors. Here we report on the first cases ever witnessed of raiding parties of male spider monkeys, a species expected to show such a behavioral tendency, given its similarity with humans and chimpanzees in critical socio-ecological characteristics, such as fission-fusion social dynamics and male-male bonding. Despite the high degree of arboreality of spider monkeys, all seven witnessed raids involved the males progressing single file on the ground in unusual silence. This is remarkably similar to the behavior of chimpanzees. The circumstances around the raids suggest that factors such as reduced mating opportunities, number of males relative to that in the neighboring community, and the strength of bonds among males could play a role in the timing of such actions. The raids did not appear to be aimed at finding food, whereas there is some indication that they may directly or indirectly increase reproductive opportunities. Although no killing was observed, we cannot exclude the possibility that spider monkey raids may be aimed at harming rivals if a vulnerable individual were encountered. The similarity of spider monkey raids with those of chimpanzees and humans supports the notion that lethal raiding is a convergent response to similar socio-ecological conditions. PMID:16685723

  14. Individual differences in rhesus monkeys' demand for drugs of abuse.

    PubMed

    Koffarnus, Mikhail N; Hall, Amy; Winger, Gail

    2012-09-01

    A relatively small percentage of humans who are exposed to drugs of abuse eventually become addicted to or dependent on those drugs. These individual differences in likelihood of developing drug addiction may reflect behavioral, neurobiological or genetic correlates of drug addiction and are therefore important to model. Behavioral economic measures of demand establish functions whose overall elasticity (rate of decrease in consumption as price increases) reflects the reinforcing effectiveness of various stimuli, including drugs. Using these demand functions, we determined the reinforcing effectiveness of five drugs of abuse (cocaine, remifentanil, ketamine, methohexital and ethanol) in 10 rhesus monkeys with histories of intravenous drug-taking. There was a continuum of reinforcing effectiveness across the five drugs, with cocaine and remifentanil showing the most reinforcing effectiveness. There was also a continuum of sensitivity of the monkeys; two of the 10 animals, in particular, showed greater demand for the drugs than did the remaining eight monkeys. In addition, monkeys that demonstrated greater demand for one drug tended to show greater demand for all drugs but did not show a similar relatively greater demand for sucrose pellets. These findings suggest that the tendency to find drugs to be reinforcing is a general one, not restricted to particular drugs and also, that a minority of animals show a substantially enhanced sensitivity to the reinforcing effects of drugs. The possibility that differences in responsiveness to the reinforcing effects of drugs may form the basis of individual differences in drug-taking in humans should be considered. PMID:21762288

  15. Challenges to maternal wellbeing during pregnancy impact temperament, attention, and neuromotor responses in the infant rhesus monkey.

    PubMed

    Coe, Christopher L; Lubach, Gabriele R; Crispen, Heather R; Shirtcliff, Elizabeth A; Schneider, Mary L

    2010-11-01

    The relative maturity, alertness, and reactivity of an infant at birth are sensitive indices of the neonate's health, the quality of the pregnancy, and the mother's wellbeing. Even when fetal growth and gestation length have been normal, the maturing fetus can still be adversely impacted by both physical events and psychological challenges to the mother during the prenatal period. The following research evaluated 413 rhesus monkeys from 7 different types of pregnancies to determine which conditions significantly influenced the behavioral responsiveness and state of the young infant. A standardized test battery modeled after the Neonatal Behavioral Assessment Scale for human newborns was employed. The largest impairments in orientation and increases in infant emotional reactivity were seen when female monkeys drank alcohol, even though consumed at only moderate levels during part of the pregnancy. The infants' ability to focus and attend to visual and auditory cues was also affected when the gravid female's adrenal hormones were transiently elevated for 2 weeks by ACTH administration. In addition, responses to tactile and vestibular stimulation were altered by both this ACTH treatment and psychological disturbance during gestation. Conversely, a 2-day course of antenatal corticosteroids 1 month before term resulted in infants with lower motor activity and reactivity. These findings highlight several pregnancy conditions that can affect a young infant's neurobehavioral status, even when otherwise healthy, and demonstrate that alterations or deficits are specific to the type of insult experienced by the mother and fetus. PMID:20882585

  16. Challenges to Maternal Wellbeing during Pregnancy Impact Temperament, Attention, and Neuromotor Responses in the Infant Rhesus Monkey

    PubMed Central

    Coe, Christopher L.; Lubach, Gabriele R.; Crispen, Heather R.; Shirtcliff, Elizabeth A.; Schneider, Mary L.

    2011-01-01

    The relative maturity, alertness, and reactivity of an infant at birth are sensitive indices of the neonate’s health, the quality of the pregnancy, and the mother’s wellbeing. Even when fetal growth and gestation length have been normal, the maturing fetus can still be adversely impacted by both physical events and psychological challenges to the mother during the prenatal period. The following research evaluated 413 rhesus monkeys from 7 different types of pregnancies to determine which conditions significantly influenced the behavioral responsiveness and state of the young infant. A standardized test battery modeled after the Neonatal Behavioral Assessment Scale for human newborns was employed. The largest impairments in orientation and increases in infant emotional reactivity were seen when female monkeys drank alcohol, even though consumed at only moderate levels during part of the pregnancy. The infants’ ability to focus and attend to visual and auditory cues was also affected when the gravid female’s adrenal hormones were transiently elevated for 2 weeks by ACTH administration. In addition, responses to tactile and vestibular stimulation were altered by both this ACTH treatment and psychological disturbance during gestation. Conversely, a 2-day course of antenatal corticosteroids 1 month before term resulted in infants with lower motor activity and reactivity. These findings highlight several pregnancy conditions that can affect a young infant’s neurobehavioral status, even when otherwise healthy, and demonstrate that alterations or deficits are specific to the type of insult experienced by the mother and fetus. PMID:20882585

  17. Photoacoustic detection of functional responses in the motor cortex of awake behaving monkey during forelimb movement

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Zhang, Hongyu; Cheney, Paul D.; Yang, Xinmai

    2012-11-01

    Photoacoustic (PA) imaging was applied to detect the neuronal activity in the motor cortex of an awake, behaving monkey during forelimb movement. An adult macaque monkey was trained to perform a reach-to-grasp task while PA images were acquired through a 30-mm diameter implanted cranial chamber. Increased PA signal amplitude results from an increase in regional blood volume and is interpreted as increased neuronal activity. Additionally, depth-resolved PA signals enabled the study of functional responses in deep cortical areas. The results demonstrate the feasibility of utilizing PA imaging for studies of functional activation of cerebral cortex in awake monkeys performing behavioral tasks.

  18. Spontaneous Metacognition in Rhesus Monkeys.

    PubMed

    Rosati, Alexandra G; Santos, Laurie R

    2016-09-01

    Metacognition is the ability to think about thinking. Although monitoring and controlling one's knowledge is a key feature of human cognition, its evolutionary origins are debated. In the current study, we examined whether rhesus monkeys (Macaca mulatta; N = 120) could make metacognitive inferences in a one-shot decision. Each monkey experienced one of four conditions, observing a human appearing to hide a food reward in an apparatus consisting of either one or two tubes. The monkeys tended to search the correct location when they observed this baiting event, but engaged in information seeking-by peering into a center location where they could check both potential hiding spots-if their view had been occluded and information seeking was possible. The monkeys only occasionally approached the center when information seeking was not possible. These results show that monkeys spontaneously use information about their own knowledge states to solve naturalistic foraging problems, and thus provide the first evidence that nonhumans exhibit information-seeking responses in situations with which they have no prior experience. PMID:27388917

  19. Neurobehavioral development of common marmoset monkeys.

    PubMed

    Schultz-Darken, Nancy; Braun, Katarina M; Emborg, Marina E

    2016-03-01

    Common marmoset (Callithrix jacchus) monkeys are a resource for biomedical research and their use is predicted to increase due to the suitability of this species for transgenic approaches. Identification of abnormal neurodevelopment due to genetic modification relies upon the comparison with validated patterns of normal behavior defined by unbiased methods. As scientists unfamiliar with nonhuman primate development are interested to apply genomic editing techniques in marmosets, it would be beneficial to the field that the investigators use validated methods of postnatal evaluation that are age and species appropriate. This review aims to analyze current available data on marmoset physical and behavioral postnatal development, describe the methods used and discuss next steps to better understand and evaluate marmoset normal and abnormal postnatal neurodevelopment. © 2015 Wiley Periodicals, Inc. Dev Psychobiol 58: 141-158, 2016. PMID:26502294

  20. Neurobehavioral Development of Common Marmoset Monkeys

    PubMed Central

    Schultz-Darken, Nancy; Braun, Katarina M.; Emborg, Marina E.

    2016-01-01

    Common marmoset (Callithrix jacchus) monkeys are a resource for biomedical research and their use is predicted to increase due to the suitability of this species for transgenic approaches. Identification of abnormal neurodevelopment due to genetic modification relies upon the comparison with validated patterns of normal behavior defined by unbiased methods. As scientists unfamiliar with nonhuman primate development are interested to apply genomic editing techniques in marmosets, it would be beneficial to the field that the investigators use validated methods of postnatal evaluation that are age and species appropriate. This review aims to analyze current available data on marmoset physical and behavioral postnatal development, describe the methods used and discuss next steps to better understand and evaluate marmoset normal and abnormal postnatal neurodevelopment PMID:26502294

  1. Prefrontal Activity Predicts Monkeys' Decisions During an Auditory Category Task

    PubMed Central

    Lee, Jung H.; Russ, Brian E.; Orr, Lauren E.; Cohen, Yale E.

    2009-01-01

    The neural correlates that relate auditory categorization to aspects of goal-directed behavior, such as decision-making, are not well understood. Since the prefrontal cortex (PFC) plays an important role in executive function and the categorization of auditory objects, we hypothesized that neural activity in the PFC should predict an animal's behavioral reports (decisions) during a category task. To test this hypothesis, we tested PFC activity that was recorded while monkeys categorized human spoken words (Russ et al., 2008b). We found that activity in the ventrolateral PFC, on average, correlated best with the monkeys' choices than with the auditory stimuli. This finding demonstrates a direct link between PFC activity and behavioral choices during a non-spatial auditory task. PMID:19587846

  2. Differential effects of parietal and frontal inactivations on reaction times distributions in a visual search task

    PubMed Central

    Wardak, Claire; Ben Hamed, Suliann; Olivier, Etienne; Duhamel, Jean-René

    2012-01-01

    The posterior parietal cortex participates to numerous cognitive functions, from perceptual to attentional and decisional processes. However, the same functions have also been attributed to the frontal cortex. We previously conducted a series of reversible inactivations of the lateral intraparietal area (LIP) and of the frontal eye field (FEF) in the monkey which showed impairments in covert visual search performance, characterized mainly by an increase in the mean reaction time (RT) necessary to detect a contralesional target. Only subtle differences were observed between the inactivation effects in both areas. In particular, the magnitude of the deficit was dependant of search task difficulty for LIP, but not for FEF. In the present study, we re-examine these data in order to try to dissociate the specific involvement of these two regions, by considering the entire RT distribution instead of mean RT. We use the LATER model to help us interpret the effects of the inactivations with regard to information accumulation rate and decision processes. We show that: (1) different search strategies can be used by monkeys to perform visual search, either by processing the visual scene in parallel, or by combining parallel and serial processes; (2) LIP and FEF inactivations have very different effects on the RT distributions in the two monkeys. Although our results are not conclusive with regards to the exact functional mechanisms affected by the inactivations, the effects we observe on RT distributions could be accounted by an involvement of LIP in saliency representation or decision-making, and an involvement of FEF in attentional shifts and perception. Finally, we observe that the use of the LATER model is limited in the context of a visual search as it cannot fit all the behavioral strategies encountered. We propose that the diversity in search strategies observed in our monkeys also exists in individual human subjects and should be considered in future experiments. PMID

  3. Differential effects of parietal and frontal inactivations on reaction times distributions in a visual search task.

    PubMed

    Wardak, Claire; Ben Hamed, Suliann; Olivier, Etienne; Duhamel, Jean-René

    2012-01-01

    The posterior parietal cortex participates to numerous cognitive functions, from perceptual to attentional and decisional processes. However, the same functions have also been attributed to the frontal cortex. We previously conducted a series of reversible inactivations of the lateral intraparietal area (LIP) and of the frontal eye field (FEF) in the monkey which showed impairments in covert visual search performance, characterized mainly by an increase in the mean reaction time (RT) necessary to detect a contralesional target. Only subtle differences were observed between the inactivation effects in both areas. In particular, the magnitude of the deficit was dependant of search task difficulty for LIP, but not for FEF. In the present study, we re-examine these data in order to try to dissociate the specific involvement of these two regions, by considering the entire RT distribution instead of mean RT. We use the LATER model to help us interpret the effects of the inactivations with regard to information accumulation rate and decision processes. We show that: (1) different search strategies can be used by monkeys to perform visual search, either by processing the visual scene in parallel, or by combining parallel and serial processes; (2) LIP and FEF inactivations have very different effects on the RT distributions in the two monkeys. Although our results are not conclusive with regards to the exact functional mechanisms affected by the inactivations, the effects we observe on RT distributions could be accounted by an involvement of LIP in saliency representation or decision-making, and an involvement of FEF in attentional shifts and perception. Finally, we observe that the use of the LATER model is limited in the context of a visual search as it cannot fit all the behavioral strategies encountered. We propose that the diversity in search strategies observed in our monkeys also exists in individual human subjects and should be considered in future experiments. PMID

  4. Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration.

    PubMed

    Morgan, Drake; Grant, Kathleen A; Gage, H Donald; Mach, Robert H; Kaplan, Jay R; Prioleau, Osric; Nader, Susan H; Buchheimer, Nancy; Ehrenkaufer, Richard L; Nader, Michael A

    2002-02-01

    Disruption of the dopaminergic system has been implicated in the etiology of many pathological conditions, including drug addiction. Here we used positron emission tomography (PET) imaging to study brain dopaminergic function in individually housed and in socially housed cynomolgus macaques (n = 20). Whereas the monkeys did not differ during individual housing, social housing increased the amount or availability of dopamine D2 receptors in dominant monkeys and produced no change in subordinate monkeys. These neurobiological changes had an important behavioral influence as demonstrated by the finding that cocaine functioned as a reinforcer in subordinate but not dominant monkeys. These data demonstrate that alterations in an organism's environment can produce profound biological changes that have important behavioral associations, including vulnerability to cocaine addiction. PMID:11802171

  5. Get the Monkey off Your Back

    ERIC Educational Resources Information Center

    Ciabattini, David; Custer, Timothy J.

    2008-01-01

    Monkeys are the problems that need solutions, the tasks that need to be accomplished, the decisions that need to be made, and the actions that need to be taken. According to a theory, people carry monkeys around on their backs until they can successfully shift their burden to someone else and the monkey leaps from one back to the next. Managers…

  6. Monkeys Match and Tally Quantities across Senses

    ERIC Educational Resources Information Center

    Jordan, Kerry E.; MacLean, Evan L.; Brannon, Elizabeth M.

    2008-01-01

    We report here that monkeys can actively match the number of sounds they hear to the number of shapes they see and present the first evidence that monkeys sum over sounds and sights. In Experiment 1, two monkeys were trained to choose a simultaneous array of 1-9 squares that numerically matched a sample sequence of shapes or sounds. Monkeys…

  7. Monkey Baker in bio-pack

    NASA Technical Reports Server (NTRS)

    1959-01-01

    A squirrel monkey, Baker, in bio-pack couch being readied for Jupiter (AM-18 flight). Jupiter, AM-18 mission, also carried an American-born rhesus monkey, Able into suborbit. The flight was successful and both monkeys were recovered in good condition. AM-18 was launched on May 28, 1959.

  8. Threats from the past: Barbados green monkeys (Chlorocebus sabaeus) fear leopards after centuries of isolation.

    PubMed

    Burns-Cusato, Melissa; Glueck, Amanda C; Merchak, Andrea R; Palmer, Cristin L; Rieskamp, Joshua D; Duggan, Ivy S; Hinds, Rebecca T; Cusato, Brian

    2016-05-01

    Ability to recognize and differentiate between predators and non-predators is a crucial component of successful anti-predator behavior. While there is evidence that both genetic and experiential mechanisms mediate anti-predator behaviors in various animal species, it is unknown to what extent each of these two mechanisms are utilized by the green monkey (Chlorocebus sabaeus). Green monkeys on the West Indies island of Barbados offer a unique opportunity to investigate the underpinnings of anti-predator behaviors in a species that has been isolated from ancestral predators for over 350 years. In the first experiment, monkeys in two free-ranging troops were presented with photographs of an ancestral predator (leopard, Panthera pardus) and a non-predator (African Buffalo, Syncerus caffer). Relative to non-predator stimuli, images of a leopard elicited less approach, more alarm calls, and more escape responses. Subsequent experiments were conducted to determine whether the monkeys were responding to a leopard-specific feature (spotted fur) or a general predator feature (forward facing eyes). The monkeys showed similar approach to images of an unfamiliar non-predator regardless of whether the image had forward facing predator eyes or side facing non-predator eyes. However, once near the images, the monkeys were less likely to reach for peanuts near the predator eyes than the non-predator eyes. The monkeys avoided an image of spotted leopard fur but approached the same image of fur when the dark spots had been removed. Taken together, the results suggest that green monkey anti-predator behavior is at least partially mediated by genetic factors. PMID:26910174

  9. Behavioral Regulation, Visual Spatial Maturity in Kindergarten, and the Relationship of School Adaptation in the First Grade for a Sample of Turkish Children.

    PubMed

    Özer, Serap

    2016-04-01

    Behavioral regulation has recently become an important variable in research looking at kindergarten and first-grade achievement of children in private and public schools. The purpose of this study was to examine a measure of behavioral regulation, the Head Toes Knees Shoulders Task, and to evaluate its relationship with visual spatial maturity at the end of kindergarten. Later, in first grade, teachers were asked to rate the children (N = 82) in terms of academic and behavioral adaptation. Behavioral regulation and visual spatial maturity were significantly different between the two school types, but ratings by the teachers in the first grade were affected by children's visual spatial maturity rather than by behavioral regulation. Socioeducational opportunities provided by the two types of schools may be more important to school adaptation than behavioral regulation. PMID:27154368

  10. Systems Biology of the Vervet Monkey

    PubMed Central

    Jasinska, Anna J.; Schmitt, Christopher A.; Service, Susan K.; Cantor, Rita M.; Dewar, Ken; Jentsch, James D.; Kaplan, Jay R.; Turner, Trudy R.; Warren, Wesley C.; Weinstock, George M.; Woods, Roger P.; Freimer, Nelson B.

    2013-01-01

    Nonhuman primates (NHP) provide crucial biomedical model systems intermediate between rodents and humans. The vervet monkey (also called the African green monkey) is a widely used NHP model that has unique value for genetic and genomic investigations of traits relevant to human diseases. This article describes the phylogeny and population history of the vervet monkey and summarizes the use of both captive and wild vervet monkeys in biomedical research. It also discusses the effort of an international collaboration to develop the vervet monkey as the most comprehensively phenotypically and genomically characterized NHP, a process that will enable the scientific community to employ this model for systems biology investigations. PMID:24174437

  11. Early life stress affects cerebral glucose metabolism in adult rhesus monkeys (Macaca mulatta).

    PubMed

    Parr, Lisa A; Boudreau, Matthew; Hecht, Erin; Winslow, James T; Nemeroff, Charles B; Sánchez, Mar M

    2012-01-01

    Early life stress (ELS) is a risk factor for anxiety, mood disorders and alterations in stress responses. Less is known about the long-term neurobiological impact of ELS. We used [(18)F]-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) to assess neural responses to a moderate stress test in adult monkeys that experienced ELS as infants. Both groups of monkeys showed hypothalamic-pituitary-adrenal (HPA) axis stress-induced activations and cardiac arousal in response to the stressor. A whole brain analysis detected significantly greater regional cerebral glucose metabolism (rCGM) in superior temporal sulcus, putamen, thalamus, and inferotemporal cortex of ELS animals compared to controls. Region of interest (ROI) analyses performed in areas identified as vulnerable to ELS showed greater activity in the orbitofrontal cortex of ELS compared to control monkeys, but greater hippocampal activity in the control compared to ELS monkeys. Together, these results suggest hyperactivity in emotional and sensory processing regions of adult monkeys with ELS, and greater activity in stress-regulatory areas in the controls. Despite these neural responses, no group differences were detected in neuroendocrine, autonomic or behavioral responses, except for a trend towards increased stillness in the ELS monkeys. Together, these data suggest hypervigilance in the ELS monkeys in the absence of immediate danger. PMID:22682736

  12. Electroencephalographic and convulsant effects of the delta opioid agonist SNC80 in rhesus monkeys

    PubMed Central

    Danielsson, Ingela; Gasior, Maciej; Stevenson, Glenn W.; Folk, John E.; Rice, Kenner C.; Negus, S. Stevens

    2007-01-01

    Non-peptidic delta opioid receptor agonists are being evaluated for a wide range of clinical applications; however, the clinical utility of piperazinyl benzamide delta agonists such as SNC80 may be limited by convulsant activity. The purpose of the present study was to evaluate the electroencephalographic and convulsant activity produced by a high dose of 10 mg/kg SNC80 IM in rhesus monkeys. EEG and behavioral activity were examined in four adult male rhesus monkeys after IM administration of SNC80. Monkeys were seated in a standard primate restraint chair, and EEG activity was recorded using an array of 16 needle electrodes implanted subcutaneously in the scalp in a bipolar (scalp-to scalp) montage in a longitudinal direction, with bilateral frontal, central, temporal, and occipital leads. Behavior was recorded using video monitoring equipment. Initially, all monkeys were tested with 10 mg/kg SNC80, which is a relatively high dose 3–10 fold greater than doses necessary to produce a variety of other behavioral effects. Behavioral convulsions and EEG seizures were observed in one of the four monkeys. In this monkey, neither behavioral convulsions nor EEG seizures were observed when a lower dose of 3.2 mg/kg was administered nine weeks later or when the same dose of 10 mg/kg SNC80 was administered one year later. These results suggest that IM administration of SNC80 is less potent in producing convulsant effects than in producing other, potentially useful behavioral effects (e.g. antinociception) in rhesus monkeys. PMID:17112570

  13. Biologic Data of Cynomolgus Monkeys Maintained under Laboratory Conditions

    PubMed Central

    Rosso, Marilena Caterina; Badino, Paola; Ferrero, Giulio; Costa, Roberto; Cordero, Francesca; Steidler, Stephanie

    2016-01-01

    The cynomolgus monkey (Macaca fascicularis) is a well-known non-human primate species commonly used in non-clinical research. It is important to know basal clinical pathology parameters in order to have a reference for evaluating any potential treatment-induced effects, maintaining health status among animals and, if needed, evaluating correct substantiative therapies. In this study, data from 238 untreated cynomolgus monkeys (119 males and 119 females of juvenile age, 2.5 to 3.5 years) kept under laboratory conditions were used to build up a reference database of clinical pathology parameters. Twenty-two hematology markers, 24 clinical chemistry markers and two blood coagulation parameters were analyzed. Gender-related differences were evaluated using statistical analyses. To assess the possible effects of stress induced by housing or handling involved in treatment procedures, 78 animals (35 males and 35 females out of 238 juvenile monkeys and four adult males and four adult females) were used to evaluate cortisol, corticosterone and behavioral assessment over time. Data were analyzed using a non-parametric statistical test and machine learning approaches. Reference clinical pathology data obtained from untreated animals may be extremely useful for investigators employing cynomolgus monkeys as a test system for non-clinical safety studies. PMID:27280447

  14. Cross-Modal Stimulus Conflict: The Behavioral Effects of Stimulus Input Timing in a Visual-Auditory Stroop Task

    PubMed Central

    Donohue, Sarah E.; Appelbaum, Lawrence G.; Park, Christina J.; Roberts, Kenneth C.; Woldorff, Marty G.

    2013-01-01

    Cross-modal processing depends strongly on the compatibility between different sensory inputs, the relative timing of their arrival to brain processing components, and on how attention is allocated. In this behavioral study, we employed a cross-modal audio-visual Stroop task in which we manipulated the within-trial stimulus-onset-asynchronies (SOAs) of the stimulus-component inputs, the grouping of the SOAs (blocked vs. random), the attended modality (auditory or visual), and the congruency of the Stroop color-word stimuli (congruent, incongruent, neutral) to assess how these factors interact within a multisensory context. One main result was that visual distractors produced larger incongruency effects on auditory targets than vice versa. Moreover, as revealed by both overall shorter response times (RTs) and relative shifts in the psychometric incongruency-effect functions, visual-information processing was faster and produced stronger and longer-lasting incongruency effects than did auditory. When attending to either modality, stimulus incongruency from the other modality interacted with SOA, yielding larger effects when the irrelevant distractor occurred prior to the attended target, but no interaction with SOA grouping. Finally, relative to neutral-stimuli, and across the wide range of the SOAs employed, congruency led to substantially more behavioral facilitation than did incongruency to interference, in contrast to findings that within-modality stimulus-compatibility effects tend to be more evenly split between facilitation and interference. In sum, the present findings reveal several key characteristics of how we process the stimulus compatibility of cross-modal sensory inputs, reflecting stimulus processing patterns that are critical for successfully navigating our complex multisensory world. PMID:23638149

  15. Do rhesus monkeys (Macaca mulatta) perceive illusory motion?

    PubMed Central

    Agrillo, Christian; Gori, Simone; Beran, Michael J.

    2015-01-01

    During the last decade, visual illusions have been used repeatedly to understand similarities and differences of visual perception of human and non-human animals. However, nearly all studies have focused only on illusions not related to motion perception and, to date, it is unknown whether non-human primates perceive any kind of motion illusion. In the present study we investigated whether rhesus monkeys (Macaca mulatta) perceived one of the most popular motion illusions in humans, the Rotating Snake illusion (RSI). To this purpose, we set up four experiments. In Experiment 1 subjects initially were trained to discriminate static vs. dynamic arrays. Once reaching the learning criterion, they underwent probe trials in which we presented the RSI and a control stimulus identical in overall configuration with the exception that the order of the luminance sequence was changed in a way that no apparent motion is perceived by humans. The overall performance of monkeys indicated that they spontaneously classified RSI as a dynamic array. Subsequently, we tested adult humans in the same task with the aim of directly comparing the performance of human and non-human primates (Experiment 2). In Experiment 3 we found that monkeys can be successfully trained to discriminate between the RSI and a control stimulus. Experiment 4 showed that a simple change in luminance sequence in the two arrays could not explain the performance reported in Exp. 3. These results suggest that some rhesus monkeys display a human-like perception of this motion illusion, raising the possibility that the neurocognitive systems underlying motion perception may be similar between human and non-human primates. PMID:25812828

  16. Increased apoptosis and abnormal visual behavior by histone modifications with exposure to para-xylene in developing Xenopus.

    PubMed

    Gao, Juanmei; Ruan, Hangze; Qi, Xianjie; Guo, Xia; Zheng, Jingna; Liu, Cong; Fang, Yanxiao; Huang, Minjiao; Xu, Miao; Shen, Wanhua

    2016-09-01

    Xylene and its derivatives are raw materials widely used in industry and known to be toxic to animals. However, the mechanism underlying the neurotoxicity of para-xylene (PX) to the central nervous system (CNS) in vivo is less clear. Here, we exposed Xenopus laevis tadpoles to sub-lethal concentrations of PX during the critical period of brain development to determine the effects of PX on Xenopus development and visual behavior. We found that the abnormality rate was significantly increased with exposure to increasing concentrations of PX. In particular, the number of apoptotic cells in the optic tectum was dramatically increased with exposure to PX at 2mM. Long-term PX exposure also resulted in significant deficits in visually guided avoidance behavior. Strikingly, co-incubation with PX and d-glucuronolactone (GA) decreased the number of apoptotic cells and rescued the avoidance behavior. Furthermore, we found that the acetylation of H4K12 (H4K12ac) and the dimethylation of H3K9 (H3K9me2) in the optic tectum were significantly increased in PX-treated animals, and these effects were suppressed by GA treatment. In particular, the increase in apoptotic cells in PX-treated brains was also inhibited by GA treatment. These effects indicate that epigenetic regulation plays a key role in PX-induced apoptosis and animal behavior. In an effort to characterize the neurotoxic effects of PX on brain development and behavior, these results suggest that the neurotoxicity of PX requires further evaluation regarding the safety of commercial and industrial uses. PMID:27343828

  17. Neuron analysis of visual perception

    NASA Technical Reports Server (NTRS)

    Chow, K. L.

    1980-01-01

    The receptive fields of single cells in the visual system of cat and squirrel monkey were studied investigating the vestibular input affecting the cells, and the cell's responses during visual discrimination learning process. The receptive field characteristics of the rabbit visual system, its normal development, its abnormal development following visual deprivation, and on the structural and functional re-organization of the visual system following neo-natal and prenatal surgery were also studied. The results of each individual part of each investigation are detailed.

  18. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    PubMed

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-03-01

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories. PMID:22286175

  19. Optogenetics in Mice Performing a Visual Discrimination Task: Measurement and Suppression of Retinal Activation and the Resulting Behavioral Artifact

    PubMed Central

    Danskin, Bethanny; Denman, Daniel; Valley, Matthew; Ollerenshaw, Douglas; Williams, Derric; Groblewski, Peter; Reid, Clay; Olsen, Shawn; Waters, Jack

    2015-01-01

    Optogenetic techniques are used widely to perturb and interrogate neural circuits in behaving animals, but illumination can have additional effects, such as the activation of endogenous opsins in the retina. We found that illumination, delivered deep into the brain via an optical fiber, evoked a behavioral artifact in mice performing a visually guided discrimination task. Compared with blue (473 nm) and yellow (589 nm) illumination, red (640 nm) illumination evoked a greater behavioral artifact and more activity in the retina, the latter measured with electrical recordings. In the mouse, the sensitivity of retinal opsins declines steeply with wavelength across the visible spectrum, but propagation of light through brain tissue increases with wavelength. Our results suggest that poor retinal sensitivity to red light was overcome by relatively robust propagation of red light through brain tissue and stronger illumination of the retina by red than by blue or yellow light. Light adaptation of the retina, via an external source of illumination, suppressed retinal activation and the behavioral artifact without otherwise impacting behavioral performance. In summary, long wavelength optogenetic stimuli are particularly prone to evoke behavioral artifacts via activation of retinal opsins in the mouse, but light adaptation of the retina can provide a simple and effective mitigation of the artifact. PMID:26657323

  20. Use of a Structured Observation to Evaluate Visual Behavior in Young Children: Research Report

    ERIC Educational Resources Information Center

    Rydberg, Agneta; Ericson, Birgit; Lindstedt, Eva

    2004-01-01

    When assessing the visual function of young children, it is important to use a variety of tests. It is essential to have a structured observation method when it is not possible to use ordinary acuity tests. A structured observation method can be created by using a checklist. An ideal checklist should be handy and reliable and include a minimum of…

  1. The Development of Attention to Simple and Complex Visual Stimuli in Infants: Behavioral and Psychophysiological Measures

    ERIC Educational Resources Information Center

    Richards, John E.

    2010-01-01

    The study of visual attention in infants has used presentation of single simple stimuli, multi-dimensional stimuli, and complex dynamic video presentations. There are both continuities and discontinuities in the findings on attention and attentiveness to stimulus complexity. A continuity is a pattern of looking that is found in the early part of…

  2. Review of Measurement Instruments and Procedures for Assessing Visual Behaviors: Implications for Quantitative Measurement.

    ERIC Educational Resources Information Center

    Janssen, Cynthia M.

    The assessment of vision as it relates to and interacts with motor development is reviewed. The focus is on eye readiness skills normally occuring in infants' first few months of life and preceding eye-hand coordination. These visual skills fall into three categories: fixation, tracking, and scanning. Six standardized scales are reviewed and…

  3. Effect of a Visual Prompt on Changes in Antecedents and Consequents of Teaching Behavior.

    ERIC Educational Resources Information Center

    Wolfe, David E.

    1990-01-01

    The purpose of this study was to examine the use of a visual prompt placed within an actual music teaching situation to effect changes in the frequency of teacher antecedents (spoken questions and statements), the quality of those antecedents (appropriate and inappropriate questions), and the frequency of teacher consequents (spoken approvals).…

  4. Can Cultural Behavior Have a Negative Impact on the Development of Visual Integration Pathways?

    ERIC Educational Resources Information Center

    Pretorius, E.; Naude, H.; van Vuuren, C. J.

    2002-01-01

    Contends that cultural practices such as carrying the baby on the mother's back for prolonged periods can impact negatively on development of visual integration during the sensorimotor stage pathways by preventing adequate or enough crawling. Maintains that crawling is essential for cross- modality integration and that higher mental functions may…

  5. Visual Attention and Autistic Behavior in Infants with Fragile X Syndrome

    ERIC Educational Resources Information Center

    Roberts, Jane E.; Hatton, Deborah D.; Long, Anna C. J.; Anello, Vittoria; Colombo, John

    2012-01-01

    Aberrant attention is a core feature of fragile X syndrome (FXS), however, little is known regarding the developmental trajectory and underlying physiological processes of attention deficits in FXS. Atypical visual attention is an early emerging and robust indicator of autism in idiopathic (non-FXS) autism. Using a biobehavioral approach with gaze…

  6. Water Misting: Treating Self-Injurious Behavior in a Multiply Handicapped, Visually Impaired Child.

    ERIC Educational Resources Information Center

    Fehr, A.; Beckwith, B. E.

    1989-01-01

    A water mist was employed as a punisher to reduce head hitting in a 10-year-old multiply handicapped, visually impaired child. Results indicated that water mist alone was effective in reducing the frequency of head hits during meals, but other situations required the addition of primary reinforcers, stimulus control, or both. (Author/JDD)

  7. No effect of different estrogen receptor ligands on cognition in adult female monkeys.

    PubMed

    Lacreuse, Agnès; Wilson, Mark E; Herndon, James G

    2009-03-01

    Many studies in women and animal models suggest that estrogens affect cognitive function. Yet, the mechanisms by which estrogens may impact cognition remain unclear. The goal of the present study was to assess the effects of different estrogen receptor (ER) ligands on cognitive function in adult ovariectomized female rhesus monkeys. The monkeys were tested for 6 weeks on a battery of memory and attentional tasks administered on a touchscreen: the object, face, and spatial versions of the Delayed Recognition Span Test (DRST) and a Visual Search task. Following a 2-week baseline period with oil vehicle treatment, monkeys were randomly assigned to one of 3 treatment groups: estradiol benzoate (EB), selective ERbeta agonist (diarylpropionitrile DPN) or selective ER modulator tamoxifen (TAM). In each treatment group, monkeys received oil vehicle for 2 weeks and the drug for 2 weeks, in a cross-over design. After a 4-week washout, a subset of monkeys was re-tested on the battery when treated with a selective ERalpha agonist (propyl-pyrazole-triol, PPT) or oil vehicle. Overall, drug treatments had no or negligible effects on cognitive performance. These results support the contention that exogenous estrogens and selective estrogen receptor modulators (SERMS) do not significantly affect cognition in young adult female macaques. Additional studies are needed to determine whether the cognitive effects of estrogens in monkeys of more advanced age are mediated by ERbeta, ERalpha or complex interactions between the two receptors. PMID:19101578

  8. Performance Monitoring in Monkey Frontal Eye Field

    PubMed Central

    Yu, Dian; Ferrera, Vincent P.

    2014-01-01

    The frontal eye fields (FEF) are thought to mediate response selection during oculomotor decision tasks. In addition, many FEF neurons have robust postsaccadic responses, but their role in postchoice evaluative processes (online performance monitoring) is only beginning to become apparent. Here we report error-related neural activity in FEF while monkeys performed a biased speed-categorization task that enticed the animals to make impulsive errors. Twenty-three percent of cells in macaque FEF coded an internally generated error-related signal, and many of the same cells also coded task difficulty. The observed responses are primarily consistent with three related concepts that have been associated with performance monitoring: (1) response conflict; (2) uncertainty; and (3) reward prediction. Overall, our findings suggest a novel role for the FEF as part of the neural network that evaluates the preceding choice to optimize behavior in the future. PMID:24478349

  9. Food search through the eyes of a monkey: a functional substitution approach for assessing the ecology of primate color vision.

    PubMed

    Melin, A D; Kline, D W; Hickey, C M; Fedigan, L M

    2013-06-28

    Efficient detection and selection of reddish fruits against green foliage has long been thought to be a major selective pressure favoring the evolution of primate trichromatic color vision. This has recently been questioned by studies of free-ranging primates that fail to show predicted differences in foraging efficiency between dichromats and trichromats. In the present study, we use a unique approach to evaluate the adaptive significance of trichromacy for fruit detection by undertaking a functional substitution model. The color vision phenotypes of neotropical monkeys are simulated for human observers, who use a touch-sensitive computer interface to search for monkey food items in digital images taken under natural conditions. We find an advantage to trichromatic phenotypes - especially the variant with the most spectrally separated visual pigments - for red, yellow and greenish fruits, but not for dark (purple or black) fruits. These results indicate that trichromat advantage is task-specific, and that shape, size and achromatic contrast variation between ripe and unripe fruits cannot completely mitigate the advantage of color vision. Similarities in fruit foraging performance between primates with different phenotypes in the wild likely reflect the behavioral flexibility of dichromats in overcoming a chromatic disadvantage. PMID:23643907

  10. Automated testing of cognitive performance in monkeys: use of a battery of computerized test systems by a troop of semi-free-ranging baboons (Papio papio).

    PubMed

    Fagot, Joël; Bonté, Elodie

    2010-05-01

    Fagot and Paleressompoulle (2009) published an automated learning device for monkeys (ALDM) to test the cognitive functions of nonhuman primates within their social groups, but the efficiency of the ALDM procedure with large groups remains unknown. In the present study, 10 ALDM systems were provided ad lib to a troop of 26 semi-free-ranging baboons that were initially naive with computerized testing. The test program taught baboons to solve two-alternative forced choice (2AFC) and matching-to-sample (MTS) tasks. A million trials were recorded for the group during a period of 85 days (Experiment 1). Their analysis shows that 75% of the baboons participated at high frequencies and quickly learned the 2AFC and MTS tasks. In Experiment 2, we compared the baboons' behavior when the ADLM systems were either accessible or closed. ALDM reduced frequencies of object-directed behaviors, but had no overt consequence on social conflicts. In Experiment 3, we tested the process of the global or local attributes of visual stimuli in MTS-trained baboons in order to illustrate the efficiency of ALDM for behavioral studies requiring complex experimental designs. Altogether, the results of the present study validate the use of ALDM to efficiently test monkeys in large social groups. ALDM has a strong potential for a variety of scientific disciplines, including for biomedical research. Supplemental materials for this article may be downloaded from http://brm.psychonomic-journals.org/content/supplemental. PMID:20479182

  11. Investigation of anti-motion sickness drugs in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Cheung, B. S.; Money, K. E.; Kohl, R. L.; Kinter, L. B.

    1992-01-01

    Early attempts to develop an animal model for anti-motion sickness drugs, using dogs and cats; were unsuccessful. Dogs did not show a beneficial effect of scopolamine (probably the best single anti-motion sickness drug for humans thus far) and the findings in cats were not definitive. The authors have developed an animal model using the squirrel monkey (Saimiri sciureus) of the Bolivian phenotype. Unrestrained monkeys in a small lucite cage were tested in an apparatus that induces motion sickness by combining vertical oscillation and horizontal rotation in a visually unrestricted laboratory environment. Signs of motion sickness were scored using a rating scale. Ten susceptible monkeys (weighing 800-1000 g) were given a total of five tests each, to establish the baseline susceptibility level. Based on the anticholinergic activity of scopolamine, the sensitivity of squirrel monkey to scopolamine was investigated, and the appropriate dose of scopolamine for this species was determined. Then various anti-motion sickness preparations were administered in subsequent tests: 100 ug scopolamine per monkey; 140 ug dexedrine; 50 ug scopolamine plus 70 ug dexedrine; 100 ug scopolamine plus 140 ug dexedrine; 3 mg promethazine; 3 mg promethazine plus 3 mg ephedrine. All these preparations were significantly effective in preventing motion sickness in the monkeys. Ephedrine, by itself, which is marginally effective in humans, was ineffective in the monkeys at the doses tried (0.3-6.0 mg). The squirrel monkey appears to be a good animal model for antimotion sickness drugs. Peripherally acting antihistamines such as astemizole and terfenadine were found to be ineffective, whereas flunarizine, and an arginine vasopressin V1 antagonist, showed significant activity in preventing motion sickness.

  12. Free-Ranging Rhesus Monkeys Spontaneously Individuate and Enumerate Small Numbers of Non-Solid Portions

    ERIC Educational Resources Information Center

    Wood, Justin N.; Hauser, Marc D.; Glynn, David D.; Barner, David

    2008-01-01

    Fundamental questions in cognitive science concern the origins and nature of the units that compose visual experience. Here, we investigate the capacity to individuate and store information about non-solid portions, asking in particular whether free-ranging rhesus monkeys ("Macaca mulatta") quantify portions of a non-solid substance presented in…

  13. Gaze Behaviors of Preterm and Full-Term Infants in Nonsocial and Social Contexts of Increasing Dynamics: Visual Recognition, Attention Regulation, and Gaze Synchrony

    ERIC Educational Resources Information Center

    Harel, Hagar; Gordon, Ilanit; Geva, Ronny; Feldman, Ruth

    2011-01-01

    Although research has demonstrated poor visual skills in premature infants, few studies assessed infants' gaze behaviors across several domains of functioning in a single study. Thirty premature and 30 full-term 3-month-old infants were tested in three social and nonsocial tasks of increasing complexity and their gaze behavior was micro-coded. In…

  14. Behavioral assessment of emotional and motivational appraisal during visual processing of emotional scenes depending on spatial frequencies.

    PubMed

    Fradcourt, B; Peyrin, C; Baciu, M; Campagne, A

    2013-10-01

    Previous studies performed on visual processing of emotional stimuli have revealed preference for a specific type of visual spatial frequencies (high spatial frequency, HSF; low spatial frequency, LSF) according to task demands. The majority of studies used a face and focused on the appraisal of the emotional state of others. The present behavioral study investigates the relative role of spatial frequencies on processing emotional natural scenes during two explicit cognitive appraisal tasks, one emotional, based on the self-emotional experience and one motivational, based on the tendency to action. Our results suggest that HSF information was the most relevant to rapidly identify the self-emotional experience (unpleasant, pleasant, and neutral) while LSF was required to rapidly identify the tendency to action (avoidance, approach, and no action). The tendency to action based on LSF analysis showed a priority for unpleasant stimuli whereas the identification of emotional experience based on HSF analysis showed a priority for pleasant stimuli. The present study confirms the interest of considering both emotional and motivational characteristics of visual stimuli. PMID:23954668

  15. Snakes elicit earlier, and monkey faces, later, gamma oscillations in macaque pulvinar neurons

    PubMed Central

    Le, Quan Van; Isbell, Lynne A.; Matsumoto, Jumpei; Le, Van Quang; Nishimaru, Hiroshi; Hori, Etsuro; Maior, Rafael S.; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2016-01-01

    Gamma oscillations (30–80 Hz) have been suggested to be involved in feedforward visual information processing, and might play an important role in detecting snakes as predators of primates. In the present study, we analyzed gamma oscillations of pulvinar neurons in the monkeys during a delayed non-matching to sample task, in which monkeys were required to discriminate 4 categories of visual stimuli (snakes, monkey faces, monkey hands and simple geometrical patterns). Gamma oscillations of pulvinar neuronal activity were analyzed in three phases around the stimulus onset (Pre-stimulus: 500 ms before stimulus onset; Early: 0–200 ms after stimulus onset; and Late: 300–500 ms after stimulus onset). The results showed significant increases in mean strength of gamma oscillations in the Early phase for snakes and the Late phase for monkey faces, but no significant differences in ratios and frequencies of gamma oscillations among the 3 phases. The different periods of stronger gamma oscillations provide neurophysiological evidence that is consistent with other studies indicating that primates can detect snakes very rapidly and also cue in to faces for information. Our results are suggestive of different roles of gamma oscillations in the pulvinar: feedforward processing for images of snakes and cortico-pulvinar-cortical integration for images of faces. PMID:26854087

  16. Snakes elicit earlier, and monkey faces, later, gamma oscillations in macaque pulvinar neurons.

    PubMed

    Le, Quan Van; Isbell, Lynne A; Matsumoto, Jumpei; Le, Van Quang; Nishimaru, Hiroshi; Hori, Etsuro; Maior, Rafael S; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2016-01-01

    Gamma oscillations (30-80 Hz) have been suggested to be involved in feedforward visual information processing, and might play an important role in detecting snakes as predators of primates. In the present study, we analyzed gamma oscillations of pulvinar neurons in the monkeys during a delayed non-matching to sample task, in which monkeys were required to discriminate 4 categories of visual stimuli (snakes, monkey faces, monkey hands and simple geometrical patterns). Gamma oscillations of pulvinar neuronal activity were analyzed in three phases around the stimulus onset (Pre-stimulus: 500 ms before stimulus onset; Early: 0-200 ms after stimulus onset; and Late: 300-500 ms after stimulus onset). The results showed significant increases in mean strength of gamma oscillations in the Early phase for snakes and the Late phase for monkey faces, but no significant differences in ratios and frequencies of gamma oscillations among the 3 phases. The different periods of stronger gamma oscillations provide neurophysiological evidence that is consistent with other studies indicating that primates can detect snakes very rapidly and also cue in to faces for information. Our results are suggestive of different roles of gamma oscillations in the pulvinar: feedforward processing for images of snakes and cortico-pulvinar-cortical integration for images of faces. PMID:26854087

  17. The elusive illusion: Do children (Homo sapiens) and capuchin monkeys (Cebus apella) see the Solitaire illusion?

    PubMed

    Parrish, Audrey E; Agrillo, Christian; Perdue, Bonnie M; Beran, Michael J

    2016-02-01

    One approach to gaining a better understanding of how we perceive the world is to assess the errors that human and nonhuman animals make in perceptual processing. Developmental and comparative perspectives can contribute to identifying the mechanisms that underlie systematic perceptual errors often referred to as perceptual illusions. In the visual domain, some illusions appear to remain constant across the lifespan, whereas others change with age. From a comparative perspective, many of the illusions observed in humans appear to be shared with nonhuman primates. Numerosity illusions are a subset of visual illusions and occur when the spatial arrangement of stimuli within a set influences the perception of quantity. Previous research has found one such illusion that readily occurs in human adults, the Solitaire illusion. This illusion appears to be less robust in two monkey species, rhesus macaques and capuchin monkeys. We attempted to clarify the ontogeny of this illusion from a developmental and comparative perspective by testing human children and task-naïve capuchin monkeys in a computerized quantity judgment task. The overall performance of the monkeys suggested that they perceived the numerosity illusion, although there were large differences among individuals. Younger children performed similarly to the monkeys, whereas older children more consistently perceived the illusion. These findings suggest that human-unique perceptual experiences with the world might play an important role in the emergence of the Solitaire illusion in human adults, although other factors also may contribute. PMID:26513327

  18. The Monkey game: A computerized verbal working memory task for self-reliant administration in primary school children.

    PubMed

    Van de Weijer-Bergsma, Eva; Kroesbergen, Evelyn H; Jolani, Shahab; Van Luit, Johannes E H

    2016-06-01

    In two studies, the psychometric properties of an online self-reliant verbal working memory task (the Monkey game) for primary school children (6-12 years of age) were examined. In Study 1, children (n = 5,203) from 31 primary schools participated. The participants completed computerized verbal and visual-spatial working memory tasks (i.e., the Monkey game and the Lion game) and a paper-and-pencil version of Raven's Standard Progressive Matrices. Reading comprehension and math achievement test scores were obtained from the schools. First, the internal consistency of the Monkey game was examined. Second, multilevel modeling was used to examine the effects of classroom membership. Multilevel multivariate regression analysis was used to examine the Monkey game's concurrent relationship with the Lion game and its predictive relationships with reading comprehension and math achievement. Also, age-related differences in performance were examined. In Study 2, the concurrent relationships between the Monkey game and two tester-led computerized working memory tasks were further examined (n = 140). Also, the 1- and 2-year stability of the Monkey game was investigated. The Monkey game showed excellent internal consistency, good concurrent relationships with the other working memory measures, and significant age differences in performance. Performance on the Monkey game was also predictive of subsequent reading comprehension and mathematics performance, even after controlling for individual differences in intelligence. Performance on the Monkey game was influenced by classroom membership. The Monkey game is a reliable and suitable instrument for the online computerized and self-reliant assessment of verbal working memory in primary school children. PMID:26092393

  19. Semantic Enrichment of Movement Behavior with Foursquare--A Visual Analytics Approach.

    PubMed

    Krueger, Robert; Thom, Dennis; Ertl, Thomas

    2015-08-01

    In recent years, many approaches have been developed that efficiently and effectively visualize movement data, e.g., by providing suitable aggregation strategies to reduce visual clutter. Analysts can use them to identify distinct movement patterns, such as trajectories with similar direction, form, length, and speed. However, less effort has been spent on finding the semantics behind movements, i.e. why somebody or something is moving. This can be of great value for different applications, such as product usage and consumer analysis, to better understand urban dynamics, and to improve situational awareness. Unfortunately, semantic information often gets lost when data is recorded. Thus, we suggest to enrich trajectory data with POI information using social media services and show how semantic insights can be gained. Furthermore, we show how to handle semantic uncertainties in time and space, which result from noisy, unprecise, and missing data, by introducing a POI decision model in combination with highly interactive visualizations. Finally, we evaluate our approach with two case studies on a large electric scooter data set and test our model on data with known ground truth. PMID:26357254

  20. [Assessment of usefulness of visual analogue scale (VAS) for measuring adolescent attitude toward unhealthy behaviors].

    PubMed

    Supranowicz, Piotr

    2003-01-01

    In the last two decades the visual analogue scale has been more frequently used for measuring the psychosocial determinants of health, its disorders and unhealthy behaviours. In 1999 in Health Promotion Department of the National Institute of Hygiene multidimensional investigations on self-assessment of health and life style of adolescents were undertaken and evaluation of visual analogue scale usefulness for health promotion research was one of the aims of these investigations. The data were obtained from randomly selected sample of 682 schoolchildren aged 14-15 years attending to public and private schools of Warsaw. The questionnaire contained the questions about frequency of alcohol drinking, cigarette smoking, drug using and manifestation of aggression. Simultaneously, respondents were asked, how much these behaviours are usefully for coping with everyday events. The answers of usefulness of unhealthy behaviours were measured on tenth centimetre line from "not at all" to "completely". The study shows that adolescents who presented unhealthy behaviours more often are more likely to give higher value to these behaviours in coping with their problems. Moreover, adolescents' attitude toward unhealthy behaviours varies according to gender, kind of alcohol, frequency of being drunk, proposals to buy the drugs, carrying the weapon and frequency of injures from violence. The analyses confirm the usefulness of visual analogue scale for study on psychosocial and life style determinants of health. PMID:14682174

  1. Autonomous visual exploration creates developmental change in familiarity and novelty seeking behaviors

    PubMed Central

    Perone, Sammy; Spencer, John P.

    2013-01-01

    What motivates children to radically transform themselves during early development? We addressed this question in the domain of infant visual exploration. Over the first year, infants' exploration shifts from familiarity to novelty seeking. This shift is delayed in preterm relative to term infants and is stable within individuals over the course of the first year. Laboratory tasks have shed light on the nature of this familiarity-to-novelty shift, but it is not clear what motivates the infant to change her exploratory style. We probed this by letting a Dynamic Neural Field (DNF) model of visual exploration develop itself via accumulating experience in a virtual world. We then situated it in a canonical laboratory task. Much like infants, the model exhibited a familiarity-to-novelty shift. When we manipulated the initial conditions of the model, the model's performance was developmentally delayed much like preterm infants. This delay was overcome by enhancing the model's experience during development. We also found that the model's performance was stable at the level of the individual. Our simulations indicate that novelty seeking emerges with no explicit motivational source via the accumulation of visual experience within a complex, dynamical exploratory system. PMID:24065948

  2. Global and local oscillatory entrainment of visual behavior across retinotopic space.

    PubMed

    Sokoliuk, Rodika; VanRullen, Rufin

    2016-01-01

    Ongoing brain oscillations (7-10 Hz) modulate visual perception; in particular, their precise phase can predict target perception. Here, we employ this phase-dependence of perception in a psychophysical experiment to track spatial properties of entrained oscillations of visual perception across the visual field. Is this entrainment local, or a more global phenomenon? If the latter, does oscillatory phase synchronize over space, or vary with increasing distance from the oscillatory source? We presented a disc stimulus in the upper left quadrant, oscillating in luminance at different frequencies (individual alpha frequency (IAF), 5 Hz, and 15 Hz) to entrain an oscillation with specific frequency and spatial origin. Observers fixated centrally, while flash stimuli at perceptual threshold appeared at different positions and times with respect to the oscillating stimulus. IAF and 5 Hz luminance oscillations modulated detection performance at all tested positions, whereas at 15 Hz, the effect was weaker and less consistent. Furthermore, for IAF and 5 Hz entrainment, preferred phases for target detection differed significantly between spatial locations, suggesting "local" entrainment of detection performance next to the oscillatory source, whereas more distant target locations shared a "global" effect with a significantly different phase. This unexpected global component of entrainment is tentatively attributed to widespread connectivity from thalamic nuclei such as the pulvinar. PMID:27126642

  3. Global and local oscillatory entrainment of visual behavior across retinotopic space

    PubMed Central

    Sokoliuk, Rodika; VanRullen, Rufin

    2016-01-01

    Ongoing brain oscillations (7–10 Hz) modulate visual perception; in particular, their precise phase can predict target perception. Here, we employ this phase-dependence of perception in a psychophysical experiment to track spatial properties of entrained oscillations of visual perception across the visual field. Is this entrainment local, or a more global phenomenon? If the latter, does oscillatory phase synchronize over space, or vary with increasing distance from the oscillatory source? We presented a disc stimulus in the upper left quadrant, oscillating in luminance at different frequencies (individual alpha frequency (IAF), 5 Hz, and 15 Hz) to entrain an oscillation with specific frequency and spatial origin. Observers fixated centrally, while flash stimuli at perceptual threshold appeared at different positions and times with respect to the oscillating stimulus. IAF and 5 Hz luminance oscillations modulated detection performance at all tested positions, whereas at 15 Hz, the effect was weaker and less consistent. Furthermore, for IAF and 5 Hz entrainment, preferred phases for target detection differed significantly between spatial locations, suggesting “local” entrainment of detection performance next to the oscillatory source, whereas more distant target locations shared a “global” effect with a significantly different phase. This unexpected global component of entrainment is tentatively attributed to widespread connectivity from thalamic nuclei such as the pulvinar. PMID:27126642

  4. Modulation of Neuronal Responses by Exogenous Attention in Macaque Primary Visual Cortex.

    PubMed

    Wang, Feng; Chen, Minggui; Yan, Yin; Zhaoping, Li; Li, Wu

    2015-09-30

    Visual perception is influenced by attention deployed voluntarily or triggered involuntarily by salient stimuli. Modulation of visual cortical processing by voluntary or endogenous attention has been extensively studied, but much less is known about how involuntary or exogenous attention affects responses of visual cortical neurons. Using implanted microelectrode arrays, we examined the effects of exogenous attention on neuronal responses in the primary visual cortex (V1) of awake monkeys. A bright annular cue was flashed either around the receptive fields of recorded neurons or in the opposite visual field to capture attention. A subsequent grating stimulus probed the cue-induced effects. In a fixation task, when the cue-to-probe stimulus onset asynchrony (SOA) was <240 ms, the cue induced a transient increase of neuronal responses to the probe at the cued location during 40-100 ms after the onset of neuronal responses to the probe. This facilitation diminished and disappeared after repeated presentations of the same cue but recurred for a new cue of a different color. In another task to detect the probe, relative shortening of monkey's reaction times for the validly cued probe depended on the SOA in a way similar to the cue-induced V1 facilitation, and the behavioral and physiological cueing effects remained after repeated practice. Flashing two cues simultaneously in the two opposite visual fields weakened or diminished both the physiological and behavioral cueing effects. Our findings indicate that exogenous attention significantly modulates V1 responses and that the modulation strength depends on both novelty and task relevance of the stimulus. Significance statement: Visual attention can be involuntarily captured by a sudden appearance of a conspicuous object, allowing rapid reactions to unexpected events of significance. The current study discovered a correlate of this effect in monkey primary visual cortex. An abrupt, salient, flash enhanced neuronal

  5. Behavioral evidence for inter-hemispheric cooperation during a lexical decision task: a divided visual field experiment

    PubMed Central

    Perrone-Bertolotti, Marcela; Lemonnier, Sophie; Baciu, Monica

    2013-01-01

    HIGHLIGHTS The redundant bilateral visual presentation of verbal stimuli decreases asymmetry and increases the cooperation between the two hemispheres.The increased cooperation between the hemispheres is related to semantic information during lexical processing.The inter-hemispheric interaction is represented by both inhibition and cooperation. This study explores inter-hemispheric interaction (IHI) during a lexical decision task by using a behavioral approach, the bilateral presentation of stimuli within a divided visual field experiment. Previous studies have shown that compared to unilateral presentation, the bilateral redundant (BR) presentation decreases the inter-hemispheric asymmetry and facilitates the cooperation between hemispheres. However, it is still poorly understood which type of information facilitates this cooperation. In the present study, verbal stimuli were presented unilaterally (left or right visual hemi-field successively) and bilaterally (left and right visual hemi-field simultaneously). Moreover, during the bilateral presentation of stimuli, we manipulated the relationship between target and distractors in order to specify the type of information which modulates the IHI. Thus, three types of information were manipulated: perceptual, semantic, and decisional, respectively named pre-lexical, lexical and post-lexical processing. Our results revealed left hemisphere (LH) lateralization during the lexical decision task. In terms of inter-hemisphere interaction, the perceptual and decision-making information increased the inter-hemispheric asymmetry, suggesting the inhibition of one hemisphere upon the other. In contrast, semantic information decreased the inter-hemispheric asymmetry, suggesting cooperation between the hemispheres. We discussed our results according to current models of IHI and concluded that cerebral hemispheres interact and communicate according to various excitatory and inhibitory mechanisms, all which depend on specific

  6. Neuronal modulations in visual cortex are associated with only one of multiple components of attention

    PubMed Central

    Luo, Thomas Zhihao; Maunsell, John H. R.

    2015-01-01

    Neuronal signals related to visual attention are found in widespread brain regions, and these signals are generally assumed to participate in a common mechanism of attention. However, the behavioral effects of attention in detection can be separated into two distinct components: spatially selective shifts in either the criterion or sensitivity of the subject. Here we show that a paradigm used by many single-neuron studies of attention conflates behavioral changes in the subject’s criterion and sensitivity. Then, using a task designed to dissociate these two components, we found that multiple aspects of attention-related neuronal modulations in area V4 of monkey visual cortex corresponded to behavioral shifts in sensitivity but not criterion. This result suggests that separate components of attention are associated with signals in different brain regions, and that attention is not a unitary process in the brain but instead consists of distinct neurobiological mechanisms. PMID:26050038

  7. Artificial turf foraging boards as environmental enrichment for pair-housed female squirrel monkeys.

    PubMed

    Fekete, J M; Norcross, J L; Newman, J D

    2000-03-01

    We investigated the use of artificial turf foraging boards to determine if providing captive squirrel monkeys an opportunity for semi-natural foraging behavior would 1) alter the monkeys' time budget to better approximate that seen in wild populations, 2) reduce the stereotypic, self-injurious, and aggressive behavior occasionally seen in captive squirrel monkeys, and 3) provide sustained enrichment. Five groups of pair-housed female squirrel monkeys were videotaped the week prior to, the week following, and for 2 weeks during the enrichment phase, when treat-enhanced boards were provided for 2 h daily. During the first 30 min of daily enrichment, inactivity declined 35.3%, locomotion increased 3.8%, and board-related behaviors occupied 36.3% of the activity budget; these changes were not evident after 1.5 h. Stereotypic behavior (pacing, headswinging, tailchewing) and aggression were not altered by the foraging opportunity. The foraging board retained the interest of the subjects across 2 weeks in the same daily pattern. Use of the foraging board altered the squirrel monkeys' time budget to become more like activity patterns seen in wild populations. PMID:11487235

  8. Dissociation of Active Working Memory and Passive Recognition in Rhesus Monkeys

    ERIC Educational Resources Information Center

    Basile, Benjamin M.; Hampton, Robert R.

    2013-01-01

    Active cognitive control of working memory is central in most human memory models, but behavioral evidence for such control in nonhuman primates is absent and neurophysiological evidence, while suggestive, is indirect. We present behavioral evidence that monkey memory for familiar images is under active cognitive control. Concurrent cognitive…

  9. Intra-community infanticide and forced copulation in spider monkeys: a multi-site comparison between Cocha Cashu, Peru and Punta Laguna, Mexico.

    PubMed

    Gibson, K Nicole; Vick, Laura G; Palma, Ana Cristina; Carrasco, Farah M; Taub, David; Ramos-Fernández, Gabriel

    2008-05-01

    We describe two cases of infanticide, two suspected infanticides, and a forced copulation by familiar resident males in two populations of wild spider monkeys (Ateles belzebuth chamek and A. geoffroyi yucatanensis). These are the first known infanticides and forced copulation in spider monkeys. Data were gathered from four neighboring communities of spider monkeys in Manu National Park at the Cocha Cashu Biological Station, Peru and two communities in the Otoch Ma'ax Yetel Kooh Reserve at Punta Laguna, Mexico, during intensive field studies of over 2,000 hr each. These are rare behaviors, but results suggest that mating history and sexual coercion are important in spider monkey social relationships. PMID:18064591

  10. Phasic Activation of Individual Neurons in the Locus Ceruleus/Subceruleus Complex of Monkeys Reflects Rewarded Decisions to Go But Not Stop

    PubMed Central

    Kalwani, Rishi M.; Joshi, Siddhartha

    2014-01-01

    Neurons in the brainstem nucleus locus ceruleus (LC) often exhibit phasic activation in the context of simple sensory-motor tasks. The functional role of this activation, which leads to the release of norepinephrine throughout the brain, is not yet understood in part because the conditions under which it occurs remain in question. Early studies focused on the relationship of LC phasic activation to salient sensory events, whereas more recent work has emphasized its timing relative to goal-directed behavioral responses, possibly representing the end of a sensory-motor decision process. To better understand the relationship between LC phasic activation and sensory, motor, and decision processing, we recorded spiking activity of neurons in the LC+ (LC and the adjacent, norepinephrine-containing subceruleus nucleus) of monkeys performing a countermanding task. The task required the monkeys to occasionally withhold planned, saccadic eye movements to a visual target. We found that many well isolated LC+ units responded to both the onset of the visual cue instructing the monkey to initiate the saccade and again after saccade onset, even when it was initiated erroneously in the presence of a stop signal. Many of these neurons did not respond to saccades made outside of the task context. In contrast, neither the appearance of the stop signal nor the successful withholding of the saccade elicited an LC+ response. Therefore, LC+ phasic activation encodes sensory and motor events related to decisions to execute, but not withhold, movements, implying a functional role in goal-directed actions, but not necessarily more covert forms of processing. PMID:25297093

  11. Motivational Shifts in Aging Monkeys and the Origins of Social Selectivity.

    PubMed

    Almeling, Laura; Hammerschmidt, Kurt; Sennhenn-Reulen, Holger; Freund, Alexandra M; Fischer, Julia

    2016-07-11

    As humans age, they become more selective regarding their personal goals [1] and social partners [2]. Whereas the selectivity in goals has been attributed to losses in resources (e.g., physical strength) [3], the increasing focus on emotionally meaningful partners is, according to socioemotional selectivity theory, driven by the awareness of one's decreasing future lifetime [2]. Similar to humans, aging monkeys show physical losses [4] and reductions in social activity [2, 5-7]. To disentangle a general resource loss and the awareness of decreasing time, we combined field experiments with behavioral observations in a large age-heterogeneous population of Barbary macaques (Macaca sylvanus) at La Forêt des Singes. Novel object tests revealed a loss of interest in the nonsocial environment in early adulthood, which was modulated by the availability of a food reward. Experiments using vocal and visual representations of social partners indicated that monkeys maintained an interest in social stimuli and a preferential interest in friends and socially important individuals into old age. Old females engaged in fewer social interactions, although other group members continued to invest in relationships with them. Consequently, reductions in sociality were not due to a decrease in social interest. In conclusion, some of the motivational shifts observed in aging humans, particularly the increasing focus on social over nonsocial stimuli, may occur in the absence of a limited time perspective and are most likely deeply rooted in primate evolution. Our findings highlight the value of nonhuman primates as valuable models for understanding human aging [8, 9]. PMID:27345168

  12. Changes in Synaptic Populations in the Spinal Dorsal Horn Following a Dorsal Rhizotomy in the Monkey

    PubMed Central

    Darian-Smith, Corinna; Hopkins, Stephanie; Ralston, Henry J.

    2010-01-01

    Studies in monkeys have shown substantial neuronal reorganization and behavioral recovery during the months following a cervical dorsal root lesion (DRL; Darian-Smith [2004] J. Comp. Neurol. 470:134–150; Darian-Smith and Ciferri [2005] J. Comp. Neurol. 491:27–45, [2006] J. Comp. Neurol. 498:552–565). The goal of the present study was to identify ultrastructural synaptic changes post-DRL within the dorsal horn (DH). Two monkeys received a unilateral DRL, as described previously (Darian-Smith and Brown [2000] Nat. Neurosci. 3:476–481), which removed cutaneous and proprioceptive input from the thumb, index finger, and middle finger. Six weeks before terminating the experiment at 4 post-DRL months, hand representation was mapped electrophysiologically within the somatosensory cortex, and anterograde tracers were injected into reactivated cortex to label corticospinal terminals. Sections were collected through the spinal lesion zone. Corticospinal terminals and inhibitory profiles were visualized by using preembedding immunohistochemistry and postembedding γ-aminobutyric acid (GABA) immunostaining, respectively. Synaptic elements were systematically counted through the superficial DH and included synaptic profiles with round vesicles (R), pleomorphic flattened vesicles (F; presumed inhibitory synapses), similar synapses immunolabeled for GABA (F-GABA), primary afferent synapses (C-type), synapses with dense-cored vesicles (D, mostly primary afferents), and presynaptic dendrites of interneurons (PSD). Synapse types were compared bilaterally via ANOVAs. As expected, we found a significant drop in C-type profiles on the lesioned side (~16% of contralateral), and R profiles did not differ bilaterally. More surprising was a significant increase in the number of F profiles (~170% of contralateral) and F-GABA profiles (~315% of contralateral) on the side of the lesion. Our results demonstrate a striking increase in the inhibitory circuitry within the deafferented DH

  13. A Novel Ex Vivo Method for Visualizing Live-Cell Calcium Response Behavior in Intact Human Tumors

    PubMed Central

    Sosa, Julie A.

    2016-01-01

    The functional impact of intratumoral heterogeneity has been difficult to assess in the absence of a means to interrogate dynamic, live-cell biochemical events in the native tissue context of a human tumor. Conventional histological methods can reveal morphology and static biomarker expression patterns but do not provide a means to probe and evaluate tumor functional behavior and live-cell responsiveness to experimentally controlled stimuli. Here, we describe an approach that couples vibratome-mediated viable tissue sectioning with live-cell confocal microscopy imaging to visualize human parathyroid adenoma tumor cell responsiveness to extracellular calcium challenge. Tumor sections prepared as 300 micron-thick tissue slices retain viability throughout a >24 hour observation period and retain the native architecture of the parental tumor. Live-cell observation of biochemical signaling in response to extracellular calcium challenge in the intact tissue slices reveals discrete, heterogeneous kinetic waveform categories of calcium agonist reactivity within each tumor. Plotting the proportion of maximally responsive tumor cells as a function of calcium concentration yields a sigmoid dose-response curve with a calculated calcium EC50 value significantly elevated above published reference values for wild-type calcium-sensing receptor (CASR) sensitivity. Subsequent fixation and immunofluorescence analysis of the functionally evaluated tissue specimens allows alignment and mapping of the physical characteristics of individual cells within the tumor to specific calcium response behaviors. Evaluation of the relative abundance of intracellular PTH in tissue slices challenged with variable calcium concentrations demonstrates that production of the hormone can be dynamically manipulated ex vivo. The capability of visualizing live human tumor tissue behavior in response to experimentally controlled conditions opens a wide range of possibilities for personalized ex vivo

  14. Patterns of cognitive decline in aged rhesus monkeys.

    PubMed

    Herndon, J G; Moss, M B; Rosene, D L; Killiany, R J

    1997-08-01

    Although cognitive decline has been well established as a consequence of aging in non-human primate models, the prevalence or frequency of impairment for specific age ranges has not been described. The first aim of this study was to estimate prevalence of cognitive impairment on each of the six tests of cognitive performance by comparing the performance of early-aged (19-23 years old), advanced-aged (24-28 years old), and oldest-aged (29+ years old) monkeys to that of young adults (< 15 years old). The second aim was to derive a single overall measure of cognitive performance to help classify behavioral function in our aged monkeys. Accordingly, we obtained performance measures for these age groups on six behavioral measures: (1) acquisition of the delayed non-matching-to-sample task (DNMS); (2) performance of the DNMS with a delay of 120 sec; (3) the spatial condition of the delayed recognition span test (DRST); (4) the color condition of the DRST; (5) spatial reversal learning; and (6) object reversal learning. Early-aged monkeys displayed prevalence rates of impairment significantly greater than zero on all tasks except the DRST-color. The highest prevalence of impairment was observed in this age group in a task measuring spatial memory (DRST). Significant trends toward progressively higher impairment rates in advanced-aged and oldest-aged monkeys were observed for DNMS-acquisition, DRST-color and spatial reversal learning tasks. A linear transformation of standardized scores on the six cognitive tests was derived by means of principal components analysis (PCA). The first PCA (PCA1) included data from 30 monkeys with available data on all six measures, and yielded a composite measure which declined linearly with increasing age (r = -0.74). A second PCA (PCA2) was performed on data from 53 monkeys for which three test scores (DNMS-acquisition, DNMS-120s delay, and DRST-spatial condition) were available. The composite score derived from this analysis was highly

  15. Global-local visual processing impacts risk taking behaviors, but only at first

    PubMed Central

    Lim, Stephen Wee Hun; Yuen, Alexander Y. L.; Tong, Eddie M. W.

    2015-01-01

    We investigated the impact of early visual processing on decision-making during unpredictable, risky situations. Participants undertook Navon’s (1977) task and attended to either global letters or local letters only, following which they completed the Balloon Analogue Risk Task (BART). It was observed that global-focused individuals made more balloon pumps during the BART (i.e., took more risk), whereas local-focused individuals took less risk, albeit only initially. The theory of predictive and reactive control systems (PARCS) provides an excellent account of the data. Implications and future directions are discussed. PMID:26379586

  16. Visualization of xanthan flood behavior in core samples by means of x-ray tomography

    SciTech Connect

    Hove, A.O.; Nilsen, V.; Leknes, J. )

    1990-11-01

    This paper presents examples of xanthan core floods visualized by X-ray tomography. Water and aqueous xanthan solutions are distinguished from each other by addition of sodium iodide (NaI) at different concentrations. One reservoir sandstone and one outcrop (Rosbrae) sandstone core samples were used. The reservoir sample was naturally divided into two longitudinal zones differing in permeability by about 20-fold. The Rosbrae sample was homogeneous, with a permeability of 450 md. Miscible xanthan/water displacement tests were performed on both plugs. Immiscible displacement of light refined oil by xanthan was performed on the homogeneous sample.

  17. Steroid metabolism by monkey and human spermatozoa

    SciTech Connect

    Rajalakshmi, M.; Sehgal, A.; Pruthi, J.S.; Anand-Kumar, T.C.

    1983-05-01

    Freshly ejaculated spermatozoa from monkey and human were washed and incubated with tritium labelled androgens or estradiol to study the pattern of spermatozoa steroid metabolism. When equal concentrations of steroid substrates were used for incubation, monkey and human spermatozoa showed very similar pattern of steroid conversion. Spermatozoa from both species converted testosterone mainly to androstenedione, but reverse conversion of androstenedione to testosterone was negligible. Estradiol-17 beta was converted mainly to estrone. The close similarity between the spermatozoa of monkey and men in their steroid metabolic pattern indicates that the rhesus monkey could be an useful animal model to study the effect of drugs on the metabolic pattern of human spermatozoa.

  18. Unconstrained three-dimensional reaching in Rhesus monkeys

    PubMed Central

    Courtine, Gregoire; Liu, James J.; McKay, Heather L.; Moseanko, Rod; Bernot, Timothy J.; Roy, Roland R.; Zhong, Hui; Tuszynski, Mark H.; Reggie Edgerton, V.

    2010-01-01

    To better understand normative behavior for quantitative evaluation of motor recovery after injury, we studied arm movements by non-injured Rhesus monkeys during a food-retrieval task. While seated, monkeys reached, grasped, and retrieved food items. We recorded three-dimensional kinematics and muscle activity, and used inverse dynamics to calculate joint moments due to gravity, segmental interactions, and to the muscles and tissues of the arm. Endpoint paths showed curvature in three dimensions, suggesting that maintaining straight paths was not an important constraint. Joint moments were dominated by gravity. Generalized muscle and interaction moments were less than half of the gravitational moments. The relationships between shoulder and elbow resultant moments were linear during both reach and retrieval. Although both reach and retrieval required elbow flexor moments, an elbow extensor (triceps brachii) was active during both phases. Antagonistic muscles of both the elbow and hand were co-activated during reach and retrieval. Joint behavior could be described by lumped-parameter models analogous to torsional springs at the joints. Minor alterations to joint quasi-stiffness properties, aided by interaction moments, result in reciprocal movements that evolve under the influence of gravity. The strategies identified in monkeys to reach, grasp, and retrieve items will allow the quantification of prehension during recovery after a spinal cord injury and the effectiveness of therapeutic interventions. PMID:21170707

  19. The rhesus monkey (Macaca mulatta) as a flight candidate

    NASA Technical Reports Server (NTRS)

    Debourne, M. N. G.; Bourne, G. H.; Mcclure, H. M.

    1977-01-01

    The intelligence and ruggedness of rhesus monkeys, as well as the abundance of normative data on their anatomy, physiology, and biochemistry, and the availability of captive bred animals qualify them for selection as candidates for orbital flight and weightlessness studies. Baseline data discussed include: physical characteristics, auditory thresholds, visual accuity, blood, serological taxomony, immunogenetics, cytogenics, circadian rhythms, respiration, cardiovascular values, corticosteroid response to charr restraint, microscopy of tissues, pathology, nutrition, and learning skills. Results from various tests used to establish the baseline data are presented in tables.

  20. Diffusion dynamics of socially learned foraging techniques in squirrel monkeys.

    PubMed

    Claidière, Nicolas; Messer, Emily J E; Hoppitt, William; Whiten, Andrew

    2013-07-01

    Social network analyses and experimental studies of social learning have each become important domains of animal behavior research in recent years yet have remained largely separate. Here we bring them together, providing the first demonstration of how social networks may shape the diffusion of socially learned foraging techniques. One technique for opening an artificial fruit was seeded in the dominant male of a group of squirrel monkeys and an alternative technique in the dominant male of a second group. We show that the two techniques spread preferentially in the groups in which they were initially seeded and that this process was influenced by monkeys' association patterns. Eigenvector centrality predicted both the speed with which an individual would first succeed in opening the artificial fruit and the probability that they would acquire the cultural variant seeded in their group. These findings demonstrate a positive role of social networks in determining how a new foraging technique diffuses through a population. PMID:23810529

  1. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments

    PubMed Central

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106

  2. Traditions in Spider Monkeys Are Biased towards the Social Domain

    PubMed Central

    Santorelli, Claire J.; Schaffner, Colleen M.; Campbell, Christina J.; Notman, Hugh; Pavelka, Mary S.; Weghorst, Jennifer A.; Aureli, Filippo

    2011-01-01

    Cross-site comparison studies of behavioral variation can provide evidence for traditions in wild species once ecological and genetic factors are excluded as causes for cross-site differences. These studies ensure behavior variants are considered within the context of a species' ecology and evolutionary adaptations. We examined wide-scale geographic variation in the behavior of spider monkeys (Ateles geoffroyi) across five long-term field sites in Central America using a well established ethnographic cross-site survey method. Spider monkeys possess a relatively rare social system with a high degree of fission-fusion dynamics, also typical of chimpanzees (Pan troglodytes) and humans (Homo sapiens). From the initial 62 behaviors surveyed 65% failed to meet the necessary criteria for traditions. The remaining 22 behaviors showed cross-site variation in occurrence ranging from absent through to customary, representing to our knowledge, the first documented cases of traditions in this taxon and only the second case of multiple traditions in a New World monkey species. Of the 22 behavioral variants recorded across all sites, on average 57% occurred in the social domain, 19% in food-related domains and 24% in other domains. This social bias contrasts with the food-related bias reported in great ape cross-site comparison studies and has implications for the evolution of human culture. No pattern of geographical radiation was found in relation to distance across sites. Our findings promote A. geoffroyi as a model species to investigate traditions with field and captive based experiments and emphasize the importance of the social domain for the study of animal traditions. PMID:21373196

  3. Increasing N200 Potentials Via Visual Stimulus Depicting Humanoid Robot Behavior.

    PubMed

    Li, Mengfan; Li, Wei; Zhou, Huihui

    2016-02-01

    Achieving recognizable visual event-related potentials plays an important role in improving the success rate in telepresence control of a humanoid robot via N200 or P300 potentials. The aim of this research is to intensively investigate ways to induce N200 potentials with obvious features by flashing robot images (images with meaningful information) and by flashing pictures containing only solid color squares (pictures with incomprehensible information). Comparative studies have shown that robot images evoke N200 potentials with recognizable negative peaks at approximately 260 ms in the frontal and central areas. The negative peak amplitudes increase, on average, from 1.2 μV, induced by flashing the squares, to 6.7 μV, induced by flashing the robot images. The data analyses support that the N200 potentials induced by the robot image stimuli exhibit recognizable features. Compared with the square stimuli, the robot image stimuli increase the average accuracy rate by 9.92%, from 83.33% to 93.25%, and the average information transfer rate by 24.56 bits/min, from 72.18 bits/min to 96.74 bits/min, in a single repetition. This finding implies that the robot images might provide the subjects with more information to understand the visual stimuli meanings and help them more effectively concentrate on their mental activities. PMID:26621216

  4. White Matter Neurons in Young Adult and Aged Rhesus Monkey

    PubMed Central

    Mortazavi, Farzad; Wang, Xiyue; Rosene, Douglas L.; Rockland, Kathleen S.

    2016-01-01

    In humans and non-human primates (NHP), white matter neurons (WMNs) persist beyond early development. Their functional importance is largely unknown, but they have both corticothalamic and corticocortical connectivity and at least one subpopulation has been implicated in vascular regulation and sleep. Several other studies have reported that the density of WMNs in humans is altered in neuropathological or psychiatric conditions. The present investigation evaluates and compares the density of superficial and deep WMNs in frontal (FR), temporal (TE), and parietal (Par) association regions of four young adult and four aged male rhesus monkeys. A major aim was to determine whether there was age-related neuronal loss, as might be expected given the substantial age-related changes known to occur in the surrounding white matter environment. Neurons were visualized by immunocytochemistry for Neu-N in coronal tissue sections (30 μm thickness), and neuronal density was assessed by systematic random sampling. Per 0.16 mm2 sampling box, this yielded about 40 neurons in the superficial WM and 10 in the deep WM. Consistent with multiple studies of cell density in the cortical gray matter of normal brains, neither the superficial nor deep WM populations showed statistically significant age-related neuronal loss, although we observed a moderate decrease with age for the deep WMNs in the frontal region. Morphometric analyses, in contrast, showed significant age effects in soma size and circularity. In specific, superficial WMNs were larger in FR and Par WM regions of the young monkeys; but in the TE, these were larger in the older monkeys. An age effect was also observed for soma circularity: superficial WMNs were more circular in FR and Par of the older monkeys. This second, morphometric result raises the question of whether other age-related morphological, connectivity, or molecular changes occur in the WMNs. These could have multiple impacts, given the wide range of putative

  5. Effects of postnatal exposure to a PCB mixture in monkeys on nonspatial discrimination reversal and delayed alternation performance.

    PubMed

    Rice, D C; Hayward, S

    1997-01-01

    Behavioral impairment as a consequence of PCB exposure beginning in utero has been reported in both humans and animals. The present study assessed the behavioral consequences of postnatal exposure to PCBs. Male monkeys (Macaca fascicularis) were dosed from birth to 20 weeks of age with 7.5 micrograms/kg/day of a PCB mixture representative of the PCBs typically found in human breast milk (8 monkeys) or vehicle (5 monkeys). At 20 weeks of age, PCB levels in fat and blood of treated monkeys were 1.7-3.6 ppm and 2-3 ppb respectively. Beginning at three years of age, monkeys were tested on a series of nonspatial discrimination reversal problems followed by a spatial delayed alternation task. Treated monkeys exhibited decreased median response latencies and variable increases in mean response latencies across the three tasks of the nonspatial discrimination reversal. There were no group differences on accuracy of performance, although some treated individuals made more mistakes at the beginning of the experiment than did control monkeys. On the delayed alteration task, the PCB-exposed group displayed retarded acquisition of the task and increased errors at short delay values, which were tested at the beginning of the experiment. There was no increase in the total number of errors in treated monkeys at long delay values. Treated monkeys engaged in more perseverative responding than controls over the entire course of the experiment, in some instances even in the absence of an increase in overall error rate. These findings are interpreted as a learning/performance decrement rather than an effect on spatial memory per se. The results of this study suggest that PCB exposure which is limited to the early postnatal period and results in environmentally-relevant body burdens produces long-term behavioral impairment. PMID:9291496

  6. Cerebral correlates of depressed behavior in rats, visualized using /sup 14/C-2-deoxyglucose autoradiography

    SciTech Connect

    Caldecott-Hazard, S.; Mazziotta, J.; Phelps, M.

    1988-06-01

    /sup 14/C-2-Deoxyglucose (2DG) was used to investigate changes in the rate of cerebral metabolism in 3 rat models of depressed behavior. The models had already been established in the literature and were induced by injections of alpha-methyl-para-tyrosine, withdrawal from chronic amphetamine, or stress. We verified that exploratory behaviors were depressed in each model and that an antidepressant drug, tranylcypromine, prevented the depressed behavior in each model. 2DG studies revealed that the rate of regional glucose metabolism was elevated bilaterally in the lateral habenula of each of the 3 models. Regional metabolic rates were reduced in each model in the dorsal medial prefrontal cortex, anterior ventral nucleus of the thalamus, and inferior colliculus. Forebrain global metabolic rates were also reduced in each of the models. Tranylcypromine prevented the elevated rate of lateral habenula metabolism seen in each of the models alone but did not significantly affect the rates of global metabolism. Our findings of identical metabolic changes in each of the models indicate that these changes are not idiosyncratic to a particular model; rather, they correlate with a generalizable state of depressed exploratory behavior in rats.

  7. Visual Sexual Stimuli—Cue or Reward? A Perspective for Interpreting Brain Imaging Findings on Human Sexual Behaviors

    PubMed Central

    Gola, Mateusz; Wordecha, Małgorzata; Marchewka, Artur; Sescousse, Guillaume

    2016-01-01

    There is an increasing number of neuroimaging studies using visual sexual stimuli (VSS), especially within the emerging field of research on compulsive sexual behaviors (CSB). A central question in this field is whether behaviors such as excessive pornography consumption share common brain mechanisms with widely studied substance and behavioral addictions. Depending on how VSS are conceptualized, different predictions can be formulated within the frameworks of Reinforcement Learning or Incentive Salience Theory, where a crucial distinction is made between conditioned and unconditioned stimuli (related to reward anticipation vs. reward consumption, respectively). Surveying 40 recent human neuroimaging studies we show existing ambiguity about the conceptualization of VSS. Therefore, we feel that it is important to address the question of whether VSS should be considered as conditioned stimuli (cue) or unconditioned stimuli (reward). Here we present our own perspective, which is that in most laboratory settings VSS play a role of reward, as evidenced by: (1) experience of pleasure while watching VSS, possibly accompanied by genital reaction; (2) reward-related brain activity correlated with these pleasurable feelings in response to VSS; (3) a willingness to exert effort to view VSS similarly as for other rewarding stimuli such as money; and (4) conditioning for cues predictive of VSS. We hope that this perspective article will initiate a scientific discussion on this important and overlooked topic and increase attention for appropriate interpretations of results of human neuroimaging studies using VSS. PMID:27574507

  8. Visual Sexual Stimuli-Cue or Reward? A Perspective for Interpreting Brain Imaging Findings on Human Sexual Behaviors.

    PubMed

    Gola, Mateusz; Wordecha, Małgorzata; Marchewka, Artur; Sescousse, Guillaume

    2016-01-01

    There is an increasing number of neuroimaging studies using visual sexual stimuli (VSS), especially within the emerging field of research on compulsive sexual behaviors (CSB). A central question in this field is whether behaviors such as excessive pornography consumption share common brain mechanisms with widely studied substance and behavioral addictions. Depending on how VSS are conceptualized, different predictions can be formulated within the frameworks of Reinforcement Learning or Incentive Salience Theory, where a crucial distinction is made between conditioned and unconditioned stimuli (related to reward anticipation vs. reward consumption, respectively). Surveying 40 recent human neuroimaging studies we show existing ambiguity about the conceptualization of VSS. Therefore, we feel that it is important to address the question of whether VSS should be considered as conditioned stimuli (cue) or unconditioned stimuli (reward). Here we present our own perspective, which is that in most laboratory settings VSS play a role of reward, as evidenced by: (1) experience of pleasure while watching VSS, possibly accompanied by genital reaction; (2) reward-related brain activity correlated with these pleasurable feelings in response to VSS; (3) a willingness to exert effort to view VSS similarly as for other rewarding stimuli such as money; and (4) conditioning for cues predictive of VSS. We hope that this perspective article will initiate a scientific discussion on this important and overlooked topic and increase attention for appropriate interpretations of results of human neuroimaging studies using VSS. PMID:27574507

  9. Severe dopaminergic neuron loss in rhesus monkey brain impairs morphine-induced conditioned place preference

    PubMed Central

    Yan, Ting; Rizak, Joshua Dominic; Wang, Jianhong; Yang, Shangchuan; Ma, Yuanye; Hu, Xintian

    2015-01-01

    It is well known that dopamine (DA) is critical for reward, but the precise role of DA in reward remains uncertain. The aim of this study was to determine what percentage of dopaminergic neurons in the primate brain is required for the expression of conditioned reward by measuring the performance of DA-deficient rhesus monkeys in a morphine-induced conditioned place preference (CPP) paradigm. Animals with mild Parkinsonian symptoms successfully developed and retained a morphine preference that was equivalent to control monkeys. However, these monkeys could not maintain the preference as well as controls when they retained severe Parkinsonian symptoms. On the other hand, monkeys initially in a severe Parkinsonian state developed a preference for morphine, but this preference was weaker than that of the controls. Histological results showed that the loss of dopaminergic neurons in monkeys that had severe Parkinsonian symptoms was about 80% in comparison to the control monkeys. All these data suggest that a severely impaired DA system alters rewarding-seeking behavior in non-human primates. PMID:26528155

  10. Responses of squirrel monkeys to seasonal changes in food availability in an eastern Amazonian forest.

    PubMed

    Stone, Anita I

    2007-02-01

    Tropical forests are characterized by marked temporal and spatial variation in productivity, and many primates face foraging problems associated with seasonal shifts in fruit availability. In this study, I examined seasonal changes in diet and foraging behaviors of two groups of squirrel monkeys (Saimiri sciureus), studied for 12 months in Eastern Brazilian Amazonia, an area characterized by seasonal rainfall. Squirrel monkeys were primarily insectivorous (79% of feeding and foraging time), with fruit consumption highest during the rainy season. Although monkeys fed from 68 plant species, fruit of Attalea maripa palms accounted for 28% of annual fruit-feeding records. Dietary shifts in the dry season were correlated with a decline in ripe A. maripa fruits. Despite pronounced seasonal variation in rainfall and fruit abundance, foraging efficiency, travel time, and distance traveled remained stable between seasons. Instead, squirrel monkeys at this Eastern Amazonian site primarily dealt with the seasonal decline in fruit by showing dietary flexibility. Consumption of insects, flowers, and exudates increased during the dry season. In particular, their foraging behavior at this time strongly resembled that of tamarins (Saguinus sp.) and consisted of heavy use of seed-pod exudates and specialized foraging on large-bodied orthopterans near the forest floor. Comparisons with squirrel monkeys at other locations indicate that, across their geographic range, Saimiri use a variety of behavioral tactics during reduced periods of fruit availability. PMID:17154390

  11. Freezing Behavior as a Response to Sexual Visual Stimuli as Demonstrated by Posturography

    PubMed Central

    Mouras, Harold; Lelard, Thierry; Ahmaidi, Said; Godefroy, Olivier; Krystkowiak, Pierre

    2015-01-01

    Posturographic changes in motivational conditions remain largely unexplored in the context of embodied cognition. Over the last decade, sexual motivation has been used as a good canonical working model to study motivated social interactions. The objective of this study was to explore posturographic variations in response to visual sexual videos as compared to neutral videos. Our results support demonstration of a freezing-type response in response to sexually explicit stimuli compared to other conditions, as demonstrated by significantly decreased standard deviations for (i) the center of pressure displacement along the mediolateral and anteroposterior axes and (ii) center of pressure’s displacement surface. These results support the complexity of the motor correlates of sexual motivation considered to be a canonical functional context to study the motor correlates of motivated social interactions. PMID:25992571

  12. Visual scanning behavior is related to recognition performance for own- and other-age faces

    PubMed Central

    Proietti, Valentina; Macchi Cassia, Viola; dell’Amore, Francesca; Conte, Stefania; Bricolo, Emanuela

    2015-01-01

    It is well-established that our recognition ability is enhanced for faces belonging to familiar categories, such as own-race faces and own-age faces. Recent evidence suggests that, for race, the recognition bias is also accompanied by different visual scanning strategies for own- compared to other-race faces. Here, we tested the hypothesis that these differences in visual scanning patterns extend also to the comparison between own and other-age faces and contribute to the own-age recognition advantage. Participants (young adults with limited experience with infants) were tested in an old/new recognition memory task where they encoded and subsequently recognized a series of adult and infant faces while their eye movements were recorded. Consistent with findings on the other-race bias, we found evidence of an own-age bias in recognition which was accompanied by differential scanning patterns, and consequently differential encoding strategies, for own-compared to other-age faces. Gaze patterns for own-age faces involved a more dynamic sampling of the internal features and longer viewing time on the eye region compared to the other regions of the face. This latter strategy was extensively employed during learning (vs. recognition) and was positively correlated to discriminability. These results suggest that deeply encoding the eye region is functional for recognition and that the own-age bias is evident not only in differential recognition performance, but also in the employment of different sampling strategies found to be effective for accurate recognition. PMID:26579056

  13. Three-Dimensional Visualization of the Crack-Growth Behavior of Nano-Silver Joints During Shear Creep

    NASA Astrophysics Data System (ADS)

    Tan, Yansong; Li, Xin; Chen, Gang; Mei, Yunhui; Chen, Xu

    2015-02-01

    Evolution of creep damage in nano-silver sintered lap shear joints was investigated at 325°C. Non-destructive x-ray three-dimensional (3D) visualization clearly revealed the crack-growth behavior of the joint; this could be divided into three stages. In the initial stage, little development of cracks occurred. In the second stage, cracks propagated at a consistent rate. In the final stage, rapid extension of the cracks led directly to fracture of the joint. Three-dimensional volume-rendered images and fractographic analysis showed that the growth of macroscopic initial cracks at the interfaces dominated the creep fracture process. Initial failure of nano-silver sintered lap shear joints often occurred at interfacial nano-silver paste layers. Both the size and position of the initial interfacial cracks had significant effects on the final creep failure of the joints, and higher stresses led to greater porosity and earlier failure.

  14. Visualization of local phase transition behaviors in ultrathin VO2/TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Sohn, Ahrum; Kanki, Terou; Tanaka, Hidekazu; Kim, Dong-Wook

    VO2 undergoes the first order phase transition and two electronic phases can coexist near the critical temperature. We investigated evolution of the surface work function maps of epitaxial VO2/TiO2 thin films (thickness: 15, 30, and 45 nm) using Kelvin probe force microscopy (KPFM) measurements in the temperature range of 285-330 K. Fully strained thin films were almost free of grain boundaries and thicker films had dislocations caused by strain relaxation. The sample's work function decreases, while spanning the metal-insulator transition (MIT). The work function maps clearly revealed coexistence of the two distinct phase domains. The surface area fraction of the insulating phase near the dislocations was higher than that in other regions. Thicker films have complicated domain patterns; hence, the three-dimensional percolation model properly described the MIT behaviors. In contrast, the two-dimensional percolation model well explained the transition behaviors of uniformly strained thinner films.

  15. Interactions of visual hallucinations, rapid eye movement sleep behavior disorder and cognitive impairment in Parkinson's disease: A review.

    PubMed

    Lenka, Abhishek; Hegde, Shantala; Jhunjhunwala, Ketan Ramakant; Pal, Pramod Kumar

    2016-01-01

    Patients with Parkinson's disease may develop various non-motor symptoms during the course of the illness. Visual hallucinations (VH) and cognitive impairment (CI) are two common non-motor symptoms of Parkinson's disease. Studies have reported association of both VH and CI with presence of rapid eye movement sleep behavior disorder (RBD). Presence of visual hallucinations and cognitive impairment has been described as risk factors for emergence of each other. There is marked overlap in the risk factors for development of RBD, VH and CI in patients with PD. Results of clinical and epidemiological studies as well as studies based on neuroimaging, electrophysiology especially transcranial magnetic stimulation and neuropsycholgical evaluations in PD patients have suggested presence of certain common neurobiological process leading to emergence of RBD, VH and CI. Structural neuroimaging studies using voxel-based morphometry have often reported grey matter atrophy of hippocampus and parahippocampal cortices in PD patients with RBD, VH and CI. Cholinergic dysfunction is common in PD patients with RBD, VH and CI. This review explores the complex interactions of RBD, VH and CI in patients with PD and their potential implications. PMID:26639978

  16. Establishment of a captive all-male group of proboscis monkey (Nasalis larvatus) at the Singapore Zoo.

    PubMed

    Sha, John Chih Mun; Alagappasamy, Sam; Chandran, Subash; Cho, Khin Maung; Guha, Biswajit

    2013-01-01

    Surplus male proboscis monkeys at the Singapore Zoo pose a considerable problem for maintenance and maximizing of exhibition potential. In 2008, a new exhibit was constructed to house and display a group of six proboscis monkey males born in Singapore Zoo. To document and monitor the all-male group establishment in the new exhibit, we conducted observations on intragroup interactions between the monkeys, spatial use of their new exhibit, and visitor effects on their behavior. We found contact aggressive interactions between the monkeys to be consistently lower than noncontact aggressive interactions and by week six of introduction to the new exhibit, contact aggression was almost nonevident. Affiliative interactions also developed between individuals in the group, with an interface of aggressive and socioreconcilatory behavior influenced by food competition and a dominance hierarchy. This was evident from significantly higher overall aggression and affiliation during feeding times compared to nonfeeding times, and this was reduced when food competition was mitigated by modifying the feeding regime. We measured the groups' spatial use of the exhibit and the relation to behavior, crowd size, and density. Our results showed that the proboscis monkeys utilized the available exhibit space, were largely unaffected by visitor crowd size and density, and were able to exhibit a variety of natural behaviors, including swimming. Our accomplishment in maintaining and displaying an all-male group of proboscis monkeys in captivity provides viable options for more comprehensive captive management and breeding programs for this endangered species. PMID:22549979

  17. Distribution of Cones in Human and Monkey Retina: Individual Variability and Radial Asymmetry

    NASA Astrophysics Data System (ADS)

    Curcio, Christine A.; Sloan, Kenneth R.; Packer, Orin; Hendrickson, Anita E.; Kalina, Robert E.

    1987-05-01

    The distribution of photoreceptors is known for only one complete human retina and for the cardinal meridians only in the macaque monkey retina. Cones can be mapped in computer-reconstructed whole mounts of human and monkey retina. A 2.9-fold range in maximum cone density in the foveas of young adult human eyes may contribute to individual differences in acuity. Cone distribution is radially asymmetrical about the fovea in both species, as previously described for the distribution of retinal ganglion cells and for lines of visual isosensitivity. Cone density was greater in the nasal than in the temporal peripheral retina, and this nasotemporal asymmetry was more pronounced in monkey than in human retina.

  18. Polymorphic New World monkeys with more than three M/L cone types

    NASA Astrophysics Data System (ADS)

    Jacobs, Gerald H.; Deegan, Jess F.

    2005-10-01

    Most New World (platyrrhine) monkeys have M/L cone photopigment polymorphisms that map directly into individual variations in visual sensitivity and color vision. We used electroretinogram flicker photometry to examine M/L cone photopigments in the New World monkey Callicebus moloch (the dusky Titi). Like other New World monkeys, this species has an M/L cone photopigment polymorphism that reflects the presence of X-chromosome opsin gene alleles. However, unlike other platyrrhines in which three M/L photopigments are typical, Callicebus has a total of five M/L cone photopigments. The peak sensitivity values for these pigments extend across the range from 530 to 562 nm. The result is an enhanced array of potential color vision phenotypes in this species.

  19. [Disorders of cognitive processes in simulation of Alzheimer's disease in monkeys].

    PubMed

    Dudkin, K N; Chueva, I V; Makarov, F N; Bich, T G; Roer, A E

    2003-09-01

    Two groups of monkeys were learned to differentiate stimuli with different types of information and to make a spatial choice. Characteristics of the operative memory were revealed in the delayed differentiation tasks prior to and after administration of p75-saporin (I group) and saline (II group). For the first time the Alzheimer disease in monkeys was shown to entail a deficit of operative memory due to disorders in the sensory and cognitive components of the memory. The degree of reduction of the correct decision making was shown to depend on the delay duration and the type of visual information. Following the saline administration, no significant changes occurred in the monkeys (II group). The data obtained suggest that structural-functional organisation of the cholinergic and noradrenergic mechanisms predetermining the sensory processing, differs from those involved in decision-making. PMID:14758627

  20. Test monkeys anesthetized by routine procedure

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Test monkeys are safely anesthetized for five minutes by confining them for less than six minutes in enclosures containing a controlled volume of ether. Thus the monkeys can be properly and safely positioned on test couches and fitted with electrodes or other devices prior to physiological tests.

  1. On Loss Aversion in Capuchin Monkeys

    ERIC Educational Resources Information Center

    Silberberg, Alan; Roma, Peter G.; Huntsberry, Mary E.; Warren-Boulton, Frederick R.; Sakagami, Takayuki; Ruggiero, Angela M.; Suomi, Stephen J.

    2008-01-01

    Chen, Lakshminarayanan, and Santos (2006) claim to show in three choice experiments that monkeys react rationally to price and wealth shocks, but, when faced with gambles, display hallmark, human-like biases that include loss aversion. We present three experiments with monkeys and humans consistent with a reinterpretation of their data that…

  2. Chimpanzee counting and rhesus monkey ordinality judgments

    NASA Technical Reports Server (NTRS)

    Rumbaugh, Duane M.; Washburn, David A.; Hopkins, William D.; Savage-Rumbaugh, E. S.

    1991-01-01

    An investigation is conducted to address the questions of whether chimpanzees can count and whether rhesus monkeys can differentiate written numbers. One investigation demonstrates the capacity of a chimpanzee to produce a quantity of responses appropriate to a given Arabic numeral. Rhesus monkeys are shown to have the capability for making fine differentiations between quantities of pellets and Arabic numerals.

  3. Prototype Abstraction by Monkeys ("Macaca Mulatta")

    ERIC Educational Resources Information Center

    Smith, J. David; Redford, Joshua S.; Haas, Sarah M.

    2008-01-01

    The authors analyze the shape categorization of rhesus monkeys ("Macaca mulatta") and the role of prototype- and exemplar-based comparison processes in monkeys' category learning. Prototype and exemplar theories make contrasting predictions regarding performance on the Posner-Homa dot-distortion categorization task. Prototype theory--which…

  4. sup 31 P saturation transfer and phosphocreatine imaging in the monkey brain

    SciTech Connect

    Mora, B.; Narasimhan, P.T.; Ross, B.D. California Inst. of Tech., Pasadena ); Allman, J. ); Barker, P.B. )

    1991-10-01

    {sup 31}P magnetic resonance imaging with chemical-shift discrimination by selective excitation has been employed to determine the phosphocreatine (PCr) distribution in the brains of three juvenile macaque monkeys. PCr images were also obtained while saturating the resonance of the {gamma}-phosphate of ATP, which allowed the investigation of the chemical exchange between PCr and the {gamma}-phosphate of ATP catalyzed by creatine kinase. Superposition of the PCr images over the proton image of the same monkey brain revealed topological variations in the distribution of PCr and creatine kinase activity. PCr images were also obtained with and without visual stimulation. In two out of four experiments, an apparently localized decrease in PCr concentration was noted in visual cortex upon visual stimulation. This result is interpreted in terms of a possible role for the local ADP concentration in stimulating the accompanying metabolic response.

  5. Visualizing and Quantifying Intracellular Behavior and Abundance of the Core Circadian Clock Protein PERIOD2.

    PubMed

    Smyllie, Nicola J; Pilorz, Violetta; Boyd, James; Meng, Qing-Jun; Saer, Ben; Chesham, Johanna E; Maywood, Elizabeth S; Krogager, Toke P; Spiller, David G; Boot-Handford, Raymond; White, Michael R H; Hastings, Michael H; Loudon, Andrew S I

    2016-07-25

    Transcriptional-translational feedback loops (TTFLs) are a conserved molecular motif of circadian clocks. The principal clock in mammals is the suprachiasmatic nucleus (SCN) of the hypothalamus. In SCN neurons, auto-regulatory feedback on core clock genes Period (Per) and Cryptochrome (Cry) following nuclear entry of their protein products is the basis of circadian oscillation [1, 2]. In Drosophila clock neurons, the movement of dPer into the nucleus is subject to a circadian gate that generates a delay in the TTFL, and this delay is thought to be critical for oscillation [3, 4]. Analysis of the Drosophila clock has strongly influenced models of the mammalian clock, and such models typically infer complex spatiotemporal, intracellular behaviors of mammalian clock proteins. There are, however, no direct measures of the intracellular behavior of endogenous circadian proteins to support this: dynamic analyses have been limited and often have no circadian dimension [5-7]. We therefore generated a knockin mouse expressing a fluorescent fusion of native PER2 protein (PER2::VENUS) for live imaging. PER2::VENUS recapitulates the circadian functions of wild-type PER2 and, importantly, the behavior of PER2::VENUS runs counter to the Drosophila model: it does not exhibit circadian gating of nuclear entry. Using fluorescent imaging of PER2::VENUS, we acquired the first measures of mobility, molecular concentration, and localization of an endogenous circadian protein in individual mammalian cells, and we showed how the mobility and nuclear translocation of PER2 are regulated by casein kinase. These results provide new qualitative and quantitative insights into the cellular mechanism of the mammalian circadian clock. PMID:27374340

  6. Visualizing the photovoltaic behavior of a type-II p-n heterojunction superstructure

    SciTech Connect

    Xing, Juanjuan; Takeguchi, Masaki; Hashimoto, Ayako; Cao, Junyu; Ye, Jinhua

    2014-04-21

    Photovoltaic behavior of a CaFe{sub 2}O{sub 4}/ZnFe{sub 2}O{sub 4} p-n multi-junction was investigated with electron holography combined with an in situ light irradiation system. Potential profiles of the samples with and without light irradiation were extracted to measure the open circuit photovoltage generated either by the whole heterojunction superstructure or from each p-n junction. Investigation on the variation in the energy band configuration under light irradiation revealed the mechanism involved in the photoelectric effect, with respect to the properties of the heterojunction and its periodic quantum structure.

  7. Visualizing the photovoltaic behavior of a type-II p-n heterojunction superstructure

    NASA Astrophysics Data System (ADS)

    Xing, Juanjuan; Takeguchi, Masaki; Hashimoto, Ayako; Cao, Junyu; Ye, Jinhua

    2014-04-01

    Photovoltaic behavior of a CaFe2O4/ZnFe2O4 p-n multi-junction was investigated with electron holography combined with an in situ light irradiation system. Potential profiles of the samples with and without light irradiation were extracted to measure the open circuit photovoltage generated either by the whole heterojunction superstructure or from each p-n junction. Investigation on the variation in the energy band configuration under light irradiation revealed the mechanism involved in the photoelectric effect, with respect to the properties of the heterojunction and its periodic quantum structure.

  8. Connectivity between the superior colliculus and the amygdala in humans and macaque monkeys: virtual dissection with probabilistic DTI tractography

    PubMed Central

    Koller, Kristin; Bultitude, Janet H.; Mullins, Paul; Ward, Robert; Mitchell, Anna S.; Bell, Andrew H.

    2015-01-01

    It has been suggested that some cortically blind patients can process the emotional valence of visual stimuli via a fast, subcortical pathway from the superior colliculus (SC) that reaches the amygdala via the pulvinar. We provide in vivo evidence for connectivity between the SC and the amygdala via the pulvinar in both humans and rhesus macaques. Probabilistic diffusion tensor imaging tractography revealed a streamlined path that passes dorsolaterally through the pulvinar before arcing rostrally to traverse above the temporal horn of the lateral ventricle and connect to the lateral amygdala. To obviate artifactual connectivity with crossing fibers of the stria terminalis, the stria was also dissected. The putative streamline between the SC and amygdala traverses above the temporal horn dorsal to the stria terminalis and is positioned medial to it in humans and lateral to it in monkeys. The topography of the streamline was examined in relation to lesion anatomy in five patients who had previously participated in behavioral experiments studying the processing of emotionally valenced visual stimuli. The pulvinar lesion interrupted the streamline in two patients who had exhibited contralesional processing deficits and spared the streamline in three patients who had no deficit. Although not definitive, this evidence supports the existence of a subcortical pathway linking the SC with the amygdala in primates. It also provides a necessary bridge between behavioral data obtained in future studies of neurological patients, and any forthcoming evidence from more invasive techniques, such as anatomical tracing studies and electrophysiological investigations only possible in nonhuman species. PMID:26224780

  9. Automated cognitive testing of monkeys in social groups yields results comparable to individual laboratory based testing

    PubMed Central

    Gazes, Regina Paxton; Brown, Emily Kathryn; Basile, Benjamin M.; Hampton, Robert R.

    2013-01-01

    Cognitive abilities likely evolved in response to specific environmental and social challenges and are therefore expected to be specialized for the life history of each species. Specialized cognitive abilities may be most readily engaged under conditions that approximate the natural environment of the species being studied. While naturalistic environments might therefore have advantages over laboratory settings for cognitive research, it is difficult to conduct certain types of cognitive tests in these settings. We implemented methods for automated cognitive testing of monkeys (Macaca mulatta) in large social groups (Field station) and compared the performance to that of laboratory housed monkeys (Laboratory). The Field station animals shared access to four touch screen computers in a large naturalistic social group. Each Field station subject had an RFID chip implanted in each arm for computerized identification and individualized assignment of cognitive tests. The Laboratory group was housed and tested in a typical laboratory setting, with individual access to testing computers in their home cages. Monkeys in both groups voluntarily participated at their own pace for food rewards. We evaluated performance in two visual psychophysics tests, a perceptual classification test, a transitive inference test, and a delayed matching to sample memory test. Despite differences in housing, social environment, age, and sex, monkeys in the two groups performed similarly in all tests. Semi-free ranging monkeys living in complex social environments are therefore viable subjects for cognitive testing designed to take advantage of the unique affordances of naturalistic testing environments. PMID:23263675

  10. Perception of emotional expressions is independent of face selectivity in monkey inferior temporal cortex

    PubMed Central

    Hadj-Bouziane, Fadila; Bell, Andrew H.; Knusten, Tamara A.; Ungerleider, Leslie G.; Tootell, Roger B. H.

    2008-01-01

    The ability to perceive and differentiate facial expressions is vital for social communication. Numerous functional MRI (fMRI) studies in humans have shown enhanced responses to faces with different emotional valence, in both the amygdala and the visual cortex. However, relatively few studies have examined how valence influences neural responses in monkeys, thereby limiting the ability to draw comparisons across species and thus understand the underlying neural mechanisms. Here we tested the effects of macaque facial expressions on neural activation within these two regions using fMRI in three awake, behaving monkeys. Monkeys maintained central fixation while blocks of different monkey facial expressions were presented. Four different facial expressions were tested: (i) neutral, (ii) aggressive (open-mouthed threat), (iii) fearful (fear grin), and (iv) submissive (lip smack). Our results confirmed that both the amygdala and the inferior temporal cortex in monkeys are modulated by facial expressions. As in human fMRI, fearful expressions evoked the greatest response in monkeys—even though fearful expressions are physically dissimilar in humans and macaques. Furthermore, we found that valence effects were not uniformly distributed over the inferior temporal cortex. Surprisingly, these valence maps were independent of two related functional maps: (i) the map of “face-selective” regions (faces versus non-face objects) and (ii) the map of “face-responsive” regions (faces versus scrambled images). Thus, the neural mechanisms underlying face perception and valence perception appear to be distinct. PMID:18375769

  11. Reduced Ventral Cingulum Integrity and Increased Behavioral Problems in Children with Isolated Optic Nerve Hypoplasia and Mild to Moderate or No Visual Impairment

    PubMed Central

    Clayden, Jonathan D.; Seunarine, Kiran K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2013-01-01

    Objectives To assess the prevalence of behavioral problems in children with isolated optic nerve hypoplasia, mild to moderate or no visual impairment, and no developmental delay. To identify white matter abnormalities that may provide neural correlates for any behavioral abnormalities identified. Patients and Methods Eleven children with isolated optic nerve hypoplasia (mean age 5.9 years) underwent behavioral assessment and brain diffusion tensor imaging, Twenty four controls with isolated short stature (mean age 6.4 years) underwent MRI, 11 of whom also completed behavioral assessments. Fractional anisotropy images were processed using tract-based spatial statistics. Partial correlation between ventral cingulum, corpus callosum and optic radiation fr