Science.gov

Sample records for monoclinic zirconia nanocrystals

  1. A nearly pure monoclinic nanocrystalline zirconia

    SciTech Connect

    Guo Gongyi . E-mail: guo_gongyi@hotmail.com; Chen Yuli

    2005-05-15

    Generally, monoclinic zirconia is considered to be much more difficult to prepare at low temperatures and particularly in a pure state. The present work is the first example that shows that the hydrous zirconia formed by precipitation can yield a nearly pure nanocrystalline monoclinic zirconia at a temperature as low as 320 deg. C. The crystallite size of the monoclinic zirconia produced in the present work is around 15nm, and it does not change appreciably as calcination temperature is increased from 320 to or above 400 deg. C. Such a small monoclinic crystallite arises from some of the chemical and physical factors built into the solution-gelation-xerogel process such as acidic preparation-pH, rapid precipitation, and moderate aging time and drying temperature, which result in a structure different from those of the existing zirconium hydroxides. In addition, the hydrous zirconia exhibits a unique thermal behavior in two respects: first, a sudden weight drop in the region of exothermic peak of the thermogravimetric curve is seen, suggesting that the main decomposition of the hydrous zirconia occurs in this region; second, there is an endothermic peak at high temperature in the differential thermal analysis curve, indicating the presence of coordinated water in the hydrous zirconia.

  2. Nanoporous nanocrystalline monoclinic zirconia for luminescent oxygen sensors

    NASA Astrophysics Data System (ADS)

    Fidelus, Janusz D.; Zhou, Wuzong; Tenderenda, Tadeusz; Nasiłowski, Tomasz

    2015-09-01

    In this work we present a nanocrystalline monoclinic ZrO2 with large free volumen open towards the nanocrystals surface dedicated for optical oxygen sensors. Nanoporous zirconia nanopowder was fabricated in hydrothermal microwave-driven process followed by annealing at 800°C. Metal-coated optical fibers are proposed as a light carrier when the working temperature exceeds 500°C. The obtained results may also find application in luminescent fiber optic oxygen sensors.

  3. Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia

    DOE PAGESBeta

    Li, Chen W.; Smith, Hillary L.; Lan, Tian; Niedziela, Jennifer L.; Munoz, Jorge A.; Keith, J. Brian; Mauger, L.; Abernathy, Douglas L; Fultz, B.

    2015-04-13

    Inelastic neutron scattering measurements on monoclinic zirconia (ZrO2) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 ωK. We reported temperature-dependent phonon densities of states (DOS) and Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhat moremore » anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.« less

  4. Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia

    SciTech Connect

    Li, Chen W.; Smith, Hillary L.; Lan, Tian; Niedziela, Jennifer L.; Munoz, Jorge A.; Keith, J. Brian; Mauger, L.; Abernathy, Douglas L; Fultz, B.

    2015-04-13

    Inelastic neutron scattering measurements on monoclinic zirconia (ZrO2) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 ωK. We reported temperature-dependent phonon densities of states (DOS) and Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhat more anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.

  5. Protonated Forms of Monoclinic Zirconia: A Theoretical Study

    SciTech Connect

    Mantz, Yves A.; Gemmen, Randall S.

    2010-05-06

    In various materials applications of zirconia, protonated forms of monoclinic zirconia may be formed, motivating their study within the framework of density-functional theory. Using the HCTH/120 exchange-correlation functional, the equations of state of yttria and of the three low-pressure zirconia polymorphs are computed, to verify our approach. Next, the favored charge state of a hydrogen atom in monoclinic zirconia is shown to be positive for all Fermilevel energies in the band gap, by the computation of defect formation energies.This result is consistent with a single previous theoretical prediction at midgap as well as muonium spectroscopy experiments. For the formally positively (+1e) charged system of a proton in monoclinic zirconia (with a homogeneous neutralizing background charge densityimplicitly included), modeled using up to a 3 x 3 x 3 arrangement of unit cells, different stable and metastable structures are identified. They are similar to those structures previously proposed for the neutral system of hydrogen-doedmonoclinic zirconia, at a similar level of theory. As predicted using the HCTH/120 functional, the lowest energy structure of the proton bonded to one of the two available oxygen atom types, O1, is favored by 0.39 eV compared to that of the proton bonded to O2. The rate of proton transfer between O1 ions is slower than that for hydrogen-dopedmonoclinic zirconia, whose transition-state structures may be lowered in energy by the extra electron.

  6. Near coincidence site lattice misorientations in monoclinic zirconia

    SciTech Connect

    Gertsman, V.Y.; Zhilyaev, A.P.; Szpunar, J.

    1996-12-01

    Zirconium dioxide, ZrO{sub 2}, exists in three crystalline phases: monoclinic, tetragonal, and cubic. Calculations of the coincidence site lattice (CSL) misorientations for the last two lattices and for hexagonal ones using the methods developed represent little difficulty. However, no procedure for the determination of the CSL misorientations in the monoclinic system has been reported so far. Monoclinic zirconia has the crystallographic space group P2{sub 1}/c and the following parameters of the unit cell (e.g., 5, 6): a = 5.1490 {angstrom}, b = 5.2133 {angstrom}, c = 5.3161 {angstrom}, and {beta} = 99.228{degree}. Before discussing possible CSL misorientations in zirconia, consider a simple example based on geometric considerations. In any monoclinic crystal (with any lattice parameters) the two symmetrical boundaries along the (001) and (100) planes must have highly ordered atomic structure. The misorientation of the first boundary is descried as a rotation of either 180{degree} around the [100] direction or 180{degree} around the normal to the (001) plane. The misorientation of the second boundary is 180{degree} [001] or 180{degree} around the normal to the (100) plane. It can be shown that three-dimensional CSLs will exist in both cases if (c/a)cos{beta} is a rational number. This example justifies the following approximation of the unit cell in the monoclinic zirconia: a = b = c and cos{beta} = {minus}1/6 (i.e., {beta} = 99.594{degree}). Consider the following prismatic cell in the monoclinic crystal structure: ([1 0 1], [{bar 1} 0 1], [0 1 0]). With the above approximation, this cell is orthogonal with the ratios of the squares of the edge lengths expressed as 5:7:3. Therefore, one can apply the algorithm for calculations of the CSL misorientations in orthorhombic lattices with rational ratios of squares of the lattice periods, which is based on the general vector-quaternion method of misorientation representation.

  7. Phase field modeling of tetragonal to monoclinic phase transformation in zirconia

    NASA Astrophysics Data System (ADS)

    Mamivand, Mahmood

    Zirconia based ceramics are strong, hard, inert, and smooth, with low thermal conductivity and good biocompatibility. Such properties made zirconia ceramics an ideal material for different applications form thermal barrier coatings (TBCs) to biomedicine applications like femoral implants and dental bridges. However, this unusual versatility of excellent properties would be mediated by the metastable tetragonal (or cubic) transformation to the stable monoclinic phase after a certain exposure at service temperatures. This transformation from tetragonal to monoclinic, known as LTD (low temperature degradation) in biomedical application, proceeds by propagation of martensite, which corresponds to transformation twinning. As such, tetragonal to monoclinic transformation is highly sensitive to mechanical and chemomechanical stresses. It is known in fact that this transformation is the source of the fracture toughening in stabilized zirconia as it occurs at the stress concentration regions ahead of the crack tip. This dissertation is an attempt to provide a kinetic-based model for tetragonal to monoclinic transformation in zirconia. We used the phase field technique to capture the temporal and spatial evolution of monoclinic phase. In addition to morphological patterns, we were able to calculate the developed internal stresses during tetragonal to monoclinic transformation. The model was started form the two dimensional single crystal then was expanded to the two dimensional polycrystalline and finally to the three dimensional single crystal. The model is able to predict the most physical properties associated with tetragonal to monoclinic transformation in zirconia including: morphological patterns, transformation toughening, shape memory effect, pseudoelasticity, surface uplift, and variants impingement. The model was benched marked with several experimental works. The good agreements between simulation results and experimental data, make the model a reliable tool for

  8. Water and carbon oxides on monoclinic zirconia: experimental and computational insights.

    PubMed

    Kouva, Sonja; Andersin, Jenni; Honkala, Karoliina; Lehtonen, Juha; Lefferts, Leon; Kanervo, Jaana

    2014-10-14

    Zirconium oxide (ZrO2, zirconia) is an interesting catalytic material to be used in biomass conversion, e.g., gasification and reforming. In this work, we show that reducing and hydrating pretreatments affect the surface sites on monoclinic zirconia. The multitechnique approach comprises temperature-programmed surface reactions (TPSR) under CO and CO2 at 100-550 °C, in situ DRIFTS investigations of the surface species and density functional theory (DFT) calculations. The key findings of the work are: (1) formates are formed either directly from gas-phase CO on terminal surface hydroxyls or via the linear CO surface species that are found exclusively on the reduced zirconia without water treatment; (2) formates are able to decompose at high temperature either reversibly to CO or reductively to CO2 and H2via surface reaction between formates and multicoordinated hydroxyls; and (3) a new weak reversible binding state of CO is found exclusively on ZrO2 that is first reduced and subsequently hydrated. PMID:25157444

  9. Zirconia nanocrystals as submicron level biological label

    NASA Astrophysics Data System (ADS)

    Smits, K.; Liepins, J.; Gavare, M.; Patmalnieks, A.; Gruduls, A.; Jankovica, D.

    2012-08-01

    Inorganic nanocrystals are of increasing interest for their usage in biology and pharmacology research. Our interest was to justify ZrO2 nanocrystal usage as submicron level biological label in baker's yeast Saccharomyces cerevisia culture. For the first time (to our knowledge) images with sub micro up-conversion luminescent particles in biologic media were made. A set of undoped as well as Er and Yb doped ZrO2 samples at different concentrations were prepared by sol-gel method. The up-conversion luminescence for free standing and for nanocrystals with baker's yeast cells was studied and the differences in up-conversion luminescence spectra were analyzed. In vivo toxic effects of ZrO2 nanocrystals were tested by co-cultivation with baker's yeast.

  10. Analysis of tetragonal to monoclinic phase transformation caused by accelerated artificial aging and the effects of microstructure in stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas J.

    This investigation addresses the issue that yttria stabilized zirconia is being used as a dental biomaterial without substantial evidence of its long-term viability. Furthermore, stabilized zirconia (SZ) undergoes low temperature degradation (LTD), which can lead to roughening of the surface. A rougher exterior can lead to increased wear of the antagonist in the oral environment. Despite the LTD concerns, SZ is now widely used in restorative dentistry, including full contour crowns. A comparison of aging methods to determine the role of artificial aging on inducing the transformation has not been extensively studied. Therefore, simulations of the transformation process were investigated by comparing different methods of accelerated aging. The rejected null hypothesis is that the temperature of aging treatment will not affect the time required to cause measurable monoclinic transformation of yttria stabilized zirconia. The transformation of SZ starts at the surface and progresses inward; however, it is unclear whether the progression is constant for different aging conditions. This investigation analyzed the depth of transformation as a function of aging conditions for stabilized zirconia in the top 5-6 mum from the surface. The rejected null hypothesis is that the transformation amount is constant throughout the first six micrometers from the surface. The effects of grain size on the amount of monoclinic transformation were also investigated. This study aimed to determine if the grain size of partially stabilized zirconia affects the amount of monoclinic transformation, surface roughness, and property degradation due to aging. The rejected null hypothesis is that the grain size will not affect the amount of monoclinic transformation, thus have no effect on surface roughening or property degradation. The final part of this study addresses the wear of enamel when opposing zirconia by observing how grain size and aging affected the wear rate of an enamel antagonist

  11. Monoclinic phase transformations of zirconia-based dental prostheses, induced by clinically practised surface manipulations.

    PubMed

    Mochales, C; Maerten, A; Rack, A; Cloetens, P; Mueller, W D; Zaslansky, P; Fleck, C

    2011-07-01

    Full-ceramic zirconia crowns and bridges have become very popular with dentists and patients because of their excellent esthetics and mechanical properties. We studied phase transformations within the outermost surface layer of 3 mol.% yttria-stabilized zirconia (Y-TZP) samples of small, clinically relevant thicknesses, manipulated by polishing, grinding and fracture as might be encountered in everyday clinical practice. Stress-induced transformations of the tetragonal phase were studied in three dimensions in order to better understand the organization and extent of the monoclinically transformed phase. By means of laboratory- and synchrotron-based X-ray diffraction measurements, coupled with electron microscopy and multimodal tomography, it was possible for the first time to visualize and quantify the phase distributions non-destructively and in three dimensions. Highly variable degrees of local transformation result in ragged transformed zones of very inhomogeneous thickness. The overall thickness of the transformation layers strongly depends on the severity and rate of loading. Gentle diamond cutting resulted in surprisingly low transformation ratios of less than 0.1%. When Y-TZP constructions are manipulated before bonding, toughness of the outer layers is reduced and they may become brittle with important implications for the stability of the bond: dental practitioners thus need to be cautious when altering the surfaces of these materials after sintering. PMID:21515417

  12. Luminescent nanocrystals in the rare-earth niobate–zirconia system formed via hydrothermal method

    SciTech Connect

    Hirano, Masanori Dozono, Hayato

    2013-08-15

    Luminescent nanocrystals based on the rare-earth niobates (Ln{sub 3}NbO{sub 7}, Ln=Y, Eu) and zirconia (ZrO{sub 2}) that were composed of 50 mol% Ln{sub 3}NbO{sub 7} and 50 mol% ZrO{sub 2}, were hydrothermally formed as cubic phase under weakly basic conditions at 240 °C. The lattice parameter of the as-prepared nanoparticles corresponding to the composition of Y{sub 3−x}Eu{sub x}NbO{sub 7}–4ZrO{sub 2} that was estimated as a single phase of cubic gradually increased as the content of europium x increased. The existence of small absorbance peaks at 395 and 466 nm corresponding to the Eu{sup 3+7}F{sub 0}→{sup 5}L{sub 6}, and {sup 7}F{sub 0}→{sup 5}D{sub 2} excitation transition, respectively, was clearly observed in the diffuse reflectance spectra of the as-prepared samples containing europium. The optical band gap of the as-prepared samples was in the range from 3.5 to 3.7 eV. The photoluminescence spectra of the as-prepared nanocrystals containing europium showed orange and red luminescences with main peaks at 590 and 610 nm, corresponding to {sup 5}D{sub 0}→{sup 7}F{sub 1} and {sup 5}D{sub 0}→{sup 7}F{sub 2} transitions of Eu{sup 3+}, respectively, under excitation at 395 nm Xe lamp. The emission intensity corresponding to {sup 5}D{sub 0}→{sup 7}F{sub 2} transition increased as heat-treatment temperature rose from 800 to 1200 °C. - Graphical abstract: This graphical abstract shows the excitation and emission spectra and a transmission electron microscopy image of nanocrystals (with composition based on the rare-earth niobates (Ln{sub 3}NbO{sub 7}, Ln=Y, Eu) and zirconia (ZrO{sub 2}) that were composed of 50 mol% Ln{sub 3}NbO{sub 7} and 50 mol% ZrO{sub 2}) formed via hydrothermal route. Display Omitted - Highlights: • Nanocrystals composed of 50 mol% Y{sub 3−x}Eu{sub x}NbO{sub 7} and 50 mol% ZrO{sub 2} was directly formed. • The nanocrystals were hydrothermally formed under weakly basic conditions at 240 °C. • The Y{sub 3}NbO{sub 7} showed

  13. Luminescent nanocrystals in the rare-earth niobate-zirconia system formed via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Hirano, Masanori; Dozono, Hayato

    2013-08-01

    Luminescent nanocrystals based on the rare-earth niobates (Ln3NbO7, Ln=Y, Eu) and zirconia (ZrO2) that were composed of 50 mol% Ln3NbO7 and 50 mol% ZrO2, were hydrothermally formed as cubic phase under weakly basic conditions at 240 °C. The lattice parameter of the as-prepared nanoparticles corresponding to the composition of Y3-xEuxNbO7-4ZrO2 that was estimated as a single phase of cubic gradually increased as the content of europium x increased. The existence of small absorbance peaks at 395 and 466 nm corresponding to the Eu3+7F0→5L6, and 7F0→5D2 excitation transition, respectively, was clearly observed in the diffuse reflectance spectra of the as-prepared samples containing europium. The optical band gap of the as-prepared samples was in the range from 3.5 to 3.7 eV. The photoluminescence spectra of the as-prepared nanocrystals containing europium showed orange and red luminescences with main peaks at 590 and 610 nm, corresponding to 5D0→7F1 and 5D0→7F2 transitions of Eu3+, respectively, under excitation at 395 nm Xe lamp. The emission intensity corresponding to 5D0→7F2 transition increased as heat-treatment temperature rose from 800 to 1200 °C.

  14. Zirconia refractories

    SciTech Connect

    Karaulov, A.G.; Shlyakhova, T.M.; Akselrod, E.I.

    1995-09-01

    Results on the thermal conductivity of powders of monoclinic zirconia as a function of the grain size are presented. It is established that of all the investigated sintered powders of monoclinic ZrO{sub 2} the 1-0.5-mm and 2-1-mm fractions have the lowest thermal conductivity and the least apparent density (2.190 and 2.262 g/cm{sup 3}). Fused powders of monoclinic and stabilized ZrO{sub 2} have a higher thermal conductivity than their sintered counterparts. Powders prepared from monoclinic ZrO{sub 2} with a burning-off addition of polystyrene have larger pores in the grains, which increases the share of the radiation component in the heat transfer, and hence thermal conductivity is higher than in powders obtained by sintering pure monoclinic ZrO{sub 2}. For the same reason, powders from void granules of the 3-0.5-mm fraction have a higher thermal conductivity than sintered monoclinic powders of ZrO{sub 2}.

  15. X-ray photoelectron spectroscopic studies on yttria, zirconia, and yttria-stabilized zirconia

    SciTech Connect

    Majumdar, D. ); Chatterjee, D. )

    1991-07-15

    Surfaces of yttria, zirconia, and yttria-stabilized zirconia were studied using x-ray photoelectron spectroscopy. An almost threefold increase in the surface yttrium concentration was observed in the yttria-stabilized zirconia samples. The core level binding energies of yttrium, zirconium, and oxygen ions in yttria-stabilized zirconia showed chemical shifts. Valence bands and Auger parameters were monitored for the monoclinic and the tetragonal phases of zirconia. Characteristic differences were observed for the two phases due to their different oxygen coordination. The results were used to identify surface phase transitions which were difficult to detect by x-ray diffraction.

  16. Zirconia-fluorapatite materials produced by HIP.

    PubMed

    Adolfsson, E; Hermansson, L

    1999-07-01

    Composites of tetragonal zirconia and fluorapatite were sealed in steel tubes and hot isostatically pressed at 1200 degrees C. The phases formed in the samples were evaluated by X-ray powder diffraction. When the composites contained larger amounts of fluorapatite, the tetragonal zirconia changed gradually into the cubic phase with decreasing zirconia content. These phase changes occurred due to a transfer of calcium from fluorapatite, which acted as an additional dopant in zirconia. Small amounts of monoclinic zirconia were also present in all samples. The cell dimension in fluorapatite was changed with the composition of the composite. However, decomposition of the fluorapatite was not possible to detect. Vickers hardness and fracture toughness were measured and ranged from 5.1 to 10.8 GPa and 0.9-5.5 MPam1/2, respectively. Microstructures in the composites were studied with scanning electron microscopy. PMID:10403043

  17. Phase stability of zirconia at nanoscale.

    NASA Astrophysics Data System (ADS)

    Sabiryanov, Renat; Mei, W. N.

    2004-03-01

    There are three phases of ZrO2, namely cubic, tetragonal and monoclinic. Cubic phase of zirconia is usually stabilized by various dopants such as yttria and magnesia. However, it has been observed that these stablizers are indeed the source failure of doped ZrO2 in both orthopaedics and in ZrO2 used in high temperature applications. Recently, the cubic zirconia was fabricated as granular media with the grain sizes less than 17nm. We examine the phase stability in zirconia nanoparticles using first principle electronic structure method. We observe considerable relaxation of lattice in the monoclinic phase near the surface. This effect combined with surface tension and possibly vacancies in nanostructures are sources of stability of cubic zirconia at nanoscale. We performed calculation of the surface tension calculations for the pure (001) surface. The uniform compressive strain is applied in the plane of the slab to find the elastic response of the system. The slab is allowed to relax in the perpendicular direction. Uniform compressive strain in the plane of the slab causes increase in the distance between Zr and O layers for (001) surface (as a solid tends to preserve the volume). For cubic it gives -0.65N/m, while for monoclinic -0.48N/m. Furthermore, the solid-gas surface tension is a fundamental physical/chemical property of a solid, which affects its wetting properties. Therefore, cubic zirconia is more suitable to design the material combining wettability, ductility and hardness.

  18. Fast and tunable synthesis of ZrO2 nanocrystals: mechanistic insights into precursor dependence.

    PubMed

    De Keukeleere, Katrien; De Roo, Jonathan; Lommens, Petra; Martins, José C; Van Der Voort, Pascal; Van Driessche, Isabel

    2015-04-01

    In this work, ZrO2 nanocrystals (NCs) are synthesized via a solvothermal treatment in benzyl alcohol, which is an established method for the synthesis of many metal oxide nanocrystals. We found that the use of microwave heating allows for a reduction in reaction time from 2 days in the autoclave to merely 4 h in the microwave. Furthermore, we were able to tune the crystallographic phase from pure cubic to pure monoclinic zirconia by changing the reaction mechanism through the use of a different zirconium precursor. Via GC-MS measurements, we found that the release of a strong acid during synthesis controls the key mechanism behind the control over crystal phase formation. The as-synthesized ZrO2 NCs (cubic or monoclinic) are small in size (3-10 nm), yet aggregated. However, aggregate-free NCs are generated through a surface-functionalization with carboxylic acid ligands, providing stabilization in apolar solvents via steric hindrance. Solution (1)H NMR was used to study the details of this post-modification step and the surface chemistry of the resulting aggregate-free NCs. This led to the conclusion that not only a different crystal structure but also a different surface chemistry is obtained, depending on the precursor composition. PMID:25751155

  19. Vanadia reactions with yttria stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Hertl, W.

    1988-06-01

    The reaction of vanadia films with yttria stabilized single-crystal cubic and polycrystalline cubic-tetragonal zirconias was studied using Rutherford backscattering (RBS) and x-ray diffraction, with some selected depth profiling studies. Vandium on zirconia readily oxidizes at 500 °C to form vanadia films. With increasing temperature, small amounts of vanadia diffuse into the zirconia. Near 650 °C the vanadia forms a eutectic solution at the surface and massive diffusion into the ZrO2 occurs. With rapid heating much of the vanadia volatilizes; with slow heating the vanadia diffuses large distances into the zirconia. Near 800 °C the vanadia principally reacts with yttria to form yttrium vanadate. At 980 °C and above, vanadia is completely reacted. Zirconia coated with materials which do not form a eutectic mixture (tantala, tantalum, vanadium) showed little reaction or diffusion at 900-1000 °C, but massive dissolution when a eutectic is formed (vanadia, chromia+vanadia). Yttria preferentially diffuses toward the surface when a reaction takes place to form YVO4 . When yttria is sequestered as the vanadate, the zirconia changes phase from cubic to monoclinic. Little difference in reactivity is observed between single-crystal and polycrystalline zirconia due to eutectic solution formation, which, with the phase separation, produces a very corroded surface.

  20. Martensitic transformation in zirconia

    SciTech Connect

    Deville, Sylvain . E-mail: sylvain.deville@insa-lyon.fr; Guenin, Gerard; Chevalier, Jerome

    2004-11-08

    We investigate by atomic force microscopy (AFM) the surface relief resulting from martensitic tetragonal to monoclinic phase transformation induced by low temperature autoclave aging in ceria-stabilized zirconia. AFM appears as a very powerful tool to investigate martensite relief quantitatively and with a great precision. The crystallographic phenomenological theory is used to predict the expected relief induced by the transformation, for the particular case of lattice correspondence ABC1, where tetragonal c axis becomes the monoclinic c axis. A model for variants spatial arrangement for this lattice correspondence is proposed and validated by the experimental observations. An excellent agreement is found between the quantitative calculations outputs and the experimental measurements at nanometer scale yielded by AFM. All the observed features are explained fully quantitatively by the calculations, with discrepancies between calculations and quantitative experimental measurements within the measurements and calculations precision range. In particular, the crystallographic orientation of the transformed grains is determined from the local characteristics of transformation induced relief. It is finally demonstrated that the strain energy is the controlling factor of the surface transformation induced by low temperature autoclave treatments in this material.

  1. Zirconia phase transformation, metal transfer, and surface roughness in retrieved ceramic composite femoral heads in total hip arthroplasty.

    PubMed

    Elpers, Marcella; Nam, Denis; Boydston-White, Susie; Ast, Michael P; Wright, Timothy M; Padgett, Douglas E

    2014-11-01

    Ceramic femoral heads have had promising results as a bearing surface in total hip arthroplasty. Our objective was to evaluate a series of retrieved alumina-zirconia composite ceramic femoral heads for evidence of the tetragonal to monoclinic zirconia phase transformation, metal transfer and articular surface roughness. Raman spectra showed evidence of the zirconia phase transformation in all retrieved specimens, with distinct monoclinic peaks at 183, 335, 383, and 479 cm(-1). All components displayed metal transfer. An increase in the zirconia phase transformation was seen with increasing time in vivo. No correlation between extent of zirconia phase transformation and the surface roughness was found. These short-term results suggest that the use of an alumina-zirconia composite ceramic is a viable option for femoral heads in THA. PMID:25212282

  2. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    PubMed

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  3. Nanocrystal structures

    SciTech Connect

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2008-12-30

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  4. Nanocrystal structures

    DOEpatents

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2006-12-19

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II–VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  5. Effects of surface treatments on the susceptibilities of low temperature degradation by autoclaving in zirconia.

    PubMed

    Lee, Tae-Hoon; Lee, Sang-Hyuk; Her, Soo-Bok; Chang, Won-Gun; Lim, Bum-Soon

    2012-07-01

    The aim of this study was to investigate the effect of surface treatments on the aging susceptibilities by autoclaving in zirconia ceramics. Four commercially available tetragonal zirconia polycrystals and one zirconia-alumina composite were tested. Disk-shaped specimens were prepared and the grain sizes were analyzed using a scanning electron microscope and image analyzer. The specimens were divided into three groups based on surface treatments including heat treatment subsequent to mirror polishing, grinding, and sandblasting. Specimens in each group were autoclaved at 134°C for 1, 3, 5, 10, and 15 h. The phases of the specimens were analyzed using an X-ray diffractometer, and the relative amount of the monoclinic phase was calculated and analyzed using Student's t-test and Newman-Keuls multiple comparisons test. Single routine autoclave treatment for sterilization did not promote the phase transformation in zirconia. The phase transformations of all specimens by autoclaving were correlated with grain size, except for the zirconia-alumina composite. Grinding or sandblasting treatments gave rise to increased formation of the monoclinic phase, especially for the zirconia-alumina composite, which showed the highest fraction for the monoclinic phase. The effects of surface treatments on the aging susceptibilities by autoclaving were different in the experimental groups. It is notable that not all zirconia ceramics show similar phase transformation by autoclaving after surface treatments. PMID:22566390

  6. Synthesis and characterization of mesoporous zirconia and aluminated mesoporous zirconia

    NASA Astrophysics Data System (ADS)

    Zhao, Elizabeth Sun

    Synthesis of mesoporous zirconia has been performed by slowly hydrolyzing zirconium propoxide in the presence of anionic surfactants: namely, dodecyl phosphate or sulfate (P12 and Sf12) and hexadecyl sulfonate (So16) The zirconia. outgassed at 140--150°C has T-plot surface areas higher than 400 M2/g. This outgassing does not remove the surfactant. After calcination in air at 500°C and combustion of the surfactant, the mesoporous volume is reduced by a factor of about 2, whereas the pore wall material crystallizes in the tetragonal phase. The high-resolution electron microscopic study reveals the presence of a disorganized network of polygonal pores structure. It is suggested that the chemistry of the hydrolysis solution is instrumental in determining the pore structure. A schematic model in which the surfactant is a scaffold component is suggested in order to explain these results and the fixation of PO4, or SO4 in the walls may help to preserve the porous structure. It is very different from the templating mechanism. From the density obtained from phase transition temperature, and from the mesoporous volume (N2 adsorption), the thickness of the wall can be calculated as well as the pseudo-length of the pores. From the thickness, the T-plot area can be recalculated and agrees well with the measured T-plot surface area for the sample calcined at 500°C. Around 900°C, the walls become thicker and crystallizes into monoclinic zirconia without pore structure. In order to try to modify, the acidity of the mesoporous sulfated and oxo-phosphated zirconia, they were doped with aluminum. The sulfated zirconia only has a coating layer of amorphous alumina, while the phosphated zirconia has aluminum in the lattice and the alumina coat. A maximum ratio of Al/Zr ˜ 0.04 can be reached in the lattice. The introduction of aluminum into the lattice prevents the crystallization of the oxo-phosphate at 900°C, and helps to preserve the surface area and porosity of the sulfated

  7. Glass ceramic toughened with tetragonal zirconia

    DOEpatents

    Keefer, K.D.

    1984-02-10

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nuclearing agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200 to 1700/sup 0/C and is then heat-treated at a temperature within the range of 800 to 1200/sup 0/C in order to precipitate tetragonal ZrO/sub 2/. The composition, as well as the length and temperature of the heat treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  8. Silicon carbide whisker-zirconia reinforced mullite and alumina ceramics

    DOEpatents

    Becher, Paul F.; Tiegs, Terry N.

    1987-01-01

    The flexural strength and/or fracture toughness of SiC whisker-reinforced composites utilizing mullite or alumina as the matrix material for the composite are increased by the addition of zirconia in a monoclinic or tetragonal phase to the matrix. The zirconia addition also provides for a lower hot-pressing temperature and increases the flexural strength and/or fracture toughness of the SiC whisker-reinforced composites over SiC whisker-reinforced composites of the similar matrix materials reinforced with similar concentrations of SiC whiskers.

  9. Phase analysis of plasma-sprayed zirconia-yttria coatings

    NASA Technical Reports Server (NTRS)

    Shankar, N. R.; Berndt, C. C.; Herman, H.

    1983-01-01

    Phase analysis of plasma-sprayed 8 wt pct-yttria-stabilized zirconia (YSZ) thermal barrier coatings and powders was carried out by X-ray diffraction. Step scanning was used for increased peak resolution. Plasma spraying of the YSZ powder into water or onto a steel substrate to form a coating reduced the cubic and monoclinic phases with a simultaneous increase in the tetragonal phase. Heat treatment of the coating at 1150 C for 10 h in an Ar atmosphere increased the amount of cubic and monoclinic phases. The implications of these transformations on coating performance and integrity are discussed.

  10. Phase distributions in plasma-sprayed zirconia-yttria

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Garlick, R. G.; Smialek, J. L.

    1983-01-01

    The distribution of phases in plasma-sprayed zirconia-yttria has been determined over a range of yttria levels from 0 to 26.1 molpct YO(1.5) using room temperature X-ray diffractometry. Pure, plasma-sprayed zirconia is composed almost entirely of the monoclinic phase. At levels of yttria between 4 and 10 percent, a quenched-in tetragonal phase predominates, and at higher levels the cubic phase predominates. The phase distributions are compared with previously reported test lives of thermal barrier coatings formed from these materials. Regions of optimal lives were found to correlate with regions having high amounts of the tetragonal phase, small but nonzero amounts of the monoclinic phase, and little or none of the cubic phase. Possible relationships between phase composition and coating performance are discussed.

  11. A sol-powder coating technique for fabrication of yttria stabilised zirconia

    SciTech Connect

    Wattanasiriwech, Darunee . E-mail: darunee@mfu.ac.th; Wattanasiriwech, Suthee; Stevens, Ron

    2006-08-10

    Yttria stabilised zirconia has been prepared using a simple sol-powder coating technique. The polymeric yttria sol, which was prepared using 1,3 propanediol as a network modifier, was homogeneously mixed with nanocrystalline zirconia powder and it showed a dual function: as a binder which promoted densification and a phase modifier which stabilised zirconia in the tetragonal and cubic phases. Thermal analysis and X-ray diffraction revealed that the polymeric yttria sol which decomposed at low temperature into yttrium oxide could change the m {sup {yields}} t phase transformation behaviour of the zirconia, possibly due to the small particle size and very high surface area of both yttria and zirconia particles allowing rapid alloying. The sintered samples exhibited three crystalline phases: monoclinic, tetragonal and cubic, in which cubic and tetragonal are the major phases. The weight fractions of the individual phases present in the selected specimens were determined using quantitative Rietveld analysis.

  12. From Zirconium Nanograins to Zirconia Nanoneedles.

    PubMed

    Zalnezhad, E; Hamouda, A M S; Jaworski, J; Do Kim, Young

    2016-01-01

    Combinations of three simple techniques were utilized to gradually form zirconia nanoneedles from zirconium nanograins. First, a physical vapor deposition magnetron sputtering technique was used to deposit pure zirconium nanograins on top of a substrate. Second, an anodic oxidation was applied to fabricate zirconia nanotubular arrays. Finally, heat treatment was used at different annealing temperatures in order to change the structure and morphology from nanotubes to nanowires and subsequently to nanoneedles in the presence of argon gas. The size of the pure zirconium nanograins was estimated to be approximately 200-300 nm. ZrO2 nanotubular arrays with diameters of 70-120 nm were obtained. Both tetragonal and monoclinic ZrO2 were observed after annealing at 450 °C and 650 °C. Only a few tetragonal peaks appeared at 850 °C, while monoclinic ZrO2 was obtained at 900 °C and 950 °C. In assessing the biocompatibility of the ZrO2 surface, the human cell line MDA-MB-231 was found to attach and proliferate well on surfaces annealed at 850 °C and 450 °C; however, the amorphous ZrO2 surface, which was not heat treated, did not permit extensive cell growth, presumably due to remaining fluoride. PMID:27623486

  13. Wear and degradation on retrieved zirconia femoral heads.

    PubMed

    Nogiwa-Valdez, A A; Rainforth, W M; Stewart, T D

    2014-03-01

    Zirconia femoral heads retrieved from patients after different implantation periods (up to 13 years) were analysed using vertical scanning interferometry, atomic force microscopy and Raman microspectroscopy. A range of topographical and compositional changes on the surface of the retrievals are reported in this work. The study revealed that changes in roughness are the result of a combination of factors, i.e. scratching, surface upheaval due to transformation to the monoclinic phase and grain pull-out. Clusters of transformed monoclinic grains were observed on heads implanted for more than 3 years. The phase composition of these clusters was confirmed by Raman microspectroscopy. Increased abrasive wear and a higher monoclinic phase content concentrated on the pole of the femoral heads, confirming that the tetragonal to monoclinic phase transformation was not only induced by the tetragonal phase metastability and environmental conditions but mechanical and tribological factors, also affected the transformation kinetics. Additionally, the head implanted for 13 years showed evidence of a self-polishing mechanism leading to a considerable smoothening of the surface. These observations provide an insight into the interrelated mechanisms underlying the wear and transformation process on zirconia ceramics during implantation. PMID:24140384

  14. Restriction of Phase Transformation in Carbon Nanotube-Reinforced Yttria-Stabilized Zirconia

    NASA Astrophysics Data System (ADS)

    Mohapatra, Pratyasha; Rawat, Siddharth; Mahato, Neelima; Balani, Kantesh

    2015-07-01

    The present research aims to investigate the effect of multi-walled carbon nanotube (MWNT) reinforcement on the mechanism of transformation toughening in zirconia matrix, and consequently, its fracture toughness. Monoclinic zirconia (un-doped ZrO2), partially stabilized zirconia (3 mol pct yttria-stabilized zirconia (3 mol pct YSZ)), and fully stabilized cubic zirconia (8 mol pct YSZ) with and without 6 vol pct MWNT-reinforced nanocomposites were processed via multi-stage spark plasma sintering. Phase analysis of powders, and sintered and crushed pellets performed using X-ray diffraction reveals the absence of any phase transformation in monoclinic ZrO2, 8 mol pct YSZ and their MWNT-reinforced nanocomposites upon application of stress by means of crushing. However, a significant decrease in the stress-induced phase transformation (81.1 pct metastable tetragonal phase retained with 6 vol pct MWNT reinforcement when compared to that of 68.4 pct tetragonal phase in 3 mol pct YSZ) is observed in the crushed pellet samples of partially stabilized zirconia upon 6 vol pct MWNT reinforcement. Transmission electron microscopy has been utilized for complementary phase analysis. Evaluation of mechanical properties indicates enhancement in fracture toughness (~23.6 to 26.4 pct) with the incorporation of 6 vol pct MWNT. Isolation of the net toughening contribution suggests that MWNT toughening mechanisms are ~3.8 times more effective than transformation toughening in enhancing the fracture toughness of YSZ/MWNT nanocomposites.

  15. Zirconia coating for enhanced thermal stability of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Pastre, A.; Cristini-Robbe, O.; Bois, L.; Chassagneux, F.; Branzea, D.; Boé, A.; Kinowski, C.; Raulin, K.; Rolland, N.; Bernard, R.

    2016-01-01

    This paper describes a rapid, simple and one-step method for the preparation of 2-4 nm diameter zirconia-coated gold nanoparticles at room temperature. These nanoparticles were synthesized by two simultaneous processes: the chemical reduction of tetrachloroauric acid with sodium borohydride and the formation of zirconia sol-gel matrices. All the gold nanoparticle sols were characterized by UV-visible absorption and transmission electron microscopy to determine the nanoparticle size and shape. The synthesis method is a combination of a polymeric structure of the amorphous zirconia and the use of a strong reducing agent, and it yields to very small quasi-spherical gold nanoparticles at room temperature. The thermal stability up to 1200 °C of the coated nanoparticles was studied by x-ray diffraction. The metastable tetragonal phase of the zirconia coating was obtained at 400 °C, and a progressive transformation from tetragonal to monoclinic phases of the zirconia coating was observed up to 1100 °C. After the heat treatment at 400 °C, the crystallite size of the gold nanoparticles was about 29 nm, and it remained unchanged from 400 °C to 1200 °C. These results are promising for the development of such materials as doping elements for optical fiber applications.

  16. Synthesis and characterization of mesoporous zirconia nanocomposite using self-assembled block copolymer template

    NASA Astrophysics Data System (ADS)

    Ge, Qinwen

    Mesoporous zirconia has properties such as high surface area, uniform pore size distribution, and large pore volume, thus attracting great attention from the research community. Self-assembled structures have been used as directing agents to synthesize mesoporous zirconia. Here, we investigated the use of block copolymers conjugated to cationic biomolecules such as lysozyme, as well as cationic block copolymers as templates to synthesize mesoporous zirconia in completely aqueous media. Based on the Pluronic-lysozyme conjugate template, we further studied the effects of preparation conditions, including calcination temperature, precursor concentration, and precipitating pH. Several technics such as TGA, XRD, TEM, and N2 sorption were employed to characterize the zirconia samples. The results showed that tetragonal zirconia started to form after 300°C calcination and became fully crystallized after 500°C, grew larger when heated to higher temperatures, and began to form monoclinic phase after 900°C calcination. Our modified templates enhanced the thermal stability and increased the surface area of zirconia samples. The results also indicated that low precursor concentration and alkali media helped to decrease the zirconia particle size as well as increase the specific surface area. The surface area of the as-synthesized zirconia sample exhibited an increase before 500°C and a decrease after that, the highest specific surface area, 348 m2/g, achieved after 500°C calcination which was obtained using 0.08mol/L precursor at pH=10.

  17. Exchange-correlation effects in the monoclinic to tetragonal phase stabilization of yttrium-doped ZrO{sub 2}: A first-principles approach

    SciTech Connect

    Sangalli, Davide; Debernardi, Alberto

    2011-12-01

    We describe, within an ab initio approach, the stabilization of the tetragonal phase versus the monoclinic one in yttrium-doped zirconia. The process is believed to be influenced from different mechanisms. Indeed, we show that there is a delicate balance between the change in electrostatic and kinetic energy and exchange-correlation effects. In the tetragonal phase, the perturbation induced by doping is better screened at the price of sacrificing correlation energy. Our work opens the opportunity to use the same approach to predict the tetragonal phase stabilization of materials such as zirconia or hafnia, with different and less characterized dopants.

  18. Mechanical properties of zirconia after different surface treatments and repeated firings

    PubMed Central

    Demir, Necla; Kara, Özlem; Ozturk, A. Nilgun; Özel, Faruk

    2014-01-01

    PURPOSE This study investigated the influence of surface conditioning procedures and repeated firings on monoclinic content and strength of zirconia before cementation. MATERIALS AND METHODS Sintered bar-shaped zirconia specimens were subjected to no surface treatment (control), air abrasion, or grinding (n=21). Their roughness was evaluated using a profilometer, and microscope analysis was performed on one specimen of each group. Then, 2 or 10 repeated firings (n=10) were executed, the monoclinic content of specimens was analyzed by X-ray diffraction, and a three-point flexural strength test was performed. Surface roughness values were compared using one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests, the monoclinic content values were tested using Kruskal-Wallis and Mann-Whitney U tests, and the flexural strength values were tested using two-way ANOVA and Tukey HSD tests (P=.05). Spearman's correlation test was performed to define relationships among measured parameters. RESULTS Surface-treated specimens were rougher than untreated specimens and had a higher monoclinic content (P<.005), and the relationship between roughness and monoclinic content was significant (P<.000). Neither surface treatment nor firing significantly affected the flexural strength, but Weibull analysis showed that for the air-abraded samples the characteristic strength was significantly lower after the 10th firing than after the 2nd firing. CONCLUSION After firing, a negligible amount of monoclinic content remained on the zirconia surfaces, and rougher surfaces had higher monoclinic contents than untreated surfaces. Multiple firings could be performed if necessary, but the fracture probability could increase after multiple firings for rougher surfaces. PMID:25551006

  19. Effective property of tooth enamel: monoclinic behavior.

    PubMed

    Lu, Cunyou; Nakamura, Toshio; Korach, Chad S

    2012-05-11

    Human tooth enamel possesses a unique morphology characterized by a repeated cell arrangement, which is composed of varying orientations of hydroxyapatite crystals. In the past, various investigators have reported diverse mechanical properties based on isotropic or orthotropic mechanical models in their experimental and numerical studies. However, these models are insufficient to capture the accurate microstructural effects on the enamel mechanical response. In this paper, a monoclinic anisotropic model, which offers correct descriptions of enamel deformation behaviors, is introduced. The model takes into account the 3D orientation changes of the hydroxyapatite crystals and their spatial elastic property variations. The proposed approach is based on a unit-cell and periodic boundary conditions, and it utilizes the collective deformation characteristics of many rods to determine 13 independent material constants required for the monoclinic model. These constants are necessary to utilize the effective property model to study various mechanical conditions such as abrasion, erosion, wear and fracture of whole tooth enamel. PMID:22405497

  20. Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers

    NASA Technical Reports Server (NTRS)

    Mess, Derek

    2003-01-01

    yttria in suitable proportions has shown promise of being a superior thermal- barrier coating (TBC) material, relative to zirconia stabilized with yttria only. More specifically, a range of compositions in the zirconia/scandia/yttria material system has been found to afford increased resistance to deleterious phase transformations at temperatures high enough to cause deterioration of yttria-stabilized zirconia. Yttria-stabilized zirconia TBCs have been applied to metallic substrates in gas turbine and jet engines to protect the substrates against high operating temperatures. These coatings have porous and microcracked structures, which can accommodate strains induced by thermal-expansion mismatch and thermal shock. The longevity of such a coating depends upon yttria as a stabilizing additive that helps to maintain the zirconia in an yttria-rich, socalled non-transformable tetragonal crystallographic phase, thus preventing transformation to the monoclinic phase with an associated deleterious volume change. However, at a temperature greater than about 1,200 C, there is sufficient atomic mobility that the equilibrium, transformable zirconia phase is formed. Upon subsequent cooling, this phase transforms to the monoclinic phase, with an associated volume change that adversely affects the integrity of the coating. Recently, scandia was identified as a stabilizer that could be used instead of, or in addition to, yttria. Of particular interest are scandia-and-yttria-stabilized zirconia (SYSZ) compositions of about 6 mole percent scandia and 1 mole percent yttria, which have been found to exhibit remarkable phase stability at a temperature of 1,400 C in simple aging tests. Unfortunately, scandia is expensive, so that the problem becomes one of determining whether there are compositions with smaller proportions of scandia that afford the required high-temperature stability. In an attempt to solve this problem, experiments were performed on specimens made with reduced

  1. Role of Y{sub 2}O{sub 3}, CaO, MgO additives on structural and microstructural behavior of zirconia/mullite aggregates

    SciTech Connect

    Mishra, D. K.; Prusty, Sasmita; Mohapatra, B. K.; Singh, S. K.; Behera, S. N.

    2012-07-23

    Zirconia mullite (MUZ), Y{sub 2}O{sub 3}-MUZ, CaO-MUZ and MgO-MUZ composites, synthesized through plasma fusion technique, are becoming important due to their commercial scale of production within five minutes of plasma treatment from sillimanite, zircon and alumina mixture. The X-ray diffraction studies reveal the monoclinic zirconia phase in MUZ composite whereas mixed monoclinic, tetragonal and cubic phases of zirconia have been observed in Y{sub 2}O{sub 3}, CaO, MgO added MUZ composites. The Y{sub 2}O{sub 3}, CaO and MgO additives act as sintering aids to favour the transformation and stabilisation of tetragonal and cubic zirconia phases at room temperature. These additives also play a key role in the development of various forms of microstructure to achieve dense MUZ composites.

  2. Glass ceramic toughened with tetragonal zirconia

    DOEpatents

    Keefer, Keith D.; Michalske, Terry A.

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  3. Ion beam induced cubic to monoclinic phase transformation of nanocrystalline yttria

    NASA Astrophysics Data System (ADS)

    Shivaramu, N. J.; Lakshminarasappa, B. N.; Nagabhushana, K. R.; Singh, Fouran

    2016-07-01

    Sol gel derived nanocrystalline yttria pellets are irradiated with 120 MeV Ag9+ ions for fluence in the range 1 × 1012-3 × 1013 ions cm-2. Pristine and irradiated samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. XRD pattern of pristine Y2O3 nanocrystal reveal cubic structure. A new XRD peak at 30.36° is observed in pellet irradiated with 1 × 1013 ions cm-2. The peak at 30.36° is corresponding to (4 0 2 bar) plane of monoclinic phase. The diffraction intensity of (4 0 2 bar) plane increases with Ag9+ ion fluence. Raman spectrum of pristine pellet show bands corresponding to cubic phase. And, ion irradiated sample show new peaks at 410, 514 and 641 cm-1 corresponding monoclinic phase. HR-TEM and SAED pattern of ion irradiated sample confirmed the presence of monoclinic phase. Hence, it is confirmed that, 120 MeV Ag9+ ions induce phase transformation in nanocrystalline Y2O3.

  4. Current status of zirconia restoration.

    PubMed

    Miyazaki, Takashi; Nakamura, Takashi; Matsumura, Hideo; Ban, Seiji; Kobayashi, Taira

    2013-10-01

    During the past decade, zirconia-based ceramics have been successfully introduced into the clinic to fabricate fixed dental prostheses (FDPs), along with a dental computer-aided/computer-aided manufacturing (CAD/CAM) system. In this article (1) development of dental ceramics, (2) the current status of dental CAD/CAM systems, (3) CAD/CAM and zirconia restoration, (4) bond between zirconia and veneering ceramics, (5) bond of zirconia with resin-based luting agents, (6) surface finish of zirconia restoration and antagonist enamel wear, and (7) clinical evaluation of zirconia restoration are reviewed. Yttria partially stabilized tetragonal zirconia polycrystalline (Y-TZP) showed better mechanical properties and superior resistance to fracture than other conventional dental ceramics. Furthermore, ceria-stabilized tetragonal zirconia polycrystalline and alumina nanocomposites (Ce-TZP/A) had the highest fracture toughness and had resistance to low-temperature aging degradation. Both zirconia-based ceramics have been clinically available as an alternative to the metal framework for fixed dental prostheses (FDPs). Marginal adaptation of zirconia-based FDPs is acceptable for clinical application. The most frequent clinical complication with zirconia-based FDPs was chipping of the veneering porcelain that was affected by many factors. The mechanism for the bonding between zirconia and veneering ceramics remains unknown. There was no clear evidence of chemical bonding and the bond strength between zirconia and porcelain was lower than that between metal and porcelain. There were two alternatives proposed that might avoid chipping of veneering porcelains. One was hybrid-structured FDPs comprising CAD/CAM-fabricated porcelain parts adhering to a CAD/CAM fabricated zirconia framework. Another option was full-contour zirconia FDPs using high translucent zirconia. Combined application of silica coating and/or silane coupler, and 10-methacryloyloxydecyl dihydrogen phosphate is

  5. Microstructural aspects of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Mitchell, T. E.; Suhr, D. S.; Keller, R. J.; Lanteri, V.; Heuer, A. H.

    1985-01-01

    Various combination of plasma-sprayed bond coatings and zirconia ceramic coatings on a nickel-based superalloy substrate were tested by static thermal exposure at 1200 C and cyclic thermal exposure to 1000 C. The bond coats were based on Ni-Cr-Al alloys with additions of rare earth elements and Si. The ceramic coats were various ZrO2-Y2O3 compositions, of which the optimum was found to be ZrO2-8.9 wt percent Y2O3. Microstructural analysis showed that resistance to cracking during thermal exposure is strongly related to deleterious phase changes. Zones depleted of Al formed at the bond coat/ceramic coat interface due to oxidation and at the bond coat/substrate interface due to interdiffusion, leading eventually to breakdown of the bond coat. The 8.9 percent Y2O3 coating performed best because the as-sprayed metastable tetragonal phase converted slowly into the low-Y2O3 tetragonal plus high-Y2O3 cubic-phase mixture, so that the deleterious monoclinic phase was inhibited from forming. Failure appeared to start with the formation of circumferential cracks in the zirconia, probably due to compressive stresses during cooling, followed by the formation of radial cracks due to tensile stresses during heating. Cracks appeared to initiate at the Al2O3 scale/bond coat interface and propagate through the zirconia coating. Comparisons were made with the behavior of bulk ZrO2-Y2O3 and the relationship between the microstructure of the tetragonal phase and the phase diagram. A separate investigation was also made of the ZrO2-Al2O3 interface.

  6. The influence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns.

    PubMed

    Nakamura, K; Harada, A; Kanno, T; Inagaki, R; Niwano, Y; Milleding, P; Örtengren, U

    2015-07-01

    The present study analyzed the kinetics of low-temperature degradation (LTD) in zirconia, and evaluated the influence of LTD and cyclic loading on the fracture resistance of monolithic zirconia molar crowns. Bar-shaped zirconia specimens were divided into nine groups and autoclaved at 134°C for 0-200h to induce LTD. The surface fraction and penetration depth of the monoclinic phase were examined using X-ray diffraction and scanning electron microscopy. Monolithic zirconia molar crowns were prepared for crown fracture testing. The crowns were autoclaved for 0-100h (n=6) and cemented to dies. Six crown-die samples that were not autoclaved and six samples that were autoclaved for 100h were subjected to cyclic loading with a load of 300N for 240,000 cycles. All samples were tested in a load-to-failure test. The monoclinic fraction on the surface increased with autoclaving time and reached a plateau after 50h. The depth of the monoclinic phase increased without reaching a plateau. The fracture load of the crowns significantly decreased from 5683N (SD: 342) to 3975N (SD: 194) after 100h of autoclaving. Cyclic loading did not significantly affect the fracture resistance of the crowns in all cases. Kinetic analysis showed no linear correlation between the surface fraction and depth of the monoclinic phase after 50h of autoclaving. Even though LTD increased the monoclinic phase, resulting in lower strength, the fracture resistance of the monolithic zirconia crowns was still sufficient to withstand the loading conditions in the molar regions. PMID:25841216

  7. Modeling the solubility of zirconia in a repository for high-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Curti, E.; Hummel, W.

    1999-08-01

    The solubility of zirconia in a typical radioactive waste repository environment is examined in the light of available thermodynamic data, with particular focus on the influence of carbonate complexes. Using tetravalent actinides as chemical analogues, values for the stability constants of two Zr-carbonate complexes have been estimated. The solubility of monoclinic zirconia in a typical repository pore water has been then calculated with the help of a speciation model. Although our calculations indicate that the solubility of zirconia in a bentonite-filled repository environment will probably be between 10 -9 and 10 -8 M, there are large unavoidable uncertainties in these predictions, due to limitations in the available thermodynamic data. Similarly, although leaching experiments suggest that dissolution rates of zirconia are much smaller than for borosilicate glass, this comparison is inconclusive in view of the short leaching times involved in tests performed with zirconia. There is therefore a need for further solubility and kinetic studies of zirconia to assess the stability of this material in a radioactive waste disposal environment.

  8. Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia

    SciTech Connect

    Lian, Jie; Zhang, Jiaming; Namavar, Fereydoon; Zhang, Yanwen; Lu, Fengyuan; Haider, Hani; Garvin, Kevin; Weber, William J.; Ewing, Rodney C.

    2009-05-26

    Nanocrystalline zirconia has recently attracted extensive research interest due to its unique mechanical, thermal and electrical properties as compared to bulk zirconia counterparts, and it is of particular importance to control the phase stability of different polymorphs (amorphous, cubic, tetragonal and monoclinic phases) at different size regimes. In this paper, we performed ion beam bombardments on bilayers (amorphous and cubic) of pure nano-zirconia using 1 MeV Kr2+ irradiation. Transmission electron microscopy (TEM) analysis reveals that amorphous zirconia transforms to a tetragonal structure under irradiation at room temperature, suggesting that the tetragonal phase is more energetically favorable under these conditions. The final grain size of the tetragonal zirconia can be controlled by irradiation conditions. The irradiation-induced nanograins of tetragonal ZrO2 are stable at ambient conditions and maintain their physical integrity over a long period of time after irradiation. These results demonstrated that ion-beam modification methods provide the means to control the phase stability and structure of zirconia polymorphs.

  9. Reactions of yttria-stabilized zirconia with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1978-01-01

    The reactions between partially stabilized zirconia, containing 8 weight-percent yttria, and oxides and sulfates of various elements were studied at 1200, 1300, and 1400 C for times to 800, 400, and 200 hours, respectively. These oxides and sulfates represent impurities and additives potentially present in gas turbine fuels or impurities in the turbine combustion air as well as the elements of the substrate alloys in contact with zirconia. Based on the results, these compounds can be classified in four groups: (1) compounds which did not react with zirconia (Na2SO4, K2SO4, Cr2O3, Al2O3 and NiO); (2) compounds that reached completely with both zirconia phases (CaO, BaO, and BaSO4); (3) compounds that reacted preferentially with monoclinic zirconia (Na2O, K2O, CoO, Fe2O3, MgO, SiO2, and ZnO); and (4) compounds that reacted preferentially with cubic zirconia (V2O5, P2O5).

  10. Evaluation of translucency of monolithic zirconia and framework zirconia materials

    PubMed Central

    Tuncel, İlkin; Üşümez, Aslıhan

    2016-01-01

    PURPOSE The opacity of zirconia is an esthetic disadvantage that hinders achieving natural and shade-matched restorations. The aim of this study was to evaluate the translucency of non-colored and colored framework zirconia and monolithic zirconia. MATERIALS AND METHODS The three groups tested were: non-colored framework zirconia, colored framework zirconia with the A3 shade according to Vita Classic Scale, and monolithic zirconia (n=5). The specimens were fabricated in the dimensions of 15×12×0.5 mm. A spectrophotometer was used to measure the contrast ratio, which is indicative of translucency. Three measurements were made to obtain the contrast ratios of the materials over a white background (L*w) and a black background (L*b). The data were analyzed using the one-way analysis of variance and Tukey HSD tests. One specimen from each group was chosen for scanning electron microscope analysis. The determined areas of the SEM images were divided by the number of grains in order to calculate the mean grain size. RESULTS Statistically significant differences were observed among all groups (P<.05). Non-colored zirconia had the highest translucency with a contrast ratio of 0.75, while monolithic zirconia had the lowest translucency with a contrast ratio of 0.8. The mean grain sizes of the non-colored, colored, and monolithic zirconia were 233, 256, and 361 nm, respectively. CONCLUSION The translucency of the zirconia was affected by the coloring procedure and the grain size. Although monolithic zirconia may not be the best esthetic material for the anterior region, it may serve as an alternative in the posterior region for the bilayered zirconia restorations. PMID:27350851

  11. Nondestructive inspection of phase transformation in zirconia-containing hip joints by confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Wenliang; Sugano, Nobuhiko; Pezzotti, Giuseppe

    2013-12-01

    Environmental metastability of zirconia (ZrO2) ceramic in the human body [represented by a tetragonal-to-monoclinic (t→m) phase transformation] takes place on the surface of the artificial joint and proceeds with time toward its interior. Its quantitative characterization is mandatory for the safety of joint implants and consists of the assessment of the in-depth monoclinic profile fraction as compared to that of the initially untransformed material. We attempt to fully establish a characterization protocol and present two different nondestructive approaches for resolving highly graded phase-transformation profiles along the hip-joint subsurface by confocal Raman microprobe technique. A series of partially transformed tetragonal zirconia polycrystal and zirconia-toughened alumina ceramics are used as screening samples. Probe biases could be eliminated and the real transformation profiles retrieved through a deconvolution procedure of Raman experimental data collected as a function of pinhole aperture and focal depth, respectively. Confirmation of the confocal assessments was made by a destructive cross-sectional inspection by both laser optical microscope and Raman spectral line scans. This study unveils for the first time the real quantitative amount of surface phase-transformation fractions and the related subsurface profiles in zirconia-based retrieved medical samples.

  12. Nondestructive inspection of phase transformation in zirconia-containing hip joints by confocal Raman spectroscopy.

    PubMed

    Zhu, Wenliang; Sugano, Nobuhiko; Pezzotti, Giuseppe

    2013-12-01

    Environmental metastability of zirconia (ZrO2) ceramic in the human body [represented by a tetragonal-to-monoclinic (t→m) phase transformation] takes place on the surface of the artificial joint and proceeds with time toward its interior. Its quantitative characterization is mandatory for the safety of joint implants and consists of the assessment of the in-depth monoclinic profile fraction as compared to that of the initially untransformed material. We attempt to fully establish a characterization protocol and present two different nondestructive approaches for resolving highly graded phase-transformation profiles along the hip-joint subsurface by confocal Raman microprobe technique. A series of partially transformed tetragonal zirconia polycrystal and zirconia-toughened alumina ceramics are used as screening samples. Probe biases could be eliminated and the real transformation profiles retrieved through a deconvolution procedure of Raman experimental data collected as a function of pinhole aperture and focal depth, respectively. Confirmation of the confocal assessments was made by a destructive cross-sectional inspection by both laser optical microscope and Raman spectral line scans. This study unveils for the first time the real quantitative amount of surface phase-transformation fractions and the related subsurface profiles in zirconia-based retrieved medical samples. PMID:24297000

  13. Phase Stability of t;#8242;-Zirconia-Based Thermal Barrier Coatings: Mechanistic Insights

    SciTech Connect

    Krogstad, Jessica A.; Krämer, Stephan; Lipkin, Don M.; Johnson, Curtis A.; Mitchell, David R.G.; Cairney, Julie M.; Levi, Carlos G.

    2011-11-07

    The temperature capability of yttria-stabilized zirconia thermal barrier coatings (TBCs) is ultimately tied to the rate of evolution of the 'nontransformable' t' phase into a depleted tetragonal form predisposed to the monoclinic transformation on cooling. The t' phase, however, has been shown to decompose in a small fraction of the time necessary to form the monoclinic phase. Instead, a modulated microstructure consisting of a coherent array of Y-rich and Y-lean lamellar phases develops early in the process, with mechanistic features suggestive of spinodal decomposition. Coarsening of this microstructure leads to loss of coherency and ultimately transformation into the monoclinic form, making the kinetics of this process, and not the initial decomposition, the critical factor in determining the phase stability of TBCs. Transmission electron microscopy is shown to be essential not only for characterizing the microstructure but also for proper interpretation of X-ray diffraction analysis.

  14. Influence of starting precursors and synthesis methods on the physiochemical properties of zirconia

    SciTech Connect

    Gaydhankar, T.R.; Jha, R.K.; Nikalje, M.D.; Waghmare, K.J.

    2014-07-01

    Graphical abstract: Crystallite size of tetragonal phase of the zirconia samples prepared using different synthesis parameters and precursors as a function of calcination temperature. Surface area values of the zirconia samples calcined at 500 and 700 °C are in given brackets. - Highlights: • Zirconia prepared with modified sol–gel method is less stable compared with zirconia prepared by precipitation method. • Optimized synthesis conditions shifted the glow exotherm to higher temperature range indicating better thermal stability. • Tetragonal-zirconia could be synthesized in cost-effective manner using zirconium oxy-nitrate. • In our studies no co-relation between the surface area and crystallite size was observed. - Abstract: Under identical and judiciously pre-optimized synthesis conditions, the influence of different combinations of zirconium sources and/or post treatment conditions on structural properties, thermal stability, phase composition and morphology of zirconia has been investigated. High surface area tetragonal zirconia could be synthesized in a cost-effective manner from 1 M solution of zirconium oxy-nitrate at pH 11 using aqueous ammonia solution as a precipitant when calcined at 400 °C for 3 h. Irrespective of the preparation method, pH and starting precursor, zirconia samples prepared without digestion contained dominant monoclinic phase with some traces of tetragonal phase when calcined at 700 °C. Even though there is linear decrease in surface area with increase in the crystallite size for each sample as a function of calcination temperature, no co-relation between the surface area and crystallite size could be achieved. SEM images show agglomerated and irregular shape particles between 10 to 20 μm.

  15. Monoclinic Cu2Se3Sn.

    PubMed

    Gulay, L D; Daszkiewicz, M; Ostapyuk, T A; Klymovych, O S; Zmiy, O F

    2010-05-01

    A previously unknown modification of dicopper(I) triselenostannate(IV), Cu(2)Se(3)Sn, has been obtained from the Cu(2)Se-SnSe(2) quasi-binary system and investigated using X-ray single-crystal diffraction. The Se atoms are stacked in a closest-packed arrangement with the layers in the sequence ABC. The Cu atoms occupy one-third of the tetrahedral interstices, whereas the Sn atoms are located in one-sixth of the tetrahedral interstices. All the atoms occupy general positions. The structure possesses pseudo-inversion symmetry. The Cu(2)Se(3)Sn structure investigated in this paper (96 atoms per unit cell, ordered distribution of Cu and Sn over 12 cation positions) is a superstructure of the reported cubic (eight atoms per unit cell, random distribution of Cu and Sn over one cation position) and monoclinic (24 atoms per unit cell, ordered distribution of Cu and Sn over three cation positions) modifications. PMID:20442500

  16. Nitrogen-doped zirconia: A comparison with cation stabilized zirconia

    SciTech Connect

    Lee, Jong-Sook . E-mail: jong-sook.lee@fkf.mpg.de; Lerch, Martin; Maier, Joachim

    2006-01-15

    The conductivity behavior of nitrogen-doped zirconia is compared with that of zirconia doped with lower-valent cations and discussed in the framework of defect-defect interactions. While nominally introducing the same number of vacancies as yttrium, nitrogen dopants introduced in the anion sublattice of zirconia lead to substantially different defect kinetics and energetics. Compared to the equivalent yttrium doping nitrogen doping in the Y-Zr-O-N system substantially increases the activation energy and correspondingly decreases the conductivity at temperatures below 500{sup -}bar C in the vacancy range below 4mol%. The comparison of N-doped zirconia and zirconia systems doped with size-matched cation stabilizers, such as Sc, Yb and Y, shows that elastically driven vacancy-vacancy ordering interactions can phenomenologically account for the temperature- and composition-dependence. It is striking that materials with superior high-temperature conductivities due to weak dopant-vacancy interactions undergo severe deterioration at low temperature due to the strong vacancy-ordering. The analysis also explains qualitatively similar effects of Y co-doping in Yb-, Sc-, and N-doped zirconia. Small amount of Y in N-doped zirconia as well as in Sc-doped zirconia appears to hinder the formation of the long-range ordered phase and thus enhance the conductivity substantially.

  17. A facile soft template synthesis and characterization of PbHAsO{sub 4} nanocrystals

    SciTech Connect

    Xiu Zhiliang; Lue Mengkai . E-mail: mklu@icm.sdu.edu.cn; Zhou Guangjun; Gu Feng; Zhang Haiping; Xu Dong; Yuan Duorong

    2004-11-02

    Monoclinic lead hydrogen arsenate (LHA) nanocrystals with different crystallization morphologies and crystallite sizes were prepared successfully by a soft template synthesis method in the presence of sodium dodecylbenzenesulfonate (SDBS) or polyvinylpyrrolidone (PVP). The products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The possible mechanism of SDBS and PVP in the experiment was briefly illustrated.

  18. Study on optical properties of rare-earth ions in nanocrystalline monoclinic SrAl2O4: Ln (Ln = Ce3+, Pr3+, Tb3+).

    PubMed

    Fu, Zuoling; Zhou, Shihong; Zhang, Siyuan

    2005-08-01

    SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) nanocrystals have been synthesized by the combustion method. The results of XRD indicated that the resulting SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) nanocrystals have a reduced and distorted monoclinic lattice compared with bulk materials. The spectral properties are measured, and it is found that the excitation peaks of 5d energy levels red shift in nanocrystals in contrast to that in bulk crystals. The mechanism of spectra and energy changes is investigated. The order of the degree of red shift for nano SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) crystals is Pr(3+) > Ce(3+) > Tb(3+), which is in good agreement with our predicted results. PMID:16852811

  19. Sintering additives for zirconia ceramics

    SciTech Connect

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification.

  20. Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic.

    PubMed

    Ramos, Gabriela Freitas; Pereira, Gabriel Kalil Rocha; Amaral, Marina; Valandro, Luiz Felipe; Bottino, Marco Antonio

    2016-01-01

    The present study investigated the effect of grinding on roughness, flexural strength, and reliability of a zirconia ceramic before and after heat treatment. Seven groups were tested (n = 15): a control group (labeled CG, untreated), and six groups of samples ground with diamond discs, simulating diamond burs, with grits of 200 µm (G80); 160 µm (G120), and 25 µm (G600), either untreated or heat-treated at 1200°C for 2 h (labeled A). Yttria tetragonal zirconia polycrystal discs were manufactured, ground, and submitted to roughness and crystalline phase analyses before the biaxial flexural strength test. There was no correlation between roughness (Ra and Rz) and flexural strength. The reliability of the materials was not affected by grinding or heat treatment, but the characteristic strength was higher after abrasion with diamond discs, irrespective of grit size. The X-ray diffraction data showed that grinding leads to a higher monoclinic (m) phase content, whereas heat treatment produces reverse transformation, leading to a fraction of m-phase in ground samples similar to that observed in the control group. However, after heat treatment, only the G80A samples presented strength similar to that of the control group, while the other groups showed higher strength values. When zirconia pieces must be adjusted for clinical use, a smoother surface can be obtained by employing finer-grit diamond burs. Moreover, when the amount of monoclinic phase is related to the degradation of zirconia, the laboratory heat treatment of ground pieces is indicated for the reverse transformation of zirconia crystals. PMID:26676188

  1. Growth of platinum nanocrystals

    SciTech Connect

    2009-01-01

    Movie showing the growth of platinum nanocrystals in a liquid cell observed in situ using the JEOL 3010 TEM at the National Center for Electron Microscopy. This is the first ever-real time movie showing nucleation and growth by monomer attachment or by smaller nanocrystals coalescing to form larger nanocrystals. All the nanocrystals end up being roughly the same shape and size. http://newscenter.lbl.gov/feature-stories/2009/08/04/growth-spurts/

  2. Monoclinic deformation of calcite crystals at ambient conditions

    NASA Astrophysics Data System (ADS)

    Przeniosło, R.; Fabrykiewicz, P.; Sosnowska, I.

    2016-09-01

    High resolution synchrotron radiation powder diffraction shows that the average crystal structure of calcite at ambient conditions is described with the trigonal space group R 3 bar c but there is a systematic hkl-dependent Bragg peak broadening. A modelling of this anisotropic peak broadening with the microstrain model from Stephens (1999) [15] is presented. The observed lattice parameters' correlations can be described by assuming a monoclinic-type deformation of calcite crystallites. A quantitative model of this monoclinic deformation observed at ambient conditions is described with the space group C 2 / c . The monoclinic unit cell suggested at ambient conditions is related with the monoclinic unit cell reported in calcite at high pressure (Merrill and Bassett (1975) [10]).

  3. Dielectric relaxation in monoclinic hydroxyapatite: Observation of hydroxide ion dipoles

    NASA Astrophysics Data System (ADS)

    Horiuchi, N.; Wada, N.; Nozaki, K.; Nakamura, M.; Nagai, A.; Yamashita, K.

    2016-02-01

    We prepared monoclinic hydroxyapatite (HAp) ceramics and measured their dielectric properties. The dielectric dispersion that was observed in the monoclinic HAp consisted of two different relaxations and could be expressed by a summation of two Debye-like relaxations. One relaxation was ascribed to the reorientational motions of OH- ions. The temperature dependence of the relaxation time obeyed the Arrhenius equation. The relaxation time decreased with temperature but decreased discontinuously at 483 K, the monoclinic-hexagonal phase transition temperature of HAp. Correspondingly, the activation energy changed from 0.74 eV for the monoclinic phase to 0.43 eV for the hexagonal phase. The results suggest that the mobility of the OH- ions increases discontinuously with the phase transition to hexagonal HAp. However, critical phenomena, such as critical slowing down, were not observed.

  4. EFFECT OF (Bi2O3)0.75(Y2O3)0.25 ADDITION ON MICROSTRUCTURES AND IONIC CONDUCTIVITIES OF CODOPED ZIRCONIA

    NASA Astrophysics Data System (ADS)

    Chou, Chen Chia; Huang, Chun Feng; Yeh, Tsung Her

    2012-09-01

    Variation of microstructures and ionic conductivities in (Bi2O3)0.75(Y2O3)0.25 (YSB) modified electrolyte of 8 mol% Y2O3 stabilized zirconia (8YSZ) and YSB modified codoped zirconia (ZrO2)0.92(Y2O3)0.075(MgO)0.005 (YSZM) is investigated in this work. The results demonstrated that a small amount of δ-YSB addition is effective in reducing the sintering temperature of 8YSZ from 1500 to 1200°C and promoting the densification rate of ceramics. Compared to 8YSZ electrolyte, it is interesting that a very limited amount of monoclinic ZrO2 was observed due to the MgO stabilizer in YSB modified codoped zirconia electrolyte. Besides, enhancement of ionic conductivity in δ-YSB modified codoped zirconia is evidently increased by 67% in comparison to the specimen of 8YSZ electrolyte.

  5. Synthesis of nanocrystalline zirconia by amorphous citrate route: structural and thermal (HTXRD) studies

    SciTech Connect

    Bhagwat, Mahesh; Ramaswamy, Veda

    2004-09-01

    Nanocrystalline zirconia powder with a fairly narrow particle size distribution has been synthesized by the amorphous citrate route. The sample obtained has a high BET surface area of 89 m{sup 2} g{sup -1}. Rietveld refinement of the powder X-ray diffraction (XRD) profile of the zirconia sample confirms stabilization of zirconia in the tetragonal phase with around 8% monoclinic impurity. The data show the presence of both anionic as well as cationic vacancies in the lattice. Crystallite size determined from XRD is 8 nm and is in close agreement with the particle size determined by TEM. The in situ high temperature-X-ray diffraction (HTXRD) study revealed high thermal stability of the mixture till around 1023 K after which the transformation of tetragonal phase into the monoclinic phase has been seen as a function of temperature till 1473 K. This transformation is accompanied by an increase in the crystallite size of the sample from 8 to 55 nm. The thermal expansion coefficients are 9.14 x 10{sup -6} K{sup -1} along 'a'- and 15.8 x 10{sup -6} K{sup -1} along 'c'-axis. The lattice thermal expansion coefficient in the temperature range 298-1623 K is 34.6 x 10{sup -6} K{sup -1}.

  6. Development of a novel zirconia dental post resistant to hydrothermal degradation

    NASA Astrophysics Data System (ADS)

    Camposilvan, E.; Marro, F. G.; Mestra, A.; Anglada, M. J.

    2012-02-01

    Tetragonal Zirconia Polycrystals stabilized with 3% mol. content of yttria (3Y-TZP) has excellent properties in terms of strength and fracture toughness. These properties are mostly imputable to the transformation toughening mechanism, by which the doped metastable tetragonal phase of zirconia transforms to monoclinic under applied stress ahead of a crack. This phenomenon is accompanied by a volume expansion of 5%, and increases the resistance to crack growth, thus leading to higher toughness and strength. An important drawback of this material is represented by the Low Temperature Degradation (LTD or aging), which consists in the progressive tetragonal-to-monoclinic phase transformation by the influence of water. This work focuses on the improvement of 3Y-TZP aging behavior in order to develop a novel dental post, by means of the addition of ceria from the surface. This was achieved through the impregnation of the pre-sintered samples with a solution containing Cerium, followed by sintering. Various pre-sintering temperatures were studied in terms of microstructure, mechanical properties and aging resistance. The novel zirconia dental posts developed in this work are much more resistant to LTD as compared to the base material with no loss in mechanical properties.

  7. Control of the nanocrystalline zirconia structure through a colloidal sol-gel process

    NASA Astrophysics Data System (ADS)

    Gossard, A.; Grasland, F.; Le Goff, X.; Grandjean, A.; Toquer, G.

    2016-05-01

    A simple method to synthesize tetragonal zirconia stabilized at ambient temperature is developed and allows the monitoring of the tetragonal-monoclinic transition via a colloidal sol-gel process. By increasing the pH of an aqueous solution consisted of a zirconium precursor and a complexing agent (acetylacetone), a colloidal sol and then a gel can be formed under slightly acidic condition. After a drying step, tetragonal zirconia is easily obtained with an adequate thermal treatment at low temperature. The tetragonal-monoclinic transition occurs when the calcination temperature is increased. The relationship between the crystallite size, the crystallographic structure and the thermal treatment has been investigated by X-Ray Diffraction and the behaviour of the system from the gel state to the final powder has been studied by using Small Angle X-Ray Scattering and thermal analysis techniques. We demonstrate that compared to a chemical precipitation route, this colloidal sol-gel process allows the nanostructure of the material to be controlled due to the formation of primary nanoparticles. The presence of these nanoparticles makes possible the specific determination of the zirconia crystallographic phase through an accurate control of the nanostructure during the thermal treatment.

  8. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    SciTech Connect

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  9. Gelcast zirconia-alumina composites

    SciTech Connect

    Omatete, O.O.; Bleier, A.; Westmoreland, C.G.; Young, A.C.

    1991-01-01

    Near net-shaped parts of zirconia-alumina composites have been successfully formed by gelcasting, a technique which utilizes in situ polymerization of acrylamide monomers. The high solids loading required for gelcasting ({approximately}50 vol %) was obtained by controlling the pH-dependent stability of the aqueous zirconia-alumina suspensions. A strong correspondence was found among the surface charges on the particles, colloidal stability, and the maximum solids loading. 14 refs., 3 figs., 2 tabs.

  10. Photoluminescence of Eu{sup 3+}-doped LaPO{sub 4} nanocrystals synthesized by combustion method

    SciTech Connect

    Xiu Zhiliang; Liu Suwen; Lue Mengkai . E-mail: mklu@icm.sdu.edu.cn; Zhang Haiping; Zhou Guangjun

    2006-03-09

    Eu{sup 3+}-doped LaPO{sub 4} nanocrystals were synthesized for the first time by a combustion method with urea as a fuel calcined at 700 deg. C. The diffraction profile of the obtained sample was indexed as a monoclinic monazite-structure by X-ray diffraction (XRD) data. The obtained nanocrystals appeared to be short rod-like with diameters of 5-10 nm and lengths of 20-70 nm. The luminescence intensities of Eu{sup 3+}-doped LaPO{sub 4} nanocrystals were found to be strongly dependent on the quantities of urea added and the concentration of Eu{sup 3+}.

  11. Monoclinic phases arising across thermal inter-ferroelectric phase transitions

    NASA Astrophysics Data System (ADS)

    Gu, Yijia; Xue, Fei; Lei, Shiming; Lummen, Tom T. A.; Wang, Jianjun; Gopalan, Venkatraman; Chen, Long-Qing

    2014-07-01

    Thermotropic phase boundaries (TPBs), as thermal analogs of morphotropic phase boundaries (MPBs), are associated with the thermal inter-ferroelectric phase transitions. Similar to an MPB, a TPB exhibits a characteristically flattened energy profile which favors polarization rotation, thus giving rise to a structurally bridging low-symmetry phase. We report on the kinetic process of thermal inter-ferroelectric phase transitions in BaTiO3 and KNbO3 using the phase-field method. The domain structures are found to play key roles in stabilizing the monoclinic phase. In simple domain structures, the monoclinic phase is a transient phase and cannot be stabilized into its neighboring phase regimes. However, by introducing structural inhomogeneity (orthogonal in-plane domain twins), we found that the monoclinic phase can be stabilized over a range of over 100 K across the transition. As a result, the piezoelectric properties are enhanced due to the stabilized monoclinic phase. In addition to the emergence of new piezoelectric components with monoclinic symmetry, most of the original components present in the tetragonal symmetry also show substantial enhancement with the rotation of polarization.

  12. In-situ X-ray diffraction analysis of zirconia layer formed on zirconium alloys oxidized at high temperature

    NASA Astrophysics Data System (ADS)

    Gosset, D.; Le Saux, M.

    2015-03-01

    In the case of a hypothetical loss of primary coolant accident (LOCA) in a light water reactor, the zirconium alloys fuel cladding would be oxidized in steam at high temperature, typically in the range 800-1200 °C. The monoclinic to tetragonal phase martensitic transition of zirconia occurs within this temperature range and complex phenomena possibly having an impact on the oxidation kinetics are then to be expected. In order to provide an accurate description of the structure and microstructure of the oxide layers, systematic X-ray diffraction analyses have been performed in-situ under oxidizing atmosphere at high temperature (between 800 and 1100 °C) on Zircaloy-4 and M5™ sheet samples. It was confirmed that the volume fraction of the tetragonal and monoclinic zirconia phases formed during oxide growth drastically depends on the oxidation temperature. For example, the few outer microns of the oxide are fully tetragonal above 1050 °C and contain only 20% of tetragonal phase at 800 °C. It was also shown that cooling after oxidation induces irreversible phase transitions within the oxide. As a consequence, both the structure and the microstructure of the growing oxide cannot be observed post-facto, neither at room temperature nor after reheating at the prior oxidation temperature. It has been deduced from microstructural analyses that the grain size of the tetragonal zirconia phase is nanometric, about 100 nm during oxidation at 1100 °C down to 20 nm after cooling down to room temperature. This small grain size allows the stabilization of the tetragonal phase. The lattice parameters of the monoclinic and tetragonal zirconia phases have been analyzed, during both high temperature oxidation and cooling. In both cases, it appears the 'a' and 'b' cell parameters of the monoclinic phase are strongly constrained by the tetragonal 'a' one. The structural characteristics of the oxide formed at high temperature on Zircaloy-4 and M5™ are quite similar. All those

  13. Translucency of monolithic and core zirconia after hydrothermal aging

    PubMed Central

    Fathy, Salma M.; El-Fallal, Abeer A.; El-Negoly, Salwa A.; El Bedawy, Abu Baker

    2015-01-01

    Abstract Objective: To evaluate the hydrothermal aging effect on the translucency of partially stabilized tetragonal zirconia with yttria (Y-TZP) used as monolithic or fully milled zirconia and of core type. Methods: Twenty disc-shaped specimens (1 and 10 mm) for each type of monolithic and core Y-TZP materials were milled and sintered according to the manufacturer’s instruction. The final specimens were divided into two groups according to the type of Y-TZP used. Translucency parameter (TP) was measured over white and black backgrounds with the diffuse reflectance method; X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to analyze the microstructure of both Y-TZP types before and after aging. Data for TP values was statistically analyzed using Student’s t-test. Results: Monolithic Y-TZP showed the highest TP mean value (16.4 ± 0.316) before aging while core Y-TZP showed the lowest TP mean value (7.05 ± 0.261) after aging. There was a significant difference between the two Y-TZP types before and after hydrothermal aging. XRD analysis showed increases in monoclinic content in both Y-TZP surfaces after aging. Conclusion: Monolithic Y-TZP has a higher chance to low-temperature degradation than core type, which may significantly affect the esthetic appearance and translucency hence durability of translucent Y-TZP. PMID:27335897

  14. Synthesis of nano-crystalline multifibrous zirconia needle

    SciTech Connect

    Biswas, Mridula; Bandyopadhyay, Siddhartha

    2013-06-01

    Graphical abstract: - Highlights: • Zirconia needles have been successfully prepared by simple inorganic sol–gel route. • The shape of the needles was retained after firing with aspect ratio > 400. • Needles are composed of multiple fibres. • Fibres are composed of nano crystals. - Abstract: Zirconia needles have been successfully synthesized using a simple inorganic sol–gel process without using any template. The method employs mixture of zirconium oxychloride octahydrate and sulphuric acid in aqueous medium. This process requires heat treatment at 40 °C for 2 h in an oven for nucleus formation. Complete formation of needle occurs after 17 days. The green needle retained its original shape after calcination at 1200 °C. Fired needles were of 1–2 cm in length and 5–50 μm in diameter and possess monoclinic phase. Needles are composed of multiple fibres. Depending on the heat treatment temperature, crystallite size varies in the range of 8 to around 300 nm.

  15. Protection of yttria-stabilized zirconia for dental applications by oxidic PVD coating.

    PubMed

    Hübsch, C; Dellinger, P; Maier, H J; Stemme, F; Bruns, M; Stiesch, M; Borchers, L

    2015-01-01

    In this study, the application of transparent physical vapor deposition (PVD) coatings on zirconia ceramics was examined as an approach to retard the low-temperature degradation of zirconia for dental applications. Transparent monolayers of titanium oxide (TixOy) and multilayers consisting of titanium oxide-alumina-titanium oxide (TixOy-AlxOy-TixOy) were deposited onto standardized discs of 3Y-TZP using magnetron sputtering. Using X-ray photospectroscopy and time-of-flight secondary-ion mass spectrometry, the compositions of the coatings were verified, and an approximate thickness of 50 nm for each type of coating was ascertained. After aging the coated and uncoated samples in water vapor at 134°C and 3 bar for 4, 8, 16, 32, 64 and 128 h, the monoclinic phase content was determined using X-ray diffraction, and its impact on mechanical properties was assessed in biaxial flexural strength tests. In addition, the depth of the transformation zone was measured from scanning electron microscopy images of the fracture surfaces of hydrothermally aged samples. The results revealed that the tetragonal-to-monoclinic phase transformation of the zirconia ceramic was retarded by the application of PVD coatings. During the first stages of aging, the coated samples exhibited a significantly lower monoclinic phase content than the uncoated samples and, after 128 h of aging, showed a transformation zone which was only ∼12-15 μm thick compared to ∼30 μm in the control group. Biaxial flexural strength decreased by ∼10% during aging and was not influenced by the application of a PVD coating. PMID:25278443

  16. Zirconia dental implants degradation by confocal Raman microspectroscopy: analytical simulation and experiments

    PubMed Central

    Djaker, Nadia; Wulfman, Claudine; Sadoun, Michaël; Lamy de la Chapelle, Marc

    2013-01-01

    Subsurface hydrothermal degradation of yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) is presented. Evaluation of low temperature degradation (LTD) phase transformation induced by aging in 3Y-TZP is experimentally studied by Raman confocal microspectroscopy. A non-linear distribution of monoclinic volume fraction is determined in depth by using different pinhole sizes. A theoretical simulation is proposed based on the convolution of the excitation intensity profile and the Beer-Lambert law (optical properties of zirconia) to compare between experiment and theory. The calculated theoretical degradation curves matche closely to the experimental ones. Surface transformation (V0) and transformation factor in depth (T) are obtained by comparing simulation and experience for each sample with nondestructive optical sectioning. PMID:23667788

  17. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    NASA Astrophysics Data System (ADS)

    Gómez, A.; Villanueva, R.; Vie, D.; Murcia-Mascaros, S.; Martínez, E.; Beltrán, A.; Sapiña, F.; Vicent, M.; Sánchez, E.

    2013-01-01

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures.

  18. Optical, structural and morphological properties of zirconia nanoparticles prepared by laser ablation in liquids

    SciTech Connect

    Borodina, T I; Val'yano, G E; Gololobova, O A; Karpukhin, V T; Malikov, M M; Strikanov, D A

    2014-09-30

    Absorption, fluorescence and Raman spectra, the structural composition and morphology of zirconia nanoparticles synthesised via the laser ablation of a metal in water and aqueous solutions of the sodium dodecyl sulphate (SDS) surfactant have been studied using absorption spectroscopy, Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The results demonstrate that, exposing zirconium to intense nanosecond laser pulses at a high repetition rate in these liquids, one can obtain stable cubic, tetragonal and monoclinic crystalline phases of nanozirconia with a particle size in the range 40 – 100 nm and a Zr – SDS organic – inorganic composite. The absorption and fluorescence of the synthesised zirconia strongly depend on the SDS concentration in the starting solution. The gas – vapour bubbles forming during ablation are shown to serve as templates for the formation of hollow nanoand microstructures. (nanostructures)

  19. Zirconia dental implants degradation by confocal Raman microspectroscopy: analytical simulation and experiments.

    PubMed

    Djaker, Nadia; Wulfman, Claudine; Sadoun, Michaël; Lamy de la Chapelle, Marc

    2013-05-01

    Subsurface hydrothermal degradation of yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) is presented. Evaluation of low temperature degradation (LTD) phase transformation induced by aging in 3Y-TZP is experimentally studied by Raman confocal microspectroscopy. A non-linear distribution of monoclinic volume fraction is determined in depth by using different pinhole sizes. A theoretical simulation is proposed based on the convolution of the excitation intensity profile and the Beer-Lambert law (optical properties of zirconia) to compare between experiment and theory. The calculated theoretical degradation curves matche closely to the experimental ones. Surface transformation (V0) and transformation factor in depth (T) are obtained by comparing simulation and experience for each sample with nondestructive optical sectioning. PMID:23667788

  20. Growth and characterization of low yttria-doped fully cubic stabilized zirconia-based single crystals

    NASA Astrophysics Data System (ADS)

    Berendts, Stefan; Lerch, Martin

    2013-05-01

    For the first time, fully cubic stabilized zirconia-based single crystals with large nitrogen contents and optimized anion vacancy concentrations, interesting for new electrochemical devices such as nitrogen sensors, were prepared by a two-step approach. This two-step approach combines growth of nitrogen-free zirconia single crystals via the skull melting method and their subsequent direct nitridation to form cubic nitrogen doped zirconia-based single crystals. In the initial step, zirconia crystals with various yttria contents (2, 3, 4 and 6 mol%) were prepared by the skull-melting technique. As determined by X-ray powder diffraction, tetragonal stabilized crystals were obtained, containing monoclinic segregations, when the yttria content of the grinded crystals was below 4 mol%. Subsequently, the crystals were nitrided with nitrogen gas at 1500 °C using different reaction times. Nitrogen content and crystallographic identity of the nitrided samples were investigated, revealing successful nitrogen incorporation and, hence, full cubic stabilization of the initial nitrogen-free samples also for the lowest yttria content. The degree of deviation from the cubic fluorite-type structure is discussed with respect to crystallographic parameters ('pseudo-cubic factor' etc.). The stabilization of cubic or tetragonal phases to ambient temperature is related to the anion vacancy concentration with respect to different impacts of the anion vacancies generated either by yttria or nitrogen incorporation (effective vacancy concentration [Veff]).

  1. The Zirconia Ceramic: Strengths and Weaknesses

    PubMed Central

    Daou, Elie E.

    2014-01-01

    Metal ceramic restorations were considered the gold standard as reliable materials. Increasing demand for esthetics supported the commercialization of new metal free restorations. A growing demand is rising for zirconia prostheses. Peer-reviewed articles published till July 2013 were identified through a Medline (Pubmed and Elsevier). Emphasizing was made on zirconia properties and applications. Zirconia materials are able to withstand posterior physiologic loads. Although zirconia cores are considered as reliable materials, these restorations are not problem free. PMID:24851138

  2. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  3. Low temperature synthesis of high purity monoclinic celsian using topaz

    SciTech Connect

    Talmy, I.G.; Haught, D.A.

    1991-02-19

    This patent describes a process for preparing monoclinic BaO {center dot} Al{sub 2}O{sub 3} {center dot} 2SiO{sub 2}. It comprises: forming an intimate reaction mixture of powders of topaz and BaCO{sub 3} wherein the molar ratio of topaz to BaCO{sub 3} is from 2:1 to 4:1; and heating the reaction mixture to initiate a celsian formation reaction, in an atmosphere of gases generated by the celsian formation reaction, at a temperature in the range of from 900{degrees} C. to less than 1590{degrees} C. until the monoclinic celsian is produced.

  4. Low temperature environmental degradation of zirconia ceramics

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenbo

    2005-11-01

    The low temperature environmental degradation (LTED) of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) has been prevented, or at least retarded, by using both bulk doping and surface doping methods with either cation, or anion, stabilizers. The introduction of both mullite and alumina into 3Y-TZP by a bulk-doping method was found to be effective in suppressing the tetragonal-->monoclinic transformation induced by water during hydrothermal treatment thus giving rise to better mechanical properties. The beneficial effects of alumina on the phase stability of the 3Y-TZP ceramic are considered to be due to the increase in the elastic modulus of the constraining matrix, as well as to the segregation of A12O3 at grain boundaries. The LTED transformation kinetics as determined by x-ray diffraction (XRD) and White Light Interferometer (WLI) analysis showed that the isothermal tetragonal-to-monoclinic transformation starts from the surface and has an incubation-nucleation-growth mechanism which can be described by the Johnson-Mehl-Avrami equation. The degradation of Y-TZP ceramic after hydrothermal treatment can be effectively overcome by surface doping by a solid diffusion method with tetravalent dopants: CeO2 and GeO2; with trivalent dopants: La2O 3 and Fe2O3; and with divalent dopants: CuO and MgO. For surface CeO2-, GeO2- and Fe2O 3-doping, this degradation inhibition behaviour is attributed to a localized increase in cation stabilizer content which satisfies the requirements for stabilization of the tetragonal phase. However, in each case, the stability mechanisms are different. For surface La2O3doping, surface doping overcomes the formation of La2O3 and La 2Zr2O7 since the extra La2O3 can further diffuse to the center of the 3Y-TZP ceramic. For CuO-doping, small amounts of CuO form a liquid that can act as a conduit for the re-distribution of yttria. In the case of surface MgO modification, the stabilization results from the isolated nature of the

  5. Metal Adatoms and Clusters on Ultrathin Zirconia Films

    PubMed Central

    2016-01-01

    Nucleation and growth of transition metals on zirconia has been studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Since STM requires electrical conductivity, ultrathin ZrO2 films grown by oxidation of Pt3Zr(0001) and Pd3Zr(0001) were used as model systems. DFT studies were performed for single metal adatoms on supported ZrO2 films as well as the (1̅11) surface of monoclinic ZrO2. STM shows decreasing cluster size, indicative of increasing metal–oxide interaction, in the sequence Ag < Pd ≈ Au < Ni ≈ Fe. Ag and Pd nucleate mostly at steps and domain boundaries of ZrO2/Pt3Zr(0001) and form three-dimensional clusters. Deposition of low coverages of Ni and Fe at room temperature leads to a high density of few-atom clusters on the oxide terraces. Weak bonding of Ag to the oxide is demonstrated by removing Ag clusters with the STM tip. DFT calculations for single adatoms show that the metal–oxide interaction strength increases in the sequence Ag < Au < Pd < Ni on monoclinic ZrO2, and Ag ≈ Au < Pd < Ni on the supported ultrathin ZrO2 film. With the exception of Au, metal nucleation and growth on ultrathin zirconia films follow the usual rules: More reactive (more electropositive) metals result in a higher cluster density and wet the surface more strongly than more noble metals. These bind mainly to the oxygen anions of the oxide. Au is an exception because it can bind strongly to the Zr cations. Au diffusion may be impeded by changing its charge state between −1 and +1. We discuss differences between the supported ultrathin zirconia films and the surfaces of bulk ZrO2, such as the possibility of charge transfer to the substrate of the films. Due to their large in-plane lattice constant and the variety of adsorption sites, ZrO2{111} surfaces are more reactive than many other oxygen-terminated oxide surfaces. PMID:27213024

  6. Electrochromic nanocrystal quantum dots.

    PubMed

    Wang, C; Shim, M; Guyot-Sionnest, P

    2001-03-23

    Incorporating nanocrystals into future electronic or optoelectronic devices will require a means of controlling charge-injection processes and an understanding of how the injected charges affect the properties of nanocrystals. We show that the optical properties of colloidal semiconductor nanocrystal quantum dots can be tuned by an electrochemical potential. The injection of electrons into the quantum-confined states of the nanocrystal leads to an electrochromic response, including a strong, size-tunable, midinfrared absorption corresponding to an intraband transition, a bleach of the visible interband exciton transitions, and a quench of the narrow band-edge photoluminescence. PMID:11264530

  7. Preparation and Evaluation of a Zirconia/Oligosiloxane Nanocomposite for LED Encapsulation.

    PubMed

    Chung, Pao-Tang; Chiou, Shian-Hau; Tseng, Chin-Yao; Chiang, Anthony Shiaw-Tseh

    2016-04-20

    A zirconia/oligosiloxane nanocomposite encapsulant has been developed and tested in a high-power LED package against commercial silicone resins. The composite was a marriage of zirconia nanocrystals modified with butyric acid (BA) and 3-methacryloxy propyl trimethoxysilane (MPTMS) and a high-index methacryloxy-oligosiloxanes resin made from MPTMS plus dimethyl, diphenyl, and triphenyl silanes. The modified zirconia had an index of 1.762 (@589 nm) and was dispersible in many solvents. The oligosiloxane resin, however, had an index of 1.5413 with good encapsulation properties and low viscosity allowing the incorporation of more zirconia. The final nanocomposite showed a refractive index of 1.625 with high transparency and a wavelength-independent scattering, both desirable for the light extraction from LED. When tested in a high-power LED package, the composite encapsulant resulted in 13% more light output compared to the commercial encapsulant (OE-6630, Dow Corning Corp.) and showed longer than 1000 h of lifetime (L70) under the steady-state Temperature Humidity Bias (THB) test. PMID:27029544

  8. Biomineralization: Nanocrystals by design

    NASA Astrophysics Data System (ADS)

    Shang, Li; Nienhaus, Gerd Ulrich

    2015-10-01

    Nanocrystals with precisely defined structures offer promise as components of advanced materials yet they are challenging to create. Now, a nanocrystal made up of seven cadmium and twelve chloride ions has been synthesized via a biotemplating approach that uses a de novo designed protein.

  9. Doping semiconductor nanocrystals.

    PubMed

    Erwin, Steven C; Zu, Lijun; Haftel, Michael I; Efros, Alexander L; Kennedy, Thomas A; Norris, David J

    2005-07-01

    Doping--the intentional introduction of impurities into a material--is fundamental to controlling the properties of bulk semiconductors. This has stimulated similar efforts to dope semiconductor nanocrystals. Despite some successes, many of these efforts have failed, for reasons that remain unclear. For example, Mn can be incorporated into nanocrystals of CdS and ZnSe (refs 7-9), but not into CdSe (ref. 12)--despite comparable bulk solubilities of near 50 per cent. These difficulties, which have hindered development of new nanocrystalline materials, are often attributed to 'self-purification', an allegedly intrinsic mechanism whereby impurities are expelled. Here we show instead that the underlying mechanism that controls doping is the initial adsorption of impurities on the nanocrystal surface during growth. We find that adsorption--and therefore doping efficiency--is determined by three main factors: surface morphology, nanocrystal shape, and surfactants in the growth solution. Calculated Mn adsorption energies and equilibrium shapes for several nanocrystals lead to specific doping predictions. These are confirmed by measuring how the Mn concentration in ZnSe varies with nanocrystal size and shape. Finally, we use our predictions to incorporate Mn into previously undopable CdSe nanocrystals. This success establishes that earlier difficulties with doping are not intrinsic, and suggests that a variety of doped nanocrystals--for applications from solar cells to spintronics--can be anticipated. PMID:16001066

  10. Microwave synthesis of zirconia nanoparticles.

    PubMed

    Hembram, K P S S; Rao, G Mohan

    2008-08-01

    Zirconia nanoparticles were prepared by microwave synthesis from zirconium acetate hydroxide. The samples were characterized by various techniques like X-ray diffraction (XRD), Scanning Electron microscopy (SEM), Transmission Electron microscopy (TEM), Raman Spectroscopy (RS). By XRD the average crystallite size is obtained around 10 nm and which is comparable to observation by SEM and TEM. PMID:19049194

  11. Different structures of monoclinic martensitic phases in titanium nickelide

    NASA Astrophysics Data System (ADS)

    Voronin, V. I.; Naish, V. E.; Novoselova, T. V.; Pushin, V. G.; Sagaradze, I. V.

    2000-03-01

    The detailed theoretical and experimental analysis has been undertaken to bring to light the true structure of the monoclinic phase in titanium nickelide (NiTi). Theoretical models for such a phase have been proposed to describe the experimental data. In addition to the well-known B19‧ phase two more structures - new monoclinic M phase with Cm space group and triclinic phase with P1 space group - have been produced and analyzed in detail. Diffraction patterns have been obtained from different NiTi samples by using the neutron diffractometer IVV2 at different temperatures. From the refinement by DBWS-9411 program all these neutron patterns have been decoded successfully. The proposed new structures and stereotype B19‧ one agree with correspondent experimental data and the agreement is quite good.

  12. Alpha decay self-damage in cubic and monoclinic zirconolite

    SciTech Connect

    Clinard, F.W. Jr.; Land, C.C.; Peterson, D.E.; Rohr, D.L.; Roof, R.B.

    1981-01-01

    Samples of primarily-monoclinic /sup 238/Pu-doped zirconolite were stored at ambient temperature to allow accumulation of alpha decay self-damage to a dose of 1 x 10/sup 24/ ..cap alpha../m/sup 3/ (equivalent to a SYNROC age of approx. 10/sup 3/y). Bulk swelling reached 2.3 vol% with no tendency toward saturation, a damage response similar to that observed for cubic Pu-doped zirconolite. X-ray volumetric swelling at 4 x 10/sup 24/ ..cap alpha../m/sup 3/ was 1 vol%, considerably less than that for the cubic material. Changes in cell dimensions differed significantly from those reported by others for a monoclinic natural mineral. Extensive microcracking was observed, and is attributed at least partially to swelling differences between the matrix and minor phases.

  13. Sonocrystallization yields monoclinic paracetamol with significantly improved compaction behavior.

    PubMed

    Bučar, Dejan-Krešimir; Elliott, James A; Eddleston, Mark D; Cockcroft, Jeremy K; Jones, William

    2015-01-01

    Ultrasound-assisted crystallization (sonocrystallization) was used to prepare a mixture of nano- and micrometer-sized crystals of the monoclinic form of paracetamol-a widely used analgesic known for its particularly problematic mechanical behavior under compression (i.e. poor tabletability). The nano- and micrometer-sized crystals yielded a powder which exhibits elastic moduli and bulk cohesions that are significantly higher than those observed in samples consisting of macrometer-sized crystals, thus leading to enhanced tabletability without the use of excipients, particle coating, salt, or cocrystal formation. Experimental compaction and finite element analysis were utilized to rationalize the significantly improved compaction behavior of the monoclinic form of paracetamol. PMID:25370777

  14. Assignments of the Raman modes of monoclinic erbium oxide

    SciTech Connect

    Yan, D.; Wu, P. Zhang, S. P.; Liang, L.; Yang, F.; Pei, Y. L.; Chen, S.

    2013-11-21

    As a heavy rare earth oxide, erbium oxide (Er{sub 2}O{sub 3}) has many attractive properties. Monoclinic Er{sub 2}O{sub 3} has useful properties not found in stable cubic Er{sub 2}O{sub 3}, such as unique optical properties and high radiation damage tolerance. In this study, cubic Er{sub 2}O{sub 3} coating and Er{sub 2}O{sub 3} coating with mixed phases were prepared. The Raman scattering spectra of these coatings were investigated by using a confocal micro-Raman spectrometer equipped with 325, 473, 514, 532, 633, and 784 nm lasers. A total of 17 first-order Raman modes of monoclinic Er{sub 2}O{sub 3} were identified and assigned. The modes at 83, 112, 152, 170, 278, 290, 409, 446, 478, 521, 603, and 622 cm{sup −1} are of A{sub g} symmetry, whereas modes at 71, 98, 333, 409, 446, and 468 cm{sup −1} are of B{sub g} symmetry. This research provides basic data necessary for the characterization of monoclinic Er{sub 2}O{sub 3} by Raman spectroscopy.

  15. Solid State Synthesis and Properties of Monoclinic Celsian

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1996-01-01

    Monoclinic celsian of Ba(0.75)Sr(0.25)Al2Si2O8 (BSAS-1) and B(0.85)Sr(O.15)Al2Si2O8 (BSAS-2) compositions have been synthesized from metal carbonates and oxides by solid state reaction. A mixture of BaCO3, SrCO3, Al2O3, and SiO2 powders was precalcined at approx. 900-940 C to decompose the carbonates followed by hot pressing at approx. 1300 C. The hot pressed BSAS-1 material was almost fully dense and contained the monoclinic celsian phase, with complete absence of the undesirable hexacelsian as indicated by x-ray diffraction. In contrast, a small fraction of hexacelsian was still present in hot pressed BSAS-2. However, on further heat treatment at 1200 C for 24 h, the hexacelsian phase was completely eliminated. The average linear thermal expansion coefficients of BSAS-1 and BSAS-2 compositions, having the monoclinic celsian phase, were measured to be 5.28 x 10(exp -6)/deg C and 5.15 x 10(exp -6)/deg C, respectively from room temperature to 1200 C. The hot pressed BSAS-1 celsian showed room temperature flexural strength of 131 MPa, elastic modulus of 96 GPa and was stable in air up to temperatures as high as approx. 1500 C.

  16. Hot Corrosion of Yttria-Stabilized Zirconia Coating, in a Mixture of Sodium Sulfate and Vanadium Oxide at 950 °C

    NASA Astrophysics Data System (ADS)

    Qureshi, Imran Nazir; Shahid, Muhammad; Nusair Khan, A.

    2016-02-01

    Yttria-stabilized zirconia thermal barrier coating along with CoNiCrAlY bondcoat was deposited using air plasma spray on Inconel-X750 superalloy. The coated samples were exposed at 950 °C in a mixture of Na2SO4 and V2O5. The exposed specimens were investigated using XRD and SEM. The formation of spinel and perovskite structures was revealed at the interface of topcoat and the bondcoat. Further, the chemical composition profile of all samples helped to analyze the diffusion behavior of different constituent elements of bondcoat and substrate. XRD analyses of the samples confirmed the phase transformation of the tetragonal zirconia into monoclinic zirconia and yttrium vanadate. The shift of high angle peaks indicated lattice distortion, which was directly related to the stresses in the coating.

  17. A new interpretation of the Besnus transition in monoclinic pyrrhotite

    NASA Astrophysics Data System (ADS)

    Gehring, Andreas

    2016-04-01

    Non-stoichiometric monoclinic 4C pyrrhotite (ideal formula: Fe7S8) is a major magnetic remanence carrier in the Earth's crust and in extraterrestrial materials. Because of its low-temperature magnetic transition around 30 K also known as Besnus transition, this mineral phase is easily detectable in natural samples. Considering the rock magnetic literature, an intrinsic origin of the Besnus transition similar to that of the Verwey transition has generally been assumed. Although the physical properties of pyrrhotite have intensively been studied, the mechanism behind the pronounced change in magnetization at the low-temperature transition is still debated. To address this question we performed magnetization experiments on a natural pyrrhotite crystal (Fe6.6S8) that consists of an epitaxial intergrowth of a commensurate 4C and an incommensurate 5C* superstructure that are different in their defect structure (1,2). The occurrence of two monoclinic superstructures detected by X-ray diffractometry is magnetically confirmed by symmetric inflection points in hysteresis measurements above the transition at about 30 K. The disappearance of the inflection points and the associated change of the hysteresis parameters indicate that the two superstructures become strongly coupled to form a unitary magnetic anisotropy system at the transition. From this it follows that the Besnus transition in monoclinic pyrrhotite is an extrinsic magnetic phenomenon with respect to the 4C superstructure and therefore the physics behind it is in fact different from that of the well-known Verwey transition. Finally, this novel interpretation explains the rock magnetic data for the low-temperature transition that has been reported for monoclinic pyrrhotite. It will also provide deeper understanding of magnetism in monoclinic pyrrhotite, which in turn will enable a more profound insight to the magnetization properties of the Earth's crust. 1.) Charilaou, M., Kind, J., Koulialias, D., Weidler, P

  18. Dilemmas in zirconia bonding: A review.

    PubMed

    Dbradović-Djuricić, Kosovka; Medić, Vesna; Dodić, Slobodan; Gavrilov, Dragan; Antonijević, Djordje; Zrilić, Milorad

    2013-01-01

    This article presents a literature review on the resin bond to zirconia ceramic. Modern esthetic dentistry has highly recognized zirconia, among other ceramic materials. Biocompatibility of zirconia, chemical and dimensional stability, excellent mechanical properties, all together could guarantee optimal therapeutical results in complex prosthodontic reconstruction. On the other hand, low thermal degradation, aging of zirconia as well as problematic bonding of zirconia framework to dental luting cements and tooth structures, opened the room for discussion concerning their clinical durability.The well known methods of mechanical and chemical bonding used on glass-ceramics are not applicable for use with zirconia. Therefore, under critical clinical situations, selection of the bonding mechanism should be focused on two important points: high initial bond strength value and long term bond strength between zirconia-resin interface. Also, this paper emphases the use of phosphate monomer luting cements on freshly air-abraded zirconia as the simplest and most effective way for zirconia cementation procedure today. PMID:23858816

  19. Alumina-Reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  20. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  1. Nanocrystal-Powered Nanomotor

    SciTech Connect

    Regan, B.C.; Aloni, S.; Jensen, K.; Ritchie, R.O.; Zettl, A.

    2005-07-05

    We have constructed and operated a nanoscale linear motorpowered by a single metal nanocrystal ram sandwiched between mechanicallever arms. Low-level electrical voltages applied to the carbon nanotubelever arms cause the nanocrystal to grow or shrink in a controlledmanner. The length of the ram is adjustable from 0 to more than 150 nm,with extension speeds exceeding 1900 nm/s. The thermodynamic principlesgoverning motor operation resemble those driving frost heave, a naturalsolid-state linear motor.

  2. Zirconia-molybdenum disilicide composites

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.

    1991-01-01

    Compositions of matter comprised of molybdenum disilicide and zirconium oxide in one of three forms: pure, partially stabilized, or fully stabilized and methods of making the compositions. The stabilized zirconia is crystallographically stabilized by mixing it with yttrium oxide, calcium oxide, cerium oxide, or magnesium oxide and it may be partially stabilized or fully stabilized depending on the amount of stabilizing agent in the mixture.

  3. Sulfur antisite-induced intrinsic high-temperature ferromagnetism in Ag2S:Y nanocrystals.

    PubMed

    Wang, Pan; Yang, Tianye; Zhao, Rui; Zhang, Mingzhe

    2016-04-21

    There is an urgent need for a complete understanding of intrinsic ferromagnetism, due to the necessity for application of ferromagnetic semiconductors. Here, further insight into the magnetic mechanism of sulfur antisite-induced intrinsic high-temperature ferromagnetism is investigated in Ag2S:Y nanocrystals. The gas-liquid phase chemical deposition method is adopted to obtain the monoclinic Ag2S:Y nanocrystals. The field and temperature-dependent magnetization measurements demonstrate the robust high-temperature ferromagnetism of Ag2S:Y nanocrystals. As revealed in the magnetic origin study from first-principles calculations, the intrinsic sulfur antisite defect is only responsible for the creation of a magnetic moment which mainly comes from the S 3p and Ag 4d orbitals. Such a mechanism, which is essentially different from those of dopants and other native defects, provides new insight into the origin of the magnetism. PMID:27009760

  4. Chemical vapour deposition of undoped and spinel-doped cubic zirconia film using organometallic process

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasutaka; Kawae, Takayuki; Nasu, Mineji

    1986-03-01

    Growth of undoped and spinel-doped ZrO 2 films on glass substrates by the vapour phase decomposition of zirconium t-butoxide (ZTB) was investigated. Undoped tetragonal and monoclinic ZrO 2 films were formed below and above 400°C, respectively. Cubic ZrO 2 films were grown when the ZrO 2 was doped with more than 5 mol% of spinel MgAl 2O 4. Magnesium aluminium isopropoxide MgAl 2 (O-i-Pr) 8 (MAI) was used as the dopant source of the spinel. The cubic films have a higher Vickers hardness than the monoclinic films by about 200-250 kg/mm 2, and are stable up to 800°C, above which they were transformed to the monoclinic phase. This is in contrast to the higher temperature stability of the spinel-doped zirconia powder with spinel content 6 mol% formed by hydrolysis of a isopropanol solution of mixed zirconium n-butoxide and MAI, where the tetragonal form of ZrO 2 was kept unchanged by annealing it up to about 1000°C. The difference is attributed to effect of surface energy control in the tetragonal powders which is absent in the cubic films produced by CVD.

  5. Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment.

    PubMed

    Sato, Hideo; Yamada, Kiyotaka; Pezzotti, Giuseppe; Nawa, Masahiro; Ban, Seiji

    2008-05-01

    Two types of tetragonal zirconia polycrystals (TZP), a ceria-stabilized TZP/Al2O3 nanocomposite (CZA) and a conventional yttria-stabilized TZP (Y-TZP), were sandblasted with 70-microm alumina and 125-microm SiC powders, then partially annealed at 500-1200 degrees C for five minutes. Monoclinic ZrO2 content was determined by X-ray diffractometry and Raman spectroscopy. Biaxial flexure test was conducted on the specimens before and after the treatments. Monoclinic ZrO2 content and biaxial flexure strength increased after sandblasting, but decreased after heat treatment. However, in both cases, the strength of CZA was higher than that of Y-TZP. Raman spectroscopy showed that a compressive stress field was introduced on the sample surface after sandblasting. It was concluded that sandblasting induced tetragonal-to-monoclinic phase transformation and that the volume expansion associated with such a phase transformation gave rise to an increase in compressive stress on the surface of CZA. With the occurrence of such a strengthening mechanism in the microstructure, it was concluded that CZA was more susceptible to stress-induced transformation than Y-TZP. PMID:18717169

  6. Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Shankar, N. R.; Herman, H.; Singhal, S. P.; Berndt, C. C.

    1984-01-01

    ZrO2-7.8mol. pct. YO1.5, a fused powder, and ZrO2-8.7mol. pct. YO1.5, a prereacted powder, were plasma-sprayed onto steel substrates. Neutron diffraction and X-ray diffraction of the as-received powder, the powder plasma sprayed into water, as-sprayed coatings, and coatings heat-treated for 10 and 100 h were carried out to study phase transformations and ordering of the oxygen ions on the oxygen sublattice. The as-received fused powder has a much lower monoclinic percentage than does the pre-reacted powder, this resulting in a much lower monoclinic percentage in the coating. Heat treatment increases the percentages of the cubic and monoclinic phases, while decreasing the tetragonal content. An ordered tetragonal phase is detected by the presence of extra neutron diffraction peaks. These phase transformations and ordering will result in volume changes. The implications of these transformations on the performance of partially stabilized zirconia thermal barrier coatings is discussed.

  7. Spall strength, dynamic elastic limit and fracture of ittrya dopped tetragonal zirconia

    NASA Astrophysics Data System (ADS)

    Milyavskiy, Vladimir; Savinykh, Andrey; Schlothauer, Thomas; Lukin, Evgeny; Akopov, Felix

    2013-06-01

    Specimens of the ceramics based on zirconia partially stabilized by yttrium oxide of the composition of 97 mol % ZrO2 + 3 mol % Y2O3 were prepared. The densities of the specimens were 5.79 and 6.01 g/cc. The ceramics mainly have the tetragonal structure (93-98 wt. % of t-ZrO2) . The mechanical action on the ceramic activates the transformation of the tetragonal phase into the monoclinic one: at the abrasive cutting or at the fracture by hammer shock, the content of the monoclinic phase is increasing. The same trend was observed in the specimens, recovered after stepwise shock compression up to 36, 52 and 99 GPa. It was found that shock compression do not initiates tetragonal-monoclinic phase transition directly, and this transition is caused by the destruction. Recovered specimens do not reveal any traces of the phase change which was observed by Mashimo et al. under the pressures 30-35 GPa (J. Appl. Phys. 1995. V. 77. P. 5069). Recording of the profiles of the free surface velocity of the specimens during single-stage shock compression allowed us to determine the dynamic elastic limit, as well as spall strength of the material versus maximal shock stress. In addition, the ceramics were subjected to the action of low temperatures. There were no significant changes in the specimens recovered after storage in liquid nitrogen and helium. The work was supported by The State Atomic Energy Corporation ROSATOM.

  8. X-ray diffraction and electron microscope studies of yttria stabilized zirconia (YSZ) ceramic coatings exposed to vanadia. Master's thesis

    SciTech Connect

    Kondos, K.G.

    1992-09-01

    The U.S. Navy sometimes has the requirement to use low cost fuels containing significant amounts of vanadium and sulfur in gas turbine engines. Unfortunately the yttria stabilized zirconia (YSZ) witch is used as a thermal barrier coating on gas turbine blades can be severely attacked by vanadia. Powders of YSZ containing 8-mol% Y203 and pure zirconia containing various and mounts Of V205 were annealed at 900 deg. C. These were then examined by X-ray diffraction and electron microscopy, as well as single crystals of pure Zro2 and YSZ ( 20% Wt Y203 ) exposed to V205 Melts, to study how the vanadia degrades the YSZ by reacting with the stabilizer to form YVO4 and how the vanadium transforms the cubic and tetragonal YSZ crystal structures to monoclinic which degrades rapidly as a gas turbine blade coating.

  9. Zirconia in fixed prosthesis. A literature review

    PubMed Central

    Román-Rodríguez, Juan L.; Ferreiroa, Alberto; Solá-Ruíz, María F.; Fons-Font, Antonio

    2014-01-01

    Statement of problem: Evidence is limited on the efficacy of zirconia-based fixed dental prostheses. Objective: To carry out a literature review of the behavior of zirconium oxide dental restorations. Material and Methods: This literature review searched the Pubmed, Scopus, Medline and Cochrane Library databases using key search words “zirconium oxide,” “zirconia,” “non-metal restorations,” “ceramic oxides,” “veneering ceramic,” “zirconia-based fixed dental prostheses”. Both in vivo and in vitro studies into zirconia-based prosthodontic restoration behavior were included. Results: Clinical studies have revealed a high rate of fracture for porcelain-veneered zirconia-based restorations that varies between 6% and 15% over a 3- to 5-year period, while for ceramo-metallic restorations the fracture rate ranges between 4 and 10% over ten years. These results provoke uncertainty as to the long-term prognosis for this material in the oral medium. The cause of veneering porcelain fractures is unknown but hypothetically they could be associated with bond failure between the veneer material and the zirconia sub-structure. Key words:Veneering ceramic, zirconia-based ceramic restoration, crown, zirconia, tooth-supported fixed prosthesis. PMID:24596638

  10. What future for zirconia as a biomaterial?

    PubMed

    Chevalier, Jérôme

    2006-02-01

    The failure events of Prozyr femoral heads in 2001-2002 have opened a strong, controversial issue on the future of zirconia as a biomaterial. The aim of this paper is to review and analyze the current knowledge on ageing process and on its effect on the long term performance of implants in order to distinguish between scientific facts and speculation. Current state of the art shows the strong variability of zirconia to in vivo degradation, as a consequence of the strong influence of processing on ageing process. As different zirconia from different vendors have different process related microstructure, there is a need to assess their ageing sensitivity with advanced and accurate techniques, and ISO standards should be modified, especially to gain confidence from clinicians. There is a trend today to develop alumina-zirconia composites as an alternative to monolithic alumina and zirconia: the issue of ageing is also discussed for these composites. PMID:16143387

  11. Nanocrystal Solar Cells

    SciTech Connect

    Gur, Ilan

    2006-12-15

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  12. Effect of different grinding burs on the physical properties of zirconia

    PubMed Central

    2016-01-01

    PURPOSE Grinding with less stress on 3Y-TZP through proper selection of methods and instruments can lead to a long-term success of prosthesis. The purpose of this study was to compare the phase transformation and physical properties after zirconia surface grinding with 3 different grinding burs. MATERIALS AND METHODS Forty disc-shaped zirconia specimens were fabricated. Each Ten specimens were ground with AllCeramic SuperMax (NTI, Kahla, Germany), Dura-Green DIA (Shofu Inc., Kyoto, Japan), and Dura-Green (Shofu Inc., Kyoto, Japan). Ten specimens were not ground and used as a control group. After the specimen grinding, XRD analysis, surface roughness test, FE-SEM imaging, and biaxial flexural strength test were performed. RESULTS After surface grinding, small amount of monoclinic phase in all experimental groups was observed. The phase change was higher in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs. The roughness of surfaces increased in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs than control groups and ground with Dura-Green. All experimental groups showed lower flexural strength than control group, but there was no statistically significant difference between control group and ground with Dura-Green DIA and AllCeramic SuperMax burs. The specimens, which were ground with Dura- Green showed the lowest strength. CONCLUSION The use of dedicated zirconia-specific grinding burs such as Dura-Green DIA and AllCeramic SuperMax burs decreases the grinding time and did not significantly affect the flexural strength of zirconia, and therefore, they may be recommended. However, a fine polishing process should be accompanied to reduce the surface roughness after grinding. PMID:27141258

  13. Generation of WO{sub 3}-ZrO{sub 2} catalysts from solid solutions of tungsten in zirconia

    SciTech Connect

    Cortes-Jacome, Maria A.; Angeles-Chavez, Carlos; Bokhimi, Xim; Toledo-Antonio, J.A. . E-mail: jtoledo@imp.mx

    2006-08-15

    WO{sub 3}-ZrO{sub 2} samples were obtained by precipitating zirconium oxynitrate in presence of WO{sub 4} {sup =} species in solution from ammonium metatungstate at pH=10.0. Samples were characterized by atomic absorption spectroscopy, thermal analysis, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy and energy filtered-TEM. The ammonia retained in the dried sample produced a reductive atmosphere to generate W{sup 5+} ions coexisting with W{sup 6+} ions to produce a solid solution of tungsten in the zirconia lattice to stabilize the zirconia tetragonal phase when the sample was annealed at 560 deg. C. When the sample was annealed at 800 deg. C, the W atoms near crystallite surface were oxidized to W{sup 6+}, producing patches of WO{sub 3} on the zirconia crystallite. The HR-TEM analysis confirmed the existence of the solid solution when the sample was annealed at 560 deg. C, and two types of crystalline regions were identified: One with nearly spherical morphology, an average diameter of 8 nm and the atomic distribution of tetragonal zirconia. The second one had a non-spherical morphology with well-faceted faces and dimensions larger than 30 nm, and the atom distribution of tetragonal zirconia. When samples were annealed at 800 deg. C two different zirconia crystallites were formed: Those where only part of the dissolved tungsten atoms segregated to crystallite surface producing patches of nanocrystalline WO{sub 3} on the crystallite surface of tetragonal zirconia stabilized with tungsten. The second type corresponded to monoclinic zirconia crystallites with patches of nanocrystalline WO{sub 3} on their surface. The tungsten segregation gave rise to the WO{sub 3}-ZrO{sub 2} catalysts. - Graphical abstract: WO {sub x} -ZrO{sub 2} catalysts were obtained by precipitating zirconium oxynitrate in presence of WO{sub 4} {sup =}species. Initially, the W atoms remained inside the crystallite after

  14. Hydroxyapatite: Vibrational spectra and monoclinic to hexagonal phase transition

    NASA Astrophysics Data System (ADS)

    Slepko, Alexander; Demkov, Alexander A.

    2015-02-01

    Fundamental studies of biomaterials are necessary to deepen our understanding of their degradation and to develop cure for related illnesses. Biomineral hydroxyapatite Ca10(PO4)6(OH)2 is the main mineral constituent of mammal bone, and its synthetic analogues are used in biomedical applications. The mineral can be found in either hexagonal or monoclinic form. The transformation between these two phases is poorly understood, but knowing its mechanism may be critical to reversing processes in bone related to aging. Using density functional theory, we investigate the mechanisms of the phase transformation and estimate the transition temperature to be 680 K in fair agreement with the experimental temperature of 470 K. We also report the heat capacity of hydroxyapatite and a peculiarity in its phonon dispersion that might allow for non-destructive measurements of the crystal composition with applications in preventive medical screening for bone mineral loss.

  15. Paired, facing monoclines in the Sanpete-Sevier Valley area, central Utah

    USGS Publications Warehouse

    Witkind, I.J.

    1992-01-01

    Several major monoclines that trend northward through the Sanpete-Sevier Valley area of central Utah are paired and face one another. This pairing of monoclines may have occurred when near-horizontal sedimentary and volcanic strata subsided into voids created as salt was removed from a salt diapir concealed beneath valley fill. Removal was mostly by dissolution or extrusion during Neogene time. The paired monoclines, thus, are viewed as collapse features rather than as normal synclinal folds. -from Author

  16. Point defects in yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Hellberg, C. Stephen; Bernstein, Noam; Erwin, Steven C.

    The densification that occurs during sintering of certain ceramics has been observed to occur more rapidly and at lower temperatures when a weak external electric field is applied.1 We compute the formation energies of point defects in yttria-stabilized zirconia using first principles density functional theory. We examine interstitials, vacancies, and vacancy complexes including Schottky defects in a Y2Zr14O31 computational cell, which corresponds to approximately 7 mol% yttria stabilized zirconia. We relate our results to recent experimental work on electric-field-assisted sintering in yttria-stabilized zirconia, showing how how the expansion of lattice constants observed in diffraction measurements results from increasing defect densities.

  17. [Zirconia in removable prosthodontics. A case report].

    PubMed

    Bühler, Nico M; Teubner, Eckart; Marinello, Carlo P

    2011-01-01

    Zirconia as a framework material is well established in fixed prosthodontics. However, for its application for removable dentures little experience exists. Zirkonzahn® has developed a copy-milling unit, that is a manually operated machine for the manufacture not only of frameworks but also of complete removable dentures. The aim of this case report is to show the step-by-step clinical and technical fabrication of a zirconia bar on implants and of a corresponding zirconia complete denture. The advantages and disadvantages of the system are presented and problems are critically discussed. PMID:21861249

  18. Simple Preparation and Stabilization of Nickel Nanocrystals on Cellulose Nanocrystal

    SciTech Connect

    Shin, Yongsoon; Bae, In-Tae; Arey, Bruce W.; Exarhos, Gregory J.

    2007-06-01

    Nickel nanocrystals were simply prepared on the carbon through a thermal reduction process at 400-500oC under N2 after Ni(II) ions were deposited and stabilized on cellulose nanocrystal (CNXL) surface. Hydroxyl groups on the CNXL anchor and stabilize Ni(II) ions. Well-dispersed Ni nanocrystals on the carbonized CNXL were about 5-12 nm in size. XRD, FESEM, and TEM were employed to characterize the products.

  19. Evolution of the phase content of zirconia powders prepared by sol-gel acid hydrolysis

    SciTech Connect

    Rivas, P.C.; Martinez, J.A.; Caracoche, M.C.; Rodriguez, A.M.; Lopez Garcia, A.R.; Pavlik, R.S. Jr.; Klein, L.C.

    1998-01-01

    The evolution of the phase content in zirconia powders that have been prepared by sol-gel acid hydrolysis has been investigated using the perturbed-angular-correlation (PAC) technique and X-ray diffractometry. As a consequence of performing annealing treatments at increasing temperatures between room temperature and 1,000 C, the amorphous starting material transforms to the tetragonal form and then to the monoclinic form. The metastable tetragonal phase exhibits two hyperfine components, one of which describes very defective zirconium surroundings. The evolution of PAC relative fractions is in agreement with the diffraction results. The durability of the samples in sodium hydroxide seems to increase as the relative amount of the most-defective zirconium surroundings of the tetragonal form increases.

  20. Tetragonal BiFeO{sub 3} on yttria-stabilized zirconia

    SciTech Connect

    Liu, Heng-Jui; Du, Yu-Hao; Gao, Peng; Ikuhara, Yuichi; Huang, Yen-Chin; Chen, Yi-Chun; Chen, Hsiao-Wen; Liu, Hsiang-Lin; He, Qing; Chu, Ying-Hao

    2015-11-01

    High structural susceptibility of multiferroic BiFeO{sub 3} (BFO) makes it a potential replacement of current Pb-based piezoelectrics. In this study, a tetragonal phase is identified based on a combination of x-ray diffraction, scanning transmission electronic microscopy, x-ray absorption spectroscopy, and Raman spectroscopy when BFO is grown on yttria-stabilized zirconia (YSZ) substrates. To distinguish the discrepancy between this tetragonal phase and common cases of monoclinic BFO, piezoelectric force microscopy images and optical property are also performed. It shows a lower electrostatic energy of ferroelectric domains and a large reduction of band gap for BFO grown on YSZ substrate comparing to the well-known one grown on LaAlO{sub 3} substrate. Our findings in this work can provide more insights to understand the structural diversity of multiferroic BFO system for further applications.

  1. Nanocrystal Inks without Ligands: Stable Colloids of Bare Germanium Nanocrystals

    SciTech Connect

    Holman, Zachary C.; Kortshagen, Uwe R.

    2011-05-11

    Colloidal semiconductor nanocrystals typically have ligands attached to their surfaces that afford solubility in common solvents but hinder charge transport in nanocrystal films. Here, an alternative route is explored in which bare germanium nanocrystals are solubilized by select solvents to form stable colloids without the use of ligands. A survey of candidate solvents shows that germanium nanocrystals are completely solubilized by benzonitrile, likely because of electrostatic stabilization. Films cast from these dispersions are uniform, dense, and smooth, making them suitable for device applications without postdeposition treatment.

  2. Sorting fluorescent nanocrystals with DNA

    SciTech Connect

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  3. Structural and photoluminescence properties of doped and core-shell LaPO4:Eu3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpal; Kar, Arik; Patra, Amitava

    2010-12-01

    Here, we have fabricated of LaPO4:Eu3+ doped and LaPO4/Eu2O3 core-shell nanocrystals using solution based methods. The morphologies, structure, formation mechanism, and photoluminescence properties of these nanocrystals are investigated in detail. The compressive and tensile lattice strains are obtained for hexagonal and monoclinic LaPO4 nanocrystals, respectively. Photoluminescence properties are found to be sensitive to the crystal phase, morphology, and core-shell structures. Judd-Ofelt parameters (Ω2) are calculated to understand the asymmetric nature of the dopant Eu3+ ion in LaPO4 nanocrystals host of various morphologies and crystal phases. It is seen that Ω2 value for nanorod (4.4×10-20 cm2) is higher than the nanoparticles (3.38×10-20 cm2). The quantum yield values increases from 28.27% to 52.4% by changing the crystal phase from hexagonal to monoclinic. The quantum yield of nanorods (58.50%) is higher than nanoparticles (28.68%).

  4. Zirconia in dental implantology: A review

    PubMed Central

    Apratim, Abhishek; Eachempati, Prashanti; Krishnappa Salian, Kiran Kumar; Singh, Vijendra; Chhabra, Saurabh; Shah, Sanket

    2015-01-01

    Background: Titanium has been the most popular material of choice for dental implantology over the past few decades. Its properties have been found to be most suitable for the success of implant treatment. But recently, zirconia is slowly emerging as one of the materials which might replace the gold standard of dental implant, i.e., titanium. Materials and Methods: Literature was searched to retrieve information about zirconia dental implant and studies were critically analyzed. PubMed database was searched for information about zirconia dental implant regarding mechanical properties, osseointegration, surface roughness, biocompatibility, and soft tissue health around it. The literature search was limited to English language articles published from 1975 to 2015. Results: A total of 45 papers met the inclusion criteria for this review, among the relevant search in the database. Conclusion: Literature search showed that some of the properties of zirconia seem to be suitable for making it an ideal dental implant, such as biocompatibility, osseointegration, favourable soft tissue response and aesthetics due to light transmission and its color. At the same time, some studies also point out its drawbacks. It was also found that most of the studies on zirconia dental implants are short-term studies and there is a need for more long-term clinical trials to prove that zirconia is worth enough to replace titanium as a biomaterial in dental implantology. PMID:26236672

  5. Nanosilica coating for bonding improvements to zirconia

    PubMed Central

    Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin

    2013-01-01

    Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution–gelatin (sol–gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water–mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol–gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol–gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol–gel technique represents a promising method for producing silica coatings on zirconia. PMID:24179333

  6. Nanosilica coating for bonding improvements to zirconia.

    PubMed

    Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin

    2013-01-01

    Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution-gelatin (sol-gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water-mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol-gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol-gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol-gel technique represents a promising method for producing silica coatings on zirconia. PMID:24179333

  7. Effects of Acid Treatment on Dental Zirconia: An In Vitro Study

    PubMed Central

    Xie, Haifeng; Shen, Shuping; Qian, Mengke; Zhang, Feimin; Chen, Chen; Tay, Franklin R.

    2015-01-01

    The aim of this study was to evaluate the effects of hydrofluoric (HF) acid, acetic acid, and citric acid treatments on the physical properties and structure of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) at ambient temperature. In total, 110 bar-shaped zirconia specimens were randomly assigned to 11 groups. The specimens in the control group (C) received no surface treatment, while those in the Cage group were hydrothermally aged at 134°C and 0.2 MPa for 20 h. Ten specimens each were immersed at ambient temperature in 5% and 40% HF acid for 2 h (40HF0), 1 day (5HF1, 40HF1), and 5 days (5HF5, 40HF5), while 10 each were immersed at ambient temperature in 10% acetic acid and 20% citric acid for 7 (AC7, CI7) and 14 days (AC14, CI14). X-ray diffraction (XRD) was used to quantitatively estimate the monoclinic phase. Furthermore, flexural strength, surface roughness, and surface Vickers hardness were measured after treatment. Scanning electron microscopy (SEM) was used to characterize the surface morphology. The Cage group specimens exhibited an increased monoclinic phase and flexural strength. Furthermore, 40% HF acid immersion decreased the flexural strength and surface hardness and deteriorated the surface finish, while 5% HF acid immersion only decreased the surface hardness. All the HF acid-immersed specimens showed an etched surface texture on SEM observations, while the other groups did not. These findings suggest that the treatment of Y-TZP with 40% HF acid at ambient temperature causes potential damage, while treatment with 5% HF acid, acetic acid, and citric acid is safe. PMID:26301413

  8. Encapsulated monoclinic sulfur for stable cycling of li-s rechargeable batteries.

    PubMed

    Moon, San; Jung, Young Hwa; Jung, Wook Ki; Jung, Dae Soo; Choi, Jang Wook; Kim, Do Kyung

    2013-12-01

    Monoclinic S8 , an uncommon allotrope of sulfur at room temperature, can be formed when common orthorhombic S8 is heat-treated under enclosed environments in nanometer dimensions. Monoclinic S8 prevents the formation of soluble polysulfides during battery operation, resulting in unprecedented cycling performance over 1000 cycles under the highest sulfur content to date. PMID:24018843

  9. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  10. Octahedral tilting, monoclinic phase and the phase diagram of PZT

    NASA Astrophysics Data System (ADS)

    Cordero, F.; Trequattrini, F.; Craciun, F.; Galassi, C.

    2011-10-01

    Anelastic and dielectric spectroscopy measurements on PbZr1-xTixO3 (PZT) close to the morphotropic (MPB) and antiferroelectric boundaries provide new insight into some controversial aspects of its phase diagram. No evidence is found of a border separating monoclinic (M) from rhombohedral (R) phases, in agreement with recent structural studies supporting a coexistence of the two phases over a broad composition range x < 0.5, with the fraction of M increasing toward the MPB. It is also discussed why the observed maximum of elastic compliance appears to be due to a rotational instability of the polarization linearly coupled to shear strain. Therefore it cannot be explained by extrinsic softening from finely twinned R phase alone, but indicates the presence also of M phase, not necessarily homogeneous. A new diffuse transition is found within the ferroelectric phase near x ˜ 0.1, at a temperature TIT higher than the well established boundary TT to the phase with tilted octahedra. It is proposed that around TIT the octahedra start rotating in a disordered manner and finally become ordered below TT. In this interpretation, the onset temperature for octahedral tilting monotonically increases up to the antiferroelectric transition of PbZrO3, and the depression of TT(x) below x = 0.18 would be a consequence of the partial relief of the mismatch between the average cation radii with the initial stage of tilting below TIT.

  11. Doped semiconductor nanocrystal junctions

    NASA Astrophysics Data System (ADS)

    Borowik, Ł.; Nguyen-Tran, T.; Roca i Cabarrocas, P.; Mélin, T.

    2013-11-01

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (ND≈1020-1021cm-3) silicon nanocrystals (NCs) in the 2-50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as ND-1/3, and depleted charge linearly increasing with the NC diameter and varying as ND1/3. We thus establish a "nanocrystal counterpart" of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  12. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  13. X-ray, Raman and FTIRS studies of the microstructural evolution of zirconia particles caused by the thermal treatment

    NASA Astrophysics Data System (ADS)

    Zyuzin, Dmitry A.; Cherepanova, Svetlana V.; Moroz, Ella M.; Burgina, Elena B.; Sadykov, Vladislav A.; Kostrovskii, Victor G.; Matyshak, Valerii A.

    2006-10-01

    Genesis of the structure of zirconia particles prepared by precipitation of amorphous hydrated zirconia by ammonia from the ZrO(NO 3) 2 solution followed by a mild hydrothermal treatment (HTT) of precipitate, washing and calcination under air up to 1000 °C has been studied by X-ray diffraction (XRD), Raman and FTIRS. As revealed by FTIRS of lattice modes, the local structure of amorphous zirconia subjected to HTT is close to that in m-ZrO 2. This helps to obtain nearly single-phase monoclinic nanozirconia (particle size 5-15 nm) already after a mild calcination at 500 °C. Stability of this phase with nanoparticles sizes below the critical value determined by thermodynamic constraints is due to its excessive hydroxylation demonstrated by FTIRS. Dehydroxilation and sintering of these nanoparticles at higher (600-650 °C) temperatures of calcination leads to reappearance of the (111) "cubic" reflection in XRD patterns. Modeling of XRD patterns revealed that this phenomenon could be explained by polysynthetic (001) twinning earlier observed by HRTEM.

  14. Electronic and magnetic properties of iron doped zirconia: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Debernardi, A.; Sangalli, D.; Lamperti, A.; Cianci, E.; Lupo, P.; Casoli, F.; Albertini, F.; Nasi, L.; Ciprian, R.; Torelli, P.

    2014-05-01

    We systematically investigated, both theoretically and experimentally, Zr1-xFexO2-y ranging from diluted (x ≈ 0.05) up to large (x ≈ 0.25) Fe concentration. By atomic layer deposition, we grew thin films of high-κ zirconia in cubic phase with Fe uniformly distributed in the film, as proven by time of flight secondary ion mass spectrometry and transmission electron microscopy measurements. Iron is in Fe3+ oxidation state suggesting the formation of oxygen vacancies with y concentration close to x/2. By ab-initio simulations, we studied the phase diagram relating the stability of monoclinic vs. tetragonal phase as a function of Fe doping and film thickness: the critical thickness at which the pure zirconia is stabilized in the tetragonal phase is estimated ranging from 2 to 6 nm according to film morphology. Preliminary results by X-ray magnetic circular dichroism and alternating gradient force magnetometry are discussed in comparison to ab initio data enlightening the role of oxygen vacancies in the magnetic properties of the system.

  15. Electronic and magnetic properties of iron doped zirconia: Theory and experiment

    SciTech Connect

    Debernardi, A. Sangalli, D.; Lamperti, A.; Cianci, E.; Lupo, P.; Casoli, F.; Albertini, F.; Nasi, L.

    2014-05-07

    We systematically investigated, both theoretically and experimentally, Zr{sub 1−x}Fe{sub x}O{sub 2−y} ranging from diluted (x ≈ 0.05) up to large (x ≈ 0.25) Fe concentration. By atomic layer deposition, we grew thin films of high-κ zirconia in cubic phase with Fe uniformly distributed in the film, as proven by time of flight secondary ion mass spectrometry and transmission electron microscopy measurements. Iron is in Fe{sup 3+} oxidation state suggesting the formation of oxygen vacancies with y concentration close to x/2. By ab-initio simulations, we studied the phase diagram relating the stability of monoclinic vs. tetragonal phase as a function of Fe doping and film thickness: the critical thickness at which the pure zirconia is stabilized in the tetragonal phase is estimated ranging from 2 to 6 nm according to film morphology. Preliminary results by X-ray magnetic circular dichroism and alternating gradient force magnetometry are discussed in comparison to ab initio data enlightening the role of oxygen vacancies in the magnetic properties of the system.

  16. Microstructure and mechanical properties of bulk and plasma-sprayed y2O3-partially stabilized zirconia

    NASA Technical Reports Server (NTRS)

    Valentine, P. G.; Maier, R. D.

    1980-01-01

    Bulk 8.0 weight percent yttria partially stabilied zirconia (PSZ) was studied by light microscopy, transmission electron microscopy, X-ray analysis, microhardness testing, and fracture toughness testing. The as received PSZ contained spheroidal and grain boundary precipitates up to 4 micrometers in size. Spheroids up to 1.26 micrometers were metastable tetragonal; large spheroids were monoclinic. Grinding the PSZ into powder did not cause a significant amount of tetragonal to transform to monoclinic. This indicates that transformation toughness is not a significant mechanism in PSZ. Aging the PSZ at 1500 C caused the fine tetragonal precipitates to grow from 0.06 to 0.12 micrometers, in 250 minutes. A peak hardness of 1400 kg/sq mm was attained after 50 minutes. Solution annealing and quenching the as received PSZ eliminated the large precipitates, but fine tetragonal precipitates reformed on quenching. Aging at 1500 C caused the fine 0.02 micrometers tetragonal precipitates to grow into plates about 0.10 by 0.50 micrometers. A peak hardness of 1517 kg/sq mm was obtained after 250 minutes. On further aging, monoclinic percipitates formed along grain boundaries. The fracture toughness of the aged and unaged solution annealed and quenched PSZ was found to be between 2 and 3 MN /square root of m cubed. This range of fracture toughness is consistent with PSZ's that do not undergo transformation toughening.

  17. Crystallographic texture, morphology, optical, and microwave dielectric properties of dc magnetron sputtered nanostructured zirconia thin films

    SciTech Connect

    Pamu, D.; Sudheendran, K.; Ghanashyam Krishna, M.; James Raju, K. C.

    2008-03-15

    Nanocrystalline zirconia thin films have been deposited at ambient temperature by dc magnetron sputtering on glass and quartz substrates. The crystallite size as calculated from the x-ray diffraction patterns in the films varies between 10 and 25 nm and is dependent on oxygen percentage in the sputtering gas. Interestingly, the presence of monoclinic and cubic phase is observed for the films deposited on glass at 40%, 60%, and 80% of oxygen in the sputtering gas, while those deposited on quartz showed only the monoclinic phase. Refractive index decreased with increase in percentage of oxygen in the sputter gas. Significantly, even at 100% oxygen in the sputtering gas, films of thickness of the order of 500 nm have been grown starting from the metallic Zr target. The dielectric constants were measured using the extended cavity perturbation technique at X-band frequency (8-12 GHz). The dielectric constant and loss tangent showed a very small decrease with increase in frequency but exhibited a stronger dependence on processing parameters. The dielectric constants of the films at microwave frequencies ranged between 12.16 and 22.3.

  18. Determining europium compositional fluctuations in partially stabilized zirconia nanopowders: a non-line-broadening-based method.

    PubMed

    Marin, Riccardo; Sponchia, Gabriele; Back, Michele; Riello, Pietro

    2016-02-01

    A method is reported for assessing the compositional fluctuations in a ceramic sample, based only on the determination of the crystalline lattice parameters. Pure tetragonal phase partially stabilized zirconia powders are synthesized through the co-precipitation method by incorporating 4% Eu(3+). The powder is subjected to compression cycles to promote the tetragonal-to-monoclinic transformation. The Rietveld analysis of the X-ray powder diffraction patterns, recorded after each compression cycle, gives information about the lattice parameters and monoclinic phase content. The determination of europium content in the residual tetragonal phase is accomplished considering the unit cell volume of t-ZrO2 using Vegard's law. Using this information the compositional fluctuations over the sample were determined by considering two possible distributions of lanthanide ion content in the powders: a Gaussian and a Log-normal one. It was found that the Gaussian distribution better fits the experimental data. It was eventually demonstrated that these results are physically meaningful. PMID:26830794

  19. Patterning nanocrystals using DNA

    SciTech Connect

    Williams, Shara Carol

    2003-09-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices to a length greater than

  20. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications

    NASA Astrophysics Data System (ADS)

    Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan

    2014-01-01

    In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.

  1. Electronic spectra of semiconductor nanocrystals

    SciTech Connect

    Alivisatos, A.P.

    1993-12-31

    Semiconductor nanocrystals smaller than the bulk exciton show substantial quantum confinement effects. Recent experiments including Stark effect, resonance Raman, valence band photoemission, and near edge X-ray adsorption will be used to put together a picture of the nanocrystal electronic states.

  2. Photoemission studies of semiconductor nanocrystals

    SciTech Connect

    Hamad, K. S.; Roth, R.; Alivisatos, A. P.

    1997-04-01

    Semiconductor nanocrystals have been the focus of much attention in the last ten years due predominantly to their size dependent optical properties. Namely, the band gap of nanocrystals exhibits a shift to higher energy with decreasing size due to quantum confinement effects. Research in this field has employed primarily optical techniques to study nanocrystals, and in this respect this system has been investigated extensively. In addition, one is able to synthesize monodisperse, crystalline particles of CdS, CdSe, Si, InP, InAs, as well as CdS/HgS/CdS and CdSe/CdS composites. However, optical spectroscopies have proven ambiguous in determining the degree to which electronic excitations are interior or surface admixtures or giving a complete picture of the density of states. Photoemission is a useful technique for understanding the electronic structure of nanocrystals and the effects of quantum confinement, chemical environments of the nanocrystals, and surface coverages. Of particular interest to the authors is the surface composition and structure of these particles, for they have found that much of the behavior of nanocrystals is governed by their surface. Previously, the authors had performed x-ray photoelectron spectroscopy (XPS) on CdSe nanocrystals. XPS has proven to be a powerful tool in that it allows one to determine the composition of the nanocrystal surface.

  3. Method of synthesizing pyrite nanocrystals

    DOEpatents

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  4. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  5. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  6. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    SciTech Connect

    Petrovic, J.J.

    1992-12-31

    This patent pertains to compositions consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia. Fabrication, fracture toughness, and bend strength are covered.

  7. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, J.J.

    1995-01-17

    Compositions are disclosed consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  8. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, John J.

    1995-01-01

    Compositions consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  9. Oxygen separation from air using zirconia solid electrolyte membranes

    NASA Technical Reports Server (NTRS)

    Suitor, J. W.; Marner, W. J.; Schroeder, J. E.; Losey, R. W.; Ferrall, J. F.

    1988-01-01

    Air separation using a zirconia solid electrolyte membrane is a possible alternative source of oxygen. The process of zirconia oxygen separation is reviewed, and an oxygen plant concept using such separation is described. Potential cell designs, stack designs, and testing procedures are examined. Fabrication of the materials used in a zirconia module as well as distribution plate design and fabrication are examined.

  10. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  11. Mechanical Properties of Nanocrystal Supercrystals

    SciTech Connect

    Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena; Ogletree, D. Frank; Delplancke-Ogletree, Marie-Paule; Ashby, Paul D.

    2009-12-30

    Colloidal nanocrystals attract significant interest due to their potential applications in electronic, magnetic, and optical devices. Nanocrystal supercrystals (NCSCs) are particularly appealing for their well ordered structure and homogeneity. The interactions between organic ligands that passivate the inorganic nanocrystal cores critically influence their self-organization into supercrystals, By investigating the mechanical properties of supercrystals, we can directly characterize the particle-particle interactions in a well-defined geometry, and gain insight into both the self-assembly process and the potential applications of nanocrystal supercrystals. Here we report nanoindentation studies of well ordered lead-sulfide (Pbs) nanocrystal supercrystals. Their modulus and hardness were found to be similar to soft polymers at 1.7 GPa and 70 MPa respectively and the fractures toughness was 39 KPa/m1/2, revealing the extremely brittle nature of these materials.

  12. Germanium Nanocrystals Embedded in Sapphire

    SciTech Connect

    Xu, Q.; Sharp, I.D.; Liao, C.Y.; Yi, D.O.; Ager III, J.W.; Beeman, J.W.; Yu, K.M.; Chrzan, D.C.; Haller, E.E.

    2005-04-15

    {sup 74}Ge nanocrystals are formed in a sapphire matrix by ion implantation followed by damage. Embedded nanocrystals experience large compressive stress relative to bulk, as embedded in sapphire melt very close to the bulk melting point (Tm = 936 C) whereas experience considerably lower stresses. Also, in situ TEM reveals that nanocrystals ion-beam-synthesized nanocrystals embedded in silica are observed to be spherical and measured by Raman spectroscopy of the zone center optical phonon. In contrast, reveals that the nanocrystals are faceted and have a bi-modal size distribution. Notably, the matrix remains crystalline despite the large implantation dose and corresponding thermal annealing. Transmission electron microscopy (TEM) of as-grown samples those embedded in silica exhibit a significant melting point hysteresis around T{sub m}.

  13. Creep of plasma sprayed zirconia

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Logan, W. R.; Adams, J. W.

    1982-01-01

    Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding.

  14. Monoclinic deformation of the crystal lattice of hematite α-Fe2O3

    NASA Astrophysics Data System (ADS)

    Przeniosło, Radosław; Sosnowska, Izabela; Stękiel, Michał; Wardecki, Dariusz; Fitch, Andrew; B. Jasiński, Jacek

    2014-09-01

    Lineshape analysis of high resolution synchrotron radiation diffraction patterns of polycrystalline α-Fe2O3 powders show distortions from trigonal (space group R-3c) symmetry. The symmetry lowering is observed for α-Fe2O3 polycrystalline powders from several commercial vendors. The experimental observations can be explained by assuming a monoclinic symmetry (space group C2/c). The relative differences between the monoclinic and the hexagonal lattice constants are of the order of 10-4. The monoclinic symmetry of the crystal structure of α-Fe2O3 (C2/c) is in agreement with magnetic space group analysis [American Mineralogist 95 (2010) 974].

  15. Pressure-induced irreversible phase transitions of the monoclinic GdOOH nanorods at ambient temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanchao; Dai, Rucheng; Sui, Zhilei; Chen, Qiao; Wang, Zhongping; Yuan, Xiaodong; Zhang, Zengming; Ding, Zejun

    2014-09-01

    The structural transition of monoclinic GdOOH nanorods was studied by using a diamond anvil cell at room temperature with the probe of Eu3+ ion luminescence under pressures up to 21.4 GPa. The changes of luminescence spectra indicated that a pressure-induced phase transition from the monoclinic phase to the high pressure tetragonal phase occurs at 10.7 GPa for GdOOH nanorods, and the monoclinic GdOOH nanorods are gradually transformed into the tetragonal phase with increasing pressure. After releasing of pressure to the ambient, the high pressure tetragonal phase is retained, and the phase transition of GdOOH nanorods is irreversible.

  16. Silicon nanocrystal inks, films, and methods

    DOEpatents

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  17. Grafting Sulfated Zirconia on Mesoporous Silica

    SciTech Connect

    Wang, Yong; Lee, Kwan Young; Choi, Saemin; Liu, Jun; Wang, Li Q.; Peden, Charles HF

    2007-06-01

    Sulfated zirconia has received considerable attention as a potential solid acid catalyst in recent years. In this paper, the preparation and properties of acid catalysts obtained by grafting ziconia with atomic precision on MCM-41 mesoporous silica were studied. TEM and potential titration characterizations revealed that ZrO2/MCM-41 with monolayer coverage can be obtained using this grafting technique. Sulfated ZrO2/MCM-41 exhibits improved thermal stability than that of bulk sulfated zirconia, as evidenced by temperature programmed characterizations and XRD analysis. Temperature programmed reaction of isopropanol was used to evaluate the acidity of sulfated ZrO2/MCM-41. It was found that the acid strength of sulfated ZrO2/MCM-41 with monolayer coverage is weaker than bulk sulfated zirconia but stronger than SiO2-Al2O3, a common strong acid catalyst.

  18. Processing of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2003-01-01

    Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.

  19. Nanoparticles in the zirconia-europium niobate system via hydrothermal route.

    PubMed

    Hirano, Masanori; Dozono, Hayato

    2013-10-01

    The effect of the composition on the hydrothermal formation, structure, and properties of nanocrystalline luminescent materials in the zirconia (ZrO2)-europium niobate 1/4(Eu3NbO7) system was investigated. In the composition range 40 < or = ZrO2 mol% < or = 90, nanocrystalline particles with crystallite size 6.0-7.6 nm that were hydrothermally formed from the precursor solutions of NbCl5, ZrOCI2, and EuCl3 under weakly basic conditions at 240 degrees C showed cubic structure. The lattice parameter when estimated as a single cubic phase linearly decreased as the concentration of ZrO2 increased. The presence of zirconia component effectively promoted the formation of nanocrystals containing the niobate, Eu3NbO7 under hydrothermal condition. The nanocrystalline particles could be excited by ultraviolet light 395 nm (f-f transition) and emitted orange (590 nm) and red light (610 nm) corresponding to 5D0 --> 7F1 and 5D0 --> 7F2 transitions of Eu3+, respectively. The intensity of the electric dipole transition (5D0 --> 7F2) that was expressed in values relative to the magnetic dipole transition (5D0 --> 7F1) increased with increased heat-treatment temperature in the range from 950 to 1200 degrees C. PMID:24245134

  20. Local structures surrounding Zr in nanostructurally stabilized cubic zirconia: Structural origin of phase stability

    SciTech Connect

    Soo, Y. L.; Chen, P. J.; Huang, S. H.; Shiu, T. J.; Tsai, T. Y.; Chow, Y. H.; Lin, Y. C.; Weng, S. C.; Chang, S. L.; Wang, G.; Cheung, C. L.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Haider, H.; Garvin, K. L.; Lee, J. F.; Lee, H. Y.; Chu, P. P.

    2008-12-01

    Local environment surrounding Zr atoms in the thin films of nanocrystalline zirconia (ZrO{sub 2}) has been investigated by using the extended x-ray absorption fine structure (EXAFS) technique. These films prepared by the ion beam assisted deposition exhibit long-range structural order of cubic phase and high hardness at room temperature without chemical stabilizers. The local structure around Zr probed by EXAFS indicates a cubic Zr sublattice with O atoms located on the nearest tetragonal sites with respect to the Zr central atoms, as well as highly disordered locations. Similar Zr local structure was also found in a ZrO{sub 2} nanocrystal sample prepared by a sol-gel method. Variations in local structures due to thermal annealing were observed and analyzed. Most importantly, our x-ray results provide direct experimental evidence for the existence of oxygen vacancies arising from local disorder and distortion of the oxygen sublattice in nanocrystalline ZrO{sub 2}. These oxygen vacancies are regarded as the essential stabilizing factor for the nanostructurally stabilized cubic zirconia.

  1. Chipping Resistance of Graded Zirconia Ceramics for Dental Crowns

    PubMed Central

    Zhang, Y.; Chai, H.; Lee, J.J.-W.; Lawn, B.R.

    2012-01-01

    A serious drawback of veneering porcelains is a pronounced susceptibility to chipping. Glass-infiltrated dense zirconia structures can now be produced with esthetic quality, making them an attractive alternative. In this study, we examined the hypothesis that such infiltrated structures are much more chip-resistant than conventional porcelains, and at least as chip-resistant as non-infiltrated zirconia. A sharp indenter was used to produce chips in flat and anatomically correct glass-infiltrated zirconia crown materials, and critical loads were measured as a function of distance from the specimen edge (flat) or side wall (crown). Control data were obtained on zirconia specimens without infiltration and on crowns veneered with porcelains. The results confirmed that the resistance to chipping in graded zirconia is more than 4 times higher than that of porcelain-veneered zirconia and is at least as high as that of non-veneered zirconia. PMID:22232142

  2. Biomolecular Assembly of Gold Nanocrystals

    SciTech Connect

    Micheel, Christine Marya

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  3. Doped semiconductor nanocrystal junctions

    SciTech Connect

    Borowik, Ł.; Mélin, T.; Nguyen-Tran, T.; Roca i Cabarrocas, P.

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  4. Electronic structure and magnetic properties of FeWO{sub 4} nanocrystals synthesized by the microwave-hydrothermal method

    SciTech Connect

    Almeida, M.A.P.; Cavalcante, L.S.; Morilla-Santos, C.; Filho, P.N. Lisboa; Beltran, A.; Andres, J.; Gracia, L.; Longo, E.

    2012-11-15

    This communication reports that FeWO{sub 4} nanocrystals were successfully synthesized by the microwave-hydrothermal method at 443 K for 1 h. The structure and shape of these nanocrystals were characterized by X-ray diffraction, Rietveld refinement, and transmission electron microscopy. The experimental results and first principles calculations were combined to explain the electronic structure and magnetic properties. Experimental data were obtained by magnetization measurements for different applied magnetic fields. Theoretical calculations revealed that magnetic properties of FeWO{sub 4} nanocrystals can be assigned to two magnetic orderings with parallel or antiparallel spins in adjacent chains. These factors are crucial to understanding of competition between ferro- and antiferromagnetic behavior. Highlights: Black-Right-Pointing-Pointer Monophasic FeWO{sub 4} nanocrystals were synthesized by the microwave-hydrothermal method. Black-Right-Pointing-Pointer Rietveld refinement and clusters model for monoclinic structure Black-Right-Pointing-Pointer Magnetic properties of FeWO{sub 4} nanocrystals at different temperatures.

  5. Hot corrosion and high-temperature deformation of yttria-stabilized zirconia thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Chen, Zun

    The effect of V2O5 melt infiltration on the phase stability, thermal and mechanical properties of plasma-sprayed 7 wt% Y 2O3-ZrO2 (YSZ) was assessed by infiltration experiments at temperatures of 750°-1200°. Based on SEM and TEM observations combined with EDS, reactions between molten V2O'5 and YSZ were found to occur concomitantly with the infiltration process at all temperatures investigated. Near the surface, the reaction front proceeds in a planar fashion presumably via dissolution and precipitation, while the V2O5 melt infiltrates along the interconnected pores and reacts with the YSZ deep inside the coating. Typically, two different morphologies could be distinguished in the cross-section of the infiltrated coating that corresponds to the planar reacted zone (PRZ) and the melt infiltrated reaction zone (MIRZ). PRZ is a fine-grained surface reacted region where the vanadium concentration is higher or comparable to the yttrium concentration and MIRZ is a dense infiltrated region which displays abrupt vanadium concentration changes along the thickness direction. Temperature as well as morphological parameters, such as pore size and connectivity, was found to influence the dissolution/infiltration kinetics. In-situ XRD was employed to clarify the reaction mechanism between V 2O5 melt and YSZ. Concurrent formation of zirconium vanadate and yttrium vanadate were observed at 700°C and 750°C, suggesting a similar reactivity of yttrium and zirconia with vanadium oxide. The zirconium vanadate phase decomposed subsequently after 150 and 60 minutes at 700° and 750°C, respectively. The t'-ZrO2 phase transformed to a monoclinic phase through the formation of ZrV2O7, without gradually losing yttrium in t'-ZrO2 or partitioning into a cubic zirconia phase as previously thought. Therefore, zirconia-based ceramics have very limited resistance to vanadium oxide because of the zirconia. The Johnson-Mehl-Avrami (JMA) analysis based on the in-situ X-ray results at

  6. Surface roughened zirconia: towards hydrothermal stability.

    PubMed

    Camposilvan, Erik; Flamant, Quentin; Anglada, Marc

    2015-07-01

    Surface roughness is needed in several yttria-stabilized zirconia components used in restorative dentistry for osseointegration or adhesion purposes. This can be achieved by different treatments, which may also modify the microstructure of the surface. Among them, sandblasting and chemical etching are widely used, but their effect on hydrothermal aging of zirconia is not fully understood. In the present work, the zirconia long-term stability of rough surfaces prepared by these techniques is analyzed and a method is proposed for preventing hydrothermal aging while maintaining the original surface appearance and mechanical properties. The method involves pressure infiltration of a Cerium salt solution on the roughened surfaces followed by a thermal treatment. The solution, trapped by surface defects and small pores, is decomposed during thermal treatment into Cerium oxide, which is diffused at high temperature, obtaining Ce co-doping in the near-surface region. In addition, the microstructural changes induced in the near-surface by sandblasting or chemical etching are removed by the thermal treatment together with surface defects. No color modification was observed and the final roughness parameters were in the range of existing implants of proved good osseointegration. The aging resistance of Ce co-doped materials was strongly enhanced, showing the absence of aging after artificial degradation, increasing in this way the surface mechanical integrity. The proposed treatment is easily applicable to the current manufacturing procedures of zirconia dental posts, abutments, crowns and dentures, representing a solution to hydrothermal aging in these and other biomedical applications. PMID:25867636

  7. Improved Zirconia Oxygen-Separation Cell

    NASA Technical Reports Server (NTRS)

    Walsh, John V.; Zwissler, James G.

    1988-01-01

    Cell structure distributes feed gas more evenly for more efficent oxygen production. Multilayer cell structure containing passages, channels, tubes, and pores help distribute pressure evenly over zirconia electrolytic membrane. Resulting more uniform pressure distribution expected to improve efficiency of oxygen production.

  8. Dynamic nanocrystal response and high temperature growth of carbon nanotube-ferroelectric hybrid nanostructure

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Scott, J. F.; Katiyar, R. S.

    2013-12-01

    A long standing problem related to the capping of carbon nanotubes (CNT) by inorganic materials at high temperature has been solved. In situ dynamic response of Pb(Zr0.52Ti0.48)O3 (PZT) nanocrystals attached to the wings of the outer surface of PZT/CNT hybrid-nanostructure has been demonstrated under a constant-energy high-resolution transmission electron microscopy (HRTEM) e-beam. PZT nanocrystals revealed that the crystal orientations, positions, faces, and hopping states change with time. HRTEM study has been performed to investigate the microstructure of hybrid nanostructures and nanosize polycrystal trapped across the wings. Raman spectroscopy was utilized to investigate the local structures, defects, crystal qualities and temperature dependent growth and degradation of hybrid nanostructures. Raman spectra indicate that MWCNT and PZT/MWCNT/n-Si possess good quality of CNT before and after PZT deposition until 650 °C. The monoclinic Cc/Cm phase of PZT which is optimum in piezoelectric properties was prominent in the hybrid structure and should be useful for device applications. An unusual hexagonal faceting oscillation of the nano-crystal perimeter on a 10-30 s period is also observed.A long standing problem related to the capping of carbon nanotubes (CNT) by inorganic materials at high temperature has been solved. In situ dynamic response of Pb(Zr0.52Ti0.48)O3 (PZT) nanocrystals attached to the wings of the outer surface of PZT/CNT hybrid-nanostructure has been demonstrated under a constant-energy high-resolution transmission electron microscopy (HRTEM) e-beam. PZT nanocrystals revealed that the crystal orientations, positions, faces, and hopping states change with time. HRTEM study has been performed to investigate the microstructure of hybrid nanostructures and nanosize polycrystal trapped across the wings. Raman spectroscopy was utilized to investigate the local structures, defects, crystal qualities and temperature dependent growth and degradation of

  9. Nanocrystal solids: Order and progress

    NASA Astrophysics Data System (ADS)

    Delerue, Christophe

    2016-05-01

    Quantification of structural disorder and electron localization in superlattices of colloidal nanocrystals shows that minimizing variations in size and epitaxial connections is key to enhance the electronic properties of these materials.

  10. NaF-mediated controlled-synthesis of multicolor Na(x)ScF(3+x):Yb/Er upconversion nanocrystals.

    PubMed

    Pei, Wen-Bo; Chen, Bo; Wang, Lili; Wu, Jiansheng; Teng, Xue; Lau, Raymond; Huang, Ling; Huang, Wei

    2015-03-01

    Synthesis of lanthanide-doped upconversion nanocrystals (LDUNs) with controlled morphology and luminescence has long been desired in order to fulfill various application requirements. In this work, we have investigated the effect of the NaF : Ln(3+) molar ratio, in the range of 1 to 20, on the morphology, crystal structure, and upconversion properties of NaxScF(3+x):Yb/Er nanocrystals that are reported to possess different upconversion properties from those of NaYF4:Yb/Er nanocrystals. The experimental results prove that the NaF : Ln(3+) molar ratio influences significantly the growth process of the nanocrystals, i.e. a low NaF : Ln(3+) molar ratio results in hexagonal NaScF4 nanocrystals, while a high NaF : Ln(3+) molar ratio favors monoclinic Na3ScF6 nanocrystals. When the NaF : Ln(3+) molar ratio is as high as 6 or above, phase separation is found and hexagonal NaYbF4 nanocrystals showed up for the first time. Simply by adjusting the NaF : Ln(3+) molar ratio, we have successfully achieved the simultaneous control of the shape, size, as well as the crystallographic phase of the NaxScF(3+x):Yb/Er nanocrystals, which give different red to green (R/G) ratios (integral area), leading to a multicolor upconversion luminescence from orange-red to green. This study provides a vivid example to track and interpret the formation mechanisms and growth processes of NaxScF(3+x):Yb/Er nanocrystals, which shall be instructive for guiding the controlled synthesis of other LDUNs and extending their according applications in optical communication, color display, anti-counterfeiting, bioimaging, and so on. PMID:25657098

  11. Early stage of nanocrystal growth

    SciTech Connect

    2012-01-01

    Berkeley Lab researchers at the Molecular Foundry have elucidated important mechanisms behind oriented attachment, the phenomenon that drives biomineralization and the growth of nanocrystals. This electron microscopy movie shows the early stage of nanocrystal growth. Nanoparticles make transient contact at many points and orientations until their lattices are perfectly matched. The particles then make a sudden jump-to-contact to form attached aggregates. (Movie courtesy of Jim DeYoreo)

  12. Development of a zirconia toughened hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Mager, Carie Christine Wilkinson

    2000-10-01

    Because of its low fracture toughness (<1 MPa m 1/2) compared to bone (2--12 MPa m1/2), the use of HAp in dentistry and orthopedics is limited to low load bearing applications. In order to broaden its applications, HAp was reinforced through the addition of partially stabilized zirconia. HAp composites with varying amounts of zirconia were processed using a 2 level, 8 variable factorial design to determine the effect of various processing conditions on the stability of the zirconia and HAp phases and on the resulting toughening behavior of the composites. The processing conditions included in the design were; (a) milling times and fluid dispersion mediums; (b) sintering times and temperatures in ambient air and atmospheric pressure; and (c) hot isostatic pressing time and temperature in inert and "wet" environments. The effect of volume fraction and particle size of the zirconia in the range of 0--30 wt % and -0.9mum to -2.0mum respectively on the material's fracture toughness were also determined. The composites were also placed in a serum like solution for 6 months to study the effect of physiological environment on the various processing parameters and the resulting toughening behavior. The toughening behavior before and after in vitro exposure was monitored using micro Raman spectroscopy which enabled the size and shape of the transformation zone to, be quantified. The optimization of the design parameter's resulted in an increase in the fracture toughness by a factor of three and the six month in vitro study indicated that a zirconia toughened HAp implant could be processed so as to retain its hardness and toughness in vivo.

  13. Graded Zirconia Glass for Resistance to Veneer Fracture

    PubMed Central

    Zhang, Y.; Kim, J.-W.

    2010-01-01

    Failures of zirconia-based all-ceramic restorations appear to be predominantly chips and fractures in the porcelain veneer, from occlusally induced sliding contact damage. We hypothesized that such failure may be substantially mitigated by controlled grading of the elastic modulus at the ceramic surface. In this study, we fabricated graded structures by infiltrating glass into zirconia plates, resulting in improved aesthetics and diminished modulus at the surfaces. Individual plates were then embedded in epoxy or cemented to dental composites and subjected to single- or multi-cycle sliding contact. Plates of porcelain-veneered zirconia and monolithic zirconia served as controls. Graded zirconia-glass structures exhibited over 3 times better resistance to single-cycle sliding damage than monolithic zirconia and 25 times better than veneered zirconia, and had a fatigue sliding damage resistance comparable with that of monolithic zirconia. These zirconia-glass materials can be engineered in shades from white to yellow, and have potentially better cementation properties than homogeneous zirconia. PMID:20651092

  14. Assemblies of Cellulose Nanocrystals

    NASA Astrophysics Data System (ADS)

    Kumacheva, Eugenia

    The entropically driven coassembly of nanorods (cellulose nanocrystals, CNCs) and different types of nanoparticles (NPs), including dye-labeled latex NPs, carbon dots and plasmonic NPs was experimentally studied in aqueous suspensions and in solid films. In mixed CNC-NP suspensions, phase separation into an isotropic NP-rich and a chiral nematic CNC-rich phase took place; the latter contained a significant amount of NPs. Drying the mixed suspension resulted in CNC-NP films with planar disordered layers of NPs, which alternated with chiral nematic CNC-rich regions. In addition, NPs were embedded in the chiral nematic domains. The stratified morphology of the films, together with a random distribution of NPs in the anisotropic phase, led to the films having close-to-uniform fluorescence, birefringence, and circular dichroism properties.

  15. Mixed semiconductor nanocrystal compositions

    DOEpatents

    Maskaly, Garry R.; Schaller, Richard D.; Klimov, Victor I.

    2011-02-15

    Composition comprising one or more energy donors and one or more energy acceptors, wherein energy is transferred from the energy donor to the energy acceptor and wherein: the energy acceptor is a colloidal nanocrystal having a lower band gap energy than the energy donor; the energy donor and the energy acceptor are separated by a distance of 40 nm or less; wherein the average peak absorption energy of the acceptor is at least 20 meV greater than the average peak emission energy of the energy donor; and wherein the ratio of the number of energy donors to the number of energy acceptors is from about 2:1 to about 1000:1.

  16. Luminescent nanocrystal stress gauge

    PubMed Central

    Choi, Charina L.; Koski, Kristie J.; Olson, Andrew C. K.; Alivisatos, A. Paul

    2010-01-01

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe-CdS core-shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution. PMID:21098301

  17. Bulk and Interface Thermodynamics of Calcia-, and Yttria-doped Zirconia Ceramics: Nanograined Phase Stability

    NASA Astrophysics Data System (ADS)

    Drazin, John Walter

    Calcia-, and yttria- doped zirconia powders and samples are essential systems in academia and industry due to their observed bulk polymorphism. Pure zirconia manifests as Baddeleyite, a monoclinic structured mineral with 7-fold coordination. This bulk form of zirconia has little application due to its asymmetry. Therefore dopants are added to the grain in-order to induce phase transitions to either a tetragonal or cubic polymorph with the incorporation of oxygen vacancies due to the dopant charge mis-match with the zirconia matrix. The cubic polymorph has cubic symmetry such that these samples see applications in solid oxide fuel cells (SOFCs) due to the high oxygen vacancy concentrations and high ionic mobility at elevated temperatures. The tetragonal polymorph has slight asymmetry in the c-axis compared to the a-axis such that the tetragonal samples have increased fracture toughness due to an impact induced phase transformation to a cubic structure. These ceramic systems have been extensively studied in academia and used in various industries, but with the advent of nanotechnology one can wonder whether smaller grain samples will see improved characteristics similar to their bulk grain counterparts. However, there is a lack of data and knowledge of these systems in the nano grained region which provides us with an opportunity to advance the theory in these systems. The polymorphism seen in the bulk grains samples is also seen in the nano-grained samples, but at slightly distinct dopant concentrations. The current theory hypothesizes that a surface excess, gamma (J/m 2), can be added to the Gibbs Free energy equation to account for the additional free energy of the nano-grain atoms. However, these surface energies have been difficult to measure and therefore thermodynamic data on these nano-grained samples have been sparse. Therefore, in this work, I will use a well established water adsorption microcalorimetry apparatus to measure the water coverage isotherms

  18. Zirconia Crown as Single Unit Tooth Restoration: A Literature Review.

    PubMed

    Alfawaz, Yasser

    2016-01-01

    Ceramics has become increasingly popular as a dental restorative material because of its superior esthetics, as well as its inertness and biocompatibility. Among dental ceramics, zirconia is used as a dental biomaterial and it is the material of choice in contemporary restorative dentistry. Zirconia ceramics has both clinical popularity and success due to its outstanding mechanical properties and ease of machining in the green stage via computer-aided design and computer-aided manufacturing technology. Zirconia is one of the most promising restorative biomaterial because it has favorable mechanical and chemical properties suitable for medical application. Zirconia ceramics is becoming a prevalent biomaterial in dentistry. Clinical evaluations also indicate a good success rate for zirconia with minimal complications. This article reviews the current literature on dental zirconia with respect to basic properties, biocompatibility, and clinical applications in aesthetic dentistry as single unit crown. PMID:27443370

  19. Semiconductor nanocrystal-based phagokinetic tracking

    DOEpatents

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  20. Nanocrystal-polymer solar cells

    NASA Astrophysics Data System (ADS)

    Huynh, Wendy Uyen

    The ability to structure materials on a nanometer dimension enables the processes of solar energy conversion to be optimized at their most fundamental length scale. In semiconducting nanocrystals, optical absorption and electrical transport can be tailored by changing their radius and length, respectively. The unique features of quantum confinement and shape manipulation characteristic for inorganic nanocrystals can be utilized to fabricate solar cells with properties not observed in organic or conventional inorganic solar cells. Furthermore, their solution processibility provides fabrication advantages in the production of low cost, large area, and flexible solar cells. By blending organic conjugated polymers with CdSe nanocrystals efficient thin film solar cells have been constructed. Intimate contact for efficient charge transfer between the polymer and nanocrystal components of the blend was achieved by removing the organic ligands on the surface of the nanocrystal and by using solvent mixtures. Control of the nanocrystal length and therefore the distance on which electrons are transported directly through a thin film device enabled the creation of direct pathways for the transport of electrons. In addition, tuning the band gap by altering the nanocrystal radius as well as using alternate materials such as CdTe the overlap between the absorption spectrum of the cell and the solar emission spectrum could be optimized. A photovoltaic device consisting of 7nm by 60nm CdSe nanorods and the conjugated polymer poly-3(hexylthiophene) was assembled from solution with an external quantum efficiency of over 54% and a monochromatic power conversion efficiency of up to 7% under illumination at low light intensity. Under AM 1.5 Global solar conditions, we obtained a power conversion efficiency of 1.7%.

  1. Novel fabrication method for zirconia restorations: bonding strength of machinable ceramic to zirconia with resin cements.

    PubMed

    Kuriyama, Soichi; Terui, Yuichi; Higuchi, Daisuke; Goto, Daisuke; Hotta, Yasuhiro; Manabe, Atsufumi; Miyazaki, Takashi

    2011-01-01

    A novel method was developed to fabricate all-ceramic restorations which comprised CAD/CAM-fabricated machinable ceramic bonded to CAD/CAM-fabricated zirconia framework using resin cement. The feasibility of this fabrication method was assessed in this study by investigating the bonding strength of a machinable ceramic to zirconia. A machinable ceramic was bonded to a zirconia plate using three kinds of resin cements: ResiCem (RE), Panavia (PA), and Multilink (ML). Conventional porcelain-fused-to-zirconia specimens were also prepared to serve as control. Shear bond strength test (SBT) and Schwickerath crack initiation test (SCT) were carried out. SBT revealed that PA (40.42 MPa) yielded a significantly higher bonding strength than RE (28.01 MPa) and ML (18.89 MPa). SCT revealed that the bonding strengths of test groups using resin cement were significantly higher than those of Control. Notably, the bonding strengths of RE and ML were above 25 MPa even after 10,000 times of thermal cycling -adequately meeting the ISO 9693 standard for metal-ceramic restorations. These results affirmed the feasibility of the novel fabrication method, in that a CAD/CAM-fabricated machinable ceramic is bonded to a CAD/CAM-fabricated zirconia framework using a resin cement. PMID:21597207

  2. Surface Treatments of Zirconia to Enhance Bonding Durability.

    PubMed

    Melo, R M; Souza, R O A; Dursun, E; Monteiro, E B C; Valandro, L F; Bottino, M A

    2015-01-01

    This article reviewed the surface treatments used most often to improve adhesion between zirconia and adhesive cements, focusing on their capacity to provide long-term bonding. Traditional and new treatments for zirconia bonding were searched. Some new treatments were discussed along with topographical views of the modified zirconia. New methods, such as selective infiltration etching and the low-fusing glassy porcelain application are promising, but more research is needed. PMID:26151461

  3. Effects of cementation surface modifications on fracture resistance of zirconia

    PubMed Central

    Srikanth, Ramanathan; Kosmac, Tomaz; Bona, Alvaro Della; Yin, Ling; Zhang, Yu

    2015-01-01

    Objectives To examine the effects of glass infiltration (GI) and alumina coating (AC) on the indentation flexural load and four-point bending strength of monolithic zirconia. Methods Plate-shaped (12 mm × 12 mm × 1.0 mm or 1.5 mm or 2.0 mm) and bar-shaped (4 mm × 3 mm × 25 mm) monolithic zirconia specimens were fabricated. In addition to monolithic zirconia (group Z), zirconia monoliths were glass-infiltrated or alumina-coated on their tensile surfaces to form groups ZGI and ZAC, respectively. They were also glass-infiltrated on their upper surfaces, and glass-infiltrated or alumina-coated on their lower (tensile) surfaces to make groups ZGI2 and ZAC2, respectively. For comparison, porcelain-veneered zirconia (group PVZ) and monolithic lithium disilicate glass-ceramic (group LiDi) specimens were also fabricated. The plate-shaped specimens were cemented onto a restorative composite base for Hertzian indentation using a tungsten carbide spherical indenter with a radius of 3.2 mm. Critical loads for indentation flexural fracture at the zirconia cementation surface were measured. Strengths of bar-shaped specimens were evaluated in four-point bending. Results Glass infiltration on zirconia tensile surfaces increased indentation flexural loads by 32% in Hertzian contact and flexural strength by 24% in four-point bending. Alumina coating showed no significant effect on resistance to flexural damage of zirconia. Monolithic zirconia outperformed porcelain-veneered zirconia and monolithic lithium disilicate glass-ceramics in terms of both indentation flexural load and flexural strength. Significance While both alumina coating and glass infiltration can be used to effectively modify the cementation surface of zirconia, glass infiltration can further increase the flexural fracture resistance of zirconia. PMID:25687628

  4. State of the art of zirconia for dental applications.

    PubMed

    Denry, Isabelle; Kelly, J Robert

    2008-03-01

    Zirconia has been recently introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures, in combination with CAD/CAM techniques. This review encompasses the specific types of zirconia available in dentistry, together with their properties. The two main processing techniques, soft and hard machining, are assessed in the light of their possible clinical implications and consequences on the long-term performance of zirconia. An update on the status of clinical trials occurring worldwide is provided. PMID:17659331

  5. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  6. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  7. Zirconia abutments and restorations: from laboratory to clinical investigations.

    PubMed

    Ferrari, M; Vichi, A; Zarone, F

    2015-03-01

    In last years the use of zirconia in dentistry has become very popular. Unfortunately, the clinical indications for a dental use of zirconia are not completely clear yet, neither are their limitations. The objective of this review was to evaluate the basic science knowledge on zirconia and to discuss some aspects of the clinical behavior of zirconia-based restorations. In particular, one of the goals was highlighting the possible correlation between in vitro and in vivo studies. The definition of concepts like success, survival and failure was still debated and the correlation between in vitro results and predictability of clinical behavior was investigated. PMID:25576437

  8. Overview of zirconia with respect to gas turbine applications

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.

    1984-01-01

    Phase relationships and the mechanical properties of zirconia are examined as well as the thermal conductivity, deformation, diffusion, and chemical reactivity of this refractory material. Observations from the literature particular to plasma-sprayed material and implications for gas turbine engine applications are discussed. The literature review indicates that Mg-PSZ (partially stabilized zirconia) and Ca-PSZ are unsuitable for advanced gas turbine applications; a thorough characterization of the microstructure of plasma-sprayed zirconia is needed. Transformation-toughened zirconia may be suitable for use in monolithic components.

  9. Evidence of a pressure-induced metallization process in monoclinic VO2.

    PubMed

    Arcangeletti, E; Baldassarre, L; Di Castro, D; Lupi, S; Malavasi, L; Marini, C; Perucchi, A; Postorino, P

    2007-05-11

    Raman and combined infrared transmission and reflectivity measurements were carried out at room temperature (RT) on monoclinic VO2 over the 0-19 GPa and 0-14 GPa pressure ranges. Both lattice dynamics and optical gap show a remarkable stability up to P* approximately 10 GPa whereas subtle modifications of V ion arrangements within the monoclinic lattice, together with the onset of a metallization process via band gap filling, are observed for P >P*. Differently from P=0, where the VO2 metallic phase is found only in conjunction with the rutile structure above 340 K, a new RT metallic phase within a monoclinic structure appears accessible in the high pressure regime. PMID:17677642

  10. Measurement of elastic constants of monoclinic nickel-titanium and validation of first principles calculations

    SciTech Connect

    Stebner, A. P.; Brown, D. W.; Brinson, L. C.

    2013-05-27

    Polycrystalline, monoclinic nickel-titanium specimens were subjected to tensile and compressive deformations while neutron diffraction spectra were recorded in situ. Using these data, orientation-specific and macroscopic Young's moduli are determined from analysis of linear-elastic deformation exhibited by 13 unique orientations of monoclinic lattices and their relationships to each macroscopic stress and strain. Five of 13 elastic compliance constants are also identified: s{sub 11} = 1.15, s{sub 15} = -1.10, s{sub 22} = 1.34, s{sub 33} = 1.06, s{sub 35} = -1.54, all Multiplication-Sign 10{sup -2} GPa{sup -1}. Through these results, recent atomistic calculations of monoclinic nickel-titanium elastic constants are validated.

  11. NaF-mediated controlled-synthesis of multicolor NaxScF3+x:Yb/Er upconversion nanocrystals

    NASA Astrophysics Data System (ADS)

    Pei, Wen-Bo; Chen, Bo; Wang, Lili; Wu, Jiansheng; Teng, Xue; Lau, Raymond; Huang, Ling; Huang, Wei

    2015-02-01

    Synthesis of lanthanide-doped upconversion nanocrystals (LDUNs) with controlled morphology and luminescence has long been desired in order to fulfill various application requirements. In this work, we have investigated the effect of the NaF : Ln3+ molar ratio, in the range of 1 to 20, on the morphology, crystal structure, and upconversion properties of NaxScF3+x:Yb/Er nanocrystals that are reported to possess different upconversion properties from those of NaYF4:Yb/Er nanocrystals. The experimental results prove that the NaF : Ln3+ molar ratio influences significantly the growth process of the nanocrystals, i.e. a low NaF : Ln3+ molar ratio results in hexagonal NaScF4 nanocrystals, while a high NaF : Ln3+ molar ratio favors monoclinic Na3ScF6 nanocrystals. When the NaF : Ln3+ molar ratio is as high as 6 or above, phase separation is found and hexagonal NaYbF4 nanocrystals showed up for the first time. Simply by adjusting the NaF : Ln3+ molar ratio, we have successfully achieved the simultaneous control of the shape, size, as well as the crystallographic phase of the NaxScF3+x:Yb/Er nanocrystals, which give different red to green (R/G) ratios (integral area), leading to a multicolor upconversion luminescence from orange-red to green. This study provides a vivid example to track and interpret the formation mechanisms and growth processes of NaxScF3+x:Yb/Er nanocrystals, which shall be instructive for guiding the controlled synthesis of other LDUNs and extending their according applications in optical communication, color display, anti-counterfeiting, bioimaging, and so on.Synthesis of lanthanide-doped upconversion nanocrystals (LDUNs) with controlled morphology and luminescence has long been desired in order to fulfill various application requirements. In this work, we have investigated the effect of the NaF : Ln3+ molar ratio, in the range of 1 to 20, on the morphology, crystal structure, and upconversion properties of NaxScF3+x:Yb/Er nanocrystals that are reported

  12. Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β -gallium oxide single crystals

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Korlacki, R.; Knight, S.; Hofmann, T.; Schöche, S.; Darakchieva, V.; Janzén, E.; Monemar, B.; Gogova, D.; Thieu, Q.-T.; Togashi, R.; Murakami, H.; Kumagai, Y.; Goto, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M.

    2016-03-01

    We derive a dielectric function tensor model approach to render the optical response of monoclinic and triclinic symmetry materials with multiple uncoupled infrared and far-infrared active modes. We apply our model approach to monoclinic β -Ga2O3 single-crystal samples. Surfaces cut under different angles from a bulk crystal, (010) and (2 ¯01 ), are investigated by generalized spectroscopic ellipsometry within infrared and far-infrared spectral regions. We determine the frequency dependence of 4 independent β -Ga2O3 Cartesian dielectric function tensor elements by matching large sets of experimental data using a point-by-point data inversion approach. From matching our monoclinic model to the obtained 4 dielectric function tensor components, we determine all infrared and far-infrared active transverse optic phonon modes with Au and Bu symmetry, and their eigenvectors within the monoclinic lattice. We find excellent agreement between our model results and results of density functional theory calculations. We derive and discuss the frequencies of longitudinal optical phonons in β -Ga2O3 . We derive and report density and anisotropic mobility parameters of the free charge carriers within the tin-doped crystals. We discuss the occurrence of longitudinal phonon plasmon coupled modes in β -Ga2O3 and provide their frequencies and eigenvectors. We also discuss and present monoclinic dielectric constants for static electric fields and frequencies above the reststrahlen range, and we provide a generalization of the Lyddane-Sachs-Teller relation for monoclinic lattices with infrared and far-infrared active modes. We find that the generalized Lyddane-Sachs-Teller relation is fulfilled excellently for β -Ga2O3 .

  13. Linearly arranged polytypic CZTSSe nanocrystals

    PubMed Central

    Fan, Feng-Jia; Wu, Liang; Gong, Ming; Chen, Shi You; Liu, Guang Yao; Yao, Hong-Bin; Liang, Hai-Wei; Wang, Yi-Xiu; Yu, Shu-Hong

    2012-01-01

    Even colloidal polytypic nanostructures show promising future in band-gap tuning and alignment, researches on them have been much less reported than the standard nano-heterostructures because of the difficulties involved in synthesis. Up to now, controlled synthesis of colloidal polytypic nanocrsytals has been only realized in II-VI tetrapod and octopod nanocrystals with branched configurations. Herein, we report a colloidal approach for synthesizing non-branched but linearly arranged polytypic I2-II-IV-VI4 nanocrystals, with a focus on polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystals. Each synthesized polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystal is consisted of two zinc blende-derived ends and one wurtzite-derived center part. The formation mechanism has been studied and the phase composition can be tuned through adjusting the reaction temperature, which brings a new band-gap tuning approach to Cu2ZnSnSxSe4-x nanocrystals. PMID:23233871

  14. (Perturbed angular correlations in zirconia ceramics)

    SciTech Connect

    Not Available

    1990-01-01

    This is the progress report for the first year of the currently-approved three year funding cycle. We have carried on a vigorous program of experimental and theoretical research on microscopic properties of zirconia and ceria using the Perturbed Angular Correlation (PAC) experimental technique. The experimental method was described in the original proposal and in a number of references as well as several of the technical reports that accompany this progress report.

  15. Making yttria-stabilized tetragonal zirconia translucent

    PubMed Central

    Zhang, Yu

    2014-01-01

    Objective The aim of this study was to provide a design guideline for developing tetragonal yttria-stabilized zirconia with improved translucency. Methods The translucency, the in-line transmission in particular, of 3 mol.% yttria-stabilized tetragonal zirconia (3Y-TZP) has been examined using the Rayleigh scattering model. The theory predicts that the in-line transmission of 3Y-TZP can be related to its thickness with grain size and birefringence the governing parameters. To achieve a threshold value of translucency, the critical grain size of 3Y-TZP was predicted for various thicknesses (0.3 – 2.0 mm). The threshold value was defined by a measured average in-line transmission value of a suite of dental porcelains with a common thickness of 1 mm. Our theoretical predictions were calibrated with one of the very few experimental data available in the literature. Results For a dense, high-purity zirconia, its in-line transmission increased with decreasing grain size and thickness. To achieve a translucency similar to that of dental porcelains, a nanocyrstalline 3Y-TZP structure was necessitated, due primarily to its large birefringence and high refractive index. Such a grain size dependence became more pronounced as the 3Y-TZP thickness increased. For example, at a thickness of 1.3 mm, the mean grain size of a translucent 3Y-TZP should be 82 nm. At 1.5 mm and 2 mm thicknesses, the mean grain size needed to be 77 nm and 70 nm, respectively. Significance A promising future for zirconia restorations, with combined translucency and mechanical properties, can be realized by reducing its grain size. PMID:25193781

  16. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    SciTech Connect

    Gomez, A.; Villanueva, R.; Vie, D.; Murcia-Mascaros, S.; Martinez, E.; Beltran, A.; Sapina, F.; Vicent, M.; Sanchez, E.

    2013-01-15

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: Black-Right-Pointing-Pointer Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders. Black-Right-Pointing-Pointer The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. Black-Right-Pointing-Pointer The temperature of the thermal treatment controls particle sizes. Black-Right-Pointing-Pointer The preparation procedure has been scaled up to the 100 g scale. Black-Right-Pointing-Pointer This method is appropriate for the large-scale industrial preparation of multimetallic systems.

  17. Synthesis, characterization and femtosecond nonlinear saturable absorption behavior of copper phthalocyanine nanocrystals doped-PMMA polymer thin films

    NASA Astrophysics Data System (ADS)

    Zongo, S.; Dhlamini, M. S.; Neethling, P. H.; Yao, A.; Maaza, M.; Sahraoui, B.

    2015-12-01

    In this work, we report the femtosecond nonlinear saturable absorption response of synthesized copper phthalocyanine nanocrystals (CPc-NCs)-doped PMMA polymer thin films. The samples were initially characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-Vis and scanning electron microscopy (SEM) techniques. The crystalline phase and morphological analysis revealed nanocrystals of monoclinic structure with an average crystallite size between 31.38 nm and 42.5 nm. The femtosecond Z-scan study at 800 nm central wavelength indicated a saturable absorption behavior of which the mechanism is closely related to the surface plasmon resonance (SPR) of the particles. This nonlinear effect could potentially make the CPc-NCs useful in nonlinear optical devices.

  18. Niobia and tantala codoped orthorhombic zirconia ceramics

    SciTech Connect

    Hoeftberger, M.; Gritzner, G.

    1995-04-15

    During recent studies it was found that codoping of zirconia with niobia and tantala yielded very corrosion resistant, orthorhombic zirconia ceramics. The powders for those novel ceramics were made via the sol-gel technique by hydrolysis of the respective metal propoxides; a method which required dry-box techniques during the preparation of the alkoxides. In these studies the authors investigated the fabrication of precursor material from aqueous solutions. The preparation of aqueous solutions of salts of zirconium, niobium and tantalum is hampered by rapid hydrolysis. Premature hydrolysis of the chlorides and oxichlorides of niobium, tantalum and zirconium can be, however, prevented in aqueous solutions of oxalic acid. Thus the authors investigated the coprecipitation of hydroxides as precursors by reacting oxalic acid solutions of the respective cations with aqueous ammonia. In addition they studied the effects of calcination and of hydrothermal conversion of the hydroxides to oxides on the powder characteristics and on the mechanical properties of the niobia and tantala codoped zirconia ceramics.

  19. Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications.

    PubMed

    Benzaid, Rajaa; Chevalier, Jerome; Saâdaoui, Malika; Fantozzi, Gilbert; Nawa, Masahiro; Diaz, Luis Antonio; Torrecillas, Ramon

    2008-09-01

    Mechanical properties and slow crack growth (SCG) behavior of a 10Ce-TZP/Al2O3 nanocomposite currently developed as a biomaterial are considered. Fracture toughness is determined for sharp, long (double torsion) and short (indentation) cracks and a good agreement is found between the two types of cracks. The main toughening mechanism in the nanocomposite is the tetragonal to monoclinic phase transformation of the ceria-stabilized zirconia (Ce-TZP) phase. Transformation at the surface of ground specimens leads to surface compressive induced stresses and an increase in strength. Crack velocity curves (V-K(I) curves) are obtained under static and cyclic fatigue using the double torsion method. The static V-K(I) curve in air reveals the three stages characteristic of stress corrosion with a threshold K(I0) approximately 4.5 MPa m(1/2) and a fracture toughness of 8.8 MPa m(1/2) significantly higher than those of currently used inert bioceramics (i.e., alumina and Y-TZP). A crack growth accelerating effect is shown under cyclic loading, correlated with a decrease in the threshold. However, the cyclic fatigue threshold (4 MPa m(1/2)) still stands above that of current biomedical grade alumina and zirconia. PMID:18571716

  20. Oxygen diffusion in niobia-doped zirconia as surrogate for oxide film on Zr-Nb alloy: AC impedance analysis

    NASA Astrophysics Data System (ADS)

    Yamana, Teppei; Arima, Tatsumi; Yoshihara, Takatoshi; Inagaki, Yaohiro; Idemitsu, Kazuya

    2013-11-01

    The oxygen conductivities and crystallographic properties of niobia-doped yttria-stabilized tetragonal zirconia with 0.0-2.6 wt% Nb2O5 were evaluated by the AC impedance analysis and the X-ray diffraction measurement, respectively. The tetragonality of zirconia increased with niobia content and approached ˜1.017 while the tetragonal-to-monoclinic phase transition occurred above ca. 1 wt% Nb2O5. On the other hand, oxygen conductivities of bulk and grain-boundary (GB) decreased with increasing niobia content. The bulk conductivity controlled the total ionic conductivity at high temperatures, and its activation energy had smaller dependence on temperature than that of GB. In addition to the effect of [VO] depletion by niobia addition, the behaviors of bulk and GB conductivities might be explained by the decrease of mobility of oxygen ion due to Coulomb repulsion between Nb5+ and VO and by no segregation of Nb ions in the space-charge layers, respectively.

  1. Nanocrystal targeting in vivo

    NASA Astrophysics Data System (ADS)

    Åkerman, Maria E.; Chan, Warren C. W.; Laakkonen, Pirjo; Bhatia, Sangeeta N.; Ruoslahti, Erkki

    2002-10-01

    Inorganic nanostructures that interface with biological systems have recently attracted widespread interest in biology and medicine. Nanoparticles are thought to have potential as novel intravascular probes for both diagnostic (e.g., imaging) and therapeutic purposes (e.g., drug delivery). Critical issues for successful nanoparticle delivery include the ability to target specific tissues and cell types and escape from the biological particulate filter known as the reticuloendothelial system. We set out to explore the feasibility of in vivo targeting by using semiconductor quantum dots (qdots). Qdots are small (<10 nm) inorganic nanocrystals that possess unique luminescent properties; their fluorescence emission is stable and tuned by varying the particle size or composition. We show that ZnS-capped CdSe qdots coated with a lung-targeting peptide accumulate in the lungs of mice after i.v. injection, whereas two other peptides specifically direct qdots to blood vessels or lymphatic vessels in tumors. We also show that adding polyethylene glycol to the qdot coating prevents nonselective accumulation of qdots in reticuloendothelial tissues. These results encourage the construction of more complex nanostructures with capabilities such as disease sensing and drug delivery.

  2. Nanocrystal powered nanomotor

    DOEpatents

    Regan, Brian C.; Zettl, Alexander K.; Aloni, Shaul

    2011-01-04

    A nanoscale nanocrystal which may be used as a reciprocating motor is provided, comprising a substrate having an energy differential across it, e.g. an electrical connection to a voltage source at a proximal end; an atom reservoir on the substrate distal to the electrical connection; a nanoparticle ram on the substrate distal to the atom reservoir; a nanolever contacting the nanoparticle ram and having an electrical connection to a voltage source, whereby a voltage applied between the electrical connections on the substrate and the nanolever causes movement of atoms between the reservoir and the ram. Movement of the ram causes movement of the nanolever relative to the substrate. The substrate and nanolever preferably comprise multiwalled carbon nanotubes (MWNTs) and the atom reservoir and nanoparticle ram are preferably metal (e.g. indium) deposited as small particles on the MWNTs. The substrate may comprise a silicon chip that has been fabricated to provide the necessary electrodes and other electromechanical structures, and further supports an atomic track, which may comprise an MWNT.

  3. Dynamic nanocrystal response and high temperature growth of carbon nanotube-ferroelectric hybrid nanostructure.

    PubMed

    Kumar, Ashok; Scott, J F; Katiyar, R S

    2014-01-21

    A long standing problem related to the capping of carbon nanotubes (CNT) by inorganic materials at high temperature has been solved. In situ dynamic response of Pb(Zr0.52Ti0.48)O3 (PZT) nanocrystals attached to the wings of the outer surface of PZT/CNT hybrid-nanostructure has been demonstrated under a constant-energy high-resolution transmission electron microscopy (HRTEM) e-beam. PZT nanocrystals revealed that the crystal orientations, positions, faces, and hopping states change with time. HRTEM study has been performed to investigate the microstructure of hybrid nanostructures and nanosize polycrystal trapped across the wings. Raman spectroscopy was utilized to investigate the local structures, defects, crystal qualities and temperature dependent growth and degradation of hybrid nanostructures. Raman spectra indicate that MWCNT and PZT/MWCNT/n-Si possess good quality of CNT before and after PZT deposition until 650 °C. The monoclinic Cc/Cm phase of PZT which is optimum in piezoelectric properties was prominent in the hybrid structure and should be useful for device applications. An unusual hexagonal faceting oscillation of the nano-crystal perimeter on a 10-30 s period is also observed. PMID:24292241

  4. Optical Properties of Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gaponenko, S. V.

    1998-10-01

    Low-dimensional semiconductor structures, often referred to as nanocrystals or quantum dots, exhibit fascinating behavior and have a multitude of potential applications, especially in the field of communications. This book examines in detail the optical properties of these structures, gives full coverage of theoretical and experimental results, and discusses their technological applications. The author begins by setting out the basic physics of electron states in crystals (adopting a "cluster-to-crystal" approach), and goes on to discuss the growth of nanocrystals, absorption and emission of light by nanocrystals, optical nonlinearities, interface effects, and photonic crystals. He illustrates the physical principles with references to actual devices such as novel light-emitters and optical switches. The book covers a rapidly developing, interdisciplinary field. It will be of great interest to graduate students of photonics or microelectronics, and to researchers in electrical engineering, physics, chemistry, and materials science.

  5. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  6. Controlling polymorphic structures and investigating electric properties of Ca-doped zirconia using solid state ceramic method

    SciTech Connect

    Emam, W.I.; Mabied, Ahmed F.; Hashem, H.M.; Selim, M.M.; El-Shabiny, A.M.; Ahmed Farag, I.S.

    2015-08-15

    Structural study of Zr{sub 1−x}Ca{sub x}O{sub 2−x} samples with x=0.01–0.15 were prepared using solid state ceramic method. X-ray diffraction analysis revealed a mixture of the high temperature phase and the monoclinic one for the samples with x≤0.05. On the other hand, the formation of a single high temperature cubic phase was observed within a concentration range of x=0.06–0.10. At concentrations higher than 0.10 the calcium zirconate phase was observed besides the dominant high temperature one. Rietveld refinement of the single phase data clearly revealed, that substitution of zirconium by calcium increases both the lattice parameters as well as the tetrahedral bond length. Ionic to electronic conductivity ratio enhanced considerably as Ca-doping level ascends. The dielectric constant shows strong temperature dependence at lower frequencies. The dielectric loss factor increases rapidly with the increase in temperature at lower frequencies, while decreases with the increase in frequency at higher temperatures. The ionic conduction is considered as the dominant process at higher temperatures. - Graphical abstract: Forming a high temperature cubic zirconia phase at 1200 °C using ceramic solid state method and aliovalent cation. - Highlights: • Formation the high temperature cubic polymorph of zirconia using Ca-doping. • Solid state ceramic method was used for preparing the cubic Ca-doped zirconia. • Substitution of zirconium by calcium increases the lattice parameters and the bond length. • Ionic to electronic conductivity ratio enhanced considerably as Ca-doping level increases.

  7. Injected nanocrystals for targeted drug delivery

    PubMed Central

    Lu, Yi; Li, Ye; Wu, Wei

    2016-01-01

    Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS) cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies. PMID:27006893

  8. Semiconductor Nanocrystals for Biological Imaging

    SciTech Connect

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  9. Preparation and luminescence characteristics of monazite Eu3+:LaPO4 nanocrystals in NH4NO3 molten salt

    NASA Astrophysics Data System (ADS)

    Huang, Xinyang

    2015-12-01

    Molten-salt method and NH4NO3 flux were developed to fabricate monoclinic monazite Eu3+:LaPO4 nanocrystals for the first time. The products were characterized by X-ray powder diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, excitation spectra, emission spectra and luminescence decay curves. The as-obtained products were quasihexagonal Eu3+:LaPO4 nanocrystals with the mean size of 30 nm. The room temperature charge transfer bands (CTB) exhibited red-shift and spectral broadening in comparison with 10 K CTB. The optimal Eu3+ concentration was determined to be 8 mol% by a comparative study of the relative emission intensities for different Eu3+ doping concentrations. The higher concentration quenching could be caused by the possible nonradiative energy transfer (electric multipole-multipole interaction). The relationship between the FL lifetime of 5D0 energy level and Eu3+ concentration was investigated based on Auzel's model. This work is important not only to understand the unique physical properties of Eu3+:LaPO4 nanocrystals but also to bring an opportunity for the development of the other nanocrystals via the molten salt synthesis in NH4NO3 flux.

  10. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Guedj, C.; Hung, L.; Zobelli, A.; Blaise, P.; Sottile, F.; Olevano, V.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO2) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO2, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO2 may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  11. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    SciTech Connect

    Guedj, C.; Hung, L.; Sottile, F.; Zobelli, A.; Blaise, P.; Olevano, V.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO{sub 2}) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO{sub 2}, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO{sub 2} may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  12. Laser ablation characteristics of yttria-doped zirconia in the nanosecond and femtosecond regimes

    NASA Astrophysics Data System (ADS)

    Heiroth, S.; Koch, J.; Lippert, T.; Wokaun, A.; Günther, D.; Garrelie, F.; Guillermin, M.

    2010-01-01

    The laser ablation characteristics of yttria-stabilized zirconia (YSZ) have been investigated as a function of the target microstructure and dopant level for different nanosecond- [ArF, KrF, and XeCl excimers; Nd:YAG (yttrium aluminum garnet) (fourth harmonic)] and femtosecond-laser sources [Ti:sapphire (fundamental and third harmonic)]. Particle ejection, which compromises the quality of coatings prepared by pulsed laser deposition (PLD), was analyzed in detail. Nanosecond-laser pulses cause a severe thermomechanical surface cracking and exfoliation of micron-sized fragments on a microsecond to millisecond time scale in the case of 8-9.5 mol % Y2O3-doped, fully stabilized zirconia (8YSZ and 9.5YSZ) targets. As a consequence of the intrinsic material brittleness, fully stabilized YSZ coatings deposited by PLD contained particles for all tested conditions. Lower doped partially stabilized zirconia (3YSZ) exhibits a superior fracture toughness attributed to a laser-induced partial transition to the monoclinic phase, detected by Raman spectroscopy, which enables the deposition of particle-free dense thin films by conventional PLD using nanosecond-UV laser radiation at moderate fluences of 1.2-1.5 J/cm2. The ablation dynamics of ultrashort laser pulses differ fundamentally from the nanosecond regime as evidenced, e.g., by time-resolved shadowgraphy and light scattering experiments. Femtosecond pulses prevent the exfoliation of micron-sized fragments but result invariably in a pronounced ejection of submicron particles. The resulting PLD coatings are porous and reveal a large surface roughness as they consist of an agglomeration of nanoparticles. Femtosecond-NIR pulses provide a factor of 2.5-10 higher material removal rates compared to nanosecond- and femtosecond-UV pulses. The ablation metrics, i.e., threshold fluence and effective absorptivity, mainly depend on the laser wavelength while the pulse duration, target microstructure, and dopant level are of minor

  13. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia. PMID:17025056

  14. Damage Maps of Veneered Zirconia under Simulated Mastication

    PubMed Central

    Kim, Jae-Won; Kim, Joo-Hyung; Janal, Malvin N.; Zhang, Yu

    2016-01-01

    Zirconia based restorations often fracture from chipping and/or delamination of the porcelain veneers. We hypothesize that veneer chipping/delamination is a result of the propagation of near-contact induced partial cone cracks on the occlusal surface under mastication. Masticatory loading involves the opposing tooth sliding along the cuspal inner incline surface with an applied biting force. To test this hypothesis, flat porcelain veneered zirconia plates were cemented to dental composites and cyclically loaded (contact–slide–liftoff) at an inclination angle as a simplified model of zirconia based restorations under occlusion. In the light of in-situ observation of damage evolution in a transparent glass/zirconia/polycarbonate trilayer, postmortem damage evaluation of porcelain/zirconia/composite trilayers using a sectioning technique revealed that deep penetrating occlusal surface partial cone fracture is the predominant fracture mode of porcelain veneers. Clinical relevance is discussed. PMID:19029080

  15. Meta-analysis of bonding effectiveness to zirconia ceramics.

    PubMed

    Inokoshi, M; De Munck, J; Minakuchi, S; Van Meerbeek, B

    2014-04-01

    Dental zirconia can no longer be considered un-bondable to tooth tissue. In literature, an increasing number of papers indeed report on the bonding effectiveness of different luting techniques to zirconia. We aimed to disclose general trends in bonding to zirconia by systematically collecting zirconia bond-strength data. A search in PubMed and EMBASE revealed 1,371 bond-strength tests reported on in 144 papers. A macro-shear bond-strength protocol was most frequently used; it revealed significantly lower bond strengths and was less discriminative than the other test methods. Regarding luting technique, the combination of mechanical and chemical pre-treatment appeared particularly crucial to obtain durable bonding to zirconia ceramics. The cement choice was not revealed as a determining factor after aging conditions, as long as composite cement was used. Regarding test protocol, a tensile test appeared more discriminative, particularly when combined with 'water storage' aging. PMID:24563487

  16. Damage maps of veneered zirconia under simulated mastication.

    PubMed

    Kim, J-W; Kim, J-H; Janal, M N; Zhang, Y

    2008-12-01

    Zirconia-based restorations often fracture from chipping and/or delamination of the porcelain veneers. We hypothesized that veneer chipping/delamination is a result of the propagation of near-contact-induced partial cone cracks on the occlusal surface under mastication. Masticatory loading involves the opposing tooth sliding along the cuspal inner incline surface with an applied biting force. To test this hypothesis, we cemented flat porcelain-veneered zirconia plates onto dental composites and cyclically loaded them (contact-slide-liftoff) at an inclination angle as a simplified model of zirconia-based restorations under occlusion. In light of in situ observation of damage evolution in a transparent glass/zirconia/polycarbonate trilayer, post mortem damage evaluation of porcelain/zirconia/composite trilayers by a sectioning technique revealed that deep-penetrating occlusal surface partial cone fracture is the predominant fracture mode of porcelain veneers. Clinical relevance is discussed. PMID:19029080

  17. Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO{sub 6}

    SciTech Connect

    Ait Ahsaine, H.; Taoufyq, A.; Patout, L.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; Guinneton, F.; Gavarri, J.-R.

    2014-10-15

    The bismuth lutetium tungstate phase BiLuWO{sub 6} has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better represented by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO{sub 6} with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO{sub 6} octahedron distortions in the structure. - Graphical abstract: The average structure of BiLuWO{sub 6} determined from X-ray diffraction data can be represented by A2/m space group. Experimental Electron Diffraction patterns along the [0vw] zone axes of the monoclinic structure and associated simulated patterns show the existence of a monoclinic superstructure with space group P2 or P2/m. - Highlights: • A new monoclinic BiLuWO{sub 6} phase has been elaborated from solid-state reaction. • The space group of the monoclinic disordered average structure should be A2/m. • Transmission electron microscopy leads to a superlattice with P2/m space group. • Raman spectroscopy suggests existence of local disorder.

  18. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  19. Clinical assessment of enamel wear caused by monolithic zirconia crowns.

    PubMed

    Stober, T; Bermejo, J L; Schwindling, F S; Schmitter, M

    2016-08-01

    The purpose of this study was to measure enamel wear caused by antagonistic monolithic zirconia crowns and to compare this with enamel wear caused by contralateral natural antagonists. Twenty monolithic zirconia full molar crowns were placed in 20 patients. Patients with high activity of the masseter muscle at night (bruxism) were excluded. For analysis of wear, vinylpolysiloxane impressions were prepared after crown incorporation and at 6-, 12-, and 24-month follow-up. Wear of the occlusal contact areas of the crowns, of their natural antagonists, and of two contralateral natural antagonists (control teeth) was measured by use of plaster replicas and a 3D laser-scanning device. Differences of wear between the zirconia crown antagonists and the control teeth were investigated by means of two-sided paired Student's t-tests and linear regression analysis. After 2 years, mean vertical loss was 46 μm for enamel opposed to zirconia, 19-26 μm for contralateral control teeth and 14 μm for zirconia crowns. Maximum vertical loss was 151 μm for enamel opposed to zirconia, 75-115 μm for control teeth and 60 μm for zirconia crowns. Statistical analysis revealed significant differences between wear of enamel by zirconia-opposed teeth and by control teeth. Gender, which significantly affected wear, was identified as a possible confounder. Monolithic zirconia crowns generated more wear of opposed enamel than did natural teeth. Because of the greater wear caused by other dental ceramics, the use of monolithic zirconia crowns may be justified. PMID:27198539

  20. Nanocrystals Research for Energy Efficient and Clean Energy Technologies:

    SciTech Connect

    Rosenthal, Sandra J

    2013-12-17

    Efforts centered on: nanocrystal photovoltaic fabrication, ultrafast dynamics and aberration-corrected STEM characterization of II-VI core, core/shell and alloyed nanocrystals, and fundamental investigation and applications of ultrasmall white light-emitting CdSe nanocrystal.

  1. Thermal conductivity of zirconia thermal barrier coatings

    SciTech Connect

    Dinwiddie, R.B.; Beecher, S.C.; Nagaraj, B.A.; Moore, C.S.

    1995-10-01

    Thermal barrier coatings (TBC`s) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC`s is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings.

  2. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor description (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard power or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increase upon being exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicates that if these coatings reach a temperature above

  3. Sem analysis zirconia-ceramic adhesion interface

    PubMed Central

    CARDELLI, P.; VERTUCCI, V.; MONTANI, M.; ARCURI, C.

    2015-01-01

    SUMMARY Objectives Modern dentistry increasingly tends to use materials aesthetically acceptable and biomimetic. Among these are zirconia and ceramics for several years, a combination that now has becoming synonym of aesthetic; however, what could be the real link between these two materials and especially its nature, remains a controversial topic debated in the literature. The aim of our study was to “underline” the type of bonding that could exist between these materials. Materials and methods To investigate the nature of this bond we used a SEM microscopy (Zeiss SUPRA 25). Different bilaminar specimens: “white” zirconia Zircodent® and ceramic “Noritake®”, after being tested with loading test in bending (three-point-bending) and FEM analysis, were analyzed by SEM. Fragments’ analysis in closeness of the fracture’s point has allowed us to be able to “see” if at large magnifications between these two materials, and without the use of linear, could exist a lasting bond and the possible type of failure that could incur. Results From our analysis of the specimens’ fragments analyzed after test Equipment, it is difficult to highlight a clear margin and no-adhesion zones between the two materials, although the analysis involving fragments adjacent to the fracture that has taken place at the time of Mechanical test Equipment. Conclusions According to our analysis and with all the clarification of the case, we can assume that you can obtain a long and lasting bond between the zirconia and ceramics. Agree to the data present in the literature, we can say that the type of bond varies according to the type of specimens and of course also the type of failure. In samples where the superstructure envelops the ceramic framework Zirconium we are in the presence of a cohesive failure, otherwise in a presence of adhesive failure. PMID:27555905

  4. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C

  5. Electrospinnability of bionanocomposites with high nanocrystal loadings: The effect of nanocrystal surface characteristics.

    PubMed

    Naseri, Narges; Mathew, Aji P; Oksman, Kristiina

    2016-08-20

    This paper deals with the effect of solution properties and nanoparticle surface chemistry on the spinnability of a chitosan/polyethylene oxide (PEO) with high concentration (50wt%) of chitin and cellulose nanocrystals and the properties of the resultant nanocomposite fibers/fiber mats. Electrospinning dispersions with cellulose nanocrystals having sulphate surface groups showed poor spinnability compared to chitin nanocrystals with amide and amino groups. Chitin nanocrystal based dispersions showed good spinnability and continuous fiber formation whereas cellulose nanocrystal system showed discontinuous fibers and branching. The viscosity and surface tension are shown to impact this behavior, but conductivity did not. Poor spinnability observed for cellulose nanocrystal based fibers was attributed to the coagulation of negatively charged cellulose nanocrystals and positively charged chitosan. The study showed that the nanocrystal surface charge and interactions with the chitosan/PEO matrix have a significant impact on the spinnability of bionanocomposites. PMID:27178953

  6. From zirconia to yttria: Sampling the YSZ phase diagram using sputter-deposited thin films

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Wallisch, Wolfgang; Stöger-Pollach, Michael; Klötzer, Bernhard; Penner, Simon

    2016-02-01

    Yttria-stabilized zirconia (YSZ) thin films with varying composition between 3 mol% and 40 mol% have been prepared by direct-current ion beam sputtering at a substrate temperature of 300 °C, with ideal transfer of the stoichiometry from the target to the thin film and a high degree of homogeneity, as determined by X-ray photoelectron and energy-dispersive X-ray spectroscopy. The films were analyzed using transmission electron microscopy, revealing that, while the films with 8 mol% and 20 mol% yttria retain their crystal structure from the bulk compound (tetragonal and cubic, respectively), those with 3 mol% and 40 mol% Y2O3 undergo a phase transition upon sputtering (from a tetragonal/monoclinic mixture to purely tetragonal YSZ, and from a rhombohedral structure to a cubic one, respectively). Selected area electron diffraction shows a strong texturing for the three samples with lower yttria-content, while the one with 40 mol% Y2O3 is fully disordered, owing to the phase transition. Additionally, AFM topology images show somewhat similar structures up to 20 mol% yttria, while the specimen with the highest amount of dopant features a lower roughness. In order to facilitate the discussion of the phases present for each sample, a thorough review of previously published phase diagrams is presented.

  7. Thermal Cycling of Yttria-Stabilized Zirconia-Coated Hot Work Tool Steel

    NASA Astrophysics Data System (ADS)

    Birol, Yucel

    2011-09-01

    Thermal fatigue performance of yttria-stabilized zirconia-coated hot work tool steel was investigated under conditions encountered by thixoforming dies in semi-solid processing of steels. The thermal barrier effect of the YSZ coating was evident from the relatively smaller and more uniform temperature gradients set up across the section of the sample, which in turn, had a direct impact on the magnitude of thermal stresses generated at the surface of the tool steel. In spite of some thermal expansion mismatch with the substrate tool steel and occasional discontinuous thermally grown oxides along the splat boundaries and between the BC and TC, the YSZ coating survived thermal cycling under steel thixoforming conditions for over 12,000 cycles with no evidence of debonding and spallation. This is a nearly ten-fold increase in thermal fatigue life with respect to the uncoated counterpart. An increasingly dense YSZ layer and the toughening linked with the tetragonal to monoclinic ZrO2 phase transformation are credited for the remarkable performance of the YSZ-coating. It is fair to conclude that the YSZ coating offers adequate protection for the underlying tool steel, which without YSZ coating, suffers severe oxidation after only several hundred cycles and extensive cracking after 1000 cycles.

  8. Mechanics and mechanisms of cyclic fatigue-crack propagation in transformation-toughened zirconia ceramics

    SciTech Connect

    Hoffman, M.J. Sydney Univ., NSW . Dept. of Mechanical Engineering); Dauskardt, R.H.; Ritchie, R.O. ); Mai, Y.W. . Dept. of Mechanical Engineering)

    1992-05-01

    Damage and cyclic fatigue failure under alternating loading in transformation-toughened zirconia ceramics is reviewed and compared to corresponding behavior under quasi-static loading (static fatigue). Current understanding of the role of transformation toughening in influencing cyclic fatigue-crack propagation behavior is examined based on studies which altered the extent of the tetragonal-to-monoclinic phase transformation in MG-PSZ through subeutectoid aging. These studies suggest that near-tip computations of the crack-driving force (in terms of the local stress intensity) can be used to predict crack-growth behavior under constant amplitude and variable-amplitude (spectrum) loading, using spatially resolved Raman spectroscopy to measure the extent of the transformation zones. In addition, results are reviewed which rationalize distinctions between the crack-growth behavior of preexisting, long'' (> 2 mm), through-thickness cracks and naturally-occurring, small'' (1 to 100 [mu]m), surface cracks in terms of variations in crack-tip shielding with crack size. In the present study, the effect of grain size variations on crack-growth behavior under both monotonic (R-curve) and cyclic fatigue loading are examined. Such observations are used to speculate on the mechanisms associated with cyclic crack advance, involving such processes as alternating shear via transformation-band formation, cyclic modification of the degree of transformation toughening, and uncracked-ligament (or grain) bridging.

  9. Mechanics and mechanisms of cyclic fatigue-crack propagation in transformation-toughened zirconia ceramics

    SciTech Connect

    Hoffman, M.J. |; Dauskardt, R.H.; Ritchie, R.O.; Mai, Y.W.

    1992-05-01

    Damage and cyclic fatigue failure under alternating loading in transformation-toughened zirconia ceramics is reviewed and compared to corresponding behavior under quasi-static loading (static fatigue). Current understanding of the role of transformation toughening in influencing cyclic fatigue-crack propagation behavior is examined based on studies which altered the extent of the tetragonal-to-monoclinic phase transformation in MG-PSZ through subeutectoid aging. These studies suggest that near-tip computations of the crack-driving force (in terms of the local stress intensity) can be used to predict crack-growth behavior under constant amplitude and variable-amplitude (spectrum) loading, using spatially resolved Raman spectroscopy to measure the extent of the transformation zones. In addition, results are reviewed which rationalize distinctions between the crack-growth behavior of preexisting, ``long`` (> 2 mm), through-thickness cracks and naturally-occurring, ``small`` (1 to 100 {mu}m), surface cracks in terms of variations in crack-tip shielding with crack size. In the present study, the effect of grain size variations on crack-growth behavior under both monotonic (R-curve) and cyclic fatigue loading are examined. Such observations are used to speculate on the mechanisms associated with cyclic crack advance, involving such processes as alternating shear via transformation-band formation, cyclic modification of the degree of transformation toughening, and uncracked-ligament (or grain) bridging.

  10. Translucency and low-temperature degradation of silica-doped zirconia: A pilot study.

    PubMed

    Nakamura, Takashi; Nakano, Yoshiro; Usami, Hirofumi; Wakabayashi, Kazumichi; Ohnishi, Hiroshi; Sekino, Tohru; Yatani, Hirofumi

    2016-01-01

    The purpose of this study was to examine the translucency and low-temperature degradation of silica-doped experimental Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) containing almost no alumina. The experimental Y-TZP samples were sintered at either 1,450 or 1,500°C. The samples of commercially available translucent Y-TZP and conventional Y-TZP were used as controls. The contrast ratio (CR) and translucency parameter (TP) were obtained to compare the translucencies. In addition, the specimens were also subjected to an accelerated aging test. The results showed that the experimental Y-TZP sintered at 1,500°C and translucent Y-TZP exhibited almost the same level of translucency. During the accelerated aging test, the translucent Y-TZP underwent a substantial increase in monoclinic content, an index of degradation after the aging test. However, neither the experimental Y-TZP nor the conventional Y-TZP exhibited any appreciable change. It was concluded that the silica-doped Y-TZP will develop translucency and resistance to degradation when sintered at 1,500°C. PMID:27477222

  11. Microstructure and mechanical properties of bulk yttria-partially-stabilized zirconia

    NASA Technical Reports Server (NTRS)

    Valentine, P. G.; Maier, R. D.; Mitchell, T. E.

    1981-01-01

    A commercially available bulk 4.5 mole percent yttria-Y2O3)-partially-stabilized zirconia (PSZ) was studied by light microscopy, X-ray analysis, microhardness measurement, and fracture toughness testing. The growth of the precipitates and the phase transformations were studied as a function of aging in air at 1500 C. Aging cuves were constructed for both the as-received and the solution-annealed-and-quenched materials; the curves showed hardness peaks at 1397 and 1517 kg/sq mm, respectively. A total of twelve different types of tetragonal precipitates were found. The rectangular plate-shaped tetragonal precipitates were found to have a (110) habit plane. Grinding of the Y2O3 PSZ into powder did not cause a significant amount of metastable tetragonal precipitates to transform into the monoclinic phase, thus indicating that transformation toughening is not a significant mechanism for the material. The fracture toughness of the aged and of the unaged solution-annealed-and-quenched PSZ was found to be between 2 and 3 MN/cu m/2.

  12. Microwave sintering of continuous zirconia ceramic fibers

    SciTech Connect

    Vogt, G.J.; Unruh, W.P.; Plovnick, R.H.

    1994-04-01

    Continuous yttria-stabilized zirconia ceramic fibers approximately 10-15 {mu}m in diameter have been rapidly sintered by pulling them through a tuned, 2.45 GHz single-mode TE{sub 103} microwave cavity in ambient air. The resulting fibers were analyzed by X-ray diffraction, scanning electron microscopy, and single-filament tensile tests. They were found to be unsplit, to have a submicron grain structure and a tetragonal crystal structure, and to exhibit considerable strength and flexibility.

  13. Zirconia-Nanoparticle-Reinforced Morphology-Engineered Graphene-Based Foams.

    PubMed

    Chakravarty, Dibyendu; Tiwary, Chandra Sekhar; Machado, Leonardo Dantas; Brunetto, Gustavo; Vinod, Soumya; Yadav, Ram Manohar; Galvao, Douglas S; Joshi, Shrikant V; Sundararajan, Govindan; Ajayan, Pulickel M

    2015-08-19

    The morphology of graphene-based foams can be engineered by reinforcing them with nanocrystalline zirconia, thus improving their oil-adsorption capacity; This can be observed experimentally and explained theoretically. Low zirconia fractions yield flaky microstructures where zirconia nanoparticles arrest propagating cracks. Higher zirconia concentrations possess a mesh-like interconnected structure where the degree of coiling is dependant on the local zirconia content. PMID:26171602

  14. Hafnia-rich mixed oxide ceramics of the system HfO2-ZrO2-TiO2 for heaters and heat exchangers in electrothermal thrusters: The effects of titania on selected electrical and mechanical properties of Hafnia-rich mixed oxides in the system Hafnia-Zirconia-Titania, volume 1

    NASA Technical Reports Server (NTRS)

    Staszak, Paul Russell; Wirtz, G. P.; Berg, M.; Brown, S. D.

    1988-01-01

    A study of the effects of titania on selected properties of hafnia-rich mixed oxides in the system hafnia-zirconia-titania (HZT) was made in the region 5 to 20 mol percent titania. The studied properties included electrical conductivity, thermal expansion, and fracture strength and toughness. The effects of titania on the properties were studied for the reduced state as well as the oxidized state of the sintered mixed oxides. X-ray analysis showed that the materials were not always single phase. The oxidized compositions went from being monoclinic solid solutions at low titania additions to having three phases (two monoclinic and a titanate phase) at high additions of titania. The reduced compositions showed an increasing cubic phase presence mixed with the monoclinic phase as titania was added. The electrical conductivity increased with temperature at approximately 0.1 mhos/cm at 1700 C for all compositions. The thermal expansion coefficient decreased with increasing titania as did the monoclinic to tetragonal transformation temperature. The fracture strength of the oxidized bars tended to decrease with the addition of titania owing to the presence of the second phase titania. The fracture strength of the reduced bars exhibited a minimum corresponding to a two-phase region of monoclinic and cubic phases. When the second phases were suppressed, the titania tended to increase the fracture strength slightly in both the oxidized and reduced states. The fracture toughness followed similar trends.

  15. Cellulose nanocrystals: synthesis, functional properties, and applications.

    PubMed

    George, Johnsy; Sabapathi, S N

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  16. Cellulose nanocrystals: synthesis, functional properties, and applications

    PubMed Central

    George, Johnsy; Sabapathi, SN

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  17. Phase transitions and doping in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Sahu, Ayaskanta

    Colloidal semiconductor nanocrystals are a promising technological material because their size-dependent optical and electronic properties can be exploited for a diverse range of applications such as light-emitting diodes, bio-labels, transistors, and solar cells. For many of these applications, electrical current needs to be transported through the devices. However, while their solution processability makes these colloidal nanocrystals attractive candidates for device applications, the bulky surfactants that render these nanocrystals dispersible in common solvents block electrical current. Thus, in order to realize the full potential of colloidal semiconductor nanocrystals in the next-generation of solid-state devices, methods must be devised to make conductive films from these nanocrystals. One way to achieve this would be to add minute amounts of foreign impurity atoms (dopants) to increase their conductivity. Electronic doping in nanocrystals is still very much in its infancy with limited understanding of the underlying mechanisms that govern the doping process. This thesis introduces an innovative synthesis of doped nanocrystals and aims at expanding the fundamental understanding of charge transport in these doped nanocrystal films. The list of semiconductor nanocrystals that can be doped is large, and if one combines that with available dopants, an even larger set of materials with interesting properties and applications can be generated. In addition to doping, another promising route to increase conductivity in nanocrystal films is to use nanocrystals with high ionic conductivities. This thesis also examines this possibility by studying new phases of mixed ionic and electronic conductors at the nanoscale. Such a versatile approach may open new pathways for interesting fundamental research, and also lay the foundation for the creation of novel materials with important applications. In addition to their size-dependence, the intentional incorporation of

  18. Osteogenic responses to zirconia with hydroxyapatite coating by aerosol deposition.

    PubMed

    Cho, Y; Hong, J; Ryoo, H; Kim, D; Park, J; Han, J

    2015-03-01

    Previously, we found that osteogenic responses to zirconia co-doped with niobium oxide (Nb2O5) or tantalum oxide (Ta2O5) are comparable with responses to titanium, which is widely used as a dental implant material. The present study aimed to evaluate the in vitro osteogenic potential of hydroxyapatite (HA)-coated zirconia by an aerosol deposition method for improved osseointegration. Surface analysis by scanning electron microscopy and x-ray diffraction proved that a thin as-deposited HA film on zirconia showed a shallow, regular, crater-like surface. Deposition of dense and uniform HA films was measured by SEM, and the contact angle test demonstrated improved wettability of the HA-coated surface. Confocal laser scanning microscopy indicated that MC3T3-E1 pre-osteoblast attachment did not differ notably between the titanium and zirconia surfaces; however, cells on the HA-coated zirconia exhibited a lower proliferation than those on the uncoated zirconia late in the culture. Nevertheless, ALP, alizarin red S staining, and bone marker gene expression analysis indicated good osteogenic responses on HA-coated zirconia. Our results suggest that HA-coating by aerosol deposition improves the quality of surface modification and is favorable to osteogenesis. PMID:25586588

  19. Osteogenic Responses to Zirconia with Hydroxyapatite Coating by Aerosol Deposition

    PubMed Central

    Cho, Y.; Hong, J.; Ryoo, H.; Kim, D.; Park, J.

    2015-01-01

    Previously, we found that osteogenic responses to zirconia co-doped with niobium oxide (Nb2O5) or tantalum oxide (Ta2O5) are comparable with responses to titanium, which is widely used as a dental implant material. The present study aimed to evaluate the in vitro osteogenic potential of hydroxyapatite (HA)-coated zirconia by an aerosol deposition method for improved osseointegration. Surface analysis by scanning electron microscopy and x-ray diffraction proved that a thin as-deposited HA film on zirconia showed a shallow, regular, crater-like surface. Deposition of dense and uniform HA films was measured by SEM, and the contact angle test demonstrated improved wettability of the HA-coated surface. Confocal laser scanning microscopy indicated that MC3T3-E1 pre-osteoblast attachment did not differ notably between the titanium and zirconia surfaces; however, cells on the HA-coated zirconia exhibited a lower proliferation than those on the uncoated zirconia late in the culture. Nevertheless, ALP, alizarin red S staining, and bone marker gene expression analysis indicated good osteogenic responses on HA-coated zirconia. Our results suggest that HA-coating by aerosol deposition improves the quality of surface modification and is favorable to osteogenesis. PMID:25586588

  20. Sintering aids for yttria partially stabilized zirconia

    SciTech Connect

    Montross, C.S.

    1987-01-01

    High-purity yttria partially stabilized zirconia does not sinter readily. Commercial production of the powder and finished parts has allowed contamination by silica and aluminosilicates to enhance the sintering via a liquid-phase mechanism at 1400/sup 0/C. This research analyzed several simple metal oxides as possible nonglassy sintering aids to enhance the sintering of high-purity yttria partially stabilized zirconia, Y-PSZ, without the deleterious effects of the glass contamination. Of the metal oxides analyzed: iron oxide, bismuth oxide, chromia, niobia, tantala, tungsten oxide and mullite, only one metal oxide, iron oxide resulted in enhanced sintering. The iron oxide doped Y-PSZ exhibited better sinterability than high purity Y-PSZ and equivalent/better sinterability than glass doped Y-PSZ. The iron oxide doped Y-PSZ had a higher tetragonal content at lower sintering temperatures and at lower densities than glass doped Y-PSZ. This resulted in higher fracture toughness at lower temperatures than the glass doped Y-PSZ. Additionally, the iron oxide doped Y-PSZ showed a better resistance to low temperature high humidity degradation than glass doped Y-PSZ under identical conditions. Problems of bloating common to high surface area ultra fine powders and exhibited by the glass doped Y-PSZ were not alleviated by the use of the nonglassy metal oxide sintering aids.

  1. Biological reactivity of zirconia-hydroxyapatite composites.

    PubMed

    Silva, Viviane V; Lameiras, Fernando S; Lobato, Zélia I P

    2002-01-01

    Materials and devices intended for end-use applications as implants and medical devices must be evaluated to determine their biocompatibility potential in contact with physiological systems. The use of standard practices of biological testing provides a reasonable level of confidence concerning the response of a living organism to a given material or device, as well as guidance in selecting the proper procedures to be carried out for the screening of new or modified materials. This article presents results from cytotoxicity assays of cell culture, skin irritation, and acute toxicity by systemic and intracutaneous injections for powders, ceramic bodies, and extract liquids of hydroxyapatite (HA), calcia partially stabilized zirconia (ZO), and two types of zirconia-hydroxyapatite composites (Z4H6 and Z6H4) with potential for future use as orthopedic and dental implants. They indicate that these materials present potential for this type of application because they meet the requirements of the standard practices recommended for evaluating the biological reactivity of ATCC cell cultures (CCL1 NCTC clone 929 of mouse connective tissue and CCL 81 of monkey connective tissue) and animals (rabbit and mouse) with direct or indirect patient contact, or by the injection of specific extracts prepared from the material under test. In addition, studies involving short-term intramuscular and long-term implantation assays to estimate the reaction of living tissue to the composites studied, and investigations on long-term effects that these materials can cause on the cellular metabolism, are already in progress. PMID:12209904

  2. Electronic structure of cobalt nanocrystals suspended inliquid

    SciTech Connect

    Liu, Hongjian; Guo, Jinghua; Yin, Yadong; Augustsson, Andreas; Dong, Chungli; Nordgren, Joseph; Chang, Chinglin; Alivisatos, Paul; Thornton, Geoff; Ogletree, D. Frank; Requejo, Felix G.; de Groot, Frank; Salmeron, Miquel

    2007-07-16

    The electronic structure of cobalt nanocrystals suspended in liquid as a function of size has been investigated using in-situ x-ray absorption and emission spectroscopy. A sharp absorption peak associated with the ligand molecules is found that increases in intensity upon reducing the nanocrystal size. X-ray Raman features due to d-d and to charge-transfer excitations of ligand molecules are identified. The study reveals the local symmetry of the surface of {var_epsilon}-Co phase nanocrystals, which originates from a dynamic interaction between Co nanocrystals and surfactant + solvent molecules.

  3. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  4. Al-doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Kadam, Pratibha; Agashe, Chitra; Mahamuni, Shailaja

    2008-11-01

    Al3+-doped ZnO nanocrystals were differently obtained by wet chemical and an electrochemical route. An increase in forbidden gap due to change in crystal size and also due to Al3+ doping in ZnO is critically analyzed. The Moss-Burstein type shift in Al3+-doped ZnO nanocrystals provides an evidence of successful Al3+ doping in ZnO nanocrystals. The possibility of varying the carrier concentration in ZnO nanocrystals is the indirect implication of the present investigations.

  5. Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure

    SciTech Connect

    Hsieh, Wen-Pin Mao, Wendy L.; Trigo, Mariano; Reis, David A.; Andrea Artioli, Gianluca; Malavasi, Lorenzo

    2014-01-13

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1}) phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.

  6. Raman analysis of monoclinic Cu2SnS3 thin films

    NASA Astrophysics Data System (ADS)

    Berg, Dominik M.; Djemour, Rabie; Gütay, Levent; Siebentritt, Susanne; Dale, Phillip J.; Fontane, Xavier; Izquierdo-Roca, Victor; Pérez-Rodriguez, Alejandro

    2012-05-01

    Secondary phases like Cu2SnS3 are major obstacles for kesterite thin film solar cell applications. We prepare Cu2SnS3 using identical annealing conditions as used for the kesterite films. By x-ray diffraction, the crystal structure of Cu2SnS3 was identified as monoclinic. Polarization-dependent Raman investigations allowed the identification of the dominant peaks at 290 cm-1 and 352 cm-1 with the main A' symmetry vibrational modes from the monoclinic Cu2SnS3 phase. Furthermore, micro-resolved Raman investigations revealed local variations in the spectra that are attributed to a secondary phase (possibly Cu2Sn3S7). This exemplifies the abilities of micro-resolved Raman measurements in the detection of secondary phases.

  7. Monoclinic sulfur cathode utilizing carbon for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Jung, Sung Chul; Han, Young-Kyu

    2016-09-01

    Sulfur cathodes for lithium-sulfur batteries have been designed to be combined with conductive carbon because the insulating nature of sulfur causes low active material utilization and poor rate capability. This paper is the first to report that carbon can induce a phase transition in a sulfur cathode. The stable form of a sulfur crystal at ambient temperature is orthorhombic sulfur. We found that monoclinic sulfur becomes more stable than orthorhombic sulfur if carbon atoms penetrate into the sulfur at elevated temperatures and the carbon density exceeds a threshold of C0.3S8. The high stability of the carbon-containing monoclinic sulfur persists during lithiation and is attributed to locally formed linear SC3S chains with marked stability. This study provides a novel perspective on the role of carbon in the sulfur cathode and suggests control of the crystal phase of electrodes by composite elements as a new way of designing efficient electrode materials.

  8. Monoclinic and orthorhombic polymorphs of paracetamol—solid state linear dichroic infrared spectral analysis

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.

    2005-03-01

    Solid-state linear dichroic infrared (IR-LD) spectral analysis of both monoclinic (form I) and orthorhombic (form II) polymorphs of paracetamol was carried out using an orientation technique as a nematic liquid crystal suspension. The so-called reducing-difference procedure for polarized spectra interpretation was applied and the obtained supramolecular stereo structural data of both modifications were compared with known crystallographic ones. A detailed vibration assignment of characteristic frequencies of forms I and II was also applied. A quantitative FT-IR spectral approach for monoclinic form determination in mixtures by the intensity ratio of 1610 cm -1 peak (characteristic for both forms) to 1666 cm -1 one (attributed to orthorhombic modification) was presented, as well.

  9. Germanium Nanocrystal Solar Cells

    NASA Astrophysics Data System (ADS)

    Holman, Zachary Charles

    Greenhouse gas concentrations in the atmosphere are approaching historically unprecedented levels from burning fossil fuels to meet the ever-increasing world energy demand. A rapid transition to clean energy sources is necessary to avoid the potentially catastrophic consequences of global warming. The sun provides more than enough energy to power the world, and solar cells that convert sunlight to electricity are commercially available. However, the high cost and low efficiency of current solar cells prevent their widespread implementation, and grid parity is not anticipated to be reached for at least 15 years without breakthrough technologies. Semiconductor nanocrystals (NCs) show promise for cheap multi-junction photovoltaic devices. To compete with photovoltaic materials that are currently commercially available, NCs need to be inexpensively cast into dense thin films with bulk-like electrical mobilities and absorption spectra that can be tuned by altering the NC size. The Group II-VI and IV-VI NC communities have had some success in achieving this goal by drying and then chemically treating colloidal particles, but the more abundant and less toxic Group IV NCs have proven more challenging. This thesis reports thin films of plasma-synthesized Ge NCs deposited using three different techniques, and preliminary solar cells based on these films. Germanium tetrachloride is dissociated in the presence of hydrogen in a nonthermal plasma to nucleate Ge NCs. Transmission electron microscopy and X-ray diffraction indicate that the particles are nearly monodisperse (standard deviations of 10-15% the mean particle diameter) and the mean diameter can be tuned from 4-15 nm by changing the residence time of the Ge NCs in the plasma. In the first deposition scheme, a Ge NC colloid is formed by reacting nanocrystalline powder with 1-dodecene and dispersing the functionalized NCs in a solvent. Films are then formed on substrates by drop-casting the colloid and allowing it to dry

  10. The Use of Newer High Translucency Zirconia in Aesthetic Zone

    PubMed Central

    Dangra, Zishan; Gandhewar, Mahesh

    2014-01-01

    Loss of anterior tooth causes aesthetic and functional disharmony. Although no restorative material can approach the appearance of intact tooth enamel, glass ceramic, at the increased risk of brittle fracture, can mimic original tooth color better than the other restorative options. The newest zirconia material comes with unparalleled individualization in aesthetics and optimal physical properties. One of the basic principles of tooth preparation is conservation of tooth structure. This clinical report describes the replacement of maxillary and mandibular incisor with latest generation zirconia adhesive fixed partial denture. The authors have achieved unmatched aesthetics with newer high translucency zirconia. PMID:24715994